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ABSTRACT 

 

 

 

Analytical Techniques and Operational Perspectives for a  

 

Spherical Inverted-F Antenna. (December 2010) 

 

David Lee Rolando, B.S., Texas A&M University 

 

Chair of Advisory Committee: Dr. Gregory Huff 

 

 

 

 The spherical inverted-F antenna (SIFA) is a relatively new conformal antenna 

design that consists of a microstrip patch resonator on a spherical ground. The SIFA 

resembles a planar inverted-F antenna (PIFA) that has been conformally recessed onto a 

sphere. The basic design, simulation, and fabrication of a SIFA were recently reported. 

The aim of this thesis is to provide a three-fold improvement to the study of the SIFA: 

the fabrication of a dielectric-coated SIFA, a new analytical model based on the cavity 

method, and the analysis of a randomly oriented SIFA’s operation in a remote 

networking scenario. 

 A key improvement to the basic SIFA design is the addition of a lossy dielectric 

coating to the outside of the sphere for purposes of impedance stability, bandwidth 

control, and physical ruggedization. The first contribution of this thesis is the fabrication 

of such a dielectric-coated SIFA. Two antennas are fabricated: a coated SIFA operating 

at 400 MHz, and an uncoated SIFA operating at 1 GHz for comparison. Both SIFAs are 

constructed of foam and copper tape; the coating is comprised of silicone rubber and 
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carbon fiber. The fabricated designs perform with reasonable agreement to 

corresponding simulations, providing a basic proof of concept for the coated SIFA. 

The SIFA was previously studied analytically using a transmission line model. 

The second task of this thesis is to present a new model using the cavity method, as 

employed in microstrip patches. The SIFA cavity model uses a curvilinear coordinate 

system appropriate to the antenna’s unique geometry and is able to predict the antenna’s 

performance more accurately than the transmission line model. 

 The final portion of this thesis examines the performance of the SIFA in a remote 

network scenario. Specifically, a line-of-sight link between two SIFAs operating in the 

presence of a lossy dielectric ground is simulated assuming that each SIFA is randomly 

oriented above the ground. This analysis is performed for both uncoated and coated 

SIFAs. A statistical analysis of the impedance match, efficiency, and power transfer 

between these antennas for all possible orientations is presented that demonstrates a 

design tradeoff between efficiency and predictability. 
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CHAPTER I 

 

INTRODUCTION 

 

 Antennas have been used in a myriad of commercial, industrial, and military 

applications for purposes of communication and sensing [1, 2]. An antenna’s ability to 

transduce guided electromagnetic waves into free space waves is a key component of 

many modern electrical systems that require communication over free space [3]. 

Applications range from everyday household items such as wireless routers, Bluetooth-

enabled devices, and satellite TV, to state-of-the art reflectarrays, millimeter 

radioastronomy telescopes, and biomedical antennas [4-7]. New applications are pushing 

the limit for antenna engineers, increasing the popularity of multifunctional designs that 

combine several functions into one structure [e.g., 8]. 

 Planar antennas are an important class of antennas, which, due to their thin, flat 

geometries, can be used to satisfy many application-based constraints. An example is the 

widely studied microstrip patch antenna, which consists of a metallic patch placed above 

a flat ground plane and separated from it by a thin dielectric substrate [e.g. 9]. The 

primary appeal of microstrip antennas and other planar designs is their low cost, easy 

construction, and low profile [10]. Their low profile in particular makes them useful 

components in high velocity vehicles – such as aircraft, missiles and spacecraft – where 

they can fit seamlessly into the aerodynamic demands of the overall structure. Other 

__________ 

This thesis follows the style of IEEE Transactions on Antennas and Propagation. 
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common planar designs besides the microstrip patch are slot antennas and planar dipoles 

[11]. 

Planar designs have given rise to another class of antennas: conformal antennas, 

which consist of an antenna that is conformed onto the surface of some pre-defined but 

arbitrarily-shaped object [e.g., 12-14]. Conformal antennas share in common with planar 

designs a low profile and amenability to high velocity environments. The basic concept 

behind a conformal antenna is to take a planar antenna and map it onto a surface that is 

not flat; in fact, most conformal designs can be traced to a corresponding planar design. 

Furthermore, the techniques used to analyze planar antennas can often be extended to 

conformal designs with some degree of accuracy; in general, rigorous analysis of 

conformal designs can be highly involved due to their non-planar geometries. Conformal 

antennas have a promising future in antenna engineering due to the high demand for 

high velocity vehicles and other low-profile applications [15]. 

The spherical inverted-F antenna, or SIFA, is a recently reported conformal 

antenna design [16]. Like most conformal antennas, the SIFA has a readily identifiable 

planar counterpart. It takes its name from the planar inverted-F antenna, or PIFA, from 

which its topology is derived. The PIFA is a fairly well known design that has been used 

extensively in applications such as cellular phones [17]. The SIFA is essentially a PIFA 

design that has been conformed into the surface of a metallic spherical ground plane, 

with its thickness recessed into the volume of the sphere. This basic SIFA design has 

been developed in analytical, simulated, and fabricated form [18]. 
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One of the SIFA’s most desirable characteristics is its viability as a 

multifunctional structure.  Specifically, this means the SIFA has the potential ability to 

function as more than just an antenna. Much of the inside volume and surface area of the 

SIFA’s spherical ground plane are relatively isolated from the antenna’s required volume 

on the structure, leaving substantial free real estate on which to mount other electronic 

devices (e.g., to form an integrated system). Using this ability, the SIFA could 

potentially be developed into a self-sustaining electrical device performing all manner of 

communication, sensing, and telemetry. Another appealing characteristic of the SIFA is 

that its spherical shape yields relatively omnidirectional radiation, so its orientation is 

not critical.  

In the context of a multifunctional structure, the SIFA’s spherical geometry lends 

itself to numerous possible applications. It could be used as a microsatellite, a remote 

sensing device, or a buoy floating on top of water. Another application, heavily 

emphasized in [18], is that of biomedical implantation. If the SIFA is physically 

miniaturized, then it could be ingested like a pill to perform biomedical functions. 

Another application, which will be emphasized in this thesis, is remote sensing. In this 

context, the SIFA could be imagined as a rugged, energy-harvesting platform that could 

perform communication and telemetry in a remote environment with little to no 

maintenance or human interference. 

The goal of this work is to advance the current state-of-the-art (SOA) and state-

of-knowledge for the SIFA. This thesis begins with a summary of common antenna 

analysis techniques and quantities which are subsequently used throughout the work. 
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This is followed by a brief discussion to microstrip patch antennas, both planar and 

conformal. The spherical inverted-F antenna (as originally designed and reported) is then 

introduced, including the basic simulated and fabricated models, along with the relevant 

performance results. From there, the concept of a dielectric-coated SIFA is detailed; this 

section includes simulated dielectric SIFA results, details of the fabrication materials and 

methodologies for a coated SIFA, and results from the first fabricated dielectric SIFA 

prototype. The thesis then discusses analytical modeling of the SIFA using a cavity 

model based on the antenna’s unique geometry. This model is proposed as an improved 

and more rigorous analysis tool than the previous transmission line model that had been 

employed. Calculated results from the model are compared with simulated results and 

those from the previous transmission line model. Following the cavity model, the thesis 

changes focus to consider the SIFA as a candidate for remote operation in an ad hoc 

network scenario. The coated and uncoated varieties of the SIFA are compared in a 

statistical analysis of the antenna’s performance in the presence of a lossy dielectric 

environment; the results are evaluated to formulate a number of trade-offs in SIFA 

design related to this specific application. The final portion of the thesis offers a 

summary of the results of this work as well as a discussion of future work related to the 

SIFA.   
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CHAPTER II 

 

BACKGROUND 

 

A.  Antenna Engineering Basics 

 A brief discussion of common antenna engineering quantities and methodologies 

is necessary to set the stage for the analysis of the SIFA in the remainder of this work. 

The information presented in this section is common knowledge to be found in any 

fundamental electromagnetics or antenna reference book [e.g. 19]. It should be noted 

here that the notation used for some quantities can be slightly different depending on the 

source they are taken from. The notation used in this background section represents the 

notation that will be used consistently throughout this thesis. 

 One of the most fundamental analyses that can be performed on any antenna is 

an evaluation of its impedance match. Typically, an antenna is connected to another 

electrical device (e.g. the RF front end in a receiving system) via a transmission line 

(such as the coaxial line). The antenna is typically modeled as a passive load using a 

complex-valued impedance
LZ . For antennas, this impedance is a function of the 

operating frequency and antenna topology and is called the input impedance of the 

antenna. Fig. 1 portrays such a transmission line topology that is terminated in a 

complex load to represent the antenna. Common electromagnetic theory dictates that a 

forward travelling voltage wave (i.e., a wave travelling towards the load), 
0V + , 

experiences reflection at the interface between the load and transmission line. The 
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reflected wave is 
0V − . The ratio of the reflected wave to the incoming wave is called the 

reflection coefficient Γ : 

 0

0

V

V

−

+Γ =  (1) 

The magnitude of the reflected wave depends on how well the characteristic impedance 

of the transmission line is matched to the complex impedance of the load. Specifically, 

the reflection coefficient can be calculated as: 

 0

0

Γ L

L

Z Z

Z Z

−
=

+
 (2) 

In (2), 
0Z  is the characteristic impedance of the transmission line. This is a quantity 

characteristic to the geometry and material properties of the transmission line. By 

definition, it defines the ratio (3) of the voltage amplitude to the current amplitude on the 

line. 

 0
0

0

 
V

Z
I

=  (3) 

In (3), the voltage and current can represent either forward or backward travelling waves 

(or both combined). Note that the reflection coefficient in (2) can, in general, be a 

complex quantity with a magnitude and phase.  The magnitude will always be a value 

between 0 and 1, with 0 corresponding to no reflection, and 1 corresponding to total 

reflection. 
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LZ0Z

0V −

0V +

 

Fig. 1. Transmission line terminated in a load 

 

 Generally speaking, in a driven antenna, it is desirable to have the reflection 

coefficient be as close to zero as possible (i.e. no reflection of the incoming signal). This 

is due to a number of practical reasons: a reflected signal also means that power is being 

reflected, so ideal power transfer is not achieved; reflected signals can cause unwanted 

effects with electronic devices located upstream in the system; and reflected signals can 

interfere with subsequent incoming signals. To help quantify the amount of reflection 

experienced at an antenna’s input terminal, antenna engineers typically use a quantity 

called the standing wave ratio (SWR). The name is derived from the fact that the 

forward and backward travelling waves on the transmission line interfere with each other 

to form a partial standing wave pattern (i.e., a pattern where the wave amplitude varies 

in time but not in space). More specifically, the SWR measures the ratio of the 

maximum amplitude of this standing wave (resulting from constructive interference) to 

the minimum amplitude of the standing wave (resulting from destructive interference). It 

turns out that these maximum and minimum amplitudes are simply the sum and 
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difference, respectively, of the incoming wave and the reflected wave. In most cases, this 

ratio is expressed in terms of voltage, so the SWR is often called the voltage standing 

wave ratio, or VSWR. The remainder of this thesis will refer exclusively to the VSWR. 

By definition, the VSWR is given by (4). Thus, the VSWR can be formulated directly 

from the reflection coefficient. 

 0 0 0 0

0 0 0 0

Γ 1 Γ
VSWR    

Γ 1 Γ

V V V V

V V V V

+ − + +

+ − + +

+ + +
= = =

− − −
 (4)  

A VSWR of 1 is the lowest possible value and corresponds to the case where 

there is no reflection; this is the VSWR of an ideal antenna-transmission-line junction. 

Progressively higher values of VSWR correspond to higher levels of reflection. 

Typically, in practical designs, antenna engineers often consider any VSWR less than 2 

to be acceptable for most applications. In fact, the range of frequencies over which the 

antenna experiences a VSWR of less than 2 is normally considered to be the antenna’s 

operating bandwidth. This particular definition of bandwidth is called the 2:1 VSWR 

bandwidth. Fig. 2 is a typical-looking graph which shows the VSWR of an antenna 

versus the operating frequency (the 2:1 bandwidth is also labeled). Note that on either 

side of this bandwidth, the VSWR becomes unacceptably high for reasonable use. Thus, 

the antenna is tuned to operate in a limited range of frequencies; based on (1) - (4), the 

antenna’s impedance (along with the transmission line being used) is critical in this 

tuning. The VSWR provides an easy way for an antenna engineer to visualize an 

antenna’s basic performance in terms of the operating bandwidth and the quality of the 

impedance match. 
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Freq (MHz)
200 250 300 350 400

1.0

2.0

3.0

4.0

5.0

VSWR = 2.0

 

Fig. 2. Typical plot of voltage standing wave ratio (VSWR) 

 

Antenna engineers have another common tool at their disposal to study an 

antenna’s impedance match: the Smith chart. The Smith chart (Fig. 3), provides a graph 

on which the impedance curve – all of the input impedance values of the antenna over a 

given frequency range – can be plotted. Although the Smith chart’s visible gridlines are 

in the shape of circles, the chart is based on an underlying Cartesian grid representing 

the complex plane of the reflection coefficient. The horizontal and vertical axes of this 

unseen Cartesian grid correspond to the real and imaginary parts, respectively, of the 

reflection coefficient; the origin (at the middle of the Smith chart) corresponds to zero 

reflection and is commonly referred to as a perfect match. The visible gridlines on the 

chart represent lines of constant normalized input resistance and normalized input 

reactance. These are labeled in Fig. 3 and correspond to the real and imaginary parts of 

the antenna’s input impedance 
inZ  after being normalized by the characteristic 



10 

  

impedance 
0Z  of the transmission line. The input impedance of an antenna at various 

frequencies within a range of interest can be plotted on the Smith chart using these grid 

lines to form the aforementioned impedance curve. Fig. 3 shows a typical impedance 

curve for an antenna on a Smith chart, which, in general, is a circular shape. The portion 

of the curve that passes most closely to the center of the chart corresponds to the lowest 

point (minimum) of the VSWR curve (Fig. 2). 

 

0.5 2.0
2.0

-0
.5 -2

.0

 

Fig. 3. Typical Smith chart with impedance curve 

 

The details of how the Smith chart is used by antenna engineers is beyond the 

scope of this background section. It is sufficient to mention how the Smith chart will be 

used to interpret data in this thesis. Specifically, the following helpful statements can be 

made as Smith chart interpretation is concerned: the top half of the Smith Chart 

corresponds to inductive reactances, while the bottom corresponds to capacitive 
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reactances; and, if the circularly shaped impedance curve of an antenna makes more than 

one revolution, then the antenna is displaying more than one resonant frequency. 

Besides the impedance match, an antenna can also be analyzed for its radiation 

(both electric and magnetic fields). This section will not develop how radiation 

information is calculated, but will instead focus on how radiation data is reported. 

Typically, a radiation pattern is used to summarize an antenna’s radiation. The radiation 

pattern consists of the radiated electric field values on the surface of an imaginary sphere 

that fully encloses the antenna; these field values are defined for all points on the surface 

of the sphere, and they are reported as a function of the spherical angles � and �. The 

field values are typically given in units of electric field intensity (F/m); sometimes, these 

values are converted to dB (decibels) and plotted on a logarithmic scale, but the concept 

is the same. Since the radiation pattern of an antenna, in general, is in three dimensions, 

graphing and visualizing can be challenging. For this reason, it is customary to take two-

dimensional “cuts” of the full three-dimensional pattern. For instance, two-dimensional 

cross sections can be taken in the xy , xz , or yz  planes, corresponding to spherical cuts 

of 90θ = � , 0φ = �  , and 90φ = � , respectively. Often, when linearly polarized antennas 

are in consideration, the so-called E-plane and H-plane cuts are used; these refer to the 

planes in which the electric field and magnetic field lie in, respectively (the electric and 

magnetic fields are perpendicular, of course). Fig. 4 shows several typical radiation 

pattern cut planes. 
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Eθ

Eφ

Fig. 4. Typical radiation pattern cut planes. The pattern is of the normalized electric field 

 

B.  Microstrip Patch Antennas 

 The SIFA is a modified version of a microstrip patch antenna, so it is important 

to give a brief summary of the characteristics of this widely used planar antenna. Fig. 5 

shows a picture of a typical microstrip antenna geometry. The shape is essentially a 

rectangular prism, with the height h  usually being considerably smaller than the length 

l  and width w . The top and bottom faces of the prism are metallic, with the bottom (

0z = ) being a ground plane and the top ( z h= ) being the primary radiating patch. The 

interior of the prism is the substrate of the patch, typically some type of dielectric 

material with a relative dielectric constant of 
rε . 

 

 

Fig. 5. Typical rectangular microstrip patch antenna 
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 The microstrip patch operates by exciting resonant modes inside the rectangular 

structure; radiation is achieved by some of these resonant modes leaking power. 

Mathematically, the modes are similar to those of a 3-dimensional cavity resonator [e.g. 

20]; the primary difference is in the boundary conditions. Whereas the cavity resonator 

has PEC (perfect electric conductor, meaning that the tangential electric field is forced to 

zero) boundaries on all surfaces, the microstrip cavity only has PEC surfaces on the top 

and bottom (for the metallic patch and ground plane, respectively). The proper boundary 

conditions for the microstrip patch are governed by the cavity model [21]. In this model, 

the four remaining surfaces of the rectangular cavity are assumed to be magnetic walls, 

or perfect magnetic conductor (PMC) boundaries where the tangential magnetic field is 

forced to zero and the vertical electric field is a maximum.  

The cavity model for the microstrip patch antenna is summarized in Fig. 6, where 

the boundary condition for each surface has been listed. The cavity model makes several 

assumptions: the height h  of the cavity is assumed to be small enough that the variation 

of the vertical electric field between the ground plane and the patch is essentially 

constant; the fringing of fields outside the footprint of the patch is assumed to be very 

small, so it can be safely ignored; and the electric field inside the cavity is assumed to be 

essentially normal to the ground plane and the patch, which means that cavity fields are 

transverse magnetic to the z direction, or TMz. The TMz notation means that the 

magnetic fields are only perpendicular (transverse) to the z  direction (since the 

magnetic field is, by nature, perpendicular to the z -directed electric field). All of these 

assumptions make solving for the fields inside the cavity considerably easier. 
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Fig. 6. Cavity model for a rectangular microstrip patch antenna 

 

 The intricacies of solving the cavity model for the resonant fields inside the 

cavity will not be detailed here. The major results will suffice. The process begins by 

finding the magnetic vector potential A
��

 inside the cavity (5), which can be used to 

directly compute the electric and magnetic field components inside the cavity in closed 

form (see [21]). Note that m , n , and p  are integers greater than or equal to zero. 

 cos cos cosmnp

p x n y m z
A A

L W H

π π π     =      
     

��
 (5) 

This vector potential solution is only valid for certain discrete “modes” defined by these 

integers; each mode has a corresponding resonant frequency, with the lowest frequency 

mode called the dominant (or fundamental) mode. The factor 
mnpA  is a modal scaling 

coefficient that depends on the particular mode and the excitation used to excite the 

cavity. The computed fields are TMz, with each mode denoted TMmnp. The dominant 

mode is the TM101 mode. Fig. 7 shows a representation of the field distribution in the 

dominant mode. Note that a half-wavelength of variation occurs along the length of the 
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patch in the dominant mode; for this reason, the microstrip patch is said to be a half-

wavelength resonator. 

 

 

Fig. 7. Field distribution for the dominant TM101 mode in a rectangular microstrip patch antenna 

 

 The computed fields inside the cavity allow the radiating characteristics of the 

antenna to be determined. As stated before, the microstrip patch radiates through the 

mechanism of leaking power from the cavity. Specifically, this leaking energy comes 

from equivalent magnetic currents on the four PMC side walls of the cavity. These 

magnetic currents come from the basic electromagnetic principle of equivalence and are 

related to the electric field on the surface of these walls as: 

 ɵ2s nM a E= − ×
��� ��

 (6) 

Here, ɵ na  refers to the unit normal vector to the surface. From classical antenna theory, 

current sources produce radiation, so these magnetic currents are the radiation 

mechanisms of the microstrip patch. In terms of the microstrip cavity model, these 

radiating surfaces are usually called “slots”. It turns out that the two radiating slots along 

the length of the patch (�-axis) have phases that cancel out their contributions to 
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radiation, so they can be ignored. The microstrip patch, then, has two primary radiating 

slots. 

 Fig. 8 shows two cuts from the radiation pattern of a typical microstrip antenna. 

Note that the radiation is mostly concentrated in the half-space above the ground plane, 

with less backward radiation. In this half-space, the radiation is fairly omnidirectional. 

 

 

Fig. 8. Radiation pattern of a rectangular microstrip patch antenna 

 

 An important modification often used for microstrip antennas is to transform 

them into the PIFA. The PIFA is derived from a microstrip patch by simply placing a 

metallic shorting wall at the middle of the patch along its width, and then cutting the 

physical length of the patch in half [22]. The resulting structure is shown in Fig. 9 with a 

coaxial probe feed. The name “inverted-F” comes from the fact that, when viewed from 

the side, the geometry of the PIFA – in particular, the combination of the shorting wall, 

coaxial probe, and the metallic patch – resembles a sideways “F” that has been inverted. 

The reason for placing the shorting wall in the patch stems from the field distribution of 
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the microstrip patch in Fig. 7: at the middle of the patch’s width, the electric field drops 

to zero, so inserting a metallic wall actually does not change the field structure because 

its boundary condition is automatically satisfied by the distribution of the electric fields. 

Thus, with the shorting wall present, the patch can be halved without disturbing the 

frequency of operation or the basic structure of the remaining fields. In essence, the 

microstrip antenna is transformed from a half-wavelength resonator to a quarter-

wavelength resonator of the same frequency. 

 

 

Fig. 9. Planar inverted-F antenna (PIFA) geometry viewed from the side 

 

C.  Conformal Microstrip Antennas 

 An important class of antennas which can be adapted directly from planar 

antennas (like the microstrip antenna) are conformal antennas. These are antennas which 

are shaped in order to conform to some predefined surface (which is often curved). 

Surfaces which are prime candidates to accept conformal antennas are cylinders and 

spheres [e.g. 23]. Conformal antenna designs often have their genesis in corresponding 

planar designs, mainly because both types of antennas lie on a surface and have a low 
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profile, and planar designs are abundant. In fact, planar analysis techniques can 

sometimes be applied directly to conformal antennas with decent results. Due to their 

popularity, microstrip antennas have been prime candidates to be adapted into conformal 

topologies [e.g. 24-25]. Typically, these antennas are dubbed “conformal microstrip 

antennas” [e.g. 26]. 
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CHAPTER III 

 

THE SPHERICAL INVERTED-F ANTENNA 

 

A.  Conceptual and Physical Models 
 

 The SIFA, in its most basic conceptual form, is a planar inverted-F antenna 

(PIFA) that has been conformed onto the surface of a sphere and recessed into its 

volume. The patch of the PIFA is conformed onto an outer sphere, and the ground plane 

of the PIFA is conformed onto an inner sphere; the substrate resides in a spherical shell 

between these two spheres of differing radii. Fig. 10 shows the basic physical model of 

the SIFA – the result of conformally recessing the PIFA into a spherical chassis. In this 

case, the patch structure is fed by a coaxial cable from the backside of the sphere. Note 

that the ground plane beneath the substrate is extended to include most of the outer 

sphere; this unique feature means that the patch structure resides above an essentially 

spherical ground.  This spherically conformed PIFA has the same basic operating 

principles and as its planar counterpart: excitation of modal fields within the cavity 

between the ground plane and the patch lead to radiation “leaking” from the slots of this 

cavity. Some of the performance characteristics of the spherical design, however, differ 

from the planar design; for example, the radiation becomes much more omnidirectional 

than a planar design. 

The fundamental SIFA geometry and its most pertinent dimensions are shown in 

Fig. 11. The orientation of the SIFA relative to the coordinate system in this figure is 

used as a standard reference system throughout this work. The basic structure consists of 
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two concentric spheres, the outer sphere having a radius of 
0R  and the inner sphere 

having a radius of 
iR . The entire patch structure is contained between the two spheres, 

with the inner sphere acting as the ground plane. The patch itself, on the outer sphere, 

has dimensions measured in angles. The width of the patch is 
wφ . The patch is separated 

from the outer sphere ground plane by a gap with an angle 
gθ ; on the opposite side of 

the patch, it is connected to the outer sphere ground plane by a shorting strip with an 

angular length of 
sθ . These two angles together determine the angular length of the 

patch, which is simply    
2

l g s

π
θ θ θ= − − . The coaxial feed is located in the middle of the 

patch by width and at angle of �� along the length of the patch. 

 

 

Fig. 10. Physical model of the SIFA 

 

Note that, instead of the shorting wall being placed vertically (i.e. radially in the 

case of the SIFA) between the inner sphere ground plane and the patch, it is placed on 

the outer sphere between the metal of the patch and the metal of the ground plane on the 
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outer sphere. This is a slight variation from the PIFA design, since the shorting wall is 

“parallel” to the ground plane and patch, rather than perpendicular as in the PIFA. 

 

 

Fig. 11. Basic SIFA geometry and dimensions 

 

 Unlike the PIFA, which typically acts strictly as a radiating structure, the SIFA is 

inherently a multifunctional structure since it has the potential to perform tasks other 

than that of an antenna. This arises primarily from the fact that the patch structure 

occupies only about one quarter of the surface area of the outer sphere and less than one 

quarter of the inside volume of the sphere. This remaining space inside the structure and 

on its surface is free real estate, so to speak, in which other devices can be mounted in an 

integrated electronic system. For example, transmitting, receiving, and digital signal 

processing hardware, along with a local power supply, could be mounted in the SIFA to 

form a complete communication system. Thus, the SIFA can be thought of as a 

structural platform with radiating capabilities that can be adapted to a variety of 

applications. One such application would be biomedical: the SIFA could be miniaturized 

down to the size of a pill, allowing it to be ingested for endoscopy. Another possibility is 



22 

  

remote sensing: the SIFA could be equipped as a rugged, self-supporting telemetric 

device that could operate in a remote area for a long period of time, transmitting data 

that onboard sensors acquired. Other possibilities include using the SIFA as a buoy 

floating on water or as a micro-satellite. At its heart, then, the SIFA is more than just a 

mere mapping of a planar antenna to a conformal design: it is multifunctional adaption 

of a planar design.  

 

B.  Simulated Design 

 The dimensions of the original SIFA design are given in Table 1. This particular 

design was chosen to operate in the Medical Implants Communication Services (MICS) 

frequency band from 402 MHz to 405 MHz. This operating frequency range was chosen 

based on the original assumption that the SIFA could be used as a implantable 

biomedical device, a task for which this particular frequency band is devoted. Although 

the dimensions of this SIFA are not nearly small enough for biomedical applications, it 

was a good starting point for SIFA analysis that made fabrication and measurement 

achievable by hand. Even though a number of miniaturization techniques could be 

employed to bring the size of the antenna down to a reasonable range for this 

application, none were used in this preliminary design so as not to complicate the 

process. This SIFA design simply acted as a prototype and a proof of concept. 
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Table 1. Dimensions of simulated MICS band SIFA 

Deign Variable Description Value 

iR  Inner radius 76.2 mm 

oR  Outer radius 101.6 mm 

wφ  Patch width 90° 

sφ  Short width 10° 

fθ  Feed angle 10° 

sθ  Short length 11° 

gθ  Gap width 13° 

 

 

 

The basic SIFA model can be easily simulated in [27], an electromagnetic 

simulation software that uses finite element code. The SIFA is very amenable to 

construction in this three-dimensional CAD environment. Fig. 12 shows a snapshot of 

the SIFA model. A simple frequency sweep from 300-500 MHz provides the basic 

impedance characteristics of the SIFA as a function of frequency, and the radiation 

pattern can be computed at 402.5 MHz (the middle of the MICS band) for the ideal 

operational radiation characteristics. 

 

 

Fig. 12. Simulation model of MICS band SIFA 
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Fig. 13 shows the Voltage Standing Wave Ratio (VSWR) of the SIFA versus 

frequency, and Fig. 14 shows the corresponding impedance curve on the Smith Chart. 

Clearly, the VSWR 2:1 bandwidth falls within the desired MICS band, with a resonance 

at around 400 MHz. The Smith chart shows a mostly inductive impedance curve. 

Fig. 15 plots the simulated radiation pattern of the SIFA. Note that the pattern is 

fairly omnidirectional in all cut planes; this is one of the advantages of taking a planar 

antenna and conforming it onto a sphere. 

 

Frequency (MHz)
300 350 400 450 500

V
S
W
R

1.0

2.0

3.0

4.0

5.0

 

Fig. 13. Simulated VSWR of MICS band SIFA 

 

 

Fig. 14. Simulated impedance curve of MICS band SIFA 
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0φ = �
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Fig. 15. Simulated radiation pattern of MICS band SIFA 

 

C.  Fabricated Design 

 A simple fabrication and measurement process was used to verify the results of 

the simulation. A SIFA prototype was constructed using foam and copper tape. All of 

the details of the fabrication process will not be outlined here, but can be summarized as 

follows: spherical foam balls were used as the inner and outer spheres of the SIFA, and 

copper tape was attached to these spheres to form the ground plane and the patch 

structure; the copper tape was soldered together to form a continuous electric conducting 

surface. A semi-rigid coaxial probe was inserted into the back of the outer foam sphere 

and pushed through the foam to the patch structure; the outer conductor of this probe 

was soldered to the inner sphere ground plane beneath the patch, and the inner conductor 

of the probe was soldered to the patch structure on the outer sphere. This probe allowed 

the SIFA to be fed by a coaxial cable externally (although in the simulations, the probe 

originated in the interior of the SIFA). A picture of the first fabricated SIFA is shown in 

Fig. 16. 
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Fig. 16. Picture of fabricated MICS band SIFA 

 

 The SIFA prototype was measured using a network analyzer to compare its 

performance to that of the simulated antenna. Fig. 17 shows the results of these 

measurements in terms of the VSWR and the Smith chart impedance curve. Both graphs 

include the simulated data for comparison. The simulated and measured results agree 

well. Clearly, the simple hand construction of the SIFA using foam and copper tape 

proved to be a fairly accurate physical realization of the SIFA simulation model. More 

precise fabrication methods can hopefully provide even more accuracy. 

 

 

Fig. 17. Measured results compared to simulated performance, MICS band SIFA 
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CHAPTER IV 

 

A DIELECTRIC-COATED SIFA 

 

A.  The Concept of a Coating 

 An important modification that can be made on the basic SIFA design is to add a 

thin spherical dielectric coating to the outside of the antenna. This dielectric coating can 

be designed with various relative dielectric constants and dielectric loss tangents to 

change the operating characteristics of the antenna. The coating can be thought of as a 

dielectric resonator in the shape of a spherical shell; the resonator is excited by the patch 

structure beneath it. In addition to the coating around the SIFA, the substrate under the 

radiating patch is also changed into dielectric material to match that of the coating. 

Having the dielectric material above and below the patch strengthens the effect of the 

dielectric (i.e. increases the effective dielectric constant), similar to adding a superstrate 

in a planar antenna [e.g., 28]. 

A dielectric coating on the SIFA can provide many advantages. 

Electromagnetically, the coating changes the resonant frequency of the antenna. 

Specifically, as the relative dielectric constant of the antenna increases, the resonant 

frequency decreases [e.g. 29]. In this way, a variety of lower resonant frequencies can be 

achieved while maintaining a constant physical size for the SIFA; in other words, the 

electrical size of the antenna (the ratio of the physical size to the wavelength of the 

operating frequency) can be reduced. Alternatively, the resonant frequency of the 

antenna can remain constant while the physical size decreases, with a higher dielectric 
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material leading to smaller physical designs. Thus, a coating allows for a broad range of 

miniaturization and resonant frequency shifting. It must be noted, however, that in any 

case, a higher dielectric constant in the coating always decreases the electrical size of the 

antenna. This in turn causes the radiating efficiency of the antenna to decrease [30]. This 

is one unwanted side-effect of the coating that cannot be avoided. However, depending 

on the demands of the specific application, this negative aspect of the coating can be 

tolerated as long as the benefits outweigh it; thus, the coating introduces a design trade-

off for the SIFA. 

Another electromagnetic effect of a dielectric coating around the SIFA is the 

possibility of increased performance in dielectric environments (i.e. when the SIFA is 

not operating in free space, but in the presence of one or many dielectric materials). If 

the coating can be made to have dielectric properties close to that of the media it will be 

surrounded by, then the detuning effect that this outside media would normally have on 

the antenna can be reduced by the better dielectric “match” between this media and the 

coating [31]. Additionally, the physical separation between the metallic patch and the 

outside environment created by the coating naturally reduces the effect of this outside 

environment on the antenna performance. 

The idea of a dielectric coating can be taken a step further by introducing 

dielectric loss into the coating. Although this loss will cause the radiating efficiency of 

the antenna to be lowered, it can have a number of beneficial effects. First, coated 

designs with high dielectric constants tend to have very narrow bandwidths because of 

the electrical miniaturization caused by the dielectric; a lossy coating can lower the 
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quality factor of the antenna, in turn causing the bandwidth to widen [32]. This effect 

may actual be crucial in very electrically small SIFAs, where the bandwidth would 

almost be negligible for a strong, lossless dielectric coating. Another benefit of a lossy 

coating could be stabilization of the SIFA’s impedance bandwidth in the presence of 

changing outside environments. The SIFA can be tuned fairly well to operate in free 

space, but if its surroundings change, the operating bandwidth needs to remain in the 

desired range. As mentioned before, the physical separation caused by the coating can 

help to alleviate this problem. A lossy coating can be even more effective, as the loss 

allows for a wider bandwidth and more stable impedance match such that the antenna 

does not detune in the presence of different surroundings. The effects of a lossy coating 

are explored more in Chapter VI, where the SIFA’s performance in a remote network 

scenario is analyzed. 

 

B.  Simulated Dielectric SIFA Designs 

 A wide variety of design variations can be achieved by a dielectric coating 

around the SIFA. Several different simulated designs are reported here to demonstrate 

the range of possibilities. 

The most basic variation accomplished by a coating is to drastically reduce the 

physical size of the antenna, while maintaining a constant resonant frequency. Fig. 18 

shows a simulated coated design that is only 26 mm in diameter (including the coating); 

this design was presented previously in [33]. The coating (as well as the patch substrate) 

has a relative dielectric constant of 53; no dielectric loss is present in the coating. It was 
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designed to operate at in the MICS band (the same frequency range as the original 

uncoated SIFA design) at just over 400 MHz. Thus, a physical size reduction of 87% 

from the original SIFA design is achieved for the same operating frequency. The antenna 

was also designed for the purpose of operating in a lossy dielectric environment. This 

particular choice had the specific application of biomedical implantation in mind, as was 

previously discussed as a possibility for the SIFA; because of this choice, this particular 

antenna does not function well in free space. Fig. 18 also shows a commercially 

available biomedical antenna [34] (which can be ingested) next to this SIFA design as a 

physical comparison to show that a satisfactorily small SIFA can be achieved for 

biomedical purposes through use of a coating. 

 

 

Fig. 18. Miniaturized dielectric SIFA. The size of this antenna is on the scale of commercially 

available biomedical devices 

 

 

 

The simulated performance of this miniaturized SIFA is also summarized in Fig. 

18. Specifically, the minimum and maximum frequencies in a 2:1 VSWR bandwidth are 
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reported as the dielectric constant of the surrounding media is varied (the media is given 

a constant dielectric loss tangent of 0.83). These minimum and maximum frequencies 

are shown as red lines on a vertical frequency scale that are functions of the relative 

dielectric constant of the surrounding media. The region between the minimum and 

maximum frequencies is shaded blue to represent the antenna’s 2:1 VSWR bandwidth. 

Also shown is the MICS operating frequency band (shaded gray). The SIFA clearly 

maintains a stable 2:1 bandwidth for surrounding media relative dielectric constants 

ranging from about 15 all the way to the maximum simulated value of 80. Thus, the high 

dielectric coating allows the SIFA to be well “matched” to similarly high dielectric 

media, as would be encountered in a biomedical application. Note that, as mentioned 

earlier, this particular SIFA does not have a good VSWR in free space operation. 

Nonetheless, this simulated antenna provides an informative look at how a dielectric 

SIFA can achieve miniaturization as well as stable performance in a changing outside 

media. 

In this work, another set of dielectric SIFA simulations was performed using a 

design with the same outer radius as the original MICS band SIFA. The original design 

was modified by adding a lossy dielectric coating of 2.5 cm around the outside and by 

changing the dimensions of the patch and the angle of the coaxial feed. The coating and 

substrate of the patch were given a relative dielectric constant of 50 and a dielectric loss 

tangent of 0.02. This high dielectric constant reduced the resonant frequency to around 

74.5 MHz. The simulation model is shown in Fig. 19. 
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Fig. 19. 74.5 MHz dielectric SIFA simulation model 

 

For this 74.5 MHz design, a parametric study was performed to determine the 

effects of the patch dimensions and the feed angle on the SIFA’s performance. Also, for 

comparison, the original MICS band SIFA was subjected to similar parametric 

variations. The parameters varied for this study were the feed angle 
fθ , the short width 

sφ , the short length 
sθ , the gap angle 

gθ , the patch width 
wφ , and the inner radius 

iR . 

The feed angle 
fθ  was varied for the 74.5 MHz (lossy coating) and MICS band 

402 MHz (no coating) designs in the increments shown in Fig. 20. For the coated design, 

changing the feed angle changes the impedance match while keeping the resonant 

frequency essentially constant. Clearly, then, the feed angle can be used as a powerful 

design variation to match the coated design’s impedance without changing operating 

frequency. For the uncoated design, changing the feed angle has a significant effect on 

the resonant frequency, and it can also upset the impedance match. 
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Fig. 20. Variation of the feed angle for coated and uncoated SIFAs 

 

The variations on 
sφ  are shown in Fig. 21. For the coated design, varying the this 

parameter achieves significant shifting of resonant frequency with little disruption of the 

impedance match; this could be a useful design variation. For the coated design, 

variations in the short width cause significant impedance mismatches and frequency 

shifts; these would be difficult to control from a design perspective. 
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Fig. 21. Variation of the short width for coated and uncoated SIFAs 

 

The variations on 
sθ  are shown in Fig. 22. Variations in this parameter lead the 

coated design to minor shifts in resonant frequency and no impedance mismatches. In 

the uncoated case, minor shifts in resonant frequency are also achieved, but a slight 

amount of impedance detuning is encountered. 
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Fig. 22. Variation of the short length for coated and uncoated SIFAs 

 

The variations in 
gθ  are shown in Fig. 23. For the coated design, this parameter 

can be used for significant shifts in frequency with very little change in the impedance 

match. This makes sense because the gap angle is related to the length of the resonant 

patch. For the uncoated design, frequency shifting is also achieved, but with slightly 

more change in impedance match. 

The variations width 
wφ  are shown in Fig. 24. In both the coated and coated 

designs, variations in this parameter lead to minor shifts in resonant frequency 

accompanied by very little change in the impedance match. Overall, this is not a 

particularly sensitive parameter for design. 
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Fig. 23. Variation of the gap angle for coated and uncoated SIFAs 

 

 

Fig. 24. Variation of the patch width for coated and uncoated SIFAs 
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Finally, the variations in 
iR  are shown in Fig. 25. In both the coated and 

uncoated designs, changes in this parameter result in significant changes in both resonant 

frequency and impedance match. This is expected, though, since changing the inner 

radius effectively changes the dimension of the resonant cavity. 
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Fig. 25. Variation of the inner radius for coated and uncoated SIFAs 

 

Overall, the parametric study demonstrated consistent trends in the effects of the 

SIFA dimensions on both the coated and uncoated designs, showing that the 

performance of the dielectric SIFA can be easily related back to the uncoated design. 

One significant difference, however, is that the coated SIFA provides several more 

useful design variables; specifically, changes in the feed angle and short width allow the 
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impedance and resonant frequency, respectively, to be modified relatively 

independently. This fact makes tuning a SIFA with a lossy coating somewhat easier than 

an uncoated design. 

The final simulated design of a dielectric SIFA that will be mentioned here is the 

model on which a fabricated dielectric SIFA was based. The ground plane of this design 

has an outer radius of 2.5 inches (not including the coating); the coating is 1.25 inches 

thick. This design is slightly smaller than the 4-inch radius MICS band SIFA, but it 

operates at nearly the same frequency (around 400 MHz) because its coating and 

substrate have a dielectric constant of 7.5. The size of this design was chosen mostly due 

to the constraints of available fabrication materials. The primary interest in this design is 

its comparison value with the fabricated dielectric SIFA. Thus, the details of this design 

are discussed in the fabrication section later. 

 

C.  Coating Materials 

 In order to demonstrate the concept of a dielectric coated SIFA completely, a 

simple version was fabricated. Due to a lack of specialized equipment, this prototype 

fabrication had to be performed by hand; this presented a number of practical challenges 

in the fabrication process that limited the flexibility of the design. Nonetheless, a basic 

coated design could be realized. 

 The first decision pertaining to a fabricated coated SIFA was the material choice 

for the coating. For this work, two different materials were chosen as immediate 

possibilities for the coating: silicone rubber [35] and rigid polyurethane foam. These 
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materials were readily available commercially from a mold-making and casting 

company. These materials are intended to be used for mostly artistic casting purposes, 

but they can be easily used to cast the spherical shell and substrate necessary for the 

dielectric SIFA. Each material comes in a two-part liquid form (dubbed Part A and Part 

B); these liquid components for the silicone rubber are shown in their containers in Fig. 

26. The two parts of the liquid are poured together into a mold in the correct proportion 

and allowed to cure into a solid. 

 

 

Fig. 26. Silicone rubber used for dielectric SIFA fabrication 

 

The rubber and rigid foam are good candidates for the SIFA coating because they 

are very amenable to the hand fabrication process due to the ease with which they can be 

used to cast arbitrary shapes; this is the primary reason for choosing them. The rigid 

foam, in particular, is an intriguing possibility. It is extremely strong and very 

lightweight; it could provide a structurally rigid “shell” for the SIFA which could protect 

the patch antenna inside from harsh outside environments. The silicone is much heavier 

and softer; it may not be ideal for real applications, but it at least provides a fabrication 
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material for a prototype dielectric SIFA. In fact, for fabrication purposes, the silicone 

rubber proved to be easier to handle than the rigid foam. It is much easier to release from 

molds than the foam once it has cured, primarily because it is soft and flexible. The 

rubber also does not expand when it cures from a liquid into a solid; the foam does 

expand to several times its initial volume, making filling a mold homogenously with the 

material more troublesome. For these reasons, the silicone rubber was chosen over the 

rigid polyurethane foam for purposes of fabricating the first dielectric coated SIFA. 

However, the foam remains a possible candidate for future designs. 

 Although the silicone rubber provides a good casting material for making the 

SIFA coating, it only has fixed dielectric properties. It was desirable to be able to make a 

wide range of dielectric materials for SIFA fabrication. Additionally, the rubber has only 

nominal dielectric loss; a lossy coating, then, as discussed previously, cannot be 

achieved by rubber alone. In order to obtain a variety of relative dielectric constants and 

loss tangents, another material needed to be added to the rubber; this second material 

was chosen to be carbon fiber. The carbon fiber can easily be mixed into the liquid Part 

A and Part B of the rubber before they are mixed for curing; it does not interfere with the 

curing process itself. Generally speaking, as more carbon fiber is added to the rubber, the 

dielectric constant and the loss tangent of the resultant material increase. 

 The idea of using carbon fiber as a lossy agent in silicone rubber was actually 

derived from a biomedical work in which this same combination of materials was used 

to achieve a wide range of dielectric properties in order to simulate the electromagnetic 

properties of various biological materials [36].  Another work actually used two different 
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types of carbon fiber dispersed in the rubber in varying proportions [37]. By varying the 

concentration of these two carbon fiber types, a wide range of both relative dielectric 

constants and loss tangents were achieved, as shown in Fig. 27. The same concept of 

varying carbon fiber concentration is used for the SIFA coating to obtain desired 

dielectric properties. 

 

 

Fig. 27. Example of rubber-carbon-fiber dielectric properties. Various relative dielectric constants 

and loss tangents are achieved by mixing two types of carbon fiber in silicone rubber (from [37]) 

 

 

 

For simplicity, only one type of carbon fiber was used to make the material for 

the dielectric SIFA. This severely limited the diversity of material properties as would 

have been possible with a second type of carbon fiber, since an increase in the single 

type of fiber would unilaterally result in an increase in both dielectric constant and loss 

tangent. These two dielectric properties could not be modified independently. 
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Nonetheless, the basic silicone rubber could be transformed into a lossy coating by 

adding the carbon fiber. 

When making this rubber-carbon-fiber mixture, Parts A and B of the silicone 

rubber were used in equal volumes. Before mixing these two liquid parts, the desired 

amount of carbon fiber was mixed into part A, which is the less viscous of the two 

liquids; the mixture is made as homogeneous as possible. Then, the two liquids are 

mixed together to cure into the rubber-carbon-fiber mixture. 

 

D.  Dielectric Characterization 

 A method was needed to characterize the electromagnetic properties of the 

rubber-carbon-fiber mixture: namely, the relative dielectric constant 
rε  and the dielectric 

loss tangent tanδ . The only immediately available dielectric measurement tool was a 

coaxial probe system designed for use with liquids; this proved difficult to apply to the 

solid rubber mixture with any repeatable results. For the purposes of this work, only an 

approximately accurate material characterization was required. The fabrication would 

only be a first-pass prototype, so extreme accuracy was not needed. Thus, it was not 

necessary to take the time to build or acquire the services of a legitimate measurement 

system for solids; instead, an simple approach using a network analyzer, a coaxial probe 

connector, and simulations was employed to achieve a reasonable material 

characterization. 

 The methodology for this material characterization was to use the network 

analyzer to take S11 reflection measurements of a sample piece of rubber mixture by 
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pressing the coaxial probe connector flush against the surface of the material. This 

sample piece of rubber was cut into the shape of a rectangular prism. Then, the material 

and the coaxial probe were simulated together (in exact dimensions) with the dielectric 

properties (both relative dielectric constant and loss tangent) of the material being varied 

in a parametric sweep. Finally, the measured magnitude and phase of S11 were matched 

to the closest magnitude and phase from the simulation variations in order to pinpoint 

the dielectric properties. Specifically, the measured phase of S11 was matched first 

against simulated phase curves for zero loss and varying dielectric. This allowed the 

relative dielectric constant to be determined because the phase curves were essentially 

independent of the loss tangent. The magnitude of S11 was then fitted (in a least-squares 

sense) to simulated magnitude curves in which the dielectric constant was kept constant 

and the loss tangent was varied; this allowed the loss tangent of the material to be 

determined. 

 Fig. 28 shows the simulation used in this material characterization process. The 

rectangular shape of the test material allowed easy construction for the simulation. Fig. 

29 shows the simulated S11 phase curves versus frequency for relative dielectric 

constants ranging from 10 to 50 in steps of 10 (a relative dielectric constant of 1 is also 

included); the loss tangent for these simulations is simply set to zero since the curves are 

independent of the dielectric loss. Note that increasing the dielectric constant makes the 

slope of the curves become steeper; in fact, it is the slope that needs to be matched to the 

simulated results to find the correct dielectric constant. Fig. 30 shows the simulated S11 

magnitude curves that were obtained while sweeping the loss tangent from 0 to 1.0 in 
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steps of 0.2. The relative dielectric constant was assumed to be approximately 7.5 and 

was kept constant for each variation of the loss tangent. Again, as for the phase curves, 

increasing the loss tangent increases the slope of these magnitude curves; the slope can 

be matched to that of the measured S11 magnitude. It should be noted that these 

magnitude curves are only valid for one value of dielectric constant; they will change as 

the dielectric constant changes. 

 

 

Fig. 28. Simulation of dielectric characterization 
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rε

 

Fig. 29. Simulated S11 phase curves for dielectric characterization. The loss tangent is assumed to be 

zero, although the phase curves should be independent of it. Measured phase of S11 was matched to 

the closest curve to approximate the relative dielectric constant 

 

 

 

tanδ

 

Fig. 30. Simulated S11 magnitude curves for dielectric characterization. Relative dielectric constant 

is assumed to be 7.5. For a fixed relative dielectric constant, the measured magnitude of S11 was 

matched to the closest curve to approximate the dielectric loss 
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 A number of different rubber-carbon-fiber mixtures were subjected to this probe 

measurement technique to get a feel for how the carbon fiber concentration impacted the 

dielectric properties of the rubber. The results from all of these different test mixtures 

will not be enumerated here; only the pure rubber (i.e. no carbon fiber) and the particular 

mixture used for fabricating a coated SIFA are of significant interest here. The amount 

of carbon fiber to disperse in the rubber was a somewhat arbitrary choice; no particular 

combination of dielectric properties was set as a “goal”. In the end, the amount of 

dispersed fiber was somewhat limited by rubber: as more fiber was added, the mixture 

eventually became too viscous to ensure proper homogeneous mixing. The final 

dispersion ratio that was used for the fabricated coated SIFA design was 1 gram of 

carbon fiber per 10 mL of rubber (Parts A and B combined in liquid form); this provided 

a easy ratio for measurement and mixing purposes and also achieved a relatively large 

concentration of carbon fiber so as not to make the mixture too viscous. 

 The final rubber-carbon-fiber mixture was subjected to dielectric characterization 

by measuring a block of it with a coaxial probe connected to a network analyzer. The 

magnitude and phase of S11 was measured. First, the phase was compared to the 

simulated phase curves in Fig. 29. Matching the measured phase curve to a simulated 

curve was fairly successful using a least-squares approach; a dielectric constant of 

7.5rε = was estimated (note that, although Fig. 28 only shows curves for six relative 

dielectric constants, the simulation actually had curves for dielectric constants ranging 

from 1 to 50 in steps of 0.1 in order to achieve a decent level of precision). Next, the 

magnitude of S11 was simulated with the relative dielectric constant fixed at 7.5 (as 
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shown in Fig. 30). The measured magnitude curve was compared to this simulation, but, 

unfortunately, the measured results were not good enough to match to any simulated 

curve. There appeared to be too much noise in the magnitude measurement. Thus, not 

even a decent approximation to the dielectric loss could be found. However, it was 

decided that the fabrication would proceed anyway, and the dielectric loss could be 

estimated after fabrication by comparing the bandwidth to simulated versions of the 

fabricated SIFA (a larger loss tangent would result in a wider bandwidth). 

 The dielectric characterization method outlined above should yield fairly 

accurate results since it is a deterministic system. The simulation is straightforward and 

should also be very accurate, so matching the measured results to it should be fairly 

reliable. However, a number of practical issues limit the accuracy of the method. 

Generally speaking, it is difficult to achieve a clean contact between the coaxial probe 

and the rubber. Specifically, cutting the rubber into the desired rectangular shape leaves 

the surface somewhat irregular, as opposed to the ideally smooth surface in the 

simulation. Also, since the rubber is soft and flexible, the probe can be pressed against 

the rubber with a variable amount of pressure; it is difficult to say what amount of 

pressure corresponds most closely to the idealized conditions in the simulations. Finally, 

it is difficult to achieve a perfectly rectangular shape of rubber with the hand cutting 

tools that are available; this introduces a measure of geometric inaccuracy into the 

situation as compared to the simulation. Overall, this dielectric characterization method 

can only be viewed as a reasonable first-pass method. It is acceptable for this work 

because extremely accurate dielectric measurements are not the focus, whereas a 
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fabricated dielectric SIFA is. Only reasonable knowledge of the dielectric properties of 

the rubber-carbon-fiber mixture is necessary to construct a working prototype of the 

coated antenna. Future fabrications, of course, could rely on more accurate dielectric 

characterizations. 

 

E.  Dielectric SIFA Fabrication Process 

 Characterization of the material properties of the rubber-carbon-fiber mixture 

allowed a simple prototype of a dielectric SIFA to be fabricated. For purposes of 

comparison, both an uncoated design and a coated design with the same ground plane 

radii were fabricated. The size and operating characteristics of the antenna were fairly 

limited by the available fabrication materials and methodology, as well as the dielectric 

properties determined from the material characterization. More specifically, 

hemispherical aluminum molds (typically used for baking purposes) were used in the 

fabrication for casting of the rubber; these molds were only available in certain sizes, 

thereby limiting possibilities for the physical size of the designs. The dimensions of the 

chosen designs (both coated and uncoated) are listed in Table 2. The radii of the ground 

plane for these designs are 37.5% smaller than the original fabricated uncoated SIFA. 

The uncoated design is designed to operate at about 1 GHz, higher than the original 

SIFA fabrication. The coated design, due to the high dielectric substrate and coating, 

operates near the original SIFA at around 400 MHz; thus, this design represents uses the 

coating as an agent of physical miniaturization. Both designs were simulated in for 

comparison later with the fabricated versions. 
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Table 2. Dimensions of fabricated SIFAs. Both the coated and uncoated are included 

Design 

Variable 

Description Value (Uncoated 

Design) 

Value (Coated 

Design) 

iR  Inner radius 49.2 mm 49.2 mm 

oR  Outer radius 60.3 mm 60.3 mm 

wφ  Patch width 90° 90° 

sφ  Short width 24° 34° 

fθ  Feed angle 12° 3° 

sθ  Short length 13° 34° 

gθ  Gap width 12° 12° 

cr  
Coat thickness Not applicable 19 mm 

 

 

 

 The ground planes of these new antennas were fabricated in the same manner as 

the original SIFA: using two spherical foam balls corresponding to the inner and outer 

radius (specifically, 4-inch and 5-inch diameter balls, respectively), with copper tape 

attached to the outside and tacked with solder to insure electric continuity. Since the 

inside of the SIFA’s ground plane is electromagnetically isolated from the rest of the 

antenna, the choice of foam for this part of the structure did not interfere with the rest of 

the design at all. Once these ground planes were constructed, the coaxial feed structure 

was constructed. To do this, the semi-rigid coaxial probe was pushed through the foam 

of the ground plane from the backside and out of middle of the substrate area (in an 

identical fashion to what was performed in original uncoated SIFA fabrication). The 

portion of the probe emerging in the substrate area was stripped down to the inner 

conductor to make the probe feed for the patch, and the outer conductor was soldered to 

the ground plane. It should be noted that the insertion of this coaxial probe through the 

ground plane was one of the more inaccurate aspects of the hand fabrication process, 
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since the exact angle of the feed probe is very important to the antenna impedance; this 

point will be discussed further along with the measured results from the fabrication. 

After the feed structure was complete, the fabrication proceeded differently for the 

coated and uncoated designs: the uncoated design was finished in the same manner as 

the original SIFA fabrication, so the details will not be repeated here; the coated SIFA 

was continued with the rubber-carbon-fiber portion of the design. 

 To make the substrate for the patch, an appropriate amount of the rubber-carbon-

fiber mixture was poured into a hemispherical mold fitting the outside of the ground 

plane exactly. The rubber was allowed to dry, and the whole ground plane was released 

from the mold, with the substrate attached. The resulting rubber substrate, in the shape of 

a quarter-spherical shell, was matched to the ground plane in size and shape. 

 Next, the patch had to be constructed on the surface of the rubber substrate; this 

was done using copper tape, as in the original uncoated SIFA fabrication. The only 

complication was that the tape did not adhere well to the cured rubber surface. However, 

this was remedied by making a small additional amount of rubber-carbon-fiber mixture; 

spreading a thin layer of it on the substrate surface with a paintbrush; placing the copper 

tape on top of the new liquid layer; and allowing the thin layer to cure. After the rubber 

was allowed to cure while in contact with the tape, the adherence of the tape was 

acceptable. Fig. 31 shows a picture of the dielectric SIFA up to this stage in the 

fabrication process, without a coating. 
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Fig. 31. Fabricated dielectric SIFA without its coating. The dielectric substrate is visible 
 

 

 

 The final stage of the dielectric SIFA fabrication process was to make the outer 

coating itself. This was done by making two hemispherical sections of the coating, 

placing these around the ground plane, and fusing them together. Each hemisphere of the 

coating was created by pouring rubber into an 8-inch diameter hemispherical aluminum 

mold; placing a hemisphere the same size as the ground plane into the liquid mixture in 

the mold, making sure it is centered relative to the mold; and allowing the rubber 

mixture to cure. After curing, the rubber was released from the mold as a hemispherical 

shell with a thickness just over one inch. Once two such hemispherical shells were 

created, they were placed over the SIFA from opposite ends (one shell needed to have 

the coaxial probe stuck through it). For measurement purposes, these two halves of the 

SIFA were held together by tying them tightly with strings; this provided enough of a 

seal to perform measurements. Theoretically, these two hemispheres of the coating could 

be sealed together permanently by using a paintbrush to spread a small amount of 

additional liquid rubber-carbon-fiber mixture along the seam between the two halves. 

After curing, the rubber of the two hemispheres would be fused together. 
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The coated and uncoated SIFA fabrications are shown in Fig. 32. The original 

MICS band uncoated design is also shown in the picture for comparison. Fig. 33 shows 

three detail views of the new fabrications: a side profile of the dielectric SIFA with its 

coating removed; a side profile of the new uncoated design; and a view of the dielectric 

SIFA with one hemisphere of coating removed. 

 

 

Fig. 32. Fabricated SIFAs. Shown are the new uncoated design (left), the new coated design (right), 

and the original MICS band SIFA (middle) 

 

 

 

 
Fig. 33. Detail views of fabricated SIFAs. On the left is a side profile of the new uncoated SIFA. On 

the right and in the middle are two views of the new dielectric SIFA with one hemisphere of its 

coating removed 
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F.  Dielectric SIFA Fabrication Results 

 After fabrication, the input impedances of the coated and uncoated SIFA 

fabrications were measured on a network analyzer. Fig. 34 shows the measured VSWR 

for both antennas, along with the corresponding simulated curves. The figure also shows 

the simulated and measured impedance loci on a Smith chart. The results show a general 

correspondence between the predicted performance of the simulations and the measured 

data. It is immediately evident that a reasonably functioning dielectric SIFA was 

successfully fabricated. 

There are a few issues with the measured results that should be addressed. First, 

the agreement between the measured and expected VSWR curves is not as good as for 

the original fabricated SIFA (which were within 5% of the simulated results). There are 

several possible explanations for this. First, for the new uncoated design, the electrical 

size of this antenna was larger than the original fabricated SIFA. The new uncoated 

design had a diameter of 0.423�, while the original SIFA had a diameter of 0.273�. The 

significance of these sizes is that for the electrically larger new uncoated SIFA, slight 

inaccuracies in the fabricated geometry (which are unavoidable with the hand fabrication 

process) would have a more profound effect on the antenna performance, since they are 

larger relative to the operating wavelength. Thus, the original SIFA was more 

“forgiving” as far as hand fabrication tolerances were concerned, and achieving an 

accurate resonant response was more difficult for the new uncoated design; this was 

borne out by the fact that the new fabrication resonated at a lower frequency than 

predicted. This problem was compounded by the smaller physical size of the new 
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antenna; using the same fabrication materials and technique, small irregularities in the 

fabrication were larger relative to the overall geometry than they were in the original 

design, leading to less accurate results.  

 

 

Fig. 34. Measured and simulated data for fabricated SIFAs. On the left is a VSWR plot, and on the 

right is the input impedance loci on a Smith chart 

 

 

 

Electrical size was not a factor in fabrication inaccuracy for the coated design 

since its diameter was 0.212�, only slightly less than the original SIFA. However, since 

the ground plane and patch size were the same as the new uncoated design, the smaller 

physical size of the coated design compared to the original SIFA could certainly have 

added inaccuracies. But perhaps the most important factor affecting the coated design’s 

performance was the uncertainties about the dielectric properties of the rubber-carbon-

fiber mixture. As detailed earlier, only a rough characterization process was employed 

for this material, and the results were never expected to be entirely accurate. The fact 

that the measured 2:1 bandwidth of the fabricated coated SIFA had at least a small 

overlap with the simulated bandwidth showed that the dielectric characterization was at 
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least a decent approximation to the true material properties of the carbon-fiber-laden 

rubber. Overall, this prototype was a good first pass at fabrication of the coated SIFA. 

 Another point of interest is the dielectric characterization of the fabricated 

dielectric SIFA – specifically, the characterization of the dielectric loss. As mentioned 

before, the dielectric characterization failed to provide a meaningful value for the loss 

tangent. However, after simulating the fabricated dielectric SIFA with different loss 

tangent values, a reasonable value was found: 0.04. This was estimated by roughly 

matching the bandwidth of the simulated design (i.e. the width of the VSWR curve) to 

the bandwidth from the measurements. Although not desirable, this method at least 

provided an estimate of the dielectric loss that could not otherwise be obtained. In the 

end, this first fabrication of a dielectric SIFA was estimated to have dielectric properties 

of 7.5rε =  and tan 0.04δ = . In future work, it would certainly be desirable to have 

better methods for characterizing the dielectric properties of the coating. 

Generally speaking, the fabrication of a new smaller uncoated SIFA, along with a 

coated design of the same ground plane size, was a success in that it offered a proof of 

concept for the coated SIFA. A simple hand fabrication yielded decent first results. 

Certainly, the combination of better fabrication methods (and materials), along with 

more accurate dielectric material measurements, would drastically improve the accuracy 

of fabricated designs in future work.  
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CHAPTER V 

 

SIFA CAVITY MODEL 

 

A.  Previous Model: Transmission Line Model 

 The SIFA has previously been modeled analytically by a transmission line 

model. This model is modified from the corresponding transmission line model for a 

PIFA, which is well documented. The SIFA model is identical to the planar model, with 

the linear distances of the PIFA patch replaced by the arc lengths of the patch geometry 

on the SIFA’s spherical surface. 

The structure of the transmission line model is shown in Fig. 35. The coaxial 

feed point is considered to be the input for the model. The patch is modeled as two 

parallel microstrip transmission lines originating at the feed, running along the length of 

the patch in either direction away from the feed. The characteristic impedance of these 

lines,
pZ , is determined using equations for a planar microstrip line, with an approximate 

height  o ih R R= −  and width  p o pw R φ= . One of these microstrip lines is terminated in a 

complex admittance representing primary radiating slot. The other line has a third 

microstrip line in series after it with 
sZ  based on  o ih R R= −  and  s o sw R φ= ; this is the 

shorting strip connecting the main patch to the ground plane and body of the SIFA. The 

final component to the model is a shunt conductance, 
ssG , which represents the radiation 

conductance of the two side slots; it is found across the input to the model. 
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Fig. 35. Transmission line model of the SIFA. This model is identical to that used for the PIFA 

 

The transmission line model approximates the SIFA patch as a PIFA with linear 

lengths equivalent to the arc lengths of the SIFA patch. It makes no special consideration 

for the spherical geometry of the SIFA. As such, it only provides a first-order 

approximation to the performance. Fig. 36 shows the VSWR curve and Smith Chart 

impedance curve for both the transmission line model and the simulation of the original 

MICS band SIFA.  

The transmission line model is clearly only a rough approximation. For this 

reason, it is desirable to develop a more rigorous analytical model that incorporates more 

appropriately the unique geometry of the SIFA. In this work, the chosen technique for 

this task was the cavity method, which is widely used in planar microstrip antenna 

designs. Before proceeding directly to analysis of the SIFA under the cavity method, the 
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cavity model as applied to the PIFA is first introduced and discussed in detail. This will 

help to lay the foundation for the application of the same techniques to the SIFA. 

 

Fig. 36. Results from the transmission line model. Shown are the VSWR and Smith Chart plots of 

the TL (analytical) and simulated models of the MICS band SIFA. Results are shown over a 

frequency range of 300-500 MHz 
 

 

 

B.  PIFA Cavity Model 

Before introducing the cavity model specific to the SIFA, it is necessary to 

briefly explain how the cavity model is developed for a standard rectangular PIFA. In 

planar patch designs, the cavity model is very accurate way of predicting performance. 

The basics of the cavity model were briefly discussed in the background section with 

regards to microstrip patch antennas. Now, a full treatment of the cavity model for the 

PIFA will be provided, consisting of a three-dimensional analysis of the electromagnetic 

fields in the “cavity” between the patch surface and the ground plane. This cavity is in 

the mathematically friendly shape of a rectangular prism. 
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A standard rectangular cavity for a PIFA is shown in Fig. 37. It has a height h , 

length l , and width w . The top and bottom of the cavity are the patch surface and the 

ground plane, respectively, and are modeled as PEC surfaces, or electrical walls. Also, 

the vertical shorting wall, the defining feature of the PIFA, is considered to be a PEC 

surface at x l= . The three remaining walls of the cavity are not physical barriers, but 

rather “imaginary” walls that are approximated as PMC surfaces (i.e., magnetic walls). 

This approximation is appropriate given several assumptions: the height h  is assumed to 

be relatively small compared to the wavelength ( h λ≪ ); the electric field will be 

approximately constant in the vertical direction ( z  direction); and only a small portion 

of the fields extend outside of the area directly beneath the patch (i.e. only small fringing 

fields exist there). As long as h is sufficiently small, this assumption is relatively 

accurate and allows the magnetic walls to be constructed around the outside of the cavity 

without losing too much accuracy. 

 

Fig. 37. Cavity model of the PIFA. The metallic surfaces (top, bottom, and x = l) are shown in yellow 

and are PEC surfaces. The remaining surfaces are PMC 
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 Since the PIFA is a radiating structure, the cavity must account for the loss of 

power due to this radiation. To do this, it is modeled as a leaky cavity; otherwise, it 

would simply be a lossless rectangular resonator. Specifically, radiation is assumed to 

emanate from the three PMC walls due to magnetic surface currents on them. These 

radiating walls are dubbed “slots”. The magnetic wall directly opposite the shorting wall 

is considered to be the primary radiating slot, since it produces most of the radiation; the 

other two magnetic walls are called “side slots”. 

 Development of the cavity model begins by writing the wave equation for the 

cavity and solving it subject to the boundary conditions. The general expression for the 

complex scalar wave equation, or Helmholtz equation, given in (7), is applicable to any 

homogenous region (ψ  is a scalar “wave potential” that is related to the magnetic vector 

potential A
��

 or electric vector potential F
��

) 

 2 2 0kψ ψ∇ + =  (7) 

Based on the assumptions that were made for the PIFA cavity, most of the electric field 

will be vertically oriented between the ground plane and the patch (i.e. z -directed), so 

the vertical magnetic field (
zH ) will also be zero. This type of field structure is known 

as transverse magnetic – specifically, transverse magnetic to the vertical z  direction, or 

TMz. The TMz field assumption, which is common in the cavity method, allows the 

magnetic vector potential to be written in terms of the wave potential (8). In other words, 

A
��

 only has a z -directed component, which is related to ψ . 

 ɵ ɵ
z zz

A A a aψ= =
��

 (8) 
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 At this point, a brief aside about A
��

 and F
��

 is appropriate. These two vector 

potentials have little physical meaning, but they are immensely useful mathematically 

and arise directly from electric and magnetic sources in the region of interest. 

Specifically, electric sources ( J
��

) give rise to a magnetic vector potential (9). Similarly, 

magnetic sources ( M
���

) give rise to an electric vector potential (10).  

 ( )
( )'1

 
4

jk r r
J r e

A r dV
rrπ

− − ′

′=
′−∫∫∫

���� �
�

���

��
 (9) 
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4

jk rr

r

M r e
F r dV

rπ

− − ′
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− ′∫∫∫

������

��
� ��

�

�  (10) 

In these integrals, r′
��

represents a position vector from the origin to a point in the source 

region, V ′  is the volume containing the source region, and r
�

 is a position vector from 

the origin to any point in the desired field region. Thus, the volume integral is carried out 

over the source region, resulting in a vector potential that is a function of position r
�

. In 

the case of the PIFA cavity, the vector potential inside the cavity is caused by whatever 

feed mechanism the antenna uses; this could be a microstrip feed, a coaxial line, etc. 

 The electric and magnetic vector potentials are extremely useful for two reasons. 

First, they provide a natural separation of a problem into those fields caused by electric 

sources and those caused by magnetic sources. Secondly, and even more importantly, is 

that once the vector potentials are calculated, the electric and magnetic fields can be 

computed in closed form. These fields are obtained from (11) and (12) along with the 
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TMz field assumption. The specific components of the fields in Cartesian coordinates are 

given by (13)-(18). 
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 0zH =  (18) 

 With the details regarding the vector potentials clear, the wave equation must be 

solved. Expanded into its Cartesian form, the wave equation appears as: 

 
2 2 2

2

2 2 2
0k

x y z

ψ ψ ψ
ψ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (19) 

This is a separable partial differential equation, meaning that its solution can be written 

as: 

 ( ) ( ) ( )A x B y C zψ =  (20) 
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The three differential equations associated with this solution are: 
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Here, the wavenumber k  is given by: 

 2 2 2 x y zk k k k= + +  (24) 

Clearly, (21) - (23) are simple harmonic equations with sinusoidal solutions.  

The specific solutions to these equations can be ascertained by looking 

simultaneously at the PEC and PMC boundary conditions previously discussed for the 

PIFA and the field equations (13) - (18). On the ground plane and patch surface ( 0z =  

and z h= , respectively), the tangential electric fields, 
xE  and 

yE , must be zero; in order 

to satisfy (13) and (14), / zψ∂ ∂  must be zero, so: 

 ( )  cos ,      ,     0,1 , 2, z

m z m
C z k m

h h

π π = = = … 
 

 (25) 

The tangential magnetic field 
xH
 
must be zero on the magnetic walls at  0y = and y w=  

to satisfy (16). This means that / yψ∂ ∂  must be zero and: 

 ( )  cos ,     ,      0,1 , 2, y

n y n
B y k n

w w

π π = = = … 
 

 (26) 
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The z -directed solution is the most challenging; the tangential magnetic field (
yH ) 

must go to zero on the magnetic wall at 0x = , but the tangential electric fields (
yE and 

zE ) must go to zero on the electric wall at x l= . These conditions can be satisfied by 

the solution in (27) with odd (or quarter-wave) index p : 

 ( )  cos ,      ,     1, 3, 5, 
2 2

x

p x p
A x k p

l l

π π = = = … 
 

 (27) 

The total solution, then, can be written as: 

  cos cos cos
2

mnp mnp

m n p
A

h w l

π π π
ψ      =      

     
 (28) 

Note that because of the integer indexes m , n , and p , only certain modal solutions can 

exist inside the cavity (hence the mnp subscript notation on ψ ). Furthermore, since 
xk , 

yk , and 
zk  depend on m , n , and p , each mode has its own frequency of operation as 

governed by the wavenumber in equation (24). Each mode also has an associated scaling 

factor 
mnpA . The modes that are present in the cavity depend on the particular excitation 

of the antenna. In general, many modes are excited in the cavity simultaneously with 

varying amplitudes; the total field in the cavity is simply the sum of all of the modal 

contributions. Mathematically, this summing of modes can be summarized as: 

 
, ,

 total mnp mnp

m n p

Aψ ψ= ∑  (29) 

The mode with the lowest corresponding resonant frequency is called the dominant 

mode. Typically, this dominant mode is much stronger than the other modes. The 

antenna is generally designed to operate at the frequency of the dominant mode. 
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 Once the total fields are determined in the cavity, a number of subsequent 

calculations can be performed to determine a number of desired antenna performance 

parameters. For brevity, only a few of these calculations will be summarized here. The 

first calculation that can be made is the radiated fields and radiated power from the 

antenna. As stated before, three “slots” in the PIFA cavity model contribute to radiation: 

a primary radiating slot at 0x = and two side slots at 0y =  and y w= . The radiated 

power for each of the three slots is calculated separately and identically; then, the three 

contributions are added. First, the electric fields on the slot surfaces are converted into 

equivalent magnetic surface currents, as in (6): 

 ɵ2s nM a E= − ×
��� ��

 (30) 

These magnetic currents act as the radiating mechanisms, producing an electric vector 

potential per (10): 
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Here, the volume integral has been reduced to a surface integral because the source 

region is simply the surface of the slot. Next, the far field electric field can be 

determined directly from F
��

 using equation (11) (note that here, �� is zero): 

  farE F=−∇×
�� ��

 (32) 

Finally, this field can be integrated over a sphere in the far field to find the total power 

flowing through the sphere (i.e. the total radiated power): 

 ( )22 2

4

1
 radP E E R d dθ φ θ φ
η Ω

= +∫∫  (33) 
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 Finding the radiated power is crucial to the next calculation step in the cavity 

model: finding the input impedance. A general formula for the input impedance that can 

be used in conjunction with this model is: 

 
( )

2

 
 2

in

in

rad E M

V
Z

P j W Wω
=

+ −
 (34) 

Here, 
inV  is the driving voltage at the input to the cavity, which depends on the specific 

feed structure used by the antenna; 
EW  is the time-averaged stored electric energy; and 

MW  is the time-averaged stored magnetic energy. Note that this formula assumes that the 

antenna is essentially lossless (with the exception of the power lost to radiation, of 

course). In reality, conductor losses, dielectric losses, etc., exist. These can be included 

in the formula by simply adding the power dissipated in these various forms to 
radP  in 

the denominator. The time-averaged stored electric and magnetic energies are computed 

through standard electromagnetic integrals over the volume of the cavity: 

 
21

 
2

e

V

W E dV= ∫∫∫ε  (35) 

 
21

 
2

m

V

W H dVµ= ∫∫∫  (36) 

Here, E  and H  are the total fields inside the cavity, as expressed in equations (13) - 

(18). 

 In summary, once the total field inside the cavity is determined, the radiated 

fields, radiated power, and input impedance can be calculated. This allows a host of 

other quantities to be computed, such as the VSWR, gain, beamwidth, etc. However, 
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most of these further calculations are fundamental to antenna engineering and are 

omitted here. 

 The cavity model provides a reasonable way to predict the performance of planar 

patch antennas, including the PIFA. The same principles are applied to the SIFA in the 

next several sections of this chapter. First, a custom coordinate system is introduced to 

describe the geometry of the SIFA. The geometry of the SIFA cavity itself is then 

described and its boundary conditions defined. Finally, the wave equation is solved 

inside the SIFA cavity, and the subsequent desired calculations are performed. The 

performance of the SIFA cavity model is compared to previous simulated and measured 

results. 

 

C.  Custom Coordinate System 

 Close inspection of the patch geometry of the SIFA reveals that it can only be 

described mathematically by a complex combination of spherical and rectangular 

coordinates. In fact, the SIFA patch can be expressed much more efficiently by 

introducing a custom curvilinear coordinate system tailored specifically to the patch 

geometry. Fig. 38 summarizes such a coordinate scheme. It is given in terms of 

coordinates u , v , and w , with u  being a linear quantity and v  and w  being angular 

quantities. This uvw  system has many similarities to the standard spherical coordinates. 

The coordinate u  is a radial distance measured from the origin to any point of interest, 

denoted 
1P ; this is equivalent to the spherical coordinate r , with a constant-u  surface 

defining a sphere. The coordinate v  is similar to the spherical coordinate θ  and is 
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defined as the angle measured between the �-axis and a constant- v  half-plane defined by 

1P  and the y -axis. The coordinate w  is similar to the spherical coordinate φ  and is 

defined as the angle measured from the x -axis to the line segment from the origin to the 

point found on the xy -plane that lies on the curve of intersection between the constant-

u  sphere and the constant- y  plane that both contain 
1P .  The constant- w  surface is 

fairly difficult to describe and is omitted from Fig. 38. Instead, since it is more intuitive, 

the constant- y  plane that helps to define w  is included in the figure. 

The relation of the uvw  coordinates to standard Cartesian coordinates is given as 

follows: 

 ( ) ( )cos sinx u w v=  (37) 

 ( )siny u w=  (38) 

 ( ) ( )cos cosz u w v=  (39) 

Note that this coordinate system bears much resemblance to the spherical coordinate 

system, with only a few minor differences. In uvw  space, the SIFA can be said to 

occupy the following region: 

 
i oR u R≤ ≤  (40) 

 
2

g sv
π

θ θ≤ ≤ −  (41) 

 
2 2

w ww
φ φ

− ≤ ≤  (42)  
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Constant-  plane

Constant-  surface 

(sphere)

Constant-  half-plane

ȃu

ȃv

ȃw

SIFA Cavity in 

 space

 

Fig. 38. Custom curvilinear coordinate system for the SIFA cavity. The standard spherical 

coordinates are shown in red for reference. Also included is a view of the SIFA cavity in uvw space 
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To explain the motivation for using this custom curvilinear coordinate system in 

lieu of spherical coordinates, Fig. 38 includes a view of the SIFA cavity in uvw  space.  

Clearly, when mapped from Cartesian space to uvw  space, the SIFA is in the familiar 

shape of a rectangular prism.  Thus, in uvw  space, the problem becomes analogous to 

the planar cavity model in Cartesian coordinates. 

Several important quantities associated with the uvw  curvilinear coordinate 

system are as follows. The Jacobian determinant is: 

 ( ) 2, ,  cosJ u v w u w=  (43) 

The metric coefficients [38] are given in (44)-(46); the subscripts 1, 2 , and 3  

correspond to the coordinates u , v , and w , respectively. Physically, these coefficients 

represent factors of multiplication that transform differential angles into differential arc 

lengths (note that 
1 1h =  because u  is not an angle but is already a distance). These 

coefficients are necessary in determining uvw  operators, such as the curl operator (47). 

 
1 1h =  (44) 

 
2 cosh u w=  (45) 

 
3h u=  (46) 

 

( ) ɵ ( ) ɵ

( ) ɵ

1 1
 cos

cos

1 1

cos

w u
u vv

v w

w

u

A A
A wA uA

u w v w u w u

A
uA

u u w

a a

a
v

∂ ∂∂ ∂   ∇× = − + − +   ∂ ∂ ∂ ∂   
∂∂ − ∂ ∂ 

��

 (47) 
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D.  The SIFA Cavity 

 The “cavity” of the SIFA that corresponds most closely to the rectangular cavity 

of a planar patch antenna is a fairly complex geometrical structure. It can visualized as 

follows: first, the two-dimensional patch geometry on the surface of the SIFA is 

removed from the sphere, then, this two-dimensional surface is extruded radially inward 

a distance  o ih R R= − . The resulting three-dimensional structure is shown in Fig. 39. 

Note that the radial cross section of this cavity is the same shape for every value of the 

radius; the surface area of each cross section simply increases with the radial distance. 

 

Primary Radiating Slot (PMC)

Side Radiating Slot (PMC)

Patch (PEC)

Short (PEC)

Patch (PEC)

 
Fig. 39. The SIFA cavity. The cavity is shown from two viewpoints so as to include all six surfaces 

 

Each of the six surfaces of this cavity are assigned either a PEC or PMC 

boundary condition. The constant 
0 u R=  surface represents the actual metallic patch of 

the SIFA and is thus a PEC surface. The constant  iu R=  surface is part of the SIFA’s 
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ground plane and is also a PEC surface. The constant  / 2ww φ=  and  / 2ww φ=−  surfaces 

are the side radiating slots and are modeled as PMC surfaces. The constant  gv θ=  

surface is the primary radiating slot and is also a PMC surface. The final surface, at a 

constant  sv π θ= − , is modeled as a shorting wall with PEC boundary condition, just as 

in the PIFA cavity model. Note that this shorting wall does not accurately represent the 

physical shorting strip in the actual SIFA design, which is conformal to the spherical 

surface rather than radially directed; however, this modeling is a good approximation 

based on the PIFA cavity that helps to greatly simplify the SIFA cavity analysis. 

 

E.  The Wave Equation and Its Solution 

The first step in applying the cavity method to the SIFA, as with the PIFA, is to 

write out and solve the wave equation for the cavity. As for the PIFA, the complex scalar 

wave equation, or Helmholtz equation, is: 

 2 2 0kψ ψ∇ + =  (48) 

In the SIFA’s custom coordinate system, the wave equation can be expanded as: 

 
( )

2
2 2

22 2 2

1 1 1
cos 0

coscos
u w k

u u u v u w w wu w

ψ ψ ψ
ψ

∂ ∂ ∂ ∂ ∂   + + + =   ∂ ∂ ∂ ∂ ∂   
 (49) 

To solve this equation, the method of separation of variables is used; the solutions are 

assumed to take on the form: 

 ( ) ( ) ( )A u B v C wψ =  (50) 



73 

  

With this assumption, the wave equation can be separated into three one-variable 

equations as follows: 

 
2

2

2

1
 r

B

B v
µ

∂
=−

∂
 (51) 

 ( )
( )

2

2

1
cos 1 0

cos cos

r
r r

C
w

w w w w

µ
ν ν
 ∂ ∂  + + − =  ∂ ∂    

 (52) 

 ( )2 2 2 1 0r r

A
u A k u

u u
ν ν

∂ ∂   + − + =   ∂ ∂ 
 (53) 

Here, 
rµ and 

rν  are separation constants that are introduced in the separation process. 

The subscript r  is included simply to differentiate them from, say, electromagnetic 

permeability µ . 

 The boundary conditions for the problem are defined by the PEC and PMC 

surfaces discussed for the SIFA cavity in the previous section. The three separated 

equations can be solved subject to these boundary conditions. Two of the three solutions 

require accompanying transcendental equations; these solution forms are attained 

following the manner of [39]. The first equation shown in (51) is simply a harmonic 

equation with a general solution (54) and factor 
rµ  given by (55). This solution assures 

that the tangential electric field goes to zero on the shorting section at  
2

sv
π

θ= −  and the 

tangential electric field goes to zero at  gv θ= . 

 

 ( ) cos r gB vµ θ = −   (54) 
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  ,     1,3,5

2
2

r

s g

m
m

π
µ

π
θ θ

= = …
 − − 
 

 (55) 

The second separated equation in (52) is a Legendre differential equation. A 

general solution that satisfies the boundary condition at  / 2ww φ=  is: 

 ( ) ( ) sin sin sin sin
2 2

r r r r

r r r r

w wC Q P w P Q wµ µ µ µ
ν ν ν ν

φ φ   = −′ 
  

′ 


 (56) 

Here, ( )r

r
P x

µ
ν  is an associated Legendre function of the first kind with order 

rµ and 

degree 
rν , and ( )r

r
Q x

µ
ν  is an associated Legendre function of the second kind with order 

rµ and degree 
rν ; ( )r

r
P xµ
ν

′  and ( )r

r
Q xµ

ν
′  are the derivatives of these functions, 

respectively. These two associated Legendre functions are linearly independent solutions 

to the basic Legendre equation and are put together here in a linear combination. In this 

case, their order and degree are arbitrary fractional values, as opposed to integer values 

that appear in many other applications of the Legendre equation. These fractional values 

make computation of these functions somewhat more involved than would be necessary 

with integer values.  In order to satisfy the other boundary condition of the w -dependent 

Legendre equation at  / 2ww φ=− , the transcendental equation (57) must be satisfied. 

This transcendental equation determines the value of the unknown parameter 
rν  to be 

used in (56). 

 sin sin sin sin
2 2 2 2

r r r r

r r r r

w w w wQ P P Q
µ µ µ µ
ν ν ν ν

φ φ φ φ          − = −                 
′


′ ′


′  (57) 
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The third and final separated equation (53) is a spherical Bessel equation with a 

general solution written as: 

 ( ) ( ) ( ) ( )  
r r r rd i d d i dA n k R j k u j k R n k uν ν ν ν
′ ′= −  (58) 

This satisfies the first boundary condition at  iu R= , with ( )
r

j xν  
a spherical Bessel 

function of the first kind with order 
rν  and ( )

r
n xν  a spherical Bessel function of the 

second kind with order 
rν ; ( )

r
j xν

′  and ( )
r

n xν
′  are the derivatives of these functions. 

These two functions are linearly independent solutions of the spherical Bessel equation, 

and they are put together in (58) as a linear combination. The order 
rν  is an arbitrary 

fractional number, as opposed to more commonly seen integer values, making 

computation of the Bessel functions more difficult. The second boundary condition at 

 ou R= must be satisfied by a transcendental equation: 

 ( ) ( ) ( ) ( )
r r r rd i d o d i d on k R j k R j k R n k Rν ν ν ν
′ ′ ′ ′=  (59) 

This equation provides the value of the unknown parameter 
dk , which can then be used 

in (58). This parameter 
dk  (60) is the wavenumber of the cavity for a particular mode; 

the resonant frequency of each mode can be determined from it. 

  dk ω µε=  (60) 

The resonant frequency of a particular mode can be determined from the relation above. 

 In summary, solutions can be found for the three separated, one-dimensional 

differential equations in terms of known harmonic functions and special functions. The 

use of (55), along with the transcendental equations in (57) and (59), yield the fractional 
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modal quantities 
rµ , 

rν , and 
dk . These modal quantities correspond to the integer 

modal indexes found, for example, in the PIFA cavity model. Although not as 

mathematically convenient as integer indexes, these fractional modal quantities are the 

best way to describe the wave potential in the SIFA cavity. If so desired, they can be 

mapped to integer indexes since they are, in fact, a countable and infinite set. However, 

in this work, they will be kept in fractional form. 

 

F.  Superposition of Solutions 

The expressions in (54), (56), and (59) provide modal solutions to the wave 

equation inside the SIFA cavity. Now, the relative strengths of the excited modes in the 

cavity must be determined, and the modes must be superimposed to provide a total 

solution. In other words, the effect of the excitation by the coaxial probe must be 

accounted for. To do this, the non-homogenous Helmholtz equation (61) is needed. 

 ( )2 2  k j Jψ ωµ∇ + =−  (61) 

The non-homogeneous equation is simply the original wave equation (48) with the 

additional right-hand term, or forcing function, j Jωµ− . This term accounts for the 

current driving the fields inside the cavity, with J  being the current density and µ  

being permeability. The solution of (61) provides the specific modes within the SIFA 

cavity, based on the known coaxial probe excitation. From basic knowledge of 

differential equations, the solution to a non-homogenous equation involves finding a 

particular solution as well as the known solution to the homogeneous equation. 
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As was mentioned in the PIFA cavity model discussion, the total solution to the 

wave equation inside the cavity is simply the sum of the modal contributions, as in (29), 

with each mode having a specific amplitude. For the SIFA, assume that the total solution 

ψ  has the following form: 

  k kMµν µνψ ψ=∑  (62) 

Here, 
kM µν are the unknown modal weighting coefficients to be determined, and 

kµνψ  

are the modal solutions to the wave equation. The subscript kµν  refers to the modal 

indexes 
rµ , 

rν , and 
dk . Furthermore, the summation is assumed to be over all possible 

modes (a single summation sign is used for simplicity). Subtracting the non-

homogeneous Helmholtz equation from the homogeneous one and substituting the 

summation of (62) for ψ  yields (63), which can be manipulated into (64). 

 2 2

dk M k M j Jµν µν µν µνψ ψ ωµ− =∑ ∑  (63) 

 ( )2 2

k kdk k M j Jµν µνψ ωµ− =∑  (64) 

Next, an inner product is applied to both sides of the equation to exploit the 

orthogonality of the modal solutions. Specifically, the inner product of each side with the 

quantity *

mnpψ is computed, where*denotes a complex conjugate and mnp  are arbitrary 

fractional modal quantities. The notion of an inner product here will not be fully 

developed mathematically. In this case, it suffices to mimic the cavity method in 

rectangular coordinates, in which the inner product consists of spatial integration over 

the volume of the cavity. This volume integral in uvw  space is given in terms of generic 

vector space elements a  and b as follows: 
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 * 2 cos,
V

a b ab dudvdwu w= ∫∫∫  (65) 

The inner product, then, is denoted by . Application of the inner product operation to 

(64) yields: 

 ( )2 2 * *, ,
k kd mnp mnp

k k JM jµν µνψ ψ ωµ ψ− =∑  (66) 

Note that since the inner product is a linear operator, it can move inside the summation, 

and scalars can move outside of it. 

The harmonic functions, associated Legendre functions, and spherical Bessel 

functions used in the solution for 
kµνψ  all have nice orthogonality properties, which will 

not be discussed in detail here. By virtue of this orthogonality, only one of the terms in 

the summation is nonzero (specifically, the term with index mnp ), and equation (66) can 

be reduced to: 

 ( )2 2 * *,  ,
k mnp m pd n mnp

k k M j Jµν ψ ψ ωµ ψ− =  (67) 

At this point, the mnp  subscript is arbitrary, so it is fair to revert back to the original 

kµν  subscript to get: 

 ( )2 2 * *,  ,
k k k kd

k k JM jµν µν µν µνψ ψ ωµ ψ− =  (68) 

The unknown coefficients can now be solved for easily, resulting in: 

 

*

2 2 *

,
 

,

k

k

kd k

Jj
M

k k

µν
µν

µν µν

ψωµ
ψ ψ

=
−

 (69) 

Substitution of (69) into (62) means that the total solution 	 is: 
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*

0

2 2 *

,
 

,

J rj

k k

µν µν

µν µν µν

ψ ψωµ
ψ

ψ ψ
=

−∑  (70) 

Here, the summation is over all possible modes. This solution for ψ  contains all of the 

modes excited in the SIFA cavity, along with their amplitudes; it also includes the 

specific effect of the feed mechanism. 

 

G.  Cavity Fields 

For the PIFA, assumptions about the fields in the cavity led to solving the cavity 

only for transverse magnetic fields – specifically, TMz. The same principles can be 

applied to the SIFA. For the SIFA cavity, solutions only need to found for TMu fields 

(i.e. transverse magnetic to the radial direction). This means that the radially directed 

magnetic field, 
uH , will be zero.  

At this point, the SIFA cavity model will follow a procedure based on standard 

electromagnetic solutions in spherical coordinates. This is due to the similarity between 

the uvw  coordinates and spherical coordinates. Specifically, in spherical coordinates, 

TMr solutions (transverse magnetic to the radial direction) are most often assumed, and 

this corresponds directly to the assumption of TMu for the SIFA. Following the lead of 

spherical solutions, the relation between the wave potential and the magnetic vector 

potential inside the SIFA cavity can be written as:  

 uA

u
ψ =  (71) 

Additionally, the following can be written: 
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 ɵ ɵ
u uu

A A a ua uψ ψ= = =
�� �

 (72) 

Note that the magnetic vector potential only has a u -directed component (
uA ). The 

reasons for including the factor of 1/ u in (71) will not be detailed here; this choice is 

adopted from spherical solution methods. 

The electric and magnetic fields inside the cavity can now be computed directly 

using reduced forms of equations (11) and (12) (assuming that 
� is zero and �� is given 

by (71) and (70)): 

 
1

 E A
jωε

= ∇×∇×
�� ��

 (73) 

  H A=∇×
��� ��

 (74) 

Expanding these equations into their ��
 components yields: 

 
( ) ( )

2

2

2

1
 u

u
E k u

j u

ψ
ψ

ωε

 ∂
= + 

∂ 
 (75) 

 
( )2

1
 

cos
v

u
E

j u w u v

ψ
ωε

∂
=−

∂ ∂
 (76) 

 
( )2

1
w

u
E

j u u v

ψ
ωε

∂
=

∂ ∂
 (77) 

 0uH =  (78) 

 
( )1

 v

u
H

u w

ψ∂
=

∂
 (79) 

 
( )1

 
cos

w

u
H

u w v

ψ∂
=−

∂
 (80) 
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The superimposed solution for ψ is simply substituted into these equations to find the 

three-dimensional field intensities inside the cavity. 

 The wave potential ψ  in (72) is always multiplied by the radial vector u
�

 before 

A
��

 is used, via (73) and (74), to compute the field quantities. In spherical coordinates, it 

is customary to incorporate the magnitude of u
�

 into the wave potential solution ψ  by 

introducing what are known as Schelkunoff-type spherical Bessel functions. 

Specifically, the spherical Bessel functions ( )
r

j xν  and ( )
r

n xν  used in (58) and (59) for 

the solution to the wave equation are replaced with Schelkunoff-type functions � ( )
r

J xν  

and � ( )
r

3 xν , respectively. The Schelkunoff-type functions are simply the standard 

spherical Bessel functions times the radial distance u  (or r  in spherical coordinates): 

 � ( ) ( )
r

r
J x uj xν ν=  (81) 

 � ( ) ( )
r

r
3 x un xν ν=  (82) 

Note that the Schelkunoff-type spherical Bessel functions are distinguished from 

standard Bessel functions by the hat symbol (∧ ). If the standard spherical Bessel 

functions in equations (58) and (59) are replaced by the Schelkunoff-type functions, the 

results are: 

 � ( ) � ( ) � ( )� ( )  
r r r rd i d d i dA 3 k R J k u J k R 3 k uν ν ν ν
′ ′= −  (83) 

 � ( ) � ( ) � ( )� ( )r r r rd i d o d i d o3 k R J k R J k R 3 k Rν ν ν ν
′ ′ ′ ′=  (84) 
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If (83) and (84) are used in the computation of ψ  given in (50), then the relation 

of the magnetic vector potential and this new wave potential – call it �ψ  (the hat symbol 

designates it as being computed using Schelkunoff-type functions) – becomes: 

 � ɵ
uA aψ=

��
 (85) 

This more closely resembles the rectangular case of the PIFA (i.e., equation (8)), in 

which ψ  is simply a component of A
��

. This is a simpler relation than was necessary in 

(71) and (72).  

In summary, then, the wave potential �ψ , employing the Schelkunoff-type 

functions, can be directly used in equations (75)-(80) in place of uψ  (i.e., without the 

need to multiply by the factor u ). This final step of finding the fields in the cavity by 

using Schelkunoff-type spherical Bessel functions, while not necessary, gives a more 

convenient solution that is more directly analogous to rectangular problems for the 

cavity model (e.g. the PIFA). Additionally, this step mimics the customary procedure 

used in spherical electromagnetic problems. 

 

H.  Side Slot Radiated Power 

As in the PIFA cavity model, one of the most important calculations following 

the solution of the fields inside the cavity is the radiated power. The SIFA has three 

radiating slots, each of which can be handled separately. Computation of the radiation 

from the side slots is performed first here. Due to symmetry, the power radiated by both 
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side slots should be identical, although the actual fields produced by each slot are 

different. 

The process of computing the radiation is best started by writing the Cartesian 

coordinates of the side slots as functions (86)-(88) of the custom uvw  coordinates. These 

are combined into a vector description (89) of the side-slot surfaces R′
���

. 

 

 ( )cos sin
2

wx u v
φ =  

 
 (86) 

  sin
2

wy u
φ =±  

 
 (87) 

 ( )cos cos
2

wz u v
φ =  

 
 (88) 

 ( ) ɵ ɵ ( ) ɵ cos sin sin cos cos
2 2 2

w w w
u v wR u v a u a u v a

φ φ φ     ′ = ± +     
     

���
 (89) 

Here, the prime on R′
���

 does not refer to a derivative; it is simply there for notational 

purposes. Note that this surface is entirely tangent to the radial ( R ) direction in spherical 

coordinates. Thus, the radial electric field is completely tangent to the surface. This field 

is obtained from the modal calculations – specifically, equation (75) – and is denoted 

here by: 

 ( ) ɵ0
 ,ss uu

E E E u v a=
��

 (90) 

Here, the field has a magnitude of 
0E , varies as the unit-normalized function ( ),E u v , 

and is directed in the ɵ ua  direction. The subscript ss  signals that the field occurs on the 
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side slot. In the most general case, this field varies both with u  and v . The field on the 

side slot surfaces gives rise to an equivalent magnetic surface current: 

 ɵ2 ssnsM a E= − ×
� ��� �

 (91) 

Here, ɵ na  is the unit normal vector to the side slot surface. The electric vector potential 

caused by the side slot current can be computed directly from sM
���

: 

  
4

jk R R

s

S

e
F M dS

R Rπ

′− −

′

′=
′−∫∫
��� �

�� ���
����

ε

 (92) 

 ɵ( ) 2
4

jk R R

S

e
F n E dS

R Rπ

′− −

′

′= − ×
′−∫∫

�� ���

�� ��
�� ���

ε

 (93) 

The primed quantities (surface S ′ , vector R′
���

) correspond to the side slot surface, 

whereas the unprimed quantity R
��

 refers to a point in the far field. 

The electric vector potential F
��

 in equation (93) can be simplified as follows. 

Using a parallel ray approximation standard for antenna problems (e.g. as in [40]), the 

phase term in the integral can be approximated as: 

 
( ) ( )cos cos

  
jk R R jk R R jk R u

e e e
α α′− − ′− − − −= =

�� ���

 (94) 

Here, � is the angle between the vectors R
��

 and R′
���

. The parallel ray approximation also 

dictates that the denominator of the integrand (magnitude term) be reduced to: 

 
1 1

  
RR R

≅
′−

�� ���  (95) 
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The term cosα  can be derived from the dot product between R
��

 and R′
���

 (since 

 cosR R R R α′ ′⋅ =
�� ��� �� ���

). This dot product can be performed in Cartesian coordinates: 

 

ɵ ɵ ɵ( )
( ) ɵ ɵ ( ) ɵ

cos  sin cos sin sin cos

cos sin sin cos cos
2 2 2

x y z

w w w
x y z

a a a

v a a v a

α θ φ θ φ θ

φ φ φ

= + +

      ± +      
      

i

 (96) 

 ( ) ( )cos  sin cos cos sin sin sin sin cos cos cos
2 2 2

w w wv v
φ φ φ

α θ φ θ φ θ     = ± +     
     

 (97) 

Employing the parallel ray approximations changes equation (93) to the following: 

 ɵ( ) ( )cos
 2
4

jk R u
n

S

F E ea dS
R

α

π
− −

′

′= − ×∫∫
�� ��

ε

 (98) 

Now, the normal vector to the slot, n
�

, must be determined. To do this, the partial 

derivatives of R′
���

 with respect to u  and v  are computed: 

 

 ( ) ɵ ɵ ( ) ɵ  cos sin sin cos cos
2 2 2

w w w
u x y zR R v a a v a

u

φ φ φ∂      ′′ = = ± +     ∂      

��� ��
 (99) 

 ( ) ɵ ( ) ɵ   cos cos cos sin
2 2

w w
v x zR R u v a u v a

v

φ φ∂    ′′= = −   ∂    

��� ��
 (100) 

The normal vector to the surface (not the unit normal) is then given by: 

  u vn R R
′ ′= ×

� �� ��
 (101) 

 

( ) ɵ ɵ
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2

sin cos sin cos
2 2 2
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w w
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      = − ±       
      

   −    
   

�

 (102) 
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This Cartesian vector can be converted into a vector in terms of spherical unit vectors: 
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ɵ
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 (103) 

This normal vector is then crossed with ɵ ra (which is the same as ɵ ua ) to obtain: 

 

ɵ ɵ
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� �

 (104) 

Referring back to the expression for F
��

 in equation (98), the surface differential dS′  can 

be expanded as: 

  dS n dudv′ =
�

 (105) 

Now, F
��

 from equation (98) can be rewritten as: 

 
( )cos
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αε
π

− −

′
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 ( ) ( )cos2
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F n E e dudv
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= ×
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E
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α

π
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 (109) 

Note that all of the terms in the double integral, including ɵ
un a×

�
, ( ),E u v , and cosα  are 

now known; the integral can now be computed numerically. The term 2 / 4ε π−  is also 

known. The terms 
0E , jkRe− , and 1/ R  can be kept for now, since all three of these terms 

will be cancelled out shortly. Denoting the integral and the known multiplicative 

constants as a
I
���

, the electric vector potential can simply be written as: 

 0 
jkR aE e I

F
R

−

=
��

���

 (110) 

 ɵ( ) ( ) cos
,

2

4

jkua

S

uI n E u v e ua d dv
α

π
ε −

′

−
×= ∫∫

�� ��

 (111) 

Note that the integral results in both a θ  and a φ  component (and is thus a vector), since 

the term ɵ
un a×

�
 contains these two components; that is, a

I
���

 is composed of 
aIφ  and aIθ  

and F
��

 is likewise composed of Fφ  and Fθ : 

 ɵ ɵ a a aaI aI Iφ θφ θ= +
���

 (112) 

 ɵ ɵ aF aF Fφφ θθ= +
��

 (113) 



88 

  

Note further that both components of a
I
���

 (and thus F
��

) are themselves functions of φ

and θ , since the terms ɵ
un a×

�
 and cosα  are function of these angles. 

 The computed electric vector potential can be used to determine the radiated 

electric field in the far field. Specifically: 

  E j Fθ φωη=−  (114) 

  E j Fφ θωη=−  (115) 

These relations result from  E F=∇×
� �

reduced into its components. At this point, the 

radiated field pattern of the SIFA side slot is known. 

 From the electric far field, the total radiated power can now be calculated by 

integrating the field over a full sphere in the far field: 

 ( )22 2

4

1
 radP E E R d dθ φ θ φ
η Ω

= +∫∫  (116) 

 ( )2 2 2

4

1
 radP j F j F R d dφ θωη ωη θ φ
η Ω

= − +∫∫  (117) 
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jkR a jkR a

rad

E e I E e I
P R d d

R R

φ θω η θ φ
− −

Ω

 
 = +
 
 

∫∫  (118) 

 ( )2

4

2 2
2

0 a a

radP E I I d dφ θω η θ φ
Ω

= +∫∫  (119) 

The terms 
aIφ  and aIθ  are already known as functions of θ and φ , so this double integral 

can be computed numerically over the full range of these angles. Denoting this integral 

multiplied by the constants 2ω η as bI  (a scalar), the radiated power can simply be 

written as: 
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 2

0 b

radP E I=  (120) 

 ( )2 2
2

4

 b a aI I I d dφ θω η θ φ
Ω

= +∫∫  (121) 

This completes the computation of the radiation from the side slots of the SIFA. The 

radiated fields themselves are given in (114), (115), (110), and (111), whereas the power 

is given by equations (120) and (121) above. For now, the amplitude 
0E  of the electric 

field inside the cavity is unknown; it is dependent on the strength of the excitation of the 

coaxial probe. 

 

I.  Primary Slot Radiated Power 

The derivation of the radiation from the primary slot of the SIFA cavity follows 

the same steps as were performed for the side slots; only the geometrical terms change in 

the equations. For the sake of the thoroughness of this new model, however, all of the 

steps are repeated here. The primary slot surface has Cartesian coordinates – given as 

functions of the custom curvilinear coordinate system – as follows: 

 ( ) ( )cos sin gx u w θ=  (122) 

 ( ) siny u w=  (123) 

 ( ) ( )cos cos gz u w θ=  (124) 

The vector description of the primary slot , R′
���

, then, is given by: 

 ( ) ( ) ɵ ( ) ɵ ( ) ( ) ɵ cos sin sin cos cosx y zg gR u w a u w a u w aθ θ′ = + +
���

 (125) 
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Like the side slots, this surface is entirely tangent to the radial ( R ) direction in spherical 

coordinates. Thus, the radial electric field is completely tangent to the surface. The field, 

taken from modal superposition inside the cavity, is denoted here by: 

 ( ) ɵ0 , ups uE E E u w a=
�

 (126) 

That is, the field has a magnitude of 
0E , varies as the unit-normalized function ( ),E u w , 

and is directed in the ɵ ua  direction. The subscript ps  denotes this field as occurring on 

the primary slot. In the most general case, this field varies both with u  and w . 

The electric field on the primary slot surface gives rise to an equivalent magnetic 

surface current: 

 ɵ2 ns psaM E= − ×
����

 (127) 

Here, ɵ na  is the unit normal vector to the primary slot. The electric vector potential 

caused by the slot can be computed directly from sM
���

: 

  
4

jk R R

s

S

e
F M dS

R Rπ
ε

′− −

′

′=
′−∫∫

�� ���

�� ���
�� ���  (128) 

 ɵ( ) 2
4

jk

n

R R
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S

e
F E Sa d

R R

ε
π

′− −

′

′= − ×
′−∫∫

�� ���

�� ���
���

 (129) 

Again, the primed quantities (surface S ′ , vector R′
���

) correspond to the primary slot 

surface, whereas the unprimed quantity R
��

 refers to a point in the far field. 
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As was done for the side slot, the electric vector potential of the primary slot in 

equation (129) can be simplified as using a parallel ray approximation. The phase term 

in the integral becomes: 

 
( ) ( )cos cos

  
jk R R jk R R jk R u

e e e
α α′− − ′− − − −= =

�� ���

 (130) 

Here, � is the angle between the vectors R
��

 and R′
���

. The denominator of the integrand 

(magnitude term) in equation (129) can be reduced to: 

 
1 1

  
RR R

≅
′−

�� ���  (131) 

As before, the term cosα  in the phase can be derived from the dot product between R
��

 

and R′
���

 (  cosR R R R α′ ′⋅ =
�� ��� �� ���

). Specifically: 

 

ɵ ɵ ɵ( )
( ) ( ) ɵ ( ) ɵ ( ) ( ) ɵ( )

cos  sin cos sin sin cos

cos sin sin cos cos

x y z

x y zg g
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α θ φ θ φ θ

θ θ

= + +

⋅ + +
 (132) 

 ( ) ( ) ( ) ( ) ( )cos  sin cos cos sin sin sin sin cos cos cosg gw w wα θ φ θ θ φ θ θ= + +  (133) 

Employing the parallel ray approximation in equation (129) yields: 
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′= − ×∫∫
�� ��

 (134) 

Now, the normal vector n
�

 must be determined. The partial derivatives of R′
���

 with 

respect to u  and w  are computed: 

 ( ) ( ) ɵ ( ) ɵ ( ) ( ) ɵ cos sin sin cos cosu x y zg gR w a w a w aθ θ′ = ± +
��

 (135) 

 ( ) ( ) ɵ ( ) ɵ ( ) ( ) ɵ sin sin cos sin cosv x y zg gR u w a u w a u w aθ θ′ =− ± −
��

 (136) 
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The normal vector to the surface (not the unit normal) is then given by: 

  u vn R R
′ ′= ×

� �� ��
 (137) 

 ( ) ɵ ( ) ɵ cos sinx zg gn u a u aθ θ=− +
�

  (138) 

This vector can be converted from a Cartesian vector to a spherical vector as: 
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( ) ( ) ( ) ( ) ( )( ) ɵ ( ) ( ) ɵ
cos sin cos sin cos

cos cos cos sin sin cos sin

rg g

g g g

n u a

u a u aθ φ

θ θ φ θ θ

θ θ φ θ θ θ φ

= − +

− + +

�

 (139) 

This normal vector can be crossed with ɵ ra (which is the same as ɵ ua ) to obtain: 
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 (140) 

Referring back to the expression for F
��

 in equation (134), the surface differential dS′  

can be expanded as: 

  dS n dudw′ =
�

 (141) 

Now, F
��

 in equation (134) can be rewritten as: 
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 (145) 



93 

  

This double integral can be computed numerically. The constant term 2 / 4ε π−  is 

known; the terms 
0E , jkRe− , and 1/ R  can be retained. Denoting the integral and the 

known multiplicative constants c
I
���

, the electric vec tor potential can simply be written 

as: 

 0 
jkR cE e I

F
R

−

=
��

���

 (146) 
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×= ∫∫
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 (147) 

Here, F
��

and c
I
���

 have both θ and φ  components, each of which is a function of θ and φ . 

 The computed electric vector potential can be used to determine the radiated 

electric field in the far field by the following relations: 

  E j Fθ φωη=−  (148) 

  E j Fφ θωη=−  (149) 

From the electric far field, the total radiated power can be calculated as: 

 ( )22 2

4

1
 radP E E R d dθ φ θ φ
η Ω

= +∫∫  (150) 

 ( )2 2 2

4

1
 radP j F j F R d dφ θωη ωη θ φ
η Ω

= − +∫∫  (151) 
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2 2
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radP E I I d dφ θω η θ φ
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= +∫∫  (153) 
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This double integral can be computed numerically. Denoting this integral multiplied by 

the constants 2ω η  as dI  (a scalar), the total radiated power can simply be written as: 

 2

0 d

radP E I=  (154) 

 ( )2 2
2

4

 d c cI I I d dφ θω η θ φ
Ω

= +∫∫  (155) 

This completes the derivation of the radiation from the SIFA’s primary slot. The 

radiation from each of the three slots can simply be added together to determine the 

SIFA’s overall radiation characteristics. 

 

J.  Input Impedance 

 The radiation calculations in the previous two sections allow the input impedance 

of the SIFA to be calculated fairly easily. Specifically, equation (34), used in the PIFA 

cavity model, can also be applied to the SIFA: 

 
( )

2

 
 2

in

in

rad E M

V
Z

P j W Wω
=

+ −
 (156) 

This equation simply models the SIFA as a leaky cavity. The leaked power is composed 

entirely of radiation (i.e. the cavity is otherwise lossless); the radiation accounts for the 

real part of the impedance. The cavity also has time-average electric (
EW ) and magnetic 

(
MW ) stored energies due to the fields inside; these account for the imaginary part of the 

impedance. The input voltage 
inV  is measured at the input to the cavity (i.e. where the 

coaxial probe enters at the ground plane). The quantities 
EW , 

MW , and 
inV  need to be 

determined before equation (156) can be used. 
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 The stored electric and magnetic energies in the SIFA cavity are given by the 

same volume integrals as listed for the PIFA cavity in equations (35) and (36). The only 

difference is that these volume integrals need to be tailored to the SIFA’s custom 

coordinate system. Specifically: 
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µ
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−

= ∫ ∫ ∫  (158) 

The limits of integration are simply taken from the boundaries listed for the SIFA cavity 

in equations (40)-(42). Also, note the presence of the Jacobian 2 cosu w . The values for 

the electric and magnetic fields are taken from the field calculations inside the cavity.  

 Now the input voltage 
inV  must be determined. For the probe-fed SIFA, this is 

simply the voltage across the coaxial probe. Specifically, this can be found by 

multiplying the electric field along the coaxial probe by the actual length of the probe 

(this is an electric field times a distance, which is a voltage). If h  is the height of the 

probe (which is simply 
o ih R R= − ) and 

pE  is the average value of the electric field 

along the probe, then the input voltage can be calculated simply as: 

 ( ) pn ii p ohV EE R R== −  (159) 

This allows equation (156) to be computed. 
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K.  3umerical Routine and Results 

 The equations of the SIFA cavity model presented above can be implemented 

numerically in a coded program [41]. The details of this code are presented in 

Appendixes A and B. A brief summary of the procedure is as follows. First, the resonant 

modes are determined in the cavity: equations (55), (57), and (59) are used to determine 

the modal parameters 
rµ , 

rν , and 
dk . This requires solving two transcendental 

equations. Next, for each mode, the modal coefficient in equation (69) is calculated; this 

allows the modes to be superimposed for the total solution in the cavity, per equation 

(70). Note that, technically, there are an infinite number of modes; for this numerical 

procedure, the number of modes must be truncated (i.e. all modes below a certain cut-off 

frequency). Once the total wave potential solution is known in the cavity, the fields 

inside the cavity, as well as the radiated fields from each of the radiating slots, can be 

calculated directly using the appropriate equations. The final step is to calculate the 

radiated power and input impedance, which can all be done directly. 

 The numerical results of the cavity method, as applied to the original MICS band 

SIFA, are presented in Fig. 40. The first plot in the figure shows the VSWR versus 

frequency curves from four sources for comparison: the cavity model, the transmission 

line model, the simulated design, and the fabricated design. Note that the cavity method 

has good agreement with the simulated model, and, in general, is closer to the simulated 

model than the transmission line model. The resonant frequency predicted by the VSWR 

curve of the cavity model is much closer to the simulated model than that predicted by 

the transmission line model. 
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Fig. 40. Results of the SIFA cavity model. For the VSWR plot, the transmission line model, 

simulated design, and fabricated version of the MICS band SIFA are compared to the cavity model. 

For the radiation patterns, the simulated design is compared to the cavity model 
 

 

 

The second plot in Fig. 40 shows the radiation pattern predicted by the cavity 

model in comparison to that from the simulated model. The results are again very good. 

The basic shape of the cavity model’s radiation pattern in the three provided cut planes is 

roughly the same as the simulated model’s pattern. The most substantial differences are 
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in the relative magnitude (strength) of the various polarizations. However, these 

differences can be simply explained by the cavity model’s exclusion of the entire 

spherical ground plane from consideration; this ground plane will, in general, have an 

influence shaping the radiation pattern. 

Overall, the results demonstrate the legitimacy of the new SIFA cavity model, 

and, furthermore, they suggest that the cavity method can provide more accurate 

predictions of the SIFA’s performance than the much simpler transmission line model. If 

nothing else, the cavity model provides more physical insight into operation of the 

SIFA’s patch simply by accounting for the antenna’s unique geometry. The cavity 

method represents another step in the analytical treatment of the SIFA. 
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CHAPTER VI 

 

THE SIFA IN A REMOTE NETWORK SCENARIO 

 

A.  General Considerations for Remote 3etworking 

One possible and promising application of the SIFA is in a remote network. In 

this scenario, a number of SIFAs could be deployed into a remote environment for 

telemetric, communication, or other purposes. Each SIFA would thus serve as a single 

node in an ad hoc network. The SIFAs would complete be self-supporting packages, 

with their own onboard power, communication, and sensing systems. Ideally, this 

network would be able to remain in such a remote setting more or less indefinitely with 

little to no maintenance necessary. Furthermore, it would be desirable to make the SIFAs 

capable of harvesting their own power, through solar or other means. 

The SIFA provides a good candidate for such remote operation for several 

reasons. First, the SIFA design itself provides a structural platform on which other 

electronic devices in an integrated system can be mounted. Specifically, approximately 

three-quarters of the interior of the sphere (inside the ground plane) as well as three-

quarters of the outside surface area of the sphere are free space in which to mount other 

devices. The inside of the sphere, in particular, provides prime space for other devices, 

since it is electrically isolated from the antenna by the ground plane. This characteristic 

of the SIFA would allow it to be developed into a complete self-supporting package, 

with its own power, sensing, and communication equipment. 
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The second positive characteristic of the SIFA for remote operation is that it 

could allow for rapid deployment of a network. If all of components of the SIFA were 

contained completely inside the spherical ground plane in a structurally rigid package, 

each SIFA could literally be thrown out into the desired environment like a ball. This 

deployment could even be done from a moving vehicle: a truck on the ground or a low-

flying airplane or helicopter. In any case, an ad hoc network could be deployed and 

operational in a very short span of time. 

The final characteristic of the SIFA that makes it a good candidate for remote 

operation is its potential for solar power harvesting. The ability to collect its own energy 

would be hugely advantageous to making a long-term self-sustaining network of SIFAs. 

Having a spherical, shape, the SIFA provides a unique opportunity to collect solar 

radiation efficiently. Fig. 41 demonstrates this potential by comparing a spherical solar 

collector to a planar solar collector operating above ground. The spherical shape 

provides the best opportunity to collect radiation because not only does it receive rays 

directly from the sun, but it also can receive reflected rays off of the ground [e.g. 42]. 

The primary design challenge presented by this remote network scenario – from 

an antenna engineering perspective, at least – would be the randomness of the 

environments that the SIFA is exposed to. Each different environment would have its 

own specific dielectric properties, lossy properties, as well as multipath, fading, and 

shadowing characteristics. As each SIFA would be resting on the ground in the presence 

of a lossy dielectric material, the free-space radiation and propagation characteristics of 

the SIFA would be irrelevant. To further complicate the situation, if the SIFAs were 
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deployed rapidly (i.e. tossed like a ball into the environment, as described previously), 

each node would be resting in a random orientation above the ground; in fact, a SIFA 

might even become partially buried under the ground. All of these factors would have a 

direct effect on antenna parameters such as input impedance, radiation efficiency, and 

polarization efficiency, as well as propagation characteristics. Ideally, the SIFA should 

not have to be redesigned to cope with varying environments. In this case, reliable node-

to-node communication would have to be ensured despite such random environments 

and orientations. 

 

 

Fig. 41. Solar collection of a spherical cell vs. a flat cell. Picture available at 

http://www.kyosemi.co.jp/product/pro_ene_sun_e1.html 
 

 

B.  Two-3ode LOS Remote 3etwork Scenario 

 One to determine if the SIFA could work effectively in a remote scenario would 

be to simulate its performance in that environment. However, it would be next to 

impossible to determine how the SIFA performs in every type of remote environment. 

There are simply too many variables: dielectric properties of the earth, terrain profile, as 
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well as objects like trees, bushes, and rocks. To demonstrate this wide diversity, Table 3 

provides a list of a number of materials commonly found in the ground, along with their 

relative dielectric constants and dielectric loss tangents. The purpose of the simulation 

work that follows is not to exhaust all of the possibilities for remote environments; it is 

simply to provide a broad overview of how the SIFA might perform and some of the 

design factors to look for when considering remote operation. 

 

Table 3. Dielectric properties of various materials found in the earth 

Material Permittivity Loss Tangent 

Dry Sand 3-5 0.01 

Saturated Sand 20-30 0.1-1.0 

Limestone 4-8 0.5-2 

Shales  5-15 1-100 

Silts 5-30 1-100 

Clays 5-40 2-1000 

Granite 4-6 0.01-1 

Dry Salt 5-6 0.01-1 

 

 

 

To test the effectiveness of the SIFA in a remote network scenario, a simple 

simulation scenario was devised to test the SIFA’s performance in a two-node 

communication link scenario in the presence of a dielectric ground. Fig. 42 summarizes 

such a scenario. Two SIFAs (one a transmitter, the other a receiver) are placed at a 

height h  above a lossy dielectric ground (with unknown properties 
rε  and tanδ ), with 

a distance of R  between them. The ground is assumed to be flat so that a line-of-sight 



 

(LOS) link exists between the antennas.

this LOS link is the only link between the antennas.

be randomly oriented above the ground, rotated around two axes to a specific position, 

as shown by the rotation arrows.

SIFAs are rapidly deployed by throwing them like balls into the envir

fading or shadowing is considered here.

provides a first step in analyzing remote operation for the SIFA.

 

Fig. 42. Two-node LOS communication link between SIFAs.

random, and each SIFA lies above the ground by a height 

The best way to evaluate this two

Specifically, if both the transmitting and the receiving SIFAs are rotated in plac

independently above the ground into different orientations 

equally likely in a statistical sense 

can be compiled and summarized into statistical distributions, such as probabi

functions. The statistical distributions 

efficiently) the SIFA would perform given random orientations of both transmitter and 

(LOS) link exists between the antennas. For simplicity, multipath is ignored such that 

this LOS link is the only link between the antennas. Also, both antennas are assumed to 

be randomly oriented above the ground, rotated around two axes to a specific position, 

as shown by the rotation arrows. This accounts for the randomness introduced if the 

SIFAs are rapidly deployed by throwing them like balls into the environment.

fading or shadowing is considered here. Although this scenario is fairly simplistic, it 

provides a first step in analyzing remote operation for the SIFA. 

node LOS communication link between SIFAs. The orientation of each SIFA is 

random, and each SIFA lies above the ground by a height h 

 

 

 

The best way to evaluate this two-node LOS SIFA link is in a statistical sense.

Specifically, if both the transmitting and the receiving SIFAs are rotated in plac

above the ground into different orientations – each orientation being 

equally likely in a statistical sense – then the data from all of the possible orientations 

can be compiled and summarized into statistical distributions, such as probabi

The statistical distributions can demonstrate how predictably (as well as how 

efficiently) the SIFA would perform given random orientations of both transmitter and 
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For simplicity, multipath is ignored such that 

are assumed to 

be randomly oriented above the ground, rotated around two axes to a specific position, 

This accounts for the randomness introduced if the 

onment. Finally, no 

Although this scenario is fairly simplistic, it 

 

The orientation of each SIFA is 

node LOS SIFA link is in a statistical sense. 

Specifically, if both the transmitting and the receiving SIFAs are rotated in place 

each orientation being 

the data from all of the possible orientations 

can be compiled and summarized into statistical distributions, such as probability density 

demonstrate how predictably (as well as how 

efficiently) the SIFA would perform given random orientations of both transmitter and 
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receiver. Furthermore, the dielectric properties of the ground can be changed to compare 

these statistical distributions in different dielectric environments. 

 

C.  Simulation Technique 

 The two-node LOS scenario introduced above is a somewhat abstract description. 

The actual implementation of this scenario is performed using electromagnetic software 

simulation [27] followed by computations with a program coded in [41]. Specifically, 

the antenna is simulated for its radiation characteristics, and then a program is used to 

calculate the power transfer between the transmitter and receiver. The program is also 

used to determine the statistical distributions describing the performance for various 

orientations. 

The independent rotation of both the transmitter and receiver can be achieved by 

rotating only one simulated SIFA design and using the data from that simulation for both 

antennas. The simulated SIFA design is placed above a flat ground, as shown in Fig. 43. 

It is then rotated in 18° increments around two axes, for a total of 400 different 

orientations. For each orientation, the SIFA is simulated, and the following data is 

recorded: input impedance (referenced to 50 Ω), radiation efficiency, and radiation 

pattern (a full 360° pattern). 

The data from these simulations of a single SIFA can be used for both the 

transmitter and receiver in the two-node link scenario. Each antenna is assumed to have 

a local reference coordinate system exactly the same as shown in Fig. 11; these 

coordinate systems remain fixed as each antenna rotates independently. Since only a 
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LOS link is required, only a single value from the three-dimensional radiation pattern is 

needed for both the transmitter and receiver. Specifically, the field value at 90θ = � and 

90φ = �  is taken for the transmitter and the field value at 90θ = �  and 270φ = �  is taken 

for the receiver. This extraction of field pattern data is done for each rotation of the 

antenna. Along with the radiation pattern data (field intensity and gain) in these two 

directions, the impedance and radiation efficiency for each rotation is recorded (these 

quantities are always the same for the transmitter and receiver). Once data is recorded 

for all 400 orientations of a single antenna in the simulation, the coded program can be 

used to extend these possible orientations to both transmitter and receiver. If both 

antennas can assume any of the 400 orientations independently, then a total of 160,000 

transmitter-receiver orientations are possible. A number of calculations are then 

performed in the program for each of these 160,000 possibilities; these calculations are 

described in the following section. 

 

 

Fig. 43. Simulation of a SIFA operating in the presence of a lossy ground 
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 The governing equation for the power transfer between the two SIFAs in the 

LOS link scenario described above can be written as: 

 ( ) ( )( )( )2 2
 Ω Ω 1 Γ 1 Γ

4

n

rad rad pol nR

r t t r t r t r
P PG G e

R

αλ
η η η

π
− = − −  

 
 (160) 

This is essentially a Frii’s transmission scheme (e.g. as in [40]). Here, 
tP  is the power 

transmitted, and 
rP  is the received power. ( )ΩtG and ( )ΩrG  are the gains of the 

transmitter and receiver, respectively; these are a function of the spherical angle 

( )Ω  ,θ φ= . Γt
 and Γr

 are the reflection coefficients of the respective antennas, with 

( )2
1 Γ−  being the coefficient by which these reflections reduce the power. rad

tη  and 

rad

rη  are the radiation of the transmitter and receiver. The polarization efficiency, given 

by polη , combines the effects of both the transmitter and receiver and is thus not split 

into two quantities. The term ( )/ 4
n

Rλ π  accounts for the path loss of the signal as it 

travels a distance R  between the antennas. In the case of this scenario, where multipath 

is not considered, the exponential factor n  is simply equal to 2; multipath can easily be 

added to the scenario by changing n , but this work will not pursue this possibility. 

Finally, any propagation loss is accounted for by the exponential term nRe α− ; however, if 

air is assumed to be the propagation media, then this loss in negligible and the whole 

term can be reduced to unity. This assumption of negligible propagation loss will be 

used here. 

 For each of the 160,000 possible orientations of the transmitter and receiver, 

equation (160) is applied to the scenario to determine the power transfer between the 

 

 

D.  LOS Link Calculations 
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antennas. For all of the simulations in this work, the transmitted power is assumed to be 

100 W, and the distance between the antennas is chosen as 100 m. These are arbitrary 

values. The gain and the radiation efficiency of the antennas are taken directly from the 

simulations. The reflection coefficients are simply calculated using the VSWR values 

from the simulations via the following formula: 

 
1

Γ  
1

VSWR

VSWR

−
=

+
 (161) 

The polarization efficiency is a slightly more involved calculation [43]. It is calculated in 

(162). 
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Here, 
tp  and 

rp  are the magnitudes of the polarization ratios of the transmitter and 

receiver, respectively, and 
tδ  and 

rδ  are the corresponding phases of these ratios. The 

polarization ratio is the ratio of the phi component of the electric field to the theta 

component: 

 
( )
( )
Ω

 
Ω

E
p

E

φ

θ

=  (163) 

Obviously, the electric field components are dependent on the orientation Ω . The 

electric field values are taken directly from the simulations. 

 Once equation (160) is applied to all of the possible orientations, the data is ready 

to be analyzed statistically. The first step in this process is to compile cumulative 

distribution functions (CDFs) of the following antenna parameters: received power, 
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VSWR, radiation efficiency, and polarization efficiency. Again, these distributions are 

made assuming that all 160,000 orientations of transmitter and receiver are equally likely 

statistically. Practically, the CDFs are calculated by choosing an appropriate range for 

the antenna parameter (e.g. the polarization efficiency range is 0 to 1); dividing that 

range into discrete steps; for each discrete value in the range, counting the number of 

orientations for which the desired antenna parameter is less than or equal to that discrete 

value; and dividing the number of counted orientations at each discrete value by the total 

number of orientations. This method essentially constructs the CDF using its statistical 

definition. 

 Once the CDFs are found for the desired quantities, the corresponding 

probability functions (PDFs) can be computed. By definition, the PDF is simply the 

derivative of the CDF. The PDFs perhaps provide the best way to visualize the data, 

showing what values of received power, VSWR, radiation efficiency, and polarization 

efficiency are most likely, as well as how concentrated or spread out the distribution of 

these quantities are. 

 

E.  Uncoated vs. Coated SIFA 

It is of significant interest to compare the performance of the original uncoated 

SIFA design to a coated design in the two node link scenario described above. The 

coated design promises many possible advantages. First, a durable coating can provide a 

physical advantage: protection of the antenna from harsh environmental conditions, as 

well as structural rigidity, if the right materials are used. Second, a coating can provide 
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electromagnetic advantages: if the coating is made out of a high dielectric material, it 

will minimize the adverse effects of being in the presence of unknown dielectric 

surroundings; if the coating is also slightly lossy, then the predictability of the antenna’s 

performance can be improved. These advantages will occur because with a lossy 

dielectric coating, the SIFA’s bandwidth will be improved, and the antenna will be less 

likely to detune as the outside environment changes; the resonant characteristics of the 

antenna will remain more stable at the desired operating frequency. 

There are many possibilities for what coated design to use to compare to the 

original SIFA; the design could resonate at the same frequency, be the same physical 

size, be the same electrical size, etc. For the purposes of this work, a coated design is 

chosen such that the outer radius of the SIFA structure (not including the coating) is the 

same size as the original SIFA. Specifically, the design introduced in Chapter III is used. 

A coating of 2.5 cm is added around the SIFA. The coating, as well as the substrate 

under the patch, is given a relative dielectric constant of 50rε = . The antenna is tuned to 

operate at around 75 MHz. The dimensions, operating frequencies, and electrical sizes of 

the original SIFA and this coated design are compared in Fig. 44. 

Coated Design:

� Radius = 10.16 cm

� 2.5 cm coating and substrate 

with εr = 50
� Very inefficient radiation (more 

electrically small)

� Resonance ~ 75 MHz

� Electrical size:  ka = 0.2 

Uncoated Design:

� Radius = 10.16 cm

� Foam substrate approximated 

as a vacuum

� Nominally inefficient radiation 

(electrically small)

� Resonance ~ 400 MHz

� Electrical size:  ka = 0.88

 

Fig. 44. Comparison of coated and uncoated designs used for remote LOS link simulations 
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Both the uncoated and the coated design are used in the two-node link 

simulation, under identical conditions. The dielectric properties of the ground, as well as 

the dielectric loss tangent of the coated SIFA’s coating, are varied. The results of these 

simulations are discussed in the following section. 

 

F.  Simulation Results 

 The simulations and calculations described in the preceding sections for a two-

node LOS SIFA link were performed several times over. Each iteration of the process 

involved a different combination of the following values: dielectric loss tangent of the 

SIFA coating, relative dielectric constant of the ground, and dielectric loss tangent of the 

ground. Table 4 lists these different iterations. The goal of varying these values was to 

obtain a simplistic view of how they might affect the SIFA’s performance in this two-

node scenario; again, they are not meant to provide an exhaustive study of the SIFA’s 

remote functioning capabilities. 
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Table 4. Simulation variations for remote LOS link scenario 

Simulation  Loss tangent of SIFA 

coating/substrate 

Relative dielectric 

constant of ground 

Loss tangent 

of ground 

Simulation 1  0.02  5  1.1  
Simulation 2  0.02  15  1.1  
Simulation 3  0.1  5  1.1  

 

 

 

 The results of Simulation 1 are shown in Fig. 45. Specifically, the PDF’s of the 

VSWR, received power, polarization efficiency, and radiation efficiency are given. The 

PDF of VSWR indicates that the coated design maintains a very small impedance 

mismatch (i.e. a VSWR well below 2); the VSWR of the uncoated design is much more 

distributed across the given range of 1 to 5. This is a clear operational advantage of the 

coated design: regardless of the orientation, it is able to maintain a very good impedance 

match in the presence of a lossy ground. This feature is unattainable with the uncoated 

design. 

The next plot of interest in Fig. 45 is the PDF of the received power. Both the 

coated and uncoated designs demonstrate fairly concentrated distributions, with the 

coated design being slightly more concentrated. However, the averaged received power 

for the coated design is significantly less than for the uncoated design. This is expected, 

though, since the coated design is plagued by the loss of the dielectric coating and 

substrate. Depending upon the demands of a specific application, this reduction of 

received power could be a fairly heavy price to pay for a relatively low improvement in 

the concentration (i.e. the predictability) of the received power. 
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Fig. 45. Simulation 1 results (remote LOS link). Coated design in red, uncoated design in blue 

 

 

 

The PDF of the radiation efficiency in Fig. 45 demonstrates an interesting 

tradeoff between the two designs. The coated design shows significantly lower radiation 

efficiency than the uncoated design. Again, this is largely due to the lossy coating and 

dielectric; an additional factor is the naturally lower efficiency of an electrically smaller 

design. However, the coated design is much more concentrated in its distribution, 

meaning that this particular antenna performance metric is very predictable compared to 

the uncoated design; this could be very advantageous in designing a reliable remote 

network. Thus, the two designs offer a tradeoff in terms of efficiency on the one hand 

and predictability on the other hand. 
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The final plot in Fig. 45 is the PDF of polarization efficiency. There is no 

discernible difference between the two distributions, and both show very high 

efficiencies. This is due mainly to the omnidirectional qualities of the SIFA’s radiation 

patterns (both in the θ  and φ  polarizations). However, this particular quantity does not 

provide a distinguishing feature between the two designs. 

 The results of Simulation 2 are shown in Fig. 46. For this simulation, the relative 

dielectric constant of the ground was increased by three times. The results are fairly 

similar to the Simulation 1 results in Fig. 45, and the same general conclusions can be 

drawn. 

 

 

Fig. 46. Simulation 2 results (remote LOS link). Coated design in red, uncoated design in blue 
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 The results of Simulation 3 are shown in Fig. 47. For this simulation, the loss 

tangent of the coating and substrate was increased by five times in order to see how a 

more lossy coating would affect the performance of the coated design. Again, the results 

are similar to those in both Fig. 45 and Fig. 46. There are only two noticeable (but 

minor) differences. First, the PDF of VSWR for the coated design was shifted to even 

lower values (i.e. the impedance match was even better than for the previous 

simulations). Clearly, increasing the loss of the coating and substrate helps to maintain 

the impedance match as the antenna orientation changes. Second, the radiation efficiency 

of the coated design was shifted further down in value from the previous simulations; 

this is to be expected, though, since the loss of the coating and substrate was increased. 

In summary, a number of observations and conclusions can be drawn from the 

simulations of a 2-node LOS SIFA link in a remote network scenario. The coated and 

uncoated designs come with tradeoffs as far as desirable networking qualities are 

concerned. The coated design clearly tends to increase the predictability of various 

performance parameters, especially the radiation efficiency and impedance match. This 

makes the coated design a favorable choice if the dependability of a network were 

crucial. However, this increased predictability comes at the cost of less efficiency as 

compared to the uncoated design. If received power thresholds were crucial to a network 

design, the coated SIFA may not be as desirable. However, the coated design simulated 

here is only one of a myriad of possible designs. For practical applications, the dielectric 

properties of the coating could theoretically be optimized to yield the right balance 

between the competing interests of predictability and efficiency. The coated design here 
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is by no means intended to represent an optimal design. It was useful, however, in 

determining the general operating principles of the dielectric SIFA as compared to the 

uncoated SIFA. Future work could center on optimizing the coating for specific 

applications. 

 

Fig. 47. Simulation 3 results (remote LOS link). Coated design in red, uncoated design in blue 
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CHAPTER VII 

CONCLUSION 

 

This work extends the understanding of a recently developed conformal antenna 

design, the spherical inverted-F antenna. A new analytical model employing the cavity 

method describes the antenna in a much more rigorous manner than the previous 

transmission line model approximation could do. A dielectric SIFA fabrication 

demonstrates the viability of constructing the SIFA with a coating. Analysis of the SIFA 

– both of the coated and uncoated variety – in a remote network scenario indicates a 

tradeoff between the designs in terms of predictability and efficiency. All of these 

developments lead to further possibilities for future work. 

In terms of analytical treatment of the SIFA, much more can be done. First, 

neither the transmission line model nor the cavity model takes into account the effect of 

the full spherical ground plane of the SIFA. In future work, this could possibly be 

accomplished by considering the characteristic modes of this ground structure. Also, as 

of yet, there is no extension of the analytical models to include a dielectric coating; the 

dielectric SIFA remains completely unexplored analytically. One approach that could be 

used is to consider the coating as a spherical dielectric resonator excited by the patch 

structure beneath it. Finally, there is no consolidated analytical design process for the 

SIFA; all designs to this point, have, at least to some extent, been heuristic in nature. 

Development of a standard and simple design method would go very far to making the 

SIFA an attractive option for commercial pursuits. 
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Fabrication methods provide another promising frontier for future work on the 

SIFA. The basic functionality of this antenna has already been successfully 

demonstrated with relatively basic hand fabrication methods. Better fabrication materials 

and techniques would facilitate the adoption of the SIFA into real-world applications. 

Also along the lines of fabrication, work should be done to consider how the SIFA might 

be packaged with other devices in an integrated system. One of the SIFA’s chief values 

is the possibilities it presents as a multifunctional structure; however, in order to realize 

this potential, work has to be carried beyond the stage of simple antenna engineering. 

Remote networking has certainly been demonstrated as a likely multifunctional 

application of the SIFA. However, the understanding of the dielectric-coated SIFA and 

its performance in remote environments is still only elementary. In order for this 

application to be realized, more work needs to be done on optimizing the dielectric 

properties of the SIFA coating to achieve the desired balance between efficiency and 

predictability in the presence of changing environments. Furthermore, analysis of 

multipath, shadowing, and other properties of communication channels is necessary to 

form a more complete picture of how the SIFA could work in remote networking. 
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APPENDIX A 

 

NUMERICAL CALCULATION OF SCHELKUNOFF-TYPE SPHERICAL BESSEL 

FUNCTIONS OF FRACTIONAL ORDER AND ASSOCIATED LEGENDRE 

FUNCTIONS OF FRACTIONAL ORDER AND DEGREE 

 

A.  Introduction 

 The Schelkunoff-type spherical Bessel functions and associated Legendre 

functions used in the modal calculations of the SIFA cavity model can only be calculated 

numerically. The calculations are further complicated because modal solutions to the 

wave equation in the cavity dictate that the functions have fractional orders and degrees. 

A brief description of the numerical routines used to compute these functions, along with 

their derivatives, follows. Then, the Matlab code used to implement these routines is 

provided. 

 

B.  Associated Legendre functions 

 The associated Legendre functions of fractional order and degree (i.e. r

r
P

µ
ν and 

r

r
Q

µ
ν ) can be calculated in the form of an infinite series (i.e. a series solution to the 

Legendre differential equation). This series is simply an infinite polynomial of the form: 

 2

0 1 2 k

ky a a x a x a x= + + +…+  (164) 

In other words, 

 
0

 k

k

k

y a x
∞

=
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This method works for functions of both the first and second kinds. The coefficients �� 

are determined through a numerical recurrence relation: 

 
( ) ( )( ) ( )
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To begin calculation of this recurrence formula, the initial coefficients are given as: 

 
1 0a− =  (167) 

 
2 0a− =  (168) 

The initial coefficients 
0a  and 

1a  depend on whether the Legendre function is of the first 

or second kind. Specifically, for r
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For r
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In these equations, ( )Γ x  is the gamma function, a well-known extension and translation 

of the factorial function: 

 ( ) ( )Γ x  1 !x= −  (173) 

Numerical computation of the gamma function is fairly routine. Equations (167) - (172) 

allow the recurrence relation in (166) to be computed. Evaluating the summation for 

values of k  up to 50 provides sufficient accuracy for the purposes of the SIFA cavity 

model. 

 The derivatives of the associated Legendre functions are straightforward closed-

form expressions in terms of the functions themselves. The formulas for the derivatives 

of the first and second kind functions are: 
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Thus, calculation of the derivatives is a simple extension of the numerical calculation 

used for the functions themselves. 

 

C.  Schelkunoff-type Spherical Bessel Functions 

 The Schelkunoff-type spherical Bessel functions of the first and second kind used 

in the SIFA cavity model ( � ( )r
J xν and � ( )r

3 xν ) are derived from the standard Bessel 

functions of the first and second kind ( ( )
r

J xν and ( )
r

3 xν ). They were originally 

developed by Schelkunoff as more convenient functions to use in electromagnetic 
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problems in spherical coordinates. The Schelkunoff-type functions are related to 

standard Bessel functions as follows: 

 � ( ) ( )1
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Thus, the Schelkunoff-type functions are easily calculated once the standard Bessel 

functions are determined. The standard Bessel function of the first kind with fractional 

order 
rν  can be calculated as an infinite series expression: 
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Evaluating this summation to 50k =  provides acceptable accuracy for the SIFA cavity 

model. The Bessel function of the second kind, ( )
r

3 xν , can be obtained directly from 

( )
r

J xν , rather than constructing a separate series expression: 
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The derivatives of the Schelkunoff-type functions can also be computed in terms of the 

standard Bessel functions: 
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D.  Matlab Code 

 The following function m-file, associated_legend.m, calculates the associated 

Legendre function of a number 
0x  (or its derivative at 

0x ) given the order 
rν , the degree 

rµ , and the kind of the function (first or second). 

function out = associated_legend(x,mu,nu,kind,soln); 
% Calculates the associated Legendre function of arbitrary order and 
% degree as well as its derivative (of both the first and second kind). 
%  
% First kind: 
if kind == 1 
  % Function value: 
  if soln == 1 
    out = P(x,mu,nu); 
  % Derivative value: 
  elseif soln == 2 
    out = (nu.*x.*P(x,mu,nu)-(nu+mu).*P(x,mu,nu-1))./(x.^2-1); 
  end 
% Second kind: 
elseif kind == 2 
  % Function value: 
  if soln == 1 
    out = Q(x,mu,nu);; 
  % Derivative value: 
  elseif soln == 2 
    out = (nu.*x.*Q(x,mu,nu)-(nu+mu).*Q(x,mu,nu-1))./(x.^2-1); 
  end 
end 
 

The function above calls another function P.m, which computes the associated 

Legendre function of the first kind: 

function out = P(x,mu,nu) 
% Computes the associated legendre function of the first kind with 
% arbitrary degree and order for arguments abs(x)<1 
% 
echo off; 
% Integer order and degree: 
if round(mu)==mu & round(nu)==nu 
  m = mu; n = nu; 
  if m>n 
    out = zeros(1,length(x)); 
  else 
    L = legendre(n,x); 
    out = L(m+1,:); 
  end 
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% Non-integer order and degree: 
else 
  a1 = 0; a2 = 0; 
  a3 = 2^mu/pi^(1/2)*cos(pi*(nu+mu)/2).*gamma((nu+mu+1)/2)./... 
   gamma((nu-mu+2)/2); 
  a4 = 2^(mu+1)/pi^(1/2).*sin(pi*(nu+mu)/2).*gamma((nu+mu+2)/2)./... 
   gamma((nu-mu+1)/2); 
  y = a3 + a4.*x; 
   for k = 0:50 
  new = ((mu^2+2*k^2-nu*(nu+1)).*a3+((k-2)*(1-k)+nu*(nu+1)).*a1)... 
    ./((k+1).*(k+2)); 
  y = y + new.*x.^(k+2); 
   a1 = a2;   a2 = a3;   a3 = a4;   a4 = new; 
  end 
  out = y; 
end 

The function associated_legend.m also calls the function N.m, which computes 

the associated Legendre function of the second kind: 

function out = N(x,nu) 
% Calculates the bessel function of the second kind with arbitrary 
order 
out = (J(x,nu).*cos(nu*pi)-J(x,-nu))./sin(nu*pi); 

The following function m-file, Schelk_spherical_bessel.m, calculates the 

Schelkunoff-type spherical Bessel function of a number 
0x  (or its derivative at 

0x ), 

given the order 
rν  and the kind of function (first or second). 

function out = Schelk_spherical_bessel(x,nu,kind,soln) 
out1 = zeros(1,length(x)); 
% Calculates a Schelkenoff-type spherical bessel function of the first 
or 
% second kind, or its derivative 
echo off; 
% Standard J or Y function: 
if soln == 1 
   % First kind: 
   if kind == 1 
       % Integer: 
       if round(nu+1/2)==nu+1/2 
           out = sqrt(pi*x/2).*besselj(nu+1/2,x); 
       % Non-integer: 
       else 
           out = sqrt(pi*x/2).*J(x,nu+1/2); 
       end 
   % Second kind: 
   elseif kind == 2 
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       % Integer: 
       if round(nu+1/2)==nu+1/2 
           out = sqrt(pi*x/2).*bessely(nu+1/2,x); 
       % Non-integer: 
       else 
           out = sqrt(pi*x/2).*N(x,nu+1/2); 
       end 
   end 
% Derivative of J or Y: 
elseif soln == 2 
   % First kind: 
   if kind == 1 
        % Integer: 
        if round(nu+1/2)==nu+1/2 
           out = sqrt(pi/2).*(1./(2.*sqrt(x)).*besselj(nu+1/2,x)+... 
               sqrt(x).*1/2.*(besselj(nu-1/2,x)-besselj(nu+3/2,x))); 
        % Non-integer: 
        else 
           out = sqrt(pi/2).*(1./(2.*sqrt(x)).*J(x,nu+1/2)+sqrt(x).*... 
               1/2.*(J(x,nu-1/2)-J(x,nu+3/2))); 
        end 
   % Second kind: 
   elseif kind == 2 
        % Integer: 
        if round(nu+1/2)==nu+1/2 
           out = sqrt(pi/2).*(1./(2.*sqrt(x)).*N(x,nu+1/2)+sqrt(x).*... 
               1/2.*(N(x,nu-1/2)-N(x,nu+3/2))); 
        % Non-integer: 
        else 
           out = sqrt(pi/2).*(1./(2.*sqrt(x)).*bessely(nu+1/2,x)+... 
               sqrt(x).*1/2.*(bessely(nu-1/2,x)-bessely(nu+3/2,x))); 
        end 
   end 
end 
 

The function above calls another function, J.m, which computes the standard 

Bessel function (arbitrary order): 

function out = J(x,nu) 
% Calculates the bessel function of the first kind with arbitrary order 
out1 = 0; 
for m = 0:50 
  out1 = out1+(-1).^m.*x.^(2*m+nu)./(gamma(m+1).*gamma(m+nu+1).*... 
    2.^(2*m+nu)); 
end 
out2 = sqrt(2./(pi*x)).*cos(x-pi/4-nu*pi/2); 
out = (x<=40).*out1 + (x>40).*out2; 
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APPENDIX B 

 

MATLAB CODE FOR THE NUMERICAL IMPLEMENTATION OF THE SIFA 

CAVITY MODEL 

 

The first step in the numerical computation of the SIFA cavity model is to 

compute the modes of the cavity (i.e. the modal parameters m , 
rµ , 

rν , and 
dk ). This is 

accomplished by the program res_freq_automated, which solves the necessary 

transcendental equations: 

delete res_freq_automated.txt; diary res_freq_automated.txt; 
clear all; close all; clc; echo on; 
% 
% Dielectric Substrate Constant: 
er = 1; 
% SIFA parameters: 
Ri = 76.2e-3; Ro = 101.6e-3; 
phi_w = pi/2; 
theta_g = 13*pi/180; 
theta_s = 11*pi/180; 
phi_s = 22*pi/180; 
h = Ro-Ri; 
Wp = Ro*phi_w; 
Wp2 = Ro*phi_s; 
eep = (er+1)/2+(er-1)/2*(1+12*h/Wp)^(-1/2); 
% length of patch = lp = Ro*cos(phi_w/2)*(pi/2-theta_g-theta_s) 
% length of extension = le = Ro*cos(theta_s)*(phi_w-phi_s)/2 
% (le/de)*(dp/lp) = cos(phi_w/2)/cos(theta_s); 
theta_length = pi/2-theta_s-theta_g; 
dtheta=0.412*h*(eep+.3)/(eep-.258)*(Wp/h+0.262)/(Wp/h+0.813)/Ro; 
dtheta2=0.412*h*(eep+.3)/(eep-.258)*(Wp2/h+0.262)/(Wp2/h+0.813)/Ro; 
theta_extend = (phi_w-phi_s)/2*cos(phi_w/2)/cos(theta_s); 
Res_freq = []; 
% Loop through modes: 
echo off; 
for m = 1:1:5 
  % Calculate mu: 
  mu = m*pi/(2*(theta_length+theta_s+theta_extend+dtheta+dtheta2)); 
  mu = m*pi/(2*(theta_length)); 
  % vector for nu: 
  nu = linspace(floor(mu)+0.01,floor(mu)+5,500); 
  % Calculate possible values for nu from transcendental equation: 
  fun1 = zeros(1,length(nu)); 
  for i = 1:length(nu) 
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    fun1(i) = associated_legend(sin(-phi_w/2),mu,nu(i),2,2).*... 
      associated_legend(sin(phi_w/2),mu,nu(i),1,2)-... 
      associated_legend(sin(-phi_w/2),mu,nu(i),1,2).*... 
      associated_legend(sin(phi_w/2),mu,nu(i),2,2); 
  end 
  nu_value = []; 
  for i = 2:length(fun1) 
    if sign(fun1(i))~=sign(fun1(i-1)) 
      nu_value = [nu_value nu(i-1)-fun1(i-1)*(nu(i)-nu(i-1))/... 
        (fun1(i)-fun1(i-1))]; 
    end 
  end 
  % Caluclate the value of kd for each value of nu: 
  for n = 1:length(nu_value) 
    % Select current value of nu: 
    nu = nu_value(n); 
    % Vector for kd: 
    kd = linspace(1,200,500); 
    % Calculate value of kd through transcendental equation: 
    fun2 = zeros(1,length(kd)); 
    for i = 1:length(kd) 
      fun2(i) = Schelk_spherical_bessel(kd(i)*Ri,nu,2,2)*... 
        Schelk_spherical_bessel(kd(i)*Ro,nu,1,2)-... 
        Schelk_spherical_bessel(kd(i)*Ri,nu,1,2)*... 
        Schelk_spherical_bessel(kd(i)*Ro,nu,2,2); 
    end 
    fun2 = real(fun2); 
    kd_value = []; 
    for i = 2:length(fun2) 
      if sign(fun2(i))~=sign(fun2(i-1)) 
        kd_value = kd(i-1)-fun2(i-1)*(kd(i)-kd(i-1))/... 
          (fun2(i)-fun2(i-1)); 
        break 
      end 
    end 
    kd = kd_value; 
    % Calculate resonant frequency: 
    fr = kd/(2*pi*sqrt(4*pi*10^-7*er*8.854e-12)); 
    Res_freq = [Res_freq m mu nu kd fr/1e6]; 
    display(['Resonant frequency: ' num2str(fr/1e6) ' MHz']); 
  end 
end 
% Export resonant frequencies to excel file: 
rows = length(Res_freq)/5; 
Res_freq = reshape(Res_freq,5,rows).'; 
[SUCCESS,MESSAGE]=xlswrite('Res_freq.xls',Res_freq); 
if SUCCESS == 1 
  display('Data successfully exported to Excel file'); 
end 
% 
echo off; diary off; 
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The program above outputs a Microsoft Excel file, Res_freq.xls, which contains 

all of the pertinent modal information. This spreadsheet is imported into the next 

program, Input_Imp.m, which computes the fields for each mode, the radiation from the 

side slots and primary slot, and the input impedance: 

delete Input_Imp.txt; diary Input_Imp.txt; 
clear all; close all; clc; echo on; 
% 
tic 
eps0 = 8.854e-12; mu0 = 4*pi*10^-7; er = eps0; 
% SIFA parameters: 
global theta_g theta_s phi_w Ri Ro length_eff 
Ri = 76.2e-3; Ro = 101.6e-3; h = Ro-Ri; 
phi_w = pi/2; 
theta_g = 13*pi/180; 
theta_s = 11*pi/180; 
phi_s = 22*pi/180; 
theta_f = 21*pi/180; 
rc = 0.92e-3; rp = 2.98e-3; 
Wp = Ro*phi_w; 
Wp2 = Ro*phi_s; 
eep = (er+1)/2+(er-1)/2*(1+12*h/Wp)^(-1/2); 
theta_length = pi/2-theta_s-theta_g; 
dtheta=0.412*h*(eep+.3)/(eep-.258)*(Wp/h+0.262)/(Wp/h+0.813)/Ro; 
dtheta2=0.412*h*(eep+.3)/(eep-.258)*(Wp2/h+0.262)/(Wp2/h+0.813)/Ro; 
theta_extend = (phi_w-phi_s)/2*cos(phi_w/2)/cos(theta_s); 
length_eff = theta_length+dtheta+dtheta2+theta_extend+theta_s; 
length_eff = theta_length; 
% Read resonant frequencies from excel file: 
[NUM,TXT,RAW]=xlsread('Res_freq.xls'); 
m = NUM(:,1); 
mu = NUM(:,2); 
nu = NUM(:,3); 
kmn = NUM(:,4); 
num_modes = length(mu); 
% Frequency span of impedance calculation: 
freq = linspace(300e6,500e6,100); 
% Loop through the desired frequencies: 
VSWR = []; R = []; X = []; 
echo off; 
for i = 1:length(freq) 
    f = freq(i); % Current frequency 
    display(['Current frequency:' num2str(f/1e6)]) 
    k = 2*pi*f*sqrt(mu0*eps0); % Current wavenumber 
    % Loop through the modes to be considered: 
    for j = 1:num_modes 
        % 3D modal solution: 
        [Psi U V W] = modes3D(m(j),mu(j),nu(j),kmn(j)); 
        if j == 1 
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            Psi_total = zeros(size(Psi)); 
        end 
        size_3D = size(U); 
        U1 = reshape(U,1,size_3D(1)*size_3D(2)*size_3D(3)); 
        V1 = reshape(V,1,size_3D(1)*size_3D(2)*size_3D(3)); 
        W1 = reshape(W,1,size_3D(1)*size_3D(2)*size_3D(3)); 
        ustep = (Ro-Ri)/size_3D(1); 
        vstep = (pi/2-theta_g-theta_s)/size_3D(2); 
        wstep = (phi_w/2-(-phi_w/2))/size_3D(3); 
        % Calculate the excitation coefficient inner product: 
        J1 = zeros(1,length(U1)); 
        J_index = find((W1==min(min(min(abs(W1)))))&... 
            ((abs(V1-(pi/2-theta_f)))==... 
            min(min(min(abs(V1-(pi/2-theta_f))))))); 
        J1(J_index) = 1; 
        J = reshape(J1,size_3D(1),size_3D(2),size_3D(3)); 
        integrand1 = J.*conj(Psi).*U.^2.*cos(W); 
        Excite_Coeff = 
sum(sum(sum(integrand1*wstep,3)*vstep,2)*ustep,1);  
        % Calculate the inner product in the denominator: 
        integrand2 = Psi.*conj(Psi).*U.^2.*cos(W); 
        Orthog_Coeff = 
sum(sum(sum(integrand2*wstep,3)*vstep,2)*ustep,1); 
        % Calculate the total contribution of the mode to Psi and add: 
        Coeff = sqrt(-1)*2*pi*f*mu0*Excite_Coeff/Orthog_Coeff/... 
            (kmn(j)^2-k^2); 
        Psi_total = Psi_total + Psi*Coeff;         
    end 
    Psi1 = reshape(Psi_total,1,size_3D(1)*size_3D(2)*size_3D(3)); 
    % Compute all of the field components from Psi: 
    dPsi_du = zeros(size(Psi_total)); 
    dPsi_dv = zeros(size(Psi_total)); 
    dPsi_dw = zeros(size(Psi_total)); 
    d2Psi_du2 = zeros(size(Psi_total)); 
    d2Psi_dudv = zeros(size(Psi_total)); 
    for i = 1:size_3D(1) 
        for j = 1:size_3D(1) 
            % Derivative with respect to u: 
            a = zeros(1,size_3D(1)); aa = a; a(1,:) = U(:,i,j); 
            aa(1,:) = Psi_total(:,i,j); 
            dPsi_du(:,i,j) = num_diff(a,aa); 
            % Derivative with respect to v: 
            a = zeros(1,size_3D(2)); aa = a; a(1,:) = V(i,:,j); 
            aa(1,:) = Psi_total(i,:,j); 
            dPsi_dv(i,:,j) = num_diff(a,aa); 
            % Derivative with respect to w: 
            a = zeros(1,size_3D(3)); aa = a; a(1,:) = W(i,j,:); 
            aa(1,:) = Psi_total(i,j,:); 
            dPsi_dw(i,j,:) = num_diff(a,aa); 
            % Second derivative with respect to u: 
            a = zeros(1,size_3D(1)); aa = a; a(1,:) = U(:,i,j); 
            aa(1,:) = dPsi_du(:,i,j); 
            d2Psi_du2(:,i,j) = num_diff(a,aa); 
            % Mixed derivative with respect to u and v: 
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            a = zeros(1,size_3D(1)); aa = a; a(1,:) = V(i,:,j); 
            aa(1,:) = dPsi_du(i,:,j); 
            d2Psi_dudv(:,i,j) = num_diff(a,aa); 
        end 
    end 
    Eu = 1/(sqrt(-1)*2*pi*f*eps0)*(d2Psi_du2+k^2*Psi_total); 
    Ev = -1./(sqrt(-1)*2*pi*f*eps0*U.*cos(W)).*d2Psi_dudv; 
    Ew = 1./(sqrt(-1)*2*pi*f*eps0*U).*d2Psi_dudv; 
    Hu = zeros(size(Psi_total)); 
    Hv = 1./U.*dPsi_dw; 
    Hw = -1./(U.*cos(W)).*dPsi_dv; 
    % Normalize the field components with respect to Eu along the feed: 
    Eu1 = reshape(Eu,1,size_3D(1)*size_3D(2)*size_3D(3)); 
    E0 = abs(Eu1(J_index)); E0 = E0(1); 
    Eu = Eu/E0; Ev = Ev/E0; Ew = Ew/E0; 
    Hu = Hu/E0; Hv = Hv/E0; Hw = Hw/E0; 
    Eu1 = Eu1/E0; 
    % Extract the side slot, primary slot, and feed location data from 
Er: 
    ss = zeros(size_3D(1),size_3D(2)); 
    ss2 = zeros(size_3D(1),size_3D(2)); 
    ps = zeros(size_3D(1),size_3D(3)); 
    feed = zeros(1,length(J_index)); 
    for j = 1:size_3D(1) 
        feed(1,j) = abs(Eu1(J_index(j))); 
        for l = 1:size_3D(2) 
            ss(j,l) = Eu(j,l,1); 
            ss2(j,l) = Eu(j,l,50); 
            ps(j,l) = Eu(j,1,l); 
        end 
    end 
    % Compute the radiated power of the slots: 
    [E_theta_ss1 E_phi_ss1 Ib_ss1] = side_slot(ss,f); 
    [E_theta_ss2 E_phi_ss2 Ib_ss2] = side_slot2(ss2,f); 
    [E_theta_ps E_phi_ps Id_ps] = primary_slot(ps,f); 
    Prad = Ib_ss1+Ib_ss2+Id_ps; 
    Power_radiated = [Power_radiated Prad]; 
    % Compute the stored electric energy: 
    We = 
eps0/4*sum(sum(sum((Eu.*conj(Eu)+Ev.*conj(Ev)+Ew.*conj(Ew)).*... 
        U.^2.*cos(W)*ustep,1)*vstep,2)*wstep,3); 
    % Compute the stored magnetic energy: 
    Wm = 
mu0/4*sum(sum(sum((Hu.*conj(Hu)+Hv.*conj(Hv)+Hw.*conj(Hw)).*... 
        U.^2.*cos(W)*ustep,1)*vstep,2)*wstep,3); 
    Stored_Energy = [Stored_Energy (Wm-We)]; 
    % Compute the impedance: 
    Voltage = h; 
    Y = (Prad+sqrt(-1)*2*2*pi*f*(We-Wm))/abs(Voltage)^2; 
    Z = 1/Y; 
    R = [R real(Z)]; 
    X = [X imag(Z)]; 
    Tau = (Z-50)/(Z+50); 
    VSWR = [VSWR (1+abs(Tau))/(1-abs(Tau))]; 



135 

  

    display(['VSWR = ' num2str(VSWR(end))]); 
    display(['R = ' num2str(R(end))]); 
    display(['X = ' num2str(X(end))]); 
end 
% Compute the radiation pattern: 
theta = linspace(0,pi,101); 
phi = linspace(0,2*pi,101); 
[Theta Phi] = meshgrid(theta,phi); 
E_theta = E_theta_ps; 
E_phi = E_phi_ss1 + E_phi_ss2 + E_phi_ps; 
E_rad_max = max(max(max(abs(sqrt(E_theta.^2+E_phi.^2))))); 
E_theta = abs(E_theta/E_rad_max); 
E_phi = abs(E_phi/E_rad_max); 
% XY cut plane: 
xy_Phi = Phi(:,51); 
xy_E_theta = E_theta(:,51); 
xy_E_phi = E_phi(:,51); 
% XZ cut plane: 
xz_Theta = [Theta(1,:) linspace(pi,2*pi,101)]; 
xz_E_theta = [E_theta(1,:) fliplr(E_theta(51,:))]; 
xz_E_phi = [E_phi(1,:) fliplr(E_phi(51,:))]; 
% YZ cut plane: 
yz_Theta = [Theta(26,:) linspace(pi,2*pi,101)]; 
yz_E_theta = [E_theta(26,:) fliplr(E_theta(76,:))]; 
yz_E_phi = [E_phi(26,:) fliplr(E_phi(76,:))]; 
% Three-dimensional pattern: 
X_Theta = abs(E_theta).*sin(Theta).*cos(Phi); 
Y_Theta = abs(E_theta).*sin(Theta).*sin(Phi); 
Z_Theta = abs(E_theta).*cos(Theta); 
X_Phi = abs(E_phi).*sin(Theta).*cos(Phi); 
Y_Phi = abs(E_phi).*sin(Theta).*sin(Phi); 
Z_Phi = abs(E_phi).*cos(Theta); 
% Plot the VSWR and Impedance curves: 
plot(freq/1e6,VSWR,'Linewidth',3); grid on; 
xlabel('Freq (MHz)'); ylabel('VSWR'); axis([min(freq)/1e6 
max(freq)/1e6... 
    1 5]); 
toc 
% 
echo off; diary off; 

 
The program above makes use of the function file modes3D.m, which does the 

actual computation of the three-dimensional wave potential in the cavity for each mode 

(including the modal coefficient): 

function [Psi U V W] = modes3D(m,mu,nu,kmn) 
% 
global theta_g theta_s phi_w Ri Ro length_eff 
% theta_g = 13*pi/180; theta_s = 11*pi/180; 
% phi_w = pi/2; 
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% Ri = 76.2e-3; Ro = 101.6e-3; 
mur = mu; 
nur = nu; 
kd = kmn; 
xa = linspace(Ri,Ro,50); 
A = Schelk_spherical_bessel(kd*Ri,nur,2,2).*... 
  Schelk_spherical_bessel(kd*xa,nur,1,1)-... 
  Schelk_spherical_bessel(kd*Ri,nur,1,2).*... 
  Schelk_spherical_bessel(kd*xa,nur,2,1); 
xb = linspace(theta_g,pi/2-theta_s,50); 
B = cos(m*pi/(2*(pi/2-theta_s-theta_g))*(xb-theta_g)); 
xc = linspace(-phi_w/2,phi_w/2,50); 
C = associated_legend(sin(-phi_w/2),mur,nur,2,2)*... 
  associated_legend(sin(xc),mur,nur,1,1)-... 
  associated_legend(sin(-phi_w/2),mur,nur,1,2).*... 
  associated_legend(sin(xc),mur,nur,2,1);  
% Create 3-D space for interproduct calculations over the cavity: 
u = xa; 
v = xb; 
w = xc; 
echo off; 
points = length(u)*length(v)*length(w); 
U = zeros(length(u),length(v),length(w)); V = U; W = U; Psi = U; 
counter = 1; 
for i = 1:length(u) 
  for j = 1:length(v) 
    for l = 1:length(w) 
      U(i,j,l) = u(i); 
      V(i,j,l) = v(j); 
      W(i,j,l) = w(l); 
      Psi(i,j,l) = A(i)*B(j)*C(l); 
    end 
  end 
end 

Input_Imp.m also calls the function primary_slot.m, which computes the 

radiation from the primary slot of the cavity: 

function [E_theta E_phi Id] = primary_slot(ps,f) 
% Computes the radiated power from the SIFA primary slot 
eps0 = 8.854e-12; mu0 = 4*pi*10^-7; eta0 = sqrt(mu0/eps0); 
% SIFA parameters: 
Ri = 76.2e-3; Ro = 101.6e-3; 
phi_w = pi/2; 
theta_g = 13*pi/180; 
theta_s = 11*pi/180; 
phi_s = 22*pi/180; 
theta_f = 21*pi/180; 
er = 1; eps = er*eps0; 
% Wavenumber: 
k = 2*pi*f*sqrt(eps0*mu0); 
% Create a mesh over the side slot geometry for the electric vector 
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% potential calculation: 
[u_size w_size] = size(ps); 
u = linspace(Ri,Ro,u_size); 
w = linspace(-phi_w/2,phi_w/2,w_size); 
[U W] = meshgrid(u,w); 
ustep = u(2)-u(1); 
wstep = w(2)-w(1); 
% Create a mesh over all angles in the far field: 
theta = linspace(0,pi,100); theta_length = length(theta); 
phi = linspace(0,2*pi,100); phi_length = length(phi); 
[Theta Phi] = meshgrid(theta,phi); 
theta_step = theta(2)-theta(1); 
phi_step = phi(2)-phi(1); 
% Matrices to store values of electric vector potential in the far 
field: 
Ic_phi = zeros(theta_length,phi_length); Ic_theta = Ic_phi; 
% Loop through the angles in the far field and compute the electric 
vector 
% potential at each angle: 
for i = 1:theta_length 
  for j = 1:phi_length 
    theta = Theta(i,j); 
    phi = Phi(i,j); 
    % Cross product between normal vector and radial unit vector: 
    n_cross_r_phi = U.*(cos(theta_g)*cos(theta)*cos(phi)+sin(... 
      theta_g)*sin(theta)); 
    n_cross_r_theta = U.*cos(theta_g)*sin(phi); 
    % Cosine of angle between R and R_prime: 
    cosa = sin(theta)*cos(phi)*cos(W)*sin(theta_g)+sin(theta)*... 
      sin(phi)*sin(W)+cos(theta)*cos(W)*cos(theta_g); 
    % Compute the phase term: 
    phase_term = exp(sqrt(-1)*k*U.*abs(cosa)); 
    % Integrand of electric vector potential: 
    integrand_phi = n_cross_r_phi.*ps.*phase_term; 
    integrand_theta = n_cross_r_theta.*ps.*phase_term; 
    % Integrate numerically: 
    integral_phi = sum(sum(integrand_phi*wstep)*ustep); 
    integral_theta = sum(sum(integrand_theta*wstep)*ustep); 
    % Multiply the integral by the known constants: 
    Ic_phi(i,j) = -2*eps/(4*pi)*integral_phi; 
    Ic_theta(i,j) = -2*eps/(4*pi)*integral_theta; 
  end 
end 
% Compute the radiated power: 
Id = 
(2*pi*f)^2*eta0*sum(sum((abs(Ic_phi)^2+abs(Ic_theta)^2).*sin(Theta)... 
  .*theta_step).*phi_step); 
E_theta = Ic_phi; 
E_phi = Ic_theta; 

Finally, Input_Imp.m calls the functions side_slot.m and side_slot2.m, which 

compute the radiation from the two side slots of the cavity: 
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function [E_theta E_phi Ib] = side_slot(ss,f) 
% Computes the radiated power from the SIFA side slot 
eps0 = 8.854e-12; mu0 = 4*pi*10^-7; eta0 = sqrt(mu0/eps0); 
% SIFA parameters: 
Ri = 76.2e-3; Ro = 101.6e-3; 
phi_w = pi/2; 
theta_g = 13*pi/180; 
theta_s = 11*pi/180; 
phi_s = 22*pi/180; 
theta_f = 21*pi/180; 
er = 1; eps = er*eps0; 
% Wavenumber: 
k = 2*pi*f*sqrt(eps0*mu0); 
% Create a mesh over the side slot geometry for the electric vector 
% potential calculation: 
[u_size v_size] = size(ss); 
u = linspace(Ri,Ro,u_size); 
v = linspace(theta_g,pi/2-theta_s,v_size); 
[U V] = meshgrid(u,v); 
ustep = u(2)-u(1); 
vstep = v(2)-v(1); 
% Create a mesh over all angles in the far field: 
theta = linspace(0,pi,100); theta_length = length(theta); 
phi = linspace(0,2*pi,100); phi_length = length(phi); 
[Theta Phi] = meshgrid(theta,phi); 
theta_step = theta(2)-theta(1); 
phi_step = phi(2)-phi(1); 
% Matrices to store values of electric vector potential in the far 
field: 
Ia_phi = zeros(theta_length,phi_length); Ia_theta = Ia_phi; 
% Loop through the angles in the far field and compute the electric 
vector 
% potential for each far field direction: 
for i = 1:theta_length 
  for j = 1:phi_length 
    theta = Theta(i,j); 
    phi = Phi(i,j); 
    % Cross product between normal vector and radial unit vector: 
    n_cross_r_phi = U.*(sin(phi_w/2)*cos(phi_w/2)*sin(V)*cos(theta)*... 
      cos(phi)-cos(phi_w/2)^2*cos(theta)*sin(phi)); 
    n_cross_r_theta = U.*(sin(phi_w/2)*cos(phi_w/2)*sin(V)*sin(phi)+... 
      cos(phi_w/2)^2*cos(phi)); 
    % Cosine of angle between R and R_prime: 
    cosa = sin(theta)*cos(phi)*cos(phi_w/2)*sin(V)+sin(theta)*... 
      sin(phi)*sin(phi_w/2)+cos(theta)*cos(phi_w/2)*cos(V); 
    % Compute the phase term: 
    phase_term = exp(sqrt(-1)*k*U.*abs(cosa)); 
    % Integrand of electric vector potential: 
    integrand_phi = n_cross_r_phi.*ss.*phase_term; 
    integrand_theta = n_cross_r_theta.*ss.*phase_term; 
    % Integrate numerically: 
    integral_phi = sum(sum(integrand_phi*vstep)*ustep); 
    integral_theta = sum(sum(integrand_theta*vstep)*ustep); 
    % Multiply the integral by the known constants: 
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    Ia_phi(i,j) = -2*eps/(4*pi)*integral_phi; 
    Ia_theta(i,j) = -2*eps/(4*pi)*integral_theta; 
  end 
end 
% Compute the radiated power: 
Ib = 
(2*pi*f)^2*eta0*sum(sum((abs(Ia_phi)^2+abs(Ia_theta)^2).*sin(Theta)... 
  .*theta_step).*phi_step); 
E_theta = Ia_phi; 
E_phi = Ia_theta; 
 
 
function [E_theta E_phi Ib] = side_slot2(ss,f) 
% Computes the radiated power from the SIFA side slot 
eps0 = 8.854e-12; mu0 = 4*pi*10^-7; eta0 = sqrt(mu0/eps0); 
% SIFA parameters: 
Ri = 76.2e-3; Ro = 101.6e-3; 
phi_w = pi/2; 
theta_g = 13*pi/180; 
theta_s = 11*pi/180; 
phi_s = 22*pi/180; 
theta_f = 21*pi/180; 
er = 1; eps = er*eps0; 
% Wavenumber: 
k = 2*pi*f*sqrt(eps0*mu0); 
% Create a mesh over the side slot geometry for the electric vector 
% potential calculation: 
[u_size v_size] = size(ss); 
u = linspace(Ri,Ro,u_size); 
v = linspace(theta_g,pi/2-theta_s,v_size); 
[U V] = meshgrid(u,v); 
ustep = u(2)-u(1); 
vstep = v(2)-v(1); 
% Create a mesh over all angles in the far field: 
theta = linspace(0,pi,101); theta_length = length(theta); 
phi = linspace(0,2*pi,101); phi_length = length(phi); 
[Theta Phi] = meshgrid(theta,phi); 
theta_step = theta(2)-theta(1); 
phi_step = phi(2)-phi(1); 
% Matrices to store values of electric vector potential in the far 
field: 
Ia_phi = zeros(theta_length,phi_length); Ia_theta = Ia_phi; 
% Loop through the angles in the far field and compute the electric 
vector 
% potential for each far field direction: 
for i = 1:theta_length 
    for j = 1:phi_length 
        theta = Theta(i,j); 
        phi = Phi(i,j); 
        % Cross product between normal vector and radial unit vector: 
        n_cross_r_phi = 
U.*(sin(phi_w/2)*cos(phi_w/2)*sin(V)*cos(theta)*... 
            cos(phi)-cos(phi_w/2)^2*cos(theta)*sin(phi)); 
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        n_cross_r_theta = -
U.*(sin(phi_w/2)*cos(phi_w/2)*sin(V)*sin(phi)+... 
            cos(phi_w/2)^2*cos(phi)); 
        % Cosine of angle between R and R_prime: 
        cosa = sin(theta)*cos(phi)*cos(phi_w/2)*sin(V)-sin(theta)*... 
            sin(phi)*sin(phi_w/2)+cos(theta)*cos(phi_w/2)*cos(V); 
        % Compute the phase term: 
        phase_term = exp(sqrt(-1)*k*U.*abs(cosa)); 
        % Integrand of electric vector potential: 
        integrand_phi = n_cross_r_phi.*ss.*phase_term; 
        integrand_theta = n_cross_r_theta.*ss.*phase_term; 
        % Integrate numerically: 
        integral_phi = sum(sum(integrand_phi*vstep)*ustep); 
        integral_theta = sum(sum(integrand_theta*vstep)*ustep); 
        % Multiply the integral by the known constants: 
        Ia_phi(i,j) = -2*eps/(4*pi)*integral_phi; 
        Ia_theta(i,j) = -2*eps/(4*pi)*integral_theta; 
    end 
end 
% Compute the radiated power: 
Ib = 
(2*pi*f)^2*eta0*sum(sum((abs(Ia_phi)^2+abs(Ia_theta)^2).*sin(Theta)... 
    .*theta_step).*phi_step); 
E_theta = Ia_phi; 
E_phi = Ia_theta; 
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APPENDIX C 

MATLAB CODE FOR SIMULATION OF A LINE-OF-SIGHT REMOTE SIFA LINK 

 

The remote, two-node, LOS link problem requires computations in Matlab using 

data extracted from HFSS simulations. The primary Matlab program used to do this is 

LOS_comm.m, shown below. This program reads data in from carefully crafted Excel 

spreadsheets (the details of which will not be given here). The data is used to calculate 

the power transfer from transmitter to receiver and subsequently the PDF distributions 

discussed in Chapter VI. 

delete LOS_comm.txt; diary LOS_comm.txt; 
clear all; close all; clc; echo on; 
% 
% This program imports data from simulations of the SIFA above ground. 
It 
% performs a monte carlo analysis of a LOS link between transmitting 
and 
% receiving SIFAs.  In variable names, the suffix "a" denotes the 
uncoated 
% SIFA variety, while "b" denotes the coated variety; the "1" suffix 
% denotes the transmitting SIFA, while "2" denotes the receiving SIFA. 
% 
% Transmit Power: 
Pt = 1; 
% Wavelength: 
lambda_a = 3e8/412e6; 
lambda_b = 3e8/74.4e6; 
% Read in electric field data for different orientations above ground: 
[E_theta_1a E_phi_1a E_theta_angle_1a E_phi_angle_1a E_theta_2a ... 
    E_phi_2a E_theta_angle_2a E_phi_angle_2a] = E_field_read(1); 
[E_theta_1b E_phi_1b E_theta_angle_1b E_phi_angle_1b E_theta_2b ... 
    E_phi_2b E_theta_angle_2b E_phi_angle_2b] = E_field_read(2); 
% Read in gain data for different orientations above ground: 
[Gain_theta_1a Gain_phi_1a Gain_theta_2a Gain_phi_2a] = Gain_read(1); 
[Gain_theta_1b Gain_phi_1b Gain_theta_2b Gain_phi_2b] = Gain_read(2); 
Gain_1a = Gain_theta_1a + Gain_phi_1a; 
Gain_2a = Gain_theta_2a + Gain_phi_2a; 
Gain_1b = Gain_theta_1b + Gain_phi_1b; 
Gain_2b = Gain_theta_2b + Gain_phi_2b; 
% Read in VSWR for different orientations above ground: 
VSWRa = VSWR_read(1); 



142 

  

VSWRb = VSWR_read(2); 
% Read in radiation efficiency for different orientations above ground: 
Rad_eff_1a = Rad_eff_read(1); Rad_eff_2a = Rad_eff_1a; 
Rad_eff_1b = Rad_eff_read(2); Rad_eff_2b = Rad_eff_1b; 
% Read in bandwidth for different orientations above ground: 
BW_1a = Bandwidth_read(1); BW_2a = BW_1a; 
BW_1b = Bandwidth_read(2); BW_2b = BW_1b; 
% Calculate Reflection Coefficient from VSWR: 
Gamma_a = (VSWRa-1)./(VSWRa+1); 
Gamma_b = (VSWRb-1)./(VSWRb+1); 
% Dimensions specifying the number of variations in orientation: 
[x_size y_size] = size(VSWRa); 
% Received Power cell arrays: 
Pr_a = {}; 
Pr_b = {}; 
% Storage arrays for other data: 
Transmitter_Gain_a = []; Receiver_Gain_a = []; 
Transmitter_Match_a = []; Receiver_Match_a = []; 
Path_loss_a = []; Pr_cut_a = []; 
Transmitter_Gain_b = []; Receiver_Gain_b = []; 
Transmitter_Match_b = []; Receiver_Match_b = []; 
Path_loss_b = []; Pr_cut_b = []; 
% Distance vector: 
d = logspace(0,3); d_size = length(d); 
% Distance at which to take a cut of the received power: 
d_cut = 100; 
cut_index = find(min(abs(d-d_cut))==abs(d-d_cut)); 
% Multipath factor: 
n = 2; 
% Loop through the various orientations of the transmitter and 
receiver: 
echo off; 
count = 1; 
total_count = x_size^2*y_size^2; 
file1_a = fopen('Received_Power_Uncoated.bin','w'); 
file1_b = fopen('Received_Power_Coated.bin','w'); 
file2_a = fopen('Data_Uncoated.bin','w'); 
file2_b = fopen('Data_Coated.bin','w'); 
file3_a = fopen('Capacity_Uncoated.bin','w'); 
file3_b = fopen('Capacity_Coated.bin','w'); 
Bandwidth_a_average = 0; Bandwidth_b_average = 0; 
for i = 1:x_size 
    for j = 1:y_size 
        for ii = 1:x_size 
            for jj = 1:y_size 
                % Uncoated SIFA 
                % Polarization efficiency: 
                p_1a = E_phi_1a(i,j)/E_theta_1a(i,j); 
                p_2a = E_phi_2a(ii,jj)/E_theta_2a(ii,jj); 
                delta_1a = E_phi_angle_1a(i,j) - E_theta_angle_1a(i,j); 
                delta_2a = E_phi_angle_1a(i,j) - E_theta_angle_1a(i,j); 
                Tau_pol_a = (1+abs(p_1a).^2.*abs(p_2a).^2+2*... 
                    abs(p_1a).*abs(p_2a).*cos(delta_1a-delta_2a))./... 
                    ((1+abs(p_1a).^2).*(1+abs(p_2a).^2)); 
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                % Received power: 
                Pr_a = Pt.*Gain_1a(i,j).*Gain_2a(ii,jj).*... 
                    Tau_pol_a.*(1-Gamma_a(i,j).^2).*... 
                    (1-Gamma_a(ii,jj).^2).*... 
                    Rad_eff_1a(i,j).*Rad_eff_2a(ii,jj).*... 
                    (lambda_a./(4*pi.*d)).^n; 
                Pr_dB_a = 10.*log10(Pr_a./1e-3); 
                fwrite(file1_a,Pr_dB_a,'double'); 
                Transmitter_Gain_a = Gain_1a(i,j); 
                Receiver_Gain_a = Gain_2a(ii,jj); 
                Transmitter_Match_a = (1-Gamma_a(i,j).^2); 
                Receiver_Match_a = (1-Gamma_a(ii,jj).^2); 
                Path_loss_a = (lambda_a./(4*pi.*d(1))).^n; 
                Pr_cut_a = 10.*log10(Pr_a(cut_index)/1e-3); 
                fwrite(file2_a,[Path_loss_a Pr_cut_a Receiver_Gain_a 
... 
                    Receiver_Match_a Transmitter_Gain_a ... 
                    Transmitter_Match_a Tau_pol_a],'double'); 
                % Effective Bandwidth: 
                B_min_1a = BW_1a(i,j*2-1); B_max_1a = BW_1a(i,j*2); 
                B_min_2a = BW_2a(ii,jj*2-1); B_max_2a = BW_2a(ii,jj*2); 
                B_min_a = max([B_min_1a B_min_2a]); 
                B_max_a = min([B_max_1a B_max_2a]); 
                BW_a = B_max_a - B_min_a; 
                if BW_a < 0 
                    BW_a = 0; 
                end 
                Bandwidth_a_average = (Bandwidth_a_average*... 
                    (count-1)+BW_a)/count; 
                % Channel Capacity: 
                SNR = linspace(0,30); 
                C_a = BW_a*log2(1+SNR); 
                fwrite(file3_a,C_a,'double'); 
                % Coated SIFA 
                % Polarization efficiency: 
                p_1b = E_phi_1b(i,j)/E_theta_1b(i,j); 
                p_2b = E_phi_2b(ii,jj)/E_theta_2b(ii,jj); 
                delta_1b = E_phi_angle_1b(i,j) - E_theta_angle_1b(i,j); 
                delta_2b = E_phi_angle_1b(i,j) - E_theta_angle_1b(i,j); 
                Tau_pol_b = (1+abs(p_1b).^2.*abs(p_2b).^2+2*... 
                    abs(p_1b).*abs(p_2b).*cos(delta_1b-delta_2b))./... 
                    ((1+abs(p_1b).^2).*(1+abs(p_2b).^2)); 
                % Received power: 
                Pr_b = Pt.*Gain_1b(i,j).*Gain_2b(ii,jj).*... 
                    Tau_pol_b.*(1-Gamma_b(i,j).^2).*... 
                    (1-Gamma_b(ii,jj).^2).*... 
                    Rad_eff_1b(i,j).*Rad_eff_2b(ii,jj).*... 
                    (lambda_b./(4*pi.*d)).^n; 
                Pr_dB_b = 10.*log10(Pr_b./1e-3); 
                fwrite(file1_b,Pr_dB_b,'double'); 
                Transmitter_Gain_b = Gain_1b(i,j); 
                Receiver_Gain_b = Gain_2b(ii,jj); 
                Transmitter_Match_b = (1-Gamma_b(i,j).^2); 
                Receiver_Match_b = (1-Gamma_b(ii,jj).^2); 
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                Path_loss_b = (lambda_b./(4*pi.*d(1))).^n; 
                Pr_cut_b = 10.*log10(Pr_b(cut_index)/1e-3); 
                fwrite(file2_b,[Path_loss_b Pr_cut_b Receiver_Gain_b 
... 
                    Receiver_Match_b Transmitter_Gain_b ... 
                    Transmitter_Match_b Tau_pol_b],'double'); 
                % Effective Bandwidth: 
                B_min_1b = BW_1b(i,j*2-1); B_max_1b = BW_1b(i,j*2); 
                B_min_2b = BW_2b(ii,jj*2-1); B_max_2b = BW_2b(ii,jj*2); 
                B_min_b = max([B_min_1b B_min_2b]); 
                B_max_b = min([B_max_1b B_max_2b]); 
                BW_b = B_max_b - B_min_b; 
                if BW_b < 0 
                    display('got here'); 
                    display([num2str(B_min_b) ', ' num2str(B_max_b)]); 
                    display([num2str(B_max_1b) ', ' 
num2str(B_max_2b)]); 
                    BW_b = 0; 
                end 
                Bandwidth_b_average = (Bandwidth_b_average*... 
                    (count-1)+BW_b)/count; 
                % Channel Capacity: 
                SNR = linspace(0,30); 
                C_b = BW_b*log2(1+SNR); 
                fwrite(file3_b,C_b,'double'); 
                % Display progress: 
                if mod(count,5000)==0 
                    display(['Looping through orientations...Progress 
'... 
                        num2str(count/total_count*100) '%']); 
                end 
                % Go to next orientation: 
                count = count+1; 
                pack 
            end 
        end 
    end 
end 
fclose(file1_a); fclose(file1_b); fclose(file2_a); fclose(file2_b); 
fclose(file3_a); fclose(file3_b); 
% Open the files containing the path loss curves: 
file2_a = fopen('Data_Uncoated.bin','r'); 
file2_b = fopen('Data_Coated.bin','r'); 
% Extract data from the files: 
Data_Matrix_a = fread(file2_a,total_count*7,'double'); 
Data_Matrix_b = fread(file2_b,total_count*7,'double'); 
Data_Matrix_a_reshape = reshape(Data_Matrix_a,7,total_count); 
Multipath_a = Data_Matrix_a_reshape(1,:); 
Pr_cut_a = Data_Matrix_a_reshape(2,:); 
Receiver_Gain_a = Data_Matrix_a_reshape(3,:); 
Receiver_Match_a = Data_Matrix_a_reshape(4,:); 
Transmitter_Gain_a = Data_Matrix_a_reshape(5,:); 
Transmitter_Match_a = Data_Matrix_a_reshape(6,:); 
Pol_eff_a = Data_Matrix_a_reshape(7,:); 
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Data_Matrix_b_reshape = reshape(Data_Matrix_b,7,total_count); 
Multipath_b = Data_Matrix_b_reshape(1,:); 
Pr_cut_b = Data_Matrix_b_reshape(2,:); 
Receiver_Gain_b = Data_Matrix_b_reshape(3,:); 
Receiver_Match_b = Data_Matrix_b_reshape(4,:); 
Transmitter_Gain_b = Data_Matrix_b_reshape(5,:); 
Transmitter_Match_b = Data_Matrix_b_reshape(6,:); 
Pol_eff_b = Data_Matrix_b_reshape(7,:); 
fclose(file2_a); fclose(file2_b); 
% Determine the probability distribution of the received power: 
Pr_domain = linspace(min([min(Pr_cut_a) min(Pr_cut_b)]),... 
    max([max(Pr_cut_a) max(Pr_cut_b)]),1000); 
CDF_a = []; CDF_b = []; 
for i = 1:length(Pr_domain) 
    A = find(Pr_cut_a<=Pr_domain(i)); 
    B = find(Pr_cut_b<=Pr_domain(i)); 
    CDF_a = [CDF_a length(A)/length(Pr_cut_a)]; 
    CDF_b = [CDF_b length(B)/length(Pr_cut_b)]; 
end 
figure; plot(Pr_domain,CDF_a); grid on; hold on; 
axis([Pr_domain(1) Pr_domain(end) 0 1]); title('CDF of Received 
Power'); 
plot(Pr_domain,CDF_b,'r'); 
PDF_a = num_diff(Pr_domain,CDF_a); 
PDF_b = num_diff(Pr_domain,CDF_b); 
Pr_domain_step = Pr_domain(2)-Pr_domain(1); 
scale_a = sum(PDF_a*Pr_domain_step); 
scale_b = sum(PDF_b*Pr_domain_step); 
PDF_a = PDF_a/scale_a; 
PDF_b = PDF_b/scale_b; 
Pr_normal = max([PDF_a PDF_b]); 
PDF_a = PDF_a/Pr_normal; 
PDF_b = PDF_b/Pr_normal; 
figure; plot(Pr_domain,PDF_a); grid on; hold on; ... 
    title('PDF of Received Power'); 
plot(Pr_domain,PDF_b,'r'); 
% Determine the distribution of the VSWR: 
VSWR_domain = linspace(1,5,1000); 
CDF_VSWR_a = []; CDF_VSWR_b = []; 
for i = 1:length(VSWR_domain) 
    A = find(VSWRa<=VSWR_domain(i)); 
    B = find(VSWRb<=VSWR_domain(i)); 
    CDF_VSWR_a = [CDF_VSWR_a length(A)/length(VSWRa)]; 
    CDF_VSWR_b = [CDF_VSWR_b length(B)/length(VSWRb)]; 
end 
figure; plot(VSWR_domain,CDF_VSWR_a); grid on; hold on; ... 
    title('CDF of VSWR'); 
plot(VSWR_domain,CDF_VSWR_b,'r'); 
PDF_VSWR_a = num_diff(VSWR_domain,CDF_VSWR_a); 
PDF_VSWR_b = num_diff(VSWR_domain,CDF_VSWR_b); 
VSWR_domain_step = VSWR_domain(2)-VSWR_domain(1); 
scale_a = sum(PDF_VSWR_a*VSWR_domain_step); 
scale_b = sum(PDF_VSWR_b*VSWR_domain_step); 
PDF_VSWR_a = PDF_VSWR_a/scale_a; 
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PDF_VSWR_b = PDF_VSWR_b/scale_b; 
VSWR_normal = max([PDF_VSWR_a PDF_VSWR_b]); 
PDF_VSWR_a = PDF_VSWR_a/VSWR_normal; 
PDF_VSWR_b = PDF_VSWR_b/VSWR_normal; 
figure; plot(VSWR_domain,PDF_VSWR_a); grid on; hold on; ... 
    title('PDF of VSWR'); 
plot(VSWR_domain,PDF_VSWR_b,'r'); 
% Determine the distribution of the radiation efficiency: 
RE_domain = linspace(0,1,1000); 
CDF_RE_a = []; CDF_RE_b = []; 
for i = 1:length(RE_domain) 
    A = find(Rad_eff_1a<=RE_domain(i)); 
    B = find(Rad_eff_1b<=RE_domain(i)); 
    CDF_RE_a = [CDF_RE_a length(A)/length(Rad_eff_1a)]; 
    CDF_RE_b = [CDF_RE_b length(B)/length(Rad_eff_1b)]; 
end 
figure; plot(RE_domain,CDF_RE_a); grid on; hold on; ... 
    title('CDF of Radiation Efficiency'); 
plot(RE_domain,CDF_RE_b,'r'); 
PDF_RE_a = num_diff(RE_domain,CDF_RE_a); 
PDF_RE_b = num_diff(RE_domain,CDF_RE_b); 
RE_domain_step = RE_domain(2)-RE_domain(1); 
scale_a = sum(PDF_RE_a*RE_domain_step); 
scale_b = sum(PDF_RE_b*RE_domain_step); 
PDF_RE_a = PDF_RE_a/scale_a; 
PDF_RE_b = PDF_RE_b/scale_b; 
RE_normal = max([PDF_RE_a PDF_RE_b]); 
PDF_RE_a = PDF_RE_a/RE_normal; 
PDF_RE_b = PDF_RE_b/RE_normal; 
figure; plot(RE_domain,PDF_RE_a); grid on; hold on; ... 
    title('PDF of Radiation Efficiency'); 
plot(RE_domain,PDF_RE_b,'r'); 
% Determine the distribution of the polarization efficiency: 
PE_domain = linspace(0,1,1000); 
CDF_PE_a = []; CDF_PE_b = []; 
for i = 1:length(PE_domain) 
    A = find(Pol_eff_a<=PE_domain(i)); 
    B = find(Pol_eff_b<=PE_domain(i)); 
    CDF_PE_a = [CDF_PE_a length(A)/length(Pol_eff_a)]; 
    CDF_PE_b = [CDF_PE_b length(B)/length(Pol_eff_b)]; 
end 
figure; plot(PE_domain,CDF_PE_a); grid on; hold on; ... 
    title('CDF of Polarization Efficiency'); 
plot(PE_domain,CDF_PE_b,'r'); 
PDF_PE_a = num_diff(PE_domain,CDF_PE_a); 
PDF_PE_b = num_diff(PE_domain,CDF_PE_b); 
PE_domain_step = PE_domain(2)-PE_domain(1); 
scale_a = sum(PDF_PE_a*PE_domain_step); 
scale_b = sum(PDF_PE_b*PE_domain_step); 
PDF_PE_a = PDF_PE_a/scale_a; 
PDF_PE_b = PDF_PE_b/scale_b; 
PE_normal = max([PDF_PE_a PDF_PE_b]); 
PDF_PE_a = PDF_PE_a/PE_normal; 
PDF_PE_b = PDF_PE_b/PE_normal; 
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figure; plot(PE_domain,PDF_PE_a); grid on; hold on; ... 
    title('PDF of Polarization Efficiency'); 
plot(PE_domain,PDF_PE_b,'r'); 
% Calculate Lifetime: 
energy = 5641; 
Rb = 0; 
pps = 0; 
packet_len = logspace(5,8); 
% life = energy*Rb./(pps*packet_len*Pt); 
%plot(packet_len,life); 
% Extract, plot, and and export minimum and maximum path loss curves: 
file_a1 = fopen('Received_Power_Uncoated.bin','r'); 
file_b1 = fopen('Received_Power_Coated.bin','r'); 
Rec_Matrix_a = fread(file_a1,total_count*d_size,'double'); 
Rec_Matrix_a_reshape = reshape(Rec_Matrix_a,d_size,total_count); 
min_index_a = find(min(Pr_cut_a)==Pr_cut_a); min_index_a = 
min_index_a(1); 
if length(min_index_a) > 1 
    min_index_a = min_index_a(1); 
end 
min_path_a = Rec_Matrix_a_reshape(:,min_index_a); 
max_index_a = find(max(Pr_cut_a)==Pr_cut_a); 
if length(max_index_a) > 1 
    max_index_a = max_index_a(1); 
end 
max_path_a = Rec_Matrix_a_reshape(:,max_index_a); 
clear('Rec_Matrix_a','Rec_Matrix_a_reshape'); 
Rec_Matrix_b = fread(file_b1,total_count*d_size,'double'); 
Rec_Matrix_b_reshape = reshape(Rec_Matrix_b,d_size,total_count); 
min_index_b = find(min(Pr_cut_b)==Pr_cut_b); 
if length(min_index_b) > 1 
    min_index_b = min_index_b(1); 
end 
min_path_b = Rec_Matrix_b_reshape(:,min_index_b); 
max_index_b = find(max(Pr_cut_b)==Pr_cut_b); 
if length(max_index_b) > 1 
    max_index_b = max_index_b(1); 
end 
max_path_b = Rec_Matrix_b_reshape(:,max_index_b); 
figure; semilogx(d,min_path_a,'--b',d,min_path_b,'--
r',d,max_path_a,'b',... 
    d,max_path_b,'r'); grid on; 
xlabel('Log distance'); ylabel('Received Power (dBm'); 
title(['Received Power as a Function of Distance, '... 
    'Transmitted Power = 1 W']); 
Export_table_1 = zeros(length(d),5); 
Export_table_1(:,1) = d; 
Export_table_1(:,2) = min_path_a; 
Export_table_1(:,3) = max_path_a; 
Export_table_1(:,4) = min_path_b; 
Export_table_1(:,5) = max_path_b; 
[success message] = 
xlswrite('Calculated_Data\min_max_path_loss.xls',... 
    Export_table_1); 



148 

  

% Extract, plot, and export channel capacity curves: 
file_a3 = fopen('Capacity_Uncoated.bin','r'); 
file_b3 = fopen('Capacity_Coated.bin','r'); 
Cap_Matrix_a = fread(file_a3,total_count*length(SNR),'double'); 
Cap_Matrix_a_reshape = reshape(Cap_Matrix_a,length(SNR),total_count); 
Cap_min_index_a = find(sum(Cap_Matrix_a_reshape,1) == ... 
    min(sum(Cap_Matrix_a_reshape,1))); 
if length(Cap_min_index_a) > 1 
    Cap_min_index_a = Cap_min_index_a(1); 
end 
Cap_max_index_a = find(sum(Cap_Matrix_a_reshape,1) == ... 
    max(sum(Cap_Matrix_a_reshape,1))); 
if length(Cap_max_index_a) > 1 
    Cap_max_index_a = Cap_max_index_a(1); 
end 
Cap_curve_min_a = Cap_Matrix_a_reshape(:,Cap_min_index_a); 
Cap_curve_max_a = Cap_Matrix_a_reshape(:,Cap_max_index_a); 
Cap_mean_a = mean(Cap_Matrix_a_reshape,2).'; 
figure; plot(SNR,Cap_mean_a,'b',SNR,Cap_curve_min_a,'--b',SNR,... 
    Cap_curve_max_a,'--b'); grid on; hold on; 
Cap_Matrix_b = fread(file_b3,total_count*length(SNR),'double'); 
Cap_Matrix_b_reshape = reshape(Cap_Matrix_b,length(SNR),total_count); 
Cap_min_index_b = find(sum(Cap_Matrix_b_reshape,1) == ... 
    min(sum(Cap_Matrix_b_reshape,1))); 
if length(Cap_min_index_b) > 1 
    Cap_min_index_b = Cap_min_index_b(1); 
end 
Cap_max_index_b = find(sum(Cap_Matrix_b_reshape,1) == ... 
    max(sum(Cap_Matrix_b_reshape,1))); 
if length(Cap_max_index_b) > 1 
    Cap_max_index_b = Cap_max_index_b(1); 
end 
Cap_curve_min_b = Cap_Matrix_b_reshape(:,Cap_min_index_b); 
Cap_curve_max_b = Cap_Matrix_b_reshape(:,Cap_max_index_b); 
Cap_mean_b = mean(Cap_Matrix_b_reshape,2).'; 
plot(SNR,Cap_mean_b,'r',SNR,Cap_curve_min_b,'--r',SNR,... 
    Cap_curve_max_b,'--r'); 
Export_table_6 = zeros(length(SNR),7); 
Export_table_6(:,1) = SNR; 
Export_table_6(:,2) = Cap_mean_a; 
Export_table_6(:,3) = Cap_curve_min_a; 
Export_table_6(:,4) = Cap_curve_max_a; 
Export_table_6(:,5) = Cap_mean_b; 
Export_table_6(:,6) = Cap_curve_min_b; 
Export_table_6(:,7) = Cap_curve_max_b; 
[success message] = xlswrite('Calculated_Data\Capacity.xls',... 
    Export_table_6); 
% Calculate, plot, and export lifetime: 
Energy = 5641; 
packet_rate = 1; 
packet_length = logspace(2,8); 
lifetime_a = 
Energy*Cap_mean_a(34)*1e6./(packet_rate*packet_length*Pt)... 
    /86400; 
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lifetime_b = 
Energy*Cap_mean_b(34)*1e6./(packet_rate*packet_length*Pt)... 
    /86400; 
figure; semilogx(packet_length,lifetime_a,'b',packet_length,... 
    lifetime_b,'r'); 
grid on; ylim([0 10]); 
[success message] = xlswrite('Calculated_Data\Lifetime.xls',... 
    [packet_length.' lifetime_a.' lifetime_b.']); 
% Export CDF and PDF curves of received power: 
Export_table_2 = zeros(length(Pr_domain),5); 
Export_table_2(:,1) = Pr_domain; 
Export_table_2(:,2) = CDF_a; 
Export_table_2(:,3) = PDF_a; 
Export_table_2(:,4) = CDF_b; 
Export_table_2(:,5) = PDF_b; 
[success message] = xlswrite('Calculated_Data\prob_dist_Pr.xls',... 
    Export_table_2); 
% Export CDF and PDF curves of radiation efficiency: 
Export_table_3 = zeros(length(RE_domain),5); 
Export_table_3(:,1) = RE_domain; 
Export_table_3(:,2) = CDF_RE_a; 
Export_table_3(:,3) = PDF_RE_a; 
Export_table_3(:,4) = CDF_RE_b; 
Export_table_3(:,5) = PDF_RE_b; 
[success message] = xlswrite('Calculated_Data\prob_dist_RE.xls',... 
    Export_table_3); 
% Export CDF and PDF curves of polarization efficiency: 
Export_table_4 = zeros(length(PE_domain),5); 
Export_table_4(:,1) = PE_domain; 
Export_table_4(:,2) = CDF_PE_a; 
Export_table_4(:,3) = PDF_PE_a; 
Export_table_4(:,4) = CDF_PE_b; 
Export_table_4(:,5) = PDF_PE_b; 
[success message] = xlswrite('Calculated_Data\prob_dist_PE.xls',... 
    Export_table_4); 
% Export CDF and PDF curves of VSWR: 
Export_table_5 = zeros(length(VSWR_domain),5); 
Export_table_5(:,1) = VSWR_domain; 
Export_table_5(:,2) = CDF_VSWR_a; 
Export_table_5(:,3) = PDF_VSWR_a; 
Export_table_5(:,4) = CDF_VSWR_b; 
Export_table_5(:,5) = PDF_VSWR_b; 
[success message] = xlswrite('Calculated_Data\prob_dist_VSWR.xls',... 
    Export_table_5); 
% 
echo off; diary off; 
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