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ABSTRACT

A Nonlinear Positive Extension of the Linear Discontinuous Spatial Discretization

of the Transport Equation. (December 2010)

Peter Gregory Maginot, B.S. Nuclear Engineering, Texas A&M University

Co-Chairs of Advisory Committee: Dr. Jim Morel
Dr. Jean Ragusa

Linear discontinuous (LD) spatial discretization of the transport operator can

generate negative angular flux solutions. In slab geometry, negativities are limited

to optically thick cells. However, in multi-dimension problems, negativities can even

occur in voids. Past attempts to eliminate the negativities associated with LD have

focused on inherently positive solution shapes and ad-hoc fixups. We present a new,

strictly non-negative finite element method that reduces to the LD method whenever

the LD solution is everywhere positive. The new method assumes an angular flux

distribution, ψ̃, that is a linear function in space, but with all negativities set-to-

zero. Our new scheme always conserves the zeroth and linear spatial moments of the

transport equation. For these reasons, we call our method the consistent set-to-zero

(CSZ) scheme.

CSZ can be thought of as a nonlinear modification of the LD scheme. When the

LD solution is everywhere positive within a cell, ψ̃csz = ψ̃LD. If ψ̃LD < 0 somewhere

within a cell, ψ̃csz is a linear function ψ̂csz with all negativities set to zero. Applying

CSZ to the transport moment equations creates a nonlinear system of equations

which is solved to obtain a non-negative solution that preserves the moments of the

transport equation. These properties make CSZ unique; it encompasses the desirable

properties of both strictly positive nonlinear solution representations and ad-hoc

fixups. Our test problems indicate that CSZ avoids the slow spatial convergence

properties of past inherently positive solutions representations, is more accurate than
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ad-hoc fixups, and does not require significantly more computational work to solve

a problem than using an ad-hoc fixup.

Overall, CSZ is easy to implement and a valuable addition to existing transport

codes, particularly for shielding applications. CSZ is presented here in slab and rect-

angular geometries, but is readily extensible to three-dimensional Cartesian (brick)

geometries. To be applicable to other simulations, particularly radiative transfer,

additional research will need to be conducted, focusing on the diffusion limit in

multi-dimension geometries and solution acceleration techniques.
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NOMENCLATURE

CSZ Consistent Set-to-Zero

ED Exponential Discontinuous

LC Linear Characteristic

LD Linear Discontinuous

SN Discrete Ordinates Method

WL Warsa-Like
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1. INTRODUCTION

A variety of spatial discretizations used in the SN treatment of the Boltzmann

radiation transport equation can result in non-physical, negative angular flux so-

lutions [1]. Small negativities do not necessarily affect the overall accuracy of a

method [2], but the effect of negative negative angular flux solutions is highly prob-

lem dependent. One popular method of SN spatial discretization is the finite element,

linear discontinuous (LD) differencing scheme. LD is popular for many reasons: it

is straight forward, yields 3rd order convergence for the cell average and outflow

angular fluxes in 1D, and is pointwise 2nd order convergent for multidimension cal-

culations [3]. In 1D Cartesian geometry, LD produces negativities only in optically

thick cells, and the negativities are quickly damped. However, in multidimensional

Cartesian geometries, LD can generate significant negative angular flux solutions

in void regions. Negativities are not limited to discontinuous differencing schemes.

Higher-order characteristic methods such as the linear characteristic (LC) method

can also produce negative angular flux solutions when the scattering source expan-

sion becomes negative [4]. Likewise, the diamond difference scheme is notorious for

yielding large, essentially undamped negativities, under a variety of conditions [1].

1.1 Past Work

Past work to eliminate the calculation of negative angular flux solutions has

focused on two areas:

1. ad-hoc fixups and

2. strictly non-negative, nonlinear angular flux representations.

This thesis follows the style of the Journal of Computational Physics.
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An example of an ad-hoc fixup scheme would be the diamond-difference scheme with

set-to-zero flux fixup [1]. The use of ad-hoc fixups always works for pure absorbers.

Traditionally ad-hoc fixups have interacted poorly with advanced convergence accel-

eration schemes, such as diffusion synthetic acceleration (DSA) [5], in highly scat-

tering problems, where such advanced convergence techniques are most needed. As

such, ad-hoc fixup methods are often not acceptable for a large class of problems.

However, very recent research [6] has indicated that the difficulties associated with

ad-hoc fixups and advanced acceleration techniques has largely been caused by the

use of fixed point iteration techniques rather than Newton’s method to solve the

associated equations.

Several inherently non-negative solution representations have been investigated in

the past, more so for characteristic schemes than discontinuous differencing schemes.

Characteristic schemes yield strictly positive angular flux solutions given strictly

non-negative scattering sources; so, one needs to represent the scattering source in a

strictly positive way, rather than the solution itself. Strictly non-negative, nonlinear

characteristic schemes examined in the past have included: the exponential, step

adaptive, and linear adaptive characteristic schemes. The exponential characteristic

schemes developed independently by Mathews, et. al [7] [8] and Walters and Ware-

ing [9] assume an exponential source distribution with an exponent that is linear

in space. Mathews has also developed the step adaptive and linear adaptive char-

acteristic methods [10] [11]. The step adaptive method assumes that within a cell,

the scattering source is a constant positive value over some portion of the cell and

0 everywhere else; whereas the linear adaptive scheme assumes the scattering source

is represented by a linear function over the cell, but with all negativities set to zero.

For discontinuous differencing, two strictly non-negative solution representation

have been tried to date, the step discontinuous differencing scheme [1] and the expo-

nential discontinuous (ED) scheme developed by Wareing [12]. Though both produce

strictly non-negative solutions, neither method is ideal. The step scheme is only first
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order accurate, which is obviously undesirable as an alternative to LD which can be

up to 3rd order accurate. ED asymptotically converges at the same rate as LD. How-

ever, the relative accuracy of LD and ED is problem dependent. For some problems,

ED is more accurate than LD; for other problems, LD is more accurate [12].

1.2 New Method

Our purpose here is to devise a new nonlinear spatial finite-element method for 1-

D and 2-D Cartesian geometries. This method has two central characteristics: first,

the new scheme is equivalent to LD whenever LD yields a strictly positive solution,

and second, the scheme always satisfies both the zero’th and first spatial moment

equations, which standard ad-hoc fixups do not satisfy.

Work for this thesis began as a multi-dimensional extension of the strictly positive

finite-element closure presented at Saratoga [13]. However, we encountered difficul-

ties that, together with the results of Fichtl and Warsa [6], motivated us to develop a

fundamentally different approach. The new method presented herein represents the

discontinuous finite-element analog of the linear adaptive characteristic scheme orig-

inally developed for both slab and rectangular geometries by Mathews et al. [10,11].

Qualitatively, the new method assumes an angular flux distribution within a cell

that is defined to be equal to a linear function at all points for which that function

is positive and zero at all points for which the linear function is negative. Since the

zero’th and first spatial moments of the transport equation are rigorously solved with

our method, and the distribution is obtained from a linear function via a set-to-zero

procedure, we refer to our new finite element method as the consistent set-to-zero

method (CSZ).

The remainder of this thesis is divided into 6 sections, derivations in slab geom-

etry, derivations in rectangular geometry, solution techniques, computational results

for slab test problems, computational results in rectangular geometry, and finally

conclusions.
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2. SLAB GEOMETRY EQUATION DERIVATION

2.1 Slab Geometry Moment Equations

The SN transport equation in 1D Cartesian geometry is

µd
dψ

dx
+ σtψ(µd, x) = S(µd, x) , (2.1)

with discrete direction d, ψ(µd, x) as the angular flux with direction cosine µd, at

position x, total interaction cross section σt, and a total fixed and scattering source

S that is also a function of x and µd. We begin our derivation by taking the zero-th

and first spatial moments of Eq. (2.1) in cell i. Cell i is centered on xi with edges

xi−1/2 and xi+1/2 and characteristic width ∆xi = xi+1/2 − xi−1/2. For simplicity, we

first make the transformation to a reference element, x ∈ [xi−1/2, xi+1/2] → s ∈ [0, 1]:

x = xi−1/2 + s∆xi , (2.2)

where one can easily verify that x = xi−1/2 when s = 0 and x = xi+1/2 when s = 1.

With this transformation, we take the zero-th and first spatial moments of Eq. (2.1)

by multiplying with basis functions

P0(s) = 1 , (2.3)

P1(s) = 2s− 1 , (2.4)

and integrating over cell i. The resultant moment equations are:

µd
∆xi

(
ψi+1/2,d − ψi−1/2,d

)
+ σt,iψA,i,d = SA,i,d , (2.5a)

3µd
∆xi

(
ψi+1/2,d − ψi−1/2,d − 2ψA,i,d

)
+ σt,iψX,i,d = SX,i,d , (2.5b)

where the d subscript denotes quantities specific to angular flux with direction cosine

µd. ψi−1/2,d and ψi+1/2,d are defined as:

ψi−1/2,d = ψ(µd, 0) , (2.6)

ψi+1/2,d = ψ(µd, 1) . (2.7)
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The average and slope quantities, ψA,i,d and ψX,i,d, are defined as:

ψA,i,d =

∫ 1

0

P0(s)ψ(µd, s)ds , (2.8a)

ψX,i,d = 3

∫ 1

0

P1(s)ψ(µd, s)ds . (2.8b)

Equation 2.5 has three unknowns, ψA,i,d, ψX,i,d, and the cell outflow, ψi±1/2,d, de-

pending on the sign of µd. For brevity, we limit our treatment to µd > 0 so that

ψi+1/2,d is the cell outflow and ψi−1/2,d is the known inflow angular flux. To solve

the moment equations and close the system of two equations with three unknowns,

a distribution for the angular flux, ψ̃(s), within the cell must be assumed.

2.2 LD Derivation

The LD scheme assumes a linear angular flux distribution within each cell:

ψ̃(s)LD = aLDP0(s) + bLDP1(s) . (2.9)

Applying the definitions of Eq. (2.6) and Eq. (2.8), the LD relationships for the cell

unknowns become:

ψA,i,d = aLD , (2.10a)

ψX,i,d = bLD , (2.10b)

ψi+1/2,d = aLD + bLD . (2.10c)

Inserting the definitions of Eq. (2.10) into the moment equations of Eq. (2.5) creates

a system of two linear equations entirely defined in terms of aLD, and bLD, which

then completely defines ψ̃(s)LD within cell i. Because the relationships in Eqs. (2.10)

are linear, one can directly solve for aLD and bLD in terms of ψA,i,d and ψX,i,d making

ψA,i,d and ψX,i,d the primary unknowns.



6

2.3 ED Derivation

To compare the CSZ scheme to previously developed strictly positive nonlinear

solution representations, we now derive the ED scheme. The ED method assumes

an exponential representation for the angular flux within a cell. By assuming an

exponential representation, Eq. (2.5) becomes a nonlinear system of equations. For

the ED scheme, the exact formulation of the ψ̃(s) can take on several different forms;

however all forms must be equivalent to a linear exponential. We define a linear

exponential to be the exponential function with an exponent that is linear in space. In

Wareing’s development of the exponential discontinuous finite-element method [12],

the flux distribution ψ̃ was represented as:

ψ̃(x) = c1e
c2P1S(s) . (2.11)

In our replication of ED (for comparison purposes), we formulate ψ̃ slightly differ-

ently. To ensure that the exponential remains positive at all times, the magnitude

controlling parameter, c1, was moved into the exponential term:

ψ̃(s)ED = ec1P0(s)+c2P1(s)) . (2.12)

Hereafter, ED will be synonymous with the formulation described by Eq. (2.12).

The reader is directed to [12] for a more complete derivation based on Eq. (2.11),

including applications in multidimension Cartesian geometries. The definitions of

ψA,i,d, ψX,i,d, and ψi+1/2,d for ED are given below:

ψA,i,d =
ec1

2c2

(
ec2 − e−c2

)
, (2.13a)

ψX,i,d =
3

2c22
(
(c2 − 1)ec1+c2 + (c2 + 1)ec1−c2

)
, (2.13b)

ψi+1/2,d = ec1+c2 . (2.13c)

Unlike LD, the relationships in Eqs. (2.13), are nonlinear and cannot be directly

inverted to express c1 and c2 in terms of ψA,i,d and ψX,i,d. Thus c1 and c2 must

remain the primary unknowns. As with LD, inserting the definitions of Eq. (2.13)
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into Eq. (2.5) creates a system of two equations defined entirely in terms of only

two unknowns, c1 and c2, which then fully define ψ̃ED(s). However, unlike the LD

system of equations, this system of equations is nonlinear. Discussions pertaining to

the solution techniques employed are provided in Section 4.

2.4 CSZ Derivation

Let us now define our CSZ scheme, which is a strictly non-negative modification

of the LD scheme. One of the primary objectives of the CSZ scheme is to yield the

LD solution whenever that solution is everywhere positive within the cell. As such,

CSZ first determines ψ̃LD. If ψ̃LD is positive everywhere in the interval s ∈ [0, 1],

ψ̃csz = ψ̃LD and no further work is required. However, if ψ̃LD is not everywhere

positive, ψ̃csz is represented by a linear function, ψ̂csz,

ψ̂csz(s) = acszP0(s) + bcszP1(s) , (2.14)

with all negativities set to zero.

ψ( )

=∼ ^

s=0 s=1

s ψ( )s

∼

^

s

s

ψ( )

ψ( )

Fig. 2.1. Graphical definition of ψ̃csz(s) on [0, 1].
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The behavior of ψ̃csz(s) is graphically displayed in Fig. 2.1, which is identical to

the following definition:

ψ̃csz(s) =





ψ̂csz(s) if ψ̂csz(s) ≥ 0

0 otherwise
. (2.15)

It must be emphasized that the parameters, acsz and bcsz, describing ψ̂csz are not

equal to their LD counterparts, aLD and bLD, if ψ̂csz(s) < 0 for any s ∈ [0, 1].

For slab geometries, ψ̃csz(s) in cell i can be one of three following cases:

1. positive everywhere (LD definitions apply – Eq. (2.10) ) or,

2. positive s < sz or,

3. positive s > sz.

The following definitions relate only to the CSZ method when ψ̂csz(s) is not strictly

positive within a cell. First, we denote sz as the abscissa position within a cell such

that ψ̂csz(sz) = 0. sz is simply given by:

sz =
1

2

(
1−

acsz
bcsz

)
. (2.16)

Since ψ̃csz(s) is 0 over a portion of a cell, in cases 2 and 3, the spatial integrations in

Eq. (2.8a) and Eq. (2.8b) can be restricted to the portion of the cell where ψ̃csz ≥ 0.

For case 2, integrating over the interval [0, sz] yields:

ψA,i,d = sz (acsz + (sz − 1)bcsz) , (2.17a)

ψX,i,d = sz
(
4bcszsz

2 + 3 (bcsz(1− 2sz) + acsz(sz − 1))
)
. (2.17b)

In slab geometry the cell outflow, ψi+1/2,d is simply the value of ψ̃(1). Applying

Eq. (2.15), we have:

ψi+1/2,d =





acsz + bcsz if ψ̂csz(1) ≥ 0

0 otherwise
. (2.18)
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Equations for case 3 can be found in Appendix A. Since sz is a function only of

the variables acsz and bcsz, Eq. (2.17a), Eq. (2.17b), and Eq. (2.18), are all functions

of acsz and bcsz. Thus, inserting the definitions of Eq. (2.17a), Eq. (2.17b), and

Eq. (2.18) into the moment equations, Eq. (2.5), creates a system of two nonlinear

equations dependent on only two unknowns, acsz and bcsz.
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3. RECTANGULAR GEOMETRY EQUATION DERIVATION

3.1 Rectangular Geometry Moment Equations

In rectangular geometry, the transport equation becomes:

µd
∂ψ

∂x
+ ηd

∂ψ

∂y
+ σtψ = S , (3.1)

where both ψ and S are functions of the variables position variablesx, y and direction

variables ηd, and µd, and σt is the total interaction cross section. We begin our

derivation by first taking the spatial moments of Eq. (3.1) within cell i, j. Cell i, j is

centered at (xi, yj), with characteristic widths ∆xi and ∆yj, and edges and vertices

numbered as in Fig. 3.1: Again, we begin taking the moments by first transforming

tj−1/2
x

i−1/2
,y

x

y
j−1/2

x
i−1/2

i
x , y

j

,

,, y yx

i+1/2

i+1/2 j+1/2j+1/2

x

i−1/2, j i+1/2, j

i, j+1/2

i, j−1/2

i, j+1/2

i, j−1/2

i−1/2, j i+1/2, j

1, 0

1, 10, 1

0, 0

1/2, 1/2

s

y

Fig. 3.1. Graphical explanation of the nomenclature associated with cell i, j.

into a general reference frame:

x = xi−1/2 +∆xis , (3.2)

y = yj−1/2 +∆yjt . (3.3)

The moments within cell i, j are taken by first multiplying by basis functions:

P0(s, t) = 1 , (3.4)

P1S(s, t) = 2s− 1 , (3.5)

P1T (s, t) = 2t− 1 , (3.6)
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then integrating over the transformed cell i, j. With this we obtain the following

moment equations of Eq. (3.1):

µd
∆xi

(
ψi+1/2,j,d − ψi−1/2,j,d

)
+

ηd
∆yj

(
ψi,j+1/2,d − ψi,j−1/2,d

)

+ σt,i,jψA,i,j,d = SA,i,j,d , (3.7a)

3µd
∆xi

(
ψi+1/2,j,d + ψi−1/2,j,d − 2ψA,i,j,d

)
+

ηd
∆yj

(
ψM,i,j+1/2,d − ψM,i,j−1/2,d

)

+ σt,i,jψX,i,j,d = SX,i,j,d , (3.7b)

µd
∆xi

(
ψM,i+1/2,j,d − ψM,i−1/2,j,d

)
+

3ηd
∆yj

(
ψi,j+1/2,d + ψi,j−1/2,d − 2ψA,i,j,d

)

+ σt,i,jψY,i,j,d = SY,i,j,d . (3.7c)

Equations 3.7 apply to all directions, but for conciseness and without loss of gen-

erality, we limit our treatment to µd > 0, ηd > 0. For µd > 0 and ηd > 0, the

known inflow quantities are ψi,j−1/2,d, ψi−1/2,j,d, ψX,i,j−1/2,d, and ψY,i−1/2,j,d, and the

unknown outflow quantities are ψi,j+1/2,d, ψi+1/2,j,d, ψX,i,j+1/2,d, and ψY,i+1/2,j,d. The

edge unknowns are defined as:

ψi+1/2,j,d =

∫ 1

0

ψ(1, t)dt , (3.8a)

ψi,j+1/2,d =

∫ 1

0

ψ(s, 1)ds , (3.8b)

ψM,i+1/2,j,d = 3

∫ 1

0

P1T (1, t)ψ(1, t)dt , (3.8c)

ψM,i,j+1/2,d = 3

∫ 1

0

P1S(s, 1)ψ(s, 1)ds . (3.8d)
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The unknown cell integral quantities of Eqs. (3.7), ψA,i,j,d, ψX,i,j,d, and ψY,i,j,d, re-

gardless of streaming direction, are defined as follows:

ψA,i,j,d =

∫ 1

0

∫ 1

0

P0(s, t)ψ(s, t)dsdt , (3.9a)

ψX,i,j,d = 3

∫ 1

0

∫ 1

0

P1S(s, t)ψ(s, t)dsdt , (3.9b)

ψY,i,j,d = 3

∫ 1

0

∫ 1

0

P1T (s, t)ψ(s, t)dsdt . (3.9c)

As in slab geometry, the moment equations, Eq. (3.7), have more unknowns than

equations and thus require the assumption of an angular flux representation, ψ̃(s, t),

in order to close the system of equations.

3.2 LD Derivation

In 2D Cartesian geometry, the LD scheme assumes an angular flux distribution

that is linear in s and t:

ψ̃LD(s, t) = aLDP0(s, t) + bLDP1S(s, t) + cLDP1T (s, t) . (3.10)

Applying the definitions of Eq. (3.8) and Eq. (3.9) yields the following relations for

the unknowns of Eq. (3.7), entirely in terms of 3 unknowns, aLD, bLD, and cLD:

ψi,j+1/2,d = aLD + cLD , (3.11a)

ψi+1/2,j,d = aLD + bLD , (3.11b)

ψM,i+1/2,j,d = cLD , (3.11c)

ψM,i,j+1/2,d = bLD , (3.11d)

and

ψA,i,j,d = aLD , (3.12a)

ψX,i,j,d = bLD , (3.12b)

ψY,i,j,d = cLD . (3.12c)
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ψ̃LD(s, t) is then found by inserting Eq. (3.11) and Eq. (3.12) into the moment equa-

tions, Eq. (3.7). This substitution then forms a 3 × 3 linear system of equations

defined entirely in terms of aLD, bLD, and cLD, which in turn defines ψ̃LD(s, t).

3.3 CSZ Edge Derivation

We now extend our new scheme to 2D Cartesian geometries. The basic principle

of the closure remains the same as in 1D: ψ̃csz(s, t) is a linear function, ψ̂csz(s, t),

ψ̂csz(s, t) = acsz + bcszP1S(s, t) + ccszP1T (s, t) , (3.13)

with the negativities of ψ̂csz(s, t) set to zero:

ψ̃csz(s, t) =





ψ̂csz(s, t) if ψ̂csz(s, t) ≥ 0

0 otherwise
. (3.14)

Again, one of the primary objectives of the CSZ scheme is to yield the LD solution

whenever LD is everywhere positive within cell i, j. As such the CSZ scheme starts

by first finding the LD solution within the cell and uses ψ̃LD(s, t) as the initial trial

of ψ̂csz(s, t). If ψ̃LD(s, t) ≥ 0 everywhere within the cell, then no further work is

required, ψ̃LD = ψ̂csz(s, t) = ψ̃csz.

If ψ̂csz < 0 somewhere within cell i, j (i.e., the LD solution is negative somewhere

within cell i, j), then the CSZ scheme has new definitions for the unknowns defined

by Eq. (3.8) and Eq. (3.9). We begin by looking at the edge unknowns defined

by Eq. (3.8). Focusing our attention now on edge i, j + 1/2, but without loss of

generality, we note that along the edge ψ̃csz can be:

1. everywhere positive (LD outflow definitions of Eq. (3.11)), or

2. positive s < sz, or

3. positive s > sz, or

4. everywhere 0
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where sz is the point where ψ̂csz = 0 along edge i, j + 1/2:

sz =
1

2

(
1−

acsz + ccsz
bcsz

)
. (3.15)

The integration of case 1 is obvious (see section 3.2). The integration of case 4 is

also trivial, therefore we limit ourselves to describing case 2 here leaving a derivation

of case 3 for side i, j + 1/2 and the complete derivation of the equations for side

i + 1/2, j for Appendix A. The integrals defined in Eq. (3.8b) and Eq. (3.8d) can

be limited to the non-trivial portion of edge i, j + 1/2. For case 2, we need only to

integrate over [0, sz], yielding the following results:

ψi,j+1/2,d = sz (acsz + ccsz + bcsz(sz − 1)) , (3.16)

ψM,i,j+1/2,d = sz
(
3(bcsz − acsz − ccsz) + 3sz(acsz − 2bcsz + 3ccsz) + 4bcszs

2
z

)
. (3.17)

3.4 CSZ Cell Derivation

Next, we seek to calculate the interior quantities, ψA,i,j,d, ψX,i,j,d, and ψY,i,j,d.

First, we consider the shape of the non zero portion of ψ̃csz(s, t) within cell i, j. On

the interior of cell i, j, ψ̃csz can be:

1. everywhere positive (LD definitions apply; see Eq. (3.12)) or,

2. ψ̃csz > 0 at 3 of 4 corners or,

3. ψ̃csz > 0 at 2 of 4 corners or,

4. ψ̃csz > 0 at 1 of 4 corners or,

5. everywhere 0.

Fig. 3.2 illustrates the above cases. The integration is trivial for cases 1 and 5.

However, integration for cases 2-4 is not a simple task as it requires the use of

variable limits of integration. We have chosen to decompose the cell into triangles,
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Case 1 Case  2

Case  4Case  3

+ +

+ +

0

00

0

Case   5

Fig. 3.2. All possible forms of the interior cell shape ψ̃(s, t) in the CSZ method.
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change variables into barycentric coordinates, and then integrate the functions of

interest using barycentric coordinates. Cases 2-4 are decomposed into triangular

areas as shown in Fig. 3.3. The vertex points of every triangle are either vertex

0

Case  2

+

+

+

Case  4Case  3

++
+

0 0

Fig. 3.3. Triangular decomposition of ψ̃CSZ(s, t) in cell i, j.

points of cell i, j or a point where ψ̂csz(s, t) = 0. Each triangle T with area A has

vertices vi = (si, ti) as shown in Fig. 3.4.

s   , t

2

3

1

1 1

3 3

2 2

t

s

s   , t

s   , t

Fig. 3.4. Illustration of the coordinates of triangle T .

Barycentric integration of a function f over T takes the following form [14]:

∫

T

f(r)dr = 2A

∫ 1

0

∫ 1−λ2

0

f (λ1v1 + λ2v2 + (1− λ1 − λ2v3) dλ1dλ2 . (3.18)
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The functions of Eq. (3.9), which are defined in terms of s and t, are converted to

barycentric coordinates using the following definitions:

s = λ1s1 + λ2s2 + (1− λ1 − λ2) s3 , (3.19a)

t = λ1t1 + λ2t2 + (1− λ1 − λ2) t3 . (3.19b)

The resultant integrals were performed using the symbolic algebra programMATLAB R©

[15]. These integrals are omitted from this section for brevity, but may be found in

Appendix A.

Similar to slab geometry, all unknowns of the rectangular geometry moment equa-

tions can be expressed completely in terms of three unknowns, acsz, bcsz, and ccsz.

Inserting the CSZ definitions of the rectangular cell unknowns into Eq. (3.7) creates

a 3× 3 nonlinear system of equations defined entirely by three unknowns.

3.5 Strictly Non-Negative Ad-hoc Fixup Comparator

In slab geometry, we derived the ED scheme to serve as comparator for CSZ.

The ED scheme is an example of a previously derived strictly non-negative solution

representation. We derive an ad-hoc fixup to serve as a comparator to CSZ in

rectangular geometry. Specifically, we compare CSZ to a rectangular geometry ad-

hoc fixup we developed inspired by a scheme presented by Warsa et. al [16] for

triangular meshes. Our Warsa-like (WL) scheme is a linear and strictly positive

scheme for rectangular geometry only that is based on modifying the LD scheme.

WL is meant to yield the LD solution when the LD solution yields strictly non-

negative outflows. The properties of the WL scheme are as follows:

1. WL guarantees only positive angular flux outflows,

2. WL does not conserve the full set of moment equations if LD yields a negative

outflow,

3. WL does conserve particle balance.



18

The WL scheme assumes a linear angular flux representation within a cell:

ψ̃WL = aWLP0(s, t) + bWLP1S(s, t) + cWLP1T (s, t) . (3.20)

Since WL and LD are identical linear representations of ψ̃(x, y), but with different

coefficients, we first introduce ψk,m, the value of ψ̃(x, y), at an outflow vertex k for

method m, where m = LD or WL. For µ > 0 and η > 0, ψk,m are defined as follows:

ψ1,m = am − bm + cm , (3.21a)

ψ2,m = am + bm + cm , (3.21b)

ψ3,m = am + bm − cm . (3.21c)

The equations used to find aWL, bWL, and cWL depend on the number of negative

ψk,LD:

1. all ψk,LD > 0 or,

2. one ψk,LD < 0 or,

3. two ψk,LD < 0 or,

4. three ψk,LD < 0.

If all ψk,LD > 0, then we ψ̃WL = ψ̃LD and no further work is required. However, if

any ψk,LD < 0 (cases 2–4), Eq. (3.7) do not yield a linear representation of ψ̃(x, y)

that is everywhere positive along the cell outflows. Thus, ψ̃LD 6= ψ̃WL, and a new

system of equations is required to find suitable coefficients aWL, bWL, and cWL that

will yield a strictly non-negative ψ̃WL. Without loss of generality, we consider case

2 with ψ1,LD < 0. Based on [16], the new system of equations consists of:

1. the balance equation Eq. (3.7a),

2. an explicit statement that ψ1,WL = 0,
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3. a scaling of positive outflows,
ψ2,LD

ψ3,LD
=

ψ2,WL

ψ3,WL
.

For case 3, let us assume that ψ1,LD and ψ2,LD are negative. Again, drawing from

Warsa’s previous work for triangular meshes, the WL equations consist of

1. the balance equation,

2. an explicit statement that ψ1,WL = 0,

3. an explicit statement that ψ2,WL = 0.

There is no direct parallel between the rectangular mesh case 4 and the triangular

mesh scheme presented in [16] since there are two outflow vertices at most in a

triangular mesh, as opposed to at most three in a rectangular mesh. Since there are

only three unknowns, aWL, bWL, and cWL, to use the balance equation and three

explicit statements that ψk,WL = 0 produces an overdetermined system and another

strategy is required. For simplicity, we have assumed the following for case 4:

aWL = 0 , (3.22a)

bWL = 0 , (3.22b)

cWL = 0 . (3.22c)

However, in our testing, we have not encountered any problem which resulted in an

LD solution falling into case 4.

The use of equations other than Eqs. (3.7) to solve for the unknowns that describe

ψ̃WL is what makes the WL an ad-hoc fixup. The LD, ED, and CSZ always satisfy

the moment equations. The WL solution only satisfies the moment equations some

of the time, other instances require the introduction of auxiliary equations required

to give positivity and particle conservation.
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4. SOLUTION TECHNIQUES

4.1 Linear Source Iteration

The linear Boltzmann equation describing the transport of particles can be writ-

ten as:

LΨ = SΨ+ q , (4.1)

with L being the streaming plus interaction operator, S the scattering operator, q

the external source term and Ψ the angular flux. In slab geometry,

LΨ = µ
∂ψ

∂x
+ σtψ , (4.2)

SΨ =
L∑

l=0

2l + 1

W
σs,lφlPl(µd) (4.3)

where L is the order of the scattering source expansion, W is the sum of all the

weights of the angular quadrature, φl is the l-th angular moment of the angular flux:

φl =
N∑

d=1

wdψdPl(µd , (4.4)

σs,l is the l-th order scattering cross section, Pl(µd) is the l-th Legendre polynomial in

µd, and N is the number of discrete directions considered. Multidimension parallels

exist, are very similar in nature to the slab equations, and are omitted for brevity

here. It is important to note that since for many cases L << N − 1 the SΨ operator

is low rank. Typically this is taken advantage of by storing only the moments of the

angular flux in memory, not the full Ψ vector.

A standard SN solution technique to solve the above equation is source iteration

(SI), where the angular redistribution term has been lagged:

LΨm+1 = SΨm + q = Q . (4.5)

Due to the collocative nature of the discrete ordinates technique, L can be inverted

one angular direction at a time (in some situations with reflective boundary condi-

tions, directions can be coupled but the typical approach is to lag this coupling as
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well). Furthermore, for a given direction, the spatial solve can be carried out on

a direct cell-by-cell basis due to the upwind character of the spatial discretizations

used. This solution of Eq. (4.5) is typically referred to as a transport sweep.

4.2 Nonlinear Source Iteration

All of the nonlinear methods we have considered render the streaming operator

L nonlinear, i.e., LΨ → L̂(Ψ), yielding the nonlinear system L̂(Ψ) − SΨ = q at

each source iteration. One possible approach would be to solve the nonlinear system

by inverting L̂− S via a Newton solve at the expense of keeping the entire solution

vector Ψ in memory as compared to the low rank SΨ operator. In order to avoid

this expense, we have opted to solve the nonlinear problem in each individual cell

during a transport sweep in a given direction, with a fixed right-hand-side source

term stemming from the previous source iteration (i.e., standard SI). Solution of the

2× 2 (slab geometry) and 3× 3 nonlinear system of equations is not too costly since

the systems being solved are quite small. Specific information regarding ψ̃ within

cell i for direction d is not retained between source iterations m and m+1. Therefore

ψ̃ is found anew for each direction d, within cell i, for every source iteration m. This

enables us to avoid saving the full angular flux vector across source iterations unless

SΨ is full rank.

4.3 Commonalities of SI for All Methods Considered

Convergence of the source iteration process is based on the normalized change in

the cell average scalar flux, ∆φA,i,l:

∆φ`A,i =
|φ`A,i − φ`−1

A,i |

|φ`A,i|
. (4.6)

Iteration is stopped on the condition that:

max
1≤i≤Ncells

[
|φ`A,i − φ`−1

A,i |

|φ`A,i|

]
≤ 10−6 . (4.7)
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4.4 Solving for ψ̃ in a Single Cell for Direction d

4.4.1 LD Specific

The LD definitions of ψA,i, ψX,i, and ψi+1/2, when inserted into Eqs. (2.5) creates

a linear system of equations from which the two unknowns of ψ̃LD, aLD and bLD can

be directly solved with a single matrix inversion, thus giving the angular flux solution

for direction d within a single celll for the latest scattering source iterate. Similarly

in rectangular geometry, when the LD representation is used to close Eq. (3.7), a

3 × 3 linear system of equations from which the unknowns aLD, bLD, and cLD can

be directly solved giving ψ̃LD for direction d in a single cell.

4.4.2 ED Specific

Applying the ED definitions to Eqs. (2.5) always forms a nonlinear system of

equations that describes ψ̃ED within cell i for direction d. The initial trial parameters,

c1 and c2, are found by linearly expanding the definitions of Eq. (2.13a), Eq. (2.13b),

and Eq. (2.13c) about an arbitrary pair of iterates, c1∗ and c2∗, and taking the limit

as c2∗ → 0, yielding the following definitions:

ψi+1/2 = ec1∗ + (c1 − c1∗)e
c1∗ + c2e

c1∗ , (4.8a)

ψA = ec1∗ + (c1 − c1∗)e
c1∗ , (4.8b)

ψX = c2e
c1∗ . (4.8c)

Inserting Eq. (4.8) directly into Eq. (2.5) yields a linear system of equations in terms

of unknowns c1 and c2, giving a reasonable first iterate to begin the nonlinear search

for c1 and c2 that satisfy the full moment equations. Satisfactory c1 and c2 are found

using Newton’s method with an analytically formed Jacobian.
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4.4.3 CSZ Specific

Working as a modification of the LD solution, the initial trial for CSZ was the LD

solution, ψ̃LD = ψ̂csz. If ψ̂csz ≥ 0 everywhere within a cell, ψ̃LD = ψ̃csz. Otherwise,

this first iterate of ψ̂ was used and the nonlinear CSZ definitions for the unknowns of

Eqs. (2.5) or Eqs. (3.7) were applied (as appropriate to the geometry), and Newton’s

method with an analytical Jacobian was used to solve the resultant set of nonlinear

equations. CSZ has an everywhere defined Jacobian, but the Jacobian is discon-

tinuous. Nonetheless, Newton iteration worked in all of our test problems. Similar

results concerning a discontinuous Jacobian have been observed by Fichtl, et al. [6].

4.4.4 ED and CSZ Commonalities

To minimize the number of iterations required for cell convergence, undamped

Newton iteration (step length = 1) was always used initially to solve the nonlinear

set of equations generated with either ED or CSZ. However, if the search for the

ED or CSZ parameters that describe ψ̃ began to take too long (lots of iterations),

indicating that Newton’s method was beginning to diverge, the iteration was reset

to the initial guess, and the step length parameter reduced. More sophisticated

nonlinear search techniques, such as the minimization of the residual formed by

moment equations, as suggested in [17] were attempted. However it was observed

that these techniques quite frequently found a localized, but not global minimum

of the moment equations residuals, effectively failing to find a solution. Thus, the

more sophisticated techniques were abandoned, and the crude, but effective iteration

duration based step length adjustment system was used. It was more desirable to

have convergence to the true solution rather than efficiently finding the incorrect

solution.
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To assure the same level of convergence, ED and CSZ convergence was based on

the normalized change of ψA,i,d within cell i between Newton iterations n and n− 1:

|ψnA,i,d − ψn−1
A,i,d|

|ψnA,i,d|
≤ 10−8 , (4.9)

where i refers to cell i in slab geometry or cell i, j in rectangular geometry.

4.4.5 WL Specific

To find ψ̃WL, the WL scheme begins by first finding ψ̃LD by inverting a 3 × 3

matrix and checking the calculated outflow for positivity. If ψ̃LD is positive along the

entire outflow of cell i, j, then ψ̃LD = ψ̃WL. Otherwise, a second matrix inversion is

required to solve the WL linear equations (not the moment equations) appropriate

to correcting the number of negative vertices associated with ψ̃LD. After the 2nd

matrix inversion, the WL scheme is complete, having found ψ̃WL within cell i, j for

direction d.

4.5 Estimating the Relative Computational Cost

To measure the relative computational costs of each method, we consider the

number of matrix inversions required to solve a problem. As LD is computation-

ally the simplest and cheapest, we normalize the total number number of matrix

inversions required by ED, CSZ, and WL to uniformly converge the source iteration,

Eq. (4.7) to the total number of LD matrix inversions required to reach the same

convergence. It must be emphasized that LD, ED, CSZ, and WL do not necessarily

require the same number of source iterations to converge a problem.

LD requires a single matrix inversion for each direction, in every cell, for each

source iteration. For ED and CSZ, the number of matrix inversions is equal to the

cumulative total of all first iterate formations (requires a matrix inversion) and New-

ton iterations required for every cell (inversion of the Jacobian matrix), required to
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solve the nonlinear system of equations formed for every direction, in each cell, until

the scattering source is converged. WL will require at most two matrix inversions for

each cell, direction, and source iteration. Admittedly, there is a nontrivial additional

amount of computational work required for ED and CSZ to calculate the respective

nonlinear quantities required to solve the moment equations for a single Newton it-

eration, however, a rough estimate of the amount of work required for each method

can be obtained by comparing matrix inversions.
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5. SLAB GEOMETRY COMPUTATIONAL RESULTS

5.1 Comparison of Theoretical Outflow and Slope Values for LD, ED, and CSZ

Schemes

The fundamental differences between the LD, ED, and CSZ schemes are best

illustrated by comparing the normalized outflow values calculated by each method

given the value of ψA and ψX . Fig. 5.1 shows the outflow for LD, CSZ, and ED for

µ > 0.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

0
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ψ
X
 / ψ
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ψ
A
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CSZ
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Fig. 5.1. Slab geometry comparison of LD, ED, and CSZ outflows for µ > 0.

Theoretically, ψX
ψA

∈ [−3,+3]. However ψX
ψA

is restricted to ψX
ψA

∈ [−2,+2.5] to

illustrate the more subtle variations between LD, ED, and CSZ in the more commonly

observed regime near ψX
ψA

= 0. LD maintains a linear trend over the range −3 ≤ ψX
ψA

≤

+3. The outflow plot of Fig. 5.1 demonstrates several key points:
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1. both ED and CSZ are strictly positive, and LD can yield outflows < 0,

2. both ED and CSZ follow the limit:

lim
ψX
ψA

→+3

[
ψi+1/2

ψA

]
= ∞ , (5.1)

3. both ED and CSZ follow the limit:

lim
ψX
ψA

→−3

[
ψi+1/2

ψA

]
= 0 , (5.2)

4. CSZ yields the LD solution exactly when the LD solution is everywhere positive

within the cell,

5. CSZ is always closer to the LD solution than is ED.

5.2 Slab Test Problem 1- Pure Absorber

Our first slab geometry test problem again illustrates the strictly positive na-

ture of the new CSZ method as compared to the negativities associated with LD

and optically thick cells in slab geometry. Fig. 5.2 shows the results of a pure ab-

sorber problem, with total slab width of 12 cm, σt = σa = 1cm−1, using S8 angular

quadrature, with 3 uniform spatial cells. The left boundary condition is an isotropic

incident flux, normalized to yield a unit current; the right boundary condition is a

vacuum boundary. Average scalar flux of a given cell is plotted at the midpoint of

the cell.
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Fig. 5.2. Slab test problem 1 average scalar flux comparison of LD
and CSZ for a strong absorber with thick cells.

For the same absorber problem, we show a convergence rate plot for LD and CSZ

in Fig. 5.3. Error is taken as the L2 difference between the numerically calculated

scalar flux average, φA,num,i, and the analytically calculated φA,i,exact as shown by

Eq. (5.3):

Error =

√√√√
Ncells∑

i=1

[
∆xi (φA,ex,i − φA,num,i)

2] , (5.3a)

φA,ex,i =

Ndir∑

d=1

[
1

∆xi

∫ x+1/2

xi−1/2

[
wdψ0,de

−ΣAx/µd
]
]
, (5.3b)

φA,num,i =

Ndir∑

d=1

wdψA,d,i . (5.3c)

Eq. (5.3b) is valid for the case of a pure absorber for all ordinates d, with direction

cosines of µd, with weights wd that sum to 1, and incident angular flux (at the slab

boundary) of ψ0,d.
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Fig. 5.3. Slab test problem #1 LD and CSZ rate of convergence plot.

Fig. 5.3 shows that in addition to being strictly positive, CSZ is also more accurate

than is LD on coarse meshes, and that as the mesh is refined, CSZ becomes equivalent

to LD so the order of convergence of CSZ is as high as LD. It must be noted that

ED calculates the exact solution in a purely absorbing medium, thus it is omitted

from Fig. 5.3.

5.3 Slab Test Problem 2- Slab with c = 0.5

The next two test cases employ an S8 angular quadrature and a 12 cm wide

homogeneous slab. Slab test problem 2 consists of an isotropic, left incident, unit

current angular flux, vacuum boundary conditions on the right face, no distributed

source, σt = 1cm−1, and c = 0.5. To calculate the reference solution, the analytic

scalar flux solution provided in [18] was used. φA,ex,i was calculated not by direct

integration, as in Eq. (5.3b) but rather by using 2 point Gauss integration to estimate
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φA,i over the interval [xi−1/2, xi+1/2]. Total error was then calculated in the same

manner as in Eq. (5.3a).
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Fig. 5.4. Slab test problem 2 order of convergence.

Fig. 5.4 shows that ED is more accurate than both LD and CSZ. However, Fig. 5.4

also shows that LD,CSZ, and ED all have the same order of accuracy as the mesh is

refined. The accuracy of ED relative to that of LD and CSZ is a problem dependent

phenomena as shown by the final slab problem.

5.4 Slab Test Problem 3- Slab with Distributed Source

Slab test problem 3 is similar to the first two problems, but with vacuum boundary

conditions on both faces, an isotropic unit source distributed throughout the slab,

σt = 1cm−1, and c = 0.9. It should be noted that CSZ is in fact plotted in Fig. 5.5,

but that the problem is such that LD does not produce any negativities except as

the mesh becomes extremely fine. On fine meshes (32 cells or more) LD does in fact
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produce negative angular flux solutions in boundary cells for some skimming incident

angles. However, these negativities are small, occur only in the outermost boundary

cells, occur only for a directions, and converge to 0 with further cell refinement, thus

LD and CSZ produce either identical or nearly identical results as shown by Fig. 5.5.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Number of Mesh Cells

E
rr

or

 

 
LD
ED
CSZ

Fig. 5.5. Slab test problem 3 convergence rates.

It is clear from Fig. 5.5 that the ED method is less accurate than both LD and

CSZ for the distributed source problem. This is in contrast with slab test problem 2

and is presumably due to the fact that ED has the wrong sign of curvature for the

distributed source problem. This ED effect is consistently seen for problems with

negative curvature, like slab test problem 3.

5.5 Slab Computational Costs

The computational costs for the 3 slab test problems are listed in Table 5.1,

Table 5.2, and Table 5.3.
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Table 5.1

Number of matrix inversions required for the ED and CSZ methods
relative to LD for a pure absorber slab (slab test problem #1).

Number of Cells Method

ED CSZ

1 5.63 6.63

2 5.50 3.31

4 5.63 1.91

8 7.78 1.14

16 5.00 1.06

32 4.76 1.00

Table 5.2

Number of matrix inversions required for the ED and CSZ relative
to LD for a homogeneous slab with a scattering absorber (slab test
problem #2).

Number of Cells Method

ED CSZ

1 10.93 11.36

2 14.03 4.94

4 11.47 4.44

8 13.14 1.32

16 11.12 1.02

32 10.89 1.01
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Table 5.3

Number of matrix inversions required for the ED and CSZ methods
relative to LD for a slab with a distributed internal source (slab test
problem #3).

Number of Cells Method

ED CSZ

1 6.21 1.00

2 6.45 1.00

4 6.39 1.00

8 9.55 1.00

16 6.58 1.00

32 6.32 1.04

Overall, the data of Table 5.1, Table 5.2, and Table 5.3 indicates that CSZ is

generally less costly than ED, and in several cases, by initially yielding the LD

solution CSZ does not even require the solution of a nonlinear system of equations.

Since ED yields the exact analytic solution for a pure absorber, its convergence data

was omitted from Fig. 5.3, but is present in Table 5.1 to illustrate the significant

cost inherent to ED, even though ψ̃ED is the exact solution for a pure absorber. The

other significant trend which must be highlighted is the decrease in computational

cost of the CSZ method as the mesh is refined. This trend is again a direct result of

CSZ initially yielding the LD solution. As the mesh is refined, LD yields fewer and

fewer negative angular fluxes, thus, CSZ modifies fewer LD solutions. The exception

to this trend comes in the distributed source problem (slab test problem #3). In slab

test problem #3, as the mesh is refined, LD begins to generate negative values of ψ̃LD

at the inflow of boundary cells for directions with |µ| ≈ 0. This is a result of the LD

solution generating values of ψX
ψA

> 1. The negativities are not too severe, being on

the order of 1E-4. However since CSZ is strictly positive everywhere within a cell, as
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the scattering source increases with the source iteration process, using CSZ requires

the solution of a nonlinear set of equations, thus the increase in computational work

seen in Table 5.3.
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6. RECTANGULAR GEOMETRY COMPUTATIONAL RESULTS

In slab geometry, LD produces negative angular flux solutions only in optically

thick cells. However, in rectangular geometry, negativities are not limited to strongly

absorbing cells; negativities can be produced in void regions. We therefore present a

series of test problems which are known to produce poor results when using the LD

spatial discretization.

6.1 Rectangular Test Problem 1- Glancing Flux Into a Void

The first rectangular geometry test problem illustrates the negativities that can

occur in voids with glancing incidence angular flux when using the LD scheme. We

choose a 1cm x 1cm void with a beam of radiation incident along the bottom face in

the direction µ = 0.90, and η =
√
1− µ2.

Fig. 6.1 graphically shows the calculated angular flux representation, ψ̃ on the

interior of the domain for each method versus the exact analytical solution when the

domain is divided into 1 cell. LD clearly propagates a significant negative outflow

along the top face of the cell, while the CSZ and WL schemes produce strictly positive

outflows. Of greater interest is the comparison of ψ̃CSZ and ψ̃WL. By not conserving

Eq. (3.7b) and Eq. (3.7c), WL significantly increases numerical diffusion within the

cell. The implications of this increased numerical diffusion are not obvious with a

single cell, but are clearly illustrated by dividing the domain into finer and finer

meshes.
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(a) Analytic (b) LD

(c) CSZ (d) WL

Fig. 6.1. Comparison of the ψ̃(x, y) calculated with each numeri-
cal scheme versus the analytic solution, ψ(x, y), for rectangular test
problem 1.
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(a) Analytic (b) LD

(c) CSZ (d) WL

Fig. 6.2. Plots of ψA,i,j,d for the discretized void problem (rectan-
gular test problem 1). Linear plot scale to illustrate negativities and
oscillations of LD.
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Figure 6.2 shows a linear scale plot of the analytic and the numerically calculated

values of ψA,i,j,d when the problem is divided into 1600 total mesh cells. The analytic

solution for this problem, ψex,A,i,j,d, is the fraction of cell i, j which lies below the line

y = η
µ
x. From Fig. 6.2, it is clear the the LD solution is exhibiting two important,

non-physical qualities:

1. negativities,

2. oscillations and angular flux propagation into the region where ψex(x, y) = 0.

Though WL produces a strictly positive angular flux solution without any oscilla-

tions, the issue of numerical diffusion begins to seriously degrade the solution. This

is apparent from the linear graph, Fig. 6.2, but Fig. 6.3 is provided to make this

more apparent.

CSZ largely avoids any numerical diffusion; the strictly positive piecewise linear

flux shape strongly inhibits the numerical spreading of the angular flux solution into

the region where ψ(x, y) = 0. Looking beyond this single refinement, the L2 norm

of total solution error:

Error =

√√√√
Nx cells∑

i=1

Ny cells∑

j=1

[
∆xi∆yj (ψA,ex,i,j − ψA,num,i,j)

2] , (6.1)

where Nx cellsandNy cells are respectively the number of cells in the x and y directions

is plotted in Fig. 6.4.
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(a) Analytic (b) LD

(c) CSZ (d) WL

Fig. 6.3. Logarithmic scale plots of ψA,i,j,d for the discretized void
problem (rectangular test problem 1). Logarithmic scale to highlight
WL numerical diffusion. Negativities and 0s are represented as the
minimum of the color scale.



40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

Number of Cells

E
rr

or

 

 
LD
CSZ
WL
1/2 Order
Reference

Fig. 6.4. L2 norm order of convergence plot for the large void prob-
lem (rectangular test problem 1).

Several trends are demonstrated by Fig. 6.4 for the discretized void problem:

1. CSZ is always more accurate than LD and WL,

2. all three numerical methods approach the same order of convergence, and

3. none of the three numerical methods exceed the theoretical convergence limit

of 1/2 order [19].

It should be noted that CSZ yields the exact value of ψA,i,j for a single cell, resulting in

an error of 0 which cannot be plotted on a logarithmic scale graph, that ψ̃csz 6= ψ. The

dashed green line in Fig. 6.4 is provided as a reference line of order 1/2 convergence

rate, the theoretical maximum rate of convergence for this problem [19].
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6.2 Rectangular Test Problem 2- An Iron Water Like Problem

Our next problem is similar to the classic iron water problem. As shown in

Fig. 6.5, the test problem consists of a 50cm x 50cm, homogeneous rectangle, with

σt = 1.0cm−1, a scattering ratio of c = 0.75, and an isotropic source in the lower left

10cm x 10cm corner of the problem, with an average source strength, SA, of 1
[

n
cm2 s

]
.

The bottom and left boundaries are reflective, while the top and right boundaries

are vacuum. The problem was discretized with a uniform spatial discretization,

∆xi = ∆yj, with a total mesh size varying between 25-6400 cells, using a level-

symmetric S8 angular quadrature. The total reaction rate within three, 10cm x

10cm square regions, denoted R1, R2, and R3 respectively, as shown in Fig. 6.5,

were calculated.

x

V
ac

uu
m

Reflective

Vacuum

R
eflective

Source

R3

R2R1

y

Fig. 6.5. Diagram of rectangular test problem 2 with the location
of the three regions, R1, R2, and R3.
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Plots of the reaction rate within each each region of interest are plotted in Fig. 6.6,

Fig. 6.7, and Fig. 6.8.
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Fig. 6.6. Total reaction rates for each method in R1 of the rectan-
gular test problem 2.

As the mesh is refined, LD, WL, and CSZ should converge to the same reaction

rate within each region, as seen qualitatively in Fig. 6.6, Fig. 6.7, and Fig. 6.8. The

reference used to compute quantitative values of error is a very fine LD mesh solution

that used 25600 cells. This fine mesh solution was then collapsed appropriately, and

the L2 norm of the difference between the coarse mesh solution and the collapsed

fine mesh solution were used to compute error.
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Fig. 6.7. Total reaction rates for each method in R2 of rectangular
test problem 2.
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Fig. 6.8. Total reaction rates for each method in R3 of rectangular
test problem 2.
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Figures 6.6, 6.7, and 6.8 indicate several important trends:

1. WL and CSZ are always non-negative,

2. WL and CSZ converge to the LD solution,

3. LD can calculate significant negativities,

4. LD is subject to oscillations,

5. CSZ coarse mesh calculations are significantly more accurate than LD or WL

solutions on the same mesh, and

6. WL can be significantly less accurate than LD (see Fig. 6.8).

6.3 Rectangular Test Problem 3- Beam Bending Examination

In [20] Mathews examined the ability of various spatial discretizations to accu-

rately propagate angular flux beams in the correct direction. Mathews performed his

testing using a purely absorbing medium with angular flux incident on only one face

in a mono-directional, thin beam. In a purely absorbing or pure vacuum medium that

is free of internal sources, the exact angular flux solution propagates only in those

directions which have incident angular flux. However, in Mathews analysis [20], it

was shown that several spatial discretizations commonly used for discrete ordinates

calculations actually produce solutions in which the angular flux solution travels in

the wrong direction in a purely absorbing problem. To examine the capability of the
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CSZ scheme for propagating angular flux in the correct direction, we consider a test

problem consisting of a 10 cm x 10 cm void with a 1cm wide beam of incident radi-

ation along the bottom face of the region only in the direction of µ = 0.5, η =
√
3
2
.

The angular flux solution calculated along the top face of the problem (y = 10cm)

by all three numerical schemes, as well as the analytic solution is shown in Fig. 6.3

for ∆xi = ∆yj = 0.2cm.
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Fig. 6.9. Angular flux solution along y = 10cm face of rectangular test problem 3.

Results from other resolutions, both coarser and finer, display essentially the same

behavior: CSZ is closer to the analytic solution than WL or LD, but the amount of

bending is essentially the same for all numerical schemes examined here. This result

is consistent with the results of Mathews: the LD scheme does bend the angular flux

solution into the wrong direction, but the LD bending effect is not that significant.
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6.4 Rectangular Computational Costs

The benefits of WL, requiring at most 2 matrix inversions to provide a strictly

positive angular flux solution, is obvious when considering the first entry of Table 6.1.

In the single cell void, there is only 1 cell with 1 direction that requires a strictly

Table 6.1

Number of matrix inversions relative to LD in a rectangular void
versus number of cells.

Number of Cells Method

CSZ WL

1 8 2

4 4.75 1.75

16 2.69 1.75

25 2.80 1.76

100 1.99 1.74

400 3.07 3.15

1.6K 1.28 1.32

2.5K 1.23 1.26

10K 1.11 1.13

40K 1.05 1.07

160K 1.03 1.03

640K 1.01 1.02

non-negative modification. As expected, WL requires 2x more work than LD. CSZ

requires multiple Newton iterations, and thus does 8x more work than LD. How-

ever, Table 6.1 also clearly illustrates the computational costs associated with the

numerical diffusion of WL. If CSZ and WL were applied in the same number of

cells in the large void problems, we would expect to maintain the single cell ratio of
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4x more computational work for CSZ than WL. However, this is obviously not the

case. By numerically diffusing the incident angular flux, many more cells require a

modification of the LD solution to eliminate the negativities associated with ψ̃LD.

In the large void, we considered only the costs of CSZ and WL. However, cost is

not a complete tool for evaluating a method, the costs and benefits of a method must

be considered together. One way to quantify this would be to consider the relative

efficiency of each method. Defining a quantitative measure of efficiency as:

Efficiency =
1

Error×Work
(6.2)

we examine the relative computational efficiency of LD, WL, and CSZ in each region

considered for rectangular test problem 2. Fig. 6.10, Fig. 6.11, and Fig. 6.12, show

plots of the efficiency for R1, R2, and R3 respectively.
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Fig. 6.10. Relative computational efficiency of each method for R1
of rectangular test problem 2.

The efficiency plots for rectangular test problem 2 demonstrate that though the

CSZ method can be more computationally costly, the cost is offset by increased
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Fig. 6.11. Relative computational efficiency of each method for R2
of rectangular test problem 2.

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Cells

E
ffi

ci
en

cy

 

 
LD
CSZ
WL

Fig. 6.12. Relative computational efficiency of each method for R3
of rectangular test problem 2.
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accuracy. CSZ is generally more efficient than both LD and WL, and depending on

the problem, can be several orders of magnitude more efficient than LD or WL as

shown in Fig. 6.10 and Fig. 6.11. When less efficient that LD or WL, the CSZ method

is still very close in efficiency to the other methods as demonstrated by Fig. 6.12.



50

7. CONCLUSIONS

The CSZ scheme has been derived for slab and rectangular geometries. By de-

sign, CSZ is a nonlinear modification of the LD scheme. As such, CSZ bridges the

gap between the traditional ad-hoc fixups and inherently positive solutions such as

ED. Unlike previous techniques derived to yield inherently positive solution repre-

sentations, CSZ is designed to differ from LD only when the LD solution is not

everywhere positive within a cell. Though ad-hoc fixups also exhibit this charac-

teristic, ad-hoc fixups do not conserve the zeroth and linear spatial moments of the

transport equation, which CSZ always preserves. We have shown that by defining

ψ̃csz as a linear function with all negativities set-to-zero, that the zeroth and linear

moments of the transport equation can be used to uniquely determine the unknowns

which completely describe ψ̃csz. More specifically, there is a unique ψ̃csz given any

physically valid set of spatial moments. If LD is everywhere positive within a cell,

the equations describing ψ̃csz are linear. Otherwise, the moment equations form a

nonlinear system of equations. If LD is not everywhere positive, ad-hoc fixups use

auxiliary equations, not the moment equations to determine ψ̃.

Test problems in slab geometry indicate that:

1. CSZ is always everywhere positive for the physically realizable range of ψX
ψA

,

2. CSZ is always closer to the LD solution than ED,

3. CSZ converges at the same rate as LD and ED,

4. CSZ is at least as accurate as LD in those problems where ED is significantly

less accurate than LD.

Further, the computational work associated with CSZ decreases significantly with

mesh refinement, whereas the amount of work associated with using the ED scheme

remains significantly higher than the work required to use LD, regardless of mesh
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refinement. In general, as the mesh is refined, the LD solution becomes everywhere

positive more frequently. Consequently, CSZ has to perform fewer and fewer nonlin-

ear iterations since ψ̃csz = ψ̃LD when ψ̃LD is everywhere positive within a cell, but

ED always has to solve a computationally intensive, nonlinear set of equations.

In rectangular geometry, CSZ was compared to a rectangular an ad-hoc fixup

scheme inspired by the triangular mesh work presented by Warsa. Again, CSZ

eliminated the negativities associated with LD, even in void regions. Though CSZ

was significantly more expensive than the ad-hoc fixup scheme on coarse meshes,

problems with more refined meshes showed that CSZ compensated for the increase

in work required to find a single solution by inhibiting numerical diffusion. On

finer meshes, the ad-hoc fixup technique needed to be applied more often due to

numerical diffusion, both in voids and non-voided problems, negating its advantages.

Our results in the iron-water like problem also showed that an ad-hoc fixup can be

significantly less accurate than LD, whereas CSZ is always as accurate as LD, if not

more so.

The CSZ scheme presented herein is easily extensible to 3 dimensional Cartesian

(brick) geometry. Since it works as a modification of the LD scheme, CSZ can easily

be incorporated into existing codes that already have cell centered LD implementa-

tions. Additional work in the areas of acceleration techniques and development of

a multi-dimensional method that maintains the diffusion limit will be required for

certain application areas such as radiative transfer. However, SN codes used for ra-

diation shielding problems can gain the most immediate benefit from implementing

the CSZ scheme. CSZ will be a valuable addition to any currently existing codes

that require strictly positive angular flux solution techniques.
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APPENDIX A

CSZ EQUATIONS

CSZ in Slab Geometry

If the CSZ scheme falls into case 3 within cell i, that is if ψ̃csz(s) > 0 only on

s ∈ [sz, 1], the unknown cell quantities ψA,i,d and ψX,id are:

ψA,i,d = (1− sz)(acsz + bcszsz) , (A.1)

ψX,i,d = (1− sz) (bcsz + sz(3acsz − 2bcsz(1− 2sz))) . (A.2)

CSZ in Rectangular Geometry

Edge i, j + 1/2 Quantities

If the CSZ scheme falls into case 3 along the edge i, j+1/2, that is if ψ̃csz(s, 1) > 0

only on s ∈ [sz, 1], the unknown edge quantities ψi,j+1/2,d and ψM,i,j+1/2,d are:

ψi,j+1/2,d = − (sz − 1) (acsz + ccsz + bcszsz) , (A.3)

ψM,i,j+1/2,d = −(sz − 1) (bcsz (1 + 2sz(2sz − 1)) + 3sz(acsz + ccsz)) . (A.4)

Edge i+ 1/2, j Quantities

Now consider edge i + 1/2, j. We first define tz. Defined analogously to sz on

edge i, j + 1/2, tz is the point along edge i+ 1/2, j where ˆψ(1, t) = 0:

tz =
1

2

(
1−

acsz + bcsz
ccsz

)
. (A.5)

With this, we consider case 2 on edge i + 1/2, j, ψ̃csz(1, t) > 0, t ∈ [0, tz]. For this

case, the edge unknowns are:

ψi+1/2,j,d = tz (acsz + bcsz − ccsz (tz − 1)) , (A.6)
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ψM,i+1/2,j,d = tz
(
3 (ccsz − bcsz − acsz) + 3tz (acsz + bcsz − 2ccsz) + 4ccszt

2
z

)
. (A.7)

For case 3, ψ̃csz(1, t) > 0, t ∈ [tz, 1] the unknowns along edge i+ 1/2, j are:

ψi+1/2,j,d = − (tz − 1) (acsz + bcsz + ccsztz) , (A.8)

ψM,i+1/2,j,d = − (tz − 1) (ccsz + tz (3(acsz + bcsz)− 2ccsz (1− 2tz))) . (A.9)

Cell i, j Integral Quantities

As shown in Fig. 3.2, the interior of cell i, j can be classified as 1 of 5 possible

cases. The integration required by the definitions of Eqs. (3.9) is trivial for case 1

and case 5. Integration of the nonzero portions of ψ̃csz(s, t) for cases 2-4 was carried

out by decomposing the nonzero portion of cell i, j into NT individual triangles Tk

as shown in Fig. 3.3. With this notation, we can define the cell unknowns as being:

ψA,i,j,d =

NT∑

k=1

∫ ∫

Tk

P0(s, t)ψ̂csz(s, t)dsdt , (A.10)

ψX,i,j,d =

NT∑

k=1

3

∫ ∫

Tk

P1S(s, t)ψ̂csz(s, t)dsdt , (A.11)

ψY,i,j,d =

NT∑

k=1

3

∫ ∫

Tk

P1T (s, t)ψ̂csz(s, t)dsdt . (A.12)

We then integrate over each Tk by applying the definitions of Barycentric integration:

∫

Tk

f(r)dr = 2Ak

∫ 1

0

∫ 1−λ2

0

f (λ1v1 + λ2v2 + (1− λ1 − λ2v3) dλ1dλ2 , (A.13)

where Ak is the area of Tk and we have transformed the f(s, t) using the below

transformation:

s = λ1s1 + λ2s2 + (1− λ1 − λ2) s3 , (A.14)

t = λ1t1 + λ2t2 + (1− λ1 − λ2) t3 , (A.15)

and we refer to the vertices of Tk as shown in Fig. A.1. For any individual triangle
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Fig. A.1. Coordinates of Tk.

Tk we have the following:
∫ ∫

Tk

P0(s, t)ψ̂csz(s, t)dsdt =

Ak

(
acsz − bcsz − ccsz +

2bcsz
3

(s1 + s2 + s3) +
2ccsz
3

(t1 + t2 + t3)

)
, (A.16)

3

∫ ∫

Tk

P1S(s, t)ψ̂csz(s, t)dsdt = Ak (3(bcsz − acsz + ccsz)+

(2acsz − 4bcsz − 2ccsz)(s1 + s2 + s3)− 2ccsz(t1 + t2 + t3) + 2bcsz(s
2
1 + s22 + s23)

+ 2bcsz(s1s2 + s1s3 + s2s3) + ccszs1(2t1 + t2 + t3)

+ccszs2(t1 + 2t2 + t3) + ccszs3(t1 + t2 + 2t3)) , (A.17)

3

∫ ∫

Tk

P1T (s, t)ψ̂cszdsdt = Ak (3(bcsz − acsz + ccsz)+

(2acsz − 2bcsz − 4ccsz) (t1 + t2 + t3)− 2bcsz(s1 + s2 + s3)+

2ccsz(t
2
1 + t22 + t23) + bcszs1(2t1 + t2 + t3) + bcszs2(t1 + 2t2 + t3)

+bcszs3(t1 + t2 + 2t3) + 2ccsz(t1t2 + t1t3 + t2t3) , (A.18)

where Eq. (A.16), Eq. (A.17), and Eq. (A.18) respectively compute the ψA,i,j,d,

ψX,i,j,d, and ψY,i,j,d components of Eqs. (A.12) respectively.
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