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ABSTRACT

Discrete Preisach Model for the Superelastic Response of Shape Memory Alloys.

(December 2010)

Srikrishna Doraiswamy, B. Tech., Indian Institute of Technology;

Chair of Advisory Committee: Dr. Arun R. Srinivasa

The aim of this work is to present a model for the superelastic response of Shape

Memory Alloys (SMAs) by developing a Preisach Model with thermodynamics basis.

The special features of SMA superelastic response is useful in a variety of applications

(eg. seismic dampers and arterial stents). For example, under seismic loads the SMA

dampers undergo rapid loading–unloading cycles, thus going through a number of

internal hysteresis loops, which are responsible for dissipating the vibration energy.

Therefore the design for such applications requires the ability to predict the response,

particularly internal loops. It is thus intended to develop a model for the superelastic

response which is simple, computationally fast and can predict internal loops. The

key idea here is to separate the elastic response of SMAs from the dissipative response

and apply a Preisach Model to the dissipative response as opposed to the popular

notion of applying the Preisach Model to the stress–strain response directly. Such a

separation allows for the better prediction of internal hysteresis, avoids issues due to

flat/negative slopes in the stress–strain plot, and shows good match with experimental

data, even when minimal input is given to the model.

The model is developed from a Gibbs Potential, which allows us to compute a

driving force for the underlying phase transformation in the superelastic response.

The hysteresis between the driving force for transformation and the extent of trans-

formation (volume fraction of martensite) is then used with a Preisach model. The
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Preisach model parameters are identified using a least squares approach. ASTM

Standards for the testing of NiTi wires (F2516-07ε2), are used for the identification of

the parameters in the Gibbs Potential. The simulations are run using MATLAB R©.

Results under different input conditions are discussed. It is shown that the predicted

response shows good agreement with the experimental data. A couple of attempts at

extending the model to bending and more complex response of SMAs is also discussed.
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CHAPTER I

INTRODUCTION

Shape memory alloys (SMAs) belong to a special class of materials which are able to

show near-complete strain recovery of strain under thermal and mechanical loading

cycles. The two key features observed in SMA are the shape memory effect and the

pseudoelastic effect also known as the superelastic effect. These two effects arise from

solid-solid phase transformations between austenite and martensite phases in such

materials [4]. The phenomenon in which the material recovers all the deformation

when heated above a certain temperature (known as Af ), after having deformed at a

lower temperature, is called the shape memory effect, whereas the phenomenon where

the material undergoes large strains (of the order of 10%) which are recoverable on

unloading is known as the superelastic effect.

A. Shape Memory Effect and Superelastic Effect

Shape memory alloys exhibit the features mentioned above due to phase transfor-

mations between the austenite (high temperature phase/high stress) and martensite

(low temperature phase/low stress) phases. Typically, SMAs have four characteris-

tic transformation temperatures at stress-free state, Ms,Mf , As, Af . Ms signifies the

starting of the martensite phase formation (austenite → martensite) and Mf marks

the end of this transformation. Similarly, in the reverse transformation (martensite

→ austenite) As and Af mark the start and end of the transformation to austenite.

The difference in crystal structures of austenite and martensite phases is the origin

for the shape memory effect and the superelastic effect.

The journal model is IEEE Transactions on Automatic Control.
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1. Shape Memory Effect

The shape memory effect is observed when the material originally at a temperature

below Mf is deformed and when unloaded shows a persistent strain. From this state,

when the SMA is heated above Af it completely recovers the original “shape” and

reverts to the zero strain state. The schematic of shape memory effect is shown in a

stress–strain–temperature plot in Fig. 1.

θ < Mf

Stress, σ

Strain, ε

Temperature, θ

θ > Af

Fig. 1. Schematic of a typical load-temperature cycle for the shape memory effect

2. Superelastic Effect

Shape memory alloys, when deformed to large strains (about 10%) at a constant tem-

perature (above Af ), completely recover the strain on unloading. The large strain

are inelastic and induced by phase transformation. The superelastic response, though

with no apparent plastic strain, still shows a large hysteresis. Therefore the supere-

lastic effect has two different applications: one where the large recoverable strains

are taken advantage of, and the other where the large hysteresis is used to dissipate
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energy (for e.g. vibration damping). The schematic of superelastic response on an

isothermal stress-strain plot is shown in Fig. 2.

Stress, σ

Strain, ε

Hysteresis

εmax

Ea

Em

Fig. 2. Superelastic effect : Schematic of a typical stress–strain response at constant

temperature

The applications of shape memory alloys, particularly using its superelastic prop-

erty range from vibration damping in civil engineering structures [5, 6] to morphing

wings in aerospace engineering [7] and dentures and stents for medical applications

[8, 9]. For almost all of the uses of shape memory alloys, a good understanding of

the material, combined with predictive capability of its response will improve its us-

ability. To this end, there have been works by many material scientists [10, 11, 12]

to understand the properties of SMAs and a number of models for the superelas-

tic and the shape memory response[13, 14, 15] of SMAs. Recently, there have also

been numerous attempts to create new shape memory alloys to perform at high

temperatures[16, 17, 18, 19] and show memory effects under magnetic conditions

[20, 21]
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Some of the salient features that are to be noted in the SMA superelastic response

are the plateau stresses, the area of hysteresis, internal loops of hysteresis, and the

difference in moduli between the austenite and martensite phases. The regions in

the stress–strain response plot which shows very small change in stress with a large

change in strain, while loading and unloading are called the plateau stresses. ASTM

standards for testing of NiTi (F2516-07ε2) shows that these can be computed to be

the stress corresponding to 2.5% strain while loading and the stress corresponding

to 3% stress while unloading. The area of hysteresis gives an idea of the dissipation,

which can be used to dampen vibrations [5] and the large hysteresis in combination

with stiffness differences in the material allows us to use the material for making

stents [9].

The modeling of shape memory alloys (SMAs) has been primarily in two different

ways, models which are analogous to elastoplasticity [15, 13, 22, 23, 24] and those

which are analogous to ferromagnetic domain wall models [25, 26, 27]. The plasticity

models assume that the phase transformations are similar to plastic flow. Under this

assumption, flow rules, yield conditions, normality conditions etc., are developed for

the phase transformation in such models. While these models have firm thermody-

namic foundations, plasticity based models require extensive modifications to the flow

rule in order to account for internal loops.

On the other hand, models based on magnetic hysteresis, such as domain wall

models, free energy based models [28, 26] and Preisach models [29, 30, 31, 32, 33]

exploit an analogy of shape memory alloy phase transformations to magnetic domain

wall transitions. The key idea here is that the models compare the superelastic

hysteresis to the magnetic hysteresis. Such models are extremely versatile and capable

of modeling inner loops and other complex phenomena in a fairly straightforward

way[25]. The mathematical theory of Preisach models is also well developed with
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several rigorous results [1, 34]. A special discussion of a few Preisach type models is

undertaken in Chapter III.

B. Motivation and Scope

Based on the literature study, it is intended to develop a model for the su-

perelastic response which is simple, computationally fast, and can predict

internal loops. In order to do this we choose a Preisach type model for the hys-

teresis. The idea of the Preisach model is to divide the material into a large number

of small “cells” called hysterons. Each cell can switch between an austenitic and a

martensitic phase. The cells differ in their thermodynamic driving force required to

switch them from the austenite to the martensite phase and vice versa. The response

of the entire RVE is the superposition of the response of the cells. But, instead of

applying the hysteresis model directly to the stress–strain response, we will introduce

a driving force for the phase transformation through an appropriate choice of Gibbs

Potential, and apply the Preisach model to the hysteresis between the driving force for

transformation and the martensite volume fraction. The key idea is to separate the

thermoelastic response from the actual dissipative mechanism, so that the Preisach

type models are used to model the physical dissipation mechanism rather than the

phenomenological “hysteresis”. This considerably simplifies the response of the ma-

terial. We will also elucidate direct methods to obtain parameters for the model in

order to avoid ad hoc fitting of model parameters.

Moreover in a design setting, it is important for designers to have an idea of

approximate stresses for preliminary designs, without adequate experimental data.

Therefore it is also intended to provide the possibility to use the model for such

design proposes (e.g. to calculate the amount of heat dissipated and approximately
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calculate stress at a particular strain, given limited experimental data).
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CHAPTER II

MODEL DEVELOPMENT

We will now detail the steps involved in developing a model for the superelastic

response of shape memory alloys. As mentioned earlier, to model such a response, it

is proposed to carefully separate the elastic response from the inelastic response. In

order to do this in a systematic way, we first choose a Gibbs Potential which models

the thermoelastic response of the SMA. Based on this Gibbs Potential, we invoke the

power theorem to compute the dissipation, from which we obtain the driving force

for the phase transformation. Once we have the relation between the driving force of

transformation and the volume fraction of martensite produced, we will reduce the

stress–strain data (from, for example, Fig. 3) to driving force–volume fraction data

and then develop the Preisach Model for this hysteretic response.

A. Thermodynamic Framework

Consider a shape memory alloy wire AB, of initial length L0 along the X-axis. Let

end A be fixed, and end B be subjected to an axial force of F . If the initial cross-

sectional area is A, then the axial referential stress is given by σ = F
A

. The strain in

the material (assumed to deform homogeneously) is given by ε = L0−L
L

, where L is

the current length of the wire.
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Fig. 3. A typical superelastic response of an untrained Ni-Ti SMA wire, with an in-

ternal loop

1. The Gibbs Potential

We seek to model the response of shape memory alloy wires under uniaxial tension by

introducing a Gibbs potential per unit volume (inspired from [15] ) which is assumed

to be a function of the stress σ, temperature θ and the extent of transformation (or

volume fraction of martensite formed during phase transition), α. The Gibbs potential

will pave the way to arrive at a driving force expression for the phase transformation.

Specifically the Gibbs potential energy per unit reference volume is assumed to be of

the form,

G = −
(
ασ2

2Em
+

(1− α)σ2

2Ea

)
+Bα(α− 1) + (1− α)(a+ bθ)− Cθ(1− log θ) (2.1)

where α is the martensite volume fraction, σ is the stress, B, a, b are constants,

C is the specific heat, θ is the temperature, Ea and Em are the austenitic and marten-
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sitic elastic moduli. The constant B represents the interaction energy between the

austenite and martensite phases [15] while constants a and b represent the latent heat

difference between the austenite and martensite phases.

2. The Driving Force

From classical thermodynamics, we know that the entropy is given by,

η = −∂G
∂θ

, (2.2)

and the elastic strain is given by,

εe = −∂G
∂σ

=
ασ

Em
+

(1− α)σ

Ea
. (2.3)

Also, we know that the Helmholtz potential ψ, is related to Gibbs potential G,

by,

ψ = G− σ∂G
∂σ

(2.4)

Invoking the power theorem, the difference between the rate of external working

and the rate of change of the Helmholtz potential, at constant temperature, must be

equal to the rate of the energy dissipated i.e the heating.

In other words,

the dissipation rate(ξ) = (2.5)

external working (σε̇)−rate of change of Helmholtz potential at const. temp.(ψ̇|θ)

Using Eqns. (2.3), (2.4) and simplifying the above, we get,

σ(ε̇− ε̇e)−
∂G

∂α
α̇ = ξ (2.6)



10

From Eqn. (2.6) we observe that there are two contributions to the rate of

dissipation, one from the shape change that occurs due to phase transition (σ(ε̇− ε̇e))

and the other from the energy difference between the two phases (−∂G
∂α
α̇). It is

natural to assume that the elongation due to phase transformation is proportional to

the extent of transformation and the maximum transformation strain, εmax which is

of the order of 6% for Ni-Ti, i.e. we will stipulate that

ε̇− ε̇e = εmaxα̇⇒ ε− εe = εmaxα (2.7)

where α is the volume fraction of martensite evolved at strain, ε.

In the above equation note that, when α = 1, ε − εe = εmax and when α = 0,

ε− εe = 0. Now substituting Eqn. (2.7) into Eqn. (2.6).(
σεmax −

∂G

∂α

)
α̇ = ξ (2.8)

We can now identify the driving force for the phase transformation in the su-

perelastic response of the SMA:

F = σεmax −
∂G

∂α
(2.9)

Until this stage, we have followed a thermodynamical framework that is com-

monly used for phase transforming materials. If one were to follow a plasticity like

model , one will develop an evolution equation for α, which would be the counterpart

for the flow rule for the plastic strain in classical plasticity. Here we will follow a

different approach. We are going to use a Preisach model (to be described

shortly) for the relationship between driving force F and volume fraction,

α.

Notice that this particular method for using the Preisach Model, is different from
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the conventional approach for Preisach Models applied to SMA hysteresis, where the

stress–strain or temperature–strain relationships are directly modeled with Preisach

elements. The advantages of the proposed method will become clear shortly.

3. Driving Force and Volume Fraction from Experimental Data

As mentioned in the previous section, the proposed method uses the relationship

between the driving force F and volume fraction α for the Preisach Model. To this

end, the following develops the required relations.

From the previous sections, Eqns. (2.1) and (2.9) show that the driving force is

given by:

F = σεmax + σ2

(
1

2Em
− 1

2Ea

)
−B(2α− 1) + a+ bθ (2.10)

It is important to note that, here the driving force is a function of stress, temper-

ature and the volume fraction. Thus in this model, temperature effects are accounted

for in the driving force itself. Before we proceed, we nondimensionalize the variables.

In order to do this, we identify a typical stress σ0, a typical strain ε0 and a typ-

ical temperature θ0. Now, we write the nondimensionalized variables, σ∗ = σ/σ0,

ε∗ = ε/ε0, θ
∗ = θ/θ0.

Henceforth, we will drop the ∗’s from the nondimensionalized variables for better

readability.

We observe that from Eqns. (2.3), (2.7) and (2.10), that given experimental data

for stress and strain, one can use the framework developed up to now to compute the

driving force (F) and the volume fraction of the martensite phase (α). Indeed, using

Eqns. (2.3) and (2.7) gives us,

α =
ε− σ

Ea
σ
Em
− σ
Ea

+ 1
(2.11)
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B. Data Reduction

Now that we have a set of equations for the driving force for the transformation

and the martensite volume fraction as a function of the stress, the strain, and the

temperature, we can use experimental data from a stress-strain plot and derive the

driving force for transformation and the martensite volume fraction.

F = σεmax + σ2

(
1

2Em
− 1

2Ea

)
−B(2α− 1) + a+ bθ (2.12a)

α =
ε− σ

Ea
σ
Em
− σ
Ea

+ 1
(2.12b)

Using Eqns. (2.12a), (2.12b) we convert every data point in an isothermal σ − ε

plot to a F − α plot. Indeed, Fig.(4(b)) shows the conversion of the experimental

data given in Fig.(3). It can be seen that the hysteresis curve does not have any

flat plateaus and resembles a typical ferromagnetism hysteresis curve (see, for eg.,

Fig. (1.1) in [35]). Such a data reduction is therefore useful to apply a conventional

hysteresis model (such as those used to model ferromagnetic hystereses) to Shape

Memory Alloy hysteresis.
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Fig. 4. The driving force F vs. volume fraction α plot for the experimental data shown

in Fig. 3. Notice that the hysteresis looks more like a magnetic hysteresis after

the data reduction, with the characteristic S shape (as can be seen in pg. 5 in

[1] )
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CHAPTER III

THE PREISACH MODEL

In the last chapter, we detailed the data reduction that is required to separate the

dissipative part of the response from the elastic response. This was done by choosing

a Gibbs Potential and using the power theorem to derive a driving force for the phase

transformation. In this chapter, we will see what the Preisach model is, how it models

hysteresis, and why the Preisach model is a good choice to model the superelastic

response of Shape Memory Alloys.

A. Introduction

The Preisach model was originally intended for magnetic materials, when it was

first introduced by F.Preisach in 1935. It was first presented “as a superposition

of elementary kernels termed hysterons” [4]. In his book, “Mathematical Models

of Hysteresis”, Mayergoyz [36] has noted that D.H. Everett developed a hysteresis

model similar to the Preisach model for adsorption hysteresis [37]. The central idea

is to replace a smooth hysteresis curve with a set of steps. Each step is modeled as a

“hysteron” and is parameterized by three values: the ‘on’ condition, the ‘off’ condition

and the height of the step. Hysteresis curves are represented as superpositions of such

elemental steps.

Consider a set of such “units of hysteresis” or “hysterons” γ̂αβ. Each of these

units can be represented as a non-ideal switch on the input-output diagram (See Fig

5). α and β are numbers which correspond to the switch on, and switch off values.

It is assumed that α ≥ β. The output of the hysteron is assigned as +1 and -1.

This can be represented as γ̂αβu(t) = +1 and γ̂αβu(t) = −1 for the “on” and “off”

states (outputs) respectively. If for example that input is increased, the path taken
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αβ

+1

-1

a b c

d ef

u(t)

f (t)

Fig. 5. The hysteron for the classical Preisach model. Note that α and β are the

switching values for this hysteron and the arrows point the allowable paths

corresponding to changes in input

would be abcde in Fig. 5 and when the input is decreased, the path edfba is taken.

Along with the switch values γ̂αβ, a weight function µ(α, β) is also used to model the

hysteresis. The Preisach model can now be written as below:

f(t) =

∫∫
α≥β

µ(α, β)γ̂αβ[u(t)] dα dβ (3.1)

The representation above is for a infinite set of hysterons. But it is possible to

use this setup for a finite set of hysterons to make it computationally easy and fast.

The setup for such a “Discrete Preisach Model” will be discussed in Section C.

B. Survey of Existing Preisach Type SMA Models

In the recent past, papers presenting Preisach Model for hysteresis of smart materials

(shape memory alloys and piezoelectrics, in particular) are by Ort́ın [30], Hughes and
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Wen [29], and Bo and Lagoudas [14].

Preisach models have been used in the modeling of SMAs in primarily two ways.

One is using Preisach models to predict the temperature-strain hysteresis [33, 29, 14]

and the other is to predict the stress-strain or force-displacement hystereses in SMAs

[32, 30].

In the paper by Bo et al., [14], a number of hysteresis models for Shape Mem-

ory Alloy modeling have been discussed including Duhem-Madelung model, Preisach

model, and K-P type models. In particular, the Preisach model was used for modeling

the temperature-strain hysteresis. The paper shows how the integral type Preisach

model can be used to model the major and minor hysteresis loops. The integral type

Preisach Model is developed by choosing a distribution function µ(Tα, Tβ) for the

martensite volume fraction, ξ, where Tα and Tβ are the hysteron parameters for the

hysteron, γαβ. The total volume fraction is given by:

ξ[T ] =

∫∫
Tα≥Tβ

µ(Tα, Tβ)γαβT dTαdTβ (3.2)

The paper also lists the disadvantages of using a Preisach model to SMA hys-

teresis modeling, especially the difficulty in incorporating effects due to training and

different loading paths.

In [30], Ort́ın presents a model for the stress-strain hysteresis of SMA wires.

This model uses the integral Preisach approach and the applied stress is the forcing

variable and the output variable is the strain (both functions of time). As with the

classical Preisach model we have the equation that gives the strain, ε(t) as an integral

over all the hysterons, γαβ,

ε(t) =

∫∫
α≥β

µ(α, β)γαβσ(t) dαdβ (3.3)
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Here, the strain can be computed from the experimental data by considering “first

order reversal paths, i.e.,a path that is obtained from the main loading branch on

unloading at a given σ value”.

However current Preisach models for shape memory alloys suffer from a number

of drawbacks:

1. The models are generally not thermodynamically based, but rather purely phe-

nomenological in nature.

2. Most Preisach type models have focused on either purely thermal [33, 14] or

purely mechanical response [30]. However if the hysteresis loop changes with

temperature, all the forward and backward transformation functions need to be

modified as functions as temperature, which makes them extremely complicated.

3. Many controls systems applications based on cancellation of non-linearity, re-

quire inversion of the models [38]. This is not easy to do with a simple Preisach

model, although for certain modifications of the Preisach models techniques are

available.

4. For Nitinol wires, it is possible that the stress-strain response shows a non-

hardening or in some cases a softening response, i.e. the slope of the stress-

strain graph may be zero or even slightly negative. It is not possible to use a

Preisach model to directly simulate this, because strain controlled experiments

cannot be modeled this way.

C. The Discrete Preisach Model

In Section A, a brief idea about the classical Preisach model was discussed. In this

section we will analyze the Discrete Preisach Model, the discrete analog of the Clas-
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sical Preisach Model. Here again, the model is setup as an ensemble of N hysterons,

each of which looks like the one shown in Fig.6. Each hysteron (Fig. 6) is basically

a non-ideal switch that switches on when the driving force (or input), F increases

beyond Fforward, giving an output ∆α and switches off at Fbackward. It is to be noted

that once the driving force crosses the Fforward (while increasing the driving force),

the output does not change when the driving force is further increased. Similarly,

when the driving force crosses Fbackward (while decreasing the driving force) the out-

put stays at zero. To model the driving force for phase transformation-volume fraction

of martensite hysteresis, we will use a large number of such hysterons which switch

on and off at different values of the input force, each contributing to the output.

F i
backward F i

forward

∆αi

F

α

Fig. 6. The hysteron or basic hysteretic element used in the Preisach model. Note

that the directions of allowed transformations are indicated by the arrows on

the hysteron. Also note that ∆αi is positive ∀ i.

1. Setting up the Preisach Model

To setup the Discrete Preisach model for our model, we will list the requirements for

the hysterons. In this context, we first describe the modus operandi for use of Preisach

Model with the thermodynamic model presented in Chapter II. To reiterate, the
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hysteresis we model is the driving force for phase transformation vs. volume fraction

of martensite hysteresis presented in Eqns. (2.12a), (2.12b) and Fig. 4(b). It is now

obvious that the input for the hysteron is the driving force for phase transformation

and the output is the volume fraction of martensite1. This immediately implies that

the volume fraction output for each hysteron can either be 0 (when switched off) and

∆αi (when switched on), as shown in Fig. 6.

a. The Algorithm for Preisach Model

A state Si of the i th hysteron (of a total of N hysterons) can be one of two values, 0

or ∆αi. A convenient way to consider this (for the sake of writing as programmable

code), is as follows. Let S
(n)
i be the state of the ith hysteron at (pseudo) time tn,

Fn+1 be the driving force at tn+1, then the sum of outputs of all the hysterons at the

end of time tn+1 is computed by the following extremely simple algorithm,

Algorithm 1 Algorithm for Discrete Preisach Model

if S
(n)
i = 0 & F (n+1) > F i

forward then

S
(n+1)
i ← ∆αi

else if S
(n)
i = ∆αi & F (n+1) < F i

backward then

S
(n+1)
i ← 0

else

S
(n+1)
i ← S

(n+1)
i

end if

α(n+1) ←∑N
i=1 S

(n+1)
i

Hence, the state of the system (i.e. the extent of transformation, given by the

1For the sake of brevity, “driving force” will be used in place of “driving force for
phase transformation” and “volume fraction” will be used to refer to “volume fraction
of martensite”, henceforth.
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total volume fraction of martensite evolved), is:

α =
N∑
i=1

Si (3.4)

b. Obtaining the Preisach Parameters

The algorithm shows how to compute the total output given the input. But, this

implies knowledge of the hysteron parameters Fforward, Fbackward, ∆α. For a given

stress-strain data, once the driving force–volume fraction is computed, we need to

compute the hysteron parameters, so that we can find the hysteron output, given an

input. In order to do this, we describe a convenient way of arranging hysterons in a

triangle, the reason for which will become evident shortly.

c. Preisach Triangle

The Preisach Triangle (pp. 32-39 [36]) is a convenient approach to arranging the

hysterons. The hysterons are assigned the driving forces in a triangle (see Fig.7(a)),

so that the hysterons with the lowest forward driving force are at the bottom of the

triangle and the hysterons with highest forward driving force are arranged at the top

of the triangle2. Similarly, the hysterons with the lowest backward driving force are

arranged at the left end of the triangle and the hysterons with the highest backward

driving force are arranged at the right end. In other words, the following lists the

properties of hysterons in the Preisach Triangle.

The hysteron switch values are assigned in a way to:

• place every hysteron with a particular switch on value in the same row in an

“upper-triangle” (Fig. 7).

2Highest and lowest driving force are the maximum and minimum values of the
driving force computed using Eqn. (2.12a)
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• place every hysteron with a particular switch off value in the same column.

• place hysterons in an increasing order (left to right) of switch off value in every

row of the triangle.

• place hysterons in a increasing order (bottom to top) of switch on values in

every column of the triangle.
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b

(a)

F 5
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fF 5
f 6 F < F 6

f

(b)

F 6
b 6 F < F 5

bF 6
b 6 F < F 5

b

(c)

F 4
f 6 F < F 5

fF 4
f 6 F < F 5

f

(d)

Fig. 7. (a) The Preisach triangle is a convenient way of assigning hysterons with their

parameters to allow systematic switch on and switch off of the hysterons. Note

that the directions of sweep are marked on the figure. (b),(c),(d) An example

of the sequence of states in the Preisach triangle is shown. The grayed portion

of the triangle includes hysterons which are switched on. The value of the

driving force which enforces the state is shown at the top of each state.

It can now be seen that, if one were to increase the input, the hysterons get
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switched on row by row, from the bottom-most row upwards. When the input is not

increased any further, it stays until any change is made to the input. If in case, the

input is decreased from this state, the hysterons (which are currently switched on)

switch off starting with those which have the highest (relative to the current input)

switch off values (which would be the right most column of hysterons of all those

which are currently switched on). Progressively, the hysterons will switch off column-

by-column, right to left. A particular cycle can be better visualized by looking at

Fig. 7.

An interesting point to note here is that, by assigning the hysterons to specific

positions in the triangle, we have already taken care of finding two of the the three

parameters per hysterons. Now to use Algorithm 1, all we need to do is to compute the

output per hysteron. Once this is done, we will have a complete, Preisach prediction

of the hysteresis of driving force–volume fraction (Fig. 4(b)).

Returning to the Preisach triangle, let us consider a Preisach triangle with n

hysterons on its side. It is clear that the total number of hysterons in the triangle is

1
2
× n× (n+ 1). It thus follows that, the number of unknowns (hysteron outputs, or

∆αi) that we need to solve is n(n+1)
2

. We will setup a system of equations to solve for

these unknowns.

d. Solving for the ∆αi of Hysterons

Setting up the system of equations to solve the output parameter of the hysteron

is better understood through an example. Let us consider the example shown in 7.

We have a Preisach triangle with 28 hysterons (side is 7). Therefore the number

of unknowns here is 28. Now, let us assume that the points (say, k < 28) on the

hysteresis data is as follows.
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F =



0

...

F1

...

F2

...

F3

...


k×1

α =



0

...

α1

...

α2

...

α3

...


k×1

Now, obviously, since the first entry is 0, none of the hysterons are switched on.

This is indeed 7(a). Let us assume that, after a few steps, the state of the hysterons

is given by 7(b). Let F1 be the driving force corresponding to this state, (which is

therefore F 5
f ≤ F1 < F 6

f ) and α1 be the volume fraction that has evolved at this

state. Clearly, the hysterons which contribute to α1 are the hysterons which are in

the grayed out area. Thus, we can write

∆α11+∆α21 + ∆α22 + ∆α31 + ∆α32 + ∆α33 + ∆α41 + ∆α42 (3.5)

+ ∆α43 + ∆α44 + ∆α51 + ∆α52 + ∆α53 + ∆α54 + ∆α55 = α1

where ∆αij corresponds to the hysteron at the i-th row from the bottom and

j-th column from the left.

Similarly, if we write the equations for α2 corresponding to 7(c) and α3 for 7(d)

and so on, we can write the entire system as follows,
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0 . . . 0

...

1 1 . . . 1 0 . . . 0

...

1 1 . . . 1 1


k×28︸ ︷︷ ︸

A



∆α11

...

∆α55

...

∆α77


28×1︸ ︷︷ ︸

x

=



0

...

α1

...

1


k×1︸ ︷︷ ︸

B

(3.6)

Note here, that the format is the classic system of linear equations,

Ax = b

but, the dimensions of A are k × 28 and given3 k < n(n+1)
2

it is not possible to write

x as x = A−1b. This problem is solved by the technique of least squares. Especially,

in this case, the constraints on the unknowns are that they have to be non-negative.

This constrained least squares problem can be formally stated as below:

minimize ‖Ax− b‖ (3.7)

subject to

xi > 0 ∀ i = 1, ...,
n(n+ 1)

2

To solve , we used CVX, a MATLAB R© package for specifying and solving convex

problems (including such least squares problems) [39, 40].

Having done this, we now know everything about each of the hysterons and to

get the predictions of the Preisach Models, we just need to apply Algorithm 1. In

the following chapter, the details of obtaining the stress–strain hysteresis prediction

3Typically, the number of hysterons is more than the number of data points
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from the application of Algorithm 1 and associated specifications for simulations will

be presented.
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CHAPTER IV

SIMULATION

In this chapter, we will detail the method by which the response of the superelastic

SMA is simulated, and why the predicted response is useful. At the end of the

previous chapter, we were at a stage where we knew the entire set of parameters

for the hysterons. We also were able to simulate the driving force–volume fraction

hysteresis based on Algorithm 1. Currently, the last piece of work left is to once again

convert this predicted hysteresis to the conventional stress–strain hysteresis so that

we can use the model effectively.

A. Driving Force – Volume Fraction to Stress – Strain

To compute the stress in a superelastic wire, at a constant temperature, given the

strain and the set of parameters which define the hysterons, we first list the necessary

equations and then elaborate the scheme that is used to perform the computation.

Let there be N hysterons each contributing αi to the volume fraction through

the Preisach setup. We note that Algorithm 1 gives,

α =
K∑
i=1

αi (4.1)

where αi ∀ i = 1, 2, . . . , K denotes the value of the volume fraction contribution

of those hysterons which are switched on at this timestep.

Now, Eqn. (2.12b) can be rewritten with σ on the left hand side,

σ =
ε− α

α

(
1

Em
− 1

Ea

)
+

1

Ea

(4.2)

The above equations, with the addition of Eqn. (2.12a) are used for the following
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scheme.

Let us assume that the information available to us at timestep tn, is σ(n), ε(n),

F (n) and α(n), where σ is the nondimensionalized stress, ε is the nondimensionalized

strain, F is the driving force and α is the volume fraction. Also, since superelastic

response is generally under isothermal conditions, the temperature θ is also known.

In addition to this, we also know the strain at timestep ε(n+1).

We now seek to compute σ(n+1), F (n+1) and α(n+1).

Putting together Eqns. (4.1), (4.2), and (2.12a)

α(n) =
K∑
i=1

α
(n)
i (4.3a)

σ(n+1) =
ε(n+1) − α(n)

α(n)

(
1

Em
− 1

Ea

)
+

1

Ea

(4.3b)

F (n+1) = σ(n+1) +
(
σ(n+1)

)2( 1

2Em
− 1

2Ea

)
−B

(
2α(n) − 1

)
+ a+ bθ (4.3c)

At this stage, we use F (n+1) to compute the updated state of the hysterons by

Algorithm 1, and then we can march the time to the next step. In the following

sections, we will see the details of the data used, different specifications applied to

the model, and how the model is used to simulate the response of superelastic SMA

, including inner loops of hysteresis and temperature effects.

B. Data Used for the Simulations

The data that is used in the majority of this work was from experiments performed

by Mr. Ashwin Rao, from the Mechanical Engineering department and a member of

Dr. Srinivasa’s research group. The experiment was performed on 0.75 mm diame-
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ter Nitinol wires purchased from Images Scientific Instruments (www.imagesco.com).

The gauge length of the wire was 120 mm and transformation temperature around

328 K. The experiments are performed on an Instron 5567 series.

C. Model Specifications

It can be seen that the model parameters are of two kinds in the proposed model.

One set of parameters are from the thermodynamical framework, from Eqn. (2.1)

and the other set of parameters are the hysteron parameters. Chapter III, Section

b details the procedure to obtain the parameters for the hysteron. We will now list

the procedure by which the parameters in the Gibbs potential (Ea, Em, B, a, b) are

identified.

First, it is to be noted that in order to obtain the thermodynamic parameters,

the entire stress–strain data is not required. We will list a few salient features of the

response, corresponding to which data will have to be provided for identifying the

thermodynamic parameters.

Ea and Em are the austenitic and martensitic moduli which can be inferred

directly from the plot of the response. B is the coefficent of the interfacial energy

term, which is the area under the curve in the plot and a,b are parameters which are

obtained by comparing responses at two different temperatures.
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Fig. 8. The points identified for use with identification of the thermodynamic param-

eters from the stress–strain response. These points with two set of points

(equivalent of (x1, y1) and (x2,y2)) from the response at another temperature

will be used to identify the parameters.

In particular, in a given response, as shown in Fig. 8, the input given is the

list of 5 points from the stress–strain response at a given temperature θ1. The upper

plateau (2.5% strain while loading, as per ASTM F2516-07ε2) points are (x1,y1) and

(x2,y2). The lower plateau points (x4,y4) and (x5,y5) are based on 3 % strain while

unloading(again, as per ASTM F2516-07ε2). The two slopes are tangents at the point

of start of loading and the point of start of unloading. Obviously, the points men-

tioned above are the intersection of the slope (or “moduli”) lines with the plateaus.

Additionally, the points corresponding to the upper plateau, (x1,y1) and (x2,y2), at a

different temperature θ2 is also given.

Now the following list shows the method by which each of the parameters are

computed. Note that the data is nondimensionalized by σ0 (average value of stress

on the line joining (x1, y1) and (x2, y2) ) and ε0 (value of strain at (x3, y3) ).
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• Moduli Ea and Em are computed by finding the slopes of the line joining (0,0)

and (x1,y1), and (x3, y3) and (x4, y4) respectively.

• B is negative (because of our choice of the term Bα(α−1) in the Gibbs Potential

(Eqn (2.1)) ) of the area under the curve

• b, the thermal parameters are computed by fitting a straight line to the upper

plateau values (computed as average value of stress on the line joining (x1, y1)

and (x2, y2) ) at temperature θ1 and θ2. a is a parameter which ensures that

the driving force is positive and is therefore set to be 2 |b|

Table I. Values of nondimensional thermodynamical parameters for response shown in

Fig. 8

Nondimensional Parameters Values

Ea 6.92

Em 4.95

B -2.84

a 4.95

b -2.47

θ1 373

θ2 398

D. Inputs for the Simulation

The primary input for the model is the list of points from Fig. 8 i.e. (xi, yi) for

i = 1, 2, . . . , 7. Given this input alone, a linear approximation to the experiment may

be assumed and the prediction corresponding to this approximation can be predicted

and is given in Chapter V.
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On the other hand, if the entire experiment data is given, with the 7 points

specified separately, the parameters given in Table I can still be computed the same

way listed above. Additionally, the simulation can be carried out with the data points

as input to the model.

E. Simulation Procedure

The following list gives a brief overview of the computer implementation of the pro-

posed model. Appendix A.

Step 1

Obtain input data points and the strain routine to be modeled from user.

Step 2

Compute parameters, and non-dimensionalize the stress and strain data.

Step 3

Reduce data to driving force and volume fraction using Eqn. (2.12).

Step 4

Compute the Preisach hysteron parameter values for the driving force–volume

fraction hysteresis obtained in Step 3.

Step 5

Once the Preisach hysteron parameters are computed, use Eqn. (4.3) to find

the stress corresponding to the input strain.
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CHAPTER V

RESULTS AND DISCUSSION

Setting up the simulation under the specifications listed in Chapter IV, we now look

at different runs of the simulation under various cases.

A. Simulating Superelastic Response with Internal Loops of Nitinol Wire at 373 K

In this case, we use the Preisach model to simulate the experiment itself. The key

points to note here are that the model has a high fidelity to the data provided. It is

to be noted that, in case of the linear approximation, existing models will fare poorly,

especially in capturing the plateaus. Since the proposed model fits a hysteresis to the

reduced data, this problem does not arise in the way this model is structured. It is

also important to note that if the entire data is provided, the model can effectively

recreate the response.

We will demonstrate the predicted response in the case of providing representa-

tive data points as input (Fig. 9) versus providing the entire experiment data (Fig.

10). With this data as the input, we will run the simulation to predict the response

for the same strain routine. This strain routine includes two internal loops. It is to

be noted that the internal loops are the same internal loops which were run during

the experiment. For the sake of this example,(Fig. 9) only the outer hysteresis data

is provided to the model, and the model is required to predict internal loops. This

can be compared to the experimental data (which includes internal loops). It is to be

noted that the about 60,000 hysterons (about half of which were hysterons with zero

output, meaning that they did not contribute to predicting the response) were used

to generate the results shown below.
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Fig. 9. The model prediction of response at 373 K of Nitinol wire. Note that the plot

shows an overlay of the data given as input, the predicted response and the

data that the result is compared against. In this case, it can be clearly seen

that the input data is a very crude approximation of the actual experiment

data.
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Fig. 10. The model prediction of response at 373 K of Nitinol wire. Note that the

plot shows an overlay of the data given as input, the predicted response and

the data that the result is compared against. In this case, the input data is

the outer hysteresis extracted from the experimental data. Notice the match

between the predicted internal loops and the experiment.

B. Prediction of Change in Response with Changes in Temperature

Figs. 9 and 10 both show the predicted response at the same temperature as that

of the experiment (θ1). The following set of predictions compare the response of the

Preisach model based on data from temperature θ1 and predicting response at two

different temperatures θ2 and θ3 (θ2 < θ1 < θ3). The experiments were performed at

348 K, 373 K and 398 K. Using the outer loop of hysteresis from the experiment at

373 K, we predicted the response at 348 K and 398 K. These can be seen in Figs. 11

and 12.
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Fig. 11. The model prediction of response at 398 K of Nitinol wire, based on input

data at 373 K. Notice that the model is capable of approximately predicting

the response upto 6 % strain.
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Fig. 12. The model prediction of response at 348 K of Nitinol wire, based on input

data at 373 K. Notice that here again the model is able to approximately

model the strain upto 6 %.

C. Discussion

The figures above show the various capabilities of the proposed Preisach model.

Firstly, it can be noticed that the fidelity to the data given as input is high. Also,

the proposed model is able to perform consistently well irrespective of the slopes of

the upper plateau. This is useful, especially since we can then give only the salient

points of the response as input. For the purposes of design, this model is thus handy,

to give an idea of design values of stress at different strain values.

It can also be seen that the internal loops are characteristic of the Preisach mode,

showing “return-point memory” (also known as “wiping out property”). This is one
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of the features of the Preisach setup. However,the data, as can be seen in Fig. 10,

does not show this property. But in essence, the area under the internal loops are

well captured by the proposed model. In fact, it can be seen that even in the crude

approximation for Fig. 9 shows agreement with internal loops in the experimental

data. On, the other hand, the response shown in Fig. 10 models the entire experiment

including internal loops with greater accuracy. This enables use of such a model for

design as well as control systems.

The other important feature exhibited by the proposed Preisach model is that

without any additional input, the model is able to predict the response at different

temperatures given only the data from two temperatures. It can be seen that, the

data was from an experiment conducted at 373 K but, the model, in Figs. 11 and

11, shows predictions at 398 K and 348 K respectively. It is to be noted that, the

only data given to the model from the experiment at 398 K was the plateau stress

value. It can be seen that without increasing any paramaters, or recomputing the

values of the hysteron parameters, the model is able to compute the response at two

other temperatures. This can indeed be extended to different temperatures.
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CHAPTER VI

CONCLUSIONS

A. Summary

The model presented in this work is motivated by the need for a model which can

predict internal hysteresis loops. This was accomplished by developing a thermo-

dynamics based discrete Preisach model. The thermodynamics frameworks helps in

separating the thermoelastic part of the response, and the dissipative response is

modeled using the Preisach Model. The results of simulations using the model were

compared with experimental data in the previous chapter.

1. Observations and Discussion

It can be seen in Fig. 9 that the model was used with the linear approximation to

the experimental data as input. The internal hysteresis loops were predicted with

only the global, crude linear approximation as input. It can be seen that the model

prediction is quite close to the internal hysteresis loops of the experiment up to about

5%. But the model predicts a larger hysteresis loop for the third internal hysteresis

loop. It can also be seen that the model does not capture the slopes during initial

loading and unloading and that the curve at the onset of the plateau stress is also not

predicted correctly. These results are useful for simple, design calculations, which can

give an idea of the approximate stress levels, amount of dissipation and stiffness of the

material when undergoing internal hysteresis loops. It can also be inferred that in this

case, instead of using a horizontal line, one might use a linear approximation between

the start of the plateau and the maximum strain points to get a better prediction.

For use with design, one could use a linear approximation to only 5% since SMAs are
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not generally used up to 10% strain in real life applications

In Fig. 10 , the data input is the global hysteresis input extracted from the

experimental data. The internal hysteresis loops which are predicted show a good

match with the experimental data. It can be seen that in this case, in comparison

with Fig. 9, the internal loops match better with the experiment, in terms of the

stiffnesses and the area of hysteresis. It is clear that when the data available is

the full stress–strain response, the model is able to capture the key aspects of the

response.

Fig. 11 and 12 show the model’s prediction of the variation of stress–strain

response with temperature. In order to predict this, the model’s input was the global

hysteresis at 373 K, and the variation of the driving force with temperature (assumed

to be linear) is computed using the upper plateau stress under two temperatures (in

this case 373 K and 398 K) as explained in Chapter IV. It can be seen that the

models perform well under such a simplistic assumption, and the model shows good

match with the experiments for up to 6 % in Fig. 11 as with Fig. 12.

B. Directions of Future Work

It was shown that the proposed Preisach model is able to predict the response of

superelastic Shape Memory Alloys, in particular internal loops and temperature ef-

fects. Added to that, the model is also capable of predicting internal loops with very

minimal information from experimental data. At this stage there are a number of

directions in which further work may be done on this model. A few attempts have

been made and are listed here.
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1. Predicting the Bending Response from Uniaxial Response

It was intended to predict the bending response of a SMA beam using only the uniaxial

response of SMA beams [41]. In this work, the beam was assumed to be under pure

bending, and thus the strain in the beam was assumed to be linear, and the stress in

the section was predicted using the data from the uniaxial experiment (see Fig. 13).

The data used for this procedure was from experiments conducted by Rejzner et al.

[2].

 

 

Preisach Model prediction from Uniaxial
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Fig. 13. Prediction of bending response of superelastic SMA beam using the experi-

mental data from tension experiments of [2].

It is to be noted here that it was assumed that the tension and compression

responses are approximately the same and that the computation of moment was done

by assuming that the stress was constant in ,say, n strips (see Fig. 14) (perpendicular
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Fig. 14. Assumptions regarding computation of the moment of the SMA “beam”. The

cross section is divided into n strips and average stress over each of the strips

is used to compute the moment at this section.

to the neutral plane) on the cross section. Indeed, increasing the number of strips n

on the cross section, and data of the compression experiment of SMA will improve

the prediction of bending response from the uniaxial response. It can be seen that the

model largely overestimates the hysteresis. This is due to the assumptions that have

been made for the strains in the beam as well as the assumption that the tensile and

compressive response are the same. In addition to that, the model also computes the

average stress in a few strips only (4, for the results shown in 13). In order to predict

bending purely based on uniaxial response, it may be important to have better data

for the uniaxial (tension and compression) response and also compute stresses at more

number of strips.

2. Using Preisach Model for Shape Memory Alloy Response with Double Plateaus

Recent advances in digital image correlation (DIC) allowed research Efstathiou et al.

[3] to capture double plateau corresponding to two different martensitic transforma-

tion. Under the assumptions of the model, it is to be noted that the Gibbs Potential

assumes of only one kind of phase transformation taking place, whereas the authors

of [3] note that two separate transformations maybe the reason for the observation

of such double plateaus. A Gibbs Potential which takes into consideration this dou-
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ble phase transformation, combined with appropriate corrections for the interfacial

energy, would present a more physically meaningful model for such responses. Never-

theless as a testimony to the versatility of this model, we show the predicted response

(with ad-hoc parameter choice) in Fig. 15.
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Fig. 15. Prediction of superelastic response of NiFeGa from data of [3]

C. Conclusions

To reiterate, the model’s versatility is exhibited in these two examples. It is to be

noted that, much of this is possible because of the separation of the thermoelastic

and dissipative parts. The response was simulated using MATLAB and the discrete

Preisach model setup allows for easy and fast computation. We also showed that, for

the proposed model, the input need not be the entire experimental data, and even a

linear approximation to the superelastic response is able to capture the internal loops

of the response.
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APPENDIX A

MATLAB IMPLEMENTATION OF THE MODEL

The structogram shown below is the pseudocode for the simulation explained in

Chapter IV.

Fig. 16. Structogram for the computer simulation of the proposed model.
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This appendix is a compilation of the various subroutines which are used in the

computer simulation of the model.

main.m

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% Run this code to generate results for Modified Preisach
% for response under tension
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
clear all
clc
tic
%============================
% Number of Preisach Levels
%============================
Nlevels = 350;
%================================================
% Number of load steps per leg of strain_input
%================================================
Nsteps_per_leg =200;
%================
% Strain input
%================
strainendpoints =[0,0.041,0.0246,0.06,0.002];
%=================================
% Strain Input from function
%=================================
strain_input = GetInputVector(strainendpoints,Nsteps_per_leg);
%=====================================
% Total Number of load steps
%=====================================
Nsteps = length(strain_input);
%=================
% Filename for data
%=================
filename = ’ashwin_sample23_outer.dat’;
inputpointdata = ’ashwin_sample23.mat’;
%========================================================
%Calculate the forward and backward switches for the Preisach Elements
%=========================================================
[df_forward df_backward vfmax_per_ele] =
CalculatePreisachSwitches(filename,Nlevels);
%===========================================
% Compute stress for the given strain
%===========================================
[stress_predicted_classical,strain_input,F_classical,vf_classical]
= RunPreisach(df_forward,df_backward,vfmax_per_ele,...
strain_input,Nlevels,Nsteps,filename);
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%========================================
% Plotting the stress strain curve
%========================================
close all
data=load(filename);
plot(strain_input,stress_predicted_classical,’b’,...
data(:,1),data(:,2),’r’)

GetInputVector.m

function vector_input = GetInputVector(endpoints,Nsteps_per_leg)
% To generate the vector_input vector using linspaces
vector_input=[];
Nendpoints = length(endpoints);
for i = 1:Nendpoints-1

vector_input
= [vector_input,...
linspace(endpoints(i),endpoints(i+1),Nsteps_per_leg)];
end

CalculatePreisachSwitches.m

function [df_forward df_backward vfmax_per_ele]
= CalculatePreisachSwitches(filename,Nlevels)
% INPUT VARIABLES
% Nlevels - Number of levels in the Preisach Triangle
% OUTPUT VARIABLES
% df_forward - Forward direction switch
% for Preisach Element (Nlevels x 1)
% df_backward - Forward direction switch\
% for Preisach Element (Nlevels
% x 1)
% vfmax_per_ele - Maximum Volume fraction
% yield per Preisach Element
%=============================
% Initialization
%=============================
flag_ele = zeros(Nlevels);
Amat = zeros(Nlevels,Nlevels^2);
Bvec = zeros(Nlevels,1);
%===================================================
% Finding the driving force and volume fraction
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%===================================================
[drivingforce,volumefraction] = Resampling(filename,Nlevels);
%====================================================
% Forward and Backward switches for each element
%====================================================
df_forward = linspace(min(drivingforce),...
max(drivingforce),Nlevels);
df_backward = linspace(min(drivingforce),...
max(drivingforce),Nlevels);
%=================================================================
% Setting the switch values in element positions in the triangle
%=================================================================
df_forward_matrix = sparse(tril...
(repmat(df_forward’,1,Nlevels)));
df_backward_matrix = sparse(tril...
(repmat(df_backward,Nlevels,1)));
%===========================================================
% Initializing df_forward & df_backward for later storage
%===========================================================
df_forward=zeros(1,Nlevels^2);
df_backward=zeros(1,Nlevels^2);
%=========================================================
% Setting up equations to be solved to find vfmax_per_ele
%=========================================================
%--------------------------------
% For each step of driving force,
%--------------------------------
for step = 2 : Nlevels
%--------------------------------------------------------------
% Check if the driving force will switch on the element or not
%--------------------------------------------------------------

if drivingforce(step) > drivingforce(step-1)
drivingforcetemp = drivingforce(step);
%-------------------------------
% For each element coordinate,
%-------------------------------
for i = 1 : Nlevels

for j = 1 : i
if drivingforcetemp >= df_forward_matrix(i,j)

if flag_ele(i,j) == 0
flag_ele(i,j) = 1;

end
end

end
end

else
%-------------------------------
% For each element coordinate,
%-------------------------------
for i = 1 : Nlevels

for j = 1 : i
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if drivingforce(step) <= df_backward_matrix(i,j)
if flag_ele(i,j) == 1

flag_ele(i,j) = 0;
end

end
end

end
end

%-------------------------------------------------------
% Assign the flags as a row of
% the A matrix for least squares (Ax=B)
%
% Converting elements of flag_ele to elements of Amat
% (matrix of coefficients)
%and writing df_forward, df_backward in a usable fashion
%-------------------------------------------------------

Amat(step,:) = flag_ele(:);
df_forward(1,:) = df_forward_matrix(:);
df_backward(1,:) = df_backward_matrix(:);
Bvec(step,1) = volumefraction(step);

end
%==============================
% Solving for vfmax_per_ele
%==============================
Amat = sparse(Amat);
n = Nlevels^2;
cvx_begin quiet

variable vfmax_per_ele(n);
minimize( norm(Amat*vfmax_per_ele-Bvec) );
subject to

vfmax_per_ele >= 0;
cvx_end

Resampling.m

function [df_resampled,vf_resampled]=Resampling(filename,Nlevels)
% INPUT VARIABLES
% drivingforce - Nondimensionalized driving force
% volumefraction - Nondimensionalized volume fraction
% Nlevels - Number of levels in the Preisach triangle
% OUTPUT VARIABLES
% df_resampled - Resampled drivingforce, with size Nlevels
% vf_resampled - Resampled volumefractio, with size Nlevels
%=================================================
% Finding the driving force and volume fraction
%=================================================
[drivingforce,volumefraction] = DrivingForceVolumeFraction(filename);
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%=================
% Computing sizes
%=================
length_df = length(drivingforce);
length_vf = length(volumefraction);
%=============
% Resampling
%=============
dftemp = drivingforce;
vftemp = volumefraction;
df_resampled = ChangeLength(dftemp,Nlevels);
vf_resampled = ChangeLength(vftemp,Nlevels);
for i = 1:length(vf_resampled)

if vf_resampled(i) < 0
vf_resampled(i) = 0;

end
end

DrivingForceVolumeFraction.m

function [drivingforce,volumefraction]=
DrivingForceVolumeFraction(filename)
% INPUT VARIABLES
% filename - name of the file with data
% material - name of the material type
% OUTPUT VARIABLES
% drivingforce - Nondimensionalized driving force
% volumefraction - Nondimensionalized
% volume fraction of martensite
%==========================================================
% Get the nondimensionalized stress and strain from file
%==========================================================
[stress,strain] = GetStressStrain(filename);
%==================
% Nondimensionalized Temperature
%==================
T = 1;
%==============================================
% Compute driving force and volume fraction from
% the stress and strain
%===============================================
load ashwin_sample23.mat
params = GetParams(inputdata);
E_a = params.E(1);
E_m = params.E(2);
B = params.B;
a = params.thermal(1);
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b = params.thermal(2);
volumefraction = ( strain - (stress.*inv(E_a)) ) ./ ...
( stress.* (inv(E_m) - inv(E_a)) + 1);
for i=1:length(volumefraction)

if volumefraction(i)<0
volumefraction(i) = 0;

end
end
drivingforce = stress.^2.*(inv(2*E_m) - inv(2*E_a))
- B.*( 2.*volumefraction-1 )+ a + b * T + stress;

GetParams.m

function params = GetParams(inputdata)
% Parameters from the Gibbs Potential
coords=inputdata.coords; % 7 points input as per ASTM standards
temp_exp = inputdata.temp_exp1;
temp_exp2 = inputdata.temp_exp2;
stress_ref = 0.5*(coords(1,2)+coords(2,2));
strain_ref = coords(3,1);
E_a = (strain_ref/stress_ref)*(coords(1,2)/coords(1,1));
E_m = (strain_ref/stress_ref)*((coords(4,2)-coords(3,2))/...
(coords(4,1)-coords(3,1)));
B=trapz([0;coords(1:5,1)]/strain_ref,[0;coords(1:5,2)]/stress_ref);
stress_ref_exp2 = 0.5*(coords(6,2)+coords(7,2));
thermalslope=polyfit([temp_exp2,temp_exp],...
[stress_ref_exp2,stress_ref],1);
b=-thermalslope(1);
a=2*(-b);
params.reference = [stress_ref strain_ref temp_exp];
params.E = [E_a E_m];
params.B = -B;
params.thermal = [a b];

GetStressStrain.m

function [stress,strain]=GetStressStrain(filename)
% INPUT VARIABLES
% filename - name of data file
% OUTPUT VARIABLES
% stress - nondimensionalized stress from data
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% strain - nondimensionalized strain from data
%=============================
% Extract data from the file
%=============================
load ashwin_sample23.mat
params = GetParams(inputdata);
data = dlmread(filename);
strain = data(:,1)/params.reference(2);
stress = data(:,2)/params.reference(1);

ChangeLength.m

function [resampled] = ChangeLength(vector,changetolength)
% INPUT VARIABLES
% vector - The vector to be resized
% changetolength - The length of desired output
% OUTPUT VARIABLES
% resampled - Gives the output of length changetolength
resampled = zeros(changetolength,1);
changetolength=changetolength+1;
lengthofinput = length(vector);
% Length of averaging window
windowsize = ceil(lengthofinput/changetolength);
k=1;
for i=1:windowsize:lengthofinput-windowsize

resampled(k) = mean(vector(i:i+windowsize-1));
k=k+1;

end

RunPreisach.m

function [stress_predicted,strain_input,F,vf]
= RunPreisach(df_forward,df_backward,vfmax_per_ele,...

strain_input,Nlevels,Nsteps,filename)
% INPUT VARIABLES
% df_forward - List of the switch values
% for the hysterons in the forward direction
% df_backward - List of the switch values
% for the hysterons in the backward direction
% vfmax_per_ele - The maximum possible
% volume fraction yield per hysteron
% strain_input - Input strain for which



58

% predicted stress is required
% Nlevels - Number of levels in the Preisach Triangle
% Nsteps - Number of loading steps in strain_input
% OUTPUT VARIABLES
% stress_predicted - Predicted Stress (Classic Preisach)
%======================
% Initialization
%======================
stress_nd = zeros(Nsteps,1);
vf = zeros(Nsteps,1);
F = 2*ones(Nsteps,1);
Nele = Nlevels^2;
hysteron = zeros(Nlevels);
%=================================
% Getting parameters
%=================================
load ashwin_sample23.mat
params = GetParamsUpdated(inputdata);
E_a = params.E(1);
E_m = params.E(2);
B=params.B;
a=params.thermal(1);
b=params.thermal(2);
stress_ref = params.reference(1);
strain_ref = params.reference(2);
temp_ref = params.reference(3);
strain_nd = strain_input/strain_ref;
%===================
% Get temperature
%===================
T_orig = GetTemperature(filename);
T = T_orig/temp_ref;
%====================
% (1/E_m - 1/E_a)
%====================
diff_inv_moduli = (1/E_m - 1/E_a);
% ___________________________________________________%

%++++++++++++++++++++++++++++++++++++++++++++++++
% Run the Preisach algorithm for the setup
%++++++++++++++++++++++++++++++++++++++++++++++++
%=================
% For each step
%=================
for step = 2:Nsteps

if strain_nd(step-1) == 0
vf(step-1) = 0;

end
stress_nd(step) = (strain_nd(step) - vf(step-1)) /...

( vf(step-1) * diff_inv_moduli + inv(E_a) );
F(step) = stress_nd(step) + 0.5*stress_nd(step)^2*...
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diff_inv_moduli - B*(2*vf(step-1)-1) + a + b*T;
Ftemp = F(step);
for ele = 1:Nele

if vfmax_per_ele(ele) > 0
if Ftemp <= df_backward(ele) && hysteron(ele) == 1

hysteron(ele) = 0;
elseif Ftemp > df_forward(ele) && hysteron(ele) == 0

hysteron(ele) = 1;
end

end
end
vf(step) = sum(hysteron(:).*vfmax_per_ele(:));
stress_nd(step) = (strain_nd(step)-vf(step))/...

(vf(step)/E_m + (1-vf(step))/E_a);
F(step) = stress_nd(step) + 0.5*stress_nd(step)^2*...

diff_inv_moduli - B*(2*vf(step)-1) +a +b*T;
end
stress_predicted = stress_ref*stress_nd;

GetTemperature.m

function T=GetTemperature(filename)
% INPUT VARIABLES
% material - material type
% OUTPUT VARIABLES
% T - Temperature of operation
switch filename

case ’ashwin_sample23_outer.dat’
T = 373;

case ’ashwin_sample24_outer.dat’
T = 398;

case ’ashwin_sample25_outer.dat’
T = 348;

case ’linear23.dat’
T=373;

case ’linear24.dat’
T=398;

otherwise
error(’Unknown Material Type’)

end
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