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ABSTRACT 

 

  Freehand Sketch Recognition for Computer-Assisted 

Language Learning of Written East Asian Languages. (December 2010) 

  Paul Piula Taele, B.S., The University of Texas at Austin 

   Chair of Advisory Committee: Dr. Tracy Hammond 

 

One of the challenges students face in studying an East Asian (EA) language 

(e.g., Chinese, Japanese, and Korean) as a second language is mastering their selected 

language’s written component.  This is especially true for students with native fluency of 

English and deficient written fluency of another EA language.  In order to alleviate the 

steep learning curve inherent in the properties of EA languages’ complicated writing 

scripts, language instructors conventionally introduce various written techniques such as 

stroke order and direction to allow students to study writing scripts in a systematic 

fashion.  Yet, despite the advantages gained from written technique instruction, the 

physical presence of the language instructor in conventional instruction is still highly 

desirable during the learning process; not only does it allow instructors to offer valuable 

real-time critique and feedback interaction on students’ writings, but it also allows 

instructors to correct students’ bad writing habits that would impede mastery of the 

written language if not caught early in the learning process. 

The current generation of computer-assisted language learning (CALL) 

applications specific to written EA languages have therefore strived to incorporate 

writing-capable modalities in order to allow students to emulate their studies outside the 
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classroom setting.  Several factors such as constrained writing styles, and weak feedback 

and assessment capabilities limit these existing applications and their employed 

techniques from closely mimicking the benefits that language instructors continue to 

offer.  In this thesis, I describe my geometric-based sketch recognition approach to 

several writing scripts in the EA languages while addressing the issues that plague 

existing CALL applications and the handwriting recognition techniques that they utilize.  

The approach takes advantage of A Language to Describe, Display, and Editing in 

Sketch Recognition (LADDER) framework to provide users with valuable feedback and 

assessment that not only recognizes the visual correctness of students’ written EA 

Language writings, but also critiques the technical correctness of their stroke order and 

direction.  Furthermore, my approach provides recognition independent of writing style 

that allows students to learn with natural writing through size- and amount-independence, 

thus bridging the gap between beginner applications that only recognize single-square 

input and expert tools that lack written technique critique. 
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1. INTRODUCTION1 
 

It should not come as a surprise that the English language differs much more 

greatly from EA languages such as Chinese (e.g., Mandarin, Cantonese), Japanese, and 

Korean than from other European languages such as Spanish, French, and German.  In 

fact, this very sentiment is shared by the United States’ federal government, which 

reports that for native English users learning a foreign language, it takes up to three 

times longer to reach proficiency for an EA language compared to a European language 

[1].  This holds especially true for the written component of EA languages, where the 

reading and writing of the more complicated writing scripts is “a labor-intensive 

endeavor” that requires that language students with native English fluency expend 

significant amounts of “time, patience, discipline and perseverance” to achieve native 

fluency [1]. 

 In order to help students overcome the difficulties in studying written EA 

languages, language programs traditionally introduce various written techniques in the 

form of stroke order and direction as a way to ease the learning process and to provide a 

more systematic way for students to master their language of study’s associated writing 

scripts [2, 3, 4, 5].  Furthermore, written technique instruction is greatly stressed early on 

in the learning process for these writing scripts in order to discourage the development 

of bad writing habits [6]; without correcting these bad writing habits early on, not only 

can they become more difficult to correct later in their language studies, but they can 

also impede the pace of their studies in the long term.  Despite the advantages gained 

                                                             

This thesis follows the style of IEEE Transactions on Visualization and Computer 

Graphics. 
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through teaching written EA languages through written technique instruction, a limiting 

factor in how it is presently taught is that it requires that teachers actively participate in 

monitoring the students’ writing in order to provide written technique assessment; 

simply evaluating the final result of students’ writings in the course greatly restricts 

language instructors to evaluating the correctness of the writings’ visual structure (i.e., 

appearance). 

This thesis describes a freehand sketch recognition approach for use in computer-

assisted language learning (CALL) applications specific to teaching written EA 

languages.  The approach enables CALL applications to allow students to obtain the 

kind of feedback on their visual structure and written technique that human language 

instructors naturally provide, therefore not only allowing students to emulate the type of 

writing study practices found in EA language courses, but also freeing instructors to 

devote additional time on other equally important aspects of the languages of study.  

Furthermore, the approach described in this thesis is not constrained in terms of size and 

amount; that is, students’ are not required to adhere to either writing in a restricted space 

or using only single symbol-input for evaluation.  As a result, the primary contributions 

of this thesis are: 

• Automated feedback and assessment of students’ visual structure and written 

technique: students can receive automated feedback and assessment on their 

visual structure and written technique of their handwriting for written EA 

language scripts, much like what human language instructors already offer; 
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• Freehand writing environment: students can maintain a natural freehand writing 

environment that allows them to write multiple symbols without restriction on 

the size of those symbols, much like how writing is done naturally done on paper. 
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2. TRADITIONAL INSTRUCTIONAL METHODS 

 

 In learning written EA languages, practice through writing the symbols 

associated with the language of study is an essential condition.  Furthermore, not only is 

writing practice in itself a prerequisite in the learning process, but it is also of vital 

importance for other reasons: through writing practice of their language of study, 

students are able to “improve the aesthetic appearance of their writing and acquire a 

‘natural feel’ for the flow” of the symbols in those scripts “that cannot be achieved 

simply by remembering them” [7]. For this reason, the language curriculum guides 

students to initially hone their skills in writing the symbols using grid sheets [2, 3, 5, 8, 

9], which are sheets of paper typically ruled into squares of an inch or so on each side for 

students to practice writing the individual symbols [9].  In addition to grid sheets 

permitting students to rehearse their writing of the symbols in an orderly fashion, they 

can also provide students with an opportunity to perfect the proportions of the symbols 

in a model square space before moving on to writing in a more natural writing 

environment.  This is because the inherent written properties of EA languages demand 

that the symbols, regardless of their simplicity or complexity, should be written so that 

they occupy a consistent amount of square space [9]. 

 

2.1 Difficulties in Learning the Written Component 

 

 Although the act of writing plays an integral role in students learning the symbols 

of their language of study, merely having language students brute force their way 

through repetitious writing in order to master the written component is unrealistic within 
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a typical American classroom setting; unlike EA learners who spend countless hours 

practicing the writing for primary language acquisition as their first language, students 

with a native English background and a lack of mastery in an EA language distinct from 

their language of study do not have such a luxury [1].  Furthermore, solely relying on 

instruction of the written component through rote memorization is insufficient, as 

language instructors of EA languages have come to understand that requiring students to 

memorize excessive amounts of symbols in order to achieve written fluency is an 

unreasonable expectation [1].  In fact, the primary obstacles that challenge EA language 

students with native English fluency in learning the written component – especially for 

the more complex writing scripts of EA languages – include: 

• vast symbol sets that can number in the thousands, 

• complicated visual structures involving a numerous range of strokes that can 

exceed thirty, 

• a high similarity between symbols within the writing script that can cause “shape 

collisions” during the memorization process, and 

• a wide variation in visual appearance due to divergent writing styles [10]. 

It is because of the reasons above which language students of EA languages must 

experience a steep learning curve and make a long-term investment in their language of 

study in order to achieve sufficient reading and writing fluency.  Not only is learning 

how to write these symbols considered a huge hurdle for many students, but it is one of 

the most difficult tasks in learning EA languages in general [4].  The problem is further 
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compounded by the fact that students who study the more complex writing scripts must 

have working knowledge of no less than two thousand “graphic symbols” (e.g., Chinese 

characters) before they can effectively communicate with native writers in those 

languages [11]. 

 

2.2 Stroke Order and Direction Instruction 

 

 With the complexities inherent in the written component of EA languages, one 

technique that has proven effective to second language users (e.g., American students) – 

as well as being commonly taught to first language users (e.g., Chinese students) [6] – is 

written technique of the stroke order and direction (SOD) kind.  Historically, SOD 

instruction places special emphasis in teaching the symbols by the written stroke 

according to a particular sequence [3, 4].  A subset of the major benefits to students that 

are exposed to SOD instruction includes the following: 

• renders the symbols to be drawn in the optimal number of strokes with no wasted 

movement [3] 

• helps keep the symbols written uniform in size [3] 

• ensures that “muscle memory” is developed for writing the symbols accurately [4] 

• allows to be used as one of several alternatives to reference the symbols in 

dictionaries [12] 

Moreover, certain elements within symbols (e.g., radicals) of the more complex writing 

scripts in EA languages, which are instrumental in building up those symbols, are 



7 

 

written first; students are more likely to end up with nicely shaped symbols following 

the correct stroke order [3]. 

 Due to the importance of written technique instruction, instructors greatly stress 

the practice early to their students not only so that they develop the “muscle memory” 

needed to effectively write the symbols [4], but to also discourage the development of 

bad learning habits that impede the pace of the learning process [6].  Major 

consequences of deviating from the correct written technique not only includes students 

writing the symbols with an altered shape [3], but also introduces the more devastating 

scenario of deviations occurring in students’ writings for the simpler symbols in the 

early stages of learning, where errors would then propagate to the more complex 

symbols that incorporate those simpler elements [6].  Therefore, there is a strong 

motivation for instructors to employ written technique instruction in EA language 

programs early in the process, so that bad writing habits that may hinder effective 

memorization may be eliminated. 

 

2.3 Limitations of Traditional Instruction for the Written Component 

 

 The current application of written technique instruction dominantly comes in the 

form of paper exercises, which is supplied in supplemental workbooks and related 

formats for novice-level EA language textbooks.  This form explicitly teaches written 

technique by displaying to students an example symbol, whose strokes are then 

numbered in the order in which the strokes should be written [4].  Although workbooks 

are effective in allowing students to physically perform actual writing during the 
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learning process, these tools alone are only effective to instructors in terms of critiquing 

the visual structure of students’ writing; determining correctness of the written technique 

is not as straightforward without direct observation.  One obvious reason is that 

instructors would evaluate the students’ writings on paper, which is a static medium that 

does not provide dynamic information like the strokes’ temporal information to 

explicitly evaluate for written technique correction [13, 14].  Teachers could indirectly 

determine written technique correctness based on the consequences of incorrect SOD, 

such as incorrect proportions [3], but instructors cannot respond with absolute certainty 

whether such consequences are the result of incorrect written technique, or if they are 

instead the result of incorrect visual structure independent of written technique.  This 

issue can be resolved with the aid of instructors physically monitoring students’ writing, 

but this solution itself comes with additional costs: not only is such an assessment time-

consuming, but it is also unrealistic to execute in the classroom setting as the number of 

students increase [15, 16]. 
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3. RELATED TECHNIQUES AND SYSTEMS 

 

Given the limitations of paper-based workbooks for SOD instruction, intelligent 

user interfaces that use pattern recognition techniques specific to written EA languages 

provides a viable direction.  In fact, pattern recognition algorithms for recognizing 

handwritten EA languages have not only existed for several decades [17], but have also 

been used in systems for the instruction of written EA languages [18].  These recognition 

systems in general have historically been distinguished into two different classes [19]: 

• Online systems. Handwriting data is captured during the writing process, which 

makes available the information on the ordering of the strokes. 

• Offline Systems. Recognition takes place on a static image captured once the 

writing process is over. 

Of the two recognition system classes, online recognition is the more appealing of the 

two because of its ability to retain the temporal information of the strokes that could 

potentially be used to assess the correctness of students’ SOD.  In addition, two of the 

most popular conventional techniques for handwriting recognition in domains such as 

EA languages are hidden Markov models and neural networks [17, 19]. While both 

approaches are inherently distinct, online EA language handwriting recognition systems 

that employ either of these techniques can achieve high accuracy [17].  Both techniques 

are introduced below with explanations of their limitations in written EA language 

instruction. 
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3.1 Neural Networks 

 

Some of the advantages of systems utilizing neural networks (NNs) for 

handwriting recognition of EA languages include very high recognition rates while 

maintaining low false recognition rates [20], the ability to support a wide range of 

writing styles [21], and favorable adaptability to any Chinese character feature [20].  In 

fact, NNs serve as the backbone for handwriting recognizers such as Input Method 

Editors (IMEs) for EA language in the latest versions of Microsoft’s Windows operating 

system, whose implementation functions similarly to other NN implementations in that 

recognition is based on various features from users’ digital handwritten input [21].  

These advantages are especially appealing to the recognition systems’ target users whom 

are native or expert writers of these EA languages, since accuracy rates do not suffer 

when, for example, users write symbols with an alternative SOD or with a non-standard 

number of strokes. 

The strengths of NNs stem from their inherent optical character structure, which 

recognizes handwriting solely based on their visual structure [20]; in other words, the 

timing and ordering of the points from the digital strokes are disregarded since these 

techniques rely on some form of template-matching. From a pedagogical perspective, 

these strengths become weaknesses for assessing the correctness of students’ written 

technique for their handwritten EA language symbols, since the information discarded 

from NNs are the very information used to allow for the assessment.  This means that 

systems employing NNs will have difficulty recognizing whether a students’ 

handwritten input whose visual structure is correct may or may not also have correct 
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written technique, a situation similarly faced by language instructors whom are asked to 

provide written technique assessment based solely on completed writings. 

 

3.2 Hidden Markov Models 

 

 Systems that utilize hidden Markov models (HMMs) differ from their NN-based 

counterparts in that HMM-based systems take into account how users write in the 

recognition process.  While HMMs do not perform as well to NNs when similar features 

are applied [19], HMM-based systems still produce high recognition rates [17] and are 

advantageous in that they can be compacted for use in smaller computers such as mobile 

devices [22].  The general steps that HMM-based systems use to classify the handwritten 

EA language symbols are as follows [17]: 

1) Sample the points from the handwritten data. 

2) Extract the features or segment the lines from the sampled points. 

3) Codify the strokes directly, such as providing indexing labels. 

4) Assign probabilities to the strokes, much like how HMMs are typically employed. 

5) Determine how those features or lines interrelate. 

6) Determine the hierarchical structure (e.g., composition of simpler subcomponents 

of symbols, if any). 

The main criticism of recognition systems that employ HMMs specifically for 

written technique instruction is that the SOD information extracted from the handwritten 

data is used primarily to aid in the handwriting recognition process.  CALL applications 
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for written EA languages that rely solely on an HMM-based implementation have the 

significant consequence of not being able to provide feedback that can differentiate 

between handwritten input that is visually correct but technically (i.e., in terms of SOD) 

incorrect, and handwritten input that is both visually and technically correct.  

Furthermore, HMMs by design require a different model for each possible set of SODs 

that students may feasibly write.  Otherwise, HMMs will misclassify some students’ 

handwritten input that has unaccounted stroke order or direction possibilities, since these 

possibilities are assigned extremely low probabilities in the recognition process by 

default. 

 

3.3 Previous Works in Computer-Assisted Language Learning 

 

 Existing computer-assisted language learning (CALL) tools aim to improve the 

language curriculum by augmenting conventional classroom practices with automated 

help, and one of the more established categories of written EA language-based CALL 

tools caters specifically to the Chinese character writing script [17].  Despite the script’s 

name, Chinese characters are not only used entirely in written Chinese (i.e., the hanzi 

script), but they also sees significant use in written Japanese (i.e., the kanji script) and 

limited use in written Korean (i.e., the hanja script) [12].  Moreover, this particular script 

has the properties of being complex and having highly variable visual structure in 

comparison to other EA writing scripts, while also being conventionally taught using 

SOD instruction.  Due to properties such as these, CALL systems specific to the Chinese 

character writing script share very similar properties to those specific to the other EA 
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writing scripts.  In other words, CALL systems for the Chinese character writing script 

can generalize to and are representative of CALL systems for the other EA writing 

scripts without much loss of generality. 

 Development of CALL systems for written Chinese characters have existed since 

the early part of the 1990s [23], and some CALL systems such as Online Chinese 

Flashcards and FlashcardsExchange provide digital versions of traditional flash cards [4].  

Other CALL systems such as eStroke, Chinese Writing Master, and New Practical 

Chinese Reader go a step further from their paper-based counterparts by animating the 

model SOD of the characters [4]. 

While the above CALL systems aim to provide digital extensions of static paper-

based tools, these CALL systems lack a sketching modality that incorporates artificial 

intelligence-based feedback in the learning process [11, 24].  Other types of “pen-less” 

systems utilize alternative audio or visual modalities that involve prompting the user the 

repeat or identify characters on the computer screen.  While these systems expand on 

“flashcard”-based CALL systems that merely translate paper-based information into a 

digital format [14], the absence of a sketching modality contrasts with the explicit 

writing that is conventionally taught and used in the language curriculum. 

 Since conventional pattern techniques (e.g., HMMs, NNs) for recognizing 

written EA languages (e.g., Chinese) are limited in their ability to simultaneously assess 

both the visual structure and written technique of students’ written characters, 

researchers have devised alternative approaches to overcome these restrictions.  One of 

the earliest research works from [25], and later improved upon in [26], utilized two 
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separate techniques for assessing the SOD of the prompted characters.  Assessment of 

SOD correctness first involved defining a stroke as the endpoints of the lines that make 

up a stroke, and then critiquing the correctness of the sequence of spatial positions 

relative to the other strokes in the character.  Assessment of stroke direction correctness, 

in comparison, first determined the direction of the lines in each stroke based on the 

temporal sequence of the endpoints, assigned them a numerical code that corresponds to 

one of the eight compass directions, and then analyzed the correctness of the sequence.  

This particular system was limited in that users needed to trace over the outline of the 

characters.  In other words, the correctness of the visual structure in the students’ 

handwriting is never assessed since no actual handwriting recognition occurs. 

 Subsequent research works from Chen [15, 16] provided more freedom in how 

users write the characters.  Their method in assessing SOD involved grouping all 

possible lines into six different slopes, and then critiquing the SOD based on the 

temporal sequence written by the user.  This work advances the previous research work 

from [25, 26] in that handwriting recognition exists, but restrictions still exist in the 

handling of the visual structure assessment.  The system assumed the entire drawing area 

of the character was dedicated to one character, and the correctness of the character was 

based on all the features within this coordinate space.  While this is sufficient for novice-

level courses that introduce characters and symbols of EA writing scripts, the inabilities 

of this research to handle size independence and multiple characters and symbols mean 

that assessment cannot be handled in more natural writing situations like for writing 

phrases or sentences in free-sketch writing areas similar to paper. 
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 Another recent work by Qi [27] proposed a solution to the size independence 

issue by first defining a bounding box for handwritten input of characters, then splitting 

the input into a three-by-three grid, and then comparing the features from the pixels in 

those grid blocks to possible candidate characters, splitting the input into a three-by-

three grid, and then comparing the features from the pixels in those grid blocks to 

possible candidate characters.  While the size independence issue was addressed, the 

system assumed that the strokes originated from a single character; the paper also did not 

provide information on how it could handle recognition of multiple characters within the 

same writing space.  Another concern was that the system always made the assumption 

that the written input lied within a quadrate block.  This would lead to the consequence 

of failing to account for single-line symbols that exist in a number of EA writing scripts, 

which plays a much more significant role when it is part of grouped symbols (e.g., 

vocabulary phrase, phonetic pronunciation) that students could feasibly be prompted to 

provide.  An additional concern with the approach is that the written technique 

assessment is handled separately in a separate system, which can possibly lead to 

incompatible scenarios where the written technique assessment from the separate system 

outputs the input as being correct for visually incorrect characters. 

One of the latest pen-enabled CALL systems for teaching the characters with 

written technique assessment comes from Tian, et al. [28].  In order to teach students the 

correct SOD, this particular system uses the $1 recognizer, which is an easy-to-

implement algorithm for recognizing user-defined sketch gestures [29].  Due to the $1 

recognizer’s inherent template-matching nature, recognition is handled by having 
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students’ strokes matched to the model characters due a distance measurement.  While 

the system provides written technique assessment, the amount of assessment that is 

provided is imprecise; that is, the correctness of the SOD is determined by a threshold of 

the number of incorrect strokes instead of whether the SOD is exactly correct or not.  

The consequence is that if a student provides an incorrect SOD, the system will still 

consider the character to be correct as long as the number of incorrect strokes is below 

the threshold.  In terms of the visual structure, a direct implementation of the $1 

recognizer would be problematic for matching the length of strokes to determine correct 

proportionality, particularly for short strokes [29].  The system addresses this issue by 

weighting the length of the strokes, but its dependence on the $1 recognizer limits 

assessment to single-characters within a constrained box. 

Alternative approaches provided by the CALL systems Hashigo [30] and 

LAMPS [31] for the EA writing scripts of Japanese kanji and Mandarin Phonetic 

Symbols I, respectively, also similarly assess both the visual structure and written 

technique of students’ writings.  Both Hashgio and LAMPS adapt free-sketch 

recognition techniques capable of recognizing unconstrained writing with reasonable 

accuracy, while also addressing the lingering issues of the previously mentioned prior 

research work and applications of multi-symbol input and input size independence.  The 

research work from Hashigo and LAMPS serve as the basis of this thesis, and the 

content detailed in this thesis generalizes and elaborates further from the research work 

of those two systems. 
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3.4 Corner-Finding Algorithms 

 

 The core ideas behind constructing a visual structure and written technique 

assessment-capable system for written EA language instruction derive from the sketch 

recognition literature, specifically research that focuses on geometric-based recognition.  

One of two contributions from geometric-based recognition that is highly relevant for 

developing such a capable system and is heavily utilized for the methodology is corner-

finding algorithms (i.e., Sezgin and PaleoSketch). 

A valuable technique in the methodology is the use of corner-finding algorithms 

on captured data that digitally represents the written input by the users (e.g., students). 

Prior to executing these algorithms, raw data is first collected from users on pen-capable 

computers (e.g., Tablet PCs) through a stylus that is used to input their writing; the data 

is then stored in memory and later represented back to users as a given set of pixels.  By 

treating this set of pixels as points in Cartesian space, the advantages of employing the 

different corner-finding algorithms can be exploited for processing these sequence of 

points and later approximated back as basic geometric primitive shapes (e.g., lines, 

curves, arcs, ellipses) [32, 33].  One assumption that is taken advantage of is visually 

approximating the strokes as a set of primitives.  This particular assumption allows for 

the exploitation of stroke processing algorithms that are capable of fragmenting the 

collected pixel points into elementary geometric shapes, which is later used for written 

recognition and subsequent feedback and assessment.  Based on observations of students’ 

writing habits being more careful during the learning process, this assumption generally 

holds well for most EA writing scripts. 
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 To aid in the task of processing strokes into their representative geometric 

primitives, the corner-finding capabilities from the Sezgin [33] and PaleoSketch [32] 

algorithms were selected for their strengths in fragmenting the raw strokes into 

recognized geometric primitives.  Since a stroke is defined in this thesis as being a 

temporal sequence of points collected on a computer, from the pen-down motion on the 

writing surface to the pen-up motion, the key idea shared by these two corner-finding 

algorithms is that the corresponding corners detected in a stroke serve as the endpoints 

of recognized geometric primitives. 

 Both the Sezgin and the PaleoSketch algorithms were utilized in order to take 

advantage of their respective strengths.  The Sezgin algorithm’s ability to detect corners 

for lines from strokes stems from the observation that people slow down during the 

formation of corners in their writing.  Therefore, the algorithm relies on curvature and 

velocity data from the direction of the pen writing in order to make its selection of the 

stroke’s corners.  Alternatively, the PaleoSketch algorithm’s ability to detect corners 

specifically for other geometric shapes (e.g., arcs, ellipses) uses the same concepts of 

computing the direction, velocity, curvature, and corner values from the Sezgin 

algorithm [32].  The PaleoSketch algorithm further expands on the Sezgin algorithm by 

calculating the normalized distance between direction extremes (NDDE) and direction 

change ratio (DCR), two additional features that have proven very useful in the 

algorithm’s ability to recognize a larger set of geometric shapes. 

The importance of processing the strokes from their explicit temporal sequence 

of points into their geometric primitives is stressed in the research work of this thesis, 
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because it enables implementations that employ this methodology to later achieve 

handwritten recognition of those geometric primitives from the handwritten input and 

independent of the size of the writing space.  The result is that recognition occurs in a 

writing environment that more closely emulates writing naturally done on paper.  With 

the geometric primitives recognized, the next important step is to recognize the 

interactions between those primitives.  These interactions between the constraints help 

make it possible for the written input to be visually categorized to symbols from EA 

writing scripts.  The tool we use to keep track of the primitives and their interactions are 

handled using a sketching language called A Language to Describe, Display, and 

Editing in Sketch Recognition (LADDER), which is further elaborated in the next 

section. 

 

3.5 LADDER Sketching Language 

 

 Once the strokes for the users’ writing are processed into their geometric 

primitives, the groupings of those primitives are categorized using pattern recognition 

techniques.  In order to provide this pattern recognition with reasonable accuracy, the 

LADDER sketching language [34] was employed to fulfill the methodology’s sketch 

recognition needs.  Since LADDER is a general purpose sketching language for 

describing how sketch diagrams for various domains are drawn, displayed, and edited, 

this second contribution of geometric-based recognition through the form of a sketching 

language was adopted to recognize symbols from the various EA writing scripts. 
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 What differentiates the pattern recognition techniques on users’ handwriting with 

the LADDER language from traditional pattern recognition techniques (e.g., neural 

networks, hidden Markov models) for the domain of written EA languages is the 

emphasis on recognizing the writing.  Specifically, the methodology focuses more on 

recognizing users’ handwriting based on whether it fulfills a set of requirements.  Not 

only does this free systems that implement this methodology from using training data 

that restricts the recognition to existing training data from model users, but it is also 

similar to how language teachers determine whether students succeeded in writing the 

symbols for a particular EA writing script correctly by verifying if all the necessary 

visual structure requirements for those symbols have been met. 

 It should be noted that the methodology contrasts sharply with how alternative 

pattern recognition techniques are handled for recognizing users’ handwriting from a 

pedagogical perspective.  A major disadvantage of these alternative systems involves 

instances where a student may write a particular symbol visually incorrect to a slight 

degree (e.g., missing or extra strokes, sloppiness), yet still obtain a response from these 

systems that the input is correct (i.e., the system gives a false positive on this slightly 

incorrect input).  This is one of the consequences of traditional pattern recognition 

techniques which inherently recognize written input based on the closest match in the 

training set.  This greater leeway in recognition may be appropriate for native writers of 

specific EA writing scripts, since these writers would prefer writing symbols with the 

convenience of higher recognition over the perceived hassle of pedagogical-based 

feedback on a domain that they have already mastered.  For students learning symbols 
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for their target EA writing script of study, this extra leeway in recognition is less suitable, 

since it would deteriorate students’ learning of the writing script due to the system not 

correcting those slight mistakes. 

 The actual recognition of students’ handwritten symbols using LADDER 

involves the use of shape descriptions, which are structures primarily containing 

geometric information for categorizing the handwritten input using the sketching 

language’s syntax.  The shape descriptions that are constructed in LADDER can be used 

to describe a wide variety of shapes such as the symbols from the various EA writing 

scripts.  These shape descriptions consist of multiple specifications, and how these 

specifications are used in recognizing the visual structure and written technique of 

students’ handwritten symbols in EA writing scripts are elaborated next. 
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4. OVERVIEW OF VISUAL STRUCTURE ASSESSMENT 

 

Visual structure correctness of language students’ handwritten symbols in an EA 

writing script is one important criterion that is necessary for mastering their target 

language of study.  Existing CALL systems that employ pen-based input conventionally 

support automated assessment capabilities of the visual structure, but their support is 

largely limited to single input within a fixed writing space environment.  Expanding this 

automated assessment to handle the type of writing that is naturally done on paper 

allows students to receive the same kind of valuable feedback without sacrificing writing 

environment realism.  On the other hand, the consequence is that supporting this broader 

form of visual structure assessment creates additional challenges, since recognition not 

only includes classifying what the symbol is, but also includes determining which 

strokes belong to what symbol.  In other words, the challenges for this broader form of 

visual structure assessment include existing and newer challenges: 

1) Classification.  Recognizing what symbol was written. 

2) Grouping.  Recognizing which strokes correspond to which symbol. 

3) Size independence.  Handling size variations of written symbols. 

In order to expand visual structure assessment to include the kind of free-sketch 

input found in real world writing, the methodology adapts the LADDER sketching 

language for use in classifying students’ symbols in the domain of written EA languages.  

As a sketching language, LADDER is capable of handling multiple domains and the 

wide array of shapes contained in them through the use of structured geometric 
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information called shape descriptions.  Yet while the sketching language has 

successfully been used for recognizing shapes in engineering and visual design domains, 

LADDER was designed for recognizing shapes with specific properties in mind (Table 

1). 

The following subsections will first briefly introduce the relevant aspects of the 

LADDER sketching language to the methodology, and also describe how the 

methodology adapted LADDER to employ geometric-based recognition on written EA 

language symbols.  Afterwards, the approach for construction shape descriptions specific 

to recognizing handwritten symbols of written EA languages will be presented. 

Table 1. Ideal shapes for the LADDER sketching language and the challenges for written 

symbols in EA languages. 

 

Property Explanation Challenge 

Describable in a fixed 

graphical grammar. 

Shapes are recognized, 

finitely enumerable 

geometric information.  In 

other words, if a shape can 

be rigidly described 

geometrically, then it is 

possible for LADDER to 

recognize it. 

 

 

 

 

LADDER was designed for 

shape recognition, which is 

distinct from the traditional 

handwriting recognition 

techniques employed on 

handwritten EA symbols. 
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Table 1 (cont.). Ideal shapes for the LADDER sketching language and the 

challenges for written symbols in EA languages. 

 

Property Explanation Challenge 

Solely composed of 

primitive constraints. 

Shapes must either be a 

primitive geometric shape 

or a combination of them.  

If a shape or a particular 

part of it contains a non-

primitive constraint, then it 

is not included in the shape 

description. 

Some symbols in EA 

writing scripts are 

composed of components 

that may not easily be 

described geometrically.  

These parts may require 

that they be approximated 

as geometric primitives, 

possibly at the sacrifice of 

accuracy. 

Few curves or trivial 

curves details. 

Curves in general are much 

more difficult to describe 

geometrically, since they 

contain much more 

variations.  Incorporating 

the necessary geometric 

information to capture this 

variety would greatly 

complicate constructing 

shape definitions in 

LADDER. 

Some scripts in written EA 

languages consist of 

symbols that contain non-

trivial curves.  Symbols 

with these curves can exist 

in the same stroke as non-

curves, which complicate 

the task for corner-finding 

algorithms. 

Much regularity and few 

details. 

Irregular shapes and shapes 

with numerous details 

become problematic with 

LADDER since this 

expands both the length and 

the logic of shape 

descriptions.  Consequences 

include lengthier times to 

debug shape descriptions 

and increased recognition 

running time to check if 

constraints have been 

fulfilled. 

Symbols in some written 

EA scripts are constructed 

in a hierarchy, which is a 

feature supported in 

LADDER.  For the more 

complicated symbols, 

which may consist of quite 

a number of details (e.g., 

many strokes) and much 

irregularity (e.g., hierarchy 

of several layers), this may 

cause non-trivial running 

time issues. 
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4.1 Relevant LADDER Specifications 

 

The structured geometric information that is shape descriptions (i.e., for 

LADDER to reference shapes from a wide array of domains) is broken up into multiple 

parts.  The parts that are used as the building blocks of shape descriptions are as follows: 

components, constraints, aliases, editing, and display.  Of the five specification parts, 

the first three (i.e., components, constraints, and aliases) play a significant role for the 

written structure assessment, while the last one (i.e., display) aids in providing visual 

feedback to the student.  The following subsections summarize their purpose in 

LADDER and elaborate on how they are adapted in the methodology for recognizing 

symbols in written EA languages. 

 

4.2 Components 

 

The first part of the shape descriptions is the components section, which consists 

of a list of elements that a shape is built from.  Components serve as the building blocks 

of shapes and are analogous to ingredients in a food recipe.  Furthermore, components 

must first be defined before defining the rest of the specifications of the shape 

descriptions, since the rest of the shape descriptions are dependent on knowing the 

components to constrain on.  These components can be categorized into three different 

categories (Figure 1): 

• Primitive geometric components (i.e., primitives).  By definition, these types 

of components are the most fundamental shapes for any domain.  In other words, 

primitives cannot be further broken down to smaller components, since they 
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serve as the base components for shapes in the domain.  The primitives relevant 

to the symbols in written EA languages for this methodology are: lines, curves, 

and ellipses (Figure 2.a). 

• Simple components.  These components are related to primitives in that they are 

a combination of primitives (Figure 2.b).  In other words, a simple component is 

entirely built of only primitive parts that are not already themselves simple 

components.  If primitives are the building blocks of simple components, then 

these components are the building blocks of the next category of components 

called compound components. 

• Compound components.  These components differ from simple components in 

that they are a combination of smaller components; they can either be built from 

simple components, simpler compound components, or a mixture of the two 

(Figure 2.c).  Compound components relevant in written EA languages for this 

methodology include but are not limited to: symbols from EA writing scripts (e.g., 

Chinese characters), radicals (i.e., subcomponents of Chinese characters), and 

other subparts of written EA language symbols. 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

 

Figure 1. The three primitive geometric components used in the methodology for written 

EA languages: (a) lines, (b) curves, and (c) ellipses. 

  

(a) 

 
(b) 

 
(c) 

 

Figure 2. Examples of the utilized geometric components: (a) primitives, (b) simple 

components, and (c) compound components. 
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The visual structures of the different symbols in the various writing scripts of EA 

languages are diverse in nature, and the question that needed to be addressed for the 

methodology was whether the selected three primitives are sufficient to capture these 

visual structures while retaining reasonable recognition rates.  After empirical 

observations, the following conclusions were derived based on the symbols that are 

commonly taught in introductory EA language classes: 

• Many strokes in written EA language symbols can be sufficiently 

approximated with line primitives.  One of the techniques used in HMMs for 

recognizing written EA language symbols, especially for Chinese characters, is 

to approximate them as a collection of lines.  This strategy is adapted for the 

geometric-based methodology discussed in this thesis for symbols that possess a 

dominantly line-based visual structure. 

• Curves with large degree of “bending” are approximated as curve 

primitives. Strokes that visually resemble curves pose a challenge compared to 

lines, since curves present much more variety and are geometrically more 

complex to define.  Due to this, curves that have a high degree of curvature and 

cannot be reliably recognized as a sequence of line primitives are instead treated 

as curve primitives. 

• The circular subparts of symbols are treated as ellipse primitives. Much like 

how circles are treated as special cases of ellipses in geometry, sketched circles 

that make up a subpart of certain written EA language symbols are recognized as 

ellipse primitives. 
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In addition to listing the components in the shape description for a particular 

written symbol, one can also assign unique labels for these symbols, much like how 

variables can be assigned names in conventional programming languages.  For this 

methodology, special care is taken to how the components are labeled in providing a 

systematic naming scheme.  This becomes more relevant for the alias specification, but 

in the mean time, the initial naming scheme for the following components is as follows: 

• Line components. Labels for lines are given based on both orientation and 

relative location within the symbol.  For example, if there exist a horizontal line 

located on the left side of a multi-stroke symbol, then that line is labeled as 

leftVertLine. 

• Curve components.  Labels for lines are given based on relative location within 

the symbol.  If the curve within the symbol is unambiguous (e.g., there is only 

one curve within the symbol), then it is labeled simply as curve. 

• Ellipse components.  Similar to curves, labels for ellipses are given based on 

relative location within the symbol, and are similarly labeled simply as ellipse if 

the primitive component is unambiguous within the symbol. 

• Simple/Compound shape components. Labels for single and compound shapes 

(i.e, the written EA language symbols) are given based on one of three naming 

schemes: 

o Enumerated name. If a particular symbol is part of a list of symbols that 

are being taught or tested on, then the symbol is assigned an enumeration 
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that matches the one given in the corresponding language textbook that 

contains the symbol. 

o English translation. If the symbol is not given an enumerated symbol 

due to not fulfilling the previous conditions for one (e.g., it is an unnamed 

subcomponent, it is a review symbol from a previous symbol), then it is 

labeled by its English translation. 

o Romanization equivalent. Given the nature of EA languages, there 

might not be a simple direct translation of a symbol (e.g., it is used in a 

grammatical structure, it has a complicated translation).  In this case, it is 

labeled by its Romanization equivalent. 

 

4.3 Constraints 

 

Following components is the second specification called constraints, which is 

defined as the geometric relationships between the components.  Resorting to the food 

recipe analogy once again, if components serve as the ingredients, then constraints are 

the cooking instructions.  In other words, after the components are checked in the 

sketched input to determine if they exist, the constraints are then checked for the 

correctness of their relationship behavior.  These kinds of relationships between the 

components can either be unary, binary, or ternary constraints. 

The LADDER sketching language already includes a library of constraints for 

use in shape descriptions to recognize written input from a variety of domains.  Of these 

existing constraints, a subset of those constraints were found to be highly useful for 
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creating shape descriptions specific to recognizing written East Asian language symbols.  

These available LADDER constraints that were employed are grouped into the following 

categories and described in Table 2 through Table 7. 

Table 2. Orientation Constraints: checks whether a line is a slope or an anti-diagonal; they 

are always unary.  E.g., checks if a particular line has a positive slope. 

 

Table 3. Point Relationship Constraints: Compares the center, endpoint, or bounding 

position of two shapes.  E.g., checks if the center of one line is left of the center of another 

line. 
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Table 4. Position Constraints: Compares the position of two shapes relative to each other.  

E.g., checks if a particular line is left of a particular circle. 
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Table 5. Proximity Constraints: Checks for the closeness proximity of one shape to another 

by some relative threshold value.  E.g., checks if a particular shape is near another 

particular shape. 

 
 

 
Table 6. Length Constraints: Compares the length of two lines relative to each other.  E.g., 

checks if one line is longer than another line. 

 
 

 
Table 7. Logical Constraint: Involves negating a constraint or operating disjunction on two 

constraints.  By default, all constraints in LADDER are mutually conjunctive.  E.g., checks 

if a line does not have a positive slope. 
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4.4 Aliases 

 

 The third specification is aliases, which is conventionally used in LADDER to 

simplify other elements in the description.  As a feature in LADDER, aliases provide a 

mechanism to assign additional alternate labels to existing component names.  One of 

the concrete benefits of using aliases is their ability to provide more intuitive names to 

existing components or the subparts (e.g., inner components, points) within those 

components.  In regard to this methodology, aliases are given to primitive components 

(i.e., lines, curves, and ellipses) based on their stroke order enumeration, and optionally 

given to non-primitive components based on naming schemes that were not initially used 

in the components specification of the shape description (Table 8). 

Table 8. Comparisons between naming schemes for original labels and aliases. 

Component Type 
Original Label Naming 

Scheme 
Alias Naming Scheme 

Line 
Relative location. 
Orientation type. 

Stroke order enumeration. 

Curve 
Component type. 
Relative location 

(optional). 
Stroke order enumeration. 

Ellipse 
Component type. 
Relative location 

(optional). 
Stroke order enumeration. 

Simple/Compound Symbol 
Enumerated name or 
English translation or 

Romanized equivalent. 

Naming scheme not chosen 
in original label (optional). 

 

Aliases not only serve as a convenience in constructing shape descriptions for a 

variety of domains in LADDER, but they also serve a dual-purpose specifically for the 

domain of written East Asian languages in the methodology.  That is, for the aliases 
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applied to the line, curve, and ellipse components in the shape descriptions, they are also 

specifically referenced for assessing the correctness of students’ written technique.  This 

important secondary feature of aliases is further elaborated in the section dedicated to the 

handling of written technique, but a comparison of the original component labels and 

their matching aliases can be found in Figure 3. 

 

Figure 3. A side-by-side comparison of the original component labels and the 

corresponding aliases for an example Chinese character: (a) the original component labels, 

and (b) the aliases. 

 

 

4.5 Display 

 

 The last relevant specification for the methodology is the display specification, 

which is defined as methods that indicate what to display when the object (i.e. the sketch) 

is recognized.  The display specification contains various methods related to how the 

input strokes are displayed back to the user, and while this specification does not directly 

affect the classification of either the visual structure or the written technique of the EA 

language symbol input, it provides the capability for one form of explicit feedback of 
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students’ written input through visual cue interactions given on those input strokes.  In 

this particular methodology, the display specification was employed in the following 

fashion: 

• Beautification disabled. By default, the LADDER sketching language 

enables the beautification of strokes, which is the removal of mess and clutter 

from the original sketches such as those found in natural writing.  With 

beautification, the strokes are visually altered to more visually precise shapes, 

such as straighter lines and more consistent curves.  The methodology does 

not enable beautification, but instead maintains the look of the original 

strokes in order to maintain consistency of what users normally see in natural 

writing.  In addition, it was observed that when the strokes are beautified, the 

beautified strokes are displaced from the original position of the original 

strokes.  When two strokes connected at the endpoint are drawn separately 

(i.e., separately sketched with the lifting of the stylus), users connected the 

beautified strokes when beautification was enabled.  This writing behavior 

caused recognition problems, since the corner-finding and grouping 

algorithms used in LADDER rely on the positions of the original strokes; 

when users connect the strokes on the beautified strokes instead of the 

original strokes, the recognition does not treat the strokes as being connected 

at the endpoints.  Therefore, since beautification indirectly affects recognition 

of the written input, it is disabled in the methodology. 
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• Coloring the strokes. One of the two visual cues employed in the 

methodology to provide users on their sketches is changing the colors of the 

sketched strokes after a particular symbol has been recognized.  This option 

of coloring the strokes when it is recognized by LADDER allows students to 

receive visual structure feedback by informing them that their symbol is 

visually correct.  The stroke coloring method is more suited for instructing or 

reviewing the symbols, while is recommended to be disabled for testing.  In 

this methodology, if the stroke coloring option is enabled, then unrecognized 

strokes are left as the default blue color, recognized subcomponents of a 

symbol typically change to red strokes, and the completed recognized 

symbols are changed once again to dark gray strokes. 

• Supplementary text output. In addition to coloring the strokes, the sketches 

can be augmented with surrounding supplementary text on the drawing panel 

after a symbol or a subcomponent of it has been recognized.  This can be 

used for multiple purposes, such as one more form of visual aid to the student 

and also as a convenient visual cue for debugging the correctness of a 

particular shape description for symbols.  The supplementary text in the 

display specification can be placed in a variety of locations on and around the 

text. 
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5. METHODOLOGY OF CONSTRUCTING SHAPE DEFINITIONS 

 

 Much like how there is freedom of style in writing a piece of code for a particular 

high-level programming language, there are analogously numerous variations in 

constructing shape descriptions in the LADDER sketching language.  Despite this 

flexibility, it is advantageous to have an efficient type of convention for designers in 

constructing shape definitions, similar to how existing style guides and coding 

conventions are provided for coders of a particular programming language.  One reason 

is that having a convention allows shape descriptions to be constructed in a systematic 

and formatted methodology; not only does this reduce the complexity of constructing 

shape descriptions for the designer, but it also eases the debugging of shape descriptions 

such as when a chosen constraint performs poorly in recognition.  

For the case of symbols in written EA languages, establishing a shape 

construction convention is even more important due to the complexity of the symbols 

and the similarities between them.  For this methodology, a convention was introduced 

for the sake of creating shape descriptions that were robust enough to handle the 

diversity of written EA language symbols while also keeping the order of those shape 

descriptions manageable in terms of ease of readability.  This convention can basically 

handle shape descriptions for most cases, and further modifications can be done to 

handle special cases for symbols in certain written EA language scripts. 
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5.1 Single Simple Shape 

 

A single simple shape can be described straightforwardly in this thesis as an 

individual shape in LADDER that is built entirely of primitive shapes.  Due to this, 

geometric constraints that are used in the shape descriptions of single simple shapes are 

frequently more simplified since they only interact with the endpoints and boundaries of 

the primitive shapes in LADDER.  Despite these shape descriptions relying only on the 

physical properties of primitive shapes as opposed to also including those from more 

complex shapes, the shape descriptions for these single simple shapes are non-trivial 

since their correctness impacts the correctness of shape descriptions for more complex 

shapes that utilize single simple shapes. 

While there is flexibility in how the constraints can be listed in the shape 

descriptions such as those for single simple shapes, for the case of shape descriptions 

specific to symbols of written EA languages, an ordered format style was used to order 

the constraints so that readability and debugging capabilities can be improved.  This is 

also done because each line component in LADDER has endpoints and midpoints 

assigned p1, p2, and center, respectively; since the assignment of endpoints p1 and p2 in 

each line component changes depending on how the line is drawn when context is not 

provided, those endpoints are explicitly assigned their placement relative to each other in 

a systematic fashion.  That is, the p1 endpoints of each line component is assigned as 

being left relative to their corresponding p2 endpoints for all non-vertical lines, and 

assigned as being above relative to their corresponding p2 endpoints for vertical lines.  

The order of constraint groups in the format style is summarized below. 
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1) Line orientations.  Based on all the line components that make up the shape, 

these lines are constrained based on their orientation. 

2) Endpoint ordering.  After the lines are constrained by orientation, their 

endpoints are constrained based on their relative location from one another. 

3) Spatial relationships.  As opposed to the previous two constraint groups, these 

constraints consist of how the components spatially relate to other components.  

In other words, the spatial relationships group consists of the rest of the 

constraints that make up the constraints portion of the shape descriptions. 

Listing aliases also provide an important contribution in building shape 

descriptions for single simple shapes.  One advantage is through ease of use; that is, 

aliases allow a designer to reference a particular part of a shape (e.g., vertLine.p1) with 

an easier-to-understand label (e.g., leftPoint).  Another advantage is through practicality; 

that is, the only way for more complex shapes in LADDER to utilize a specific 

component from a simpler shape is by explicitly referencing it through its alias.  This is 

done for the sake of computation, since the computational time to allow designers to 

possibly directly access every possible combination of subcomponent when constructing 

more complex shapes becomes exponentially large.  From the standpoint of single 

simple shapes though, since these shapes are constructed solely using primitive shapes, 

the value of aliases does not seem immediately apparent.  It is still important to label 

specific parts of these shapes as aliases when these shapes are used to build compound 

shapes, since this simplifies the process of constructing compound shapes composed of 

single shapes.  This will be made more readily apparent in the next subsection. 
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Figure 4. A shape description for the Chinese character ten. 

 

To illustrate the methodology of constructing shape descriptions for single 

simple shapes, example shape descriptions for two specific Chinese characters – ten and 

mouth – are introduced in Figure 4 and Figure 5, respectively.  These two Chinese 

characters are not only composed entirely of primitive shapes, or more specifically lines, 

but they are also simple single shapes that are commonly used in more complex EA 

symbols.  In fact, these two Chinese characters will be combined in the next section in 

order to describe the methodology for constructing single compound shapes. 
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Figure 5. A shape description for the Chinese character mouth. 
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5.2 Single Compound Shape 

 

 Expanding beyond single simple shapes are single compound shapes; shapes of 

this kind are composed of at least two simpler shapes, one of which is of type single 

simple shape.  Two obvious benefits in creating shape descriptions for a more complex 

Chinese character as a single compound shape is that it: 

1) simplifies the logic of designing, and 

2) reduces the computational time in recognizing that shape. 

For the former, the designer can simply add an existing simple shape as one of the 

components into the shape description instead of re-writing that simple shape’s shape 

description.  For the latter, the computation time for recognizing these more complex 

shapes is reduced as a result of LADDER processing less primitive shapes. 

 The importance of creating alias labels for relevant parts of the single simple 

shapes in the previous section can now be realized for shape descriptions specific to 

single compound shapes.  The reason is that it makes it easier, perhaps even feasible, to 

determine where in the shape description a particular single simple shape is relative to 

other inner shapes for the compound shape.  In fact, creating shape descriptions for 

single compound shapes are simply an extension of the process in creating shape 

descriptions for single simple shapes.  Furthermore, the user-created alias labels (e.g., 

labels rightPoint and bottomRightPoint) for simple shapes (e.g., a basic Chinese 

character) within single compound shapes are analogous to the default core components 

(e.g., the points p1, p2, and center) for primitive shapes (e.g., a line) within single simple 
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shapes. Figure 6 demonstrates one such shape description for a single compound shape 

composed of two single simple shapes. 

 

Figure 6. A shape description for the Chinese character ancient. 

 

 

5.3 Multiple Shapes 

 

 The next extension from recognizing single shapes – whether they are simple or 

compound – is recognizing more than one of them within the sketching area of a 
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particular CALL system.  For written EA languages, this is very important since symbols 

are not written in isolation.  In fact, many words in written EA languages require 

multiple symbols in order to achieve their meaning.  Tackling the difficult challenge of 

recognizing multiple shapes absent of sketching constraint is significantly alleviated 

with LADDER, which is accomplished by first constructing a shape description 

containing the set of multiple shapes.  In other words, the components section of the 

shape description lists the complete symbols that make up the target written EA 

language word. 

 While listing the complete symbols that make up the target word is a necessary 

condition in the shape description, their mere listing is not sufficient enough to complete 

the shape description.  This can easily be seen by drawing these symbols with varying 

sizes at random locations of a CALL system’s sketching area.  Therefore, the designer 

must also include at least three additional conditions in the shape descriptions to provide 

sufficient recognition of multi-symbol words.  These conditions come in the form of 

listing physical relationships amongst the symbols relative to each other. 

1) Relative position. Unlike the written properties of European languages such as 

English, written EA languages are more flexible in that they can be written in 

multiple ways such as left-to-right, right-to-left, and top-to-bottom.  Therefore, 

relative position can be taken into account through the constraints portion of the 

shape description.  After the preferred writing direction is established, the 

designer should explicitly state where the symbols are physically located relative 
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to each other.  This can be accomplished with the constraints leftOf, rightOf, 

above, and below. 

2) Relative size. The symbols in written EA symbols are inherently contained 

within a block much like a bounding box of square proportions.  Therefore, the 

shapes that make up a multi-shape written EA language word must have similar-

sized bounding boxes.  This property can be established by either matching the 

bounding points of the symbols to the same axis through the constraints sameX 

and sameY, or by ensuring that one symbol is contained entirely within the 

extreme bounding points of another slightly longer or slightly wider symbol. 

3) Relative closeness. This last property exists to ensure that the shapes that make-

up a multi-symbol word are grouped within a reasonable space.  In other words, 

the property of relative closeness exists to make sure that symbols of one word in 

one part of the sketching area do not accidentally get incorrectly recognized with 

symbols of another word in another part of the sketching area.  To achieve this 

property, the designer can make use of constraints such as the two-argument near 

and the three-argument closerThan constraint.  The former constraint relies on an 

absolute pixel distance, while the latter constraint compares the pixel distances 

against two given shape components. 

In essence, the shape descriptions for a multi-symbols word operate on complete 

symbols analogously to how shape descriptions for a single compound shape operate on 

simpler shapes and primitive shapes, as well as how shape descriptions for a single 
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simple shape operate on primitive shapes.  A concrete example of a multi-symbol word’s 

shape description can be seen in Figure 7. 

 

Figure 7. A shape description for the Chinese characters Japan. 

 

5.4 Handling Special Cases 

 

 The methodology for constructing shape definitions in this thesis so far 

generalizes reasonably well for the symbols of the various EA writing scripts, especially 

for polyline-heavy scripts such as Chinese characters.  Some scripts though exhibit 

visual structure properties that may be more challenging to describe with the 

methodology.  In order to address these challenging properties, the methodology was 

adapted to address the special cases inherent in the writing scripts of interest. 
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 One such example exists within the combined forty-one phonetic and tonal 

symbols that make up Mandarin Phonetic Symbols I (MPS1), which are the three 

symbols in the set consisting of a single straight line: the symbol for the phonetic i sound, 

and the symbols for the rising and falling tones (Figure 8).  Treated in isolation, these 

three symbols are trivial for a recognizer to correctly recognize due to their simple 

property of being a single stroke. 

The problem becomes readily apparent when making use of LADDER for 

recognizing the symbols in MPS1, especially when a sequence of symbols contains one 

of the three single straight symbols that frequently occur in writing.  This is because 

LADDER employs eager recognition on sketched input; in other words, the moment a 

user lifts the stylus from the writing surface of the computer screen, LADDER attempts 

to recognize the stroke after it has been converted to its primitive shape equivalent by 

matching it to existing shape descriptions in the domain.  Therefore, given some symbol 

in MPS1 which consists entirely of lines, its corresponding shape description would 

therefore contain entirely of lines in the components section.  The issue occurs when at 

least one of those lines happens to be visually equivalent to one of the three single 

straight line MPS1 symbols; with eager recognition in LADDER, the multi-line MPS1 

symbol will therefore not achieve correct recognition since one of its component lines 

will prematurely be recognized as a single straight line MPS1 symbol.  This is especially 

problematic since the primitive line equivalents of the three single straight line-based 

symbols occur so frequently within the multi-stroke MPS1 symbols.  A visual example 
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of this issue which shows a multi-stroke MPS1 symbol containing a single straight line-

based MPS1 symbol can be seen below in Figure 9. 

 
 

Figure 8. The three single straight line symbols in MPS1: (left) The symbol for the phonetic 

i sound, (middle) the symbol for the rising tone, (right) the symbol for the falling tone. 

 

 The problem becomes readily apparent when making use of LADDER for 

recognizing the symbols in MPS1, especially when a sequence of symbols contains one 

of the three single straight symbols that frequently occur in writing.  This is because 

LADDER employs eager recognition on sketched input; in other words, the moment the 

user lifts the stylus from the writing surface of the computer screen, LADDER attempts 

to recognize the stroke after it has been converted to its primitive shape equivalent by 

matching it to existing shape descriptions in the domain.  Therefore, given some symbol 

in MPS1 which consists entirely of lines, its corresponding shape description would 

therefore contain entirely of lines in the components section.  The issue occurs when at 

least one of those lines happens to be visually equivalent to one of the three single 

straight line MPS1 symbols; with eager recognition in LADDER, the multi-line MPS1 

symbol will therefore not achieve correct recognition since one of its component lines 
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will prematurely be recognized as a single straight line MPS1 symbol.  This is especially 

problematic since the primitive line equivalents of the three single straight line-based 

symbols occur so frequently within the multi-stroke MPS1 symbols.  A visual example 

of this issue which shows a multi-stroke MPS1 symbol containing a single straight line-

based MPS1 symbol can be seen below in Figure 9. 

 
 

Figure 9. The symbol for the phonetic i sound physically contained within the symbol for 

the phonetic f sound in MPS1. 

 

In order to resolve this issue for the domain of MPS1 symbols, the methodology 

needs to be modified as follows: if a line component within a multi-stroke MPS1 

symbols is visually equivalent to an existing single straight line MPS1 symbol, swap that 

line component with the visually equivalent symbol, such as in Figure 10. 

One important consequence regarding this modification to the methodology is 

that the designer loses the default aliases p1, p2, and center that are given to all primitive 

line components in LADDER.  This consequence can be resolved by redefining those 

default aliases in those single straight line-based symbols’ shape descriptions. 
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Figure 10. A visual representation of the modified MPS1 methodology for the case of the 

phonetic f sound symbol.  The modified methodology swaps the conflicting line components 

with their visually equivalent MPS1 symbols. 

 

 For another EA writing script, the hangul writing script for the Korean 

language – unlike other EA writing scripts –  incorporates one primitive shape that is not 

found in the other writing scripts: the circular-shaped ieung symbol (Figure 11).  In the 

methodology described in this thesis, the assumption was that the symbols in the various 

scripts of written EA languages were composed of: 

• straight lines represented as line components, 

• curved lines represented as curve components, or 

• curved lines which could be approximated as line components. 

In the case of letters (i.e., symbols) in the hangul script, the circular subcomponent 

exhibits geometric properties that cannot sufficiently be satisfied by the above 

assumptions.  This can be remedied by adding the ellipse primitive shape as a 

component to represent the circles that are in certain hangul letters. 



52 

 

 
 

Figure 11. The circular shaped ieung symbol in an example hangul letter. 

 

One important property that needs to be noted regarding the circular ieung 

symbol – which is used within certain hangul letters – is that the other polyline 

components used in those hangul letters lie externally from that circular shape; that is, 

the lines never intersect the circles.  The need for modifying the methodology to thus 

accommodate ellipse components for representing the ieung symbol becomes apparent, 

since existing default aliases used in the line components are insufficient for 

constructing shape descriptions for those hangul letters. 

The first motivation behind a modified methodology for written Korean relates to 

the default aliases of endpoints p1 and p2 line components, since line endpoints do not 

have a clear analog in ellipse components due to their closed-shape nature.  The second 

reason relates to the default midpoint alias of center; unlike in line components, 

geometric constraints that interact with this default alias for ellipses must rely on other 

elliptical geometric properties in order to determine whether a particular part of the 

shape description refers to either the inside or to the outside of the circular symbol.  In 

other words, utilizing ellipse components requires utilizing different default aliases in 
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order to determine whether a line component is properly external to an ellipse 

component. 

The solution employed in the modified methodology for written Korean – 

specifically ellipse components – is to have the constraints interact with another set of 

default aliases responsible for the bounding points of the ellipse (Figure 12).  These 

bounding points are points that lie specifically at relevant points located on the ellipse’s 

bounding box. 

 
 

Figure 12. The bounds of an ellipse, including the highlighted bounding points that 

serve as default aliases for ellipse components in LADDER. 

 

For this modified methodology, the default aliases of interest are the bounding 

points that lie on an eight-point compass rose of the ellipse component: boundTopMiddle, 

boundTopRight, boundRightMiddle, boundBottomRight, boundBottomMiddle, 

boundBottomLeft, and boundLeftMiddle, and boundTopLeft.  With these bounding points, 

the designer can sufficiently constrain the physical location of an ieung symbol within a 

particular hangul letter relative to surrounding polylines in a LADDER shape description. 
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6. OVERVIEW OF WRITTEN TECHNIQUE ASSESSMENT 

 

 Much like visual technique assessment, assessing the written technique of 

students’ written EA symbols is handled using LADDER.  The difference though is that 

the capability to handle the written technique assessment – which involves a system 

checking for the correctness of the written symbols’ stroke order and direction – requires 

additional actions that are not directly supported in LADDER.  Therefore, supporting 

this assessment requires an expanded approach of matching part of the LADDER shape 

descriptions to the labeled segmented strokes’ raw temporal information.  In other words, 

the written technique assessment for this methodology occurs after the strokes are 

segmented and later works in conjunction with the same shape descriptions used in the 

visual structure assessment.  The rest of this section will describe how written technique 

assessment is handled using this expanded approach. 

 

6.1 Limitations of Assessing Written Technique in LADDER 

 

Besides constraints that are based on the geometric properties of a sketch, 

LADDER also provides a constraint called drawOrder that can check whether correct 

stroke order was followed by comparing whether one shape was drawn before another.  

This same constraint can also be used to determine if a shape followed the correct stroke 

direction by comparing whether one endpoint of a shape was drawn before the other 

endpoint.  From an initial observation, it would appear that LADDER is sufficiently 

capable of recognizing the correctness of stroke order and stroke direction, two key 

properties for assessing the written technique of students’ written EA symbols.  That is, 
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if a student draws a particular written EA symbol with both correct visual structure and 

written technique, then LADDER would be able to recognize that symbol as being 

visually and technically correct. 

The limitation of relying on LADDER in assessing students’ written technique 

occurs when the designer wishes for the system to also provide feedback for cases when 

the student draws a particular symbol visually correct but technically incorrect.  If the 

system relies solely on the drawOrder constraint within the shape descriptions, then 

symbols will not be recognized by LADDER unless the visual technique and the written 

technique are both correct.  In other words, even if the student draws the symbol visually 

correct, if the written technique is incorrect then the symbol will still be recognized as 

completely incorrect.  This is because LADDER shape descriptions as dictated by the 

methodology only gives a single feedback of correct or incorrect when two separate 

feedbacks are needed for the visual structure and written technique.  A possible solution 

to accommodate the needed variable feedback for separate assessment of the visual 

structure and written technique – while still completely relying on LADDER and its 

drawOrder constraint – can be found in Table 9. 

Based on the information in Table 9, designers who wish to provide assessment 

for both visual structure and written technique entirely using LADDER will encounter 

issues for the case of when the written symbol has correct visual structure but incorrect 

written technique; specifically, the problem occurs in the designer needing to construct 

multiple shape descriptions for each possible incorrect stroke order and direction.  While 

this accommodation does potentially address the issue in providing multiple feedbacks to 
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suit the situation, the solution is very repetitive and time-consuming on the part of the 

designer as the number of symbols to recognize and the number of strokes for each of 

those symbols increase in number. 

Table 9. Accommodating multiple feedbacks using solely LADDER and its drawOrder 

constraint for a single symbol. 

 
Correct 

Written Technique 

Incorrect 

Written Technique 

Correct 

Visual Structure 

Construct a single LADDER 
shape description that defines 
the correct visual structure and 
written technique properties. 

Construct multiple shape 
descriptions that all define the 

correct visual structure 
properties, but take into account 
each possible incorrect stroke 

order and direction. 

Incorrect 

Visual Structure 

Only provide feedback that the 
symbol has incorrect visual 

structure, since written technique 
is irrelevant for an incorrect 

symbol. 

Only provide feedback that the 
symbol has incorrect visual 

structure, since written technique 
is irrelevant for an incorrect 

symbol. 

 

 

6.2 Strokes and Primitive Shapes 

 

Before describing how the correctness of stroke order and direction is checked, it 

is first important to differentiate between strokes, as it is used in the EA language 

curriculum; and primitive shapes, as it is used in LADDER.  In a conventional EA 

language curriculum, a stroke is defined in the EA language curriculum as the mark that 

is made from the moment the writing device makes contact with the surface to the 

moment that the writing device is lifted from the surface, so stroke order consists of a 

temporal sequence of these marks.  Therefore, stroke order and direction is based on the 

temporal ordering of the sequence of pen-down to pen-up motions. 
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In contrast, the methodology alternatively assesses the correctness of the stroke 

order and direction by the temporal ordering of the segmented primitive shapes when 

they were originally sketched.  The concept of checking for correctness between how an 

instructor performs the task in the classroom and how a system that implements the 

methodology for a CALL application is conceptually similar; the difference is that the 

strokes as defined in the curriculum are treated as segmented primitive shapes in the 

methodology (Figure 13). 

(a)   (b)  
 
Figure 13. Label comparisons for the Chinese character mouth: (a) Enumerated labels for 

temporal order of strokes in conventional EA language instruction, and (b) enumerated 

aliases for temporal order of primitive line components for the methodology. 

 

6.3 Customizing Aliases for Simple Symbols 

 

 As an alternative to the drawConstraint constraint in LADDER, the methodology 

relies heavily on LADDER’s user-created aliases and their additional purpose as labels 

for segmented primitive shapes in order to handle stroke order and direction correctness.  

This use of aliases differs from how they are used in the visual structure assessment, 

where aliases serve as either a way for more complex written EA symbols to access 
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specific subcomponents of their inner simpler symbol components, or as more intuitive 

labels for designers to more easily construct shape descriptions.  For simple symbols (i.e., 

symbols composed entirely of primitive shapes), the specific steps for exploiting aliases 

to handle stroke order correctness are as follows: 

1) For each primitive shape in the components section of the shape description, 

create a new corresponding alias for that primitive shape. 

2) For each new alias created, label that alias as line#, where # is the stroke order 

number of that primitive shape.  For example, if a given line is the third stroke in 

the stroke order, then that line is enumerated as line3. 

Similarly for direction correctness, the steps are as follows: 

1) For each primitive shape in the components section of the shape description, 

create a new corresponding alias for both the starting and ending endpoints. 

2) For each new alias created for the starting endpoint, label that alias as start#, 

where # is the stroke order number of that primitive shape for which that point 

belongs to.  For example, if a given line is the third stroke in the stroke order, 

then its associated starting endpoint is enumerated as start3. 

3) Similarly for the ending endpoint, label the alias as end#, analogous to what was 

done in the previous step but for ending endpoints. 

An example of the above steps for aliases related to stroke order and direction can be 

found specifically for the Chinese character ten in Figure 14. 
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Figure 14. Partial shape description for the Chinese character ten which focuses primarily 

on the components and also the aliases related to stroke order and direction. 

 

6.4 Customizing Aliases for Compound Symbols 

 

 Customizing aliases for simple symbols is a relatively straightforward process, 

since aliases are created, labeled, and matched to their corresponding primitive shapes 

and endpoints within the target symbol (Figure 15.a and Figure 15.b). 
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(a)   (b)  
 

(c)  
 

Figure 15. Stroke order and direction labels for a compound and two simple symbols: (a) 

Stroke order and stroke direction labels for the Chinese character ten, (b) stroke order and 

partial stroke direction labels for the Chinese character mouth, and (c) stroke order labels 

for the Chinese character ancient. 
 

While this assumption holds true for simple shapes, aliases need to be 

customized in a different way when a written symbol is a compound symbol.  The core 

reason is that customizing the aliases to written technique assessment requires that these 

aliases are tied to their corresponding primitive shapes, which is distinct from the user-

created shapes found in compound shapes.  The direct solution is to re-label the aliases 

from the simple symbols so that the stroke order and direction are maintained for the 

compound symbol (Figure 15.c). 
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6.5 Assessing the Written Technique Using Aliases 

 

 Once the aliases have been customized to their corresponding primitive shapes 

and their endpoints, assessing the correctness of the written EA symbol’s stroke order 

and direction is a straightforward matter of retrieving the raw temporal values of the 

segmented strokes retrieved from those custom aliases.  The following steps summarize 

the prior steps that have been undertaken before written technique assessment in this 

methodology occurs: 

1) Collect the data. Prior to segmenting the strokes for use in LADDER, written 

data is collected from the stylus in the form of spatial (i.e., x- and y-coordinates) 

and temporal data. 

2) Segment the strokes. The strokes are segmented using specialized algorithms 

into primitive shapes, which also contain the temporal data associated with those 

segmented spatial data. 

3) Create custom aliases. Aliases are created for each primitive shape to denote 

their order and direction in the strokes. 

Once custom aliases have been created, the next step is to perform the assessment on the 

written technique.  This step assumes that the written EA symbol has already been 

successfully recognized as having correct visual structure.  The reasoning behind this is 

that if a symbol is visually incorrect (e.g., the symbol was drawn correctly but was not 

the symbol that was prompted, the symbol’s visual structure contains visual errors), then 

the drawing’s written technique will not be relevant since it is not related to the 
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prompted symbol’s correct visual structure.  The steps below first describe how the 

custom aliases coordinate with the temporal data to assess the stroke order, subsequently 

followed by stroke direction assessment.  These two steps assume that the visual 

structure is also correct, and additionally the check for correct stroke direction is 

optional if the stroke order check fails. 

•••• Checking for correct stroke order: 

1) The methodology first retrieves the customized aliases from the alias section 

of the written symbol’s associated shape description, and then stores those 

aliases in a list. 

2) Next, the aliases are used to reference their corresponding primitive shape 

from the segmented data. 

3) Afterwards, the raw temporal data of the primitive shapes are extracted and 

used to order the corresponding aliases in temporal order. 

4) Finally, since the aliases for stroke order begin with line and are enumerated, 

the enumerated value for each alias ischecked for correct ascending order.  If 

the numbers are ordered correctly in ascension, then the methodology denotes 

the stroke order as correct.  Otherwise, it is incorrect. 

•••• Checking for correct stroke direction: 

1) Referencing the list of primitive shapes extracted for the stroke direction 

check, first iterate through this list of primitive shapes and retrieve the first 

point sketched temporally for that primitive shape. 
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2) Next, compare each primitive shape’s endpoints and determine which 

endpoint lies closest to the first initially sketched point of that primitive line.  

This step is necessary since the first point in the sequence of raw points for a 

primitive shape may be slightly different from the aliased endpoint of that 

primitive shape due to how segmentation is performed. 

3) Lastly, retrieve the equivalent custom alias that corresponds to that initially 

sketched point.  That custom alias is a label that may either begin with the 

label start or end.  If it begins with start, then continue to the next primitive 

shape.  Otherwise, that label starts with the label end, and therefore the result 

of the student’s written EA symbol is incorrect stroke direction since the 

incorrect endpoint was sketched first. 

4) If the entire list of primitive strokes has been iterated through, and if each 

custom alias specific to stroke direction assessment begins with the label start, 

then the result is that the stroke direction is correct. 

After assessing the stroke order and direction using the above steps, results for both the 

current written technique and the previous visual structure can then be used for CALL 

applications to display the results as seen fit by the application designer.  A visual 

example of the written technique assessment that utilizes the custom aliases can be found 

in Table 10. 

 

 



64 

 

Table 10. Assessing the written technique of three different writing styles for the Chinese 

character ten based on their custom aliases for stroke order and direction. 
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7. IMPLEMENTED APPLICATIONS AND EVALUATION 

 

The primary motivation in creating the methodology is so that it could be 

implemented into a CALL system tailored specifically for written EA languages.  In this 

section, CALL systems were implemented for the following two distinct writing scripts 

to showcase the range and depth that the methodology can achieve: 

• The kanji script. The non-phonetic Chinese characters specific to written 

Japanese. 

• The Mandarin Phonetic Symbols I (MPS1) script. The phonetic symbols 

specific to representing the Mandarin sounds in written Chinese. 

The rest of this section will introduce the capabilities and evaluate the effectiveness of 

those different CALL systems. 

 

7.1 Hashigo: A CALL System for Handwritten Japanese Kanji 

 

The Hashigo system [30], which was the first completed system to implement the 

methodology, is a CALL system developed specifically for the instruction of the 

Japanese kanji script (Figure 16).  In addition, Hashigo’s interface successfully adopts 

key features in the methodology, specifically: free-sketch input, paper-like interface, 

digital capabilities, and emulated teacher feedback (Figure 17).  This fully operational 

learning tool – which provides a graphical-user interface (GUI) over the recognition 

provided in the methodology – follows the instructional techniques established in a 

Japanese language textbook [7] by prompting users to sketch the kanji and their elements 
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(i.e., the corresponding simpler kanji contained within them) that is introduced in that 

textbook’s chapters. 

  
Figure 16. An overview of the Hashigo GUI, incorporating four of the key features in the 

methodology: free-sketch input, paper-like interface, digital capabilities, and emulated 

teacher feedback. 

 

 

 

Figure 17. The Hashigo selection window for choosing the lesson type and kanji or element 

set. 
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In the Hashigo system, a type of review setup was created for three of the 

chapters in the source textbook, but the system can easily be expanded to include 

additional chapters in future iterations.  Upon usage of the CALL application, users are 

initially given the following two choices (Figure 17): 

• Learn mode: Before drawing a new kanji or element, the user is shown an 

animation of how to draw it, a textual hint to help in memorization, and an 

assessment of the visual structure and written technique of the previous kanji or 

element prompted, if there was one (Figure 18). 

 
 

Figure 18. The instruction window for the Learn Mode in Hashigo for an individual 

symbol. 

 

• Review mode: Unlike in Learn mode, this mode initially prompts the user to 

draw a particular kanji or element given its English translation.  After the user 
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confirms completion of the sketch, the application then provides one of three 

possible feedbacks based on the user’s performance: 

1) Correct visual structure and written technique. The user is 

congratulated for achieving correctness on the kanji or element. 

2) Correct visual structure, incorrect written technique. The user is 

informed on the correct visual structure.  In addition, the user also 

receives feedback on what aspect of the written technique was 

incorrect, as well as a reminder animation of how it is drawn (Figure 

19). 

3) Incorrect visual structure. The user is informed on the incorrect 

visual structure and written technique, and receives remedial feedback 

in the form of a reminder animation and textual hint. 

 
 
Figure 19. The result window for the Review mode in Hashigo for an individual symbol. 
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Upon completion of a single lesson, regardless of whether the user selected Learn 

or Review mode, the user receives a progress report card that reviews the kanji or 

elements tested, as well as the user’s performance in drawing them (Figure 20). 

 
 

Figure 20. The final progress report window after completing a lesson in Hashigo. 

 

 In order to gauge the technical performance of Hashigo as a CALL system for 

handwritten kanji, a series of three user studies were performed.  The first evaluation 

focused on its visual structure assessment capabilities, where a user study comprised of 

eleven international graduate students from Texas A&M University proficient in kanji 

were asked to write a total of nineteen kanji from a specific chapter twice.  Since model 

kanji to be used for teaching students the correct way to write was desired for the system, 

the only requirement given to the participants was that they write the kanji as if though 

they were teaching someone not familiar with them.  The result of this user study was 

that the system correctly classified 92.9% of the provided kanji.  The entire data from the 

user study was later used to tweak the shape descriptions so that natural handwritten 
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kanji were reflected in the system.  Accuracies from existing online kanji recognizers in 

[17] ranged 85% to 95%; therefore, the accuracy given by Hashigo is comparable to 

those recognizers when recognizing expert users’ handwritten kanji. 

 The second evaluation focused on the written technique capabilities in Hashigo, 

which involved determining whether the system could properly differentiate written 

technique factors like a human instructor.  The corresponding user study consisted of 

five non-East Asian students from the graduate school at Texas A&M University with no 

prior knowledge of kanji writing.  An initial user study was run on the participants by 

asking them to write seven prompted kanji from a given kanji lesson, providing them 

with no further instruction on how to draw these kanji other than their visual structure.  

When this initial handwritten data was provided to the system, Hashigo generated 98.6% 

accuracy on the visual structure.  This rise in accuracy was attributed to the higher care 

that novice participants took in drawing the kanji exactly as presented, in contrast to 

their expert counterparts, whom may have taken less care and whose previous writing 

habits may have biased their visual structure.  In terms of written technique recognition, 

it was first noted that all novice participants only gave correct written technique for 5.7% 

of the visually-correct recognized kanji, which solidified the necessity of a sketch-based 

CALL system for teaching correct written technique.  Secondly, the system perfectly 

differentiated those kanji with correct written technique from incorrect ones; that is, 

Hashigo achieved 100% accuracy for written technique correctness. 

 Lastly, a user study was created to evaluate the viability of Hashigo as a learning 

tool.  The same novice users from the previous user study were asked to use Hashigo 
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three times (i.e., preview, learn, and review) for a given lesson.  After their third use of 

Hashigo, the final user study was conducted by collecting handwriting samples from the 

participants to gauge their kanji comprehension performance.  After running through this 

last set of data, the novice users scored 100% accuracy on visual correctness and 97.1% 

accuracy on written technique correctness.  This is a significant improvement of 5.7% in 

written technique correctness by the same user participants prior to using Hashigo. 

 

7.2 LAMPS: A CALL System for Handwritten Mandarin Phonetic Symbols I 

 

 A similar system to Hashigo was developed exclusively for Mandarin Phonetic 

Symbols called Language Assistance for Mandarin Phonetic Symbols I (LAMPS) [31] 

(Figure 21).  The latest iteration of the system tests students on their knowledge of 

MPS1 symbols based on the vocabulary that is covered in the first chapter of [5] a 

textbook used by several language programs in Taiwan. 

 At the start of running the system, the user is prompted with two additional 

windows that appear on the right side of the screen (Figure 22).  The top-right window 

informs the user of the next Chinese words to write the sequence of phonetic symbols for 

(Figure 22.c), while the bottom window provides a visual structure and written technique 

assessment for the previous sequence of phonetic symbols for the previous Chinese word 

(Figure 22.d).  This latter window provides the previously prompted word, the target 

pronunciation(s), and the assessment.  If the user wrote a certain symbol incorrect, 

LAMPS also provides a visual guide on how to correctly write that symbol. 
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 Similar to the evaluation conducted on the Hashigo system, the LAMPS system 

was evaluated on its effectiveness as a CALL system for the instruction of MPS1.  The 

first conducted user study evaluated the recognition rates of LAMPS for its visual 

structure assessment.  Ideally, the system should sufficiently recognize the handwritten 

symbols of expert MPS1 writers based on the constructed shape descriptions, since the 

objective of the dynamic workbook interface for MPS1 is for students to eventually 

emulate the visual structure writing made by these native writers.  For this user study, 

nine Taiwanese graduate students at Texas A&M University with proficient MPS1 

writing knowledge were recruited, with the additional prerequisite that they write the 

symbols as if though they were teaching someone not familiar with them.  This was 

desired since casual writing was not representative of the type of model writing that was 

desired to base the system’s recognition on as a pedagogical tool.  The users were each 

asked to write the MPS1 symbols twice, which were later evaluated for visual 

correctness on an all-or-nothing recognition metric; in other words, the correctness of a 

written symbol in LAMPS is counted only if the entire symbol is correctly recognized. 

 The result of this first user study was that LAMPS attained 95% accuracy on the 

visual structure of the study participants’ handwritten input, where the expert writers 

wrote the correct symbol and that the misrecognized symbols were considered too 

sloppily drawn for LAMPS to recognize.  Since the system performance of similar 

online handwritten recognizers in the domain achieved accuracy within the range of 85% 

to above 95% [17], the conclusion that was reached was that the system attained 

sufficient recognition comparable to other recognizers.  Since the system also does not 
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rely on the use of training data to improve the recognition in LAMPS compared to 

traditional machine learning techniques (e.g., neural networks, hidden Markov models), 

the recognition in LAMPS was generalized further by tweaking the shape descriptions 

further to reflect the writing styles on the expert writers’ model handwritten input . 

 LAMPS was then evaluated again to determine whether it would be able to 

adequately recognize the correctness of novice users’ sketched MPS1 symbols based on 

the visual structure and stroke order.  A second user was conducted to collect 

handwritten symbols from a second group, this time consisting of five American 

university students from Texas A&M University with no knowledge of East Asian 

writing.  Like in the previous in the previous user study, each participant was asked to 

write each symbol twice. 

 Since these latter participants had no knowledge of MPS1, the symbols were 

visually prompted for them.  The eventual result of this user study yielded 100% 

accuracy on visual structure recognition.  This higher accuracy rate was attributed to the 

American students writing the symbols more carefully and with less variation than the 

native writers, which is the type of learning behavior that was expected from novice 

students learning MPS1.  In addition, for each symbol from this set of collected 

handwritten data that was recognized correctly for visual correctness, the system was 

also able to correctly assess the written technique with an accuracy of 100%.  Following 

the user study, the user study participants were then asked to make slight errors to both 

the visual structure and the written technique of the symbols, and the system also 

succeeded in identifying those errors during the assessment (Figure 23).  The accuracy 
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of correct assessment on written technique for these symbols is comparable to that found 

in the Hashigo system described in the previous section. 

 

 
Figure 21. A screenshot of LAMPS during regular operation. 
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Figure 22. A screenshot of LAMPS when the user writes a symbol in a visually correct 

sequence of symbols with an incorrect written technique: (a) drawing panel, (b) buttons to 

run assessment and clear panel, (c) prompt with next MPS1 symbol to draw, and (d) result. 
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Figure 23. Samples of user-sketched MPS1 symbols accurately recognized as having: 

(a) incorrect visual structure and (b) correct visual structure with incorrect written 

technique. 
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8. SUMMARY 

 

Recognizing language students’ multi-symbol handwriting from written EA 

languages in a free-sketch, paper-and-pen-emulating environment is a challenging task.  

So is emulating human instructor feedback assessment on that sketched input’s visual 

structure and written technique to be displayed back to the student.  While existing 

techniques and algorithms have succeeded in partially or completely achieving those 

functionalities digitally, combining those concepts into a single CALL system has been 

difficult to realize.  In this thesis, a methodology was described that allowed both tasks 

to be combined for use in innovative forms of CALL systems specific to written EA 

languages.  The methodology first received the handwritten input from students and used 

cutting edge high-performing algorithms to segment those strokes into primitive shapes.  

Afterwards, an approach was devised using the LADDER sketching language and raw 

temporal data that allowed shape descriptions in LADDER to effectively recognize 

students’ written EA symbols based on those primitive shapes.  Lastly, the methodology 

used the recognition results derived from the employed sketch recognition tools and 

collected raw sketching data to assess the students’ visual structure and written 

technique.  In addition to devising the methodology, two systems were developed that 

implemented the methodology for use in two distinct EA writing scripts: Hashigo for 

Japanese kanji and LAMPS for Mandarin Phonetics Symbols I.  After conducting user 

studies for both systems involving native and novice writers of those written EA scripts, 

the result was that both systems were able to achieve reasonable assessment accuracy. 
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8.1 Expanding on This Methodology 

 

 The version of the methodology described in this thesis is designed to handle 

students’ handwritten input for writing scripts of EA languages.  The current iteration 

can especially achieve recognition and provide assessment on input for writing scripts 

whose symbols can be described or reasonably approximated with primitive shapes (i.e., 

lines, curves, ellipses) that are available from the employed corner-finding algorithms.  

Of the writing scripts in the EA languages, one writing script that presents unique 

challenges to current corner-finding algorithms is the hiragana script of written Japanese.  

The reason is that the visual structures of many symbols in the hiragana script contain 

variable curves that are non-trivial to describe with the available primitive shapes at the 

designer’s disposal.  In order to accommodate the unique visual structures that these 

symbols possess, the employed corner-finding algorithms would need to be expanded 

such that they contain primitive shapes which could better describe those visual 

structures. 

 This methodology was also catered to handle symbols from a variety of writing 

scripts in the written EA languages of Chinese, Japanese, and Korean.  Two such CALL 

systems incorporated the methodology which covered writing scripts from written 

Japanese and Chinese with reasonable results, and it would be desirable to further 

introduce additional fully-functional CALL systems for other writing scripts that this 

methodology can currently (e.g., the hangul script for written Korean, the katakana script 

for written Japanese) or will eventually (e.g., the hiragana script for written Japanese) 

support. 
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 Lastly, the focus of the methodology was on the technical capabilities from the 

perspective of both human-computer interaction (e.g., paper-like interface input), 

artificial intelligence (e.g., written EA language recognition), and a hybrid of the two 

(e.g., free-sketch recognition).  While the merits of the methodology’s technical 

capabilities have already been evaluated, what has not been as fully evaluated are its 

pedagogical capabilities; in other words, the merits of CALL systems that incorporate 

the methodology in an EA language curriculum.  Therefore, expanding the methodology 

to sufficiently address the pedagogical needs of an EA language curriculum is another 

desirable direction for this research.  This may be accomplished by working closely with 

language instructors on what aspects of CALL systems would be desirable to further 

complement the instructors’ lesson plans, and expanding these CALL systems to include 

additional content for longer-term instruction. 
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