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ABSTRACT

Delay-aware Scheduling in Wireless Coding Networks:

To Wait or Not to Wait. (December 2010)

Solairaja Ramasamy, B.Tech., College of Engineering, Guindy,

Anna University, India

Chair of Advisory Committee: Dr.Alex Sprintson

Wireless technology has become an increasingly popular way to gain network

access. Wireless networks are expected to provide efficient and reliable service and

support a broad range of emerging applications, such as multimedia streaming and

video conferencing. However, limited wireless spectrum together with interference

and fading pose significant challenges for network designers. The novel technique of

network coding has a significant potential for improving the throughput and reliability

of wireless networks by taking advantage of the broadcast nature of wireless medium.

Reverse carpooling is one of the main techniques used to realize the benefits of

network coding in wireless networks. With reverse carpooling, two flows are traveling

in opposite directions, sharing a common path. The network coding is performed in

the intermediate (relay) nodes, which saves up to 50% of transmissions.

In this thesis, we focus on the scheduling at the relay nodes in wireless networks

with reverse carpooling. When two packets traveling in opposite directions are avail-

able at the relay node, the relay node combines them and broadcasts the resulting

packet. This event is referred to as a coding opportunity. When only one packet is

available, the relay node needs to decide whether to wait for future coding oppor-

tunities, or to transmit them without coding. Though the choice of holding packets

exploits the positive aspects of network coding, without a proper policy in place that

controls how long the packets should wait, it will have an adverse impact on delays
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and thus the overall network performance. Accordingly, our goal is to find an op-

timal control strategy that delicately balances the tradeoff between the number of

transmissions and delays incurred by the packets.

We also address the fundamental question of what local information we should

keep track of and use in making the decision of of whether to transmit uncoded packet

or wait for the next coding opportunity. The available information consists of queue

length and time stamps indicating the arrival time of packets in the queue. We

could also store history of all previous states and actions. However, using all this

information makes the control very complex and so we try to find if the overhead in

collecting waiting times and historical information is worth it.

A major contribution of this thesis is a stochastic control framework that uses

state information based on what can be observed and prescribes an optimal action.

For that, we formulate and solve a stochastic dynamic program with the objective

of minimizing the long run average cost per unit time incurred due to transmissions

and delays. Subsequently, we show that a stationary policy based on queue lengths is

optimal, and the optimal policy is of threshold-type. Then, we describe a non-linear

optimization procedure to obtain the optimal thresholds.

Further, we substantiate our analytical findings by performing numerical exper-

iments under varied settings. We compare systems that use only queue length with

those where more information is available, and we show that optimal control that

uses only the queue length is as good as any optimal control that relies on knowing

the entire history.
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CHAPTER I

INTRODUCTION

Wireless networks are becoming increasingly popular in recent years. With the advent

of cheaper smart phones and other hand held devices, wireless networks have become

ubiquitous. In order to provide support to the wide range of requirements arising

due to emerging applications such as multimedia streaming and video conferencing,

significant amount of work has been done recently focusing on reducing the negative

impacts due to interference, fading and energy constraints in wireless networks.

The novel technique of Network coding introduced by Ahlswede et al. in their

seminal work [1] has been proved to significantly improve the throughput benefits

and energy efficiency in wireless networks. In contrast to the traditional routing

techniques where packets from different flows are treated as distinct entities, network

coding enables cooperation among different network flows and allows intermediate

forwarding nodes to mix packets from multiple flows and transmit them together as a

single packet. In wireless networks, network coding can exploit the broadcast nature

of the medium and offers great benefits in terms of reduced number of transmissions

and thus more effective bandwidth and energy usage.

For example, consider a wireless network coding scheme depicted in Figure 1(a).

Here, wireless nodes 1 and 2 need to exchange packets x1 and x2. It is also assumed

that the end nodes 1 and 2 cannot communicate directly due to power constraints.

Hence all communication has to be relayed through node 3 which lies in between.

In this scenario, the traditional simple store-and-forward approach needs four trans-

missions totally. However, the network coding solution uses a store-code-and-forward

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Reverse carpooling in wireless coding network

approach in which the two packets x1 and x2 are combined by means of a bitwise

XOR operation at the relay and broadcast to nodes 1 and 2 simultaneously. Nodes

1 and 2 can then decode this coded packet to obtain the packets they are interested

in. In larger networks, the gain due to network coding will be even higher.

In order to better realize the benefits of network coding, several techniques like

coding aware routing (e.g., DCAR [2], [3]) have been proposed. Effros et al. [4]

introduced the strategy of reverse carpooling that allows choosing routes intelligently

such that information flows traveling in opposite directions share a common path.

Figure 1(b) shows an example of two connections, from n1 to n4 and from n4 to n1

that share a common path (n1, n2, n3, n4). The intermediate nodes n2 and n3 perform

coding and this coding approach results in a significant reduction (up to 50%) in

the number of transmissions for the two connections that use reverse carpooling. In

particular, once the first connection is established, the second connection (of the same

rate) can be established in the opposite direction with little additional cost.
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A. Motivation and Goals

In the simple reverse carpooling based network coding approach discussed previously,

we refer to the scenario where intermediate nodes combine packets from different flows

as opportunistic coding. We call it opportunistic as an intermediate node performs

coding only when it finds packets from all compatible flows during the period when

it is scheduled to transmit. If there is no opportunity for coding i.e. if packets are

not available from one of the flows, then the intermediate nodes simply forward the

packets without any coding. Here, by missing on future potential coding opportunities

the network fails to fully realize the benefits of network coding. An alternative which

is worth considering is to wait for a future opportunity and perform coding. Though

this approach exploits the positive aspects of network coding and results in reduced

number of transmissions, the additional delay introduced may have severe impact

on overall performance of the system. Hence there is a need for establishing control

mechanisms to delicately manage the trade-off between the number of transmissions

and delay in the network. In particular, to cater to delay-sensitive applications, the

network must be aware that savings achieved by coding may be offset by delays

incurred in waiting for such opportunities. Thus, the network must schedule packets

considering both delays as well as coding gains.

We look into the design of distributed controllers to schedule packets at interme-

diate nodes. We also need to find appropriate strategies to be used in deciding the

action to be taken when there is no coding opportunity. Essentially, the controller has

to decide whether to transmit without coding or wait for future coding opportunities.

Since both transmissions and holding packets involve costs, the objective is to design

a controller that minimizes the average cost incurred due to transmissions and delays.

In the process, we also look into the question of what local information need to be
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collected at each intermediate node that will be used by the controllers in making

decisions.

B. Basic Model

Consider a relay node that transmits packets between two of its adjacent nodes that

has flows in opposite directions, as depicted in Figure 2. We call the broadcast link

at relay node R, hyperlink. The relay maintains two queues q1 and q2, such that q1

and q2 store packets that need to be delivered to nodes 2 and 1, respectively. Every

time when the relay node gets an opportunity to transmit, if both queues are not

empty then it can transmit two packets (one from each queue) simultaneously by

performing an XOR operation. However, what should the hyperlink do if one of the

queues has packets to transmit, while the other queue is empty? Should the relay

wait for a coding opportunity in future or just transmit a packet from a non-empty

queue without coding? This fundamental question is the main motivation for this

work.

Fig. 2. 3-Node relay network

The controllers at intermediate nodes use policies that yield a transmit or do

not transmit decision at each time instant. The optimal policy is defined as the one

that minimizes long-run average system cost which includes costs of transmissions
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plus holding costs. Accordingly, we design delay-aware controllers that use local

information to decide whether or not to wait for a coding opportunity, or to go ahead

with an uncoded transmission. By sending uncoded packets we do not take advantage

of positive externality of network coding, hence are not energy-efficient. However, by

waiting for packets to code, we might be able to achieve energy efficiency at the cost

of packets getting delayed further.

C. Related Work

Network coding research was initiated by seminal work by Ahlswede et al. [1] and

since then attracted major interest from the research community. Many initial works

on the network coding technique focused on establishing multicast connections be-

tween a fixed source and a set of terminal nodes. Li et al. [5] showed that the

maximum rate of a multicast connection is equal to the minimum capacity of a cut

that separates the source and any terminal. In a subsequent work, Koetter and

Médard [6] developed an algebraic framework for network coding and investigated

linear network codes for directed graphs with cycles.

Network coding technique for wireless networks has been considered by Katabi et

al. [7]. They propose an architecture called COPE, which contains a special network

coding layer between the IP and MAC layers. In [8] Chachulski et al. proposed an

opportunistic routing protocol, referred to as MORE, that randomly mixes packets

that belong to the same flow before forwarding them to the next hop. Sagduyu

and Ephremides [9] focused on the applications of network coding in simple path

topologies (referred to in [9] as tandem networks) and formulated related cross-layer

optimization problems. Similarly, [10] considered the problem of utility maximization

when network coding is possible. However, their focus is on opportunistic coding as
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opposed to creating coding opportunities that we focus on. In the work by Reddy

et al. [11], it was showed how to design coding-aware routing controllers that would

maximize coding opportunities (and hence reduce the number of transmissions) in

multihop networks. However, in contrast to all the above literature our objective

here is to study the delicate tradeoff between transmission costs and waiting costs

when network coding is an option.

For that we formulate and solve a stochastic dynamic program, in particular a

Markov decision process (MDP), to determine the optimal control actions in various

states. However, although there have been several excellent books (Puterman [12],

Ross [13] and Bertsekas [14] to name a few) on MDPs, there are relatively few articles

that provide a methodology to find optimal policies for problems like ours that are

infinite horizon, average cost optimization with a countably infinite state space. In

fact, Bertsekas [14] specifically says that such problems are difficult to analyze and

obtain optimal policies. But the literature is extremely rich for discounted cost infinite

horizon problems and average cost finite state-space problems.

D. Thesis Organization

This thesis is organized as follows. In the Chapter II, we formally introduce our

system model with appropriate notations and definitions. Then in the Chapter III

we introduce the space of controllers where we need to look for and find the optimal

control. Next we look into the possible information that can be collected locally and

based on which the strategies for the controller can be devised. Having listed down

the available information, we then introduce different strategies that can be used by

the controllers and discuss their analysis using Discrete Markov Chain model. As the

amount of local information that need to be tracked and maintained determines the
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complexity of controllers, in the beginning of Chapter IV, we establish what informa-

tion queue length, vector of waiting times for all packets etc., is actually required and

then we find the structure of optimal policy. Once the structure of optimal policy

is found, we show how the exact policy will look like in the following sections. In

the Chapter V, we discuss the experiments that are run to numerically validate our

analytical findings. Finally, we conclude in the Chapter VI by giving the summary

of our research work and possible future extensions to it.
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CHAPTER II

SYSTEM MODEL

Consider a multi-hop wireless network operating a time-division multiplexing scheme

to store and forward packets from various sources to destinations. Time is slotted

into small intervals and in each interval every node gets to transmit at most one

packet of a flow. This packet is transmitted during a “mini-slot” that the node

has been assigned. We assume that this mini-slot is instantaneous for all practical

purposes. Also, in this model we will not consider any scheduling issues and assume

that we have scheduled mini-slots assigned to each node for each flow where nodes

have opportunities to transmit if they choose to. With that said, we will now describe

the scenario from the perspective of a single node, especially a hyperlink that has the

potential for network coding packets from flows in opposing directions.

A. Scenario from a Hyperlink’s Perspective

Consider the network on Figure 3. We call two of the adjacent nodes to the hyperlink

R as nodes 1 and 2. Say there is a flow f1 that goes from node 1 to 2 and another flow

f2 from node 2 to 1, both of which are through the hyperlink under consideration.

The packets from both flows go through separate queues, q1 and q2, at node R.

With respect to the hyperlink we now define a slot as the time between successive

opportunities for the hyperlink to transmit. The packet arrivals from node i follow

Bernoulli distribution with rate pi i.e. in each slot a packet arrives from node i

(during its transmission opportunity) to qi with probability pi for i = 1, 2 and with

probability (1 − pi) no packet arrives from node i in a slot. Thus, a maximum of 1

packet arrives from each adjacent node to the hyperlink during a slot (this is according

to the network definition and scheduling we described earlier). At the end of a slot,
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the hyperlink gets an opportunity to transmit and it can transmit a maximum of one

packet.

1 1f

2

q

q

R

2

1

f 2

1 2

f

f

Fig. 3. System model

Whenever the hyperlink gets transmission opportunities, when both queues are

non-empty, one packet from q1 and one from q2 can be transmitted together as a

single packet using XOR coding. This scenario, in which transmitting a combination

of packets results in decreasing the required number of transmissions, is referred as a

coding opportunity. Whenever such a coding opportunity exists between the packets

of two flows, the hyperlink encodes the packets and transmits the coded packet back

to the adjacent nodes. However, if there is only one type of packet at the end of a slot,

there are two options: (a) one of those packets gets transmitted without coding or

(b) we wait for a future slot to receive a matching packet in the other queue to utilize

the coding opportunity. We assume that transmissions within a type is according to

a first-in-first-out basis.

Note that if we started with an empty system, at the end of every time slot,

once a transmission (if any) is completed, there would be at most one type of packet.

Therefore, the relay node faces one of three types of situations: (i) one packet of

one type and at least one packet of another type; (ii) only one type of packet(s);

(iii) no packets. The decision in situations (i) and (iii) is straightforward, one would

code using XOR in situation (i) and transmit, whereas do nothing in situation (iii).
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However in situation (ii), it is unclear as to what is the best course of action, do

nothing (thus worsening delay) or transmit without coding (thus being inefficient).

In other words, to wait or not to wait, that is the question. The hyperlink pays a

price of Ct units for each transmission and Ch units to hold a packet for one time

slot.

B. Markov Decision Process Model

This section focuses on the stochastic optimal control framework developed to find

optimal control actions at the hyperlink. We model the system as a Markov Decision

Process (MDP) [12, 13, 14]. This model uses state information based on what can be

observed and prescribes an optimal action for each state. Then by solving the MDP

model, we develop the structure of the optimal policy (such as stationary versus non-

stationary, threshold versus switching curve, etc.) [15]. While we defer discussions

on finding an optimal policy to the next chapter, we will give a brief background of

MDP and details of formulating our problem as MDP here.

1. MDP Background

Markov Decision Processes (MDP) is mathematical framework used in modeling de-

cision making problems where an optimal decision has to be made at each state in

presence of uncertainty. An MDP contains: (i) A set of possible states called State

space (S) (ii) A set of possible actions, Action space (A), (iii) A real valued reward

or cost function R(s,a) that defines the reward or cost of performing the action a

at state s and (iv) Transition probability matrix (Pa) for each a ∈ A that define the

impact of action a on each state as probabilities of transition into other states. Refer

to the Figure 4 for a sample MDP containing three states {S0, S1, S2} and two actions
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{a0, a1}.

Fig. 4. An example of a Markov Decision Process with 3 states and 2 actions

The policy π is a mapping from S to A i.e. policy determines an action for

each state. The performance of a policy is evaluated by computing the expected

total reward (or cost). However, for infinite horizon problems, this typically yields

infinite value. In that case, the most widely used and analytically tractable method

to overcome this difficulty is Discounting which discounts a reward (or cost) n−steps

away by γn for discount rate 0 < γ < 1. From the the γ-discounted cost case, the

long run average cost can be obtained by letting the discount factor γ to approach 1.

A value function V : S → < that maps each state to a real value, where Vn(s)

for n→∞ represents the expected objective value in long run given that the system

starts from the state s at time n = 0. MDPs are generally solved using dynamic

programming and reinforcement learning methods. For example, the problem dynam-

ics can be defined using Bellman equations which relates the value function to itself

using a recurrence relation as follows,

Vn+1(s) = maxa∈A {R(s, a) + γΣs′∈S Pa(s
′|s, a)Vn(s′)} (2.1)
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Then the above equation can be solved using value iteration which is one of the

algorithms to solve MDP. This technique iterates over all states and updates the value

function V until it converges to the optimal value. Note than in the above equation,

it is assumed that the problem under consideration has the objective of maximizing

rewards(costs). Otherwise, we choose an action that minimizes the rewards(cost).

At the end of value iteration, the mapping between each state in S and an optimal

action in A is given as,

arg maxa∈A {R(s, a) + γΣs′∈S Pa(s
′|s, a)V ∗(s′)} (2.2)

where V ∗(s) is the optimal value for state s at the time of convergence.

2. Model

To develop a strategy for the hyperlink to decide at every transmission opportunity,

its best course of action, we use a Makov decision process (MDP) model. For i = 1, 2

and n = 0, 1, 2, . . ., let Y i
n be the number of packets of type i in the hyperlink at the

end of time slot n just before an opportunity to transmit. Let An be the action chosen

at the end of the nth time slot with An = 0 implying the action is to do nothing and

An = 1 implying the action is to transmit. As we described before, if Y 1
n + Y 2

n = 0,

then An = 0 because that is the only feasible action. Also, if Y 1
n Y

2
n > 0, then An = 1

because the best option is to transmit as a coded XOR packet as it both reduces the

number of transmissions as well as latency. However, when exactly one of Y 1
n and Y 2

n

is non-zero, it is unclear what the best course of action is.

To develop a strategy for that, we first define costs for latency and transmission.

Let Ct be the cost for transmitting a packet and Ch be the cost for holding a packet

for a length of time equal to one slot. Without loss of generality, we assume that if a

packet was transmitted in the same slot it arrived, its latency is zero. Also, the cost
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of transmitting a coded packet is the same as that of a non-coded packet. That said,

our objective is to derive an optimal policy that minimizes the long-run average cost

per slot. For that we define the MDP {(Yn, An), n ≥ 0} where Yn = (Y 1
n , Y

2
n ) is the

state of the system and An the control action chosen at time n. The state space (i.e.

all possible values of Yn) is the set {(i, j) : i ≥ 0, j ≤ 1 or j ≥ 0, i ≤ 1}.

Let C(Yn, An) be the cost incurred at time n if action An is taken when the

system is in state Yn. Therefore,

C(Yn, An) = Ch([Y
1
n − An]+ + [Y 2

n − An]+) + CtAn, (2.3)

where [x]+ = max(x, 0). The long-run average cost for some policy u is given by

g(u) = lim
N→∞

1

N + 1
Eu

[
N∑
n=0

C(Yn, An)|Y0 = (0, 0)

]
, (2.4)

where Eu is the expectation operator taken for the system under policy u. Notice that

our initial state is an empty system, although the average cost would not depend on

it. Our goal is to obtain the optimal policy u∗ that minimizes g(u). For that we first

describe the probability law for our MDP and then in subsequent chapters develop a

methodology to obtain the optimal policy u∗.

For the MDP {(Yn, An), n ≥ 0}, the probability law can be derived for i ≥ 0 and
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j ≥ 0 as:

P{An=1} ((i, j), ([i− 1]+, [j − 1]+)) = (1− p1)(1− p2),

P{An=1} ((i, j), (max(i, 1), [j − 1]+)) = p1(1− p2),

P{An=1} ((i, j), ([i− 1]+,max(j, 1))) = (1− p1)p2,

P{An=1} ((i, j), (max(i, 1),max(j, 1))) = p1p2,

P{An=0} ((i, j), (i, j)) = (1− p1)(1− p2),

P{An=0} ((i, j), (i+ 1, j)) = p1(1− p2),

P{An=0} ((i, j), (i, j + 1)) = (1− p1)p2,

P{An=0} ((i, j), (i+ 1, j + 1)) = p1p2,

where P{An=a} (Yn, Yn+1) is the transition probability from state Yn to Yn+1 when the

action a ∈ {0, 1} is chosen. Also note the caveats that: i and j cannot both be greater

than 1; if i = j = 0, then An = 0; if i > 0 and j > 0, then An = 1.
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CHAPTER III

DISTRIBUTED CONTROL FRAMEWORK

In this chapter, we discuss the design of distributed controllers that are used in in-

termediate nodes to make the right decision of whether to wait for future coding

opportunity or to transmit without coding. The main objective is to minimize the

average cost incurred due to transmissions and delays. In designing such cost mini-

mizing controllers, we can define system states to include just queue lengths and/or

the vector of waiting times associated with each of the packets. Depending upon the

amount of local information required in designing the controllers, we group them into

following categories:

• The set ΠHR of randomized history dependent policies, i.e. policies with actions

that depend on knowing the history of states and actions up to the time when

the decision needs to be made. Also these policies are randomized because the

resulting action could be chosen randomly (as opposed to deterministically).

• The set ΠMR of all randomized Markov policies, i.e. policies where actions

depend on knowing just the current state when the decision needs to be made.

By definition, the action taken at time n could depend on n for Markov policies.

• The set ΠSR of randomized stationary policies, which are essentially randomized

Markov policies that do not depend on n.

• Finally, we have the set ΠSD of deterministic stationary policies, in which ac-

tions are deterministic and solely depend on the current state but not n.

It can be seen (as shown in Puterman [12]) that

ΠSD ⊂ ΠSR ⊂ ΠMR ⊂ ΠHR.
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and the complexity of the algorithms, and hence our inability to determine them

exactly also increases from left to right. It is also often true that the nearness to

optimal performance decreases from left to right.

A. Transmission Policies

The controllers can apply different policies to make the decision of whether to wait

or not to wait whenever there is no coding opportunity at the relay node. These

policies use local information to decide the suitable action at every state. The local

information could include: queue length, arrival timestamps for each packet in the

queue, total delay experienced in the queue by packets forwarded so far, total number

of packets forwarded so far, entire history of states and actions performed at each

state etc. The important point to notice here is that with increase in the amount of

information that need to be maintained, the design and implementation of controller

become more complex.

In the rest of this section we explain a set of policies that uses thresholds to

determine how long packets without coding pairs need to wait before being trans-

mitted without coding. The thresholds are defined on either queue length, waiting

time of packets or both. Based on the parameter(s) on which the threshold is defined,

these policies are categorized into three classes: 1) queue length threshold policies, 2)

waiting time threshold policies and 3) queue length + waiting time threshold policies.

1. Queue Length Threshold Policies: The queue length threshold policies require

relay nodes to have a threshold Li defined on the length of each queue i. The

node will wait until either a matching packet arrives or the length of a non-

empty queue exceeds its threshold.

2. Waiting Time Threshold Policies: In this group of policies, for each queue i, a
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threshold Wi is defined on the time packets can wait before they are transmitted.

Following are some of the variations of policies that use waiting time thresholds.

(a) Longest wait time: In this policy, the threshold Wi corresponds to the

maximum time the packet at the head of queue i is allowed to wait. A

packet will be forced to wait until either a matching packet arrives or it

has waited for a sufficiently long time i.e. Wi time units.

(b) Average wait time: Here, the threshold Wi corresponds to the average

waiting time of packets currently present in the queue i. Once the average

waiting time of packets exceeds the threshold, the relay node will transmit

the head of queue packet immediately irrespective of whether a matching

packet is received or not.

(c) Running average wait time: This policy is a variation of Average wait time

policy wherein while calculating the average waiting time, it also includes

the waiting time of all packets which have been forwarded thus far.

(d) Deficit based policy: This policy is significantly different from other policies

seen so far. It works around two parameters 1) Target Average Waiting

Time W̄i and 2) a Threshold Wi on the maximum deviation tolerable from

the target waiting time. Relay nodes transmit, if needed, even without

coding to ensure that the overall average waiting time of packets in the

queue i is kept under W̄i +Wi.

3. Queue Length + Waiting Time Threshold Policies: These policies essentially

combine queue length threshold policy with one of the waiting time policies dis-

cussed previously. Different combinations will yield multiple variants. Policies

can have further variations by allowing the relay node to make a transmission

without coding either when both queue length and waiting time thresholds are
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Fig. 5. Tradeoff between delay and number of transmissions at hyperlink using queue

length threshold policy

exceeded (Queue Length And Waiting Time) or immediately after one of them

is exceeded (Queue Length Or Waiting Time).

The most important design parameter in all the policies discussed above is the

choice of thresholds. Large threshold values allow packets to wait for a long time

looking for potential matching packets and hence leverage the benefits of network

coding. But on the flip side, it worsens the delay. Whereas small thresholds are good

in terms of delay but result in more transmissions by not exploiting network coding

advantages. The Figure 5 shows the tradeoff between the average delay and number

of transmissions per packet at an intermediate node using the queue length threshold

policy.

B. Analysis Using Discrete Time Markov Chain Model

In this section, we introduce more formal notations and methods to analyze some of

the policies discussed in the previous section. For the system model under consid-

eration, we show how Queue length threshold policy and Queue length Or Waiting
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time threshold policy can be modeled as a Discrete Time Markov Chain (DTMC).

We then perform steady-state analysis to derive exact expressions to compute the

average delay and the average number of transmissions per timeslot.

1. Background

Consider a stochastic system that is being observed at discrete time slots i = 1, 2, . . . , n.

Then, a sequence of random variables X1, X2, . . . , Xn where Xi represents the state of

the system at time slot i, is a Discrete Time Markov Chain provided that Xi satisfies

the Markov property. The property refers to the condition that the state of the sys-

tem in the next step (time slot) depends only on the current state and is independent

of prior history. Formally the Markov property can be stated as,

Pr(Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = xn+1|Xn = xn)

(3.1)

The set of all possible states the system can be in during a time slot is defined

using the state space S and the probability of jumping from a state i to state j in

one step (pij) is defined using a transition probability matrix P = (pij) where,

pij = Pr(Xk = j|Xk−1 = i)

and
∑
j

pij = 1

The stationary distribution πj = limn→∞p
n
ij, for all i, j exists for a Markov chain

if the following conditions hold: if the Markov chain is (i) irreducible i.e. every state

i ∈ S is reachable from every other state j ∈ S. (ii) aperiodic where the period of a

state i is defined as gcd{n ≥ 1 : pnii > 0} and the state is aperiodic if its period is 1.

Subsequently, if every state in S is aperiodic then the markov chain itself is aperiodic

and (iii) positive recurrent i.e. once a state is left the probability of returning to it
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Fig. 6. An example of an irreducible, aperiodic and positive recurrent Markov chain

in a future time slot is 1 (recurrent) and the expected time between visits is finite.

Figure 6 shows an example of a Markov chain that satisfies all of the above conditions.

Once it is found that the stationary distribution exists for a Markov chain it can

be obtained by solving the equations,

π = πP (3.2)

Σiπ(i) = 1 (3.3)

In the subsequent sections, we show how the policies using thresholds on only

Queue length and both Queue length and Waiting time can be modeled as DTMC.

2. Analysis of Queue Length Policy

Consider a system of two queues as shown in Figure 7. Time is slotted so that in each

slot an entity arrives into queue i with probability pi for i = 1, 2. Also with probability

(1− pi) nothing arrives into queue i in a slot. A maximum of 1 transmission occurs

at the end of a slot. If there is one packet of each type, then both are transmitted

together (and we count that as 1 transmission). However if there is only one type of

packet at the end of a slot we need to decide whether to transmit it individually or

wait for a future slot to pair it with another packet.

We consider a queue-length based threshold policy such that if the number of
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Fig. 7. Queueing model at an intermediate node using queue length threshold policy

packets of type i is less than or equal to Li (and of type 3− i is zero), then we wait

for a future slot and transmit nothing in the present slot. However, if the number of

packets of type i is greater than Li (and of type 3− i is zero), then we transmit a type

i packet individually without pairing with type 3− i. Further, we always transmit a

pair of type i and 3− i if both are available. Note: i = 1, 2.

Let Xi(t) be the number of packets in buffer i at the beginning of the tth slot be-

fore any arrival or transmission. Then the bivariate stochastic process {(X1(t), X2(t)), t ≥

0} is a discrete-time Markov chain. For a system using thresholds L1 = L2 = 1, the

Markov chain is shown in Figure 8 and in general, for any system using the queue-

length based threshold policy, the states are (0, 0), (1, 0), (2, 0), . . ., (L1, 0), (0, 1),

(0, 2), . . ., (0, L2). Define α as a parameter such that

α =
(1− p1)p2
(1− p2)p1

.

Let πi,j be the steady-state probabilities of the Markov chain, then we can show that

π0,0 =
1(

1−αL1+1

1−α

)
+
(

1−1/αL2+1

1−1/α

)
− 1

πi,0 = αiπ0,0

π0,j = π0,0/α
j
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Fig. 8. Markov chain model for the queue length threshold policy with thresholds

L1 = L2 = 1

for all 0 < i ≤ L1 and 0 < j ≤ L2.

Using that we can obtain the following performance measures: the expected

number of transmissions per slot (we count an individual and a paired transmission

using network coding both as 1 transmission) is

p1p2π0,0 + p2

L1∑
i=1

πi,0 + p1

L2∑
j=1

π0,j + p1(1− p2)πL1,0 + p2(1− p1)π0,L2 ,

and the average delay (i.e. number of slots to transmit) for entity of type 1 is

L1∑
i=1

iπi,0/p1,

and type 2 is
L2∑
j=1

iπ0,j/p2.
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3. Analysis of Queue Length and Waiting Time Policy

This policy is an extension of Queue length based threshold policy. Here, if the

number of packets of type i is less than or equal to Li (and of type 3− i is zero) and

if the waiting time of packet at the head of type i queue is less than or equal to Wi,

then we wait for a future slot and transmit nothing in the present slot. However, if

the number of packets of type i is greater than Li (and of type 3− i is zero) or if the

earliest packet in the queue has waited for more than Wi time slots, then we transmit

the type i packet individually without pairing with type 3 − i. Further, we always

transmit a pair of type i and 3− i if both are available. Note: i = 1, 2.

To model the system as a Markov chain, in addition to queue length, we include

the vector of waiting times of all packets (currently waiting in the queue) into state

definition. LetXi(t) be the number of packets in buffer i at the beginning of the tth slot

before any arrival or transmission. Let W (t), where 0 ≤ |W (t)| ≤ max {X1(t), X2(t)}

be an array of waiting times of packets either in queue 1 or 2. Note that we need

just a single array of waiting times because as per our system definition, one of the

queues will be empty after the transmission.

Then the multivariate stochastic process {(X1(t), X2(t),W (t)), t ≥ 0} is a discrete-

time Markov chain. However, unlike in the model where we considered only queue

length, here the state space is very large and it is extremely difficult to derive closed-

form expressions for performance measures. Hence, we provide the following expres-

sions to compute the expected number of transmissions per slot and and the average

delay (i.e. number of slots to transmit) in terms of steady state probabilities πX1,X2,W .

These probabilities can be easily computed using a computer program.

The expected number of transmissions per slot (we count an individual and a
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paired transmission using network coding both as 1 transmission) is

p1p2π0,0,W+

p2

L1∑
i=1

πi,0,W + p1

L2∑
j=1

π0,j,W+

p1(1− p2)πL1,0,W + p2(1− p1)π0,L2,W+

(1− p2)
L1∑
i=1

πi,0,{W1,...} + (1− p1)
L2∑
j=1

π0,j,{W2,...},

and the average delay (i.e. number of slots to transmit) for a packet of type 1 is

L1∑
i=1

πi,0,W

i∑
k=1

W [k],

and type 2 is
L2∑
j=1

π0,j,W

j∑
k=1

W [k].
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CHAPTER IV

FINDING THE OPTIMAL POLICY

As we described in the previous chapter, our goal is to obtain the optimal policy

u∗ that minimizes g(u) defined in Equation (2.4). For that we first find the space

the policy would live in and then find the optimal policy within that space.Our first

question is: what is the appropriate state space: is it just queue length, or should we

also consider waiting time?

A. Should We Maintain Waiting Time Information?

Intuition tells us that if a packet has not been waiting long enough then perhaps it

could afford waiting a little more but if a packet has waited too long, it may be better

to just transmit it. That seems logical considering that we tried our best to code but

we cannot wait too long because it hurts in terms of holding costs. Also, one could

get waiting time information from time-stamps on packets that are always available.

Given that, would we be making better decisions by also keeping track of waiting

times of each packet? We answer that question by means of a theorem which requires

the following lemma for a generic MDP {(Xn, Dn), n ≥ 0} where Xn is the state of

the MDP and Dn is the action at time n.

Lemma 1 (Puterman [12]) For an MDP {(Xn, Dn), n ≥ 0}, given any history de-

pendent policy and starting state, there exists a randomized Markov policy with the

same long-run average cost.

Proof: The proof is adapted from Puterman [12]. Let S be the state space corre-

sponding to all possible values of Xn and D be the action space corresponding to all

possible values of Dn. Consider a policy ρ ∈ ΠHR and another policy σ ∈ ΠMR. For
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a given state i ∈ S, for every j ∈ S and d ∈ D, define the randomized Markov policy

σ via the decision rule to adopt action d with the same probability as that with the

policy ρ. Therefore if the history-dependent policy ρ picks action d at time n given

the current state is j and initial state i with probability

P ρ{Dn = d|Xn = j,X0 = i}

then the Markov randomized policy also picks action d with the same probability in

state j. Therefore we have

P σ{Dn = d|Xn = j} = P σ{Dn = d|Xn = j,X0 = i} =

P ρ{Dn = d|Xn = j,X0 = i}. (4.1)

Next, we would like to show that

P σ{Xn = j,Dn = d|X0 = i} = P ρ{Xn = j,Dn = d|X0 = i}. (4.2)

For that we use the principle of mathematical induction. For n = 0, Equation (4.2)

is satisfied by letting n = 0 in Equation (4.1) when i = j and trivially when i 6= j.

Assume that Equation (4.2) holds for n = 1, 2, . . . , k− 1. To show that also holds for

n = k, we start by considering the following (with the second equation is due to the
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induction hypothesis that it holds for n = k − 1):

P ρ{Xk = j|X0 = i} =∑
`∈S

∑
d∈D

(P ρ{Xk−1 = `,Dk−1 = d|X0 = i}

P{Xk = j|Xk−1 = `,Dk−1 = d}) =∑
`∈S

∑
d∈D

(P σ{Xk−1 = `,Dk−1 = d|X0 = i}

P{Xk = j|Xk−1 = `,Dk−1 = d}) =

P σ{Xk = j|X0 = i}.

Thus we have

P σ{Xk = j,Dn = d|X0 = i} =

P σ{Dn = d|Xk = j}P σ{Xk = j|X0 = i} =

P ρ{Dn = d|Xk = j}P ρ{Xk = j|X0 = i} =

P ρ{Xk = j,Dn = d|X0 = i}.

Therefore, by the principle of mathematical induction Equation (4.2) is satisfied for

all n ≥ 0. Since both policies ρ and σ yield the same joint probability distribution of

states and actions, they both will yield the same long-run average cost.

Using the above lemma we show next that it is not necessary to maintain waiting

time information.

Theorem 2 For the MDP {(Yn, An), n ≥ 0}, if there exists a randomized history

dependent policy that is optimal, then there exists a randomized Markov policy u∗ that

minimizes g(u) defined in Equation (2.4). Further, one cannot find a policy which

also uses waiting time information that would yield a better solution than g(u∗).

Proof: From Lemma 1, if the MDP {(Yn, An), n ≥ 0} has a history dependent policy
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that is optimal, then we can construct a randomized Markov policy that yields the

exact same long-run average cost given Y0 = (0, 0). Therefore, if there exists a

randomized history dependent policy that is optimal, then there exists a randomized

Markov policy u∗ that minimizes g(u) defined in Equation (2.4).

Knowing the entire history of states and actions one can always determine the

history of waiting times as well as the current waiting times of all packets. Therefore

the optimal policy u′ that uses waiting time information is equivalent to a policy in

ΠHR. From Lemma 1, we can always find a randomized Markov policy that yields

the same optimal solution as g(u′).

B. Structure of the Optimal Policy

Having made a case for not considering the waiting times in the state of the system,

the next question is how does the optimal policy look like and in what space of policies

does it live. In the MDP literature (see Sennott [16]), the conditions for the structure

and location of optimal policy usually rely on the results of the infinite horizon β-

discounted cost case and let β approach 1 to obtain the average cost case. In that

light, for our MDP {(Yn, An), n ≥ 0}, the total expected discounted cost incurred by

a policy θ is

Vθ,β(i, j) = Eθ

[
∞∑
n=0

βnC(Yn, An)|Y0 = (i, j)

]
.

If Vβ(i, j) = minθ Vθ,β(i, j) corresponds to the policy that minimizes the total expected

discounted cost, then Vβ(i, j) satisfies the optimality equation

Vβ(i, j) = min
a∈{0,1}

[Ch([i− a]+ + [j − a]+) + Cta

+β
∑
k,`

Vβ(k, `)P{Yn+1 = (k, `)|Yn = (i, j), An = a}].
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Further, the stationary policy that minimizes the above equation is an optimal policy

for the infinite horizon β-discounted cost problem.

However, the long-run average cost case is not as easy to state when the optimal

policy is stationary. In particular, to determine if there exists a stationary policy

u∗ that minimizes g(u) defined in Equation (2.4) one must find a constant ĝ and

a bounded function v(i, j) (if they exist) that satisfy the average cost optimality

equation

ĝ + v(i, j) = min
a∈{0,1}

[Ch([i− a]+ + [j − a]+) + Cta

+
∑
k,`

v(k, `)P{Yn+1 = (k, `)|Yn = (i, j), An = a}]

In that case, the stationary policy that minimizes the above equation is an optimal

policy with ĝ = g(u∗). Next we describe a lemma that specifies the conditions when

ĝ and v(i, j) exist. For that define

vβ(i, j) = Vβ(i, j)− Vβ(0, 0).

Lemma 3 (Sennott [16]) There exist a constant ĝ and a function v(i, j) satisfying

the average cost optimality equation if the following two conditions hold: (i) there

exist non-negative Mi,j such that vβ(i, j) ≤Mi,j and

∑
k,`

P{Yn+1 = (k, `)|Yn = (i, j), An = a}Mk,` <∞

for all i, j, β and a; (ii) there exists a non-negative N such that vβ(i, j) ≥ −N for

all i, j and β.

Proof: See Sennott [16] for a proof for the more generic MDP.

Using the above lemma we show next that the MDP defined in this paper has

an optimal policy that is stationary.
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Theorem 4 For the MDP {(Yn, An), n ≥ 0}, there exists a stationary policy u∗ that

minimizes g(u) defined in Equation (2.4).

Proof: As described earlier it is sufficient to show that the two conditions in Lemma

3 are met to show the existence of ĝ and v(i, j). Due to lack of space we only provide

an idea of the proof. Refer to Sennott [16] and follow the proof of the example from

communication networks. Consider the stationary policy θ̂ of always transmitting in

states (i, 0) and (0, j) for any i > 0 and j > 0. Using the policy θ̂ we can find an

upper bound on Vθ,β(0, 0) as Ct(p1 + p2 − p1p2)/(1 − β). Therefore we can carefully

obtain a bound on Vθ,β(i, j) in terms of Vθ,β(0, 0), p1, p2, β, i and j to obtain Mi,j.

The condition (ii) on finding an N is straightforward since all the costs are positive.

Now that we know that the optimal policy is stationary, the question is how do

we find it. The standard methodology to obtain stationary policy for infinite-horizon

average cost minimization problem is to use a linear program as described below.

Consider an MDP {(Xn, Dn), n ≥ 0} where Xn is the state and Dn is the action

at time n. Assume that the MDP has a finite number of states in the state space and

the number of possible actions is also finite. Assume that the Markov chain resulting

out of any policy is irreducible. Let u be a stationary randomized policy described

for state Xn = i and action Dn = a as follows:

uia = P{Dn = a|Xn = i}

for all i in the state space and all a in the action space. Note that uia is the probability

of choosing action a when the system is in state i. Further, define the expected cost

incurred when the system is in state i and the action is a as

cia = E[C(Xn, Dn)|Xn = i,Dn = a]
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where C(Xn, Dn) is the cost incurred at time n if action Dn is taken when the system

is in state Xn.

Lemma 5 (Serin and Kulkarni [17]) The optimal randomized policy u∗ia that min-

imizes the long-run average cost per unit time (equal to the length of a slot) can be

computed as

u∗ia =
x∗ia∑
b x
∗
ib

where x∗ = [x∗ia] is the optimal solution to the linear program:

Minimize
∑
i

∑
a

ciaxia

subject to
∑
i

∑
a

xia = 1∑
a

xja −
∑
i

∑
a

pij(a)xia = 0 ∀j

xia ≥ 0 ∀i, a.

Proof: See Ross [13] for a proof for the maximizing average rewards case.

As described in Ross [13], the linear program (LP) produces for each i optimal

values x∗ia that are all zero except one a which would be 1. Hence the optimal policy

would infact be a stationary deterministic policy.

However, we cannot directly apply the above results to our MDP {(Yn, An), n ≥

0}, as our MDP has infinite states and the Markov chain under every policy is not

irreducible (for example if we always transmit, it is not possible to reach some of the

states). To circumvent that, we construct a finite size LP with N states and force it

to be irreducible by creating dummy transitions with probability ε > 0 between some

states. Let us call this LP (N, ε). From the lemma above, LP (N, ε) has a stationary

deterministic policy that is optimal. By letting N →∞ and ε→ 0 we argue that our

MDP would have an optimal deterministic policy. With that said, it is not efficient



32

to obtain the optimal policy by solving LP (N, ε) for large N and small ε.

However, we now know that the optimal policy is stationary deterministic. But,

how do we find it? If we know that the optimal policy satisfies some monotonicity

properties then it is possible to search through the space of stationary deterministic

policies and obtain the optimal one.

Lemma 6 (Puterman [12]) For the MDP {(Yn, An), n ≥ 0} the optimal policy that

minimizes the long-run average cost is non-decreasing in i and j if the following

conditions are met: (i) Ch([i− a]+ + [j − a]+) +Cta is non-decreasing in i and j for

all a ∈ {0, 1} and super-additive; (ii) the function q(r, s|i, j, a) defined as

∑
k≥r,`≥s

P{Yn+1 = (k, `)|Yn = (i, j), An = a}

is non-decreasing in i and j for all a ∈ {0, 1}, r and s as well as super-additive.

Proof: See Puterman [12] for a proof for a generic MDP. By rewriting those for this

specific MDP, we can prove the Lemma.

Using the above lemma we show that the structure of the optimal policy for

our model is stationary deterministic and monotonic in terms of the number in the

system.

C. Obtaining the Optimal Deterministic Stationary Policy

We have shown in the previous section that the optimal policy is stationary, deter-

ministic and monotonic. The next thing to do is find it. Notice that we only need to

consider the subset of deterministic stationary policies, ΠSD. From among the poli-

cies in this set ΠSD we obtain the optimum policy. Given that the structure of the

optimal policy is monotone, it is fairly straightforward to see that it is threshold-type.
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In the next theorem we show how to compute the optimal thresholds L∗1 and L∗2 so

that the optimal deterministic action in states: (i, 0) is to wait if i ≤ L∗1 and transmit

without coding if i > L∗1; (0, j) is to wait if j ≤ L∗2 and transmit without coding if

j > L∗2.

Theorem 7 The optimal thresholds L∗1 and L∗2 are

(L∗1, L
∗
2) = arg min

L1,L2

Ctτ(L1, L2) + Chλ(L1, L2)

where

τ(L1, L2) = p1p2π0,0 + p2

L1∑
i=1

πi,0 +

p1

L2∑
j=1

π0,j + p1(1− p2)πL1,0 + p2(1− p1)π0,L2 ,

λ(L1, L2) =

L1∑
i=1

iπi,0 +

L2∑
j=1

jπ0,j,

for which

π0,0 =
1(

1−αL1+1

1−α

)
+
(

1−1/αL2+1

1−1/α

)
− 1

πi,0 = αiπ0,0

π0,j = π0,0/α
j with

α =
(1− p2)p1
(1− p1)p2

.

Proof: Let L1 and L2 be the thresholds and our objective is to find their correspond-

ing optimal value. Let Xi(t) be the number of type i packets at the beginning of the

tth slot before any arrival or transmission. It is crucial to note that this observation

time is different from when the MDP is observed. Then the bivariate stochastic pro-

cess {(X1(t), X2(t)), t ≥ 0} is a discrete-time Markov chain. The states are (0, 0),
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(1, 0), (2, 0), . . ., (L1, 0), (0, 1), (0, 2), . . ., (0, L2). Define α as a parameter such that

α =
(1− p2)p1
(1− p1)p2

.

Let πi,j be the steady-state probabilities of the Markov chain. The balance equations

for 0 < i ≤ L1 and 0 < j ≤ L2 are:

πi,0 = απi−1,0,

απ0,j = π0,j−1.

Since π0,0 +
∑

i,j πi,0 + π0,j = 1, we have

π0,0 =
1(

1−αL1+1

1−α

)
+
(

1−1/αL2+1

1−1/α

)
− 1

πi,0 = αiπ0,0

π0,j = π0,0/α
j

for all 0 < i ≤ L1 and 0 < j ≤ L2.

The expected number of transmissions per slot (we count an individual and a

paired transmission using network coding both as one transmission) is

τ(L1, L2) = p1p2π0,0 + p2

L1∑
i=1

πi,0 +

p1

L2∑
j=1

π0,j + p1(1− p2)πL1,0 + p2(1− p1)π0,L2 .

The average number of packets in the system at the beginning of each slot is

λ(L1, L2) =

L1∑
i=1

iπi,0 +

L2∑
j=1

jπ0,j.
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Thus the long-run average cost per slot is

Ctτ(L1, L2) + Chλ(L1, L2)

which upon minimizing we get the optimal thresholds L∗1 and L∗2

Whenever Ch > 0, it is relatively straightforward to obtain L∗1 and L∗2. Since it

costs Ct to transmit a packet and Ch for a packet to wait for a slot, it would be better

to transmit a packet than make a packet wait for more than Ct/Ch slots. Thus L∗1

and L∗2 would always be less than Ct/Ch. Hence by completely enumerating between

0 and Ct/Ch for both L1 and L2, we can obtain L∗1 and L∗2. One could perhaps find

faster techniques than complete enumeration, but it certainly serves the purpose.

D. Optimal Offline Scheduling

In offline scheduling, it is assumed that entire packet arrival sequence for both sources

for a time period of τ slots is known in advance. Then the problem of finding an opti-

mal schedule that minimizes the long run average system cost reduces to a minimum

cost perfect matching problem.

1. Construction of Bipartite Graph

Given the packet arrival schedule of two sources Schi(i = 1, 2) for a period of τ slots,

where Schi[k] ∈ 0, 1 representing no arrival and exactly one packet arrival from source

i at kth time slot respectively, a complete bipartite graph G(V1, V2, E) used to find an

optimal schedule can be constructed as follows.

Vi(i = 1, 2) includes a set of vertices corresponding to packet arrivals from source

of type i i.e. for each instance k when there is an arrival of type i packet i.e. Schi[k] =

1, a vertex is added to Vi. In addition, Vi includes a special type of nodes called dummy
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nodes Di ⊂ Vi. These dummy nodes are added to Vi when there is no arrival of type

i in a time slot k but there is an arrival from other source 3− i in the same time slot.

Once vertices are created in V1 and V2, edges are added between certain pairs of

nodes (v1, v2) where v1 ∈ V1, v2 ∈ V2 and edge weights are assigned. There are three

types of edges created:

1. Edges connecting two non-dummy nodes: These edges represent coded trans-

missions. The weight of an edge connecting two non-dummy nodes represents

the cost of coding the two packets represented by these nodes together and

transmitting them as a single packet. If these two packets are not from the

same time slot, then the cost involves the cost of holding the packet which had

arrived first until the time slot when the next one arrives.

2. Edges between a dummy and non-dummy node: There may be cases where

sending a packet without coding will prove to be more cost effective than to

wait for a matching packet and then to code (Example: when the rate of type i

packets is too low while the holding cost for a packet of type 3−i is high, then it is

always better to send 3− i type packets without coding). To allow transmissions

without coding, dummy nodes are connected with their respective non-dummy

nodes (of other type) through edges whose weights include just the cost of

transmission.

Also, it can be noted that the cost of holding a packet for a few time slots an-

ticipating a matching packet and then transmitting it without coding is always

higher than transmitting the packet without coding immediately on its arrival.

To impose this condition, the edges of this type are created only between nodes

from the same time slot.

3. Edges connecting two dummy nodes: These edges are created with zero weights
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and they have no significance in the final cost. They are added just to allow

the matching found to be complete.

Let Ct and Ch represent the cost per transmission (coded transmissions are

counted as 1) and the cost of holding a packet per time slot respectively. The weights

are assigned to edges as follows,

W (v1k1 , v2k2) =



0, both nodes are dummy

|k1 − k2|Ch + Ct, both nodes are non-dummy

Ct, only one of the nodes is dummy and k1 = k2

∞, only one of the nodes is dummy and k1 6= k2

where vik represents a node created for time slot k in Vi.

A bipartite graph constructed for packet schedules Sch1 = {1, 0, 1, 1, 0} and

Sch2 = {0, 0, 1, 0, 1} is shown in the Figure 9. Note that, edges with ∞ cost are not

shown in the graph and those with zero cost are displayed as dashed lines.

Fig. 9. Bipartite graph for packet schedules {1,0,1,1,0} and {0, 0, 1, 0, 1}.
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2. Finding Optimal Schedule

A matching of a graph G is a subset M of edges E, that connects a node in V1 to

exactly one node from V2 and vice versa such that no two edges share a common node.

A perfect matching is a matching that connects every vertex in one of the partitions

to a vertex in the other partition i.e. every vertex v ∈ V1 ∪ V2 is incident to exactly

one edge of M . The cost of a matching is the sum of the weights of all edges in M .

The problem of finding a minimum cost perfect matching for a graph has been

widely studied and there are quite a few algorithms proposed to solve this problem

(e.g. Hopcroftś [18], Hungarian [19] etc.,). Once a matching M is found, the optimal

schedule i.e. the actions to be performed by relay nodes for every packet can be

inferred from the matching using the logic explained below.

For an edge e ∈M ,

• if both incident nodes are non-dummy i.e. both correspond to real packets,

then these two packets must be coded and transmitted together. If they are not

from the same time slot, then the packet which arrived earlier must be forced

to wait until the other one arrives.

• if exactly one of the incident nodes is dummy, then the packet represented by

the other node must be transmitted immediately on its arrival without coding.

• if both incident nodes are dummy, then this edge does not relate to the schedule

of any packet.

Except for edges where both incident nodes are dummy, every edge e = (v1k1 , v2k2) ∈

M corresponds to a transmission. In case of transmissions without coding, the delay

experienced by the packet is zero. For coded transmissions, the packet which arrived

first has to wait for |k1 − k2| time slots. Thus, the optimal schedule and the per-
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formance measures such as average delay and number of transmissions can be found

from the maximum matching found.
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CHAPTER V

EXPERIMENTS AND RESULTS

In this chapter, we present the results of various experiments we performed to validate

the analytical findings. In particular, we consider the following three scenarios.

1. Single hyperlink (Bernoulli arrivals) Experiments are run for the simple 3-node

relay network model (Figure 3) with packet arrivals from end nodes following

Bernoulli distribution.

2. Single hyperlink (Gilbert-Elliot arrivals) In order to further validate the findings

from the previous experiments, additional simulations are run for the single hy-

perlink scenario with end nodes using Gilbert-Elliot model to generate packets.

3. Line network (Bernoulli arrivals): Finally, we show how our findings from the

experiments for a single hyperlink case apply to a larger network by running

simulations for a line network containing 4 nodes.

In simulations we use different policies that are based on queue length only,

waiting time only, both waiting time and queue length and randomized thresholds.

The following are the policies that we mainly focus on:

1. Opportunistic Coding: This is a naive algorithm that does not wait for cod-

ing opportunities. At every transmission opportunity, intermediate node will

perform coding if packets are available from all compatible flows. Otherwise,

packets from the non-empty queue will be transmitted immediately without

coding.

2. Queue Length Threshold: This is a stationary deterministic (SD) policy with a

fixed threshold (Li) defined on the maximum length of queue i. In our analysis
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we claim that this policy is optimal for the Bernoulli case.

3. Randomized Queue Length Threshold: This is a stationary policy that ran-

domizes (SR) over the deterministic thresholds used in stationary deterministic

(SD) policy. We expect that it would not perform any better than deterministic

queue length threshold based policies.

4. Queue Length -plus- Waiting Time Threshold: This is a history dependent

policy (HR) that uses information related to both queue length and waiting

time of packets. It is likely to give the best possible performance. We perform

a brute-force search over the space of thresholds and find the optimal case.

5. Waiting Time Threshold: This is a history dependent policy (HR) that uses

only information related to waiting time of packets. Using the results for this

policy we try to illustrate that history on its own is only of limited value.

These policies are implemented at relay nodes and we compare their performance

in terms of ollowing measures: (i)average delay which is the average number of time

slots a packet has to wait in the queue of an intermediate node before getting for-

warded, (ii)average number of transmissions which is the measure of average number

of transmissions that are required at an intermediate node to forward a single packet

and (iii) average cost incurred due to transmissions and delays.

A. Bernoulli Arrival Model

Our first set of simulations is with a single hyper-link and packet flows into the two

queues following Bernoulli distribution of rates p1 and p2 respectively. We illustrate

the performance of different policies in Figures 10, 11, 12 and 13. We see that the

queue-length-based policy is optimal as our analysis has suggested. Further as ex-
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Fig. 10. Tradeoff between delay and transmissions in a single hyperlink with Bernoulli

arrival rates (p1, p2) = (0.5, 0.5)

pected the randomized policy is identical to the queue-length-based policy. It can

also be observed that while the queue-length-plus-waiting-time based policy performs

well, the pure waiting-time-based policy is sub-optimal.

B. Evaluating Policies for Gilbert-Elliot Arrival Model

In our next model, the packet arrivals into queues follow Gilbert-Elliot model (Fig-

ure 14). It is a two state (ON/OFF) Markov process. It generates exactly one packet

per time slot when the system is in ON state. The probabilities pon and poff control

how long the system stays in ON and OFF states respectively. These parameters can

be modified suitably to create the desired level of burstiness in traffic. The objective

of experiments using Gilbert-Elliot arrival process is to test out the policies under

different levels of bursty traffic conditions. Results are shown in Figures 15 and 16.

We observe that the queue-length-based policy is robust under this arrival model too

and it is near optimal.
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Fig. 11. Comparison of the minimum average cost (per packet) in a single hyperlink

with Bernoulli arrival rates (p1, p2) = (0.5, 0.5)

Fig. 12. Tradeoff between delay and transmissions in a single hyperlink with Bernoulli

arrival rates (p1, p2) = (0.9, 0.3)
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Fig. 13. Comparison of the minimum average cost (per packet) in a single hyperlink

with Bernoulli arrival rates (p1, p2) = (0.9, 0.3)

Fig. 14. Gilbert-Elliot model
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Fig. 16. Comparison of threshold policies using bursty Gilbert-Elliot sources

(pon = poff = 0.9)
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Fig. 17. Line network with two intermediate nodes

C. Extending to a Line Network

Our final model is that of a line network with 4 nodes (Figure 17). Here, the depar-

tures from one queue are the arrivals into queue at the next node and so there is a

high degree of correlation between queues at neighboring nodes. It is highly difficult

to characterize the arrival process into a queue whose input is packets from another

queue. We would like to test whether the queue-length-based policy is near-optimal

even when the arrival processes are significantly different from Bernoulli. As seen in

Figures 18 and 19, the queue length policy is found to perform well in this case too.
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Fig. 18. Comparison of different policies in a line network with two intermediate nodes

and two Bernoulli flows with mean arrival rates (0.5, 0.5)
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Fig. 19. Comparison of different policies in a line network with two intermediate nodes

and two Bernoulli flows with mean arrival rates (0.9, 0.3)
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

We looked into the algorithms that explore the delicate tradeoff between waiting and

transmitting using network coding. We started with the idea of exploring the whole

space of history dependent policies, but showed step-by-step how we could move

to simpler regimes, finally culminating in a stationary deterministic queue-length

threshold based policy. The policy is attractive because its simplicity enables us to

characterize the thresholds completely, and we can easily illustrate its performance

on multiple networks. We showed by simulations how the performance of the policy

is optimal for the Bernoulli arrival scenario in a simple 3-node relay network model

we considered, and how it also does well in other situations such as for bursty arrivals

and for line networks. Our results also have some bearing on the general problem of

queuing networks with positive externalities that can be explored further.

A natural extension is to consider multiple arrivals in a time slot, multiple number

of transmissions in a slot as well as time slots not being of equal lengths. That needs

some explanation. Let the time line be divided into slots alternating between mega

slots and mini slots. A mini slot is when the transmitter is “scheduled” to transmit

packets and a mega slot is the time for the next scheduled mini-slot. Assume that

a scheduled slot is of fixed duration and a maximum of a fixed number of packets

can be transmitted (individually or coupled). If the packet arrivals are according to

a Poisson process (and any arrivals during a mini slot cannot be transmitted in the

same mini slot), then the system can be observed at the beginning of a mini slot.

We believe that this system can also be modeled as a Markov chain, may be as a

semi-Markov decision process. Next, we need to see if the threshold policy is optimal

here too.
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Another extension will be to look into larger networks, especially line networks

with more than one intermediate node to start with. Contrasting to our model where

the decision made at an intermediate node solely depends upon the information that

can be collected locally, in line network model as there will be correlation between

queues at neighboring nodes, a certain degree of coordination is required among

neighboring nodes in order to design a distributed controller. In that case, MDP

may not be a viable model for analysis because of dimensionality issues and it will be

worth looking into alternative techniques like partially observable MDP, approximate

dynamic programming etc.
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