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ABSTRACT

The Method of Manufactured Universes for Testing Uncertainty Quantification

Methods. (December 2010)

Hayes Franklin Stripling IV, B.S Nuclear Engineering, Texas A&M

Chair of Advisory Committee: Dr. Marvin L. Adams

The Method of Manufactured Universes is presented as a validation framework for

uncertainty quantification (UQ) methodologies and as a tool for exploring the effects

of statistical and modeling assumptions embedded in these methods. The framework

calls for a manufactured reality from which “experimental” data are created (possi-

bly with experimental error), an imperfect model (with uncertain inputs) from which

simulation results are created (possibly with numerical error), the application of a

system for quantifying uncertainties in model predictions, and an assessment of how

accurately those uncertainties are quantified. The application presented for this re-

search manufactures a particle-transport “universe,” models it using diffusion theory

with uncertain material parameters, and applies both Gaussian process and Bayesian

MARS algorithms to make quantitative predictions about new “experiments” within

the manufactured reality. To test further the responses of these UQ methods, we

conduct exercises with “experimental” replicates, “measurement” error, and choices

of physical inputs that reduce the accuracy of the diffusion model’s approximation

of our manufactured laws.

Our first application of MMU was rich in areas for exploration and highly infor-

mative. In the case of the Gaussian process code, we found that the fundamental

statistical formulation was not appropriate for our functional data, but that the code

allows a knowledgable user to vary parameters within this formulation to tailor its

behavior for a specific problem. The Bayesian MARS formulation was a more natural
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emulator given our manufactured laws, and we used the MMU framework to develop

further a calibration method and to characterize the diffusion model discrepancy.

Overall, we conclude that an MMU exercise with a properly designed universe (that

is, one that is an adequate representation of some real-world problem) will provide

the modeler with an added understanding of the interaction between a given UQ

method and his/her more complex problem of interest. The modeler can then apply

this added understanding and make more informed predictive statements.
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1. INTRODUCTION

The past decade has seen rapid advancement in complex computational projects

and increasing dependence on these projects to support high-consequence decisions.

An immediate result of this trend is the need for improved uncertainty quantifica-

tion (UQ) methods to accompany the scientific simulations such that they not only

deliever the best estimate of some quantity of interest, but also a measure of un-

certainty in that estimate. In this research we are interested in UQ methods and

software that attempt to predict experimental outcomes based on: 1) previous exper-

imental data, and 2) simulations that use imperfect models that contain uncertain

parameters. Recently developed methods, such as Bayesian inference and spectral

representation, have been proposed for and applied to UQ in scientific computing by

inferring functional relationships between simulation results and experimental mea-

surements and then extending these relationships to forecast uncertainty in a new

simulation or experiment [1] [2] [3].

Accurate simulation of an existing experiment is a challenge in itself; predictions

of new experimental setups can be considerably more difficult, especially given lit-

tle and/or uncertain experimental data. Nonetheless, increasingly complex systems

coupled with advances in computer and software design will drive the need for pre-

dictive computational science and engineering. These predictions may take the form

of a probabilistic statement, such as “With 95% confidence, we predict that this

parameter will not come within 10% of its limit at these operating conditions.” If

important decisions are to be based on such statements, then all methods, models,

and software that inform such statements – including the UQ methods, models, and

software – should first be subjected to rigorous verification and validation assess-

ments. These assessments provide the basis for statements of this type and should

enable an unbiased knowledgeable evaluator to determine their credibility.

This thesis follows the style of Journal of Computational Physics.
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With this motivation in mind, we present the Method of Manufactured Uni-

verses (MMU) as a framework that facilitates a comprehensive validation study of

a given UQ method, perhaps as implemented in a given software system. To ap-

ply MMU, one defines the laws that govern a system, uses the laws to construct

“experimental” results, simulates the “experiments” (either existing or new) using

some computational model, and then tests the ability of the given UQ method to

quantify the difference between simulation and “reality”. This thesis presents results

from a computationally simple yet rich “universe” in which two UQ methodologies

are examined: first, a Gaussian process code from Los Alamos National Laboratory

(LANL) and second, a Bayesian Multivariate Adaptive Regression Spline (BMARS)

technique combined with a filtering/weighting method. The conclusion drawn from

these results is that MMU is a powerful technique that can help identify problems in

UQ software, help computational scientists and engineers understand the subtleties,

strengths, and weaknesses of various UQ methodologies, and help decision-makers

evaluate the credibility of predictive statements.

1.1 Introduction of the Method of Manufactured Universes

The motivation for this framework is the need to understand the assumptions

embedded in UQ methods and the manner in which the effects of these assumptions

propagate to the method’s output. For example, a common practice for describing

an unknown distribution (prior distribution or output uncertainty, for example) is to

assume a Gaussian distribution with some estimated mean and standard deviation.

The underlying function, however, may have only finite support and may be asym-

metric; this information could be lost, excluded, or misrepresented by the assumed

normal distribution. In some applications, this may be an acceptable approximation.

It can easily be imagined, however, that a certain problem or set of physics might

not be accurately represented in this manner.
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We emphasize that it is not the purpose of MMU to expose every flaw or invalid

assumption of every UQ method. Assumptions and limitations in statistical processes

are often well known and documented. Instead, our purpose is to propose and

illustrate a framework that others may use to determine the applicability of a given

method to their specific problems. We champion the idea of “glass box” approaches

to uncertainty quantification, and we believe that the simple study presented in this

paper is an excellent example of the value added in understanding the mechanics of

the predictive software.

1.1.1 The MMU Framework

The following list presents the basic steps of the MMU framework.

1. Define laws that govern the manufactured universe. This means creating math-

ematical models that define the laws that govern system behavior and the phys-

ical constants that serve as inputs to the models. As discussed below, these

laws should reflect some key characteristics of modeler’s real problem of inter-

est.

2. Create “experiments” by defining physical problems and use the manufactured

laws to create exact output quantities of interest (QOIs). Then create “mea-

sured” data by perturbing these output QOIs using an error model.

3. Define an approximate model on which the UQ methodology is to be tested.

This will include the choices of input parameters to the simulation and esti-

mates of their uncertainties (these estimates, themselves, could be uncertain)
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4. Apply the given UQ methodology to the set of {approximate model, uncertain

input constants, measured data}.

5. Define a new set of experiments and predict new values of the QOIs, with un-

certainties, using what was learned from the UQ methodology. Generate “real”

experimental results using the manufactured laws, and assess how well the UQ

method quantified the uncertainties in the predictions.

Of course, this method can be repeated with variations on the approximate mod-

els, measurement-error models, data uncertainties, UQ methodology parameters, and

universal laws.

1.1.2 Designing the “Universe” Given a Real Problem of Interest

To maximize the utility of an MMU study, the modeler should try to manufacture

a universe (that is, the physical laws, “experiments,” approximate model, and the

relationship between them) that properly reflects the physics, computational mod-

els, and uncertainties of the real-world predictive science or engineering problem.

Further, the universe must also allow the modeler to explore, isolate, and further

understand the characteristics of the UQ methodology. We identify two important

factors that the modeler should consider when manufacturing the universe:

1. The manufactured universe should contain the same types and sources of un-

certainty as the real-world problem.

Unless care is taken with this, there is a risk that the lessons learned from using

MMU may not apply to the real problem of interest. Some characteristics of

the real problem that one might seek to mimic in the manufactured universe
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include the mix of epistemic and aleatory uncertainties, the nature of prior

distributions of uncertain parameters, and the origin and path of propagation

of the most important uncertainties.

2. The simplifications that lead from the manufactured laws to the MMU approx-

imate model should be closely related to and simplifications of the real-world

physics that lead to the real-world mathematical model of interest.

As we emphasized before and will show by example, a complete treatment of

uncertainty – which includes uncertainty due to model error – must be informed

by the physics of the problem. Therefore, the model error in the MMU analysis

should closely mimic the model error in the real problem to maximize the real-

world value of the insight gained through the MMU analysis.

1.1.3 Example: A Particle-Transport Universe

The examples in this paper will present results from a neutral particle transport

“universe.” The universe is relevant to our real-world problems in which transport

calculations play key roles in the analysis of complex systems such as nuclear reactors

or high energy-density laboratory experiments. Uncertainties in these real problems

are often driven by material properties (such as interaction cross-sections), and we

are often interested in the model fidelity and accuracy of material properties that are

required to produce quantities of interest such as material temperatures and particle

fluxes within a desired confidence interval. To address these questions, we shall

include cross-sections as our uncertain parameters, employ a higher and lower fidelity

calculation as our “reality” and approximate model, respectively, and investigate two

UQ methodologies in which we are interested for our real-world applications.
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Our manufactured reality is that our particle-transport universe behaves exactly

according to the equations of the S8 discrete ordinates method in one-dimensional

slab geometry with no spatial discretization (see section 1.2.1). We select specific

values for the following physical constants for each “experiment” in our “universe”:

total cross-section, Σt, scattering ratio, c = Σs/Σt, incident angular flux, ψinc, and

slab thickness, x. Using the S8 method, we conduct “experiments” in which we

“measure” the reflected and transmitted particle flow rates (denoted Y1 and Y2 re-

spectively) resulting from the specified angular incident flux on one side of the slab.

Next we define analytic diffusion theory as our approximate model (see section

1.2.2). The uncertain inputs to diffusion, denoted ~θ, are the diffusion coefficient,

θ1 = D = 1/(3Σt), and the absorption cross-section, θ2 = Σa. The components of

~θ are defined on a prior probability density function, π(~θ). In our case, this prior is

uniform. The response data, Y1,sim, is a function of the slab thickness and uncertain

inputs, Y1,sim = f(x, ~θ), where f is defined by the diffusion solution.

As mentioned in the introduction, the UQ models studied in this paper are the

Gaussian Process Model for Simulation Analysis (GPMSA) code from LANL and a

BMARS implementation coupled with a calibration procedure developed at Texas

A&M. These methodologies both attempt to serve two major functions. First, they

attempt to produce a calibrated posterior distribution of ~θ that favors the combina-

tions of the uncertain inputs that are most likely to accurately predict experimental

measurements. Second, they provide methods to extend this calibration and make

predictions of new experimental measurements, including uncertainties.

To exercise these two methods, we will attempt to predict Y1 at new slab thick-

nesses for which experimental data did not previously exist. We will then compare

these predictions to “measurements” from the S8 calculation at the new thicknesses.
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1.2 Description of the Computational Models in the Particle-Transport Universe

The experimental data will be generated using analytic solutions of the S8 equa-

tions; the simulation will be computed using analytic solutions of the diffusion equa-

tion. The next two sections outline these equations and their solutions in 1D slab

geometry.

1.2.1 The SN Method in 1D Slab Geometry

The manufactured experimental data used in this analysis is generated using the

one-group discrete ordinates method. The governing equation in 1D slab geometry

with no volumetric source is

µm
dΨm(x)

dx
+ ΣtΨm(x)− cΣt

2

N∑
n=1

Ψn(x)wn = 0

where Ψm is the angular flux in the mth quadrature direction. In the S8 method, we

have 8 directions whose cosines are given by an 8-point Gauss-Legendre quadrature

set on the interval (-1,1). The analytic solution is a sum of exponential terms [4] [5]:

Ψm(x) =
N∑
k=1

Ak
νk

νk − µm
exp

(
−Σtx

νk

)
where each of the N distinct νk’s satisfies the relation

2

c
=

N∑
m=1

wm
ν

ν − µm
.

TheN constants, Ak, are obtained by requiring that the solution satisfy the boundary

and interface conditions. In our universe, we define an incident angular flux at each

boundary and require continuity of the Ψm’s at region interfaces. The “experimental

response” of the reflected particle flow rate is calculated as

Y1 = j−(x = 0) =
∑
m

µm<0

|µm|Ψm(0)wm.

In some iterations of the MMU framework, we will generate “measured data” by

perturbing these calculations with an error model.
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1.2.2 The Diffusion Method in 1D Slab Geometry

The analytic solution to the diffusion equation in a finite 1D slab is simple and

well known. The governing diffusion equation with no volumetric source term is

written as:
d2Φ(x)

dx2
− 1

L2
Φ(x) = 0 0 ≤ x ≤ Ls

where L is the diffusion length, L =
√
D/Σa, and D is the diffusion coefficient which

we will define as D = 1/(3Σt). We express the analytic solution in terms of the

hyperbolic functions:

Φ(x) = C1sinh
(x
L

)
+ C2cosh

(x
L

)
where constants C1 and C2 satisfy the known incident particle flow rates on each of

the slab boundaries:

j+(0) =
Φ(0)

4
+
J(0)

2

j−(Ls) =
Φ(Ls)

4
− J(Ls)

2

and J(x) is the net particle flow rate, which in diffusion theory satisfies J(x) = −D dΦ
dx

.

The reflected particle flow rate, Y1,sim, can be calculated as

Y1,sim = j−(0) =
Φ(0)

4
− J(0)

2
.

1.3 Description of the UQ Methodologies

1.3.1 The GPMSA Algorithm

The GPMSA code from Los Alamos National Laboratory is a multivariate ex-

tension of the Kennedy and O’Hagen univariate (i.e., scalar output) formulation for

predictions of experimental measurements [1]

Y (~xi) = η(~xi, ~θ) + δ(~xi) + ei, (1.1)
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where Y is the experimental value being computed or estimated, ~xi is a vector of

independent inputs, ~θ is a vector of calibration parameters, η(~xi, ~θ) is an emulator

of the simulation response to inputs ~xi and ~θ, δ(~xi) is a model-discrepancy function,

and ei is a random error term. If each term in Eq. (1.1) is a distribution rather

than a single-valued function, then we obtain a an expected prediction 〈Y 〉 and a

distribution about 〈Y 〉 that characterizes uncertainty in the prediction.

The GPMSA algorithm builds stationary Gaussian processes (GPs) for both the

emulator and discrepancy term with covariance matrices of the following general

form [3]:

covη((~x, ~θ), (~x
′, ~θ′)) =

1

λη
exp

{
−

p∑
k=1

βηk |xk − x
′
k|α −

l∑
k′=1

βηp+k′|θk′ − θ′k′ |α
}
, (1.2)

covδ(~x, ~x
′) =

1

λδ
exp

{
−

p∑
k=1

βδk|xk − x′k|αδ
}
. (1.3)

The emulator covariance function, covη depends on both the independent and uncer-

tain inputs and the discrepancy covariance, covδ, depends only on the independent

inputs. In Eqs. (1.2) and (1.3), p is the number of independent inputs, l is the

number of uncertain inputs, and α and αδ are shaping parameters, which equal 2 to

form the stationary Gaussian covariance kernel.

The hyperparameters λη, λδ, β
η, and βδ shape the covariance function and de-

termine the characteristics of the model’s predictions. In general, the β parameters

are scaling vectors that determine the strength of the covariance dependence in each

input dimension, and the λ parameters are proportional to the inverse of the vari-

ance of the input data and therefore are a measure of the precision of the inputs.

The GPMSA algorithm explores distributions of the hyperparameters, as described

below; an informed modeler can encourage this exploration by tailoring prior distri-

butions, πpr(·), of these parameters to his specific problem. Table 1.1 lists a selection

of the GPMSA hyperparameters and their default prior distributions.
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Table 1.1
Description and default prior distributions for GPMSA hyperparamters

Hyper-

Description

Prior Default

parameter Distribution Parameter

Shape Values

βη
Simulation Scaling

Calculated as (ρη)
a N/A

Vector

βδ
Discrepancy Function

Calculated as (ρδ)
a N/A

Scaling Vector

λη
Marginal Simulation

Γ(λη| a,b)b a=5, b=5
Precision

λδ
Marginal Discrepancy

Γ(λδ| a,b)b a=1, b=10−5

Precision

λy
Observed Data Noise

Γ(λy| a,b)b a=1, b=10−3

Precision

λys
Simulation Data Noise

Γ(λys| a,b)b a=5, b=5*10−3

Precision

ρη
βη Transformation

β(ρη| α,b)c α=1(fixed), b=0.2
Variable

ρδ
βδ Transformation

β(ρη| α,b)c α=1(fixed), b=0.2
Variable

aρi = exp
(
−βi

4

)
bΓ(λ|a, b) ∝ λa−1exp(bλ)
cβ(ρ|α,b) ∝ ρα−1(1− ρ)b−1

The algorithm constructs a fully-Bayesian formulation to infer the posterior dis-

tribution, πps(·) of ~θ and the hyperparameters

πps(~θ, λη, λδ, β
η, βδ|~z) ∝

L
(
~z|~θ, λη, λδ, βη, βδ

)
πpr

(
~θ
)
πpr (λη) πpr (λδ) πpr (βη) πpr

(
βδ
)
.

(1.4)
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The first n elements of ~z contain the experimental responses and the last m contain

simulation responses. The likelihood structure is the standard multivariate normal

density

L
(
~z|~θ, λη, λδ, βη, βδ

)
∝ |Σz|−

1
2 exp

(
−1

2
~z TΣ−1

z ~z

)
. (1.5)

The covariance matrix is defined as

Σz = Ση +

 Σy + Σδ 0

0 0

 ,

where Ση is formed by applying Eq. (1.2) to the n+m experimental and simulation

inputs (with candidate ~θ values inserted for the n experimental inputs), Σδ is obtained

by applying Eq. (1.3) to the n experimental inputs, and Σy is the Rn observation

covariance matrix. The general model is developed in more thorough detail in Higdon

et. al. (2004) [3] and its multivariate extension is developed in Higdon et. al.

(2008) [2].

The distribution (1.4) is explored via a Metropolis [6] Markov chain Monte Carlo

(MCMC) algorithm with Hastings updates [7]. In simple terms, the algorithm goes

as follows (where we will call ~Ω the vector of uncertain inputs and hyperparameters):

1. Initialize ~Ω1

2. Given current iterate, ~Ωk, sample candidate ~Ω∗ such that P(~Ωk → ~Ω∗)=P(~Ω∗ →
~Ωk), where P(x1 → x2) is the probability of selecting x2 given the current iterate

x1.

3. Compute the Metropolis acceptance probability

α = min

{
1,

πps(~Ω
∗|~z)

πps(~Ωk|~z)

}
(1.6)

4. Choose ~Ωk+1:
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~Ωk+1 =

 ~Ω∗ with probability α

~Ωk with probability (1− α)

The acceptance criteria, Eq. (1.6), is designed such that candidates with larger

likelihoods are always accepted (α=1); candidates with smaller likelihoods may also

be accepted, but with a smaller (although never non-zero) probability. We are in-

terested in accepting less-likely candidates in the interest of thorough mixing; that

is, we avoid being ‘stuck’ in local maxima of the posterior distribution and have a

non-zero probability of jumping far (in some sense) away in the domain to explore

other regions of the posterior.

Realizations from the MCMC process are used to construct the distributions in

Eq. (1.1) using standard multivariate normal theory. The process also provides

estimates of calibrated distributions of the uncertain inputs, ~θ, such that the simu-

lator is more likely to replicate experimental results when run with draws from these

distributions.

1.3.2 The BMARS Algorithm

The Multivariate Adaptive Regression Splines (MARS) algorithm is a partition-

based curve-fitting technique which attempts to emulate the mapping between a

function’s inputs and outputs as a summation of spline functions. Multivariate spline

functions are simply products of one-dimensional spline functions; these 1D spline

functions are defined to be zero on part of the domain and a polynomial of some

order on the remainder of the domain. The knot of the spline is the coordinate at

which this definition changes, and the direction of the spline describes whether the

non-zero portion of the spline is in the positive or negative direction from the knot.

In our implementation, knot points are restricted to the coordinates of the training

data given to the model.
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Given a set of input or training data, the classical formulation [8] uses a semi-

stochastic method to generate a basis function of the form:

B(x) = β0 +
K∑
k=1

βk

I∏
l=0

(xl − tk,l)ok+ (1.7)

where ~x is a vector of inputs, tk,l is the knot point in the lth dimension of the kth

component, the function (y)+ evaluates to y if y > 0, else it is 0, o is the polynomial

degree of the kth component, βk is the coefficient of the kth component, K is the

maximum number of components of the basis function, and I is the maximum allowed

number of interactions between the L dimensions of the input space. Note that the

formulation does not require that each of the k components have a term in each

dimension of ~x. Also, the function has only a maximum of K components, but

implementations typically search for the optimal fit while minimizing k.

As an example of a MARS fit, consider Fig. 1.1. Imagine that we have a 1D

simulation which returns piecewise-linear data (shown as the blue scatter-points in

the figure). A MARS fit of the form (1.7) would require a summation of at least three

splines to produce an exact fit: the constant spline β0, and two other 1D splines,

at least one of which must have a knot coordinate where the training data changes

slope.
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Fig. 1.1. The MARS algorithm requires exactly three splines to inter-
polate piecewise-linear training data.

The Bayesian extension of MARS (hereby named BMARS) [9] uses a Markovian

process to propose new components of the basis function (new splines), delete existing

splines, or modify existing splines. When a new spline is created, the algorithm ran-

domly chooses its order, knot point, direction, and level of interaction. The Markov

chain algorithm iterates this random selection process and accepts/rejects proposal

basis functions based on a likelihood calculation. This likelihood is a function of the

candidate’s fit to the training data and the number of splines in its basis function.

The coefficients, β, are found via matrix inversion, but are perturbed on a noise

distribution that is updated as the process evolves. Similar to the GPMSA software,

a number of samples from the converged Markov chain can be used to generate a

predictive distribution of the underlying function’s response at new inputs.

To illustrate the utility of BMARS, consider an extension of the simple 1D regres-

sion above to the case where the simulation produces noisy response data, as shown

in Fig. 1.2. A classical MARS fit, depending on the user-defined tuning parameters,
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could be made to generate a line of best fit (as shown) or to interpolate every train-

ing point. If we wanted to use this regression to predict the next simulation output,

however, neither of these results would be very helpful. The line of best fit would

predict an idea of the expected simulation response, while the complete interpolation

gives no credit to the noise at all!

Fig. 1.2. A classical MARS fit to noisy training data cannot provide
information about that noise.

Given data of this type (which is often the norm in our complex problems), we’d

prefer to compute a predictive distribution of the simulation response at a new input.

This would provide an estimate of the expected value as well as a confidence interval

about that value. Figure 1.3 illustrates a BMARS fit to the same noisy training

data, where a number of splines from the posterior distribution of MARS splines

has been plotted to illustrate the predictive distributions. We see that some splines

tend to chase the noise while others trace the mean or expected value, and the end

result is a distribution at any point where the emulator is evaluated. These kinds of
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distributions are necessary for characterizing uncertainty in both the simulation and

the regression of the simulation.

Fig. 1.3. A Bayesian MARS fit to noisy training data provides predictive
distributions.

In the application to our universe, we construct a BMARS basis function to em-

ulate the diffusion simulator. We then attempt to calibrate the simulation to the

“experimental measurements” by tuning the uncertain cross-section inputs. We first

randomly sample the ~θ input space and use the BMARS emulator to construct a

distribution of predicted simulation responses at each experimental slab width. We

assign a weight to each sampled ~θ coordinate based on the density of its predictive

distribution evaluated at the “experimental measurement.” Then, through interpre-

tation of the weights at each slab width or subset of slab widths, we can choose the

simulation inputs that are most likely to produce accurate predictions of a “mea-

surement” for some new “experiment” and provide a measure of uncertainty in that

prediction.
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2. ANALYSIS OF THE GPMSA SOFTWARE IN OUR SIMPLE UNIVERSE

For our first exercise of the MMU framework, we generate data in the simplest

setting available: experimental data with no imposed error or noise and no hidden

variables. We select the GPMSA software as the first UQ model.

2.1 Specification of the Inputs

Table 2.1 summarizes the input parameters for the mathematical models.

Table 2.1
Specification of experimental and simulation input parameters in the first
simple “universe”

“Experimental” Inputs

Slab Widths, x [1 2 4 8 16 32]cm

Σt, c 1.00 cm−1, 0.99

Incident Flux, Ψinc

Ψm(0) = 1.0, µm > 0

Ψm(Ls) = 0.0, µm < 0

Simulation Inputs

Slab Widths, x [1 2 4 8 16 32]cm

θ1 = D θ1 ∈[0.133 0.533]cm

θ2 = Σa θ2 ∈[0.004 0.016]cm-1

θ Sample Space
Full tensor product, each θ sampled at 5 evenly

distributed points on domain, including endpoints.

Incident Particle Flow Rate

j+(0) =
∑
m

µm>0

Ψm(0)µmwm

j−(Ls) =
∑
m

µm<0

Ψm(Ls)|µm|wm
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The result of this input space is six experimental results and 150 simulation re-

sults for the response function, Y1. The six experimental results are perfect “measure-

ments” of the experimental response at each slab width; the 150 simulation results

come from 25 sampled ~θ points at each of the six slab widths. The incident angular

flux is isotropic from the left side of the slab and zero from the right side. Figure 2.1

shows the relationship between the results of the manufactured “experiments” and

simulations for each input slab width.
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Fig. 2.1. “Experimental” measurements and diffusion calculations of the
reflected particle flow rate as a function of slab width.

It is important to recognize that (in the case of high scattering ratio) the mean of

the diffusion simulations accurately approximate the “experimental measurements”

for each slab width. Thus, in the context of the Kennedy/O’Hagan formulation

(Eq. (1.1)), we will not expect a large model-discrepancy contribution, δ(~x). This

simplifies the calibration portion of the problem. Also, we intentionally chose the
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range of the components of ~θ such that the simulation results spread comfortably

around the “experimental” results.

2.2 Initial Results from the GPMSA Software

Initially the input data is formatted and given to the GPMSA software in a black-

box fashion: we did not take advantage of knowledge of the embedded statistical

models and made no attempts to modify the hyperparameter priors. In the analysis

that follows, we have chosen to focus on three major objectives of the GPMSA

software:

1. Calibration of the uncertain inputs to their most likely distribution (that is, the

values of ~θ that are most likely to result in accurate predictions of experimental

outcomes);

2. The ability of the emulator, η(~xi, ~θ), to accurately characterize the simulation;

3. The ability of the software to predict the response of a new experiment, Y (~xi),

within a reasonable confidence interval.

At this point we review the naming conventions used in the following analysis:

• training data - Experimental settings/measurements and simulation inputs/outputs

provided to the software

• testing data - Experimental settings/measurements and simulation inputs/outputs

that were not provided to the software and might be predicted

• prior distribution - The probability density function initially assumed by the

software in the MCMC algorithm

• posterior distribution - The likelihood distribution produced via the MCMC

process.



20

2.2.1 Calibration of the Uncertain Inputs

A major function of the code (and, in fact, the focus of the work by Kennedy and

O’Hagan [1]) is to calibrate ~θ such that the simulation will more accurately approx-

imate experimental measurements. In their original work, Kennedy and O’Hagan

specified the ~θ parameters as tuning parameters, such as coefficients on error terms

or empirical data correlations which did not necessarily have a physical meaning.

In our application, however, the uncertain inputs correspond to physical properties

of the material. Thus, we seek to infer a range of these physical values that result

in diffusion simulations that accurately predict observed “experimental” results and

not necessarily those that accurately describe the material in the physical problem.

The distribution of ~θ, Eq. (1.4), is explored via the Markov chain process. A

sample of the MCMC realizations (after convergence) can be drawn and run through

the simulator to determine whether the posterior distribution of ~θ more closely pre-

dicts experimental response at the training data. In the analysis that follows, the

Markov chain was run to 10,000 iterations with a 7,000 iteration burn-in. A uniform

sample of 500 realizations was taken from the last 3,000 iterations to generate the

results.

By its default settings, the GPMSA software assumes a normal prior distribution

on each of the the uncertain inputs. This distribution has a mean equal to the mean

of the training sample of the uncertain input and a standard deviation equal to ten

times the range of the uncertain input. This formulation results in (nearly) equal

weighting of the full range of the input but allows (when possible) for a refinement

in the uncertain input space to a tighter Gaussian posterior distribution. Figure

2.2(a) illustrates the posterior likelihood distribution (shown as the nearly-Gaussian

histogram) suggested for the uncertain inputs, D and Σa. Immediately, we note that

the range of the calibrated uncertain inputs has been reduced considerably from the

original range of the input values (shown as the uniform distributions). This suggests
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that the Markov chain has focused on a distribution of the parameters that it believes

will more accurately replicate experimental results.

Figure 2.2(b) gives a two-dimensional illustration of the inferred distribution of

the uncertain inputs. An interesting observation is that the posterior distribution of

the diffusion coefficient is centered about a value below the mean value (which is the

usual diffusion-theory value that corresponds to the transport reality, namely 1/3Σt)

of the prior. This is an indication by the algorithm that, for this specific problem, the

simulation (diffusion) is more likely to match experimental data when the diffusion

coefficient is biased below the usual diffusion-theory value. The posterior distribution

for Σa, however, seems to be centered at or near the mean of the prior, indicating

that the simulation does not prefer a biased value for this θ parameter.
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Fig. 2.2. For the case of “perfect measurements,” GPMSA produced
highly refined posterior distributions of the uncertain inputs to the dif-
fusion model.

Figure 2.3 is a reconstruction of Figure 2.1 except that the simulation response

data is calculated based on samples of the posterior distribution of ~θ. We immediately
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notice that the range of computed particle flow rate at the training slab widths is

reduced in the calibrated simulation. In this sense, the algorithm has succeeded in

calibrating the inputs to reduce the uncertainty of its predictions.
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Fig. 2.3. Calibrated diffusion calculation compared to “Experimental
Measurements.”

2.2.2 Calibration of the Uncertain Inputs in the Presence of Noisy Observation

Data

This initial illustration of the GPMSA software has assumed that the experimen-

talist measures the observed data without any error or bias. In practical applications,

however, the norm is incomplete or noisy data sets resulting from a limited number

of available experiments. The presence of noise in observed data can result from a

number of factors, including epistemic uncertainty (unknown unknowns), aleatory

uncertainty (natural stochastic behavior), bias introduced by the measuring equip-

ment itself, or bias introduced by the experimental setup or procedure. No matter
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the cause of noisy observation data, the result is increased difficulty (and therefore

added uncertainty) in generating experimental predictions.

In many cases, especially those in which a large number of experiments and

measurements are documented, the nature of the observation error can be well char-

acterized by an error function such as that in Eq. (1.1). In other cases, we might

expect the Bayesian nature of the GPMSA algorithm to recognize noise in the data

and infer a different distribution of hyperparameters for the Gaussian process. To

simulate measurement error, the same MMU exercise as described in the previous

section was repeated with the addition of a normally distributed error term to the

observed data, e ∼ N(0,0.052). The resulting input data is illustrated in Fig. 2.4

(compare to Fig. 2.1):
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Fig. 2.4. Input simulation results and noisy “experimental” observa-
tions.

Note that the diffusion simulation input data and response are exactly the same

as in the previous exercise. We note that the magnitude of the observation error,
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although fairly large and perhaps unrealistic for such a simple problem, is meant to

magnify the response of the GPMSA algorithm to the presence of noisy data. The

calibrated vector ~θ in this case is illustrated in Figs. 2.5(a) and 2.5(b).
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Fig. 2.5. The posterior distribution of the uncertain inputs in the case
of noisy observed data has a notably larger spread than in the case of
perfect measurements.

When compared to Figs. 2.2(a) and 2.2(b), Figs 2.5(a) and 2.5(b) illustrate a

clear reaction from the calibration software to the noisy observed data. The posterior

distribution of the uncertain inputs have a noticeably larger standard deviation,

especially in the case of θ2, the absorption cross-section. The GPMSA software does

not allow the MCMC algorithm to sample the uncertain inputs outside the domain

of their input range. In the case of θ2, it seems clear that the MCMC chain would

continue to expand the distribution if the bounds were widened. It is also interesting

to note that the distribution of the diffusion coefficient is again centered below the

mean value of the input data (accept with much wider variance).
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Figure 2.5(b) indicates that the calibrated simulator in the case of this noisy

experimental data is sensitive to the value of θ1 and that the preferential value of θ1

may have a weak dependence on the value of θ2 (indicated by the slight trend in the

scatter). Aside from this weak trend, the calibrated simulator does not appear to

have preferential values of the absorption cross-section, θ2. Finally, we see evidence

that the algorithm is “chasing” some of the noise in the observed data because of

the larger number of outlying scatter-points in Fig. 2.5(b) compared to Fig. 2.2(b).

Figure 2.6 (compare to Fig. 2.3) shows the calibrated diffusion results at the train-

ing data. The range of simulation results is considerably larger than the calibrated

simulator with no observation noise and only slightly smaller than the uncalibrated

simulator. Also, at the slab width of 4cm, the range of simulation results does not

encompass the noisy observation. At this point, it is unclear whether the algorithm

will treat this point as an outlier or attempt to use the discrepancy formulation to

‘chase’ this noise. This will be explored in a later section.
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Fig. 2.6. Calibrated diffusion calculation with noisy “experimental mea-
surements.”

As mentioned previously, the construction of the fully Bayesian Gaussian process

has more than one method for accounting for noise in the observed data. The widened

distributions shown in Fig. 2.5 will result in wider response predictions by the

emulator in effort to account for the observation noise. A statistical treatment of the

observation noise occurs in the construction of the covariance kernel described by Eq.

(1.5). The parameter λy (referred to as lamOs in the GPMSA documentation [10])

is a measure of the precision of the observation data, which is inversely proportional

to the variance of the observation data. In this fully Bayesian implementation, we

would expect the algorithm to find smaller magnitudes of this parameter more likely

in the case of noisy observation data.

This is the first example of the potential benefits gained through an understanding

of the UQ code. In a ‘black box’ implementation of this problem, the user would

either assume that the algorithm will recognize the noise in the observation error

and treat it properly or, worst case, would not even consider the the issue at all.
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Alternatively, for the user with a working familiarity with the method, the GPMSA

software allows for adjustments to the prior distributions on the hyperparameters,

including λy. Thus, if the distribution of the observation error is known a priori

(which is typically the case), the user can adjust this prior distribution and thereby

add one more tie between the UQ method and the physics.

In the interest of pursuing the MMU framework, we do not alter the default prior

of the observation noise hyperparameter at this point. In other words, the case with

and without noise added to the experimental data were run with the same priors

on the noise hyperparameter to test whether or not the GPMSA software would be

able to differentiate between the cases. The default prior is a gamma distribution,

λy ∼ Γ(1.0,0.001), and is illustrated in Fig. 2.7(a).
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Fig. 2.7. Characterization of the observation noise hyperparameter.

Figure 2.7(b) illustrates the accepted value of lamOs as a function of Markov

chain iteration (note the log scale). The algorithm correctly prefers larger values of

the hyperparameter in the case of no noise in the experimental measurements and

smaller values of the hyperparameter in the case with noise. This is an encouraging
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result and, as evidenced by Fig. 2.6 and discussed in a later section, will result in

wider experimental prediction distributions at testing inputs.

2.2.3 Investigation of the Emulator

The emulator, η(~xi, ~θ), is a regression algorithm designed to predict simulation

results at testing data points. In many applications of the Kennedy and O’Hagan

model, an accurate emulator can be an advantage because the scientific simulation is

computationally expensive. In our simple universe, an emulator is hardly necessary

from a computational cost-saving perspective. We are interested, however, in how

accurately the UQ methodology’s emulator represents the simulation model. Because

our simulations predict experimental results (i.e. measurement error ignored) with

reasonable accuracy (see Figure 2.1), we expect that an accurate emulator is the key

component to accurate predictions of experimental outcomes at testing data points

and therefore proceed to evaluate its performance.

Figure 2.8 illustrates the calculation of the reflected particle flow rate by both

the emulator and the simulator as a function of slab thickness. The simulation data

are the diffusion response as a function of slab width using the 500 ~θ draws (i.e.,

calibrated ~θ draws) used to plot the posterior distributions in Fig. 2.2(a) . The

emulator data are computed via the methods embedded in the GPMSA software

using hyperparameters realizations from the same 500 MCMC draws.
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Fig. 2.8. The emulator is accurate at training data, x=[1,2,4,8,16,32]cm,
but interpolates poorly at testing data, x=[3,6,10,12,14,18,22,26]cm.

Several features of this plot are worth mentioning. First, at the training data,

both the mean and standard deviation of the simulation response are predicted ac-

curately. Second, relating to the previous sections, the simulation runs using the

calibrated (posterior) distributions of ~θ are smooth and have small variance, indicat-

ing that the calibration procedure has decreased the simulation output variance (we

will assess the predictive accuracy of the simulator in a following section). Third,

at testing data points, the standard deviation of the emulator predictions does in-

crease, as expected, but perhaps more dramatically than one might expect for such

a well-behaved system. The mean of the emulator predictions, however, wanders far

from the simulator values at the testing data points, especially those that are far

away from training points.

This is a behavior commonly observed in static Gaussian process models, which

is the type of GP employed by this algorithm. The model is termed static because

the value of the scaling and variance hyperparamters which construct the covariance
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model do not depend on the location of the prediction point in the input domain. A

consequence of this construction is the inability to distinguish between smooth and

rapidly-varying portions of the response surface. To make this distinction, the scaling

hyperparameter would have to account for the decreasing correlation between input

points as the function moves from smooth to rapidly varying domains. The MCMC

procedure is designed to “learn” the optimized distribution of the hyperparameters

given available samples from the simulation, but the algorithm cannot account for

non-static behavior in the response function.

An obvious (but not always feasible) technique to improve the regression is to add

data points to the training set. For example, in a scenario in which we are especially

interested in experimental predictions at a slab width of 12cm, we may be able to

afford one additional experiment or simulation at that value. Figure 2.9 illustrates

the predictive effect of adding data points to the training set (namely, a simulation

or experiment at x=12cm).
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(a) Adding an Experimental Training

Point at x=12cm
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(b) Adding a Simulation Training Point

at x=12cm

Fig. 2.9. The addition of experimental or simulation training points will
help shape the prediction curve.
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The figure indicates that, in this problem, the behavior of the mean of the pre-

diction curve behaves similarly after an addition to the experimental or simulation

training data set. In the context of this problem, this is explained by the fact that

magnitude of the model discrepancy function, δ(~x), is small compared to the mag-

nitude of the response function. Therefore, experimental and simulation training

data are similar and have similar effects on the correlation matrix. In a problem

framework involving a systematic or random model discrepancy, we would expect

additions to the experimental training data set to have a more profound effect on

the prediction curve than additions to the simulation training data set.

Another feature of Fig. 2.9 is that the standard deviation of the prediction at

x = 12cm is smaller when that data point is added to the experimental training data

set than when added to the simulation data training set. In some sense, this indicates

that the software is more confident in predictions made at existing experimental

training input data than in existing simulation training input data. We find this

behavior intuitive and were pleased at this result.

Finally, and most importantly, we note that in both cases, predictions near

x = 12cm did improve, but the behavior of the prediction curve is still incoher-

ent at the remaining testing data points. Although the magnitude of the oscillations

did decrease, the predictions made by the software are still outside a reasonable

range of acceptability. In other words, we were able to improve predictive capa-

bility around the data point of interest, but overall the GP method is still unable

to resolve the difference between the rapidly-varying and saturated domain of the

response function. A number of modifications or extensions to the GP method have

been developed, including the formulation of non-stationary covariance models [11]

and methods such as ”blind kriging” [12]; future work would certainly include the

application of the MMU framework using the same kinds of predictive validation

problems with these UQ methods.
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2.2.4 Generating Experimental Predictions

We now complete the Kennedy/O’Hagan formulation by adding the model dis-

crepancy term and generating full experimental predictions. In the case of high

scattering ratio, the model discrepancy term is very small in magnitude compared

to the emulator. Figures 2.10(a) and 2.10(b) illustrate the “true” and predicted

model discrepancy term in the case of perfect and noisy observation measurements,

respectively. Here we exercise our MMU framework and compute the “true” model

discrepancy as simply the mean simulation response subtracted from the “observed”

experimental response. Note that calculations at the set of testing slab widths,

xtst=[3,6,10,12,20,26], is included in the figures.
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(a) Model discrepancy term in the case of

perfect experimental measurements.
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(b) Model discrepancy term in the case of

noisy observation data.

Fig. 2.10. The model discrepancy term in our two test cases.

These plots have a number of interesting features. First, in the case with no noise

in the experimental data, the “true” and predicted model discrepancy terms agree

very closely accept at slab widths below 10cm. It is well known that the diffusion

approximation to transport breaks down near boundary layers, so we might expect
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some model error at optically thin slab widths. Except at the slab width of 1cm,

Fig. 2.10(a) indicates that the diffusion approximation is over-predicting the S8

calculation. This is not readily observable in Fig. 2.1 because the magnitude of the

discrepancy is very small compared to the magnitude of the response function.

Figure 2.10(b) is a bit more interesting. We see the oscillations in the “true”

model discrepancy that result from the noise in the observation data, the largest of

which is again at x=4cm slab width. The predicted model discrepancy, however, does

not chase this noise, indicating that the algorithm has identified noise in the observa-

tion data and will not chase it. The predicted curve stays very near zero throughout

the domain of the problem which indicates that the experimental predictions will

essentially be equal to the emulator results.

Figures 2.11(a) and 2.11(b) illustrate the experimental predictions at the training

data made by the GPMSA software for the case with and without experimental

measurement error. It is important to note that the GPMSA predictions do not

include the noise term ei given in Eq. (1.1); that is, GPMSA attempts to predict the

true physical response, not the measurement made by the observer. If we wished to

predict the experimental measurement, we would simply add the distribution of ei,

which we claim is typically well characterized, to the GPMSA predictions.
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(a) Experimental predictions at the train-

ing data with no observation noise.
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(b) Experimental predictions at the train-

ing data with added observation noise.

Fig. 2.11. Experimental predictions are not as accurate at the training
data when observation noise is included.

Again we highlight that the shape of the experimental predictions is essentially

the same as the emulator results because the model discrepancy term is very near

zero in these test cases. In the case with no noise on the observation data, we see

that the experimental predictions are exactly correct. Indeed this is a property of a

well-defined Gaussian process regression on a well-behaved function: the regression

function exactly fits the training data. This exact fit is not the case with the noisy

observation data where the algorithm has not chased the noise but instead has tried

to smooth out the shape.

We also now see the effect of the decreased magnitude of the observation noise

precision hyperparameter λy and widened posterior distribution of the uncertain in-

puts on the magnitude of the uncertainty bounds about the experimental predictions.

The response is intuitive - the uncertainty added to the system by the observation

noise results in more uncertainty in the experimental predictions. The code seems

to have resisted chasing the noise in the observation data, but it is likely that tuning

of the hyperparameters could result in more or less chasing of this noise.
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2.2.5 The Addition of a Hidden Variable to the Simple Universe

Usually, theoretical models do not fully encompass the physics of the true exper-

imental phenomenon. This may be a result of simplifying assumptions in the model,

simplifications in the interest of computational feasibility, or a lack of understanding

of the science under investigation. In such cases, the ability to quantify the added

uncertainty resulting from the model inadequacy becomes extremely important.

In the interest of investigating model inadequacy, we will impose a hidden variable

on our particle transport universe. Instead of a single experimental result at each

slab width, we will replicate each experiment using five different distributions of

the incident angular flux. The S8 method will “measure” different reflected particle

flow rates for each incident distribution. Our computational model, diffusion theory,

will not know the difference between the replicates, as we will specify the incident

flux distribution such that diffusion theory always has the same boundary conditions

(i.e., each replicate has the same incident particle flow rate but different angular

distribution). Therefore, to the computational model, the differences in experimental

replicates will look like experiment-to-experiment variability, while in reality, there

is a hidden physical mechanism causing the different “measurements” at each slab

width.

Figure 2.12 shows the experimental and simulation input data (compare to Fig.

2.1). Again, we have chosen a wide enough prior distribution for the uncertain inputs

that for a given slab width, the range of simulation results encompassed each of the

five experimental replicates.
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Fig. 2.12. We add experimental replicates to the training data by per-
forming 5 “measurements” of the reflected flow rate at each slab width.
The difference in the replicates is the angular distribution of the incident
flux.

Figure 2.13 illustrates the experimental response predictions (no ei term) made

by the GPMSA software given this input data. Again, because in this “universe”

there is little model discrepancy, the emulations and full predictions are essentially

identical.
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Fig. 2.13. Predictions of the reflected particle flow rate as a function of
slab width for default hyperparamter values.

Again, several features of the prediction function are worth noting. First, as in

Sec. 2.2.3, we see accurate predictions of the mean response at each training data

point but poor interpolations and unrealistic oscillations at interpolating testing

points. Second, we do not see an increase in the standard deviation of the response

predictions as a result of the experimental replicates. In fact, at most training points,

the plot indicates that three to four of the five replicates are outside two standard

deviations of the experimental response predictions. Of course, the addition of an ei

term might result in the inclusion of these outlying results, but in our “universe”,

the experiments were measured perfectly! A hidden variable is responsible for the

experiment-to-experiment variability, not measurement error or bias.

An accurate treatment of the experiment-to-experiment variability (in terms of

the Kennedy and O’Hagan model) would lead to an increased variance in the model

discrepancy term. Ideally, the software would recognize that the true model dis-

crepancy has multiple values at each slab width and would reflect this uncertainty
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by widening the distribution in δ(~x). We do not see this behavior, however. In-

stead, it seems that the algorithm interprets the experimental replicates as noise or

measurement error.

We believe this is a valuable example of the utility of MMU: If a modeler dis-

covers that a certain source of uncertainty (in our case, differences in experiments

to which our model is insensitive) is not being treated correctly by the UQ method,

then he/she would have to make appropriate changes to the model or its inputs to

better characterize this uncertainty. The GPMSA code provides methods for the

knowledgeable user to make such changes, as we illustrate with the following exam-

ple.

One of the Bayesian hyperparameters, lamOs, is a measure of the precision of

the experimental data, where precision is proportional to the inverse of the variance.

In our universe, we “measure” our results perfectly (i.e. no noise), implicating a

relatively large value of lamOs. Larger values of the precision hyperparamters will

tend to result in smaller predictive variances. We have seen, however, that the added

variance caused by our experimental replicates is not being properly accounted for

in the response predictions.

The GPMSA code allows the user to “encourage” the hyperparameters towards

particular values by changing the prior distribution from which the parameters are

sampled. In an attempt to widen the range of experimental predictions, we set the

gamma prior distribution of lamOS towards smaller values (in essence, indicating we

have a large variance in our experimental data). Figure 2.14 illustrates the Markov

chain of lamOs before and after the change in prior and Fig. 2.15 shows the result

of this change on the experimental predictions:



39

0 2000 4000 6000 8000 10000
10

−2

10
−1

10
0

10
1

10
2

10
3

la
m

O
s

MCMC Iteration

 

 

lamOs Def. Prior

lamOs Alt. Prior

Fig. 2.14. The hyperparameter λy, which estimates the precision of ex-
perimental data, was “encouraged” towards a posterior distribution with
smaller magnitude to reflect uncertainty introduced by the experimen-
tal replicates. The default prior distribution is Γ(1, 0.001); our modified
prior was Γ(1, 1000).
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Fig. 2.15. The result of smaller values of λy is a wider predictive distri-
bution of experimental results.

We did succeed in widening the 2σ confidence interval by altering the prior of the

lamOs hyperparameter, as it now encloses most of the “experimental measurements.”

We were unable, however, to determine a set of priors on the other hyperparameters

that would improve the shape of the prediction curve. For example, several attempts

to modify the βη scaling vector did result in changes to the testing data predictions,

but none resulted in consistent accuracy across the domain.

2.3 Further Investigation of the Model Discrepancy Term

As the modeler in the MMU method, we have established the “exact” physics,

constants, and inputs and can therefore know exactly the model discrepancy term. In

actual scenarios, having this knowledge is highly unrealistic (indeed, if we knew ex-

actly the model discrepancy, then we would know exactly the predictions or quantities

of interest!). The model discrepancy term is often complicated with assumptions of
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the model, unknown unknowns, inexact physics, and/or true randomness in nature.

Thus it is equally difficult to characterize as the simulator and is often formulated

with fewer training points than is the emulator.

One objective of this thesis is to subject the simple universe to scenarios involving

a model discrepancy function and gain an understanding of how well the GPMSA

software characterizes the term. This will be accomplished by decreasing the scatter-

ing ratio of the system which decreases the accuracy of the diffusion approximation to

the transport calculation. For these tests we will remove the hidden variable from the

system. The scattering ratio will be reduced to c = 0.20 and, to maintain a functional

shape of the response, the training slab widths will be xtrn=[0.5,0.8,1.2,1.6,2.2,3.0].

Otherwise the input data is identical to that given in Table 2.1.

2.3.1 Case 1: Calibrated Cross-sections are Contained Within the Input Space

Figure 2.16 gives the input data for the first test case. Here we see a large dis-

crepancy between the mean simulation result and the “experimental” results. Also,

the mean simulation result is negative which is an unphysical quantity in the context

of this problem.
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Fig. 2.16. Predictions of the reflected particle flow rate as a function of
slab width in the case of the scattering ratio, c=0.20.

Figures 2.17(a) and 2.17(b) show the results of the calibration effort of the

GPMSA software. We see a large change resulting from the decreased scattering

ratio.
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Fig. 2.17. The posterior distribution of the uncertain inputs in the case
of a decreased scattering ratio has shifted far from the mean of the priors.

First, we note that the distribution is centered below the mean value of the

uncertain input space, indicating that the diffusion simulator is more likely to repli-

cate experimental measurements (in this case of c = 0.20) when the absorption

cross-section and diffusion coefficient are biased below their true or typically-defined

value, respectively. Also the association between the two uncertain inputs seems

well-defined and sharp given the shape of the scatter in Fig. 2.17(b). Finally, as was

the case with Σa in the “universe” with noisy experimental data, we cannot conclude

the optimal value of ~θ from the posterior distributions because the distributions have

appreciable probabilities at the edges of the domain; in other words, we cannot con-

clude that the peak of the posterior distribution is contained by the bounds of the

prior distribution.

The question of interest, however, is how the software treated the discrepancy

function. We find that because the Markov chain has identified a region in the

uncertain input space where simulation results closely match experimental results,
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the software prefers to sample from this space and leave the discrepancy function

very small. Figure 2.18 illustrates the nearly-zero model discrepancy term for this

case:
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Fig. 2.18. True and estimated model discrepancy. We know that a
model discrepancy does exist if the simulation is run at the “true” ~θ’s; the
GPMSA algorithm, however, prefers to sample away from these “true”
values and maintain a near-zero model discrepancy.

In the figure, the estimated model discrepancy function is calculated as the dif-

ference between the software’s predicted experimental and simulation result at each

slab width. The “true” discrepancy is calculated by subtracting the actual diffusion

result at the input from the actual S8 result at the same input. We see that the func-

tion is slightly positive and constant, but again it is small in magnitude compared

to the response function (although a larger contributor than in the case of c = 0.99).

The conclusion of this test is that the software preferred to rely on an accurate

calibration of the uncertain inputs (in this case, away from physically “true” values)
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and emulator-dominant predictions rather than attempting to account for the model

discrepancy. In the case where the uncertain inputs were non-physical tuning pa-

rameters, this exercise would highlight the calibrated value of these inputs that, in

some sense, offset the model discrepancy.

2.3.2 Case 2: Simulator Calibration Requires Uncertain Inputs Outside the Given

Range

Given the findings in the previous section, the obvious test is to require the

GPMSA software to formulate a model discrepancy term by reducing the allowable

range of the uncertain inputs. For this test, the uncertain input space will be reduced

to D ∈ [0.3267, 0.340] and Σa ∈ [0.784, 0.816]. The input data for run of the GPMSA

software is shown in Fig. 2.19.
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Fig. 2.19. Experimental and simulation input data for the case of con-
stricted range of the uncertain parameters.
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Again, we note that the mean results of the simulation are negative and unphys-

ical. Also, compared to the simulation data in the previous section, the range of the

simulation results is smaller, reflecting the smaller bounds on the uncertain inputs.

The plot indicates that a model discrepancy function will be required to replicate

the experimental data because the range of simulation results does not encompass

the experimental data.

As presented in previous sections, the calibrated uncertain inputs are given in

Figs. 2.20(a) and 2.20(b).
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Fig. 2.20. The posterior distribution of the uncertain inputs in the case
of a decreased scattering ratio and restricted uncertain input space.

Figure 2.20(b) resembles the behavior in Fig. 2.17(b) as the bulk of the con-

centration of the calibrated uncertain inputs is located in the lower-left corner of

the plot. However, in this case where the range of the uncertain inputs is much

smaller, the calibrated set is much noisier. This is a result of the fact that none of

the uncertain inputs are much more likely than the others because none replicate
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experimental results. In other words, we see some concentration below the means

of the uncertain inputs because these values do produce simulation results that are

closer to the experimental data, but they are not much more likely than the rest of

the uncertain input space and therefore we see more acceptance of other candidates.

Because we manufactured the universe in which this data was generated, we know

exactly the model discrepancy and can compare this knowledge to predictions from

the GPMSA software. Figure 2.21 illustrates this comparison.
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Fig. 2.21. True and predicted model discrepancy term.

The figure includes predictions at testing data of xtst=[1.0,1.4,2.0,2.5]. The true

discrepancy is actually a range of the difference between the experimental data and

the simulation results at the sampled uncertain inputs; the mean and 2σ values are

plotted in the figure. We note that the true and predicted lines are in excellent

agreement at these inputs. Figure 2.22 illustrates the full experimental predictions

for this test case.
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Fig. 2.22. Experimental predictions in the case dominated by the model
discrepancy term.

Aside from an overprediction at the slab width of 2.5, we note that the shape of

the experimental prediction curves is much more well-behaved than in the case of

c=0.99. We note that the rapidly varying behavior at smaller slab-widths is much

more dampened, if present at all, in the saturated region, possibly contradicting our

notion that the static covariance function is not appropriate for data of this shape.

We believe that this contradiction is explained by the fact that this test case

is dominated by the model discrepancy function whereas previous cases were dom-

inated by the emulator. In the GPMSA algorithm, the model discrepancy function

is a Gaussian process, but it is not formulated on the field or simulation dataset.

Instead it is formulated as the difference between the simulation and experimental

results. In our case, this difference is better-behaved than the measured/calculated

response in previous examples. Also, the simulation response is smoothly varying

in the slab-width domain of this example. As a result, each of these functions (the

simulation response and model discrepancy) are more appropriately modeled by the
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Gaussian-process; therefore, their sum - the experimental response predictions - is

more accurate and well-behaved at training points.

2.4 Some Conclusions After Simple Tests of the GPMSA Software

The GPMSA software, derived from the Kennedy and O’Hagan formulation for

simulation calibration, is perhaps the most published and common fully-Bayesian

implementation of the Gaussian process version of this algorithm. In the previous

sections, we set out to test certain portions of its capability in a very simple “uni-

verse.” In general, we found that the algorithm performs as expected within the

capability of the underlying Gaussian processes. For example, a knowledgeable user

is allowed to alter priors on the hyperparameters to reflect characteristics of the

training data, such as in the case of our introduction of the hidden experimental

replicate variable.

We also found, however, that the underlying static covariance function does not

respond well to the non-static function being modeled in this “universe”. We believe

that this example is an exaggerated illustration of the possible benefits to the MMU

framework. In a higher-dimensional, more complicated problem, it is not likely that

the modeler would be able to recognize as easily the poor predictions being generated

by the algorithm. This could lead to inaccurate predictions with possibly dangerous

or wasteful consequences. We believe that an exercise of the MMU in a simpler

but representative “universe” would help the modeler understand the capabilities,

weaknesses, and applicability of a given UQ method in the context of his specific

problem.

The final tests further investigated the model discrepancy function. In the first

case, there did exist a large discrepancy between the simulation and the experimental

results, but the range of the uncertain inputs were large enough that for specific

distribution of those inputs (even non-physical values), the simulation replicated

the experimental training points. In this case, the algorithm preferred to use the
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calibrated uncertain inputs and maintain a near-zero model discrepancy function.

In the second test, the range of the uncertain inputs was restricted such that the

GPMSA software was forced to include a non-zero model discrepancy function. We

found that the software generated a very accurate model discrepancy that resulted

in accurate predictions of the experimental response at testing slab widths.
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3. ANALYSIS OF THE BMARS ALGORITHM APPLIED TO THE SIMPLE

UNIVERSE

As described in Sec. 1.3.2, the Bayesian MARS algorithm uses a specific process

to randomly construct an ensemble of regression spline functions that attempt to

fit a set of training data. In our implementation, we construct such a function as

an emulator for the diffusion simulation. The training inputs are the same as those

described in Table 2.1 with the exception that the BMARS emulator does not distin-

guish between independent and uncertain inputs. Also note that the experimental

replicates (varying incident angular flux distributions) have been removed leaving

only the “experimental” response to isotropic incident current.

3.1 Choosing the Proper Settings for the BMARS Emulator

The BMARS algorithm allows the user to specify the maximum polynomial order,

o, and maximum number of interactions, I, between inputs to the response. In some

cases, these choices may be guided by the physical process being modeled. In our

case, the analytic solution for the reflected particle flow rate as a function of incident

particle flow rate for the diffusion model can be written as:

jref =

[
sinh( x

L
)(1− 4DΣa)

sinh( x
L

)(1 + 4DΣa) + 4cosh( x
L

)
√
DΣa

]
jinc (3.1)

where x is the slab width and jinc is the incident particle flow rate.

This function does not readily suggest values of o and I, so we can try a range

of these parameters to determine the most appropriate BMARS model. Figure 3.1

illustrates the fit of the basis function to the diffusion training data for different

values of o and I. A 45◦ line would be a perfect fit. Because the BMARS algorithm

is stochastic, a repetition of each of these constructions would result in a slightly

different error.
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Upon originally proposing the MARS regression idea, Friedman [8] suggested that

only linear splines be used in practice, as the effect of higher-order splines can be

generated through multiplication of linear splines. Also, in using only linear splines,

one avoids the rapid magnification of error in the case of predicting at extrapolated

inputs or interpolated inputs that are far from other training data or knot points.

Thus, we will allow only linear and constant splines in our BMARS construction.

Further, we find that allowing up to 2 interactions (that is, splines that have a com-

ponent in all three input dimensions) results in very few 3D splines being constructed

and accepted. Thus, we will proceed with the following analysis using a maximum

of 2D splines.

3.2 Calibrating the Emulator to the Experimental Data

At this point, we have constructed an emulator but have not connected the sim-

ulation results to our manufactured experimental data. To do this we will use a

filtering and weighting method [13] to calibrate the uncertain inputs to the “experi-

mental measurements”.

Here we take advantage of the converged Markov chain process which constructed

the BMARS emulator. The realizations of this process can be interpreted as a series

of evolving emulators for the simulation data. In the data that follows, the BMARS

algorithm was run for 20,000 iterations, and 500 samples were taken uniformly from

the last 10,000 of those iterations.

The filtering method allows us to distinguish between the independent and un-

certain inputs. If we choose to filter on the uncertain inputs (D and Σa), then we

randomly sample n = 1 . . . N points within the convex hull of the training data (in

D,Σa space). The filter defines a weight for each of the N samples. If the weights

are normalized to sum to unity, this can be viewed as a posterior distribution of the

input parameters. The filtering method is described as follows:
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Fig. 3.1. The BMARS fit to the simulation data is most accurate at
I=1, o=1.

Consider a particular slab width and the nth input point. The 500 randomly

chosen emulator functions map this input point to 500 different output values (pre-

dictions of the response at this slab width). With each emulator considered equally

likely, we construct a discrete probability distribution function for the output value

that corresponds to the nth input point. The given input point should receive a
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high weight if the discrete pdf is high at the experimentally measured output value

and a low weight if the discrtete pdf is low at that value. We define the weight for

each point to be the value of the discrete output pdf at the experimentally measured

output value.

Figure 3.2 illustrates the assignment of a weight for two different input points,

one that receives a low weight and one that receives a high weight. The distribution

is simply a normalized histogram of the 500 emulator predictions of the simulation

response at a given independent input. The weight of the uncertain input, ~θ from

which this distribution was constructed is simply the value of the pdf evaluated at

the experimental measurement for the independent input. In this way, uncertain

inputs that result in simulation responses ‘close’ to experimental responses are given

higher weights.
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Fig. 3.2. Samples of the uncertain inputs are calibrated to the experi-
mental measurements.
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Note that our scheme of filtering and assigning weights to the uncertain inputs

does not assume any functional form for any distribution. For example, we could

have assumed that the distribution of emulator predictions was Gaussian and simply

assigned a Gaussian posterior distribution function to each component of ~θ. We find

no mathematical, statistical, or physical basis for such an assumption and instead

choose to assume nothing about the distribution. This strikes us as the best course

of action when one can figure out how to achieve it, for it avoids assumptions of

symmetry, finite support, etc.

Figure 3.3 plots the weights of the sampled uncertain inputs per slab width. We

note a few interesting observations regarding the distribution of the weights. First,

the general distribution is somewhat similar for each slab width, and there is a trend

of increasing dependence on the absorption cross-section with increasing slab width.

For example, for thin slabs, the most likely combinations of the uncertain input

mostly depends on the value of the diffusion coefficient, whereas at thicker slabs, the

more likely combinations depend on the specific combination of both inputs.
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(f) Likelihood Weights, Ls=32cm

Fig. 3.3. Likelihood distribution of the uncertain inputs at each exper-
imental slab width (red/blue colors correspond to larger/smaller likeli-
hoods).
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Another observation is that the distribution of the most likely combinations tends

to run off the edge of the domain. This behavior is a result of the continuous

dependence of the reflected particle flow rate on the inputs (see Eq. (3.1)). The

only exception to this behavior would occur upon filtering values that lead to a local

extrema of the function. In this case, we might expect an enclosed distribution of

the most likely uncertain inputs.

One technique suggested by these plots is to characterize the movement of the

likelihood distribution as the slab width is changed. If we were interested in a pre-

diction at a new slab width, say 12cm, and could estimate the likelihood distribution

of the uncertain inputs at 12cm given the likelihood distributions at slab widths sur-

rounding 12cm, we could use the estimated likelihood distribution to generate our

prediction. This idea is facilitated by the low dimensionality of this problem; such

behavior would be much more difficult to characterize in a more complex “universe”.

Thus in this thesis, we simply mention this idea but do not attempt an analysis.

We can generate a global probability density function by summing the weights of

each uncertain input sample at each experimental slab width and then normalizing

to unity. Figure 3.4 illustrates this combined probability density function for the

uncertain inputs sampled in Fig. 3.3.
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Fig. 3.4. The bivariate combined probability density function for the
sampled ~θ coordinates.

The analysis at this point moves to generating predictions of new experiments

using the globally weighted samples of the uncertain inputs.

3.3 Generating Predictions of New Experiments Using the BMARS Emulator

Taking advantage of the relatively low computational costs of the emulator and

knowledge gained from the filtering/weighting method, we can attempt to make

informed predictions of the reflected particle flow rate at new slab widths. Inherent

in this method is the assumption that the emulator is accurately approximating the

functional form of the simulator within the convex hull of the training data. To make
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an experimental prediction at a new slab width xi, we simply compute a weighted

average of the emulator results:

Ȳ1,predicted(xi) =
N∑
n=1

η(xi, ~θn)wn

where η(xi, ~θn) is the average of the 500 emulators and wn is the normalized weight

of the nth set of uncertain inputs. If we wished to include a 90% confidence interval

on the prediction, then we could use the global likelihood weights to determine the

prediction values corresponding to the 5th and 95th percentiles. Given a length-N

vector ~z and a vector of weights ~w associated with ~z, the percentile associated with

element n in ~z is simply

pn =
100

SN

(
Sn −

wn
2

)
where Sn is the partial sum

∑n
i=1wi. Then, to find the value associated with the pth

percentile, we simply use linear interpolation:

z(p) = zk +
p− pk

pk+1 − pk
(zk+1 − zk)

where k is an integer such that pk ≤ p ≤ pk+1.

Figure 3.5 compares the predictions of this method to a non-weighted prediction

(in which wn=1/N). The plot includes testing slab widths of [3,6,12,20,24,28]cm.
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Fig. 3.5. Assigning weights to the input space improves confidence in-
tervals and slightly increases predictive accuracy.

The immediate observation is that the weighting scheme has the effect of tight-

ening the 90% confidence margins. This behavior can be interpreted as the weighing

scheme giving more weight to the combinations of uncertain parameters that result

in tight predictions centered about the “true” experimental result. The accuracy

of the mean of the emulator predictions is not greatly improved by the weighing

scheme. This is likely because our input intervals on the uncertain inputs were cen-

tered around the values that produced the best simulation results. It is likely that

we would see improvement in the mean emulator predictions if we introduced model

error or poor “guesses” at the prior distributions of the uncertain inputs.

A characteristic of this method that differs from the GPMSA software is that

the standard deviation of the predictions at testing points is not larger in magnitude

than that at the training data. In general, we expect a higher degree of uncertainty

in interpolated or (especially) extrapolated input space as a result of the lack of

existing data at these inputs. We find this to be a limitation of this method and

plan to study this in future efforts using the MMU framework.
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3.4 Demonstration of the Filtering Method in the Presence of Experimental

Replicates

We will now show how one might adapt the weighing/filtering method to the case

(described in the GPMSA sections) involving multiple experimental measurements

at the same input conditions. In the case of this “universe” these experimental

replicates are generated by changing the angular distribution of the incidence flux on

the slab boundary. The “true physics,” S8 transport method, detects this difference

and computes a different response for each replicate. The diffusion approximation,

however, does not account for the angular distribution of the incident current and

therefore cannot distinguish between the experimental replicates. The input data for

this case is illustrated in Fig. 2.12.

The process of constructing a BMARS emulator around the diffusion simulation

is the same as described in the previous section. The filtering method also begins

as described above, where the uncertain input space is sampled (thoroughly). The

assignment of weights, however, must take into consideration the experimental repli-

cates. If we have no reason to consider one set of replicates more “likely” or measured

more ”accurately” then, as we loop through and construct the discrete pdf of em-

ulator responses at each of the sampled uncertain input coordinates, the weight is

computed as the sum of the pdf value at each of experimental response values. These

weights are then normalized to unity.

Figure 3.6 illustrates the weight distribution in uncertain input space in this case

of multiple experimental replicates.
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(f) Likelihood Weights, Ls=32cm

Fig. 3.6. Likelihood distribution of the uncertain inputs at each experi-
mental slab width with multiple experimental replicates (red/blue colors
correspond to larger/smaller likelihoods).
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The obvious feature of these scatter plots that is not present in Fig. 3.3 is the

multi-modal or streaky nature of the more likely inputs. At thinner slab widths,

where the experimental replicates have larger variance, we see more defined streaks

across the uncertain input space. On the other hand, at the thicker slab widths,

the distribution of the more likely uncertain inputs is more concentrated, but not as

concentrated as in the case of a single experimental replicate. Figure 3.7 illustrates

the global weights in the case of 5 experimental replicates. Note that the distribution

of the weights is much less concentrated than in the case of a single experimental

replicate (compare to Fig. 3.4).

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

 

Diffusion Coefficient, D

 

A
b
so

rp
ti

o
n
 C

ro
ss

−
S

ec
ti

o
n
, 
Σ

a

1

2

3

4

5

6

7

8

9

10

11

x 10
−4

Fig. 3.7. The global bivariate weight distribution in the case of 5 exper-
imental replicates.

We now move ahead with experimental predictions in the same manner as pre-

viously described. Because in this case the scattering ratio is very close to 1, we do

not include a model discrepancy formulation and generate experimental predictions

with a simple weighted average of the BMARS realizations at the uncertain inputs.
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Figures 3.8 and 3.9 show experimental predictions from the calibrated simulator and

emulator, respectively. Note that we again employ weighted means and percentiles

as the illustrative statistics.
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Fig. 3.8. Calibrated diffusion simulator predictions in the case of multi-
ple replicates.
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Fig. 3.9. Calibrated diffusion emulator predictions in the case of multiple
replicates.

The predictive distributions shown in these figures are encouraging. First, we

note very little difference between the calibrated simulator and emulator, indicating

that the emulator is in fact closely approximating the simulator, even at testing slab

widths. More importantly, however, we note that the 90% confidence intervals nearly

enclose all of the experimental observations. An interpretation of the 90% confidence

interval is that we would expect one out of every ten true responses to be outside

the bounds of the prediction interval. We enclose much more than 90% in each case.

We also note that the results from the BMARS/filtering method in the case of

experimental replicates are different and, in some sense, more successful than those

from the GPMSA model. Here, the 90% confidence interval seemed to respond to the

additional uncertainty imposed by the experimental replicates; that is, the confidence

in the experimental predictions decreased. The GPMSA algorithm, however, did not

respond to the added uncertainty
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3.5 Analysis of the Discrepancy Function Using Ensembles of BMARS Models

We now present an analysis of the discrepancy function similar to that in the

GPMSA sections. We return to the Kennedy O’Hagan formulation (see Eq. 1.1) and

propose a two step process:

1. Formulate a BMARS emulator of the simulation using available data and cali-

brate the simulator using the methods described above.

2. Using a certain percentage of the calibrated inputs, formulate a BMARS repre-

sentation of the model discrepancy function using available experimental data

and generate experimental predictions from a combination of the emulator and

BMARS model of the discrepancy function.

We will again generate a “universe” with a low scattering ratio such that there

exists a large discrepancy between the simulator and experimental results. Figure

3.10 shows the input data for this test (scattering ratio of 0.20).
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Fig. 3.10. Input data for a scattering ratio of c=0.20.

Following the two-step process, we first construct a BMARS emulator for the

diffusion simulation using slab width, diffusion coefficient, and the absorption cross-

section as inputs to the model. We then execute the same process as described

above for assigning weights to the uncertain inputs, D and Σa. At this point, we

take advantage of a knowledge of the physics and add a filter to the problem that, for

any combination of the uncertain inputs that results in a negative (and therefore non-

physical) result, overwrites the existing weight with a weight of zero. This additional

filter is not required for the case of c=0.99 because none of the simulation results

resulted in negative response functions.

The BMARS emulator was constructed with 10,000 burn-in iterations and 10,000

“converged” iterations using constant and linear splines. Figure 3.11 shows the fit
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of the emulator to the simulation results and its relation to the “experimental”

measurements:
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Fig. 3.11. Predictions made from the calibrated emulator and simulator
will require a model discrepancy function to replicate the experimental
results.

Next we filter and weigh the uncertain inputs based on the experimental predic-

tions. The global results (that is, the normalized sum of the weights assigned at each

slab width) is given in Fig. 3.12. It is interesting to compare this set of calibrated

uncertain inputs to the range of the same uncertain inputs deemed ‘most likely’ by

the GPMSA software in Fig. 2.17(b).



69

0.28 0.3 0.32 0.34 0.36 0.38

0.65

0.7

0.75

0.8

0.85

0.9

0.95
 

Diffusion Coefficient, D

 

A
b
so

rp
ti

o
n
 C

ro
ss

−
S

ec
ti

o
n
, 
Σ

a

0

0.005

0.01

0.015

Fig. 3.12. The calibrated uncertain inputs in the case of c=0.20 over all
slab widths.



70

We see that only a small band of uncertain inputs received a weight of appreciable

value and that this subset represents a very small percentage of the total input

space. To move forward in generating experimental predictions, we must choose

an appropriate subset of these uncertain inputs to use in the diffusion calculations.

Following the analysis of the previous section, we could use all of the samples in the

uncertain input space and compute a weighted average of the emulator response.

Alternatively, we could attempt to choose a subset consisting of those uncertain

inputs with weights above some threshold or some percentile of those uncertain

inputs ranked by weight.

Figure 3.13 illustrates the change in the calibrated simulator and emulator as the

number of uncertain inputs used in the calculation is increased. The plots in the

left-hand column compare the experimental response to the calibrated (weighted)

emulator responses. Following the convention used previously, the green makers

indicate training data and the red markers indicate testing data. The emulator

predictions are shown as error bars with 90% confidence intervals. The plots in the

right-hand column show a scatterplot of those uncertain input coordinates whose

global weights were in the 1st, 5th, 10th, and 50th percentiles.
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Fig. 3.13. Location and results from using different percentiles of the
weighted inputs.
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We see from the plots that the calibrated emulator never seems to take on the

shape of the experimental response as a function of slab width. This could be a

result of an inaccurate model (diffusion is poorly estimating the response) or an

inaccurate regression (BMARS is not properly modeling the response). In either

case, if the emulator is to be used in the generation of experimental predictions,

there will certainly need to be a model discrepancy function. For the purpose of

further illustrating this example, we choose the set of uncertain inputs whose global

weights are in the top 10 percentile of the samples.

Following the two-step process previously outlined, we now define a dataset de-

scribing the discrepancy function for the generation of a new BMARS emulator. The

discrepancy function depends only on the independent input, ~x, and is only explicitly

calculable at existing experimental data points. We generate the discrepancy model

training data by subtracting the weighted mean emulator prediction from the exist-

ing experimental measurements (note that we can do this for training and testing

data). Figure 3.14 illustrates the relationship between the mean emulator response,

experimental measurements, and calculated discrepancy function at the experimental

training data.
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Fig. 3.14. Training data for the BMARS discrepancy model.

Figure 3.15 shows a BMARS fit to the discrepancy function for both training and

a set of testing data. The predictions show a 90% confidence interval generated from

500 posterior samples from the MCMC chain used to generate the BMARS basis

function.
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Fig. 3.15. Predictions of the discrepancy function for a range of BMARS
sample sizes.

After generating the surrogate BMARS model for the discrepancy function, we

simply add results from the two BMARS models to generate predictions. The mean

prediction at a given slab width is simply the sum of the means from the two em-

ulators. The reported error is the quadrature sum of the standard deviation of the

emulator and discrepancy BMARS models. Figure 3.16 illustrates the experimental

predictions.
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Fig. 3.16. Experimental predictions in the case of a model discrepancy.

The expected value of the experimental predictions for both training and testing

slab widths are very accurate. The 90% confidence interval is dominated by uncer-

tainty in the emulator as opposed to uncertainty in the model for the discrepancy

function. Recall that the top 10% weighted uncertain inputs were used to generate

the weighted emulator predictions and therefore the discrepancy function model. In

the specific case of this problem, the use of these 10% includes a number of ~θ coor-

dinates with very low weights (compare Fig. 3.12 with Fig. 3.13(f)). The result of

doing so is a large increase in the predictive variance of the BMARS model (compare

Fig. 3.13(a) to Fig. 3.13(e)).

To reduce the predictive variance, we could use only the top 1% weighted un-

certain input coordinates. The resulting experimental predictions are given in Fig.

3.17:
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Fig. 3.17. Decreased predictive variance resulting from a more refined
sample of uncertain inputs.

We see a decrease in the predictive variance because the variance in the emulator

is reduced. The appropriateness of the reduction to just 1% of the uncertain inputs

will depend on the problem, the ability of the modeler to interpret the physical im-

plications of the tight restriction in ~θ space, and the total number of uncertain input

samples taken to begin with. In our case, the low dimensionality of ~θ space allowed

for fairly dense sampling. Further, the results of the calibration were validated in the

sense that the GPMSA software returned similar posterior distributions. However, in

a real-world problem of interest, this kind of reduction may be unrealistic or against

physical intuition.
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3.6 Some Conclusions After Development of the BMARS/Weighing/Filtering

Method

The previous sections outlined an extremely simple implementation of model

calibration using a weighing and filtering method. We first showed that, given a

sufficient number of simulator runs and a relatively accurate computational model

(i.e., a discrepancy function is not required), a modeler can use this filtering method

to identify a region in the uncertain input space that is more likely to lead to accu-

rate experimental predictions using the simulator alone. In this case, the BMARS

algorithm was used to fit the simulation data, and the distribution of the predictions

from the basis function was used to assign a weight to each sampled uncertain input

coordinate. These weights are then used to generate experimental predictions using

a simple weighted average of the response functions.

In our highly-scattering particle transport “universe,” the construction of the em-

ulator allowed for an accurate fit to (and thus accurate predictions of) the simulator.

Our filtering/weighting scheme identified a volume of uncertain input coordinates

near the “true” value of these inputs, and this volume was very similar to the cal-

ibrated distributions produced by the GPMSA software. Finally, we showed that

the confidence interval of experimental predictions via the calibrated simulator are

smaller than the uncalibrated simulator. In other words, by calibrating the uncertain

inputs, we are able to increase the confidence in our experimental predictions.

When we extended the highly-scattering “universe” to include 5 experimental

replicates per slab width, our BMARS emulator and filtering method responded

by identifying multiple volumes of calibrated inputs and thereby increased the 90%

predictive confidence intervals for the experimental response. This response was in

contrast to that of the GPMSA software, which did not seem to respond to the

experimental replicates without modeler action.

In the case of a less accurate model requiring a discrepancy function, we proposed

and implemented a two-step process whereby a BMARS model is first built to emulate
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the simulator. If possible, a likely volume of the uncertain inputs is identified via the

same filtering/weighting method described above. We then estimate the discrepancy

function by simply subtracting the mean emulator response at experimental slab

widths from the experimental measurement at those slab widths. This discrepancy

is then fit with another BMARS model, which can then be combined in the Kennedy

O’Hagan fashion to generate experimental predictions.

Although this problem contained only two uncertain inputs, we foresee a simple

extension to higher-dimensional problems. The low computational costs of BMARS

and most other response models does not prohibit dense sampling of the uncertain

input space. The modeler should keep in mind that, even if the costs of sampling

the response surface becomes non-negligible, it is still considerably less than the cost

of running the simulation.
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4. CONCLUSIONS AND DISCUSSION

We can make a number of conclusions regarding the application of these UQ

methodologies to our simple universe. Our experience with the GPMSA software

was a showing example of the possible consequences associated with “black-box”

usage of statistical models. Our initial unfamiliarity with the Bayesian formulation

and the Gaussian process model led to our use of default parameter values and prior

distributions, which we found were not appropriate for some perturbations of our

universe. In the end, the MMU framework facilitated added understanding of the

GPMSA methods, but we still found that the stationary GP model was not appro-

priate for our functional output. The BMARS emulator, on the other hand, tended

to interpolate our data more accurately, and we showed through a filtering method

that we could improve confidence in our experimental predictions by calibrating the

uncertain inputs.

We further tested the flexibility of the UQ methods by imposing sources of un-

certainties into our simple universe. In the case of the GMPSA algorithm, we found

that the software did not account for the addition of “experimental noise” (resulting

from experimental replicates or an imposed “measurement” error) as we expected.

This unexpected behavior facilitated an exercise of the MMU framework: we learned

how to tune the priors of the GP hyperparameters for our problem of interest and

can apply this added knowledge to our more complex problem.

In the case of BMARS, uncertainty resulting from experimental replicates was

handled more naturally by the filtering/weighting method described in this thesis.

The additional “experimental measurements” resulted in a more uniform distribu-

tion of the global weights, which translated into larger confidence intervals in the

experimental predictions. In other words, we are less confident in the most likely

distribution of the uncertain parameters; therefore, we have larger uncertainty in the

predictions made by our simulator.
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Finally, our development of a Kennedy/O’Hagan-like implementation of an em-

ulator/discrepancy model using BMARS resulted in accurate experimental predic-

tions in the case of an inaccurate simulator (that is, the diffusion approximation

to a highly-absorbing medium). We found that calibration of the uncertain inputs

in the case of an inaccurate simulator results in only a small volume of uncertain

inputs with appreciable weights. Further, the choice of uncertain inputs to use for

approximating the simulator response and generating a discrepancy function affects

the predictive variance in experimental response at new slab widths. The MMU

framework allowed us to explore these ideas and further understand how BMARS

may be applied in a larger problem.

We can also make a number of more general conclusions resulting from our first

application of MMU. First, especially in the case of GPMSA, the simplicity of the

“universe” effectively facilitated added understanding of the UQ model (which is

exactly what MMU is designed to do). Therefore we can conclude that the modeler

must carefully balance a simple, controllable universe with one that properly reflects

the complexity of the real world problem. Second, many of the statistical assump-

tions and formulations within the GPMSA and BMARS algorithms are unfamiliar

to us (a group of physicists); in fact, we concede that further optimization of the

GPMSA algorithm could certainly improve its predictive capability for our problem.

Thus, we make the strong recommendation that any modeler with limited initial

understanding of a statistical UQ formulation work very closely with an expert (per-

haps mathematician or statistician) in the methods used to drive the uncertainty

quantification. Correctly understanding, accounting for, and applying the statistical

models is a requirement for their accurate treatment of uncertainty in the system.

We can further conclude that the utility of an MMU study will be governed by the

modeler’s ability to design a universe that properly represents a real-world problem of

interest. The coupling between physics and uncertainty quantification is necessarily

problem dependent. The proper choice of manufactured reality and approximate
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model, inputs to those models, boundary conditions, sampling points, and imposed

uncertainties will facilitate the transfer of knowledge gained in an MMU study to

the real-world problem. A properly designed universe will also give the modeler a

chance to develop improvements for and exploit degrees of freedom within the UQ

methodology such that the coupling between that methodology and the physics of

interest is further enhanced.
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