

FREEHAND SKETCH RECOGNITION FOR COMPUTER-ASSISTED

LANGUAGE LEARNING OF WRITTEN EAST ASIAN LANGUAGES

A Thesis

by

PAUL PIULA TAELE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2010

Major Subject: Computer Science

FREEHAND SKETCH RECOGNITION FOR COMPUTER-ASSISTED

LANGUAGE LEARNING OF WRITTEN EAST ASIAN LANGUAGES

A Thesis

by

PAUL PIULA TAELE

Submitted to the office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Tracy Hammond
Committee Members, Yoonsuck Choe

 Jun Kameoka

Head of Department, Valerie Taylor

December 2010

Major Subject: Computer Science

iii

ABSTRACT

 Freehand Sketch Recognition for Computer-Assisted

Language Learning of Written East Asian Languages. (December 2010)

 Paul Piula Taele, B.S., The University of Texas at Austin

 Chair of Advisory Committee: Dr. Tracy Hammond

One of the challenges students face in studying an East Asian (EA) language

(e.g., Chinese, Japanese, and Korean) as a second language is mastering their selected

language’s written component. This is especially true for students with native fluency of

English and deficient written fluency of another EA language. In order to alleviate the

steep learning curve inherent in the properties of EA languages’ complicated writing

scripts, language instructors conventionally introduce various written techniques such as

stroke order and direction to allow students to study writing scripts in a systematic

fashion. Yet, despite the advantages gained from written technique instruction, the

physical presence of the language instructor in conventional instruction is still highly

desirable during the learning process; not only does it allow instructors to offer valuable

real-time critique and feedback interaction on students’ writings, but it also allows

instructors to correct students’ bad writing habits that would impede mastery of the

written language if not caught early in the learning process.

The current generation of computer-assisted language learning (CALL)

applications specific to written EA languages have therefore strived to incorporate

writing-capable modalities in order to allow students to emulate their studies outside the

iv

classroom setting. Several factors such as constrained writing styles, and weak feedback

and assessment capabilities limit these existing applications and their employed

techniques from closely mimicking the benefits that language instructors continue to

offer. In this thesis, I describe my geometric-based sketch recognition approach to

several writing scripts in the EA languages while addressing the issues that plague

existing CALL applications and the handwriting recognition techniques that they utilize.

The approach takes advantage of A Language to Describe, Display, and Editing in

Sketch Recognition (LADDER) framework to provide users with valuable feedback and

assessment that not only recognizes the visual correctness of students’ written EA

Language writings, but also critiques the technical correctness of their stroke order and

direction. Furthermore, my approach provides recognition independent of writing style

that allows students to learn with natural writing through size- and amount-independence,

thus bridging the gap between beginner applications that only recognize single-square

input and expert tools that lack written technique critique.

v

DEDICATION

 I would like to dedicate this thesis to the members of my loving family: my

mother Tiana for her valuable support, my father Tuputala for continually rooting for me,

my sister Tina for always making me laugh, my brother Ne’e for his brotherly love, and

my grandmother Sose for her immense kindness and for always doing my laundry.

vi

ACKNOWLEDGEMENTS

My greatest thanks to the members of the Sketch Recognition Lab for their

continued support and help in the research work covered in this thesis. This thesis

would not have been possible without their support. In addition, I would like to give

extra thanks to my advisor Dr. Tracy Hammond, as well as to my committee members

Dr. Yoonsuck Choe and Dr. Jun Kameoka for their valuable sage advice.

vii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION.. v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

1. INTRODUCTION .. 1

2. TRADITIONAL INSTRUCTIONAL METHODS .. 4

 2.1 Difficulties in Learning the Written Component ... 4

 2.2 Stroke Order and Direction Instruction ... 6

 2.3 Limitations of Traditional Instruction for the Written Component......................... 7

3. RELATED TECHNIQUES AND SYSTEMS ... 9

 3.1 Neural Networks .. 10

 3.2 Hidden Markov Models .. 11

 3.3 Previous Works in Computer-Assisted Language Learning 12

 3.4 Corner-Finding Algorithms .. 17

 3.5 LADDER Sketching Language ... 19

4. OVERVIEW OF VISUAL STRUCTURE ASSESSMENT 22

 4.1 Relevant LADDER Specifications .. 25

 4.2 Components ... 25

viii

 Page

 4.3 Constraints ... 30

 4.4 Aliases ... 34

5. METHODOLOGY OF CONSTRUCTING SHAPE DEFINITIONS 38

 5.1 Single Simple Shape ... 39

 5.2 Single Compound Shape .. 43

 5.3 Multiple Shapes.. 44

 5.4 Handling Special Cases .. 47

6. OVERVIEW OF WRITTEN TECHNIQUE ASSESSMENT 54

 6.1 Limitations of Assessing Written Technique in LADDER 54

 6.2 Strokes and Primitive Shapes ... 56

 6.3 Customizing Aliases for Simple Symbols ... 57

 6.4 Customizing Aliases for Compound Symbols ... 59

 6.5 Assessing the Written Technique Using Aliases ... 61

7. IMPLEMENTED APPLICATIONS AND EVALUATION 65

 7.1 Hashigo: A CALL System for Handwritten Japanese Kanji 65

 7.2 LAMPS: A CALL System for Handwritten Mandarin Phonetic Symbols I 71

8. SUMMARY.. 77

 8.1 Expanding on This Methodology .. 78

REFERENCES ... 80

VITA .. 84

ix

LIST OF FIGURES

Page

Figure 1. The three primitive geometric components used in the methodology for

 written EA languages: (a) lines, (b) curves, and (c) ellipses. 27

Figure 2. Examples of the utilized geometric components: (a) primitives, (b) simple

 components, and (c) compound components. ... 27

Figure 3. A side-by-side comparison of the original component labels and the

 corresponding aliases for an example Chinese character: (a) the original

 component labels, and (b) the aliases. .. 35

Figure 4. A shape description for the Chinese character ten. ... 41

Figure 5. A shape description for the Chinese character mouth. 42

Figure 6. A shape description for the Chinese character ancient. 44

Figure 7. A shape description for the Chinese characters Japan. 47

Figure 8. The three single straight line symbols in MPS1: (left) The symbol for the

 phonetic i sound, (middle) the symbol for the rising tone, (right) the

 symbol for the falling tone. .. 49

Figure 9. The symbol for the phonetic i sound physically contained within the

 symbol for the phonetic f sound in MPS1. ... 50

Figure 10. A visual representation of the modified MPS1 methodology for the case

 of the phonetic f sound symbol. ... 51

Figure 11. The circular shaped ieung symbol in an example hangul letter..................... 52

Figure 12. The bounds of an ellipse, including the highlighted bounding points that

 serve as default aliases for ellipse components in LADDER. 53

x

Page

Figure 13. Label comparisons for the Chinese character mouth: (a) Enumerated

 labels for temporal order of strokes in conventional EA language

 instruction, and (b) enumerated aliases for temporal order of primitive

 line components for the methodology. .. 57

Figure 14. Partial shape description for the Chinese character ten which focuses

 primarily on the components and also the aliases related to stroke order

 and direction. .. 59

Figure 15. Stroke order and direction labels for a compound and two simple

 symbols: (a) Stroke order and stroke direction labels for the Chinese

 character ten, (b) stroke order and partial stroke direction labels for the

 Chinese character mouth, and (c) stroke order labels for the Chinese

 character ancient. .. 60

Figure 16. An overview of the Hashigo GUI, incorporating four of the key features

 in the methodology: free-sketch input, paper-like interface, digital

 capabilities, and emulated teacher feedback. ... 66

Figure 17. The Hashigo selection window for choosing the lesson type and kanji or

 element set.. 66

Figure 18. The instruction window for the Learn Mode in Hashigo for an individual

 symbol. ... 67

Figure 19. The result window for the Review mode in Hashigo for an individual

 symbol. ... 68

Figure 20. The final progress report window after completing a lesson in Hashigo. 69

Figure 21. A screenshot of LAMPS during regular operation. 74

Figure 22. A screenshot of LAMPS when the user writes a symbol in a visually

 correct sequence of symbols with an incorrect written technique:

 (a) drawing panel, (b) buttons to run assessment and clear panel,

 (c) prompt with next MPS1 symbol to draw, and (d) result. 75

xi

Page

Figure 23. Samples of user-sketched MPS1 symbols accurately recognized as

 having: (a) incorrect visual structure and (b) correct visual structure with

 incorrect written technique.. 76

xii

LIST OF TABLES

Page

Table 1. Ideal shapes for the LADDER sketching language and the challenges for

 written symbols in EA languages. .. 23

Table 2. Orientation Constraints: checks whether a line is a slope or an anti-

 diagonal; they are always unary. .. 31

Table 3. Point Relationship Constraints: Compares the center, endpoint, or bounding

 position of two shapes. .. 31

Table 4. Position Constraints: Compares the position of two shapes relative to each

 other. ... 32

Table 5. Proximity Constraints: Checks for the closeness proximity of one shape to

 another by some relative threshold value. .. 33

Table 6. Length Constraints: Compares the length of two lines relative to each other. .. 33

Table 7. Logical Constraint: Involves negating a constraint or operating disjunction

 on two constraints. By default, all constraints in LADDER are mutually

 conjunctive. ... 33

Table 8. Comparisons between naming schemes for original labels and aliases. 34

Table 9. Accommodating multiple feedbacks using solely LADDER and its

 drawOrder constraint for a single symbol. ... 56

Table 10. Assessing the written technique of three different writing styles for the

 Chinese character ten based on their custom aliases for stroke order and

 direction. .. 64

1

1. INTRODUCTION1

It should not come as a surprise that the English language differs much more

greatly from EA languages such as Chinese (e.g., Mandarin, Cantonese), Japanese, and

Korean than from other European languages such as Spanish, French, and German. In

fact, this very sentiment is shared by the United States’ federal government, which

reports that for native English users learning a foreign language, it takes up to three

times longer to reach proficiency for an EA language compared to a European language

[1]. This holds especially true for the written component of EA languages, where the

reading and writing of the more complicated writing scripts is “a labor-intensive

endeavor” that requires that language students with native English fluency expend

significant amounts of “time, patience, discipline and perseverance” to achieve native

fluency [1].

 In order to help students overcome the difficulties in studying written EA

languages, language programs traditionally introduce various written techniques in the

form of stroke order and direction as a way to ease the learning process and to provide a

more systematic way for students to master their language of study’s associated writing

scripts [2, 3, 4, 5]. Furthermore, written technique instruction is greatly stressed early on

in the learning process for these writing scripts in order to discourage the development

of bad writing habits [6]; without correcting these bad writing habits early on, not only

can they become more difficult to correct later in their language studies, but they can

also impede the pace of their studies in the long term. Despite the advantages gained

This thesis follows the style of IEEE Transactions on Visualization and Computer

Graphics.

2

through teaching written EA languages through written technique instruction, a limiting

factor in how it is presently taught is that it requires that teachers actively participate in

monitoring the students’ writing in order to provide written technique assessment;

simply evaluating the final result of students’ writings in the course greatly restricts

language instructors to evaluating the correctness of the writings’ visual structure (i.e.,

appearance).

This thesis describes a freehand sketch recognition approach for use in computer-

assisted language learning (CALL) applications specific to teaching written EA

languages. The approach enables CALL applications to allow students to obtain the

kind of feedback on their visual structure and written technique that human language

instructors naturally provide, therefore not only allowing students to emulate the type of

writing study practices found in EA language courses, but also freeing instructors to

devote additional time on other equally important aspects of the languages of study.

Furthermore, the approach described in this thesis is not constrained in terms of size and

amount; that is, students’ are not required to adhere to either writing in a restricted space

or using only single symbol-input for evaluation. As a result, the primary contributions

of this thesis are:

• Automated feedback and assessment of students’ visual structure and written

technique: students can receive automated feedback and assessment on their

visual structure and written technique of their handwriting for written EA

language scripts, much like what human language instructors already offer;

3

• Freehand writing environment: students can maintain a natural freehand writing

environment that allows them to write multiple symbols without restriction on

the size of those symbols, much like how writing is done naturally done on paper.

4

2. TRADITIONAL INSTRUCTIONAL METHODS

 In learning written EA languages, practice through writing the symbols

associated with the language of study is an essential condition. Furthermore, not only is

writing practice in itself a prerequisite in the learning process, but it is also of vital

importance for other reasons: through writing practice of their language of study,

students are able to “improve the aesthetic appearance of their writing and acquire a

‘natural feel’ for the flow” of the symbols in those scripts “that cannot be achieved

simply by remembering them” [7]. For this reason, the language curriculum guides

students to initially hone their skills in writing the symbols using grid sheets [2, 3, 5, 8,

9], which are sheets of paper typically ruled into squares of an inch or so on each side for

students to practice writing the individual symbols [9]. In addition to grid sheets

permitting students to rehearse their writing of the symbols in an orderly fashion, they

can also provide students with an opportunity to perfect the proportions of the symbols

in a model square space before moving on to writing in a more natural writing

environment. This is because the inherent written properties of EA languages demand

that the symbols, regardless of their simplicity or complexity, should be written so that

they occupy a consistent amount of square space [9].

2.1 Difficulties in Learning the Written Component

 Although the act of writing plays an integral role in students learning the symbols

of their language of study, merely having language students brute force their way

through repetitious writing in order to master the written component is unrealistic within

5

a typical American classroom setting; unlike EA learners who spend countless hours

practicing the writing for primary language acquisition as their first language, students

with a native English background and a lack of mastery in an EA language distinct from

their language of study do not have such a luxury [1]. Furthermore, solely relying on

instruction of the written component through rote memorization is insufficient, as

language instructors of EA languages have come to understand that requiring students to

memorize excessive amounts of symbols in order to achieve written fluency is an

unreasonable expectation [1]. In fact, the primary obstacles that challenge EA language

students with native English fluency in learning the written component – especially for

the more complex writing scripts of EA languages – include:

• vast symbol sets that can number in the thousands,

• complicated visual structures involving a numerous range of strokes that can

exceed thirty,

• a high similarity between symbols within the writing script that can cause “shape

collisions” during the memorization process, and

• a wide variation in visual appearance due to divergent writing styles [10].

It is because of the reasons above which language students of EA languages must

experience a steep learning curve and make a long-term investment in their language of

study in order to achieve sufficient reading and writing fluency. Not only is learning

how to write these symbols considered a huge hurdle for many students, but it is one of

the most difficult tasks in learning EA languages in general [4]. The problem is further

6

compounded by the fact that students who study the more complex writing scripts must

have working knowledge of no less than two thousand “graphic symbols” (e.g., Chinese

characters) before they can effectively communicate with native writers in those

languages [11].

2.2 Stroke Order and Direction Instruction

 With the complexities inherent in the written component of EA languages, one

technique that has proven effective to second language users (e.g., American students) –

as well as being commonly taught to first language users (e.g., Chinese students) [6] – is

written technique of the stroke order and direction (SOD) kind. Historically, SOD

instruction places special emphasis in teaching the symbols by the written stroke

according to a particular sequence [3, 4]. A subset of the major benefits to students that

are exposed to SOD instruction includes the following:

• renders the symbols to be drawn in the optimal number of strokes with no wasted

movement [3]

• helps keep the symbols written uniform in size [3]

• ensures that “muscle memory” is developed for writing the symbols accurately [4]

• allows to be used as one of several alternatives to reference the symbols in

dictionaries [12]

Moreover, certain elements within symbols (e.g., radicals) of the more complex writing

scripts in EA languages, which are instrumental in building up those symbols, are

7

written first; students are more likely to end up with nicely shaped symbols following

the correct stroke order [3].

 Due to the importance of written technique instruction, instructors greatly stress

the practice early to their students not only so that they develop the “muscle memory”

needed to effectively write the symbols [4], but to also discourage the development of

bad learning habits that impede the pace of the learning process [6]. Major

consequences of deviating from the correct written technique not only includes students

writing the symbols with an altered shape [3], but also introduces the more devastating

scenario of deviations occurring in students’ writings for the simpler symbols in the

early stages of learning, where errors would then propagate to the more complex

symbols that incorporate those simpler elements [6]. Therefore, there is a strong

motivation for instructors to employ written technique instruction in EA language

programs early in the process, so that bad writing habits that may hinder effective

memorization may be eliminated.

2.3 Limitations of Traditional Instruction for the Written Component

 The current application of written technique instruction dominantly comes in the

form of paper exercises, which is supplied in supplemental workbooks and related

formats for novice-level EA language textbooks. This form explicitly teaches written

technique by displaying to students an example symbol, whose strokes are then

numbered in the order in which the strokes should be written [4]. Although workbooks

are effective in allowing students to physically perform actual writing during the

8

learning process, these tools alone are only effective to instructors in terms of critiquing

the visual structure of students’ writing; determining correctness of the written technique

is not as straightforward without direct observation. One obvious reason is that

instructors would evaluate the students’ writings on paper, which is a static medium that

does not provide dynamic information like the strokes’ temporal information to

explicitly evaluate for written technique correction [13, 14]. Teachers could indirectly

determine written technique correctness based on the consequences of incorrect SOD,

such as incorrect proportions [3], but instructors cannot respond with absolute certainty

whether such consequences are the result of incorrect written technique, or if they are

instead the result of incorrect visual structure independent of written technique. This

issue can be resolved with the aid of instructors physically monitoring students’ writing,

but this solution itself comes with additional costs: not only is such an assessment time-

consuming, but it is also unrealistic to execute in the classroom setting as the number of

students increase [15, 16].

9

3. RELATED TECHNIQUES AND SYSTEMS

Given the limitations of paper-based workbooks for SOD instruction, intelligent

user interfaces that use pattern recognition techniques specific to written EA languages

provides a viable direction. In fact, pattern recognition algorithms for recognizing

handwritten EA languages have not only existed for several decades [17], but have also

been used in systems for the instruction of written EA languages [18]. These recognition

systems in general have historically been distinguished into two different classes [19]:

• Online systems. Handwriting data is captured during the writing process, which

makes available the information on the ordering of the strokes.

• Offline Systems. Recognition takes place on a static image captured once the

writing process is over.

Of the two recognition system classes, online recognition is the more appealing of the

two because of its ability to retain the temporal information of the strokes that could

potentially be used to assess the correctness of students’ SOD. In addition, two of the

most popular conventional techniques for handwriting recognition in domains such as

EA languages are hidden Markov models and neural networks [17, 19]. While both

approaches are inherently distinct, online EA language handwriting recognition systems

that employ either of these techniques can achieve high accuracy [17]. Both techniques

are introduced below with explanations of their limitations in written EA language

instruction.

10

3.1 Neural Networks

Some of the advantages of systems utilizing neural networks (NNs) for

handwriting recognition of EA languages include very high recognition rates while

maintaining low false recognition rates [20], the ability to support a wide range of

writing styles [21], and favorable adaptability to any Chinese character feature [20]. In

fact, NNs serve as the backbone for handwriting recognizers such as Input Method

Editors (IMEs) for EA language in the latest versions of Microsoft’s Windows operating

system, whose implementation functions similarly to other NN implementations in that

recognition is based on various features from users’ digital handwritten input [21].

These advantages are especially appealing to the recognition systems’ target users whom

are native or expert writers of these EA languages, since accuracy rates do not suffer

when, for example, users write symbols with an alternative SOD or with a non-standard

number of strokes.

The strengths of NNs stem from their inherent optical character structure, which

recognizes handwriting solely based on their visual structure [20]; in other words, the

timing and ordering of the points from the digital strokes are disregarded since these

techniques rely on some form of template-matching. From a pedagogical perspective,

these strengths become weaknesses for assessing the correctness of students’ written

technique for their handwritten EA language symbols, since the information discarded

from NNs are the very information used to allow for the assessment. This means that

systems employing NNs will have difficulty recognizing whether a students’

handwritten input whose visual structure is correct may or may not also have correct

11

written technique, a situation similarly faced by language instructors whom are asked to

provide written technique assessment based solely on completed writings.

3.2 Hidden Markov Models

 Systems that utilize hidden Markov models (HMMs) differ from their NN-based

counterparts in that HMM-based systems take into account how users write in the

recognition process. While HMMs do not perform as well to NNs when similar features

are applied [19], HMM-based systems still produce high recognition rates [17] and are

advantageous in that they can be compacted for use in smaller computers such as mobile

devices [22]. The general steps that HMM-based systems use to classify the handwritten

EA language symbols are as follows [17]:

1) Sample the points from the handwritten data.

2) Extract the features or segment the lines from the sampled points.

3) Codify the strokes directly, such as providing indexing labels.

4) Assign probabilities to the strokes, much like how HMMs are typically employed.

5) Determine how those features or lines interrelate.

6) Determine the hierarchical structure (e.g., composition of simpler subcomponents

of symbols, if any).

The main criticism of recognition systems that employ HMMs specifically for

written technique instruction is that the SOD information extracted from the handwritten

data is used primarily to aid in the handwriting recognition process. CALL applications

12

for written EA languages that rely solely on an HMM-based implementation have the

significant consequence of not being able to provide feedback that can differentiate

between handwritten input that is visually correct but technically (i.e., in terms of SOD)

incorrect, and handwritten input that is both visually and technically correct.

Furthermore, HMMs by design require a different model for each possible set of SODs

that students may feasibly write. Otherwise, HMMs will misclassify some students’

handwritten input that has unaccounted stroke order or direction possibilities, since these

possibilities are assigned extremely low probabilities in the recognition process by

default.

3.3 Previous Works in Computer-Assisted Language Learning

 Existing computer-assisted language learning (CALL) tools aim to improve the

language curriculum by augmenting conventional classroom practices with automated

help, and one of the more established categories of written EA language-based CALL

tools caters specifically to the Chinese character writing script [17]. Despite the script’s

name, Chinese characters are not only used entirely in written Chinese (i.e., the hanzi

script), but they also sees significant use in written Japanese (i.e., the kanji script) and

limited use in written Korean (i.e., the hanja script) [12]. Moreover, this particular script

has the properties of being complex and having highly variable visual structure in

comparison to other EA writing scripts, while also being conventionally taught using

SOD instruction. Due to properties such as these, CALL systems specific to the Chinese

character writing script share very similar properties to those specific to the other EA

13

writing scripts. In other words, CALL systems for the Chinese character writing script

can generalize to and are representative of CALL systems for the other EA writing

scripts without much loss of generality.

 Development of CALL systems for written Chinese characters have existed since

the early part of the 1990s [23], and some CALL systems such as Online Chinese

Flashcards and FlashcardsExchange provide digital versions of traditional flash cards [4].

Other CALL systems such as eStroke, Chinese Writing Master, and New Practical

Chinese Reader go a step further from their paper-based counterparts by animating the

model SOD of the characters [4].

While the above CALL systems aim to provide digital extensions of static paper-

based tools, these CALL systems lack a sketching modality that incorporates artificial

intelligence-based feedback in the learning process [11, 24]. Other types of “pen-less”

systems utilize alternative audio or visual modalities that involve prompting the user the

repeat or identify characters on the computer screen. While these systems expand on

“flashcard”-based CALL systems that merely translate paper-based information into a

digital format [14], the absence of a sketching modality contrasts with the explicit

writing that is conventionally taught and used in the language curriculum.

 Since conventional pattern techniques (e.g., HMMs, NNs) for recognizing

written EA languages (e.g., Chinese) are limited in their ability to simultaneously assess

both the visual structure and written technique of students’ written characters,

researchers have devised alternative approaches to overcome these restrictions. One of

the earliest research works from [25], and later improved upon in [26], utilized two

14

separate techniques for assessing the SOD of the prompted characters. Assessment of

SOD correctness first involved defining a stroke as the endpoints of the lines that make

up a stroke, and then critiquing the correctness of the sequence of spatial positions

relative to the other strokes in the character. Assessment of stroke direction correctness,

in comparison, first determined the direction of the lines in each stroke based on the

temporal sequence of the endpoints, assigned them a numerical code that corresponds to

one of the eight compass directions, and then analyzed the correctness of the sequence.

This particular system was limited in that users needed to trace over the outline of the

characters. In other words, the correctness of the visual structure in the students’

handwriting is never assessed since no actual handwriting recognition occurs.

 Subsequent research works from Chen [15, 16] provided more freedom in how

users write the characters. Their method in assessing SOD involved grouping all

possible lines into six different slopes, and then critiquing the SOD based on the

temporal sequence written by the user. This work advances the previous research work

from [25, 26] in that handwriting recognition exists, but restrictions still exist in the

handling of the visual structure assessment. The system assumed the entire drawing area

of the character was dedicated to one character, and the correctness of the character was

based on all the features within this coordinate space. While this is sufficient for novice-

level courses that introduce characters and symbols of EA writing scripts, the inabilities

of this research to handle size independence and multiple characters and symbols mean

that assessment cannot be handled in more natural writing situations like for writing

phrases or sentences in free-sketch writing areas similar to paper.

15

 Another recent work by Qi [27] proposed a solution to the size independence

issue by first defining a bounding box for handwritten input of characters, then splitting

the input into a three-by-three grid, and then comparing the features from the pixels in

those grid blocks to possible candidate characters, splitting the input into a three-by-

three grid, and then comparing the features from the pixels in those grid blocks to

possible candidate characters. While the size independence issue was addressed, the

system assumed that the strokes originated from a single character; the paper also did not

provide information on how it could handle recognition of multiple characters within the

same writing space. Another concern was that the system always made the assumption

that the written input lied within a quadrate block. This would lead to the consequence

of failing to account for single-line symbols that exist in a number of EA writing scripts,

which plays a much more significant role when it is part of grouped symbols (e.g.,

vocabulary phrase, phonetic pronunciation) that students could feasibly be prompted to

provide. An additional concern with the approach is that the written technique

assessment is handled separately in a separate system, which can possibly lead to

incompatible scenarios where the written technique assessment from the separate system

outputs the input as being correct for visually incorrect characters.

One of the latest pen-enabled CALL systems for teaching the characters with

written technique assessment comes from Tian, et al. [28]. In order to teach students the

correct SOD, this particular system uses the $1 recognizer, which is an easy-to-

implement algorithm for recognizing user-defined sketch gestures [29]. Due to the $1

recognizer’s inherent template-matching nature, recognition is handled by having

16

students’ strokes matched to the model characters due a distance measurement. While

the system provides written technique assessment, the amount of assessment that is

provided is imprecise; that is, the correctness of the SOD is determined by a threshold of

the number of incorrect strokes instead of whether the SOD is exactly correct or not.

The consequence is that if a student provides an incorrect SOD, the system will still

consider the character to be correct as long as the number of incorrect strokes is below

the threshold. In terms of the visual structure, a direct implementation of the $1

recognizer would be problematic for matching the length of strokes to determine correct

proportionality, particularly for short strokes [29]. The system addresses this issue by

weighting the length of the strokes, but its dependence on the $1 recognizer limits

assessment to single-characters within a constrained box.

Alternative approaches provided by the CALL systems Hashigo [30] and

LAMPS [31] for the EA writing scripts of Japanese kanji and Mandarin Phonetic

Symbols I, respectively, also similarly assess both the visual structure and written

technique of students’ writings. Both Hashgio and LAMPS adapt free-sketch

recognition techniques capable of recognizing unconstrained writing with reasonable

accuracy, while also addressing the lingering issues of the previously mentioned prior

research work and applications of multi-symbol input and input size independence. The

research work from Hashigo and LAMPS serve as the basis of this thesis, and the

content detailed in this thesis generalizes and elaborates further from the research work

of those two systems.

17

3.4 Corner-Finding Algorithms

 The core ideas behind constructing a visual structure and written technique

assessment-capable system for written EA language instruction derive from the sketch

recognition literature, specifically research that focuses on geometric-based recognition.

One of two contributions from geometric-based recognition that is highly relevant for

developing such a capable system and is heavily utilized for the methodology is corner-

finding algorithms (i.e., Sezgin and PaleoSketch).

A valuable technique in the methodology is the use of corner-finding algorithms

on captured data that digitally represents the written input by the users (e.g., students).

Prior to executing these algorithms, raw data is first collected from users on pen-capable

computers (e.g., Tablet PCs) through a stylus that is used to input their writing; the data

is then stored in memory and later represented back to users as a given set of pixels. By

treating this set of pixels as points in Cartesian space, the advantages of employing the

different corner-finding algorithms can be exploited for processing these sequence of

points and later approximated back as basic geometric primitive shapes (e.g., lines,

curves, arcs, ellipses) [32, 33]. One assumption that is taken advantage of is visually

approximating the strokes as a set of primitives. This particular assumption allows for

the exploitation of stroke processing algorithms that are capable of fragmenting the

collected pixel points into elementary geometric shapes, which is later used for written

recognition and subsequent feedback and assessment. Based on observations of students’

writing habits being more careful during the learning process, this assumption generally

holds well for most EA writing scripts.

18

 To aid in the task of processing strokes into their representative geometric

primitives, the corner-finding capabilities from the Sezgin [33] and PaleoSketch [32]

algorithms were selected for their strengths in fragmenting the raw strokes into

recognized geometric primitives. Since a stroke is defined in this thesis as being a

temporal sequence of points collected on a computer, from the pen-down motion on the

writing surface to the pen-up motion, the key idea shared by these two corner-finding

algorithms is that the corresponding corners detected in a stroke serve as the endpoints

of recognized geometric primitives.

 Both the Sezgin and the PaleoSketch algorithms were utilized in order to take

advantage of their respective strengths. The Sezgin algorithm’s ability to detect corners

for lines from strokes stems from the observation that people slow down during the

formation of corners in their writing. Therefore, the algorithm relies on curvature and

velocity data from the direction of the pen writing in order to make its selection of the

stroke’s corners. Alternatively, the PaleoSketch algorithm’s ability to detect corners

specifically for other geometric shapes (e.g., arcs, ellipses) uses the same concepts of

computing the direction, velocity, curvature, and corner values from the Sezgin

algorithm [32]. The PaleoSketch algorithm further expands on the Sezgin algorithm by

calculating the normalized distance between direction extremes (NDDE) and direction

change ratio (DCR), two additional features that have proven very useful in the

algorithm’s ability to recognize a larger set of geometric shapes.

The importance of processing the strokes from their explicit temporal sequence

of points into their geometric primitives is stressed in the research work of this thesis,

19

because it enables implementations that employ this methodology to later achieve

handwritten recognition of those geometric primitives from the handwritten input and

independent of the size of the writing space. The result is that recognition occurs in a

writing environment that more closely emulates writing naturally done on paper. With

the geometric primitives recognized, the next important step is to recognize the

interactions between those primitives. These interactions between the constraints help

make it possible for the written input to be visually categorized to symbols from EA

writing scripts. The tool we use to keep track of the primitives and their interactions are

handled using a sketching language called A Language to Describe, Display, and

Editing in Sketch Recognition (LADDER), which is further elaborated in the next

section.

3.5 LADDER Sketching Language

 Once the strokes for the users’ writing are processed into their geometric

primitives, the groupings of those primitives are categorized using pattern recognition

techniques. In order to provide this pattern recognition with reasonable accuracy, the

LADDER sketching language [34] was employed to fulfill the methodology’s sketch

recognition needs. Since LADDER is a general purpose sketching language for

describing how sketch diagrams for various domains are drawn, displayed, and edited,

this second contribution of geometric-based recognition through the form of a sketching

language was adopted to recognize symbols from the various EA writing scripts.

20

 What differentiates the pattern recognition techniques on users’ handwriting with

the LADDER language from traditional pattern recognition techniques (e.g., neural

networks, hidden Markov models) for the domain of written EA languages is the

emphasis on recognizing the writing. Specifically, the methodology focuses more on

recognizing users’ handwriting based on whether it fulfills a set of requirements. Not

only does this free systems that implement this methodology from using training data

that restricts the recognition to existing training data from model users, but it is also

similar to how language teachers determine whether students succeeded in writing the

symbols for a particular EA writing script correctly by verifying if all the necessary

visual structure requirements for those symbols have been met.

 It should be noted that the methodology contrasts sharply with how alternative

pattern recognition techniques are handled for recognizing users’ handwriting from a

pedagogical perspective. A major disadvantage of these alternative systems involves

instances where a student may write a particular symbol visually incorrect to a slight

degree (e.g., missing or extra strokes, sloppiness), yet still obtain a response from these

systems that the input is correct (i.e., the system gives a false positive on this slightly

incorrect input). This is one of the consequences of traditional pattern recognition

techniques which inherently recognize written input based on the closest match in the

training set. This greater leeway in recognition may be appropriate for native writers of

specific EA writing scripts, since these writers would prefer writing symbols with the

convenience of higher recognition over the perceived hassle of pedagogical-based

feedback on a domain that they have already mastered. For students learning symbols

21

for their target EA writing script of study, this extra leeway in recognition is less suitable,

since it would deteriorate students’ learning of the writing script due to the system not

correcting those slight mistakes.

 The actual recognition of students’ handwritten symbols using LADDER

involves the use of shape descriptions, which are structures primarily containing

geometric information for categorizing the handwritten input using the sketching

language’s syntax. The shape descriptions that are constructed in LADDER can be used

to describe a wide variety of shapes such as the symbols from the various EA writing

scripts. These shape descriptions consist of multiple specifications, and how these

specifications are used in recognizing the visual structure and written technique of

students’ handwritten symbols in EA writing scripts are elaborated next.

22

4. OVERVIEW OF VISUAL STRUCTURE ASSESSMENT

Visual structure correctness of language students’ handwritten symbols in an EA

writing script is one important criterion that is necessary for mastering their target

language of study. Existing CALL systems that employ pen-based input conventionally

support automated assessment capabilities of the visual structure, but their support is

largely limited to single input within a fixed writing space environment. Expanding this

automated assessment to handle the type of writing that is naturally done on paper

allows students to receive the same kind of valuable feedback without sacrificing writing

environment realism. On the other hand, the consequence is that supporting this broader

form of visual structure assessment creates additional challenges, since recognition not

only includes classifying what the symbol is, but also includes determining which

strokes belong to what symbol. In other words, the challenges for this broader form of

visual structure assessment include existing and newer challenges:

1) Classification. Recognizing what symbol was written.

2) Grouping. Recognizing which strokes correspond to which symbol.

3) Size independence. Handling size variations of written symbols.

In order to expand visual structure assessment to include the kind of free-sketch

input found in real world writing, the methodology adapts the LADDER sketching

language for use in classifying students’ symbols in the domain of written EA languages.

As a sketching language, LADDER is capable of handling multiple domains and the

wide array of shapes contained in them through the use of structured geometric

23

information called shape descriptions. Yet while the sketching language has

successfully been used for recognizing shapes in engineering and visual design domains,

LADDER was designed for recognizing shapes with specific properties in mind (Table

1).

The following subsections will first briefly introduce the relevant aspects of the

LADDER sketching language to the methodology, and also describe how the

methodology adapted LADDER to employ geometric-based recognition on written EA

language symbols. Afterwards, the approach for construction shape descriptions specific

to recognizing handwritten symbols of written EA languages will be presented.

Table 1. Ideal shapes for the LADDER sketching language and the challenges for written

symbols in EA languages.

Property Explanation Challenge

Describable in a fixed

graphical grammar.

Shapes are recognized,

finitely enumerable

geometric information. In

other words, if a shape can

be rigidly described

geometrically, then it is

possible for LADDER to

recognize it.

LADDER was designed for

shape recognition, which is

distinct from the traditional

handwriting recognition

techniques employed on

handwritten EA symbols.

24

Table 1 (cont.). Ideal shapes for the LADDER sketching language and the

challenges for written symbols in EA languages.

Property Explanation Challenge

Solely composed of

primitive constraints.

Shapes must either be a

primitive geometric shape

or a combination of them.

If a shape or a particular

part of it contains a non-

primitive constraint, then it

is not included in the shape

description.

Some symbols in EA

writing scripts are

composed of components

that may not easily be

described geometrically.

These parts may require

that they be approximated

as geometric primitives,

possibly at the sacrifice of

accuracy.

Few curves or trivial

curves details.

Curves in general are much

more difficult to describe

geometrically, since they

contain much more

variations. Incorporating

the necessary geometric

information to capture this

variety would greatly

complicate constructing

shape definitions in

LADDER.

Some scripts in written EA

languages consist of

symbols that contain non-

trivial curves. Symbols

with these curves can exist

in the same stroke as non-

curves, which complicate

the task for corner-finding

algorithms.

Much regularity and few

details.

Irregular shapes and shapes

with numerous details

become problematic with

LADDER since this

expands both the length and

the logic of shape

descriptions. Consequences

include lengthier times to

debug shape descriptions

and increased recognition

running time to check if

constraints have been

fulfilled.

Symbols in some written

EA scripts are constructed

in a hierarchy, which is a

feature supported in

LADDER. For the more

complicated symbols,

which may consist of quite

a number of details (e.g.,

many strokes) and much

irregularity (e.g., hierarchy

of several layers), this may

cause non-trivial running

time issues.

25

4.1 Relevant LADDER Specifications

The structured geometric information that is shape descriptions (i.e., for

LADDER to reference shapes from a wide array of domains) is broken up into multiple

parts. The parts that are used as the building blocks of shape descriptions are as follows:

components, constraints, aliases, editing, and display. Of the five specification parts,

the first three (i.e., components, constraints, and aliases) play a significant role for the

written structure assessment, while the last one (i.e., display) aids in providing visual

feedback to the student. The following subsections summarize their purpose in

LADDER and elaborate on how they are adapted in the methodology for recognizing

symbols in written EA languages.

4.2 Components

The first part of the shape descriptions is the components section, which consists

of a list of elements that a shape is built from. Components serve as the building blocks

of shapes and are analogous to ingredients in a food recipe. Furthermore, components

must first be defined before defining the rest of the specifications of the shape

descriptions, since the rest of the shape descriptions are dependent on knowing the

components to constrain on. These components can be categorized into three different

categories (Figure 1):

• Primitive geometric components (i.e., primitives). By definition, these types

of components are the most fundamental shapes for any domain. In other words,

primitives cannot be further broken down to smaller components, since they

26

serve as the base components for shapes in the domain. The primitives relevant

to the symbols in written EA languages for this methodology are: lines, curves,

and ellipses (Figure 2.a).

• Simple components. These components are related to primitives in that they are

a combination of primitives (Figure 2.b). In other words, a simple component is

entirely built of only primitive parts that are not already themselves simple

components. If primitives are the building blocks of simple components, then

these components are the building blocks of the next category of components

called compound components.

• Compound components. These components differ from simple components in

that they are a combination of smaller components; they can either be built from

simple components, simpler compound components, or a mixture of the two

(Figure 2.c). Compound components relevant in written EA languages for this

methodology include but are not limited to: symbols from EA writing scripts (e.g.,

Chinese characters), radicals (i.e., subcomponents of Chinese characters), and

other subparts of written EA language symbols.

27

(a)

(b)

(c)

Figure 1. The three primitive geometric components used in the methodology for written

EA languages: (a) lines, (b) curves, and (c) ellipses.

(a)

(b)

(c)

Figure 2. Examples of the utilized geometric components: (a) primitives, (b) simple

components, and (c) compound components.

28

The visual structures of the different symbols in the various writing scripts of EA

languages are diverse in nature, and the question that needed to be addressed for the

methodology was whether the selected three primitives are sufficient to capture these

visual structures while retaining reasonable recognition rates. After empirical

observations, the following conclusions were derived based on the symbols that are

commonly taught in introductory EA language classes:

• Many strokes in written EA language symbols can be sufficiently

approximated with line primitives. One of the techniques used in HMMs for

recognizing written EA language symbols, especially for Chinese characters, is

to approximate them as a collection of lines. This strategy is adapted for the

geometric-based methodology discussed in this thesis for symbols that possess a

dominantly line-based visual structure.

• Curves with large degree of “bending” are approximated as curve

primitives. Strokes that visually resemble curves pose a challenge compared to

lines, since curves present much more variety and are geometrically more

complex to define. Due to this, curves that have a high degree of curvature and

cannot be reliably recognized as a sequence of line primitives are instead treated

as curve primitives.

• The circular subparts of symbols are treated as ellipse primitives. Much like

how circles are treated as special cases of ellipses in geometry, sketched circles

that make up a subpart of certain written EA language symbols are recognized as

ellipse primitives.

29

In addition to listing the components in the shape description for a particular

written symbol, one can also assign unique labels for these symbols, much like how

variables can be assigned names in conventional programming languages. For this

methodology, special care is taken to how the components are labeled in providing a

systematic naming scheme. This becomes more relevant for the alias specification, but

in the mean time, the initial naming scheme for the following components is as follows:

• Line components. Labels for lines are given based on both orientation and

relative location within the symbol. For example, if there exist a horizontal line

located on the left side of a multi-stroke symbol, then that line is labeled as

leftVertLine.

• Curve components. Labels for lines are given based on relative location within

the symbol. If the curve within the symbol is unambiguous (e.g., there is only

one curve within the symbol), then it is labeled simply as curve.

• Ellipse components. Similar to curves, labels for ellipses are given based on

relative location within the symbol, and are similarly labeled simply as ellipse if

the primitive component is unambiguous within the symbol.

• Simple/Compound shape components. Labels for single and compound shapes

(i.e, the written EA language symbols) are given based on one of three naming

schemes:

o Enumerated name. If a particular symbol is part of a list of symbols that

are being taught or tested on, then the symbol is assigned an enumeration

30

that matches the one given in the corresponding language textbook that

contains the symbol.

o English translation. If the symbol is not given an enumerated symbol

due to not fulfilling the previous conditions for one (e.g., it is an unnamed

subcomponent, it is a review symbol from a previous symbol), then it is

labeled by its English translation.

o Romanization equivalent. Given the nature of EA languages, there

might not be a simple direct translation of a symbol (e.g., it is used in a

grammatical structure, it has a complicated translation). In this case, it is

labeled by its Romanization equivalent.

4.3 Constraints

Following components is the second specification called constraints, which is

defined as the geometric relationships between the components. Resorting to the food

recipe analogy once again, if components serve as the ingredients, then constraints are

the cooking instructions. In other words, after the components are checked in the

sketched input to determine if they exist, the constraints are then checked for the

correctness of their relationship behavior. These kinds of relationships between the

components can either be unary, binary, or ternary constraints.

The LADDER sketching language already includes a library of constraints for

use in shape descriptions to recognize written input from a variety of domains. Of these

existing constraints, a subset of those constraints were found to be highly useful for

31

creating shape descriptions specific to recognizing written East Asian language symbols.

These available LADDER constraints that were employed are grouped into the following

categories and described in Table 2 through Table 7.

Table 2. Orientation Constraints: checks whether a line is a slope or an anti-diagonal; they

are always unary. E.g., checks if a particular line has a positive slope.

Table 3. Point Relationship Constraints: Compares the center, endpoint, or bounding

position of two shapes. E.g., checks if the center of one line is left of the center of another

line.

32

Table 4. Position Constraints: Compares the position of two shapes relative to each other.

E.g., checks if a particular line is left of a particular circle.

33

Table 5. Proximity Constraints: Checks for the closeness proximity of one shape to another

by some relative threshold value. E.g., checks if a particular shape is near another

particular shape.

Table 6. Length Constraints: Compares the length of two lines relative to each other. E.g.,

checks if one line is longer than another line.

Table 7. Logical Constraint: Involves negating a constraint or operating disjunction on two

constraints. By default, all constraints in LADDER are mutually conjunctive. E.g., checks

if a line does not have a positive slope.

34

4.4 Aliases

 The third specification is aliases, which is conventionally used in LADDER to

simplify other elements in the description. As a feature in LADDER, aliases provide a

mechanism to assign additional alternate labels to existing component names. One of

the concrete benefits of using aliases is their ability to provide more intuitive names to

existing components or the subparts (e.g., inner components, points) within those

components. In regard to this methodology, aliases are given to primitive components

(i.e., lines, curves, and ellipses) based on their stroke order enumeration, and optionally

given to non-primitive components based on naming schemes that were not initially used

in the components specification of the shape description (Table 8).

Table 8. Comparisons between naming schemes for original labels and aliases.

Component Type
Original Label Naming

Scheme
Alias Naming Scheme

Line
Relative location.
Orientation type.

Stroke order enumeration.

Curve
Component type.
Relative location

(optional).
Stroke order enumeration.

Ellipse
Component type.
Relative location

(optional).
Stroke order enumeration.

Simple/Compound Symbol
Enumerated name or
English translation or

Romanized equivalent.

Naming scheme not chosen
in original label (optional).

Aliases not only serve as a convenience in constructing shape descriptions for a

variety of domains in LADDER, but they also serve a dual-purpose specifically for the

domain of written East Asian languages in the methodology. That is, for the aliases

35

applied to the line, curve, and ellipse components in the shape descriptions, they are also

specifically referenced for assessing the correctness of students’ written technique. This

important secondary feature of aliases is further elaborated in the section dedicated to the

handling of written technique, but a comparison of the original component labels and

their matching aliases can be found in Figure 3.

Figure 3. A side-by-side comparison of the original component labels and the

corresponding aliases for an example Chinese character: (a) the original component labels,

and (b) the aliases.

4.5 Display

 The last relevant specification for the methodology is the display specification,

which is defined as methods that indicate what to display when the object (i.e. the sketch)

is recognized. The display specification contains various methods related to how the

input strokes are displayed back to the user, and while this specification does not directly

affect the classification of either the visual structure or the written technique of the EA

language symbol input, it provides the capability for one form of explicit feedback of

36

students’ written input through visual cue interactions given on those input strokes. In

this particular methodology, the display specification was employed in the following

fashion:

• Beautification disabled. By default, the LADDER sketching language

enables the beautification of strokes, which is the removal of mess and clutter

from the original sketches such as those found in natural writing. With

beautification, the strokes are visually altered to more visually precise shapes,

such as straighter lines and more consistent curves. The methodology does

not enable beautification, but instead maintains the look of the original

strokes in order to maintain consistency of what users normally see in natural

writing. In addition, it was observed that when the strokes are beautified, the

beautified strokes are displaced from the original position of the original

strokes. When two strokes connected at the endpoint are drawn separately

(i.e., separately sketched with the lifting of the stylus), users connected the

beautified strokes when beautification was enabled. This writing behavior

caused recognition problems, since the corner-finding and grouping

algorithms used in LADDER rely on the positions of the original strokes;

when users connect the strokes on the beautified strokes instead of the

original strokes, the recognition does not treat the strokes as being connected

at the endpoints. Therefore, since beautification indirectly affects recognition

of the written input, it is disabled in the methodology.

37

• Coloring the strokes. One of the two visual cues employed in the

methodology to provide users on their sketches is changing the colors of the

sketched strokes after a particular symbol has been recognized. This option

of coloring the strokes when it is recognized by LADDER allows students to

receive visual structure feedback by informing them that their symbol is

visually correct. The stroke coloring method is more suited for instructing or

reviewing the symbols, while is recommended to be disabled for testing. In

this methodology, if the stroke coloring option is enabled, then unrecognized

strokes are left as the default blue color, recognized subcomponents of a

symbol typically change to red strokes, and the completed recognized

symbols are changed once again to dark gray strokes.

• Supplementary text output. In addition to coloring the strokes, the sketches

can be augmented with surrounding supplementary text on the drawing panel

after a symbol or a subcomponent of it has been recognized. This can be

used for multiple purposes, such as one more form of visual aid to the student

and also as a convenient visual cue for debugging the correctness of a

particular shape description for symbols. The supplementary text in the

display specification can be placed in a variety of locations on and around the

text.

38

5. METHODOLOGY OF CONSTRUCTING SHAPE DEFINITIONS

 Much like how there is freedom of style in writing a piece of code for a particular

high-level programming language, there are analogously numerous variations in

constructing shape descriptions in the LADDER sketching language. Despite this

flexibility, it is advantageous to have an efficient type of convention for designers in

constructing shape definitions, similar to how existing style guides and coding

conventions are provided for coders of a particular programming language. One reason

is that having a convention allows shape descriptions to be constructed in a systematic

and formatted methodology; not only does this reduce the complexity of constructing

shape descriptions for the designer, but it also eases the debugging of shape descriptions

such as when a chosen constraint performs poorly in recognition.

For the case of symbols in written EA languages, establishing a shape

construction convention is even more important due to the complexity of the symbols

and the similarities between them. For this methodology, a convention was introduced

for the sake of creating shape descriptions that were robust enough to handle the

diversity of written EA language symbols while also keeping the order of those shape

descriptions manageable in terms of ease of readability. This convention can basically

handle shape descriptions for most cases, and further modifications can be done to

handle special cases for symbols in certain written EA language scripts.

39

5.1 Single Simple Shape

A single simple shape can be described straightforwardly in this thesis as an

individual shape in LADDER that is built entirely of primitive shapes. Due to this,

geometric constraints that are used in the shape descriptions of single simple shapes are

frequently more simplified since they only interact with the endpoints and boundaries of

the primitive shapes in LADDER. Despite these shape descriptions relying only on the

physical properties of primitive shapes as opposed to also including those from more

complex shapes, the shape descriptions for these single simple shapes are non-trivial

since their correctness impacts the correctness of shape descriptions for more complex

shapes that utilize single simple shapes.

While there is flexibility in how the constraints can be listed in the shape

descriptions such as those for single simple shapes, for the case of shape descriptions

specific to symbols of written EA languages, an ordered format style was used to order

the constraints so that readability and debugging capabilities can be improved. This is

also done because each line component in LADDER has endpoints and midpoints

assigned p1, p2, and center, respectively; since the assignment of endpoints p1 and p2 in

each line component changes depending on how the line is drawn when context is not

provided, those endpoints are explicitly assigned their placement relative to each other in

a systematic fashion. That is, the p1 endpoints of each line component is assigned as

being left relative to their corresponding p2 endpoints for all non-vertical lines, and

assigned as being above relative to their corresponding p2 endpoints for vertical lines.

The order of constraint groups in the format style is summarized below.

40

1) Line orientations. Based on all the line components that make up the shape,

these lines are constrained based on their orientation.

2) Endpoint ordering. After the lines are constrained by orientation, their

endpoints are constrained based on their relative location from one another.

3) Spatial relationships. As opposed to the previous two constraint groups, these

constraints consist of how the components spatially relate to other components.

In other words, the spatial relationships group consists of the rest of the

constraints that make up the constraints portion of the shape descriptions.

Listing aliases also provide an important contribution in building shape

descriptions for single simple shapes. One advantage is through ease of use; that is,

aliases allow a designer to reference a particular part of a shape (e.g., vertLine.p1) with

an easier-to-understand label (e.g., leftPoint). Another advantage is through practicality;

that is, the only way for more complex shapes in LADDER to utilize a specific

component from a simpler shape is by explicitly referencing it through its alias. This is

done for the sake of computation, since the computational time to allow designers to

possibly directly access every possible combination of subcomponent when constructing

more complex shapes becomes exponentially large. From the standpoint of single

simple shapes though, since these shapes are constructed solely using primitive shapes,

the value of aliases does not seem immediately apparent. It is still important to label

specific parts of these shapes as aliases when these shapes are used to build compound

shapes, since this simplifies the process of constructing compound shapes composed of

single shapes. This will be made more readily apparent in the next subsection.

41

Figure 4. A shape description for the Chinese character ten.

To illustrate the methodology of constructing shape descriptions for single

simple shapes, example shape descriptions for two specific Chinese characters – ten and

mouth – are introduced in Figure 4 and Figure 5, respectively. These two Chinese

characters are not only composed entirely of primitive shapes, or more specifically lines,

but they are also simple single shapes that are commonly used in more complex EA

symbols. In fact, these two Chinese characters will be combined in the next section in

order to describe the methodology for constructing single compound shapes.

42

Figure 5. A shape description for the Chinese character mouth.

43

5.2 Single Compound Shape

 Expanding beyond single simple shapes are single compound shapes; shapes of

this kind are composed of at least two simpler shapes, one of which is of type single

simple shape. Two obvious benefits in creating shape descriptions for a more complex

Chinese character as a single compound shape is that it:

1) simplifies the logic of designing, and

2) reduces the computational time in recognizing that shape.

For the former, the designer can simply add an existing simple shape as one of the

components into the shape description instead of re-writing that simple shape’s shape

description. For the latter, the computation time for recognizing these more complex

shapes is reduced as a result of LADDER processing less primitive shapes.

 The importance of creating alias labels for relevant parts of the single simple

shapes in the previous section can now be realized for shape descriptions specific to

single compound shapes. The reason is that it makes it easier, perhaps even feasible, to

determine where in the shape description a particular single simple shape is relative to

other inner shapes for the compound shape. In fact, creating shape descriptions for

single compound shapes are simply an extension of the process in creating shape

descriptions for single simple shapes. Furthermore, the user-created alias labels (e.g.,

labels rightPoint and bottomRightPoint) for simple shapes (e.g., a basic Chinese

character) within single compound shapes are analogous to the default core components

(e.g., the points p1, p2, and center) for primitive shapes (e.g., a line) within single simple

44

shapes. Figure 6 demonstrates one such shape description for a single compound shape

composed of two single simple shapes.

Figure 6. A shape description for the Chinese character ancient.

5.3 Multiple Shapes

 The next extension from recognizing single shapes – whether they are simple or

compound – is recognizing more than one of them within the sketching area of a

45

particular CALL system. For written EA languages, this is very important since symbols

are not written in isolation. In fact, many words in written EA languages require

multiple symbols in order to achieve their meaning. Tackling the difficult challenge of

recognizing multiple shapes absent of sketching constraint is significantly alleviated

with LADDER, which is accomplished by first constructing a shape description

containing the set of multiple shapes. In other words, the components section of the

shape description lists the complete symbols that make up the target written EA

language word.

 While listing the complete symbols that make up the target word is a necessary

condition in the shape description, their mere listing is not sufficient enough to complete

the shape description. This can easily be seen by drawing these symbols with varying

sizes at random locations of a CALL system’s sketching area. Therefore, the designer

must also include at least three additional conditions in the shape descriptions to provide

sufficient recognition of multi-symbol words. These conditions come in the form of

listing physical relationships amongst the symbols relative to each other.

1) Relative position. Unlike the written properties of European languages such as

English, written EA languages are more flexible in that they can be written in

multiple ways such as left-to-right, right-to-left, and top-to-bottom. Therefore,

relative position can be taken into account through the constraints portion of the

shape description. After the preferred writing direction is established, the

designer should explicitly state where the symbols are physically located relative

46

to each other. This can be accomplished with the constraints leftOf, rightOf,

above, and below.

2) Relative size. The symbols in written EA symbols are inherently contained

within a block much like a bounding box of square proportions. Therefore, the

shapes that make up a multi-shape written EA language word must have similar-

sized bounding boxes. This property can be established by either matching the

bounding points of the symbols to the same axis through the constraints sameX

and sameY, or by ensuring that one symbol is contained entirely within the

extreme bounding points of another slightly longer or slightly wider symbol.

3) Relative closeness. This last property exists to ensure that the shapes that make-

up a multi-symbol word are grouped within a reasonable space. In other words,

the property of relative closeness exists to make sure that symbols of one word in

one part of the sketching area do not accidentally get incorrectly recognized with

symbols of another word in another part of the sketching area. To achieve this

property, the designer can make use of constraints such as the two-argument near

and the three-argument closerThan constraint. The former constraint relies on an

absolute pixel distance, while the latter constraint compares the pixel distances

against two given shape components.

In essence, the shape descriptions for a multi-symbols word operate on complete

symbols analogously to how shape descriptions for a single compound shape operate on

simpler shapes and primitive shapes, as well as how shape descriptions for a single

47

simple shape operate on primitive shapes. A concrete example of a multi-symbol word’s

shape description can be seen in Figure 7.

Figure 7. A shape description for the Chinese characters Japan.

5.4 Handling Special Cases

 The methodology for constructing shape definitions in this thesis so far

generalizes reasonably well for the symbols of the various EA writing scripts, especially

for polyline-heavy scripts such as Chinese characters. Some scripts though exhibit

visual structure properties that may be more challenging to describe with the

methodology. In order to address these challenging properties, the methodology was

adapted to address the special cases inherent in the writing scripts of interest.

48

 One such example exists within the combined forty-one phonetic and tonal

symbols that make up Mandarin Phonetic Symbols I (MPS1), which are the three

symbols in the set consisting of a single straight line: the symbol for the phonetic i sound,

and the symbols for the rising and falling tones (Figure 8). Treated in isolation, these

three symbols are trivial for a recognizer to correctly recognize due to their simple

property of being a single stroke.

The problem becomes readily apparent when making use of LADDER for

recognizing the symbols in MPS1, especially when a sequence of symbols contains one

of the three single straight symbols that frequently occur in writing. This is because

LADDER employs eager recognition on sketched input; in other words, the moment a

user lifts the stylus from the writing surface of the computer screen, LADDER attempts

to recognize the stroke after it has been converted to its primitive shape equivalent by

matching it to existing shape descriptions in the domain. Therefore, given some symbol

in MPS1 which consists entirely of lines, its corresponding shape description would

therefore contain entirely of lines in the components section. The issue occurs when at

least one of those lines happens to be visually equivalent to one of the three single

straight line MPS1 symbols; with eager recognition in LADDER, the multi-line MPS1

symbol will therefore not achieve correct recognition since one of its component lines

will prematurely be recognized as a single straight line MPS1 symbol. This is especially

problematic since the primitive line equivalents of the three single straight line-based

symbols occur so frequently within the multi-stroke MPS1 symbols. A visual example

49

of this issue which shows a multi-stroke MPS1 symbol containing a single straight line-

based MPS1 symbol can be seen below in Figure 9.

Figure 8. The three single straight line symbols in MPS1: (left) The symbol for the phonetic

i sound, (middle) the symbol for the rising tone, (right) the symbol for the falling tone.

 The problem becomes readily apparent when making use of LADDER for

recognizing the symbols in MPS1, especially when a sequence of symbols contains one

of the three single straight symbols that frequently occur in writing. This is because

LADDER employs eager recognition on sketched input; in other words, the moment the

user lifts the stylus from the writing surface of the computer screen, LADDER attempts

to recognize the stroke after it has been converted to its primitive shape equivalent by

matching it to existing shape descriptions in the domain. Therefore, given some symbol

in MPS1 which consists entirely of lines, its corresponding shape description would

therefore contain entirely of lines in the components section. The issue occurs when at

least one of those lines happens to be visually equivalent to one of the three single

straight line MPS1 symbols; with eager recognition in LADDER, the multi-line MPS1

symbol will therefore not achieve correct recognition since one of its component lines

50

will prematurely be recognized as a single straight line MPS1 symbol. This is especially

problematic since the primitive line equivalents of the three single straight line-based

symbols occur so frequently within the multi-stroke MPS1 symbols. A visual example

of this issue which shows a multi-stroke MPS1 symbol containing a single straight line-

based MPS1 symbol can be seen below in Figure 9.

Figure 9. The symbol for the phonetic i sound physically contained within the symbol for

the phonetic f sound in MPS1.

In order to resolve this issue for the domain of MPS1 symbols, the methodology

needs to be modified as follows: if a line component within a multi-stroke MPS1

symbols is visually equivalent to an existing single straight line MPS1 symbol, swap that

line component with the visually equivalent symbol, such as in Figure 10.

One important consequence regarding this modification to the methodology is

that the designer loses the default aliases p1, p2, and center that are given to all primitive

line components in LADDER. This consequence can be resolved by redefining those

default aliases in those single straight line-based symbols’ shape descriptions.

51

Figure 10. A visual representation of the modified MPS1 methodology for the case of the

phonetic f sound symbol. The modified methodology swaps the conflicting line components

with their visually equivalent MPS1 symbols.

 For another EA writing script, the hangul writing script for the Korean

language – unlike other EA writing scripts – incorporates one primitive shape that is not

found in the other writing scripts: the circular-shaped ieung symbol (Figure 11). In the

methodology described in this thesis, the assumption was that the symbols in the various

scripts of written EA languages were composed of:

• straight lines represented as line components,

• curved lines represented as curve components, or

• curved lines which could be approximated as line components.

In the case of letters (i.e., symbols) in the hangul script, the circular subcomponent

exhibits geometric properties that cannot sufficiently be satisfied by the above

assumptions. This can be remedied by adding the ellipse primitive shape as a

component to represent the circles that are in certain hangul letters.

52

Figure 11. The circular shaped ieung symbol in an example hangul letter.

One important property that needs to be noted regarding the circular ieung

symbol – which is used within certain hangul letters – is that the other polyline

components used in those hangul letters lie externally from that circular shape; that is,

the lines never intersect the circles. The need for modifying the methodology to thus

accommodate ellipse components for representing the ieung symbol becomes apparent,

since existing default aliases used in the line components are insufficient for

constructing shape descriptions for those hangul letters.

The first motivation behind a modified methodology for written Korean relates to

the default aliases of endpoints p1 and p2 line components, since line endpoints do not

have a clear analog in ellipse components due to their closed-shape nature. The second

reason relates to the default midpoint alias of center; unlike in line components,

geometric constraints that interact with this default alias for ellipses must rely on other

elliptical geometric properties in order to determine whether a particular part of the

shape description refers to either the inside or to the outside of the circular symbol. In

other words, utilizing ellipse components requires utilizing different default aliases in

53

order to determine whether a line component is properly external to an ellipse

component.

The solution employed in the modified methodology for written Korean –

specifically ellipse components – is to have the constraints interact with another set of

default aliases responsible for the bounding points of the ellipse (Figure 12). These

bounding points are points that lie specifically at relevant points located on the ellipse’s

bounding box.

Figure 12. The bounds of an ellipse, including the highlighted bounding points that

serve as default aliases for ellipse components in LADDER.

For this modified methodology, the default aliases of interest are the bounding

points that lie on an eight-point compass rose of the ellipse component: boundTopMiddle,

boundTopRight, boundRightMiddle, boundBottomRight, boundBottomMiddle,

boundBottomLeft, and boundLeftMiddle, and boundTopLeft. With these bounding points,

the designer can sufficiently constrain the physical location of an ieung symbol within a

particular hangul letter relative to surrounding polylines in a LADDER shape description.

54

6. OVERVIEW OF WRITTEN TECHNIQUE ASSESSMENT

 Much like visual technique assessment, assessing the written technique of

students’ written EA symbols is handled using LADDER. The difference though is that

the capability to handle the written technique assessment – which involves a system

checking for the correctness of the written symbols’ stroke order and direction – requires

additional actions that are not directly supported in LADDER. Therefore, supporting

this assessment requires an expanded approach of matching part of the LADDER shape

descriptions to the labeled segmented strokes’ raw temporal information. In other words,

the written technique assessment for this methodology occurs after the strokes are

segmented and later works in conjunction with the same shape descriptions used in the

visual structure assessment. The rest of this section will describe how written technique

assessment is handled using this expanded approach.

6.1 Limitations of Assessing Written Technique in LADDER

Besides constraints that are based on the geometric properties of a sketch,

LADDER also provides a constraint called drawOrder that can check whether correct

stroke order was followed by comparing whether one shape was drawn before another.

This same constraint can also be used to determine if a shape followed the correct stroke

direction by comparing whether one endpoint of a shape was drawn before the other

endpoint. From an initial observation, it would appear that LADDER is sufficiently

capable of recognizing the correctness of stroke order and stroke direction, two key

properties for assessing the written technique of students’ written EA symbols. That is,

55

if a student draws a particular written EA symbol with both correct visual structure and

written technique, then LADDER would be able to recognize that symbol as being

visually and technically correct.

The limitation of relying on LADDER in assessing students’ written technique

occurs when the designer wishes for the system to also provide feedback for cases when

the student draws a particular symbol visually correct but technically incorrect. If the

system relies solely on the drawOrder constraint within the shape descriptions, then

symbols will not be recognized by LADDER unless the visual technique and the written

technique are both correct. In other words, even if the student draws the symbol visually

correct, if the written technique is incorrect then the symbol will still be recognized as

completely incorrect. This is because LADDER shape descriptions as dictated by the

methodology only gives a single feedback of correct or incorrect when two separate

feedbacks are needed for the visual structure and written technique. A possible solution

to accommodate the needed variable feedback for separate assessment of the visual

structure and written technique – while still completely relying on LADDER and its

drawOrder constraint – can be found in Table 9.

Based on the information in Table 9, designers who wish to provide assessment

for both visual structure and written technique entirely using LADDER will encounter

issues for the case of when the written symbol has correct visual structure but incorrect

written technique; specifically, the problem occurs in the designer needing to construct

multiple shape descriptions for each possible incorrect stroke order and direction. While

this accommodation does potentially address the issue in providing multiple feedbacks to

56

suit the situation, the solution is very repetitive and time-consuming on the part of the

designer as the number of symbols to recognize and the number of strokes for each of

those symbols increase in number.

Table 9. Accommodating multiple feedbacks using solely LADDER and its drawOrder

constraint for a single symbol.

Correct

Written Technique

Incorrect

Written Technique

Correct

Visual Structure

Construct a single LADDER
shape description that defines
the correct visual structure and
written technique properties.

Construct multiple shape
descriptions that all define the

correct visual structure
properties, but take into account
each possible incorrect stroke

order and direction.

Incorrect

Visual Structure

Only provide feedback that the
symbol has incorrect visual

structure, since written technique
is irrelevant for an incorrect

symbol.

Only provide feedback that the
symbol has incorrect visual

structure, since written technique
is irrelevant for an incorrect

symbol.

6.2 Strokes and Primitive Shapes

Before describing how the correctness of stroke order and direction is checked, it

is first important to differentiate between strokes, as it is used in the EA language

curriculum; and primitive shapes, as it is used in LADDER. In a conventional EA

language curriculum, a stroke is defined in the EA language curriculum as the mark that

is made from the moment the writing device makes contact with the surface to the

moment that the writing device is lifted from the surface, so stroke order consists of a

temporal sequence of these marks. Therefore, stroke order and direction is based on the

temporal ordering of the sequence of pen-down to pen-up motions.

57

In contrast, the methodology alternatively assesses the correctness of the stroke

order and direction by the temporal ordering of the segmented primitive shapes when

they were originally sketched. The concept of checking for correctness between how an

instructor performs the task in the classroom and how a system that implements the

methodology for a CALL application is conceptually similar; the difference is that the

strokes as defined in the curriculum are treated as segmented primitive shapes in the

methodology (Figure 13).

(a) (b)

Figure 13. Label comparisons for the Chinese character mouth: (a) Enumerated labels for

temporal order of strokes in conventional EA language instruction, and (b) enumerated

aliases for temporal order of primitive line components for the methodology.

6.3 Customizing Aliases for Simple Symbols

 As an alternative to the drawConstraint constraint in LADDER, the methodology

relies heavily on LADDER’s user-created aliases and their additional purpose as labels

for segmented primitive shapes in order to handle stroke order and direction correctness.

This use of aliases differs from how they are used in the visual structure assessment,

where aliases serve as either a way for more complex written EA symbols to access

58

specific subcomponents of their inner simpler symbol components, or as more intuitive

labels for designers to more easily construct shape descriptions. For simple symbols (i.e.,

symbols composed entirely of primitive shapes), the specific steps for exploiting aliases

to handle stroke order correctness are as follows:

1) For each primitive shape in the components section of the shape description,

create a new corresponding alias for that primitive shape.

2) For each new alias created, label that alias as line#, where # is the stroke order

number of that primitive shape. For example, if a given line is the third stroke in

the stroke order, then that line is enumerated as line3.

Similarly for direction correctness, the steps are as follows:

1) For each primitive shape in the components section of the shape description,

create a new corresponding alias for both the starting and ending endpoints.

2) For each new alias created for the starting endpoint, label that alias as start#,

where # is the stroke order number of that primitive shape for which that point

belongs to. For example, if a given line is the third stroke in the stroke order,

then its associated starting endpoint is enumerated as start3.

3) Similarly for the ending endpoint, label the alias as end#, analogous to what was

done in the previous step but for ending endpoints.

An example of the above steps for aliases related to stroke order and direction can be

found specifically for the Chinese character ten in Figure 14.

59

Figure 14. Partial shape description for the Chinese character ten which focuses primarily

on the components and also the aliases related to stroke order and direction.

6.4 Customizing Aliases for Compound Symbols

 Customizing aliases for simple symbols is a relatively straightforward process,

since aliases are created, labeled, and matched to their corresponding primitive shapes

and endpoints within the target symbol (Figure 15.a and Figure 15.b).

60

(a) (b)

(c)

Figure 15. Stroke order and direction labels for a compound and two simple symbols: (a)

Stroke order and stroke direction labels for the Chinese character ten, (b) stroke order and

partial stroke direction labels for the Chinese character mouth, and (c) stroke order labels

for the Chinese character ancient.

While this assumption holds true for simple shapes, aliases need to be

customized in a different way when a written symbol is a compound symbol. The core

reason is that customizing the aliases to written technique assessment requires that these

aliases are tied to their corresponding primitive shapes, which is distinct from the user-

created shapes found in compound shapes. The direct solution is to re-label the aliases

from the simple symbols so that the stroke order and direction are maintained for the

compound symbol (Figure 15.c).

61

6.5 Assessing the Written Technique Using Aliases

 Once the aliases have been customized to their corresponding primitive shapes

and their endpoints, assessing the correctness of the written EA symbol’s stroke order

and direction is a straightforward matter of retrieving the raw temporal values of the

segmented strokes retrieved from those custom aliases. The following steps summarize

the prior steps that have been undertaken before written technique assessment in this

methodology occurs:

1) Collect the data. Prior to segmenting the strokes for use in LADDER, written

data is collected from the stylus in the form of spatial (i.e., x- and y-coordinates)

and temporal data.

2) Segment the strokes. The strokes are segmented using specialized algorithms

into primitive shapes, which also contain the temporal data associated with those

segmented spatial data.

3) Create custom aliases. Aliases are created for each primitive shape to denote

their order and direction in the strokes.

Once custom aliases have been created, the next step is to perform the assessment on the

written technique. This step assumes that the written EA symbol has already been

successfully recognized as having correct visual structure. The reasoning behind this is

that if a symbol is visually incorrect (e.g., the symbol was drawn correctly but was not

the symbol that was prompted, the symbol’s visual structure contains visual errors), then

the drawing’s written technique will not be relevant since it is not related to the

62

prompted symbol’s correct visual structure. The steps below first describe how the

custom aliases coordinate with the temporal data to assess the stroke order, subsequently

followed by stroke direction assessment. These two steps assume that the visual

structure is also correct, and additionally the check for correct stroke direction is

optional if the stroke order check fails.

•••• Checking for correct stroke order:

1) The methodology first retrieves the customized aliases from the alias section

of the written symbol’s associated shape description, and then stores those

aliases in a list.

2) Next, the aliases are used to reference their corresponding primitive shape

from the segmented data.

3) Afterwards, the raw temporal data of the primitive shapes are extracted and

used to order the corresponding aliases in temporal order.

4) Finally, since the aliases for stroke order begin with line and are enumerated,

the enumerated value for each alias ischecked for correct ascending order. If

the numbers are ordered correctly in ascension, then the methodology denotes

the stroke order as correct. Otherwise, it is incorrect.

•••• Checking for correct stroke direction:

1) Referencing the list of primitive shapes extracted for the stroke direction

check, first iterate through this list of primitive shapes and retrieve the first

point sketched temporally for that primitive shape.

63

2) Next, compare each primitive shape’s endpoints and determine which

endpoint lies closest to the first initially sketched point of that primitive line.

This step is necessary since the first point in the sequence of raw points for a

primitive shape may be slightly different from the aliased endpoint of that

primitive shape due to how segmentation is performed.

3) Lastly, retrieve the equivalent custom alias that corresponds to that initially

sketched point. That custom alias is a label that may either begin with the

label start or end. If it begins with start, then continue to the next primitive

shape. Otherwise, that label starts with the label end, and therefore the result

of the student’s written EA symbol is incorrect stroke direction since the

incorrect endpoint was sketched first.

4) If the entire list of primitive strokes has been iterated through, and if each

custom alias specific to stroke direction assessment begins with the label start,

then the result is that the stroke direction is correct.

After assessing the stroke order and direction using the above steps, results for both the

current written technique and the previous visual structure can then be used for CALL

applications to display the results as seen fit by the application designer. A visual

example of the written technique assessment that utilizes the custom aliases can be found

in Table 10.

64

Table 10. Assessing the written technique of three different writing styles for the Chinese

character ten based on their custom aliases for stroke order and direction.

65

7. IMPLEMENTED APPLICATIONS AND EVALUATION

The primary motivation in creating the methodology is so that it could be

implemented into a CALL system tailored specifically for written EA languages. In this

section, CALL systems were implemented for the following two distinct writing scripts

to showcase the range and depth that the methodology can achieve:

• The kanji script. The non-phonetic Chinese characters specific to written

Japanese.

• The Mandarin Phonetic Symbols I (MPS1) script. The phonetic symbols

specific to representing the Mandarin sounds in written Chinese.

The rest of this section will introduce the capabilities and evaluate the effectiveness of

those different CALL systems.

7.1 Hashigo: A CALL System for Handwritten Japanese Kanji

The Hashigo system [30], which was the first completed system to implement the

methodology, is a CALL system developed specifically for the instruction of the

Japanese kanji script (Figure 16). In addition, Hashigo’s interface successfully adopts

key features in the methodology, specifically: free-sketch input, paper-like interface,

digital capabilities, and emulated teacher feedback (Figure 17). This fully operational

learning tool – which provides a graphical-user interface (GUI) over the recognition

provided in the methodology – follows the instructional techniques established in a

Japanese language textbook [7] by prompting users to sketch the kanji and their elements

66

(i.e., the corresponding simpler kanji contained within them) that is introduced in that

textbook’s chapters.

Figure 16. An overview of the Hashigo GUI, incorporating four of the key features in the

methodology: free-sketch input, paper-like interface, digital capabilities, and emulated

teacher feedback.

Figure 17. The Hashigo selection window for choosing the lesson type and kanji or element

set.

67

In the Hashigo system, a type of review setup was created for three of the

chapters in the source textbook, but the system can easily be expanded to include

additional chapters in future iterations. Upon usage of the CALL application, users are

initially given the following two choices (Figure 17):

• Learn mode: Before drawing a new kanji or element, the user is shown an

animation of how to draw it, a textual hint to help in memorization, and an

assessment of the visual structure and written technique of the previous kanji or

element prompted, if there was one (Figure 18).

Figure 18. The instruction window for the Learn Mode in Hashigo for an individual

symbol.

• Review mode: Unlike in Learn mode, this mode initially prompts the user to

draw a particular kanji or element given its English translation. After the user

68

confirms completion of the sketch, the application then provides one of three

possible feedbacks based on the user’s performance:

1) Correct visual structure and written technique. The user is

congratulated for achieving correctness on the kanji or element.

2) Correct visual structure, incorrect written technique. The user is

informed on the correct visual structure. In addition, the user also

receives feedback on what aspect of the written technique was

incorrect, as well as a reminder animation of how it is drawn (Figure

19).

3) Incorrect visual structure. The user is informed on the incorrect

visual structure and written technique, and receives remedial feedback

in the form of a reminder animation and textual hint.

Figure 19. The result window for the Review mode in Hashigo for an individual symbol.

69

Upon completion of a single lesson, regardless of whether the user selected Learn

or Review mode, the user receives a progress report card that reviews the kanji or

elements tested, as well as the user’s performance in drawing them (Figure 20).

Figure 20. The final progress report window after completing a lesson in Hashigo.

 In order to gauge the technical performance of Hashigo as a CALL system for

handwritten kanji, a series of three user studies were performed. The first evaluation

focused on its visual structure assessment capabilities, where a user study comprised of

eleven international graduate students from Texas A&M University proficient in kanji

were asked to write a total of nineteen kanji from a specific chapter twice. Since model

kanji to be used for teaching students the correct way to write was desired for the system,

the only requirement given to the participants was that they write the kanji as if though

they were teaching someone not familiar with them. The result of this user study was

that the system correctly classified 92.9% of the provided kanji. The entire data from the

user study was later used to tweak the shape descriptions so that natural handwritten

70

kanji were reflected in the system. Accuracies from existing online kanji recognizers in

[17] ranged 85% to 95%; therefore, the accuracy given by Hashigo is comparable to

those recognizers when recognizing expert users’ handwritten kanji.

 The second evaluation focused on the written technique capabilities in Hashigo,

which involved determining whether the system could properly differentiate written

technique factors like a human instructor. The corresponding user study consisted of

five non-East Asian students from the graduate school at Texas A&M University with no

prior knowledge of kanji writing. An initial user study was run on the participants by

asking them to write seven prompted kanji from a given kanji lesson, providing them

with no further instruction on how to draw these kanji other than their visual structure.

When this initial handwritten data was provided to the system, Hashigo generated 98.6%

accuracy on the visual structure. This rise in accuracy was attributed to the higher care

that novice participants took in drawing the kanji exactly as presented, in contrast to

their expert counterparts, whom may have taken less care and whose previous writing

habits may have biased their visual structure. In terms of written technique recognition,

it was first noted that all novice participants only gave correct written technique for 5.7%

of the visually-correct recognized kanji, which solidified the necessity of a sketch-based

CALL system for teaching correct written technique. Secondly, the system perfectly

differentiated those kanji with correct written technique from incorrect ones; that is,

Hashigo achieved 100% accuracy for written technique correctness.

 Lastly, a user study was created to evaluate the viability of Hashigo as a learning

tool. The same novice users from the previous user study were asked to use Hashigo

71

three times (i.e., preview, learn, and review) for a given lesson. After their third use of

Hashigo, the final user study was conducted by collecting handwriting samples from the

participants to gauge their kanji comprehension performance. After running through this

last set of data, the novice users scored 100% accuracy on visual correctness and 97.1%

accuracy on written technique correctness. This is a significant improvement of 5.7% in

written technique correctness by the same user participants prior to using Hashigo.

7.2 LAMPS: A CALL System for Handwritten Mandarin Phonetic Symbols I

 A similar system to Hashigo was developed exclusively for Mandarin Phonetic

Symbols called Language Assistance for Mandarin Phonetic Symbols I (LAMPS) [31]

(Figure 21). The latest iteration of the system tests students on their knowledge of

MPS1 symbols based on the vocabulary that is covered in the first chapter of [5] a

textbook used by several language programs in Taiwan.

 At the start of running the system, the user is prompted with two additional

windows that appear on the right side of the screen (Figure 22). The top-right window

informs the user of the next Chinese words to write the sequence of phonetic symbols for

(Figure 22.c), while the bottom window provides a visual structure and written technique

assessment for the previous sequence of phonetic symbols for the previous Chinese word

(Figure 22.d). This latter window provides the previously prompted word, the target

pronunciation(s), and the assessment. If the user wrote a certain symbol incorrect,

LAMPS also provides a visual guide on how to correctly write that symbol.

72

 Similar to the evaluation conducted on the Hashigo system, the LAMPS system

was evaluated on its effectiveness as a CALL system for the instruction of MPS1. The

first conducted user study evaluated the recognition rates of LAMPS for its visual

structure assessment. Ideally, the system should sufficiently recognize the handwritten

symbols of expert MPS1 writers based on the constructed shape descriptions, since the

objective of the dynamic workbook interface for MPS1 is for students to eventually

emulate the visual structure writing made by these native writers. For this user study,

nine Taiwanese graduate students at Texas A&M University with proficient MPS1

writing knowledge were recruited, with the additional prerequisite that they write the

symbols as if though they were teaching someone not familiar with them. This was

desired since casual writing was not representative of the type of model writing that was

desired to base the system’s recognition on as a pedagogical tool. The users were each

asked to write the MPS1 symbols twice, which were later evaluated for visual

correctness on an all-or-nothing recognition metric; in other words, the correctness of a

written symbol in LAMPS is counted only if the entire symbol is correctly recognized.

 The result of this first user study was that LAMPS attained 95% accuracy on the

visual structure of the study participants’ handwritten input, where the expert writers

wrote the correct symbol and that the misrecognized symbols were considered too

sloppily drawn for LAMPS to recognize. Since the system performance of similar

online handwritten recognizers in the domain achieved accuracy within the range of 85%

to above 95% [17], the conclusion that was reached was that the system attained

sufficient recognition comparable to other recognizers. Since the system also does not

73

rely on the use of training data to improve the recognition in LAMPS compared to

traditional machine learning techniques (e.g., neural networks, hidden Markov models),

the recognition in LAMPS was generalized further by tweaking the shape descriptions

further to reflect the writing styles on the expert writers’ model handwritten input .

 LAMPS was then evaluated again to determine whether it would be able to

adequately recognize the correctness of novice users’ sketched MPS1 symbols based on

the visual structure and stroke order. A second user was conducted to collect

handwritten symbols from a second group, this time consisting of five American

university students from Texas A&M University with no knowledge of East Asian

writing. Like in the previous in the previous user study, each participant was asked to

write each symbol twice.

 Since these latter participants had no knowledge of MPS1, the symbols were

visually prompted for them. The eventual result of this user study yielded 100%

accuracy on visual structure recognition. This higher accuracy rate was attributed to the

American students writing the symbols more carefully and with less variation than the

native writers, which is the type of learning behavior that was expected from novice

students learning MPS1. In addition, for each symbol from this set of collected

handwritten data that was recognized correctly for visual correctness, the system was

also able to correctly assess the written technique with an accuracy of 100%. Following

the user study, the user study participants were then asked to make slight errors to both

the visual structure and the written technique of the symbols, and the system also

succeeded in identifying those errors during the assessment (Figure 23). The accuracy

74

of correct assessment on written technique for these symbols is comparable to that found

in the Hashigo system described in the previous section.

Figure 21. A screenshot of LAMPS during regular operation.

75

Figure 22. A screenshot of LAMPS when the user writes a symbol in a visually correct

sequence of symbols with an incorrect written technique: (a) drawing panel, (b) buttons to

run assessment and clear panel, (c) prompt with next MPS1 symbol to draw, and (d) result.

76

Figure 23. Samples of user-sketched MPS1 symbols accurately recognized as having:

(a) incorrect visual structure and (b) correct visual structure with incorrect written

technique.

77

8. SUMMARY

Recognizing language students’ multi-symbol handwriting from written EA

languages in a free-sketch, paper-and-pen-emulating environment is a challenging task.

So is emulating human instructor feedback assessment on that sketched input’s visual

structure and written technique to be displayed back to the student. While existing

techniques and algorithms have succeeded in partially or completely achieving those

functionalities digitally, combining those concepts into a single CALL system has been

difficult to realize. In this thesis, a methodology was described that allowed both tasks

to be combined for use in innovative forms of CALL systems specific to written EA

languages. The methodology first received the handwritten input from students and used

cutting edge high-performing algorithms to segment those strokes into primitive shapes.

Afterwards, an approach was devised using the LADDER sketching language and raw

temporal data that allowed shape descriptions in LADDER to effectively recognize

students’ written EA symbols based on those primitive shapes. Lastly, the methodology

used the recognition results derived from the employed sketch recognition tools and

collected raw sketching data to assess the students’ visual structure and written

technique. In addition to devising the methodology, two systems were developed that

implemented the methodology for use in two distinct EA writing scripts: Hashigo for

Japanese kanji and LAMPS for Mandarin Phonetics Symbols I. After conducting user

studies for both systems involving native and novice writers of those written EA scripts,

the result was that both systems were able to achieve reasonable assessment accuracy.

78

8.1 Expanding on This Methodology

 The version of the methodology described in this thesis is designed to handle

students’ handwritten input for writing scripts of EA languages. The current iteration

can especially achieve recognition and provide assessment on input for writing scripts

whose symbols can be described or reasonably approximated with primitive shapes (i.e.,

lines, curves, ellipses) that are available from the employed corner-finding algorithms.

Of the writing scripts in the EA languages, one writing script that presents unique

challenges to current corner-finding algorithms is the hiragana script of written Japanese.

The reason is that the visual structures of many symbols in the hiragana script contain

variable curves that are non-trivial to describe with the available primitive shapes at the

designer’s disposal. In order to accommodate the unique visual structures that these

symbols possess, the employed corner-finding algorithms would need to be expanded

such that they contain primitive shapes which could better describe those visual

structures.

 This methodology was also catered to handle symbols from a variety of writing

scripts in the written EA languages of Chinese, Japanese, and Korean. Two such CALL

systems incorporated the methodology which covered writing scripts from written

Japanese and Chinese with reasonable results, and it would be desirable to further

introduce additional fully-functional CALL systems for other writing scripts that this

methodology can currently (e.g., the hangul script for written Korean, the katakana script

for written Japanese) or will eventually (e.g., the hiragana script for written Japanese)

support.

79

 Lastly, the focus of the methodology was on the technical capabilities from the

perspective of both human-computer interaction (e.g., paper-like interface input),

artificial intelligence (e.g., written EA language recognition), and a hybrid of the two

(e.g., free-sketch recognition). While the merits of the methodology’s technical

capabilities have already been evaluated, what has not been as fully evaluated are its

pedagogical capabilities; in other words, the merits of CALL systems that incorporate

the methodology in an EA language curriculum. Therefore, expanding the methodology

to sufficiently address the pedagogical needs of an EA language curriculum is another

desirable direction for this research. This may be accomplished by working closely with

language instructors on what aspects of CALL systems would be desirable to further

complement the instructors’ lesson plans, and expanding these CALL systems to include

additional content for longer-term instruction.

80

REFERENCES

[1] M.E. Everson, “Literacy Development in Chinese as a Foreign Language,”

Teaching Chinese as a Foreign Language: Theories and Applications, M.E.

Everson and Y. Xiao, eds., pp. 97-111, Cheng & Tsui, 2009.

[2] E. Banno, Y. Ohno, Y. Sakane, and C. Shinagawa, Genki I: An Integrated Course

in Elementary Japanese I, The Japan Times, 1999.

[3] K. Takezaki and B. Godin, An Introduction to Japanese Kanji Calligraphy, B.

Godin, ed., Tuttle Publishing, 2008.

[4] T. Xie, and T. Yao, “Technology in Chinese Language Teaching and Learning,”

Teaching Chinese as a Foreign Language: Theories and Applications, M.E.

Everson and Y. Xiao, eds., pp. 151-172, Cheng & Tsui, 2009.

[5] National Taiwan Normal University, Practical Audio-Visual Chinese 1 Textbook,

Vol. 1, Cheng Chung Book Company, Ltd., 2004.

[6] W. McNaughton and L. Ying, Reading & Writing Chinese: Traditional Character

Edition, Tuttle Publishing, 1999.

[7] J. Heisig, Remember the Kanji I: A Complete Course on How Not to Forget the

Meaning and Writing of Japanese Characters, University of Hawai'i Press, 2007.

[8] D.O. Pyun and I.-S. Kim, Colloquial Korean: The Complete Course for Beginners,

Routledge, 2010.

[9] J. DeFrancis, The Chinese Language: Fact and Fantasy, University of Hawaii

Press, 1984.

[10] Y.-Y. Yang, “Adaptive Recognition of Chinese Characters: Imitation of

Psychological Process in Machine Recognition,” IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, vol. 28, no. 3, pp. 253-265,

1998.

[11] N. Lin, S. Kajita, and K. Mase, “A Multi-Modal Mobile Device for Learning

Japanese Kanji Characters through Mnemonic Stories,” Proc. 9th International

Conference on Multimodal Interfaces, pp. 335-338, 2007.

[12] K. Lunde, CJKV Information Processing: Chinese, Japanese, Korean &

Vietnamese Computing, 2009.

81

[13] C. L. Willis and L. Miertschin, “Tablet PC's as Instructional Tools or The Pen is

Mightier than the 'Board’,” Proc. Fifth Conference on Information Technology

Education, pp. 153-159, 2004.

[14] A. van Dam, S. Becker, and R. M. Simpson, “Next-Generation Educational

Software: Why We Need It and a Research Agenda for Getting It,” EDUCAUSE

Review, vol. 40, no. 2, pp. 26-43, 2005.

[15] G.-S. Chen, Y.-D. Jheng, and L.-F. Lin, “Computer-based Assessment for the

Stroke Order of Chinese Characters Writing,” Proc. Second International

Conference on Innovative Computing, Information and Control, pp. 160-164, 2007.

[16] G.-S. Chen, Y.-D. Jheng, H.-C. Yao, H.-C. Liu, “Stroke Order Computer-Based

Assessment with Fuzzy Measure Scoring,” WSEAS Transactions on Information

Science and Applications, vol. 5, no. 2, pp. 62-68, 2008.

[17] C.-L. Liu, S. Jaeger, and M. Nakagawa, “Online Recognition of Chinese

Characters: The State-of-the-Art,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 26, pp. 198-213, 2004.

[18] M. Nakagawa, K. Akiyama, T. Oguni, and N. Kato, “Handwriting-Based User

Interfaces Employing On-Line Handwriting Recognition,” Advances in

Handwriting Recognition (Series in Machine Perception and Artificial Intelligence

Volume 34), S.-W. Lee, ed., pp. 578-587, World Scientific, 1999.

[19] M.F. Zafar, D. Mohamad, and R.M. Othman, “On-line Handwritten Character

Recognition: An Implementation of Counterpropagation Neural Net,” World

Academy of Science Engineering and Technology, vol. 10, pp. 232-237, 2005.

[20] Y. Li, H. Yang, J. Xu, W. He and J. Fan, “Chinese Character Recognition Method

Based on Multi-Features and Parallel Neural Network Computation”, Proc.

Intelligent Computing 3rd international Conference on Advanced Intelligent

Computing Theories and Applications, pp. 1103-1111, 2007.

[21] J. Pittman, “Handwriting Recognition: Tablet PC Text Input,” Computer, vol. 40,

no. 9, pp. 49-54, 2007.

[22] L. Ma, Q. Huo, and Y. Shi, “A Study of Feature Design for Online Handwritten

Chinese Character Recognition based on Continuous-Density Hidden Markov

Models,” Proc. 10th International Conference on Document Analysis and

Recognition, pp. 526-530, 2009.

82

[23] H.C. Lam, K.H. Pun, S.T. Leung, S.K. Tse, and W.W. Ki, “Computer-Assisted

Learning for Learning Chinese Characters,” Communications of COLIPS - An

International Journal of the Chinese and Oriental Languages, vol. 3, pp. 31-44,

1993.

[24] S. Fujita, K. Omae, C. Lin, Y. Ming, and S. Narita, “Kanji Learning System Based

on the Letter Shape Recognition Method,” Proc. International Conference on

Computers in Education, pp. 85-89, 2002.

[25] K. Sun, S. Hsu, and Y. Chen, “An Intelligent Tutoring System for Teaching the

Stroke Orders of Chinese Characters on the Internet,” Proc. 1998 International

Computer Symposium, Workshop on Computer Networks, Internet, and Multimedia,

pp. 199-206, 1998.

[26] K. Sun and D. Feng, “A Distance Learning System for Teaching the Writing of

Chinese Characters over the Internet,” International Journal of Distance Education

Technologies, vol. 2, pp. 52-66, 2004.

[27] H.-N. Qi, “A Size-Independent Method for Chinese Character Writing Structure

Assessment,” Proc. 2008 International Conference on Machine Learning and

Cybernetics, pp. 2754-2759, 2008.

[28] F. Tian, F. Lv, J. Wang, H. Wang, W. Luo, M. Kam, V. Setlur, G. Dai, and J.

Canny, “Let's Play Chinese Characters: Mobile Learning Approaches via

Culturally Inspired Group Games,” Proc. 28th International Conference on Human

Factors in Computing Systems, pp. 1603-1612, 2010.

[29] J.O. Wobbrock, A.D. Wilson, and Y. Li, “Gestures without Libraries, Toolkits or

Training: A $1 Recognizer for User Interface Prototypes,” Proc. 20th Annual ACM

Symposium on User Interface Software and Technology, pp. 169-168, 2007.

[30] P. Taele and T. Hammond, “Hashigo: A Next-Generation Sketch Interactive

System for Japanese Kanji,” Proc. Twenty-First Innovative Applications of

Artificial Intelligence Conference, pp. 153-158, 2009.

[31] P. Taele and T. Hammond, “LAMPS: A Sketch Recognition-Based Teaching Tool

for Mandarin Phonetic Symbols I,” Journal of Visual Languages and Computing,

vol. 21, no. 2, pp. 109-120, 2010.

[32] B. Paulson and T. Hammond, “Paleosketch: Accurate Primitive Sketch

Recognition and Beautification,” Proc. 13th International Conference on

Intelligent User Interfaces, pp. 1-10, 2008.

83

[33] T. M. Sezgin, T. Stahovich, and R. Davis, “Sketch Based Interfaces: Early

Processing for Sketch Understanding,” Proc. 2001 Workshop on Perceptive User

Interfaces, pp. 1-8, 2001.

[34] T. Hammond, “LADDER: A Perceptually-Based Language to Simplify Sketch

Recognition User Interfaces Development,” PhD dissertation, Massachusetts

Institute of Technology, 2007.

84

VITA

Paul Piula Taele received his Bachelor of Science in computer science and

mathematics from the University of Texas at Austin in May 2006. Following his

undergraduate studies, he pursued Chinese Mandarin language studies at National

Chengchi University (Taipei, Taiwan) in 2006 and 2007. He received his Master of

Science in computer science from Texas A&M University in December 2010. His

research and academic interests include artificial intelligence, human-computer

interaction, and East Asian languages.

Mr. Taele may be reached at Richardson Building, Room 912A, 3112 Texas

A&M University, College Station, TX 7784. His e-mail is ptaele@gmail.com.

