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ABSTRACT 

 

Optimal Railroad Rail Grinding for Fatigue Mitigation. (December 2010) 

Potchara Tangtragulwong, B.Eng., Chulalongkorn University;  

M.En., Texas A&M University 

Chair of Advisory Committee: Dr. Gary T. Fry 

 

 This dissertation aims to study the benefit of rail grinding on service life of 

railroad rails, focusing on failures due to rolling contact fatigue (RCF) at the rail head. 

Assuming a tangent rail with one-point contact at the running surface, a finite element 

analysis of a full-scale wheel-rail rolling contact with a nonlinear isotropic kinematic 

hardening material model is performed to simulate the accumulation of residual stresses 

and strains in the rail head. Using rolling stress and strain results from the sixth loading 

cycle, in which residual stresses and strains are at their steady-state, as input, two critical 

plane fatigue criteria are proposed for fatigue analyses. The first fatigue criterion is the 

stress-based approach—namely the Findley fatigue criterion. It suggests an important 

role of tensile residual stresses on subsurface crack nucleation and early growth in the 

rail head, but applications of the criterion to the near-running-surface region are limited 

because of plastic deformation from wheel-rail contact. The second fatigue criterion is 

the strain-based approach—namely the Fatemi-Socie fatigue criterion. Contributed 

mainly from shear strain amplitudes and factorized by normal stress components, the 

criterion also predicts fatigue crack nucleation at the subsurface as a possible failure 
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mode as well as fatigue crack nucleation at the near-surface, while maintaining its 

validity in both regions. A collection of fatigue test data of various types of rail steel 

from literature is analyzed to determine a relationship between fatigue damages and 

number of cycles to failure. Considering a set of wheel loads with their corresponding 

number of rolling passage as a loading unit (LU), optimizations of grinding schedules 

with genetic algorithm (GA) show that fatigue life of rail increases by varying amount  

when compared against that from the no-grinding case. Results show that the proposed 

grinding schedules, optimized with the exploratory and local-search genetic algorithms, 

can increase fatigue life of rail by 240%. The optimization framework is designed to be 

able to determine a set of optimal grinding schedules for different types of rail steel and 

different contact configurations, i.e. two-point contact occurred when cornering.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

As axle load and train speed continuously increase to serve growing demands in 

North America and worldwide, rail maintenance planning becomes one of the most 

crucial components to provide safety and economical revenue. These two goals are inter-

related and must be considered concurrently when planning. The weight of train or truck 

is measured in term of axle loads, which is distributed through track structures, from 

wheel-rail interface to sleepers, to ballast, and eventually to subgrade (Esveld [1]). Due 

to a relatively small non-conformal contact, the interface between wheel and rail head is 

where influences from rolling contact, i.e. stresses, strains, material hardening, and etc., 

are largest; therefore, it is most prone to failure than the web and base of rails, and other 

track components. A classification of types of defect in rails is presented in a Rail Defect 

Manual (Sperry Rail Service [2]). 

With an application of repeating wheel loads onto the rail head, fatigue cracks 

form at both surface and subsurface regions within the rail head as a result of rolling 

contact fatigue (RCF), assisted by material imperfections from poor manufacturing and 

residual stresses from operation (Fry [3]). These incipient fatigue cracks could propagate 

and eventually cause rail failures, which may lead to catastrophic accidents. 

 

____________ 

This dissertation follows the style of International Journal of Fatigue. 
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In order to prevent unexpected failures from RCF, routine rail inspections and 

maintenances are firstly assigned to correct the problems. Rail grinding, surface 

lubrication, and rail replacement are three common rail maintenance practices that serve 

different purposes. Rail replacement is the least cost effective and usually used when the 

limit of surface grinding is reached or internal defects (subsurface fatigue cracks) are 

found, whereas surface lubrication is used to mitigate surface defects (surface fatigue 

cracks) by decreasing friction coefficient of wheel-rail interfaces. Rail grinding, in this 

case, in ‘corrective’ sense, is used to eliminate or shorten surface fatigue cracks that 

would propagate beyond critical limit by removing relatively large amount of material at 

running surface.    

Originally introduced as a tool to mitigate rail corrugation problems, rail grinding 

is now a key approach to improve service life of rails in railroad industry. In contrast to 

the ‘corrective’ rail grinding, the ‘preventive’ rail grinding aims to minimize the 

formation of surface fatigue cracks, instead of eliminating visible surface fatigue cracks. 

The preventive rail grinding is currently planned solely based on intuitive, experience, or 

historical data, and, nevertheless, it is found to be able to prolong rail fatigue life in 

many corridors (Sroba et al. [4]) by removing relatively small amount of material at 

running surface for every specific cumulative amount of wheel load throughout the 

service life of rails. At present, there is yet no conclusive agreement on the amount of 

grinding and grinding frequency, which is one of the areas to be investigated in this 

study. The main contribution of this study is to develop a framework, consisting of: 1) 

the rolling contact fatigue analysis based on rolling stress-strain results from a wheel-rail 
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finite element simulation to predict the initiations of fatigue crack in rail heads , and 2) 

the optimization of grinding schedules that not only mitigate the surface fatigue defects, 

but also the subsurface ones.  

   

1.2 Objectives and Organization   

The objective of this study is to develop a framework to determine a set of 

optimal grinding schedules that maximize the service life of rail while maintaining 

material integrity of rail heads. Fatigue cracks, occurred at both surface and subsurface, 

will be taken into consideration of the optimization algorithm. The organization of this 

dissertation is given below. 

Chapter II presents a full-scale finite element analysis of wheel-rail contact with 

a non-linear isotropic/kinematic hardening material. Chapters III and IV present multi-

axial fatigue analyses of a rail head section as a result of rolling contact using stress-

based and strain-based critical plane criteria respectively to predict life-to-crack-

initiation of rails. Chapter V presents: 1) a development of the optimization framework 

for rail grinding, and 2) analyses of benefits of rail grinding in term of fatigue life. 

Chapter VI presents the overall conclusions of this study. 
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CHAPTER II 

FINITE ELEMENT ANALYSIS OF WHEEL-RAIL CONTACT 

 

2.1 Introduction 

Rolling contact fatigue (RCF) has been considered as one of the root causes of 

many derailment accidents (Grassie et al. [5] and Smith [6]) and can be generally 

categorized into 2 classes: surface and subsurface types. Surface cracks, i.e. shelling and 

spalling, are due to localized plastic deformation of material closing to wheel-rail 

interface. Kapoor et al. [7] suggest that either low-cycle fatigue (LCF) or ratcheting is 

the failure mode of material in this region, e.g. their failure mechanisms are independent 

from each other. Other types of deformation and material shakedown that may occur at 

near running surface will be discussed later in this chapter. In contrast to surface cracks, 

subsurface cracks nucleate at some depth below running surface where material deforms 

elastically; typically, accompanying with a presence of material imperfections or 

discontinuities that may act as a stress riser. Therefore, the mode of failure of subsurface 

cracks is the high-cycle fatigue (HCF). Cannon et al. [8] note that this type of fatigue 

crack can be found in heavy-axle load lines more often than in passenger railways, due 

to larger accumulation of tensile residual stresses in the heavy-axle load case. Taken 

from Jablonski and Pelloux [9] and Sperry Rail Service [2], Fig. 2.1 presents examples 

of transverse and horizontal fatigue cracks nucleated below running surface within rail 

heads.  
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a) 

 

 

                                                               b) 

Fig. 2.1. Rail head defects. (a) A subsurface crack from field test (Jablonski and Pelloux [9]), 

and (b) Transverse and horizontal fatigue cracks in rail heads (Sperry Rail Service [2]). 

 

When a visible RCF surface crack is detected, it can be eliminated by a 

conventional corrective surface grinding to avoid further crack propagation, which could 

result in rail failures. Unlikely to be detected by a visual inspection, Tunna et al. [10], 

Ekberg and Kabo [11], and Smith [6] report that RCF subsurface cracks can cause 

abrupt failures in rails. Non-destructive methods, i.e. ultrasonic or induction methods, 
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must be used to detect the subsurface cracks instead with some limitations on resolution 

and reliability. Focusing on subsurface crack nucleation in the head of a thermite welded 

rail, Fry et al. [12] determine an approximated rolling stress result as a combination of 

elastic rolling stresses—derived from an analytical elasticity method—and residual 

stresses measured in a used rail. Assuming no discontinuities in the rail head, they show 

that if the measured residual stress is included in analyses, fatigue damage increases 

significantly at the region located 15-20 mm below the running surface. Not 

surprisingly, larger fatigue damage is observed when effects from both the residual 

stresses and discontinuities are included. This implies an important role of residual 

stresses on subsurface fatigue crack nucleation in rail head, which will be focused in this 

study.  

The objectives of this chapter are: 1) to develop a full-scale finite element model 

of wheel-rail rolling contact with a nonlinear isotropic kinematic hardening material 

model that is able to predict the residual stresses in rail head effectively, 2) to provide an 

in-depth understanding of the state of stress from wheel-rail contact phenomena, 

including the corresponding strains and ratcheting behavior, 3) to discuss the capability 

of the material model used to simulate material hardening in rolling contact by 

comparing results against those from experiments, and 4) to study the influence of 

residual stresses on rolling stresses in term of fatigue damage. The finite element 

analysis (FEA) of wheel-rail contact should overcome limitations found in traditional 

analytical methods and two-dimensional FEA. It should be noted that effects from 
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thermal-mechanical coupling due to braking or heat transfer during service are not 

considered in this study. 

 

2.2 Background 

2.2.1 Rolling Contact Fatigue in Wheel-Rail Contact 

Ekberg and Kabo [11] give an overview of RCF, specifically, in wheel-rail 

contacts with an emphasis on surface and subsurface crack nucleation and propagation. 

They suggest that RCF differs from the ‘classical’ fatigue analysis (i.e. uni-axial and bi-

axial fatigue analyses) because of the following reasons: 1) the state of stresses due to 

rolling contact is multi-axial and non-proportional—principal stress directions change as 

rolling progresses, and 2) rolling contacts involve mainly with compressive loads. 

Experiments on various metallic specimens show that non-proportional load tends to 

activate a large number of slip planes as a result of the rotation of principal directions, 

which may create additional material hardening called non-proportional hardening. 

Hence, the non-proportional load could be more damaging than the proportional one. 

This non-proportional hardening effect is found to be material-dependent. It shows 

significant effect in 304 stainless steel (Itoh et al. [13]), and minimal effect in 1045 steel 

(Socie [14]) and carbon rail steel (McDowell [15] and Kang and Gao [16]).  

Analytical solutions of contact stresses between two elastic bodies, derived from 

the Hertzian contact theory by Johnson [17], suggest that contact stresses are localized 

and limited to some distance from the contact area. However, large wheel loads used in 

heavy-hauled locomotive—around 150 – 250 kN—usually causes plastic deformation at 
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contact region such that the elastic solution is no longer valid. In order to accurately 

predict rolling stresses, a material model with plasticity and hardening rule must be 

incorporated into calculations. Sehitoglu and Jiang [18] develop an analytical approach 

based on an elastic analysis with a stress and strain relaxation method and a two-surface 

model of Mroz type hardening rule to simulate rolling and sliding contacts of the 1070 

steel. Residual stress and strain results are comparable to those from finite element 

analyses; however, deviations from experiments are still observed. Jiang and Sehitoglu 

[19] further develop a semi-analytical approach based on the Armstrong and Frederick 

plasticity model [20], and are able to predict the decaying rate of ratcheting of material 

near running surface as observed in experiments. Other than LCF, ratcheting is 

considered to be one of the root causes of surface crack nucleation (Kapoor [7]), and the 

finding of plasticity model that is able to predict ratcheting rate accurately is still an 

active research topic. Also formulated based on the Armstrong and Frederick plasticity 

model, but with simpler form, the Chaboche plasticity model (Lemaitre and Chaboche 

[21], and Chaboche [22]) is able to predict the multi-axial hardening and decreasing rate 

of ratcheting. It is used in the FEA of wheel-rail rolling contact in this chapter and will 

be discussed in greater details in the next section. 

At greater depth into the rail head, plastic deformation and ratcheting are no 

longer observed. However, the state of stress at this region is still non-proportional, with 

mean stress, as shown in analytical elastic analyses by Johnson [17] and Fry et al. [12]. 

A measurement of residual stresses in a used rail section by Steele and Joerms [23] 

shows compressive residual stresses at near contact region and tensile residual stresses at 
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depth greater than 7 mm below the running surface. From a measurement with 

sectioning method, Bower and Cheesewright [24] report similar compressive-to-tensile 

residual stress profiles of all normal components in a heavy-haul line. These tensile 

residual stresses are pointed out by Fry et al. [12] to be a potential root cause of 

subsurface crack nucleation and early growth, found at 15-20 mm below the running 

surface, in rolling contact. Assuming a perfect rail steel with no imperfections or 

discontinuities, fatigue damage increases by 60% when residual stress is included into 

the analysis. When accounting for both the residual stresses and discontinuities, fatigue 

damage increases up to 200% compared to one calculated from a pure elastic analysis. 

The capability of the FEA of wheel-rail rolling contact and the Chaboche plasticity 

model to predict residual stresses will be studied by comparing the simulated residual 

stresses against ones reported in Steele and Joerms [23].  

 

2.2.2 Finite Element Analysis of Wheel-Rail Contact 

In analytical and semi-analytical methods for wheel-rail rolling contact, various 

assumptions of plasticity models and the nonlinearity of wheel-rail geometry are made 

to determine the approximated solution as seen in Fry et al. [12], Sehitoglu and Jiang 

[18], and Jiang and Sehitoglu [19]. The analyses are typically limited to two-

dimensional models for simplicity. To overcome these limitations, finite element method 

(FEM) has been adopted by many researchers to determine the numerical solutions of 

wheel-rail contact problems. Several variations of nonlinear kinematic plasticity model 

are written as material subroutines for implementing in commercial FEA software, i.e. 
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ABAQUS® and ANSYS®, to simulate multi-axial hardening and ratcheting of rail 

steels (Johansson and Thorberntsson [25], Ekh et al. [26], and Jiang et al. [27]). In 

literatures, FEA of wheel-rail contact can be classified into two approaches. In the first 

approach, an assumed Hertzian pressure distribution is applied onto the running surface 

of a rail model, without actual contact between wheel and rail models. In the second 

approach, rail and wheel models are made into contact to simulate the more realistic 

contact phenomena, giving the situation closer to reality, but with higher computational 

cost. The advantages of the first approach are simplicity and its relatively low 

computational cost; however, models may not be able to capture real contact 

phenomena. The model developed in this study is considered as one in the second 

approach, with an addition of an axle component to represent an un-symmetric vertical 

load from a train truck.    

The followings are examples of research done based on the first simplified 

approach. Focusing on fatigue damage in rails, Ringsberg et al. [28] simulate a wheel-

rail contact through an application of Hertzian contact pressure on a FEM of a section of 

rail for 16 loading cycles. Elements of the rail model near contact region are modeled 

with a nonlinear isotropic kinematic hardening material behavior proposed by Chaboche 

[22] such that the material is strain-hardened and the accumulation of plastic strain 

increases in the direction of mean stress with decaying rate. They suggest a significant 

contribution of the first wheel passage on the accumulation of residual stresses. A 

similar finite element analysis is done by Ringsberg and Josefson [29] and Jiang et al. 

[27] with the Jiang plasticity model (Jiang and Sehitoglu [30, 31]). Kulkarni et al. [32] 
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and Bhargava et al. [33] study a FEA of rolling contact with a linear kinematic 

hardening plasticity model and report that residual stresses reach a steady state after just 

one cycle of a 149 kN wheel load. 

There is much less literatures available on the FEA of full-scale wheel-rail 

contact. Liu et al. [34] apply a sub-modeling technique with a bi-linear kinematic 

hardening plasticity model to determine rolling stresses, which afterward are used to 

calculate the life to fatigue crack nucleation of a railroad wheel. They show that the 

predicted contact stress contours deviate from traditional Hertzian contact theory, and 

there are multiple contact points at the wheel-rail interface, suggesting a non-Hertzian 

contact condition. Similar numerical results of the non-Hertzian contact condition are 

reported by Telliskivi and Olofsson [35]. 

 

2.2.3 Material Model for Cyclic Loading 

2.2.3.1 Response of Material Subjected to Cyclic Loading 

An elastic-plastic structure can respond to cyclic loading with non-zero mean 

load in four different ways: elastic, elastic shakedown, plastic shakedown, and ratcheting 

as shown in Fig. 2.2. First, a structure behaves elastically when loaded below its elastic 

limit. As the load level increases beyond the elastic limit, a plastic flow, which takes 

place on the first overloading cycle, will create residual stresses and strain-harden the 

material. This hardening process will help resisting plastic flow that occurs in 

subsequent loading cycles and enable the structure to shakedown to perfectly elastic 

state again: so called the elastic shakedown. As the structure is loaded further beyond  
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Fig. 2.2. Illustration of different material responses that may occur for a material subjected to 

cyclic loading with non-zero mean load (Ringsberg et al. [28]). 

 

the elastic shakedown limit, plastic shakedown is obtained if its corresponding stress-

strain path forms a closed loop. In contrast, the structure is considered to be ratcheting if 

the accumulation of plastic strain progresses in the direction of mean stress—with a 

constant or decaying rate, depending on type of material—is observed.   

Bower [36] performs a load-controlled tension/compression test with mean 

stresses, both proportional and non-proportional, on cylindrical specimens of carbon rail 

steel to mimic the state of stress in rolling contact. A non-proportional stress state is 

induced by a combination of three loading configurations: tension, shear, and 

compression. He makes an important observation on ratcheting behavior of the rail steel 

that plastic strains accumulate in the direction of mean stresses with decreasing rate, 

when material ratchets. Another effect that should be considered in rolling contact is an 

additional hardening from the non-proportional state of stresses as numbers of slip 

planes could be activated. However, results from non-proportional cyclic tests by 



 13 

McDowell [15], and Kang and Gao [16] show that rail steels exhibit negligible amount 

of this type of material hardening. As a result, in order to predict rolling stresses and 

strains of a rail steel in rolling contact accurately, the plasticity model must 

accommodate the accumulation of residual stresses and decaying rate of ratcheting, 

while the material hardening due to loading non-proportionality may be disregarded. 

 

2.2.3.2 Plasticity Model for Strain Hardening and Ratcheting Predictions  

Due to heavy axle loads in locomotive industry, localized plastic deformation 

occurs at the wheel-rail contact interface (Bower and Johnson [37]). Such a compressive 

deformation at running surface is balanced by tensile residual stresses at subsurface, 

which is found to play an important role in fatigue crack nucleation, as described in 

previous section. In order to determine rolling stress results of wheel-rail contact 

phenomena with heavy axle loads correctly, a plasticity model should be able to capture 

two important characteristics of cyclic rolling contact: 1) residual stresses in rail head, 

and 2) decaying rate of ratcheting of materials. The variations of isotropic and/or 

kinematic hardening are presented by Khan and Huang [38], and Lemaitre and 

Chaboche [21]. Using von-Mises yield surface, a kinematic hardening model proposed 

by Frederick and Armstrong [17], has been widely used by researchers as a basis to 

simulate strain-hardening and ratcheting behavior in general multi-axial applications. 

Comprehensive reviews of the topic are given by Chaboche [39], Jiang and Kurath [40], 

and Ohno [41].  
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In general, isotropic and kinematic hardening rules are coupled in plasticity 

models. The isotropic hardening rule predicts change of the size of yield surface as 

plastic deformation evolves, while the kinematic hardening rule is responsible for the 

translation of yield surfaces—called Bauschinger effect—due to cyclic load. The 

kinematic hardening rule also controls the ratcheting behavior of material; as a result, 

the modifications of plasticity model are mainly focused on this kinematic part. Since 

the linear kinematic hardening rule predicts a close-loop stress-strain response with no 

ratcheting, Frederick and Armstrong [20] introduce a nonlinear kinematic hardening rule 

with an internal variable called the recall term, which is able to predict ratcheting strain. 

However, the ratcheting strain is still overpredicted and deviates significantly from 

experiments. Chaboche [22] refines the Frederick and Armstrong plasticity model by 

decomposing the recall term into several components and including a threshold term to 

control ratcheting rate. He also suggests an addition of isotropic hardening model to the 

main nonlinear kinematic hardening model and shows that the proposed plasticity model 

reproduces very well stress results for monotonic, cyclic, and ratcheting cases. This 

plasticity model is known among researchers as the Chaboche plasticity model. Bari and 

Hassan [42] investigate the Chaboche plasticity model and report that the model 

satisfactorily predicts ratcheting strains under non-symmetrical loading in carbon steels. 

Further modification of the recall term is done by Ohno and Wang [43] by including a 

critical state and nonlinearities into the recall term of the Frederick and Armstrong 

plasticity model. Based on the Ohno and Wang plasticity model, Jiang and Sehitoglu 

[30, 31] modify the exponent of the recall term. Bari and Hassan [44] notes that all three 
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plasticity models: the Chaboche, Ohno and Wang, and Jiang and Sehitoglu models, 

generally overpredict multi-axial ratcheting when parameters are determined from cyclic 

uni-axial cases. An implementation of the Chaboche plasticity model and Jiang and 

Sehitoglu plasticity model to rolling contact are done by Ringsberg [28] and Ringsberg 

and Josefson [29] respectively, and will be discussed later in details. 

 

2.2.4 Implementation of Frederick and Armstrong Based Plasticity Models to 

Rolling Contact 

 Bower and Johnson [37] perform an analytical study of rolling/sliding contact 

with the nonlinear kinematic hardening model proposed by Frederick and Armstrong 

[20]. The parameters in the model are determined from experimental results of a cyclic 

tension/compression test on rail steels, expecting that they are able to predict plasticity 

behavior for both proportional and non-proportional loading cases. However, a 

significant error is observed for the residual stress prediction (see also Bower [36]).  

Using test results on rail steels available from Bower [36], Johansson and 

Thorberntsson [25] develop an optimization algorithm to calibrate parameters for the 

Chaboche plasticity model to results from cyclic uni-axial tests with mean stress. Four 

parameters, excluding the initial yield stress, of the Chaboche plasticity model: e.g. the 

kinematic hardening modulus, the decreasing rate of the kinematic hardening modulus, 

the maximum increased value of yield stress, and the yield surface development rate, are 

determined. The optimization result shows a correct ratcheting rate prediction, but with 

some deviation of the shape of stress-strain plots. Using stress-strain profiles of specific 



 16 

loading cycles, Ringsberg et al. [28] later apply this optimization approach to determine 

parameters for the Chaboche plasticity model and implement it into the material library 

of ABAQUS 6.7® to study a FEA of rolling contact. A similar optimization and 

calibration procedure for the Jiang and Sehitoglu plasticity model is performed by Ekh 

et al. [26]. The predicted stress-strain profiles show a good agreement with those from 

experiments. The Jiang and Sehitoglu plasticity model is implemented as a material 

subroutine in ABAQUS® to study the FEA of rolling contact by Ringsberg and Josefson 

[29] and Jiang [27]. In this study, the Chaboche plasticity model is used for its less 

complexity, which is more suitable to the study of a FEA of a computationally intensive 

full-scale wheel rail contact. 

 

2.3. Finite Element Analysis of Wheel-Rail Contact 

2.3.1 Wheel-Rail Finite Element Model 

HYPERMESH 8® and ABAQUS 6.7® software are used as a pre/post 

processing software and a finite element solver respectively. Since the wheel-rail contact 

model has both geometric and material nonlinearities, which require extensive 

computational resources, input files of the model, created on a personal computer with 

HYPERMESH 7®, are uploaded to supercomputers, provided by the Texas A&M 

Supercomputing Facility, to perform analyses. Results are then transferred back to the 

personal computer again for post-processing. 

The wheel-rail model consists of three main parts in full-scale: axle, wheel, and 

rail. Wheel and rail profiles provided by the Association of American Railroads (AAR) 
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are meshed with variable elemental densities as shown in Fig. 2.3. In order to capture 

accurate contact phenomena, very fine elements are needed at the wheel-rail contact 

region; widths of the elements of wheel and rail model made into a contact are 4 mm 

and 2 mm respectively. For the wheel model, element size is gradually increased as 

moving away from the contact region to avoid excessive computational time. In the rail 

model, size of elements in rail head region—the area of interest in this study—is 

approximately uniform, and the rail head is divided into 7 regions for convenience in 

model preparation and data processing.  

Fig. 2.4 shows the two-dimensional mesh of a rail head. Three different parts (in 

pink, blue, and yellow) located at the center under the contact area, from 0 – 40 mm 

below running surface, are the areas of interest in this study. Width of each section is 40 

mm, covering region affected by the contact. Elements are uniform with size of 2x1 

mm
2
 (width x height). Element height of 1 mm is intended to agree with the proposed 

resolution of grinding thickness, which is 1 mm as well. 

A three-dimensional wheel-rail model is shown in Fig. 2.5. The rail is sub-

modeled into 2 parts: rail head and rail base. The inner part of the rail head—where 

fatigue damages due to rolling contact tend to occur (see Fig. 2.6)—is longitudinally 

extruded with 2 mm increment for 120 mm. The outer parts of the rail head are extruded 

further from both sides of the inner part with 10 mm increment for 240 mm; therefore, 

the total length of the rail model is 600 mm, which represents a distance between two 

adjacent ties. The rail base is created separately with 10 mm increment for 600 mm 

throughout the rail section. Elemental mismatches where the rail head and the rail base 
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are connected are controlled by an ABAQUS subroutine—TIE—to guarantee 

compatible displacement of nodes at the boundaries.  

 

       

                     (a)                                                 (b)                                   (c) 

Fig. 2.3. Two-dimensional meshes of (a) the rail; (b) the wheel; and (c) 2-D mesh of both wheel 

and rail. 

 

 

Fig. 2.4. Two-dimensional mesh of the rail head. 
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Fig. 2.5. Finite element model of wheel-rail contact. 

 

 

Fig. 2.6. Wheel-rail contact interface. 
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The axle is extruded as a cylinder, which its elements in both the axial and 

circumferential directions are designed to match with those of the wheel hub; so that the 

connectivity between elements of axle and wheel hub is well defined, making the axle 

and wheel models behaving as a single unit. The wheel model consists of two main 

parts. One, which is the region expected to make contact, is revolved for 24 degree about 

the axle’s center line with the finest elements at contact region (0.5 degree-per-element). 

As moving toward wheel’s center, element size gradually increases up to 8 degree-per-

element at the wheel hub. For the part with no contact, a uniform element size of 8 

degree-per-element is used throughout the rest 336 degree of the wheel model. 

Similarly, elemental mismatches found in the axle-wheel unit are controlled by the 

ABAQUS subroutine—TIE—to guarantee compatible displacement of nodes at the 

interface.  

An eight-node brick element with reduced integration (C3D8R) is used in all 

parts for two main reasons. First, the first-order element will give more accurate 

pressure distribution in contact problem; the second reason is to reduce computational 

time with relatively small trade-off of the accuracy. The contact in wheel-rail interface is 

the element-to-element type with strict master-slave relationship and the finite sliding 

algorithm. Surfaces of wheel and rail expected to make contact are defined as a master 

and a slave surface respectively, as shown in Figure 2.6. Size of elements of the master 

surface (wheel) is designed to be at least twice as large as that of the slave surface (rail) 

to avoid possible nodal penetrations between the master and slave surfaces, which could 

lead to numerical errors. In this finite element model, the sizes of elements on the master 
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and slave surfaces are 4x4 mm
2
 and 2x1 mm

2
 respectively. The characteristic length of 

the wheel-rail model is 5.78 mm. Contact algorithm used in this study is the Lagrange 

multiplier method with hard contact to avoid errors from excessive penetrations between 

nodes in contact. Only in the rolling step, a friction coefficient of 0.3 is applied to the 

contact definition to nucleate rolling action of wheel in driven condition as a result of 

the translation of the axle-wheel unit in longitudinal direction as shown in Fig. 2.7. 

Because stiffness matrices in finite element analysis are unsymmetric due to the 

presence of surface friction, the unsymmetric solver is set to be active. Note that the 

forward motion of the driving wheel is from the applied torque that gives a reaction 

force acting on rail surface in backward direction; while the forward motion of the 

driven wheel is from the translation which is resisted by friction forces at wheel-rail 

interface, giving a reaction force that acting on rail surface in forward direction. Driven 

wheel configuration can be found in trucks, following the leading trucks where engines 

operate.  

 

 

Fig. 2.7. A schematic shows the driven wheel (left) and driving wheel (right) (From Jiang and 

Sehitoglu [19]). 
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To reduce computational time, only elements near the region expected to make 

contact, i.e. the elements located 0 – 20 mm from running surface of the inner part of the 

rail head and the elements with 0.5 degree-per-element of the wheel, are defined with 

the nonlinear isotropic/kinematic hardening material behavior. The elastic material 

behavior is used in the rest of the model. The rail model is 1.3 degree inwardly inclined 

about the longitudinal axis as in actual configuration. Due to symmetry, half of the axle-

wheel unit is modeled with a symmetric boundary condition at the mid-length of the axle 

by preventing the lateral displacement of the axle-wheel unit. Varied amount of wheel 

loads is imposed on a node of the axle on field-side through a mass element with 

gravity, so that a resultant force due to wheel load remain in the vertical direction as 

wheel rotates. At both ends of the rail model, the end cross sections are prevented from 

moving in the longitudinal direction, and the nodes at the rail base, located at 0–10 mm 

from both rail ends, are prevented from moving in the vertical direction as they are 

supported by ties. This will allow the effects from global bending to be included in the 

rolling contact. 

In summary, the axle-wheel model has approximately 54500 nodes and 48100 

elements, and the rail model has approximately 178000 nodes and 166000 elements.  

 

2.3.2. Plasticity Model and Mechanical Properties of a Pearlitic Rail Steel 

Three ingredients of a typical plasticity model are: yield criterion, flow rule, and 

hardening rule. Given a state of stress, yield criterion determines whether plasticity 

occur in a structure. As plasticity is observed, the direction of plastic flow and amount of 
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material hardening must be defined by flow rule and hardening rule respectively. For the 

Chaboche plasticity model, the von-Mises equivalent stress is the yield criterion, which 

is defined as: 

                     0)(:)(
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            where     S    is the deviatoric stress tensor 

                          dev
    is the deviatoric component of the backstress tensor  

                          0
      is the yield stress 

As for typical metallic materials, the associative flow rule defines that plastic 

flow direction coincides with the normals of a yield surface. The nonlinear isotropic 

kinematic hardening rule proposed by Chaboche [22] with one backstress term consists 

of two components. The first component is the nonlinear kinematic hardening part, 

which describes a translation of yield surface in stress space, observed as the 

Bauschinger effect in cyclic loading tests, through the backstress tensor ( ). The second 

component is the isotropic hardening part, which describes the uniform change of a yield 

surface as a function of plastic deformation. These two hardening components together 

will predict a cyclic material hardening, and a ratcheting and its decaying rate.  

The isotropic hardening rule of the plasticity model defines evolution of the yield 

surface size ( 0
 ) as a function of the equivalent plastic strain (

pl

 ). This evolution can 

be defined by a simple exponential law as follows (Abaqus [45]). 
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                      where     0
|    is the yield stress at zero plastic strain 

                                    
Q     is the maximum change in size of the yield surface 

                                    b        is the rate at which size of the yield surface changes as     

                                               the plastic straining develops 

The nonlinearity of the kinematic hardening component is introduced through a 

recall term, which is added to a purely kinematic term (the linear Ziegler hardening 

law). The nonlinear kinematic hardening rule with a back stress term in temperature-

independent condition is:  

                                  





plpl

C 


 )(
1

0                                  (3) 

                       where    C    is the initial kinematic hardening modulus 

                                          is the rate at which the kinematic hardening modulus      

                                              decreases as plastic deformation increases 

                                       


    is the rate of change of the back stress tensor 

                                       



pl

  is the plastic strain rate  

The parameters 
Q , b , C , and   in isotropic and non linear kinematic 

hardening rules must be calibrated against results from a cyclic test with mean stress. 

Ringsberg et al. [28] optimize the parameters in the Chaboche plasticity model with 

stress-strain data, given by Bower [36], from cycles 1, 2, 15, 50, 100, 200, 400, and 600 
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of a uni-axial cyclic test with mean stress on rail steels. The material properties and 

hardening parameters for a pearlitic rail steel used in this analysis are given below. 

 Young’s modulus                                                    E = 209 GPa  

 Poisson’s ratio                                       υ  = 0.29 

 Initial yield stress                                                                 
y

  = 406 MPa 

 Kinematic hardening modulus                                          C  = 13.2 GPa 

 Kinematic hardening modulus decreasing rate                       = 3.12 

 Maximum increase in elastic range                                     


Q  = 152 MPa 

 Yield surface development rate                                          b   = 3.97 

For the case without material hardening, only Young’s modulus and Poisson’s 

ratio are specified in the model. 

 

2.4 Analysis Steps 

2.4.1 FEA of Wheel-Rail Contact with an Elastic Material 

First, the finite element model with elastic material behavior is investigated so 

that the rolling stress results can be compared against those with the plasticity model. 

Only the section at mid-length of rail is studied as combined effects from global bending 

and rolling contact is greater than other regions. Initially, the bottom surface of wheel 

and the top surface of rail expected to make contact are vertically 0.05 mm apart. The 

simulations represent the rolling state in a tangent track with one point contact, where 

the contact between the wheel rim and gage-sided of rail head found when negotiating 

curves is not considered. Based on the results from preliminary work, the author finds 
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that as contact occurs, the change of rolling stresses is observed only the region within 

35 mm to the left and right of the contact point. This implies that if only the center 

cross-section of rail is interested, it will need only 70 mm of total rolling distance. As a 

result, in this study, the axle-wheel unit is located at 35 mm to the left of the center 

section of rail at the beginning, and it will roll to the point located at 35 mm to the right 

of the center section of rail to complete a cycle of 70 mm rolling distance, as the 

schematic shown in Fig. 2.8. The following steps are exploited for the 162 kN wheel 

load. 

 Step 1: Apply a vertical displacement of 0.1 mm to the axle node to nucleate a 

firm contact between wheel and rail surfaces.  

 Step 2: Activate gravity to make the mass element active. 

 Step 3: Deactivate the vertical displacement applied in step 1. Keep only the 

effect from the mass element. 

 Step 4: Activate friction and nucleate rolling contact by displacing the axle node 

in the longitudinal direction for 70 mm. 

 Step 5: Deactivate the gravity and move the axle-wheel unit up for 1 mm to 

eliminate contact. 
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(a) 

 

(b) 

Fig. 2.8. (a) The schematic presents the simulation of the rolling contact, and (b) cross-section of 

interest (cropped) and a line of nodes right under the wheel-rail contact (white dotted). 

 

2.4.2 FEA of Wheel-Rail Contact with Plasticity Model 

In this model, the accumulation of residual stresses is studied as a repeating 

wheel-rail rolling contact progresses. After each loading step, the state of stresses and 

material hardening variables in the rail head will be imported to the subsequent 

simulation as a predefined state, while maintaining the same global coordinate; hence 

allow residual stresses to build-up as the number of wheel passage increases. Note that 

Starting point Ending point Point of interest 
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the IMPORT command in ABAQUS® is used for this purpose. Two FEMs of wheel-rail 

with different meshing densities are used in this study. The first model of a wheel-rail 

contact with 162 kN wheel load and smaller element density is to study the rate of 

residual stress accumulation in rail head. The key question of this simulation is: for this 

Chaboche plasticity model, how many rolling cycles is required for residual stresses to 

reach the steady-state? Results will be used as a guideline to perform analyses with finer 

elements of the 162 kN and 233 kN wheel loads to study the influence of wheel loads on 

residual stresses. Similar to the one with an elastic material, all simulations with material 

hardening are performed as the following.      

 Step 1-5: As same as those in the simulation with an elastic material.  

 Step 6: Import the state of stresses and material hardening variables in the rail 

head at the end of present step to the subsequent step. 

 Step 7: Repeat steps 1 to 6 until residual stresses reach the steady-state. 

 

2.5 Results and Discussion 

A typical 162 kN wheel load is selected as a benchmark to study the variation of 

various parameters, e.g. amount of wheel loads and mechanical behavior of rail steel, on 

rolling stresses/strains and development of residual stresses. In order to depict influence 

of residual stresses on rolling stresses, majority of the results are reported as 

comparisons between the cases with an elastic material and a hardening material. Three 

principal axes of interest of a rail are the vertical, longitudinal, and transverse axes as 

defined in Fig. 2.9. The normal stress directions are defined according to these three 
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(a) 

 

(b) 

Fig. 2.9. (a) Principal axes of interest in a rail model, and (b) Three orthogonal planes of interest 

(Adapted from Fry [3]). 
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principal axes. The cross section of interest is located at the middle—35 mm from the 

starting point—of the 70 mm-long rolling path, right under the point of contact as in a 

schematic shown in Fig. 2.8. Note that throughout this study, this cross section will be 

an area of interest, unless specified otherwise. Results will be reported for the 

rectangular cross-section at center or sometimes only for the vertical line of nodes right 

under the wheel-rail contact, as shown in Fig. 2.8 (b), as appropriate. 

 

2.5.1 The Steady State of Residual Stresses 

Fig. 2.10 shows the accumulations of residual normal stresses of a node located 

at 15 mm below running surface—an area where large accumulation of residual stresses 

is expected—from cycle#1 to cycle#9. Rail cross-section of interest is located at the 

middle of the running path as indicated earlier. Using the defined nonlinear isotopic 

kinematic hardening rule—Chaboche plasticity model, result suggests that the 

accumulation of residual normal stresses will reach steady-state after four to five cycles 

of rolling contact. This preliminary result suggests that, for the refined model, only 

approximately five passages of wheel is required for residual stresses to reach the 

steady-state; therefore, the rolling stresses of the sixth loading cycle can be used in 

further analyses to account for effects from stabilized residual stresses.  
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Fig. 2.10. Accumulation of the residual normal stresses of a node located at 15 mm below 

running surface from the preliminary model with coarser elements (162 kN wheel load). 

 

2.5.2 Accumulation of Residual Stresses in Rolling Contact 

At the same cross-section of interest, for the model with finer elements, residual 

stress results are collected for all nodes vertically located right under the point of contact 

from depth of 0 to 40 mm. Fig. 2.11 shows residual stress profiles accumulated along 

those nodes at after five loading cycles with the 162 kN wheel load. In this figure, ‘y = 

0’ represents the running surface level and negative value of ‘y’ represents the depth 

from the running surface. It shows that, at all depths, the accumulation of residual shear 

stresses is much less significant when compared to those of residual normal stresses, as 

also reported by Bower and Cheesewright [24] for a measurement of residual shear 

stresses in a used rail steel. This justifies the use of the normal component of residual 

stresses for finding the number of cycles to their steady-state. The normal components of  
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Fig. 2.11. Residual stress profiles accumulated in nodes located vertically from the point of 

contact after five loading cycles of the 162 kN wheel load. 

 

residual stresses from the 162 kN and 233 kN wheel loads are compared against ones 

from a measurement (Steele and Joerms [23]) as shown in Fig. 2.12. 

In general, the residual stress profiles from simulations—of both the 162 kN and 

233 kN wheel loads after five loading cycles—agree with those from the measurement 

and can be classified into three regions. Note that the 162 kN wheel load (Fig. 2.12 (a)) 

is chosen for the followings discussion. First, at near running surface from 0-10 mm 

below the running surface, there are compressive residual stresses as a result of severe 

plastic deformation from concentrated load. The longitudinal and transverse residual 

stresses from the simulation are more compressive than those from the measurement 

with peak stresses at approximately -300 MPa. However, in contrast to the measured 

profiles, where largest compressive stresses are observed on running surface, the 
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predicted longitudinal and transverse compressive residual stresses gradually develop 

from running surface and reach their maximum at 5 mm below running surface. This 

discrepancy could be a result of numerical approximations of the Lagrange multiplier 

method used in contact, especially for the case of non-conformal wheel-rail contact. For 

vertical residual stress, while the stress profiles are similar, the predicted one is less 

compressive than the measured one. But since information about wheel loads of the used 

rail in measurement is not available, discussions on the differences of stress magnitude 

is inconclusive.   

Until the depth of 10 mm below running surface, there locates the second region. 

Residual stresses reverse to tension and reach peak values at depth of 13-20 mm, 

depending on amount of wheel load. Predictions of residual normal stress profiles—in 

tensile—agree well with those from measurement, with relatively small discrepancy in 

magnitude. Residual stresses eventually go back to neutral or compressive state at the 

third region, where the depth below running surface is greater than 30 mm.  Compared 

to the measurement, results from the simulations tend to reverse to compressive state at 

greater depth. Profiles of residual stresses from the 162 and 233 kN wheel loads are 

similar. The differences of the residual stresses at near running surface in both wheel 

loads are small, while tensile residual stresses in region 2 will grow deeper with greater 

magnitude as wheel load increases. Note that as wheel load increases from the 162 to 

223 kN, the increase of the peak value of accumulated compressive residual stresses is 

less than that of the accumulated tensile residual stresses. This will be shown to have an  
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(a) 

 

(b) 

Fig. 2.12. A comparison between residual stress profiles from simulations and the measurement 

(Steele and Joerms [23]) of a line of nodes located vertically below the contact path for: (a) 162 

kN wheel load, and (b) 233 kN wheel load. 
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effect on behavior of subsurface fatigue crack nucleation in fatigue damage analysis in 

Chapter III.   

To study an influence that residual stresses have on rolling stresses in the 162 kN 

wheel load, the analyses in the next section are undertaken for four levels of depth from 

running surface as the following.  

1. At 5 mm below running surface, where severe plastic deformation occurs and 

the maximum compressive residual stresses are found. 

2. At 13 mm below running surface, where the maximum tensile residual 

stresses are found. 

3. At 20 mm below running surface, where mild tensile residual stresses are 

found. 

4. At 40 mm below running surface, where relatively low tensile or 

compressive residual stresses are found. 

For completeness, it should be useful to present all three normal components of 

residual stresses of the whole representative cross-section as shown in Fig. 2.13. The 

residual stress contours show that residual accumulations are localized within 10–15 mm 

radius from the contact point and 0-40 mm below running surface, justifying the use of 

the proposed 40x40 mm
2
 representative cross-section and the vertical line of nodes 

located inside for further analyses.    
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(a) 

 

(b) 

Fig. 2.13. Residual stress contours after five loading cycles with a 162 kN wheel load in: (a) 

longitudinal direction (Sxx), (b) vertical direction (Syy), and (c) transverse direction (Szz). 
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(c) 

Fig. 2.13. Continued. 

 

2.5.3 Comparisons between the Equivalent Rolling Stresses of Elastic and 

Hardening Materials 

A comparison of von-Mises rolling stress contours at the cross section of interest 

in rail head, when the contact point is just right above, between the simulations with an 

elastic material and a hardening material at sixth loading cycle is shown in Fig. 2.14, in 

different scales. The equivalent rolling stress is localized near running surface with a 

peak value of 873 MPa for the elastic material. Stress gradually decreases as moving 

down further from running surface until stress diminishes to 100 MPa at 20 mm below 

running surface.  
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(a) 

 

(b) 

Fig. 2.14. von-Mises rolling stress contours (shown in different scales) for: (a) elastic material, 

and (b) hardening material at cycle#6. 
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With the Chaboche plasticity model, as the material near contact region is strain-

hardened due to plastic deformation, residual stresses are built up throughout the rail 

head until reaching the steady state. Peak equivalent stress is observed at greater depth, 

about 12 mm from running surface with a smaller magnitude of 401 MPa. Another 

observation is that these residual stresses somehow help extend the region experiencing 

large equivalent rolling stress (350–400 MPa) to the depth of 15 mm below running 

surface throughout the center of rail head. This indicates less-localized state of damage 

in rail head, compared to the case with an elastic material.  

From a simplified fatigue point of view, if von-Mises stress is regarded as a 

fatigue criterion, one can conclude that greater amount of material is found to experience 

damage when residual stresses are considered; therefore, there are greater tendency for 

subsurface fatigue cracks to nucleate. However, since von-Mises fatigue criterion tends 

to over-estimate fatigue life in non-proportional loading cases, it is preferable to use the 

critical plane fatigue criteria—stress-based or strain-based approaches—that account for 

failure mechanisms observed in fatigue tests of several types of steel. This will be 

studied in details in Chapters III and IV. 

 

2.5.4 Comparisons between the Rolling Stresses of Elastic and Hardening Materials 

Figures 2.15, 2.16, 2.17, and 2.18 present comparisons of rolling stresses—both 

normal and shear components— between the elastic and hardening cases, at four 

different depths: at 5 mm (node#235056), 13 mm (node#235083), 20 mm 

(node#234934), and 40 mm (node#235116) below running surface. Influences of 
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residual stresses in hardening material case are observed and will be discussed as that 

follows. 

For the elastic material case, profiles of rolling stresses at various depths, in 

general, are similar, but different in magnitudes. Relatively large normal stress in the 

vertical direction and reversal of shear stress in the vertical plane are found in all levels 

of depth as predicted by an analytical solution from the Hertzian contact theory (Johnson 

[17]). Comments and observations are noted as that follows. 

1. The longitudinal stress (Sxx) is highly compressive at near running surface. 

As moving further from the running surface, it is less compressive and is 

eventually tensile at depth of 40 mm. 

2. The transverse stress (Szz) is compressive at 5 mm below running surface. It 

then turns to be tensile at depth greater than 13 mm with small changes in 

magnitude.  

3. Most of normal stresses are compressive or little tensile; therefore, this 

elastic result suggests low chance of fatigue crack nucleation, which is 

encouraged by mean tensile stresses. 
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(a) 

 

(b) 

Fig. 2.15. Rolling stresses of a node located at 5 mm below running surface for: (a) elastic 

material, and (b) hardening material. 
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(a) 

 

(b) 

Fig. 2.16. Rolling stresses of a node located at 13 mm below running surface for: (a) elastic 

material, and (b) hardening material. 
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(a) 

 

(b) 

Fig. 2.17. Rolling stresses of a node located at 20 mm below running surface for: (a) elastic 

material, and (b) hardening material. 
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(a) 

 

(b) 

Fig. 2.18. Rolling stresses of a node located at 40 mm below running surface for: (a) elastic 

material, and (b) hardening material. 
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Observations on rolling stresses from a FEA of wheel-rail contact with hardening 

material compared against the result from the elastic material case are that follows. 

 At 5 mm below running surface, the longitudinal (Sxx) and transverse (Szz) 

stresses are more compressive: changing from -200 to -500 MPa, and from -80 to 

-350 MPa respectively, due to the influence from the compressive residual 

stresses. 

 At 13 mm below running surface, the transverse stress (Szz) is more tensile: 

changing from 20 to 200 MPa. The longitudinal stress (Sxx) and vertical stress 

(Syy) change from compression to tension during the rolling step. These make 

this region more susceptible to failure from high-cycle or low-cycle fatigue. 

 At 20 mm below running surface, all normal stresses are more tensile, but the 

changes are not as much as those observed at lower depth. 

 No significant changes of rolling stress at 40 mm below running surface. 

 No significant changes of rolling shear stresses at all depths of interest. 

 

2.5.5 Accumulation of Residual Strains in Rolling Contact 

Other than low-cycle fatigue and high-cycle fatigue, at near running surface 

where material heavily deforms, ratcheting is also considered as a potential mode of 

damage in rolling contact.  Ratcheting is defined as a continuous accumulation of strain 

in the direction of applied mean stress. As ratcheting progresses, it exhausts the ductility 

of material, leading to failure of that structure when total strain accumulation reaches 

critical limit. The nonlinear isotopic kinematic hardening rule—Chaboche plasticity 
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model—used in this study are optimized against results from a set of torsion- tension 

fatigue tests with mean stress in a rail steel that exhibits ratcheting with decaying rate.  

For the 162 kN wheel load, Fig. 2.19 shows residual strains after five loading 

cycles of nodes vertically located right under the point of contact from depth of 0 to 40 

mm. There are three components of residual strains: transverse (Strain-zz) and vertical 

(Strain-yy) components, and shear strain in the vertical plane (Strain-xy) that show 

significant accumulations at 0-10 mm below running surface. The vertical residual strain 

is compressive due to concentrated wheel load, as can be easily observed in field tests, 

and it is proportional to the amount of wheel load. As the top layer of rail is plastically 

deformed in compression by a vertically applied wheel load, this material layer tend to 

expand in lateral and longitudinal directions as a result of the Poission’s effect. 

Constrained by boundary conditions at both rail ends, deformation in longitudinal 

direction is limited. In contrast, rail head is not restrained in the lateral direction; 

therefore, larger material expansion is found as observed in form of an accumulation of 

transverse residual strain.  

As a driven wheel translates and rolls with friction to –x direction, the negative 

shear strain in the vertical plane (strain-xy) implies forward flow of material near 

running surface, meaning the material flow in the rolling direction. This qualitatively 

agrees with the results from rolling contact experiments done by Shima et al. [46] and 

Hamilton [47], and agrees with the semi-analytical solution done by Jiang and Sehitoglu 

[19].  
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Fig. 2.19. Residual strain profiles accumulated in the nodes located vertically from the point of 

contact after five loading cycles for the 162 kN wheel load. 

 

Fig. 2.20 shows the accumulation of vertical and transverse strains of the same 

node set as number of loading cycle increases from 1 to 5 for the 162 kN wheel load. 

Similar to the accumulation of residual stresses, though the parameters of the Chaboche 

plasticity model are optimized to a set of test data in which strain accumulation is still 

ongoing after 600 loading cycles, the change of vertical and transverse residual strains 

and shear residual strain in the vertical plane (strain-xy) from the simulation is found to 

be very small after 4 loading cycles. This implies a limitation of current plasticity model 

on the study of ratcheting in contact problems with compressive mean stresses. 

However, it is not known that the limitation is due to material model, optimization 

algorithm, or fatigue experiments. Further investigations should be done separately for 

this issue and will not be included in this study. Because ratcheting behavior could not 
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be predicted from this wheel-rail simulation, only high-cycle and low-cycle fatigue will 

be considered as the possible failure modes in fatigue analyses to be presented in the 

following chapters.     

 

 

(a) 

Fig. 2.20. Accumulation of strains from cycle#1 to 5 at the rail head due to a 162 kN wheel load 

for: (a) vertical residual strain, (b) transverse residual strain, and (c) shear residual strain in 

longitudinal plane. 
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(b) 

 

(c) 

Fig. 2.20. Continued. 
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2.6 Conclusions 

 Residual stresses reach the steady-state after five loading cycles, showing 

that the normal components of the residual stresses are compressive at 0-10 

mm below running surface, while they are tensile at 10-40 mm below 

running surface. The accumulation of the residual shear stresses is relatively 

small. 

 Profiles of the residual stresses predicted by the Chaboche plasticity model 

agree well with those from the measurement. 

 If considering von-Mises equivalent stress as a fatigue criterion, fatigue 

damage in rail head is less localized and distributed to greater depth, 

suggesting possible fatigue crack nucleation sites at subsurface. 

 Tensile residual stresses observed at subsurface tend to increase mean stress 

during rolling step; thus, provide better environment for cyclic fatigue. 

 With current material hardening model, material ratcheting from rolling 

contact is not predicted. Only low-cycle and high-cycle fatigue are 

considered as possible modes of fatigue failure.     
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CHAPTER III 

A STUDY OF RAIL HEAD FATIGUE DAMAGE WITH A STRESS-BASED 

CRITICAL PLANE CRITERION 

 

3.1 Introduction 

Presented in Chapter II for the 162 and 233 kN wheel load cases, the numerical 

results from a finite element model (FEM) of wheel-rail contact with the Chaboche 

plasticity model, show: 1) accumulation of compressive residual stresses at near running 

surface, 2) accumulation of residual strains at near running surface, 3) accumulation of 

tensile residual stresses and strains at 10 – 30 mm below the running surface, and 4) 

accumulation of residual stresses reaching the steady state after 5 loading cycles. These 

rolling stress and strain result will be used as an input for fatigue damage analyses in this 

chapter.   

In general, rolling contact creates two types of fatigue cracks: surface and 

subsurface cracks. Surface cracks nucleate as a result of severe plastic deformation, 

strain accumulation, and high tractions near running surface, whereas the root cause of 

subsurface cracks, known to occur at 10 to 20 mm below running surface, are yet not 

clearly defined. Fry et al. [12] report a detrimental role of residual stresses on subsurface 

fatigue damages in the head of a thermite welded rail—for both one in perfect condition 

and one with imperfections. Compared to the case not considering effects from residual 

stresses, fatigue damage increases significantly at 15 – 20 mm below running surface 

when the residual stresses are included, which can be used to explain the subsurface 
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fatigue crack nucleation observed in field tests. Because strength and hardness of rail 

steels has been increased to meet the demand of heavy axle loads, railroad rails are more 

prone to behave in more brittle manner. As a result, as soon as subsurface cracks 

nucleate, it may take just a short period of time for the cracks to propagate and 

eventually break the rail. With fewer amounts of discontinuities or imperfections in 

typical pearlitic rail steels, a method to predict the nucleation of subsurface cracks in a 

rail head is essential for preventing unexpected failures that could result in derailments.  

There are various methods to quantify fatigue damages in structures that 

experience multi-axial stress state, e.g. equivalent stress criteria and critical-plane 

criteria. The equivalent stress criteria, formulated the same way with von-Mises 

equivalent stress, are the simplest, but provide no information about the plane of crack 

nucleation. The critical-plane criteria, on the other hand, are formulated according to 

failure mechanisms observed in experiments that fatigue cracks tend to nucleate on a 

specific plane, depending on the type of materials. In this chapter, a stress-based critical 

plane fatigue criterion is chosen in order to study an influence of residual stresses on 

fatigue damage in a rail head due to rolling contact in term of fatigue index. The possible 

failure mechanisms will be discussed in term of the orientation of cracks: transverse, 

vertical, or horizontal planes, as previously defined in Fig. 2.9(b). 

How deep from running surface should be investigated? The study of wheel-rail 

contact with a nonlinear isotropic kinematic hardening rule in Chapter II suggests that, 

with a typical 162 kN wheel load, the accumulation of residual stresses in the rail head 

due to rolling contacts is observed from 0– 40 mm below running surface. Therefore, 
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this study will focus on the rail head region at the depth of 0 to 40 mm below running 

surface. The rolling stresses at the sixth loading cycle in a tangent track, considering 

effects from residual stresses at the steady state, are used as an input for fatigue analyses 

of a pearlitic rail steel. Using a critical plane criterion, fatigue index varies among 

different planes. By searching over all planes, the location and plane of crack nucleation 

is the one that possesses largest damage.  

 

3.2 Multi-axial Fatigue Criteria 

3.2.1 Overview of Multi-axial Fatigue Criteria  

Generally, fatigue damage phenomena consist of two main consecutive events: 

crack nucleation and early crack growth, and crack propagation (Bannantine et al. [48]). 

As a result, the total fatigue life of a component is the combination of life to crack 

nucleation and early crack growth, and life during crack propagation period, depending 

on type of loading and how material behaves. For high strength pearlitic rail steels, 

which are relatively brittle and usually resists large axle loads, crack nucleation and 

early crack growth period is considered to consume most of the service life of rails (Fry 

[3]), and it will be investigated through multi-axial fatigue criteria in this study. The life 

in crack propagation stage, which could be analyzed by fracture mechanics, is assumed 

to be minimal. 

Due to multi-axial stress state of rolling contact, multi-axial fatigue criteria are 

proposed to determine fatigue life of components. Multi-axial fatigue criteria can be 

classified into three main approaches: stress-based, strain-based, and energy-based. 
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Garud [49] presents an extensive survey of history and early development of multi-axial 

fatigue criteria, covering all the three aforementioned approaches. He notes that the 

equivalent stress approach is convenient to apply, but it tends to overestimate fatigue life 

of components under non-proportional loading. More up-to-date reviews on multi-axial 

fatigue criteria are presentd by Socie and Marquis [50], Meggiolaro et al. [51], and 

Balthazar and Malcher [52]. A review, focusing on critical plane criteria, is also given 

by Karolczuk and Macha [53].  

Another way to classify multi-axial fatigue criteria is by how fatigue damage—in 

term of fatigue index—is presented: as a scalar format or critical plane format. For the 

scalar format, stress or strain tensor histories are substituted in to fatigue criteria for a 

single number that represents equivalent fatigue damage, without providing information 

on crack orientations. The energy-based and equivalent stress/strain criteria are two 

examples of the scalar type. The critical plane format can be both the stress-based and 

strain-based types, depending on the behavior of materials of interest. Fatigue index is 

determined by transforming stress or strain histories into normal and shear components 

for all possible planes. The plane where fatigue index is largest is the critical plane, 

which indicates the direction that a crack would propagate to. The stress-based critical 

plane criterion, which is applied to study fatigue damage in rail head in this chapter, is 

reviewed in the next section.   
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3.2.2 Stress-Based Critical Plane Criteria 

There are two major goals that a critical plane criterion is expected to perform: 

predicting the location and plane where cracks would nucleate, and predicting fatigue 

life of structures. The accuracy of critical plane determination relies mainly on how well 

a fatigue criterion is formulated according to crack nucleation and failure mechanisms, 

which could vary for different type of materials. For example, crack nucleation in brittle 

materials is more sensitive to normal stress than that in ductile materials. Hence, it is 

quite common that a fatigue criterion is more suitable to one material than another. At 

the same time, the proposed fatigue criteria must be able to correlate fatigue damage and 

fatigue life from a set of experiments that are performed with different loading 

configurations—uni-axial, biaxial, torsional, or bending—or with different state of 

stresses—proportional or non-proportional. Jiang et al. [54] present a study on the 

capability of some critical plane approaches to predict planes of failure and fatigue life 

in a structural steel (S460N). They show that even though those critical plane criteria are 

able to predict fatigue life accurately, the critical plane predictions from all methods 

deviate from experimental results in varying degrees. As material behavior and fatigue 

phenomena are stochastic by themselves, an application of critical plane criteria to 

different type of materials must be used with caution.   

  Based on observations from experimental results with typical structural steels, 

fatigue cracks tend to nucleate on the plane of maximum alternating shear stress, 

suggesting fatigue crack nucleation as a planar process. Findley [55] presents that tensile 

normal stress also has a damaging role on fatigue crack nucleation process, as it induces 
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separation of surfaces under alternating shear stress; thus, ease the movement of 

dislocations on that plane and promote early crack growth. In the same article, he 

introduces a stress-based critical plane criterion, in which the damage will occur on a 

plane where the combination of the shear stress amplitude and the factorized normal 

stress is largest. Note that in the Findley critical plane criterion, positive normal stresses 

(tensile) will assist crack nucleation process, while negative normal stresses 

(compressive) will do the opposite (Bannantine et al. [48] and Socie [14]).  

The coefficient term used to factorize the influence of normal stress on the 

Findley fatigue criterion is called normal coefficient ( ) in this study. It is material-

dependent and must be determined by a regression analysis of fatigue-life data from uni-

axial and torsional fatigue tests, or from at least two tests with different type of loading. 

The normal coefficient reflects damage mechanism for different types of materials. For 

example, the case with  = 0 (lower bound) implies a ductile failure mode, where the 

shear stress amplitude term is dominant. As the coefficient increases, the normal stress 

increasingly involves in crack nucleation and early growth; therefore, the Findley fatigue 

criterion represents failure in more brittle manner. Kaufman and Topper [56] suggest 

imposing an upper-bound of the influence of tensile normal stress; such that when a limit 

is reached, indicating full separation of surfaces under alternating shear stress amplitude, 

a further increase of tensile stress will have no effect on fatigue life.  

Using a stress tensor history from wheel-rail simulation as an input for critical 

plane criteria, each plane of interest will possesses different amount of fatigue damage. 

The critical plane is where the fatigue index is largest. Crack nucleation is expected at 
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this location if the same loading configuration repeats. However, if loading 

configuration changes by times, the summation of fatigue index for each plane among 

different loading configurations will instead determine the crack nucleation and early 

growth. Based on experimental results by Hayhurst et al. [57] and McDowell et al. [58], 

Socie [14] reports no interaction between different damaged planes and suggests that 

fatigue index should be tracked for each plane independently for fatigue damage 

accumulation. 

An application of Findley fatigue criterion on standing contact application is 

presented by Alfredsson and Olsson [59]. Among various multi-axial fatigue criteria, in 

overall, they find the Findley fatigue criterion to most agree with experimental results 

from standing contact tests. The normal coefficient ( ) is extracted from rotating-

bending and torsion fatigue tests with case-hardened steel specimens, yielding the value 

of 0.675.  Proper normal coefficient for Findley fatigue criterion in this study will be 

extracted from uni-axial, torsion-axial, and bending of various types of rail steel. 

 

3.3 Fatigue Index Calculation 

In rolling fatigue damage analyses, due to non-proportional loading behavior, it 

is preferable to describe the phenomena with multi-axial fatigue criteria, which consider 

effects of changing in direction of principal stresses. Findley fatigue criterion is the 

critical-plane-based and can be represented by the following equation. 

                                        
nFIN

f 






2

max                                                    (4) 
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where   
max

  is the maximum shear stress range during rolling step on the   

                        plane with largest Findley fatigue index                                                                                                                                                                              

                            
n

    is the maximum normal stress during rolling step on the plane  

                                    with largest Findley fatigue index  

                                is the normal coefficient, which is an empirical material constant 

                       
FIN

f    is the Findley fatigue index 

The unit of Findley fatigue index is MPa, as is a stress. There is no conclusive 

agreement on proper value of , which could vary from 0.3 for ductile steels to 0.7 for 

brittle steels. In this study, fatigue index results for different values of   will be 

investigated and checked against field results. The   will be empirically determined 

later from various sources of fatigue test data of rail steels. 

In order to find a plane where Findley fatigue index is largest, an exhaustive 

plane search using a spherical coordinate, shown in Fig. 3.1, is performed. However, to 

avoid an excessive computational time in both data processing and optimization of 

grinding schedules, plane search is done with 10 degree increment of theta ( ) and phi 

( ). The normal vector that defines a plane can be written as follows. 

                 Normal vector: 
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A stress tensor history at the sixth loading cycles, where residual stresses and 

strains are at steady-state, from Chapter II is used as an input for the fatigue analysis. 

Analyses of rolling contact consist of many consecutive time increments such that the  
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Fig. 3.1. The spherical coordinate. 

 

state of stresses gradually changes while a wheel rolls over running surface of rail. Stress 

tensors at each node of interest are tracked and transformed into a stress vector T , acting 

on the oblique plane of interest by the following transformation relations. 

   3

3

2

2

1

1
TnTnTnT                                                                                                    (6) 
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The stress vector is resolved into normal stress (
n

 ) and shear stress ( ) 

components by the following relations. 

    Tn
n

                                                                                                                  (10) 
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These stress transformations of the nodes of interest are performed for all time 

increments and all selected planes by a code written in Matlab®. The same procedure is 

also applicable to a transformation of strains when a strain-based critical plane criterion 

is used.  

Parametric studies of the influence of wheel loads (162 and 233 kN) and normal 

coefficient (  = 0 – 0.7) on fatigue index and location and critical plane of crack 

nucleation is reported for the representative cross-section of interest, located at the 

middle—35 mm from the starting point—of the 70 mm-long rolling path, as shown in 

Fig. 2.8(b). This is where a combined effect from global bending and rolling expected to 

be largest.  

 

3.4 Results and Discussion 

3.4.1 Fatigue Index of the 162 kN Wheel Load with Material Hardening 

For each node on the cross-section of interest, Findley fatigue index is calculated 

from a stress tensor history at the sixth loading cycles for all possible planes. Among 

those planes, the largest indexes are reported in Fig. 3.2 to 3.5, with different for the 
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162 kN wheel load, as a fatigue index contour. As a result, it is not necessary that critical 

planes have to be the same for different nodes. The maximum and minimum fatigue 

indexes are reported within figures, when applicable. Note that, in this study, fatigue 

crack nucleation that occur within 0 - 5 mm below running surface is defined as a 

surface-type, while ones that locate at the depth greater than 5 mm are defined as a 

subsurface-type.  

A site of crack nucleation is where Findley fatigue index is the largest. For  = 0 

(Fig. 3.2), meaning cracks are nucleated solely by shear stress amplitude component, the 

fatigue index contour is localized within 0-10 mm below running surface with the largest 

index of 212 MPa at about 3 mm below running surface. This suggests a possibility of 

surface fatigue crack nucleation. When the participation of normal stress on damage 

mechanism increases, as   increases from 0 to 0.3, 0.5, and 0.7, Fig. 3.3, 3.4, and 3.5 

show the corresponding fatigue index contours. Another possible crack nucleation site is 

predicted at 13 mm below running surface, where tensile residual stresses from rolling 

contact, shown in Fig. 2.11, is the largest. This implies an important role of normal 

stress, strongly influenced by residual stresses, on subsurface fatigue crack nucleation.  

Accounting for residual stresses, the more the participation of normal stress on 

fatigue damage mechanism, the more damaging the rail head at greater depth below 

running surface is. For example, in the case of  = 0.3, the fatigue index at near surface 

is twice as much as that found at subsurface; whereas in the case of  = 0.7, the fatigue 

indexes found at near running surface and subsurface are comparable. It should be noted 

that peak value of fatigue index at near surface slightly decreases as   increases.   
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Fig. 3.2. Maximum Findley fatigue index contour ( = 0) of the 162 kN wheel load at the sixth 

loading cycle by searching selected plane at all nodes. 

 

Fig. 3.3. Maximum Findley fatigue index contour ( = 0.3) of the 162 kN wheel load at the 

sixth loading cycle by searching selected plane at all nodes. 
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Fig. 3.4. Maximum Findley fatigue index contour ( = 0.5) of the 162 kN wheel load at the 

sixth loading cycle by searching selected plane at all nodes. 

 

Fig. 3.5. Maximum Findley fatigue index contour ( = 0.7) of the 162 kN wheel load at the 

sixth loading cycle by searching selected plane at all nodes. 
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The direction cosines of critical planes, approximated cracking planes, and the 

corresponding fatigue indexes of possible crack nucleation sites for all cases are 

summarized in Table 3.1. Defined in Fig 2.9(b) in Chapter II for the wheel-rail model in 

this study, x-axis coincides with the longitudinal direction of a rail, while y-axis and z-

axis coincide with the vertical and transverse directions respectively. The predicted 

critical planes of the surface cracks for all values of   approximately coincide with the 

horizontal plane, where surface shelling is usually developed in field observations 

(Sperry Rail Service [2]). For subsurface cracks, which are evident only in the case of 

 = 0.5 and 0.7, the three largest fatigue indexes are reported to represent a relatively 

large damage distribution at subsurface. All critical plane predictions are qualitatively 

similar; it is a mixed cracking mode between the vertical and horizontal planes, similar 

to what defined as longitudinal cracks in field observations (Sperry Rail Service [2]). 

Further study on fatigue damage and critical plane in heavier wheel loads will be 

discussed in the next section.  
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Table 3.1 

Summary of possible fatigue crack nucleation sites and cracking planes for the 162 kN wheel 

load with material hardening (Findley fatigue criterion). 

Normal 

coefficient 
Node # 

Fatigue 

index 

(MPa) 

Depth 

below 

running 

surface 

(mm) 

Unit normal vector of critical 

plane 
Cracking 

plane 

x y z 

0 235063 212 3 0.3420 0.9397 0.0000 Horizontal 

0.3 235063 202 3 0.1736 0.9848 0.0000 Horizontal 

0.5 
235043 196 3 0.1736 0.9848 0.0000 Horizontal 

235083 152 13 0.0868 0.4924 0.8660 V-H* 

0.7 
235043 191 3 0.1710 0.9698 0.1736 Horizontal 

235083 187 13 0.0868 0.4924 0.8660 V-H* 

 

*V-H: A mixed cracking plane between the vertical and horizontal planes, where the leading 

term—V— indicates the cracking plane is more inclined toward the vertical plane. 

 

3.4.2 Fatigue Index of the 162 kN Wheel Load with an Elastic Material 

Using the elastic rolling stress result from Chapter II as an input for fatigue 

analyses, in contrast to the case with material hardening, most part of fatigue index 

contours remain unchanged as   increase from 0.3 to 0.7 as shown in Fig. 3.6 and 3.7. 

The contours of fatigue index are localized within 0 - 10 mm below running surface with 

the largest index of 259 MPa at about 3 mm below running surface in both cases. No 

subsurface crack nucleation is predicted. In term of subsurface fatigue crack nucleation, 

this indicates a strong influence of residual stresses, which are largely tensile at 10 - 30 
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mm below running surface, on the distribution of fatigue index to greater depth that 

could result in subsurface crack nucleation in some cases.  

Not only that a simplified wheel-rail simulation with an elastic material would 

give unrealistic rolling stress results, neglecting residual stresses that are observed in 

measurements may also affects the prediction of fatigue damage in a rail head. This, as 

well, raises a concern on the importance of plasticity model to a simulation of residual 

stresses in rolling contact. However, for typical pearlitic rail steel, the participation of 

the normal stress on fatigue damage is still unknown, and a proper value or a range of   

will be determined from fatigue tests with various type of loading at the end of this 

chapter.  

 

Fig. 3.6. Maximum Findley fatigue index contour ( = 0.3) of the 162 kN wheel load with 

elastic material by searching selected plane at all nodes. 
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Fig. 3.7. Maximum Findley fatigue index contour ( = 0.7) of the 162 kN wheel load with 

elastic material by searching selected plane at all nodes. 

 

3.4.3 Fatigue Index of the 233 kN Wheel Load with Material Hardening 

Fig. 3.8, 3.9, and 3.10 are fatigue index contours occurred during the sixth cycle 

of a rolling contact of the 233 wheel load as   equals to 0.3, 0.5, and 0.7 respectively. 

In all cases, the fatigue crack nucleation sites found near the running surface are located 

at about the same depth—4 mm below running surface—with decreasing peak values as 

  increases. Branching of fatigue index contours to greater depth, about 16 mm below 

running surface, is clearly observed in all cases, and it is more evident as   increases. 

As a result, there occurs another possible crack nucleation site at subsurface, where the 

peak fatigue index is competitive, or even greater for  = 0.7, to that at near running 

surface for   = 0.5. Unlike the results from the 162 kN wheel load case, the fatigue 
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index contour at subsurface is more evident and clearly separated from that at near 

running surface.   

The direction cosines of critical planes, approximated cracking planes, and 

corresponding fatigue indexes of possible crack nucleation sites for all cases are 

summarized in Table 3.2. The results are qualitatively similar to those from the 162 kN 

wheel load case. The critical planes of surface cracks for all values of   approximately 

coincide with the horizontal plane, where surface shelling is usually developed in field 

observation. For subsurface cracks, the critical planes are a mixed mode between vertical 

and horizontal planes, where a longitudinal crack may occur.  

 

Fig. 3.8. Maximum Findley fatigue index contour ( = 0.3) of the 233 kN wheel load at the 

sixth loading cycle by searching selected plane at all nodes. 
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Fig. 3.9. Maximum Findley fatigue index contour ( = 0.5) of the 233 kN wheel load at the 

sixth loading cycle by searching selected plane at all nodes. 

 

Fig. 3.10. Maximum Findley fatigue index contour ( = 0.7) of the 233 kN wheel load at the 

sixth loading cycle by searching selected plane at all nodes. 
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Table 3.2 

Summary of possible fatigue crack nucleation sites and cracking planes for the 233 kN wheel 

load with material hardening (Findley fatigue criterion). 

Normal 

coefficient 
Node # 

Fatigue 

index 

(MPa) 

Depth 

below 

running 

surface 

(mm) 

Unit normal vector of critical 

plane 
Cracking 

plane 

x y z 

0.3 
235053 217 4 0.1736 0.9848 0.0000 Horizontal 

234940 139 16 0.0000 0.5000 0.8660 V-H* 

0.5 
235052 212 4 0.1736 0.9848 0.0000 Horizontal 

234940 188 16 0.1710 0.4698 0.8660 V-H* 

0.7 
235052 207 4 0.1736 0.9848 0.0000 Horizontal 

234940 244 16 0.1170 0.3214 0.9397 V-H* 

 

*V-H: A mixed cracking plane between the vertical and horizontal planes, where the leading 

term—V—indicates the cracking plane is more inclined toward the vertical plane. 

 

3.4.4 Comparisons between Fatigue Indexes of the 162 kN and 233 kN Wheel Loads 

with Material Hardening 

The influence of wheel loads, comparing between the 162 kN and 233kN wheel 

loads, on fatigue indexes in a rail head is clearly observed in all cases; roughly, fatigue 

index is proportional to wheel load. The area coverage of fatigue index contours and 

peak fatigue indexes are greater as wheel load increases to 233 kN for both near-surface 

and subsurface regimes, meaning more fatigue damage in the rail head. Because the 

changes of fatigue index contours for different values of   are qualitatively the same, 

only the case of   = 0.5, shown in Fig. 3.4 and Fig. 3.9, are discussed. As wheel load 
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increases from 162 to 233 kN, the fatigue crack nucleation sites found at near running 

surface move to greater depth, from 3 to 4 mm below running surface.  

Similarly, as wheel load increases from 162 to 233 kN, subsurface fatigue crack 

nucleates at greater depth, increasing from 13 to 16 mm, which coincides with the depth 

where tensile residual stresses from rolling contact with 233 kN wheel load, presented in 

Chapter II, is largest. The corresponding peak fatigue index also increases. Unlike the 

case of 162 kN wheel load, the peak value of subsurface fatigue index for the 233 kN 

wheel load is more comparable to that found at near running surface. This is due to a 

greater increase of tensile residual stresses (at subsurface) compared to the increase of 

compressive residual stresses (at near surface), as wheel load increases from 162 to 233 

kN. The critical plane predictions of possible crack sites, at both near surface and 

subsurface, are slightly different for both wheel loads. Approximately, surface fatigue 

cracks will nucleate along the horizontal plane, and subsurface fatigue cracks will form 

along the resultant plane between the vertical and horizontal planes.  

In conclusion, an increase of wheel load would increase fatigue index in rail head 

in overall, but not uniformly. The increase of fatigue index at subsurface would be more 

pronounced.  
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3.4.5 Influence of Shear Stress Amplitude and Normal Stress Components on 

Findley Fatigue Index 

A study of mechanisms of surface and subsurface fatigue crack nucleation within 

a rail head is presented in this section. Decomposing the Findley fatigue criterion into 

two components—a shear stress amplitude term and a factorized normal stress term, Fig. 

3.11, again, presents a Findley fatigue index contour of the 162 kN wheel load (  = 0.3) 

during the sixth loading cycles, along with its corresponding contours of shear stress 

amplitude and factorized normal stress. By adding node-by-node results of Fig. 3.11(b) 

and 3.11(c)—the shear stress amplitude and factorized normal stress contours, the 

contour of resultant Findley fatigue index  is presented in Fig. 3.11(a). Also, note that it 

is reported in different scale from the one previously shown.  

Comparing these three contours, the surface crack nucleation site agrees with the 

shear stress amplitude contour, while the subsurface crack nucleation is promoted by 

both shear stress amplitude and normal stress. A conclusion of fatigue damage 

mechanism in a rail head according to the Findley fatigue criterion is that follows.  

 Shear stress amplitude component dominates crack nucleation and early 

growth at near surface, due to large tractive forces at near wheel-rail 

interface.  

 Both shear stress amplitude and normal stress promote crack nucleation and 

early growth at subsurface—13 mm below running surface in this case—

partly due to an influence from tensile residual stresses in this region.   
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(a) 

 

(b) 

Fig. 3.11. Contours of (a) Findley fatigue index, (b) shear stress amplitude component, and (c) 

normal stress component, of the 162 kN wheel load ( = 0.5) at the sixth loading cycle. 
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(c) 

Fig. 3.11. Continued. 

 

Fig. 3.12 and 3.13 represent two extremes of Findley fatigue criterion: the pure 

shear mode (  = 0) and the pure tensile mode (  = 1 and neglecting the shear stress 

amplitude term) respectively.  Assuming rail steels or rail heads made of a material with 

high ductility, which failure mechanism is solely dominated by shear stress, it is likely 

that surface cracks would nucleate as shown in Fig. 3.12. 

In contrast, if rail steels or rail heads with high hardness behave in brittle manner, 

failure mechanisms are dominated by the normal stress component instead, resulting in 

subsurface crack nucleation as shown in Fig. 3.13. This implies that a strategy of wear 

rate reduction by improving material hardness must be exercised with caution, as it may  
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Fig. 3.12. Maximum shear stress amplitude contour of the 162 kN wheel load at the sixth 

loading cycle by searching selected plane at all nodes. 

 

Fig. 3.13. Maximum normal stress contour of the 162 kN wheel load at the sixth loading cycle 

by searching selected plane at all nodes. 
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promote the nucleation of subsurface crack unintentionally. However, this, in turn, will 

mitigate the nucleation of surface cracks. 

 

3.4.6 Evaluation of   for a Pearlitic Rail Steel 

All discussions made prior to this section are based on general fatigue and 

mechanical behaviors of a metallic material. The predicted rolling stress results include 

effects from material hardening through the formation of residual stresses, but do not 

represent effects from implicit material behaviors, such as hardness and variation of 

strength across a rail cross-section. As discussed in 3.4.1 to 3.4.5, the nucleation of 

subsurface cracks heavily depends on the participation of normal stress component, 

defined through , in the Findley fatigue criterion. The greater the , the more brittle 

the rail head, and the greater the fatigue index at subsurface is, which, cumulatively, may 

cause subsurface cracks in long term. 

The value of  that represents fatigue behavior of a rail steel can be determined 

from a regression analysis of Findley fatigue index and fatigue life data of various 

loading configurations: uni-axial, torsion-axial, and bending, for rail steel. The proper 

value of  is the one that gives the best linear fitting of a log-log plot between the 

Findley fatigue index and fatigue life. Using fatigue test results of: 1) uni-axial tests 

(Scutti et al. [60], Iwafuchi et al [61], and Ahlstrom and Karlsson [62]), 2) bending tests 

(Fry [63]), and 3) axial-torsion tests (Stadlbauer and Werner. [64]), Fig. 3.14 presents 

the result of a regression analysis for  = 0.3, where the calculated least square error is 

minimized. Result agrees with those reported by Park and Nelson [65] for various types 
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of steel—varying from 0.18 to 0.33, and by Fry [3] for a thermite welded rail steel as 

0.3. The fatigue-life equation of the rail steel for Fig. 3.14 can be written as: 

                                )1319.0/1(
047.310




FIN
FN                                             (14) 

                             1/N  cycle loadingper  Damage   

     where   N     is the number of cycles to fatigue failure                                                                                                                                                                       

                 
FIN

F   is the Findley fatigue index       

 

Fig. 3.14. A log-log plot between Findley fatigue index and number of cycles to failure for  = 

0.3. Fatigue test data are taken from various literatures.  

 

As a result, in this study, assuming no surface wear and artificial grinding, 

fatigue cracks tend to occur at near surface first as shown in Fig. 3.3 and 3.8. However, 
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there is still a finite accumulation of fatigue damage at subsurface, which is likely to be 

increasingly dominant with a presence of material imperfections or discontinuities that 

may act as a stress-riser.  

 

3.4.7 Fatigue Index at Three Orthogonal Planes 

Using the rolling stress result at the sixth loading cycle of the 162 kN wheel load 

for a fatigue analysis with  = 0.3, Fig. 3.15 shows contours of Findley fatigue index at 

three different planes—the horizontal, vertical, and transverse planes—that are often 

used to classify types of defects in railroad rails (Sperry Rail Service [2]). Note that the 

contours are presented in different scales. The direction of cosines of the horizontal, 

vertical, and transverse planes are (0, 1, 0), (0, 0, 1), and (1, 0, 0) respectively. Among 

these three planes, the fatigue index at near surface observed in the horizontal plane is 

the largest (Fig. 3.15(a)), approximately twice as much as the peak fatigue indexes found 

in the vertical and transverse planes. Hence, surface shelling is likely to be a failure 

mode under this circumstance. 

For a perfect rail head, the fatigue index contour in the vertical plane (Fig. 

3.15(b)), similar to the vertical split head, is localized at subsurface; whereas, fatigue 

indexes at surface and subsurface are competitive in the transverse plane (Fig. 3.15(c)). 

Cannon et al. [8] report that material imperfections or discontinuities due to 

manufacturing process, if presence at some depths below running surface, may serve as 

a subsurface fatigue crack nucleation site. The increase of fatigue index and change of 
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the plane of crack nucleation depend on the shape and orientation of the imperfections as 

pointed out by Fry [3], and they are not investigated in this study.  

 

 

(a) 

Fig. 3.15. Findley fatigue index contours ( = 0.3) of the 162 kN wheel load at the sixth loading 

cycle, in different scales, at (a) horizontal, (b) vertical, and (c) transverse, planes. 
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(b) 

 

(c) 

Fig. 3.15. Continued. 
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3.4.8 Limitation of Findley Fatigue Criterion to Wheel-Rail Rolling Contact 

Since the Findley fatigue criterion is the stress-based approach, it is generally 

applicable to high-cycle fatigue problems, where stress is lower than material yielding 

limit. But the results from Chapter II show that material close to wheel-rail interface, 

from 0 - 10 mm below running surface, deforms plastically. This means that the 

relationship between stress and strain is no longer linear, and damage mechanism is 

preferably defined in term of strain (low-cycle fatigue) instead. Therefore, the Findley 

fatigue criterion is not applicable to the near surface region. In order to resolve this 

issue, an analysis with a strain-based critical plane criterion will be investigated in the 

next chapter. Note that this is not the case for fatigue analyses at depth greater than 8 

mm below running surface, because both stress-based and strain-based approaches are 

theoretically the same for high-cycle fatigue application.     

 

3.5 Conclusions 

 For both the 162 kN and 223 kN wheel loads, larger fatigue index at 

subsurface is observed when accounting for the residual stresses. In some 

cases, this may serve as another possible crack nucleation site. 

 As the participation of the normal stress term in the Findley fatigue criterion 

is low, the shear stress amplitude term dominates the near-surface crack 

nucleation, representing a failure mechanism of materials with high ductility. 

 As the participation of the normal stress term in the Findley fatigue criterion 

is high, both the normal stress and shear stress amplitude promote the 
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subsurface crack nucleation, representing a failure mechanism of brittle 

material. 

 At near surface, the plane of fatigue crack nucleation is similar to surface 

shelling, while the one at subsurface is a mixed mode between the vertical 

and horizontal planes similar to longitudinal cracks. 

 The normal coefficient of typical pearlitic rail steel, defined by , is equal to 

0.3. The fatigue index at subsurface is smaller but finite compared to that 

found at near surface for this case.    

 The Findley fatigue criterion, which is a stress-based approach, may not 

accurately present the phenomena at near surface region, where plastic 

deformation is observed. The strain-based approach is preferable for this 

case. 
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CHAPTER IV 

A STUDY OF RAIL HEAD FATIGUE DAMAGE WITH A STRAIN-BASED 

CRITICAL PLANE CRITERION 

 

 4.1 Introduction 

Based on observations by Smith [6], Cannon et al. [8], Tunna et al. [10], and 

Ekberg and Kabo [11], fatigue cracks in rail heads nucleate either at near running 

surface or at some depth below running surface. Since materials in those two regimes 

behave differently, using only components of stress tensors to describe failure 

mechanisms for the whole rail head may be inadequate. At near running surface, layers 

of material near running surface experience severe plastic deformation as a result of a 

concentrated wheel load, which can be seen as a forward surface flow in experiments 

(Shima et al. [46] and Hamilton [47]). A relationship between stress and strain is no 

longer linear in this region because of the strain-hardening mechanism, which, for 

general metallic materials, will incrementally decrease the stiffness of material as it is 

loaded further. As a result, a small change of stress may lead to relatively much greater 

change of strain, suggesting using strains to describe damage evolution with plasticity 

effect instead.  

At greater depth from the running surface, effects from a localized wheel-rail 

contact diminish. Materials behave elastically, and failure mechanism is defined as a 

high-cycle fatigue (HCF) mode. Fatigue damages calculated using the stress-based 

approach—i.e. Findley fatigue criterion (Findley [55]), and the strain-based approach—
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i.e. Fatemi-Socie fatigue criterion (Fatemi and Socie [66])—are equally valid for the 

HCF regime because a relationship between corresponding stress and strain is linear. A 

study with the Findley fatigue criterion, for a rail head with no material imperfections or 

discontinuities, in Chapter III shows that the effective normal stresses—a combination of 

rolling stresses and residual stresses—highly influence the nucleation of subsurface 

fatigue cracks. Whereas, the surface fatigue cracks are the only possible mode of failure 

when the residual stresses are excluded. This emphasizes the importance of an inclusion 

of the residual stresses, especially the tensile residual stresses found at subsurface, into 

fatigue damage analyses of a wheel-rail rolling contact. Any fatigue criterion proposed 

for a rolling contact problem should be able to account for the effective rolling stress and 

mean stress effect into its formulation.  

As previously shown in Fig. 2.19 in Chapter II for the 162 kN wheel load, plastic 

strain accumulations in vertical and transverse directions at near surface, around 0 - 10 

mm, at sixth loading cycles are predicted, but do not show significant increase of the 

accumulation after 4 cycles of loading. Therefore, ratcheting failure, which is defined by 

a continuous accumulation of strains that will eventually exhaust material’s ductility, can 

not be used to predict fatigue crack nucleation at near-surface in this study. Low-cycle 

fatigue (LCF) failure, which should be defined in term of strains, is considered as the 

only failure mechanism for the surface fatigue cracks instead.    

To overcome the limitation of the stress-based critical plane criterion on the 

prediction of near-surface fatigue crack nucleation, a fatigue model must be able to 

accommodate the followings key points: 1) the influence of effective rolling stresses on 
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the nucleation of subsurface fatigue crack, and 2) the influence of strain accumulation on 

fatigue damage in a rail head, with an emphasis on LCF failure at near running surface. 

The Fatemi-Socie fatigue criterion, formulated such that the shear-strain amplitude is 

modified by a normal stress component, is investigated for its capability to predict 

surface and subsurface fatigue crack nucleation due to rolling contact in this chapter.       

 

4.2 Strain-Based Critical Plane Criteria 

As well as the strain-life method for LCF with plasticity in uni-axial problems, a 

strain-based critical plane criterion is recommended when von-Mises equivalent stresses 

in a region of interest exceed an elastic limit for multi-axial problems. Reviews of 

theories and applications on various strain-based approaches are given by Meggiolaro et 

al. [51] and Stephens et al. [67]. Analogous to the Findley fatigue criterion, which is 

defined as a combination of shear stress amplitude and factorized normal stress on a 

plane, Brown and Miller [68] formulate a strain-based criterion for shear failure mode as 

a combination of shear strain amplitude and factorized normal strain on a plane. They 

propose that cracks nucleate on the plane of maximum shear strain amplitude, not on the 

plane of the maximum of the combination. The Brown-Miller fatigue model is a pure 

strain-based approach with no coupling from any stress component; therefore, it is 

unable to incorporate residual stresses into fatigue damage predictions.  

To account for an additional material hardening due to the changing of principal 

directions from non-proportional loading, Fatemi and Socie [66] suggest replacing the 

normal strain component in the Brown-Miller fatigue criterion by a normal stress 
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component. They also modify the fatigue criterion such that no contribution from a pure 

axial static load to fatigue damages is accounted; therefore, the alternating shear strain is 

required for fatigue damage to occur. This formulation agrees with observations from 

experiments and also implicitly account for the effects from residual stresses, which is 

one of the required key characteristics in this study. The Fatemi-Socie fatigue criterion, 

providing results in term of fatigue index, is shown to be satisfactory in term of fatigue 

life predictions for various types of metallic material (Socie [14], Fatemi and Socie [66], 

Jiang et al. [54], Park and Nelson [65], and Fatemi and Kurath [69]. However, the 

validation of predicted critical plane against experiments is still limited. Using a 

structural steel (S460N), Jiang et al. [54] study the capability of Fatemi-Socie fatigue 

criterion and other fatigue models on critical plane predictions. They show that critical 

plane predictions from all methods deviate from experimental results with varying 

degrees. They also suggest that an application of critical plane criteria to a material 

different from the one used in the formulation of criterion must be done with caution.   

The coefficient term used to factorize the influence of normal stress on the 

Fatemi-Socie fatigue criterion is called normal coefficient ( ) in this study. It is 

material-dependent and must be determined by a regression analysis of a set of fatigue-

life data from uni-axial and torsional fatigue tests, or from at least two tests with 

different type of loading. The normal coefficient exhibits material sensitivity to the 

tensile-based damage mechanisms. For example, pure shear damage will correspond to 

  equal to 0, meaning no influence of the normal stress on fatigue damage mechanism. 

However, due to the formulation of the criterion, the Fatemi-Socie fatigue criterion is 
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not applicable to pure tensile-based damage. This will be discussed in greater details in 

the next section. 

The same assumption used previously with the Findley fatigue criterion that 

crack nucleation and early crack growth periods are considered to consume most of the 

service life of rails is still applied to this chapter. Life in crack propagation stage, which 

could be analyzed by fracture mechanics, is assumed to be minimal. An observation by 

Socie [14] that there is no interaction between different damage planes is still hold, and 

fatigue indexes should be tracked for each plane independently. 

 

4.3 Fatigue Index Calculation 

Originally proposed by Fatemi and Socie [66], the Fatemi-Socie fatigue criterion 

is represented by the following equation. 
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where   
max

  is the maximum shear strain range during rolling step among all   

                        possible planes                                                                                                                                                                         

                            
n

    is the maximum normal stress during rolling step on a plane  

                                    of the maximum shear strain range 

                            
y

    is the tensile yield strength of material (406 MPa) 

                                 is the normal coefficient, which is an empirical material constant 

                         
FAT

f   is the Fatemi-Socie fatigue index 
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The normal stress component is defined as a ratio between the maximum normal 

stress and monotonic tensile yield stress so that the Fatemi-Socie fatigue criterion 

remains dimensionless, as is a strain. The critical plane of the above equation is defined 

as the plane of the maximum shear strain amplitude ( 2/
max

  ), not the plane of the 

maximum of total fatigue index. As a result, in general, the plane where the shear strain 

amplitude is largest does not necessarily coincide with the plane where the fatigue index 

is largest, leading to possible ambiguities when performing an optimization of grinding 

schedules. For example, the plane where the fatigue index accumulation is largest may 

not coincide with the critical plane predicted by the Fatemi-Socie fatigue criterion. In 

order to avoid such a problem, the modified Fatemi-Socie fatigue criterion is proposed 

as the following equation. 
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where   
MODFAT

f


  is the modified Fatemi-Socie fatigue index 

The critical plane of the modified Fatemi-Socie fatigue criterion is, instead, 

defined as the plane of the maximum total fatigue index. It is reinforced by Jiang et al. 

[54] that the discrepancy between the critical planes predicted by the original and the 

modified Fatemi-Socie fatigue criterion is small. In this study, the modified Fatemi-

Socie fatigue criterion is used as it is practically preferable.  

Method of fatigue analyses with a critical plane fatigue criterion is described 

earlier in detail in Chapter III for the stress-based approach. The algorithms of 

transformation and decomposition of a tensor are also applicable to the strain-based 
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approach, and only a brief summary will be given in this chapter. To find a plane where 

the modified Fatemi-Socie fatigue index is largest, an exhaustive search throughout all 

possible planes is performed with a 10 degree increment in a spherical coordinate. Using 

a stress-strain tensor history during the sixth rolling cycles of the 162 kN or 233 kN 

wheel loads as an input, the stress-strain tensors of each node of interest are tracked and 

transformed into shear and normal components. For each plane, shear strain amplitude is 

determined from variations of the resolved shear strain vectors at different time 

increments, and it will be modified by the corresponding normal stress according to the 

equation (16) for resultant fatigue index.      

Parametric studies of the influence of wheel loads (162 and 233 kN) and normal 

coefficient (  = 0.5 – 3.0) on fatigue index, and location and critical plane of crack 

nucleation will be reported for the representative cross-section of interest, located at the 

middle—35 mm from the starting point—of the 70 mm-long rolling path, as defined in 

Fig. 2.8(b). This cross-section is where combined effects from global bending and 

rolling are expected to be largest. The definitions of three principal axes: vertical, 

longitudinal, and transverse, and three orthogonal planes: horizontal, vertical and 

transverse, are as same as the ones defined previously in Fig. 2.9(b). 

 

4.4 Results and Discussion 

4.4.1 Fatigue Index of the 162 kN Wheel Load with Material Hardening 

For each node on the cross-section of interest, the modified Fatemi-Socie fatigue 

index is calculated from a stress and strain tensor history at the sixth loading cycles for 
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all selected planes. Among those planes, contours of the largest fatigue indexes are 

reported in Fig. 4.1 to 4.4, for different normal coefficients ( ) for the 162 kN wheel 

load. Note that it is not necessary that critical planes have to be the same for different 

nodes. The maximum and minimum fatigue indexes are reported within figures, when 

applicable. Fatigue cracks are categorized into two types, depending on where they are 

observed. Fatigue crack nucleation located within 0 - 5 mm below running surface is 

defined as a surface-type, while one located at the depth greater than 5 mm is defined as 

a subsurface-type.  

A site of crack nucleation is where the modified Fatemi-Socie fatigue damage is 

largest. For  = 0 (Fig. 4.1), meaning cracks are nucleated solely by shear strain 

amplitude component, the contour of fatigue index is localized within 0-10 mm below 

the running surface, right under the wheel-rail contact point, with the largest fatigue 

index of 0.001341 at approximately 3 mm below running surface. This suggests a 

possibility of surface crack nucleation. As the participation of normal stress,  , on 

damage mechanism increases from 0 to 1, fatigue index is still mainly localized at 3 mm 

below running surface, but with a lower peak value of 0.001225, as shown in Fig. 4.2. At 

the same time, the contour of fatigue index is observed to grow deeper into subsurface 

region. Fig. 4.3, and 4.4 show the fatigue index contours when   = 3 and 5 respectively. 

In both cases, two sites of surface fatigue cracks are predicted at about 2 - 3 mm below 

running surface, one to the left and another to the right of wheel-rail contact as looking 

into the transverse plane. Another possible crack nucleation site is predicted at 11 - 13 

mm below the running surface, where tensile residual stresses from rolling contact 
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presented in Chapter II are largest. This implies an important role of normal stress—

strongly influenced by residual stresses—on subsurface fatigue crack nucleation.  

 

 

Fig. 4.1. Maximum modified Fatemi-Socie fatigue index contour ( = 0) of the 162 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 
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Fig. 4.2. Maximum modified Fatemi-Socie fatigue index contour ( = 1) of the 162 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 

 

Fig. 4.3. Maximum modified Fatemi-Socie fatigue index contour ( = 3) of the 162 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 
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Fig. 4.4. Maximum modified Fatemi-Socie fatigue index contour ( = 5) of the 162 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 

 

Accounting for residual stresses, the more the participation of normal stress is, 

the more damaging the rail head at greater depth below running surface is predicted. For 

example, the peak fatigue index of node#234976 at subsurface increases from 0.000989 

to 0.001314 as   increases from 3 to 5. The fatigue index at near surface, in contrast, 

reduces gradually as   increases from 0 to 3 as a result of compressive residual stresses, 

but the trend reverses as   increases from 3 to 5. This inconsistency may arise from an 

assumption behind the formulation of the modified Fatemi-Socie fatigue criterion that 

shear strains control damage mechanism, whereas the normal stress component only 

operates as a modifier. Therefore, using   much greater than 1, which indicates likely 

tensile-based damage, may violate the assumption and misrepresent the damage 
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phenomena, both at near surface and subsurface. This suggests that applications of the 

modified Fatemi-Socie fatigue criterion on brittle materials may be limited, and a 

tensile-based critical plane fatigue criterion proposed by Smith et al. [70] may be 

preferable for this case. 

The direction cosines of critical planes, the approximated cracking planes, and 

the corresponding fatigue indexes of possible crack nucleation sites for all cases are 

summarized in Table 4.1. Defined in previous chapters, x-axis coincides with the 

longitudinal direction of a rail, while y-axis and z-axis coincide with the vertical and 

transverse directions respectively. The critical planes of surface cracks for all cases of   

approximately coincide with the horizontal plane, where surface shelling is usually 

developed in field observations. Note that two near-surface fatigue crack nucleation sites 

are predicted for   = 3 and 5, while only one site is predicted for   = 0 and 1. For 

subsurface cracks, which are evident only in the case of  = 3 and 5, the three largest 

fatigue indexes are reported to represent a relatively large damage distribution at 

subsurface. All critical plane predictions at subsurface are qualitatively similar; it is a 

mixed cracking mode between the vertical and horizontal planes, similar to what defined 

as longitudinal cracks in field observations. Further study on fatigue damage and critical 

planes in heavier wheel loads will be discussed in the next section.  
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Table 4.1 

Summary of possible fatigue crack nucleation sites and cracking planes for the 162 kN wheel 

load with material hardening (modified Fatemi-Socie fatigue criterion). 

Normal 

coefficient 
Node # 

Fatigue 

index  

Depth 

below 

running 

surface 

(mm) 

Unit normal vector of critical 

plane 
Cracking 

plane 

x y z 

0 235063 0.001341 3 0.3420 0.9397 0.0000 Horizontal 

1 235043 0.001225 3 0.1710 0.9698 0.1736 Horizontal 

3 

234967 0.001114 2 0.1710 0.9698 -0.1736 Horizontal 

234968 0.001140 3 0.1736 0.9848 0.0000 Horizontal 

234976 0.000989 11 0.0000 0.7660 0.6428 H-V** 

235074 0.000988 12 0.1330 0.7544 -0.6428 H-V** 

235083 0.000975 13 0.1116 0.6330 0.7660 V-H* 

5 

234967 0.001166 2 0.1710 0.9698 -0.1736 Horizontal 

234968 0.001145 3 0.1736 0.9848 0.0000 Horizontal 

234976 0.001314 11 0.0000 0.7660 0.6428 H-V** 

235080 0.001351 12 0.0000 0.6428 0.7660 V-H* 

235083 0.001317 13 0.1116 0.6330 0.7660 V-H* 

 

*V-H: A mixed cracking plane between the vertical and horizontal planes, where the leading 

term—V— indicates the cracking plane is more inclined toward the vertical plane. 

**H-V: A mixed cracking plane between the vertical and horizontal planes, where the leading 

term—H— indicates the cracking plane is more inclined toward the horizontal plane. 
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4.4.2 Fatigue Index of the 162 kN Wheel Load with an Elastic Material 

Using the elastic rolling stress/strain result from Chapter II as an input for fatigue 

analyses, in contrast to the case with material hardening, most part of fatigue index 

contours remain unchanged as   increase from 0 to 3 as shown in Fig. 4.5 and 4.6. The 

contour of fatigue index is localized within 0 - 10 mm below running surface with the 

largest fatigue index of 0.001598 and 0.001609 at 3 mm below running surface for the 

case of   = 0 and 1 respectively. Subsurface crack nucleation is not predicted in both 

cases. In term of subsurface fatigue crack nucleation, this indicates a strong detrimental 

influence of residual stresses, which are largely tensile at 10 - 30 mm below running 

surface, on the distribution of fatigue index to greater depth that could result in 

subsurface crack nucleation in some cases. 

Comparing Fig. 4.1 to Fig. 4.5 for the case of   = 0, in contrast, the fatigue index 

at near surface decreases from 0.001598 to 0.001341 when residual strains accumulated 

near the running surface as a result of rolling contact are considered. A similar 

observation is observed in the simulation with   = 3 (see Fig. 4.3 and 4.6), indicating a 

beneficial role of the strain accumulation on surface fatigue crack nucleation calculated 

in term of low-cycle fatigue. This contradicts to the detrimental role of strain 

accumulation in failures due to ratcheting.   
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Fig. 4.5. Maximum modified Fatemi-Socie fatigue index contour ( = 0) of the 162 kN wheel 

load with elastic material by searching selected plane at all nodes. 

 

Fig. 4.6. Maximum modified Fatemi-Socie fatigue index contour ( = 3) of the 162 kN wheel 

load with elastic material by searching selected plane at all nodes. 
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4.4.3 Fatigue Index of the 233 kN Wheel Load with Material Hardening 

Fig. 4.7, 4.8, 4.9 and 4.10 are the fatigue index contours occurred during the 

sixth cycle of a rolling contact of the 233 wheel load as   equals to 0, 1, 3, and 5 

respectively. In all cases, the fatigue crack nucleation sites found near the running 

surface are located at approximately 3 - 4 mm below running surface, with decreasing 

peak values as   increases. Two sites of surface fatigue cracks, one to the left and 

another to the right of wheel-rail contact point as looking into the transverse plane, are 

predicted for   = 3 and 5, as shown in Fig. 4.9 and 4.10. Branching of the fatigue index 

contours to greater depth, approximately 14 - 16 mm below the running surface, is 

predicted in all cases with   greater than 0, and it is more evident as   increases. As a 

result, there occurs another possible crack nucleation site at the subsurface, where the 

peak fatigue index is competitive, or even greater for  = 5, to that at near running 

surface for   = 3.  

The direction cosines of critical planes, approximated cracking planes, and 

corresponding fatigue indexes of possible crack nucleation sites for all cases are 

summarized in Table 4.2. Results are qualitatively similar to those from the 162 kN 

wheel load case. The critical planes of surface cracks for all values of   approximately 

coincide with the horizontal plane, where surface shelling is usually developed in field 

observations. For subsurface cracks, which are evident only in the case of  = 3 and 5, 

the three largest fatigue indexes is reported to represent a relatively large damage 

distribution at subsurface. All critical plane predictions are qualitatively similar; it is a  
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Fig. 4.7. Maximum modified Fatemi-Socie fatigue index contour ( = 0) of the 233 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 

 

Fig. 4.8. Maximum modified Fatemi-Socie fatigue index contour ( = 1) of the 233 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 
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Fig. 4.9. Maximum modified Fatemi-Socie fatigue index contour ( = 3) of the 233 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 

 

Fig. 4.10. Maximum modified Fatemi-Socie fatigue index contour ( = 5) of the 233 kN wheel 

load at the sixth loading cycle by searching selected plane at all nodes. 
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Table 4.2 

Summary of possible fatigue crack nucleation sites and cracking planes for the 233 kN wheel 

load with material hardening (modified Fatemi-Socie fatigue criterion). 

Normal 

coefficient 
Node # 

Fatigue 

index  

Depth 

below 

running 

surface 

(mm) 

Unit normal vector of critical 

plane 
Cracking 

plane 

x y z 

0 235053 0.001520 4 -0.3420 0.9397 0.0000 Horizontal 

1 235052 0.001400 4 -0.1736 0.9848 0.0000 Horizontal 

3 

234968 0.001250 3 -0.1736 0.9848 0.0000 Horizontal 

235052 0.001258 4 0.0000 1.0000 0.0000 Horizontal 

234979 0.001121 14 0.0000 0.7660 0.6428 H-V** 

234844 0.001127 15 0.0000 0.7660 0.6428 H-V** 

234936 0.001159 16 0.0000 0.6428 0.7660 V-H* 

5 

234994 0.001266 3 0.1710 0.9698 -0.1736 Horizontal 

234990 0.001249 4 0.1736 0.9848 0.0000 Horizontal 

234844 0.001548 15 0.0000 0.7660 0.6428 H-V** 

234929 0.001553 16 0.1330 0.7544 -0.6428 H-V** 

234940 0.001642 16 0.0000 0.5000 0.8660 V-H* 

 

*V-H: A mixed cracking plane between the vertical and horizontal planes, where the leading 

term—V— indicates the cracking plane is more inclined toward the vertical plane. 

**H-V: A mixed cracking plane between the vertical and horizontal planes, where the leading 

term—H— indicates the cracking plane is more inclined toward the horizontal plane. 
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mixed cracking mode between the vertical and horizontal planes, similar to what defined 

as longitudinal cracks in field observations. 

 

4.4.4 Comparisons between Fatigue Indexes of the 162 kN and 233 kN Wheel Loads 

with Material Hardening 

Fatigue indexes for the case of 233 kN wheel load, in overall, are greater than 

those in the case of 162kN wheel load. The area coverage of fatigue index contours and 

the peak fatigue index are greater as wheel load increases from 162 to 233 kN for both 

near-surface and subsurface regimes, possibly suggesting more fatigue damage in the 

rail head. Because the changes of fatigue index contours for different values of   are 

qualitatively the same, only the case of   = 3, shown in Fig. 4.3 and Fig. 4.9, are used 

for the following discussion, in order to cover both near-surface and subsurface 

phenomena. As wheel load increases from 162 to 233 kN, the fatigue crack nucleation 

sites found at near running surface slightly move to greater depth, approximately from 2 

to 4 mm below running surface. Two sites of surface crack nucleation are observed in 

both cases. 

Similarly, as wheel load increases from 162 to 233 kN, the regime that 

subsurface fatigue cracks nucleate also move to greater depth, increasing from a range 

between 11 - 13 mm to 14 - 16 mm. The change to greater depth coincides with the 

change of the location of peak tensile residual stresses from rolling contact due to an 

increasing wheel load, presented in Chapter II. Unlike the case of 162 kN wheel load, 

the peak value of fatigue index for the 233 wheel load is more comparable to that found 
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at near running surface. This is due to a greater increase of tensile residual stresses (at 

subsurface) compared to the increase of compressive residual stresses (at near surface), 

as wheel load increases from 162 to 233 kN.  

The critical plane predictions of possible crack sites, at both near surface and 

subsurface, are slightly different for both wheel loads. Approximately, surface fatigue 

cracks will nucleate along the horizontal plane, and subsurface fatigue cracks will form 

along the resultant plane between the vertical and horizontal planes.  

In conclusion, by using the modified Fatemi-Socie fatigue criterion, an increase 

of wheel load would increase fatigue damage in rail head in overall, but not uniformly. 

The increase of fatigue damage at subsurface is more pronounced.  

 

4.4.5 Influence of Shear Strain Amplitude and Normal Stress Components on 

Modified Fatemi-Socie Fatigue Index 

A study of mechanisms of surface and subsurface fatigue crack nucleation within 

a rail head is presented in this section. The modified Fatemi-Socie fatigue criterion is 

decomposed into two components—shear strain amplitude term and normal-stress-

modified shear strain amplitude term—as defined below. 

 Shear strain amplitude term:  
2
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 Normal-stress-modified shear strain amplitude term:  
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Fig. 4.11, again, presents the modified Fatemi-Socie fatigue index contour of the 

162 kN wheel load (  = 3) during the sixth loading cycles, along with its corresponding 
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contours of shear strain amplitude and normal-stress-modified shear strain amplitude. By 

adding node-by-node results of Fig. 4.11(b) and 4.11(c)—the shear strain amplitude and 

normal-stress-modified shear strain amplitude contours, the resultant modified Fatemi-

Socie fatigue index contour is presented in Fig. 4.11(a). Also, note that the Fig. 4.11(a) 

is reported in different scale from the one previously shown.  

 

(a) 

Fig. 4.11. Modified Fatemi-Socie fatigue index and its shear strain amplitude and normal stress 

component contours ( = 3) of the 162 kN wheel load at the sixth loading cycle by searching 

selected plane at all nodes. 
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(b) 

 

(c) 

Fig. 4.11. Continued. 
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Comparing these three contours, the surface crack nucleation site agrees with the 

shear strain amplitude contour, while the subsurface crack nucleation is influenced by 

both the shear strain amplitude and normal stress. The conclusions of fatigue damage 

mechanism in a rail head according to the modified Fatemi-Socie fatigue criterion are 

that follow.  

 Shear strain amplitude component dominates the nucleation of cracks at 

near surface, due to large strains and displacements at near wheel-rail 

interface.  

 Both shear strain amplitude and normal stress promote the nucleation of 

cracks at subsurface—approximately at 11 - 13 mm below running 

surface in this case—partly due to an influence from tensile residual 

stresses in this region.   

 

4.4.6 Evaluation of   for a Pearlitic Rail Steel 

All discussions made prior to this section are based on general fatigue and 

mechanical behavior of metallic material. The predicted rolling stress results include 

effects from material hardening through the formation of residual stresses, but do not 

represent effects from implicit material behaviors, such as hardness and variation of 

strength across a rail cross-section. The nucleation of subsurface cracks heavily depends 

on the participation of normal stress term, defined by  , in the modified Fatemi-Socie 

fatigue criterion. The greater the   is, the greater the fatigue index at subsurface is 

predicted, which, cumulatively, may cause subsurface cracks in long term.  
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The amount of   that represents fatigue behavior of typical pearlitic rail steel 

can be determined from a regression analysis between the modified Fatemi-Socie fatigue 

index and fatigue life data of various loading configurations: uni-axial, torsion-axial, and 

bending, for rail steel. The proper value of   is the one that gives the best linear fitting 

of a log-log plot between the modified Fatemi-Socie fatigue index and fatigue life. Using 

the same set of fatigue test results previously used in Chapter III, Fig. 4.12 presents the 

result of a regression analysis for  = 1, where the calculated least square error is 

minimized. Result agrees with those reported by Park and Nelson [65] for various types 

of alloyed steel— varying from 0 to 2. Stephens et al. [67] also recommend using   = 

1 for a first approximation when fatigue test data is not available. A fatigue-life equation 

of rail steel for Fig. 4.12 can be written as the following equation. 

                               
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     where   N   is the number of cycles to fatigue failure                                                                                                                                                                       
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 is the modified Fatemi-Socie fatigue index                       

As a result, in this study, assuming no surface wear and artificial grinding, 

fatigue cracks tend to nucleate at near surface first as shown in Fig. 4.3 and 4.9. 

However, there is still a smaller but finite accumulation of fatigue damage at subsurface, 

which is likely to be increasingly dominant with a presence of material imperfections or 

discontinuities that may act as a stress-riser.  
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Fig. 4.12. A log-log plot between the modified Fatemi-Socie fatigue index and number of cycles 

to failure for  = 1. Fatigue test data are taken from various literatures.  

 

4.4.7 Fatigue Index at Three Orthogonal Planes 

Using rolling stress-strain results at the sixth loading cycle of the 162 kN wheel 

load for a fatigue analysis with  = 1, Fig. 4.13 shows contours of the modified Fatemi-

Socie fatigue index of three different planes—the horizontal, vertical, and transverse 

planes—that are often used to classify types of defects in railroad rails (Sperry Rail 

Service [2]). Note that the contours are presented in different scales. The direction of 

cosines of the horizontal, vertical, and transverse planes are (0, 1, 0), (0, 0, 1), and (1, 0, 

0) respectively. Among these three planes, the fatigue index at near surface predicted in 
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the horizontal plane is the largest (Fig. 4.13(a)), approximately twice as large as the peak 

fatigue indexes found in the vertical and transverse planes. Hence, surface shelling is 

likely to be a failure mode under this circumstance. 

 

 

(a) 

Fig. 4.13. Modified Fatemi-Socie fatigue index contour ( = 1) of the 162 kN wheel load at the 

sixth loading cycle, in different scales, at (a) horizontal plane, (b) vertical plane, and (c) 

transverse plane. 
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(b) 

 

(c) 

Fig. 4.13. Continued. 
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For a perfect rail head, a significant amount of fatigue index in the vertical plane 

(Fig. 4.13 (b)), similar to the vertical split head, is predicted along regions to the left and 

the right of the wheel-rail contact point, from running surface down to subsurface 

region, with greater localization at subsurface. Whereas, subsurface fatigue crack 

nucleation are dominant for the transverse plane (Fig. 4.13 (c)). Fatigue damages on the 

vertical and transverse planes may become dominant by a presence of material 

imperfections or discontinuities due to manufacturing process. The increase of fatigue 

index and change of the corresponding critical plane as a result of stress riser from 

discontinuities at subsurface can be determined by the Eshelby equivalent inclusion 

method (Eshelby [71]). Examples of the modified Fatemi-Socie fatigue index contours 

when there are spherical pores at subsurface are given in Appendix A.  

 

4.4.8 Comparisons between the Stress-Based and Strain-Based Critical Plane 

Approaches  

The Findley fatigue criterion, a stress-based critical plane approach, is defined as 

a linear combination of the shear stress amplitude and the factorized normal stress. As 

discussed in Chapter III, the criterion works well for predicting subsurface crack 

nucleation dominated by high-cycle fatigue, while it is not applicable to surface crack 

nucleation dominated by low-cycle fatigue. For the modified Fatemi-Socie fatigue 

criterion, which is a strain-based critical plane approach, on the other hand, an influence 

of the normal stress on fatigue damage is nonlinear. A ratio of normal stress and yield 

strength is factorized and added by 1, for a single normal-stress induced term that will be 
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used to multiply with the shear strain amplitude. The criterion is applicable to both high-

cycle and low-cycle fatigue applications. 

For both the 162 kN and 233 kN wheel loads with material hardening, in overall, 

the contours of Findley fatigue index and modified Fatemi-Socie fatigue index are 

qualitatively similar. Both criteria agree well in the critical plane predictions of both 

near-surface and subsurface fatigue cracks. Area coverage of the fatigue contours and 

the peak fatigue index increase as wheel load increases from 162 to 233 kN. The 

predicted fatigue indexes are localized at near surface when the participation of normal 

stress is small—  = 0 and 0.3 for the Findley fatigue criterion, and   = 0 and 1 for the 

modified Fatemi-Socie fatigue criterion, with a finite amount of fatigue index at 

subsurface. As the participation of normal stress increases—  = 0.5 and 0.7 for the 

Findley fatigue criterion, and   = 3 and 5 for the modified Fatemi-Socie fatigue 

criterion, both criteria predict another site of fatigue crack nucleation at subsurface, 

located at the same depth where the largest tensile residual stress resides. However, 

predictions of the near-surface fatigue cracks are different. The modified Fatemi-Socie 

fatigue criterion predicts two near-surface crack nucleation sites, while the Findley 

fatigue criterion predicts only one. 

Because fatigue indexes calculated from both approaches are represented in 

different units, a quantitative comparison of fatigue indexes must be done in term of 

fatigue index per loading cycle, which relates to the fatigue-life equations:  Eq. (14) for 

the Findley fatigue criterion, and Eq. (17) for the modified Fatemi-Socie fatigue 

criterion, instead. For typical pearlitic rail steel, Fig. 4.14(a) and 4.14(b) present contours  
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(a) 

 

(b) 

Fig. 4.14. Contours of fatigue index per loading cycle for the 162 kN wheel load using: (a) 

Findley fatigue criterion ( = 0.3), and (b) modified Fatemi-Socie fatigue criterion ( = 1). 



 114 

of fatigue index per loading cycle calculated using the Findley fatigue criterion (  = 

0.3) and the modified Fatemi-Socie fatigue criterion (  = 1) respectively, for the 162 kN 

wheel load. The result shows that the modified Fatemi-Socie fatigue criterion predicts 

larger fatigue index per loading cycle than the Findley fatigue criterion. Note that, 

ideally, the fatigue index per cycle contours (Fig. 4.14(a) and 4.14(b)) should look very 

similar to the maximum fatigue index contours (Fig. 3.3 and 4.2) respectively. However, 

it is found that the contours of fatigue index per cycle are more localized to near-surface, 

while they are hardly observed at subsurface. These deviations are due to a nonlinear 

relationship between fatigue index and fatigue life such that a small change of fatigue 

index could result in much larger change of fatigue life; therefore, the fatigue index per 

cycle contours and the maximum fatigue index contours are represented with different 

resolutions. 

Due to its validity in both low-cycle and high-cycle fatigue regimes and its 

capability to incorporate residual stresses into subsurface crack predictions, the modified 

Fatemi-Socie fatigue criterion, with   = 1, will be applied to study fatigue damages in a 

rail head for various amount of wheel loads in the Chapter V. Results will be used to 

develop a set of grinding schedules that maximize the service life of railroad rails. 

The differences between the multi-axial fatigue model proposed in this study and 

the T-gamma method (Tunna et al. [10], Kalker [72], and Iwnicki [73]) should also be 

noted here. Using vehicle dynamics simulations, the T-gamma method calculates ‘wear 

number’ as a product of applied traction (T) and creepage (gamma—defined as the 

difference in velocities of contacting surfaces with respect to their mean velocity 
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(Clayton and Hill [74])). The calculation provides an energy input that goes into plastic 

deformation and crack nucleation processes in the rail head and can be correlated to field 

observation of wear and RCF. In contrast to the proposed multi-axial fatigue model, 

which is the critical plane based approach and is capable to predict RCF in rail head at 

depth greater than 3 mm below running surface, the T-gamma method is energy-based 

and focuses on wear and RCF phenomena at or close to the running surface that is 

expected to be ground-out in this study. That is, the T-gamma method is intended to 

capture the surface behavior of the contact patch between a wheel and a rail. It may be 

possible to use the T-gamma method for the prediction of wear due to operations and 

incorporate the predicted wear results to rail grinding schedules. Defined in term of 

plastic shear strain accumulation, a similar model for wear and RCF prediction at or 

closed to running surface is given by Vasic et al. [75].      

 

4.5 Conclusions 

Conclusions on the modified Fatemi-Socie fatigue criterion 

 The modified Fatemi-Socie fatigue criterion is able to incorporate residual 

stresses and strains into subsurface crack predictions, and it is applicable to 

both low-cycle and high-cycle fatigue applications.  

 For both the 162 kN and 223 kN wheel loads, larger fatigue index at 

subsurface is predicted when accounting for residual stresses and strains. In 

some cases, this may serve as another possible crack nucleation site. 
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 As the participation of the normal stress term in the modified Fatemi-Socie 

fatigue criterion is low, the shear strain amplitude term dominates near-

surface crack nucleation, representing a failure mechanism of materials with 

high ductility. 

 As the participation of the normal stress term in the modified Fatemi-Socie 

fatigue criterion is high, both the normal stress and shear strain amplitude 

promote subsurface crack nucleation, representing a failure mechanism of 

relatively brittle material. However an application of the criterion to tensile-

based damages is limited, as it is originally formulated according to shear-

based damages.  

 At near surface, the plane of fatigue crack nucleation is similar to surface 

shelling, while the one at subsurface is a mixed mode between the vertical 

and horizontal planes similar to longitudinal cracks. 

 The normal coefficient of typical pearlitic rail steel, defined by  , is 

approximately equal to 1. Fatigue index at subsurface is smaller but finite 

compared to that found at near surface for this case.    

 

Conclusions on a comparison between the Findley and modified Fatemi-Socie fatigue 

criteria 

 Fatigue index contours predicted by both criteria are qualitatively similar. 

 Both criteria agree well in critical plane prediction of both near-surface and 

subsurface fatigue cracks. 
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 As subsurface fatigue crack is increasingly observable, the modified Fatemi-

Socie fatigue criterion predicts two near-surface crack nucleation sites: one to 

the left and another to the right of wheel-rail contact as looking into the 

transverse plane, while the Findley fatigue criterion predicts only one, located 

right below the wheel-rail contact. 

 The modified Fatemi-Socie fatigue criterion predicts larger fatigue index per 

loading cycle in rail head than the Findley fatigue criterion does. 
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CHAPTER V 

OPTIMIZATION OF GRINDING SCHEDULES 

 

5.1 Introduction 

Olver [76] classifies rolling contact fatigue (RCF) phenomenon in railway tracks 

as: 1) surface cracks, 2) subsurface cracks, 3) gauge corner cracks, 4) wear, and 5) 

complete fracture of rail. Localized plastic deformation from wheel-rail contact is 

considered as a root cause of the surface crack nucleation, either by low-cycle fatigue 

(LCF) or ratcheting (Grassie et al. [5], Smith [6], and Kapoor et al. [7]). When visible 

surface-type RCF cracks present, it can be eliminated by conventional corrective rail 

grinding through an appropriate routine maintenance, or a portion of rail can be cut-out 

and replaced by a new rail section. In contrast, the subsurface-type RCF cracks in rail 

head are hardly detected by visual inspection and can cause abrupt failure in rails when 

they go undetected (Tunna et al. [10], Ekberg and Kabo [11], and Smith [6]).  

Results from fatigue analyses with critical plane approaches in Chapter III 

(stress-based) and Chapter IV (strain-based) show that tensile residual stresses found in 

rail head at subsurface region play a damaging role on fatigue life of rails. Larger fatigue 

damages—represented in term of fatigue index—are predicted when a presence of 

various shapes and types of inhomogeneities and pores are considered (Fry et al. [12]). 

These subsurface fatigue damages accumulate as loading cycles increase until they 

eventually form incipient fatigue cracks that could lead to rail fracture and failure. The 

current corrective grinding method does not incorporate the accumulation of subsurface 
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fatigue damages mentioned above; therefore, it mistakenly regards the newly after-

grinding rail section as a damage-free rail, only with a shorter rail head, and fails to 

control the nucleation of subsurface cracks.  

As shown in Chapters III and IV, without rail grinding, fatigue damages tends to 

accumulate within a limited regime, whether for the case of 1) the surface-crack 

dominated mode found in ductile materials, or 2) the combined surface and subsurface 

crack mode found in brittle materials. An increase of wheel load tends to move the 

location of peak fatigue index to greater depth, but with a relatively small influence. In 

this chapter, a systematic study of the influence of rail grinding on fatigue life of typical 

pearlitic rail steel is conducted. One-point contact configuration found in a tangent rail is 

assumed, and natural wear from wheel-rail contact is considered negligible. Using 

fatigue index per cycle results determined from the modified Fatami-Socie fatigue 

criterion for rail steels in Chapter IV, this chapter intends to: 1) investigate the benefits 

of rail grinding on fatigue life of rails , 2) create a framework of an optimization of rail 

grinding schedule with genetic algorithm (GA) that is applicable to one-point wheel rail 

contact mode and its variations, and 3) provide a set of rail grinding schedules that help 

maximizing the service life of rails before making rail replacements for the current case 

of study.    
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5.2 Rail Grinding Practice for Rolling Contact Fatigue 

5.2.1 Introduction to Rail Grinding 

Corrective rail grinding has been a common practice in railroad industry to 

eliminate surface cracks due to RCF, remove rail corrugations, and reshape rail heads 

(Frohling [77] and Grassie [78]). Grinding an amount of rail surface prohibits crack 

propagations, reduce dynamic loads due to rail corrugations, and reduce concentrated 

loads occurred in a contact between the deformed wheel and rail profiles (Magel et al. 

[79]). These help prolong the service life of rail, and also prevent unexpected failures of 

rail from surface crack propagations, which could lead to undesirable accidents or 

derailments. However as it mainly relies on visual inspection, application of the 

corrective grinding approach is limited for subsurface cracks. The proposed preventive 

grinding, instead, is designed to prevent the nucleation of cracks—both at surface and 

subsurface—throughout the service life of rail, and will be the area of focus in this 

chapter.  

To find an optimal preventive grinding plan, researchers are interested in two 

main questions (Grassie et al. [5]). The first question is: what is the optimal grinding 

schedule, covering both frequency and amount of material to be ground out? The second 

question is: what rail profiles should be used for grinding to minimize impact load from 

wheel-rail contact? This project intends to deal with only the first question of the optimal 

grinding schedule and will assume that the profile of running surface of rail remains the 

same as the original one throughout grinding process. 

 



 121 

5.2.2 Corrective Grinding Versus Preventive Grinding  

 The original grinding practice—called ‘corrective grinding’—are designed 

mainly to eliminate visible fatigue cracks as soon as they are detected (Magel et al. 

[79]). This method tends to grind out relatively large amount of material in each 

grinding cycle and still leaves a possibility of the failure from subsurface fatigue crack 

propagations, if they are undetected. To overcome such pitfalls in corrective grinding, 

‘preventive grinding’ is introduced with different philosophy. In preventive grinding, 

relatively thin layers of material at running surface are ground out frequently, working 

together with the natural wear, to prevent the nucleation of surface and subsurface cracks 

at the same time. A study of the influence of rail grinding on surface and subsurface 

crack nucleation is done by Satoh and Iwafuchi [80] by monitoring the micro-structural 

change within rail heads. Using the Findley fatigue criterion and including the residual 

stresses from measurements to an elastic rolling result, Jones [81] presents an analytical 

study suggesting that fatigue life of rails could increase by 200% when the preventive 

rail grinding is applied. 

Preventive grinding is considered as artificial wear, in addition to the natural 

wear occurred in wheel-rail contact. Proper combinations of the controlled artificial wear 

and natural wear—yielding what so called ‘Magic Wear Rate’—in which together, 

theoretically, create an amount of wear required to just remove existing cracks on the 

running surface (Kapoor and Franklin [82], and Magel et al. [79]). If the combined wear 

rate is too small, surface cracks will either possibly grow upward to the running surface 

or downward into the rail head. The preventive rail grinding is currently planned based 
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on intuitive, experience, or historical data, without consideration of the possible 

subsurface fatigue crack nucleation.  In this study, the proposed rail grinding schedules 

will represents only the artificial wear, with an assumption that the natural wear is 

minimal, and it will also take subsurface crack nucleation into consideration. Note that 

the amount of grinding in each grinding step also could be regarded as a combination of 

artificial and natural wears, if the amount of natural wear is known.   

The Canadian Pacific Railway (CPR) presents that the ‘Magic Wear Rate’ in 

sharp curves is about 0.025 mm per Mega Gross Ton (MGT), providing approximately 

750 MGT wear life for total allowable wear of 19 mm (Magel et al. [79] and Sroba et al. 

[4]). On the tangent tracks and mild curves, Magic Wear Rate decreases to 0.008 mm 

and 0.016 mm per MGT respectively. Ishida et al. [83] present that after the Central 

Japan Railway adopts a preventive grinding approach with grinding thickness of 0.08 

mm for every grinding interval of 40 MGT, the number of squats—a type of surface 

defect (Sperry Rail Service [2])—has been steadily decreasing. However, the 

aforementioned grinding are designed mainly from experience, and it is still 

controversial among researchers that which of the following options would extend the 

fatigue life of rail better: 1) removing large amount of material with longer grinding 

interval, and 2) removing small amount of material with shorter grinding interval. This is 

also an issue to be investigated in this study through an optimization of grinding 

schedules. 

Compared with other grinding methods, preventive grinding is arguably the most 

cost-effective grinding strategy without sacrificing safety (Frohling [77]). Grassie et al. 
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[5] provide a supporting calculation that a preventive grinding strategy with the rate of 

metal removal of 0.2 mm per 25 MGT could reduce the total cost of grinding and rail 

replacements by 40% for the Sweden’s heavy haul railway. Sroba et al. [4] also report a 

reduction in yearly maintenance cost of the Canadian Pacific Railway (CPR), from $81 

to $65 millions, and 300% increase of service life of rail when the preventive grinding is 

used (compared with the corrective grinding approach). 

 

5.3 Optimization of Grinding Schedules with Genetic Algorithm 

Genetic algorithm (GA) is a population-based optimization method that simulates 

natural evolution according to various parameter-controlled stochastic processes. Aarts 

and Lenstra [84], Eiben and Smith [85], and Mitchell [86] present comprehensive 

reviews on theory and applications of the single-objective optimization with GA. Eiben 

et al. [87] and Reed et al. [88] provide guidelines for parameter setting and control for 

re-combination, mutation, parent-selection, and survivor selection steps. A study by 

Eiben and Schippers [89] present capabilities of GA to find the global-optimal solution 

with a combined use of re-combination and mutation processes. Solutions to an 

optimization problem, called individuals, are encoded into a chromosome-like format 

that is able to capture the change in the solution-search landscape. Exploration in 

feasible region is performed by the mutation operators, which could abruptly change the 

components of individuals, therefore help preventing the optimization from getting stuck 

within the local optima. In contrast, re-combination operators tend to encourage the 

exploitation by combining good characteristics of two or more parents, giving the local 
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search capability. In this study, individuals are evolved only by mutation operators, 

which parameters will be adjusted accordingly for the global and local searches.    

Persson and Iwnicki [90] apply GA to a design of railway wheel profiles by 

using a binary representation for individuals, and use a combination of contact stresses, 

wear, and stability of a railway truck as a fitness function (the quality of the solution). 

An application of GA on surface grinding operations of machine tools studied by 

Saravanan et al. [91] shows that GA outperforms the quadratic programming technique 

in cost optimization. Also, GA is reported to be more robust and more efficient in 

handling multi-objective functions. A comparison of the optimal solution from GA to 

other evolutionary computation techniques on the previous grinding problem is 

presented by Asokan et al. [92]. In this chapter, GA is applied to optimize a single-

objective function of the service life of rail according to various constraints: i.e. total 

allowable grind-out thickness, grinding resolution, and maximum fatigue index 

accumulation.  

 

5.4 Optimization Problem Formulation 

 Define indexes as: 

 N  = number of grinding steps   (N = 4, 5, 8, 10, 15, 20)      

 P  = number of representative wheel loads (P = 5) 

 i   = order of grinding step   (i = 1,…,N) 

 j   = representative wheel loads  (j = 1,…,M) 

 k  = order of nodes of interest in rail head  (k = 1,…,861) 
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The decision variables are: 

 xi  = number of ‘loading unit (LU)’ applied before the i
th

 grinding step 

 yi  = grinding thickness of the i
th

 grinding step in millimeters 

 r   = remaining fatigue life in LU before fatigue crack nucleation 

 The input parameter from fatigue analysis performed in previous chapter is: 

fk,i,j = fatigue index (damage) per LU at node k at the i
th

 grinding step for                 

the j
th

 wheel load 

 The optimization problem of rail grinding schedules can be written as: 

  max 


N

i 1

 xi + r   (total fatigue life in LU) 

s.t. 


N

i 1

 yi = 20   (total allowable grinding thickness) 

 


N

i 1




P

j 1

 xi fk,i,j < 1  , k = 1,…,861 

     (damage accumulation at each node) 

 xi = 0.1, 0.2,…,∞  (discrete) 

 yi = 1, 2,…, 20  (integer)  

 r  = 0.1, 0.2,…,∞  (discrete) 

 

The objective of the optimization is to maximize the total fatigue life—defined in 

term of LU—with respect to the specified constraints. The equality in the total allowable 

grinding thickness constraint is a result of intuition and experience, which suggest a 

direct relationship between allowable grinding thickness and fatigue life of rails. The 
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resolution of the total fatigue life is 0.1 LU in this study to limit the feasible region of 

the optimization. Genetic algorithm (GA) is selected as a tool to solve this optimization 

problem and will be discussed in the next section.   

 

5.5 Procedures 

5.5.1 Representative Wheel Loads 

In order to study the benefit of surface grinding on fatigue life of rails, a group of 

representative dynamic wheel loads and their corresponding number of wheel passages 

is chosen to represent a typical distribution of wheel loads and loading frequencies in a 

heavy-hauled corridor. Based on a field measurements of a train with a 173 kN wheel 

load passing at 64 km/h reported by Joy et al. [93], five representative dynamic wheel 

loads of 125, 144, 162, 180, and 197 kN, and their corresponding number of wheel 

passages of 730, 6150, 13820, 8450, and 1390 respectively are statistically selected to 

represent a loading spectrum in discreet manner. This altogether presents a loading unit 

(LU) that will be used as a measure of total fatigue life in the optimization step. 

Finite element analyses of wheel-rail contact and fatigue damage analyses with 

the Fatemi-Socie fatigue criterion are performed for each wheel load for the fatigue 

index per cycle results. Fatigue index per cycle is determined by Eq. (17) presented in 

Chapter IV for typical pearlitic rail steel with   = 1. Frequencies of loading per 1 LU 

will be used to calculate the total fatigue index accumulation per LU for each wheel 

load. Assuming linear combinations of fatigue accumulation among all wheel loads with 

the Miner’s rule (Bannantine et al. [48]), combining total fatigue index of all five 
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representative wheel loads gives the total fatigue damage as a result of 1 LU. The larger 

the number of LU a railroad rail can withstand, the longer the fatigue life is, and the 

better the grinding schedule performs. Since rail steel is considered as a brittle material, 

crack nucleation and early growth processes consume most of its fatigue life, and 

material will fail when the total fatigue index accumulation of such a point of interest in 

the rail head reaches unity. Note that the Miner’s rule is used in this study for 

simplification, such that fatigue index results from different wheel loads are linearly 

combined regardless of the order of loading.  

It should be noted that the fatigue index calculated from the Fatemi-Socie fatigue 

criterion could be either positive or negative, depending on the amount of compressive 

stress at the node of interest. Positive fatigue index indicates the deterioration of the rail, 

while negative fatigue index will extend the fatigue life of rail, which may not be 

realistic. In this study, wherever the fatigue index is negative will be forced to be zero 

fatigue index, providing conservative optimal grinding schedules. 

 

5.5.2 Influence of Rail Grinding on Rolling Contact Stresses 

An optimization of rail grinding is designed according to a grinding resolution of 

1 mm in thickness. As a result, RCF results for every grinding step are required as an 

input of the optimization. For example, given that there are five representative wheel 

loads with 20 mm allowable grinding thickness, total number of simulations required to 

create a database of fatigue index at different stages of grinding is 105 cases. For each 

simulation, six rolling cycles is required for residual stresses to reach the steady state. 
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Such an amount of simulation of wheel-rail contact with material plasticity is very 

computationally expensive, and perhaps, prohibitive. Instead, an assumption that there is 

no significant change of the rolling stresses in rail head among different stages of 

grinding is made, such that mapping of the rolling stresses and strains of the original rail 

profile to other grinding steps is allowed. This will reduce the number of simulations 

required to 5 cases. In order to validate this assumption, a finite element analysis of a rail 

being ground out for 15 mm with the same running surface profile, shown in Fig. 5.1, is 

performed for three rolling cycles. The von-Mises stress results from the simulation and 

the one with the original rail profile are compared to validate the proposed assumption. 

 

 

Fig. 5.1. A rail profile after 15-mm-ground-out. 

 

5.5.3 Fatigue Index Database Preparation 

There are 861 nodes of interest (41 rows and 21 columns) in the center of rail 

head of a cross-section located at the middle of rolling path as previously shown in Fig. 
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2.8(b) in Chapter II. For each representative wheel load, a relationship between the 

Fatemi-Socie fatigue index and fatigue life (Eq. (17)) for typical pearlitic rail steel is 

used to determine number of cycles to crack nucleation of all nodes in the original (no-

grinding) rail profile. Calculated as a reciprocal of number of cycles to failure, the 

fatigue index per cycle is stored in a database as the step before first grinding. Counting 

from running surface, mapping the result of nodes in the first row (21 nodes) to the 

second row, the second row to the third row, and so on gives a result of fatigue index per 

cycle after grinding the running surface out for 1 mm. Now the first row of nodes is 

considered to be ground out and imposed by zero fatigue index as no further fatigue 

damage accumulation. Mapping process is performed repeatly for the cases of 2 mm-

grinding, 3 mm-grinding, and so on until 20 mm-grinding—the final step. At the end, a 

database of grinding process of all representative wheel loads is stored for using in the 

optimization of grinding schedules by tracking fatigue damage accumulation at each 

node throughout the grinding process. 

 

5.5.4 Representation of Individuals for Genetic Algorithm 

Information of an individual (a solution to the problem) needs to be properly 

encoded into a format that allows the variation of each unit of the individual. In this 

study, since the objective is to maximize the total loading unit allowed before any cracks 

would nucleate, individuals are encoded into a chromosome-like string with units 

representing: 1) amount of loading unit (LU), and 2) incremental grinding thickness 

(mm) for every grinding step. Fig. 5.2 presents an example of individual with 3 grinding 
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steps. Note that the amount of loading unit at the end of individual (1.5 LU in Fig. 5.2) 

indicates the remaining fatigue life of rail after final grinding before crack nucleation. 

The total allowable grinding thickness is 20 mm in this study.  

 

3.5 LU 10 mm 1.8 LU 3 mm 2.6 LU 7 mm 1.5 LU 

 

 

 

Fig. 5.2. A schematic representation of an individual with 3 grinding steps for GA. 

 

Lengths of the string of individuals vary as the total number of grinding step 

changes. For example, an individual representing four-grinding-step schedule will 

consist of nine units, while an individual representing six-grinding-step schedule will 

consist of thirteen units. General information about grinding schedule: i.e. total grinding 

thickness, total loading units, and direction cosines of a plane of a node with largest 

fatigue index is appended to individuals, but they do not involve in evolutionary process. 

A set of number of individuals is called population. 

The following is an example of the calculation of fatigue index accumulation of 

all nodes of interest due to the 3-step grinding schedule shown in Fig. 5.2. Firstly, total 

number of wheel passages for 3.5 LU is calculated for each wheel load. Using the 

fatigue index per cycle result of the no-grinding case in the database, fatigue index 

accumulation for each wheel load is determined, and combined into the total fatigue 

1
st
 grinding step 2

nd
 grinding step 3

rd
 grinding step 
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index accumulation for the no-grinding step. Repeating the same procedure for the first 

grinding step with 1.8 LU, but using the fatigue index per cycle result of 10 mm-

grinding case instead, yields additional fatigue index accumulation after the first 

grinding step. Similarly, with additional 3 mm and 7mm grinding in the second and third 

grinding steps, the fatigue index per cycle result of 13 and 20 mm-grinding cases are 

used for fatigue calculations corresponding to the 2.6 and 1.5 LU respectively. For this 

individual, the total grinding thickness is 20 mm (10 mm + 3 mm + 7 mm), and the total 

allowable loading unit is 9.4 LU (3.5 LU + 1.8 LU + 2.6 LU + 1.5 LU). However, the 

feasibility of this individual must be checked if it satisfies the imposed constraints. In 

this study, the constraints are: 1) the upper and lower bounds of total allowable loading 

units, and 2) total fatigue index accumulation of each node must be not greater than 

unity. An individual is considered infeasible if it violates any of the constraints, and 

must be adjusted accordingly. Note that, as described earlier, the total grinding thickness 

is forced to remain 20 mm during evolution processes. 

 

5.5.5 Deterministic Grinding Schedules with a Constantly Fixed Loading Unit and 

Grinding Thickness  

A deterministic approach is applied to study a grinding strategy that is least 

complicated to implement. This is similar to grinding plans currently applied in railroad 

industry, but designed from fatigue damage analyses, instead of pure intuition or 

experience. Constrained by the 1 mm grinding resolution, a non-integer grinding 

increment is not allowed in this study; therefore, for a total grinding thickness of 20 mm, 
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only 4, 5, 10, and 20 grinding steps are investigated. The loading unit (LU) is presented 

in one decimal place throughout this chapter. 

 

5.5.6 Optimization of Grinding Schedules with Genetic Algorithm  

Two optimization strategies with different type of starting populations are 

applied in this study. Considered as a knowledge-based approach, the first strategy uses 

a set of individuals created by the deterministic approach in 5.4.5 as a starting 

population. In contrast, the starting population in the second searching strategy is 

randomly created, providing more diversified group of individuals in the feasible region; 

thus, encouraging global search and avoiding the solution to get stuck in local optima.  

 

5.5.6.1 Optimization with Deterministic Starting Population 

The deterministic and heuristic methods are synergistically used in the 

optimization. First, the domain of solution searches will be narrowed down by the 

deterministic approach previously used in 5.5.5; therefore, only 4, 5, 10, and 20 grinding 

steps can be investigated. The deterministically-created starting populations are given in 

Appendix B. These starting populations will be improved by either: 1) mutating only LU 

components or 2) mutating both LU and grinding thickness components, according to 

stochastic algorithms that control the probability to choose which component to be 

mutated and its corresponding amount of mutation. The mutation of each LU 

components are independent from each other, while the mutation of grinding thickness 

components must be done in pair such that an increase of a unit must follow a decrease 
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of the same amount, or vice versa, of another unit to maintain a total grinding thickness 

of 20 mm. In this study, the searching of solution consists of two consecutive steps: 1) 

evolutions with relatively large mutation rate to explore feasible region until no 

significant improvement is found, and 2) evolutions of the population from the first step 

with relatively small mutation rate for a local search. Parameters used in both steps are 

given in Appendix C. Fig. 5.3 is the schematic of optimization procedures. With 20 

individuals in starting population, the procedures of both evolutionary steps are the 

same, as that follows. 

1. Stochastically mutate the LU components or grinding thickness components 

of all individuals in the original population. The twenty newly created 

individuals must satisfy all imposed constraints. Note that after a certain 

number of mutation trials, if a new feasible individual from mutating an 

original individual cannot be found, a feasible individual from the ‘backup’ 

population (another set of pre-defined feasible solutions) will be brought in 

as a new individual instead.  

2. Combine the new set of individuals to the original population, yielding a set 

of forty individuals. Sort all individuals in descending order respected to the 

total LU allowed (the objective function).   

3. Select individuals for the new generation of population according to the 

following selection method: 1) six individuals randomly picked from the first 

top ten individuals of sorted list, 2) six individuals randomly picked from a 

set of individuals ranked from 11 to 20, 3) four individuals randomly picked  
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Fig. 5.3. A schematic showing optimization procedures with GA. 
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from a set of individuals ranked from 21 to 30, and 4) four individuals 

randomly picked from a set of individuals ranked from 31 to 40. 

4. Check against the desired improvement rate if there is an improvement on 

either the maximum or the average of the total LU allowed in the new 

generation of individuals. 

5. Repeat step 1 to 4 until no improvement is found for certain consecutive 

trials. 

 

5.5.6.2 Optimization with Randomly-Created Starting Population 

A set of twenty individuals are randomly generated for the cases of 4, 8, 10, and 

15 grinding steps to be the starting population. Individuals must not violate the 

following constraints. 

1. Loading unit must be presented in one decimal place. 

2. Total grinding thickness must equal to 20 mm. 

3. Fatigue damage accumulation in every node must not greater than unity. 

4. No repetition of individuals. 

Using above individuals as the starting population, the optimization of grinding 

schedules is performed as steps described in 5.5.6.1.  
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5.6 Results and Discussion 

5.6.1 Fatigue Index per Loading Cycle of the Representative Wheel Loads 

Applying the Fatemi-Socie fatigue criterion to the rolling stress results from the 

sixth rolling cycle of all five representative wheel loads, Fig. 5.4 - 5.8 show their 

corresponding contours of fatigue index per loading cycle, which are determined by Eq. 

(17) for typical pearlitic rail steel with   = 1. In general, greater amount (cross-section 

area) of material that experiences damage—both in width and depth—is predicted as 

wheel loads increase. In term of magnitude, similarly, the peak fatigues index presented 

at 2-3 mm below running surface are proportional to the wheel load up to 162 kN. Then 

as the fatigue index contours grow deeper to subsurface region, a drop of peak fatigue 

index at near-surface is observed when wheel loads change from 162 to 180 kN, 

possibly considered as the critical wheel load range where the subsurface fatigue cracks 

start to become another possible mode of failure. The increase of fatigue index is 

proportional to wheel loads again after this critical point. According to above 

observations, subsurface fatigue cracks would be increasingly common in the heavier 

wheel loads. 
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Fig. 5.4. A contour of maximum fatigue index per loading cycle with the 125 kN wheel load for 

a typical rail steel ( = 1).  

 

Fig. 5.5. A contour of maximum fatigue index per loading cycle with the 144 kN wheel load for 

a typical rail steel ( = 1).  
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Fig. 5.6. A contour of maximum fatigue index per loading cycle with the 162 kN wheel load for 

a typical rail steel ( = 1).  

 

Fig. 5.7. A contour of maximum fatigue index per loading cycle with the 180 kN wheel load for 

a typical rail steel ( = 1).  
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Fig. 5.8. A contour of maximum fatigue index per loading cycle with the 197 kN wheel load for 

a typical rail steel ( = 1).  

 

5.6.2 Fatigue Life of Rails without Rail Grinding 

Without an application of rail grinding and assuming minimal material loss from 

wear, Fig. 5.9 is the contour of fatigue index accumulation after 10.16 LU, where fatigue 

cracks begin to nucleate (fatigue index accumulation equals to 1) at around 3 mm below 

the running surface. The critical plane of the crack nucleation agrees with the horizontal 

plane as often seen in field tests as shelling. The service life of 10.16 LU will be used as 

a benchmark to evaluate the capability of different rail grinding schedules developed by 

the optimization in the next section. 
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Fig. 5.9. A contour of maximum fatigue index accumulation at failure for a typical rail steel ( = 

1) without rail grinding (total fatigue life = 10.16 LU). 

 

5.6.3 A Comparison of Rolling Stresses between the Original and 15-mm-ground-

out Rail Profiles 

The von-Mises stress contours in the rail head at the third rolling cycle of the 15-

mm-ground-out case (with a peak value of 439 MPa: see Fig. 5.10(a)) and the original 

rail head profile (with a peak value of 428 MPa: see Fig. 5.10(b)) are qualitatively 

similar. With a 2.57% difference of the peak equivalent stresses and their agreeable 

contours, this justifies the use of the proposed rolling stresses mapping scheme that is 

described earlier.  
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(a) 

 

 

(b) 

 

Fig. 5.10. von-Mises stress contours of a cross-section of rail located at the middle of rolling 

path at the third rolling cycle with 162 kN wheel load of: (a) a rail profile after 15 mm grinding, 

and (b) an original rail profile. 
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5.6.4 Deterministic Grinding Schedules with a Constantly Fixed Loading Unit and 

Grinding Thickness 

Table 5.1 is a set of grinding schedules, which LU and grinding thickness 

components remain a constant throughout grinding process, that give the best fatigue life 

for 4, 5, 10, and 20 grinding steps. The corresponding contours of the fatigue index 

accumulation for each grinding case are shown in Fig. 5.11 to 5.14, with the maximum 

fatigue index reported at the bottom-right of the figures. The horizontal white lines 

located at 20 mm below the running surface present the location of the final running 

surface before fatigue crack nucleation. Results of fatigue accumulations of material 

beyond these lines, which actually has been ground out, can be used to qualitatively 

determine the quality of the proposed grinding schedules. The greater the amount of 

material having fatigue index accumulation close to 1.0, the greater the material in rail 

head having been exercised, as a result, the better the grinding schedules are.  

Without a need of an optimization by GA, the grinding schedules determined 

from a deterministic approach are able to increase fatigue life of rails about 200%, from 

10.16 to 29.4 - 31.2 LU. The grinding schedule with 5 grinding steps provides the best 

fatigue life of 31.2 LU in this case. However, as seen in Fig. 5.11 to 5.14, the 

deterministic grinding schedules are not yet able to exhaust layers of ground-out material 

efficiently, and they are subject to further improvement by GA in the next section.   

Depth of crack nucleation reported in Table 5.1 can also be used as another 

measure of the quality of grinding schedules. A grinding schedule that creates the first 

crack nucleation at above final running surface—20 mm below running surface—can be 
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further improved by a local search as the remaining material below final running surface 

has not been fully exhausted yet. The critical planes of crack nucleation in all cases 

agree with the horizontal plane as often seen in field tests as shelling.         

 

Table 5.1 

A set of grinding schedules from the deterministic approach 

Number of steps Total LU Crack depth (mm) Individual (LU | mm) 

4 30.5 23 6.1 5 6.1 5 6.1 5 6.1 5 6.1     

5 31.2 23 
Individual (LU | mm) 

5.2 4 5.2 4 5.2 4 5.2 4 5.2 4 5.2 

10 29.7 20 

Individual (LU | mm) 

2.7 2 2.7 2 2.7 2 2.7 2 2.7 2   

2.7 2 2.7 2 2.7 2 2.7 2 2.7 2 2.7 

20 29.4 20 

Individual (LU | mm) 

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4 
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Fig. 5.11. A contour of maximum fatigue index accumulation for the 4-step grinding with a 

fixed grinding rate of 6.1 LU/5 mm and 30.5 total LU. 

 

Fig. 5.12. A contour of maximum fatigue index accumulation for the 5-step grinding with a 

fixed grinding rate of 5.2 LU /4 mm and 31.2 total LU. 
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Fig. 5.13. A contour of maximum fatigue index accumulation for the 10-step grinding with a 

fixed grinding rate of 2.7 LU /2 mm and 29.7 total LU. 

 

Fig. 5.14. A contour of maximum fatigue index accumulation for the 20-step grinding with a 

fixed grinding rate of 1.4 LU /1 mm and 29.4 total LU. 
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5.6.5 Grinding Schedules from Various Optimization Strategies  

In order to explore searching space in feasible region, two sets of starting 

population are used for the optimization with GA in this section. Individuals of the first 

set, including ones reported in 5.5.4, are created by the deterministic approach, while 

individuals of the second set are created stochastically. Note that all individuals must, 

and always, satisfy the constraints of the 20 mm total grinding thickness and the upper 

limit of fatigue accumulation. List of the starting populations is reported in Appendix B. 

The parameters of the optimization with GA are reported in Appendix C. Two mutation 

methods: 1) mutating only LU components, and 2) mutating both LU and grinding 

thickness components, are applied to optimize the deterministically-created population, 

while only the second mutation method is applied to the stochastically-created 

population. As a result, three groups of optimization results are reported below. 

 

5.6.5.1 Results of the Deterministically-Created Population with Only LU 

Mutations (Group 1) 

Limited to only mutations of LU components, Tables 5.2 – 5.5 are the five best 

grinding schedules from the optimization for the cases with 4, 5, 10, and 20 grinding 

steps respectively. All grinding schedules show improvements on fatigue life of rails as 

the total LU ranging from 33.5 to 35, or 230 to 244% increase compared to one of the 

no-grinding case (10.16 LU). In average, the more the number of grinding steps, the 

better the fatigue life is. However, this relationship will be further investigated when the 

local search with GA is applied to improve the grinding schedules reported in this 
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section. The depths of first crack nucleation found in all grinding cases vary throughout 

the rail head, from 6 – 23 mm, also suggesting a possible improvement with the local 

search to move cracking location down to the 20 mm-plus region. 

   

Table 5.2 

Optimization results of the deterministic starting population with 4 grinding steps and only LU 

mutations 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99503 33.9 23 10.1 5 5.5 5 6.1 5 6.1 5 6.1 

0.99354 33.6 23 9.8 5 5.6 5 6 5 6.1 5 6.1 

0.99460 33.6 23 9.8 5 5.5 5 6.1 5 6.1 5 6.1 

0.99956 33.6 18 10.1 5 5.7 5 5.3 5 6.5 5 6 

0.99139 33.5 18 9.8 5 5.5 5 6.1 5 6.1 5 6 

 

Table 5.3 

Optimization results of the deterministic starting population with 5 grinding steps and only LU 

mutations 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99496 34.7 6 10.1 4 4 4 5.5 4 4.6 4 5.5 4 5 

0.99787 34.6 15 10.1 4 4 4 5.5 4 5 4 5 4 5 

0.99720 34.6 23 9.7 4 4.2 4 5.2 4 5.1 4 5.2 4 5.2 

0.99928 34.5 23 9.4 4 4.3 4 5.2 4 5.2 4 5.2 4 5.2 

0.99907 34.5 23 9.5 4 4.2 4 5.2 4 5.2 4 5.2 4 5.2 
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Table 5.4 

Optimization results of the deterministic starting population with 10 grinding steps and only LU 

mutations  

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99657 34.9 22 
9.7 2 0.3 2 3.8 2 2.1 2 3.3 2   

2.4 2 1.8 2 2.7 2 3.3 2 2.6 2 2.9 

0.99638 34.9 6 
9.2 2 0.9 2 3.6 2 2.4 2 2.6 2   

3.1 2 0.6 2 5 2 1 2 0.2 2 6.3 

0.99857 34.8 18 
9.7 2 0.4 2 3.8 2 1.2 2 3.3 2   

2.4 2 2.2 2 3 2 3.3 2 1.7 2 3.8 

0.99749 34.8 23 
9.2 2 0.6 2 3.6 2 2.7 2 2.4 2   

3.1 2 0.4 2 5 2 1.4 2 0.1 2 6.3 

0.99897 34.6 23 
9.2 2 0.3 2 3.6 2 2.7 2 2.4 2   

3.1 2 0.5 2 5 2 1.4 2 0.1 2 6.3 
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Table 5.5 

Optimization results of the deterministic starting population with 20 grinding steps and only LU 

mutations  

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99931 35.2 16 

9.1 1 0.5 1 0.5 1 1.4 1 0.6 1   

2.7 1 0.4 1 1.6 1 1.7 1 1.2 1   

0.9 1 0.3 1 2.5 1 1.4 1 2 1   

0.2 1 1.4 1 1.4 1 0.6 1 1.2 1 3.6 

0.99917 35 23 

6.8 1 1.4 1 0.9 1 2.6 1 0.5 1   

1.4 1 1.2 1 1.7 1 1.4 1 1.1 1   

2 1 0.5 1 1.6 1 1.4 1 1.7 1   

1.4 1 0.4 1 0.3 1 0.6 1 1.4 1 4.7 

0.99604 35 16 

8.2 1 0.4 1 1.4 1 1.2 1 1.4 1   

1.4 1 0.6 1 2.4 1 1.4 1 0.7 1   

2 1 0.3 1 1.2 1 2.4 1 1.4 1   

0.9 1 1.8 1 0.3 1 2.7 1 0.1 1 2.8 

0.99731 35 6 

8.2 1 0.4 1 1.3 1 1.4 1 1.4 1   

1.4 1 0.6 1 2.4 1 1.4 1 0.7 1   

2 1 0.2 1 1.2 1 2.4 1 1.4 1   

0.9 1 1.8 1 0.2 1 2.7 1 0.2 1 2.8 

0.99775 35 22 

9.1 1 0.5 1 0.5 1 1.4 1 0.6 1   

2.7 1 0.4 1 1.6 1 1.7 1 1.2 1   

0.9 1 0.3 1 2.5 1 1.4 1 1.2 1   

0.2 1 2 1 1.4 1 0.6 1 1.2 1 3.6 

 

 

5.6.5.2 Results of the Deterministically-Created Population with both LU and 

Grinding Thickness Mutations (Group 2) 

Using the deterministic starting population, but allowing both grinding thickness 

and LU components to mutate to expand the searching space,  Tables 5.6 – 5.8 are the 

five best grinding schedules from the optimization for the cases with 4, 5, and 10 
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grinding steps respectively. All grinding schedules show improvement on fatigue life of 

rails as the total LU ranging from 33.1 to 34.7, or 226 to 242% increase compared to one 

of the no-grinding case (10.16 LU). In average, the more the number of grinding steps, 

the better the fatigue life is. The depths of first crack nucleation found in all grinding 

cases vary throughout the rail head, from 3 – 23 mm, suggesting a possible improvement 

with the local search to move cracking location down to 20 mm plus region. 

 

Table 5.6 

Optimization results of the deterministic starting population with 4 grinding steps, and both LU 

and grinding thickness mutations  

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99940 33.8 13 9.6 5 5.9 5 6.1 5 6.1 5 6.1 

0.99940 33.2 13 9.6 5 5.9 5 6.1 5 6.1 5 5.5 

0.99871 33.1 12 10.1 5 5.3 4 5.3 6 6.5 5 5.9 

0.99430 33.1 3 10.1 5 5.3 5 5.3 5 6.5 5 5.9 

0.99871 33.1 12 10.1 5 5.3 4 5.3 6 5.9 5 6.5 

 

Table 5.7 

Optimization results of the deterministic starting population with 5 grinding steps, and both LU 

and grinding thickness mutations  

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.98880 34.3 15 9.3 4 4.6 4 5.1 4 5.1 4 5.1 4 5.1 

0.99042 34 15 8.5 4 5.1 4 5.1 4 5.1 4 5.1 4 5.1 

0.97976 33.8 23 9.3 4 4.1 4 5.1 4 5.1 4 5.1 4 5.1 

0.98167 33.8 6 9.3 4 4.6 4 4.6 4 5.1 4 5.1 4 5.1 

0.98603 33.8 15 9.3 5 4.6 3 4.6 4 5.1 4 5.1 4 5.1 
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Table 5.8 

Optimization results of the deterministic starting population with 10 grinding steps, and both LU 

and grinding thickness mutations  

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99782 34.7 22 
9 2 0.9 1 1.4 2 3 2 2.1 1   

2.1 2 2.9 3 3 1 1.5 3 4.2 3 4.6 

0.98993 34.7 6 
9.1 3 2.7 1 1.2 2 1.1 1 3.6 3   

3.3 2 2.7 2 2.2 2 1.2 1 3.8 3 3.8 

0.99092 34.6 16 
9 2 1.1 2 1.4 1 3.3 2 1.7 1   

2.1 3 2.9 2 3 1 1.7 3 4.2 3 4.2 

0.99979 34.5 19 
9.1 3 2.7 2 1.2 1 1.1 1 3.6 3   

3.3 2 2.7 2 2.2 2 2.1 1 2.7 3 3.8 

0.99732 33.8 22 
5.2 1 3 3 3 1 2.7 2 1.9 3   

3.9 2 2.6 2 2.7 2 2.7 2 1.7 2 4.4 

 

 

5.6.5.3 Results of the Stochastically-Created Population with both LU and Grinding 

Thickness Mutations (Group 3) 

In this case, the searching space is considered to be most generalized, as the 

starting population is stochastically created, and the mutation of both LU and grinding 

thickness components is allowed. Tables 5.9 – 5.12 are the five best grinding schedules 

from the optimization for the cases with 4, 5, 8, 10, and 15 grinding steps respectively. 

All grinding schedules show improvement on fatigue life of rails as the total LU ranging 

from 31.4 to 35.2, or 209 to 246% increase compared to one of the no-grinding case 

(10.16 LU). The fatigue life improvements are comparable, but taking twice as much 

runtime, to those optimized from the deterministically-created population in 5.5.5.1 and 

5.5.5.2. This suggests the benefit of using the knowledge-based starting population in an 
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optimization with GA in this study. Due to stochastic process, the relationship between 

number of grinding steps and fatigue is less apparent, but remaining proportional. The 

depths of first crack nucleation found in all grinding cases vary throughout the rail head, 

from 4 – 23 mm, suggesting a possible improvement with the local search to move 

cracking location down to 20 mm plus region. 

 

Table 5.9 

Optimization results of the stochastic starting population with 4 grinding steps, and both LU and 

grinding thickness mutations 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99219 32.5 23 9.8 6 6.6 7 7.2 3 3 4 5.9 

0.98396 32.2 23 9.8 5 5.4 7 7.2 4 4 4 5.8 

0.99678 32.1 22 9.4 5 5.7 7 7.5 5 4.8 3 4.7 

0.99995 31.5 23 9.4 7 7.4 2 0.4 5 7.4 6 6.9 

0.99922 31.4 22 10.1 6 6.4 6 6.8 6 6.6 2 1.5 

 

Table 5.10 

Optimization results of the stochastic starting population with 5 grinding steps, and both LU and 

grinding thickness mutations 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99929 34.1 5 8.6 3 3.8 3 4 4 5.5 5 6 5 6.2 

0.99967 33.9 17 9.9 4 4.2 2 1.4 3 5.5 5 6.2 6 6.7 

0.99850 33.8 6 9.9 4 4.2 2 1.3 3 5.5 5 6.2 6 6.7 

0.99729 33.8 8 8.6 3 3.6 3 4.4 4 5 5 6 5 6.2 

0.99731 33.7 23 8.6 3 3.4 3 4 4 5.5 5 6 5 6.2 
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Table 5.11 

Optimization results of the stochastic starting population with 8 grinding steps, and both LU and 

grinding thickness mutations 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99633 34.1 5 
5.8 2 5.2 4 5.2 4 4.7 2 0.5 1 

3.1 3 3.2 1 1.7 3 4.7       

0.99983 34 4 
1 1 9.2 5 5.7 3 2.5 3 5.1 3 

2.4 1 1.4 1 1.2 3 5.5       

0.99757 34 23 
5.8 2 5.2 4 5.2 4 4.7 2 0.4 1 

3.1 3 3.2 2 1.7 2 4.7       

0.99983 33.9 4 
1 1 9.2 5 5.7 3 2.5 3 5.1 3 

2.6 1 1.1 1 1.2 3 5.5       

0.99449 33.6 19 
2.1 1 7.8 3 2.4 3 4.5 2 1.8 2 

2.8 1 1 4 6.3 4 4.9       

 

Table 5.12 

Optimization results of the stochastic starting population with 10 grinding steps, and both LU 

and grinding thickness mutations 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99781 34.3 4 
9.2 2 1.5 3 1.6 1 4.5 3 2.6 1   

1.6 3 3.9 2 0.8 1 1.3 1 1.4 3 5.9 

0.99821 34.3 7 
8 1 1.1 2 1.9 2 4 3 2.3 1   

0.7 2 4.9 4 5 2 1.1 2 1.9 1 3.4 

0.98818 34 13 
8.3 4 4.9 2 0.6 1 1.2 1 1.8 1   

2.4 2 2.6 2 2.4 3 4.4 3 0.7 1 4.7 

0.99571 33.9 19 
9.8 3 1.3 1 1.1 1 0.1 2 5.7 3   

1.7 2 3.8 1 0.7 3 5.2 3 2.1 1 2.4 

0.98966 33.8 23 
8 1 1.7 2 1.9 3 4 2 2.3 1   

0.7 3 4.9 2 1.6 1 1.3 3 2.1 2 5.3 
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Table 5.13 

Optimization results of the stochastic starting population with 15 grinding steps, and both LU 

and grinding thickness mutations 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99888 35.2 16 

9.4 1 0.4 1 0.6 1 0.2 2 4.6 2   

2 1 1 1 0.4 1 3 3 3.6 1   

1.5 1 0.4 1 0.2 1 2.3 2 1.2 1 4.4 

0.99729 35.1 16 

6.6 1 0.7 1 3.3 2 1.1 1 0.9 1   

2.7 1 1.4 2 1.6 2 4.3 2 1.2 1   

2 1 1 1 1.5 1 1.5 1 0.5 2 4.8 

0.99452 34.8 5 

8.8 1 0.8 2 2.3 1 0.1 1 2.5 1   

0.3 1 2.3 1 1.1 2 2.7 1 0.2 1   

3.1 2 1.4 2 4.1 2 0.9 1 0.7 1 3.5 

0.99945 34.8 16 

6.6 1 0.7 1 3.3 2 1.1 1 1 1   

2.7 1 1.4 2 1.6 2 4.3 2 1.2 1   

2 1 1 1 1.5 1 1.5 1 0.1 2 4.8 

0.99523 34.7 23 

9.4 2 0.8 1 0.7 1 0.2 1 3.5 2   

2.9 1 0.7 1 0.5 1 2.7 3 3.6 1   

0.9 1 0.5 1 0.3 1 2.3 2 1.3 1 4.4 

 

 

5.6.6 Local Search Optimization with Genetic Algorithm 

Best individuals from the first exploratory search of the three groups previously 

reported in Tables 5.1 – 5.13 are subject to refinements with the optimization with local 

search. Parameters used in the local search are given in Appendix B. Narrowing down 

the search space by incrementally adjusting LU and grinding thickness components by 

0.1 LU and 1 mm respectively, Tables 5.14 - 5.17 present the improvement of the 

grinding schedules in Group 1. The order of the mutated individuals remains as same as 

that of the starting set. For example, the first grinding schedule in Table 5.14 is a result 
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of an optimization of the first grinding schedule in Table 5.2 and so on. The optimization 

results with local search of Groups 2 and 3 are shown in Tables 5.18 - 5.20 and 5.21 - 

5.25 respectively. Note that the total LU indicated in bold implies an increase due to the 

local search, while the crack depth indicated in bold or underlined implies a change of 

first crack nucleation to greater depth or lower depth respectively.   

 

Group 1 

Table 5.14 

Results from local search with GA of the grinding schedules in Group 1 with 4 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99834 34.1 8 10.1 5 5.7 5 6.1 5 6.1 5 6.1 

0.99550 34 23 10.1 5 5.6 5 6.1 5 6.1 5 6.1 

0.99918 34 13 10.1 5 5.5 5 6.2 5 6.1 5 6.1 

0.99956 33.6 18 10.1 5 5.7 5 5.3 5 6.5 5 6 

0.99550 34 23 10.1 5 5.6 5 6.1 5 6.1 5 6.1 

 

Table 5.15 

Results from local search with GA of the grinding schedules in Group 1 with 5 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99921 35 23 10.1 4 4 4 5.7 4 4.6 4 5.5 4 5.1 

0.99834 35 23 10.1 4 4 4 5.5 4 5 4 5.2 4 5.2 

0.99864 34.9 23 9.9 4 4.2 4 5.3 4 5.1 4 5.2 4 5.2 

0.99928 34.5 23 9.4 4 4.3 4 5.2 4 5.2 4 5.2 4 5.2 

0.99921 34.6 23 9.6 4 4.2 4 5.2 4 5.2 4 5.2 4 5.2 
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Table 5.16 

Results from local search with GA of the grinding schedules in Group 1 with 10 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99945 35.1 22 
9.8 2 0.3 2 3.8 2 2.1 2 3.3 2   

2.4 2 1.9 2 2.7 2 3.3 2 2.6 2 2.9 

0.99944 35.1 23 
9.2 2 0.9 2 3.6 2 2.4 2 2.6 2   

3.1 2 0.7 2 5 2 1 2 0.3 2 6.3 

0.99857 34.9 18 
9.7 2 0.4 2 3.8 2 1.2 2 3.3 2   

2.4 2 2.2 2 3 2 3.3 2 1.7 2 3.9 

0.99979 35 23 
9.3 2 0.6 2 3.6 2 2.7 2 2.4 2   

3.1 2 0.5 2 5 2 1.4 2 0.1 2 6.3 

0.99977 35.1 23 
9.6 2 0.4 2 3.6 2 2.7 2 2.4 2   

3.1 2 0.5 2 5 2 1.4 2 0.1 2 6.3 
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Table 5.17 

Results from local search with GA of the grinding schedules in Group 1 with 20 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99931 35.3 16 

9.1 1 0.5 1 0.5 1 1.4 1 0.6 1   

2.7 1 0.4 1 1.6 1 1.7 1 1.2 1   

0.9 1 0.3 1 2.5 1 1.4 1 2 1   

0.2 1 1.4 1 1.5 1 0.6 1 1.2 1 3.6 

0.99917 35 23 

6.8 1 1.4 1 0.9 1 2.6 1 0.5 1   

1.4 1 1.2 1 1.7 1 1.4 1 1.1 1   

2 1 0.5 1 1.6 1 1.4 1 1.7 1   

1.4 1 0.4 1 0.3 1 0.6 1 1.4 1 4.7 

0.99937 35.2 22 

8.3 1 0.4 1 1.4 1 1.2 1 1.4 1   

1.4 1 0.6 1 2.4 1 1.4 1 0.7 1   

2 1 0.3 1 1.2 1 2.4 1 1.4 1   

0.9 1 1.8 1 0.3 1 2.7 1 0.1 1 2.9 

0.99906 35.2 22 

8.2 1 0.4 1 1.3 1 1.4 1 1.4 1   

1.4 1 0.6 1 2.4 1 1.4 1 0.7 1   

2.1 1 0.2 1 1.2 1 2.4 1 1.4 1   

1 1 1.8 1 0.2 1 2.7 1 0.2 1 2.8 

0.99997 35.3 22 

9.1 1 0.5 1 0.6 1 1.4 1 0.6 1   

2.7 1 0.5 1 1.7 1 1.7 1 1.2 1   

0.9 1 0.3 1 2.5 1 1.4 1 1.2 1   

0.2 1 2 1 1.4 1 0.6 1 1.2 1 3.6 

 

Group 2 

Table 5.18 

Results from local search with GA of the grinding schedules in Group 2 with 4 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99940 33.8 13 9.6 5 5.9 5 6.1 5 6.1 5 6.1 

0.99940 33.8 13 9.6 5 5.9 5 6.1 5 6.1 5 6.1 

0.99872 33.6 23 10.1 5 5.3 4 5.3 6 6.8 5 6.1 

0.99956 33.6 18 10.1 5 5.7 5 5.3 5 6.5 5 6 

0.99871 33.1 12 10.1 5 5.3 4 5.3 6 5.9 5 6.5 
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Table 5.19 

Results from local search with GA of the grinding schedules in Group 2 with 5 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99835 34.8 23 9.5 4 4.6 4 5.2 4 5.1 4 5.2 4 5.2 

0.99814 34.6 23 8.9 4 5.1 4 5.1 4 5.1 4 5.2 4 5.2 

0.99928 34.5 23 9.4 4 4.3 4 5.2 4 5.2 4 5.2 4 5.2 

0.99830 34.6 23 9.4 4 4.7 4 4.8 4 5.3 4 5.2 4 5.2 

0.99808 34.6 23 9.8 5 4.6 3 4.7 4 5.1 4 5.2 4 5.2 

 

Table 5.20 

Results from local search with GA of the grinding schedules in Group 2 with 10 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99818 34.9 22 
9.2 2 0.9 1 1.4 2 3 2 2.1 1   

2.1 2 2.9 3 3 1 1.5 3 4.2 3 4.6 

0.99978 35.2 22 
9.1 3 2.7 1 1.3 2 1.2 1 3.8 3   

3.3 2 2.7 2 2.2 2 1.2 1 3.8 3 3.9 

0.99583 35 22 
9.3 2 1.1 2 1.4 1 3.3 2 1.7 1   

2.1 3 2.9 2 3 1 1.7 3 4.3 3 4.2 

0.99979 34.5 19 
9.1 3 2.7 2 1.2 1 1.1 1 3.6 3   

3.3 2 2.7 2 2.2 2 2.1 1 2.7 3 3.8 

0.99979 34.1 22 
5.3 1 3 3 3 1 2.7 2 2.1 3   

3.9 2 2.6 2 2.7 2 2.7 2 1.7 2 4.4 

 

Group 3 

Table 5.21 

Results from local search with GA of the grinding schedules in Group 3 with 4 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99309 32.8 23 10 6 6.7 7 7.2 3 3 4 5.9 

0.99876 33 23 10.1 5 5.6 7 7.3 4 4.2 4 5.8 

0.99786 32.7 22 10 5 5.7 7 7.5 5 4.8 3 4.7 

0.99995 31.5 23 9.4 7 7.4 2 0.4 5 7.4 6 6.9 

0.99922 31.4 22 10.1 6 6.4 6 6.8 6 6.6 2 1.5 
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Table 5.22 

Results from local search with GA of the grinding schedules in Group 3 with 5 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99929 34.1 5 8.6 3 3.8 3 4 4 5.5 5 6 5 6.2 

0.99967 34.2 17 9.9 4 4.2 2 1.4 3 5.5 5 6.2 6 7 

0.99967 34.2 17 9.9 4 4.2 2 1.4 3 5.5 5 6.2 6 7 

0.99860 34 23 8.6 3 3.6 3 4.4 4 5.1 5 6.1 5 6.2 

0.99941 34.1 23 8.8 3 3.5 3 4 4 5.6 5 6 5 6.2 

 

Table 5.23 

Results from local search with GA of the grinding schedules in Group 3 with 8 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99817 34.4 22 
5.8 2 5.2 4 5.2 4 4.7 2 0.5 1 

3.1 3 3.4 1 1.8 3 4.7       

0.99983 34 4 
1 1 9.2 5 5.7 3 2.5 3 5.1 3 

2.4 1 1.4 1 1.2 3 5.5       

0.99973 34.1 23 
5.8 2 5.2 4 5.2 4 4.7 2 0.5 1 

3.1 3 3.2 2 1.7 2 4.7       

0.99996 34.1 15 
1 1 9.2 5 5.7 3 2.5 3 5.1 3 

2.7 1 1.2 1 1.2 3 5.5       

1.00000 34 22 
2.3 1 7.8 3 2.4 3 4.6 2 1.8 2 

2.8 1 1 4 6.3 4 5       
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Table 5.24 

Results from local search with GA of the grinding schedules in Group 3 with 10 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99904 34.5 23 
9.2 2 1.5 3 1.6 1 4.5 3 2.7 1   

1.6 3 4 2 0.8 1 1.3 1 1.4 3 5.9 

0.99920 34.4 14 
8 1 1.1 2 1.9 2 4 3 2.4 1   

0.7 2 4.9 4 5 2 1.1 2 1.9 1 3.4 

0.99930 34.6 23 
8.5 4 4.9 2 0.6 1 1.2 1 1.8 1   

2.4 2 2.7 2 2.5 3 4.5 3 0.8 1 4.7 

0.99988 34.4 22 
10 3 1.5 1 1.1 1 0.1 2 5.7 3   

1.7 2 3.8 1 0.7 3 5.2 3 2.1 1 2.5 

0.99951 34.5 23 
8.1 1 1.7 2 1.9 3 4.1 2 2.6 1   

0.8 3 4.9 2 1.6 1 1.4 3 2.1 2 5.3 

 

Table 5.25 

Results from local search with GA of the grinding schedules in Group 3 with 15 grinding steps 

Max. Index Total LU Crack depth (mm) Individuals (LU | mm) 

0.99888 35.2 16 

9.4 1 0.4 1 0.6 1 0.2 2 4.6 2   

2 1 1 1 0.4 1 3 3 3.6 1   

1.5 1 0.4 1 0.2 1 2.3 2 1.2 1 4.4 

0.99968 35.4 16 

6.9 1 0.7 1 3.3 2 1.1 1 0.9 1   

2.7 1 1.4 2 1.6 2 4.3 2 1.2 1   

2 1 1 1 1.5 1 1.5 1 0.5 2 4.8 

0.99686 35.3 22 

8.8 1 0.8 2 2.3 1 0.1 1 2.6 1   

0.3 1 2.4 1 1.1 2 2.7 1 0.2 1   

3.1 2 1.5 2 4.2 2 0.9 1 0.7 1 3.6 

0.99945 35.2 16 

6.6 1 0.7 1 3.3 2 1.1 1 1 1   

2.7 1 1.4 2 1.6 2 4.3 2 1.2 1   

2 1 1 1 1.5 1 1.6 1 0.3 2 4.9 

0.99957 35.1 23 

9.5 2 0.9 1 0.7 1 0.2 1 3.5 2   

2.9 1 0.7 1 0.6 1 2.7 3 3.7 1   

0.9 1 0.5 1 0.3 1 2.3 2 1.3 1 4.4 
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The optimization with the local search GA is able to increase fatigue life of rail 

in most cases. The main mechanism of such improvements is by moving first crack 

nucleation to the regime below the final running surface, says greater than 20 mm. For 

the grinding schedules in Group 1, the average improvement rates of the loading unit 

(LU) respected to ones before the local search are 0.89, 0.64, 0.69, and 0.46 % for 4, 5, 

10, and 20 grinding steps respectively. For the grinding schedules in Group 2, the 

average improvement rates of loading unit (LU) are 0.97, 2, and 0.81 % for 4, 5, and 10 

grinding steps respectively. For the grinding schedules in Group 3, the average 

improvement rates of loading unit (LU) are 1.05, 0.77, 0.59, 1.24, and 0.92 % for 4, 5, 8, 

10, and 15 grinding steps respectively.    

Note that only two grinding schedules in Table 5.14 show improvements of 

fatigue life while the first crack nucleation moving to lower depth, from 23 to 8 mm and 

23 to 13 mm. This is because the limit of the imposed grinding resolution of 1 mm, 

which is not fine enough. A manual adjustment, not presented here, shows that an 

increase of final loading unit by 0.05 will increase fatigue life and shift the crack depths 

to 23 mm for both cases. 

Fig. 5.15 is a plot between the increase of fatigue life—compared to one from the 

no-grinding case (10.16 LU)—and numbers of grinding steps of three groups of grinding 

schedules. In general, more frequent grinding schedules (15 and 20 grinding steps) tend 

to give longer fatigue life than that of the less frequents (4, 5, 8, and 10 grinding steps). 

However, the benefit of increasing grinding steps from 15 to 20 on fatigue life is not 
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observed as well as that of the 8-grinding-step case, which could be a result of the 

stochastic approach used in GA.       

Comparing between all three groups for 4, 5, and 10 grinding-step cases, Group 1 

provides the best grinding schedules for 4, and 5 grinding-steps, while Group 2 provides 

the best grinding schedule for 10 grinding-steps. In addition to the shorter run-time of 

the exploratory optimizations in 5.5.5, this again suggests the benefit of using a 

knowledge-based starting population in an optimization with GA in this study. The 

benefits of using a stochastic-based starting population, however, should be more 

apparent when dealing with highly nonlinear fatigue damage distribution, as predicted in 

the case of more brittle rail steel or a rail steel with discontinuities.   

 

Fig. 5.15. A plot between plot between the predicted loading unit (LU)—normalized by the 

fatigue life of without-grinding case (10.16 LU), and numbers of grinding steps.  
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5.6.7 Optimal Grinding Schedules 

Fig. 5.16 to 5.21 present schematics of the optimal grinding procedures and their 

corresponding contours of fatigue index accumulation, right before the nucleation of the 

first fatigue crack, for different numbers of grinding step. Compared against Fig. 5.11 – 

5.14, which are the contours of fatigue index accumulation from the pure deterministic 

grinding schedules, optimizations with exploratory and local search GAs are able to 

exercise greater amount of material to near-damage stage. As a result, fatigue life 

increases from 10.16 LU (no-grinding) and 29.4 - 31.2 LU (deterministically-created 

grinding schedules) to 34.1 – 35.4 LU when the grinding schedules developed from an 

optimization with GA are applied. This indicates a 236 – 248 % increase of fatigue life. 

Nevertheless, the best grinding schedule found in this study (Fig. 5.19(a)) is still unlikely 

to be the global optima, as the fatigue accumulation contour (Fig. 5.19(b)) seems to 

deviate from the ideal case, where a continuous contour is expected.  

Excluding the case with 8 grinding steps, all grinding plans recommend highly 

non-uniform grinding patterns for a typical rail steel with  = 1. Starting with a damage-

free rail, the topmost surface of rail is removed after an application of relatively large 

amount of accumulated axle load, just before those ground-out materials reaching 

failure. Though grinding helps re-distribute residual stresses in rail head, which will be 

soon developed again after a few new rolling cycles; the accumulation of fatigue damage 

at greater depth remains ongoing. As a result, the subsequent grinding steps must be 

applied at higher frequencies. However, this grinding strategy may or may not be 

applicable if material behavior changes or discontinuities are taken into consideration.  
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(a) 

 

(b) 

Fig. 5.16. For the best grinding schedule of 34.1 LU and 0.99834 maximum fatigue index with 4 

grinding steps (from Group 1): (a) a schematic of grinding schedule, and (b) a contour of 

maximum fatigue index accumulation before failure. 
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(a) 

 

(b) 

Fig. 5.17. For the best grinding schedule of 35 LU and 0.99921 maximum fatigue index with 5 

grinding steps (from Group 1): (a) a schematic of grinding schedule, and (b) a contour of 

maximum fatigue index accumulation before failure. 
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(a) 

 

(b) 

Fig. 5.18. For the best grinding schedule of 34.4 LU and 0.99817 maximum fatigue index with 8 

grinding steps (from Group 3): (a) a schematic of grinding schedule, and (b) a contour of 

maximum fatigue index accumulation before failure. 
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(a) 

 

(b) 

Fig. 5.19. For the best grinding schedule of 35.2 LU and 0.99978 maximum fatigue index with 

10 grinding steps (from Group 2): (a) a schematic of grinding schedule, and (b) a contour of 

maximum fatigue index accumulation before failure. 
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(a) 

 

(b) 

Fig. 5.20. For the best grinding schedule of 35.4 LU and 0.99968 maximum fatigue index with 

15 grinding steps (from group 3): (a) a schematic of grinding schedule, and (b) a contour of 

maximum fatigue index accumulation before failure. 
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(a) 

 

(b) 

Fig. 5.21. For the best grinding schedule of 35.3 LU and 0.99931 maximum fatigue index with 

20 grinding steps (from group 1): (a) a schematic of grinding schedule, and (b) a contour of 

maximum fatigue index accumulation before failure. 
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5.7 Conclusions 

 The pure deterministic grinding schedules are able to increase fatigue life of rails 

about 200%.  

 The optimizations with exploratory and local-search genetic algorithm (GA) are 

able to increase fatigue life of rails about 240%.    

 For the current case of study, it is advantageous to use the deterministic 

(knowledge-based) starting population than the stochastic starting population 

because: 1) the exploratory optimization with GA runs twice as fast for the same 

degree of improvement, and 2) it gives rail grinding schedules that provide better 

fatigue life when local search GA is performed. 

 The proposed optimization framework provides a set of rail grinding schedules 

that improve fatigue life of rail significantly, but they may not be the global 

optima. Performance of grinding schedule can be qualitatively measured through 

the continuity of fatigue index contour as proposed in this study. 

 Different grinding strategies may be required for the situations different from this 

study, i.e. two-point wheel-rail contact, or different types of rail steel. With a 

new database of fatigue index, an updated grinding schedule could be optimized 

by the proposed optimization framework.   

 Fatigue life predictions calculated in this chapter is conservative because the 

crack propagation period is neglected and the unchanged non-conformal wheel-

rail contact is assumed. In actual application, life of crack propagations could be 
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significant, and wheel profiles tend to increasingly conform to rail profiles, thus 

decreasing stress localization, as number of rolling passages increases. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 The finite element analysis of wheel-rail rolling contact with the Chaboche 

plasticity model is able to predict residual stresses and strains in a rail head that 

agree well with measurements. 

 The Findley fatigue criterion, defined in terms of high-cycle fatigue, is able to 

predict subsurface crack nucleation and early growth – a process influenced 

strongly by tensile residual stresses.  This model is not applicable to model 

surface cracking behavior, because surface cracking behavior is controlled by 

plasticity effects.  

 The Fatemi-Socie fatigue criterion, which incorporates residual stresses and 

residual strains into a multi-axial fatigue damage analysis, indicates that the shear 

strain amplitude component dominates surface crack nucleation and early 

growth, while both shear strain amplitude and normal stress are found to promote 

subsurface crack nucleation and early growth. 

 Subsurface cracks become an increasingly competitive mode of failure as wheel 

load and rail material hardness/brittleness increase. 

 The deterministic grinding schedules with constantly-fixed loading unit (LU) and 

grinding thickness could increase fatigue life of rail by 200%. 
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 Optimization of grinding schedules with exploratory and local-search genetic 

algorithms indicates increases in rail fatigue life of 240%. 

 A set of optimal grinding schedules proposed in this study are yet unlikely to be 

the global optima. They are subject to further improvement for a continuous 

contour of fatigue damage accumulation. 

 

6.2 Suggestions for Future Work 

More up-to-date fatigue test data of rail steels is needed in order to determine 

more accurate fatigue-life relationship and more accurate participation of normal stresses 

in the Fatemi-Socie fatigue criterion. Database of the natural wear from wheel-rail 

contact should be developed and incorporated into the proposed optimization framework 

for determining ‘true’ artificial wear required by rail grinding; this should be done 

together with a refinement of grinding resolution. A study of correlation between the 

fatigue life predicted in this study and the actual fatigue life from field tests should be 

performed; so the grinding schedules developed in this study can be extended to field 

grinding tests. A reliability study of material imperfections in rail head may be included 

in rail grinding analysis. The economical aspect of rail grinding may be additionally 

considered as another objective function, turning the problem into multi-objective 

optimization.  
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APPENDIX A 

FATIGUE DAMAGE IN A RAIL HEAD WITH SPHERICAL PORES 

 

Using Findley fatigue criterion and Fatemi-Socie fatigue criterion , Fig. A.1 – 

A.4 are fatigue index contours when spherical pores are presented throughout the rail 

cross-section located between 12 to 40 mm below running surface. The calculations of 

rolling stresses due to spherical pores are given in Eshelby [71]. A Matlab code for the 

elliptic integral is created by Igor [90].    

 

 

Fig. A.1. A maximum Findley fatigue index contour ( = 0.3) of the 162 kN wheel load at the 

sixth loading cycle with spherical pores from 12-40 mm below running surface. 

 



 185 

 

Fig. A.2. A maximum Findley fatigue index contour ( = 0.3) of the 233 kN wheel load at the 

sixth loading cycle with spherical pores from 12-40 mm below running surface. 

 

Fig. A.3. A maximum Fatemi-Socie fatigue index contour ( = 1) of the 162 kN wheel load at 

the sixth loading cycle with spherical pores from 12-40 mm below running surface. 
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Fig. A.4. A maximum Fatemi-Socie fatigue index contour ( = 1) of the 233 kN wheel load at 

the sixth loading cycle with spherical pores from 12-40 mm below running surface. 
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APPENDIX B 

STARTING POPULATIONS FOR OPTIMIZATION WITH 

 GENETIC ALGORITHM 

 

Table A.1 

A set of starting individuals from a deterministic approach for grinding schedules with 4 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.40658 12.5 23 2.5 5 2.5 5 2.5 5 2.5 5 2.5 

0.42284 13 23 2.6 5 2.6 5 2.6 5 2.6 5 2.6 

0.43911 13.5 23 2.7 5 2.7 5 2.7 5 2.7 5 2.7 

0.52042 16 23 3.2 5 3.2 5 3.2 5 3.2 5 3.2 

0.53669 16.5 23 3.3 5 3.3 5 3.3 5 3.3 5 3.3 

0.55295 17 23 3.4 5 3.4 5 3.4 5 3.4 5 3.4 

0.56921 17.5 23 3.5 5 3.5 5 3.5 5 3.5 5 3.5 

0.66679 20.5 23 4.1 5 4.1 5 4.1 5 4.1 5 4.1 

0.68306 21 23 4.2 5 4.2 5 4.2 5 4.2 5 4.2 

0.71558 22 23 4.4 5 4.4 5 4.4 5 4.4 5 4.4 

0.73185 22.5 23 4.5 5 4.5 5 4.5 5 4.5 5 4.5 

0.74811 23 23 4.6 5 4.6 5 4.6 5 4.6 5 4.6 

0.76437 23.5 23 4.7 5 4.7 5 4.7 5 4.7 5 4.7 

0.78064 24 23 4.8 5 4.8 5 4.8 5 4.8 5 4.8 

0.79690 24.5 23 4.9 5 4.9 5 4.9 5 4.9 5 4.9 

0.86195 26.5 23 5.3 5 5.3 5 5.3 5 5.3 5 5.3 

0.87822 27 23 5.4 5 5.4 5 5.4 5 5.4 5 5.4 

0.95953 29.5 23 5.9 5 5.9 5 5.9 5 5.9 5 5.9 

0.97580 30 23 6 5 6 5 6 5 6 5 6 

0.99206 30.5 23 6.1 5 6.1 5 6.1 5 6.1 5 6.1 
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Table A.2 

A set of starting individuals from a deterministic approach for grinding schedules with 5 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.38325 12 23 2 4 2 4 2 4 2 4 2 4 2 

0.40241 12.6 23 2.1 4 2.1 4 2.1 4 2.1 4 2.1 4 2.1 

0.47906 15 23 2.5 4 2.5 4 2.5 4 2.5 4 2.5 4 2.5 

0.55571 17.4 23 2.9 4 2.9 4 2.9 4 2.9 4 2.9 4 2.9 

0.57487 18 23 3 4 3 4 3 4 3 4 3 4 3 

0.59403 18.6 23 3.1 4 3.1 4 3.1 4 3.1 4 3.1 4 3.1 

0.61320 19.2 23 3.2 4 3.2 4 3.2 4 3.2 4 3.2 4 3.2 

0.63236 19.8 23 3.3 4 3.3 4 3.3 4 3.3 4 3.3 4 3.3 

0.65152 20.4 23 3.4 4 3.4 4 3.4 4 3.4 4 3.4 4 3.4 

0.72817 22.8 23 3.8 4 3.8 4 3.8 4 3.8 4 3.8 4 3.8 

0.74733 23.4 23 3.9 4 3.9 4 3.9 4 3.9 4 3.9 4 3.9 

0.78566 24.6 23 4.1 4 4.1 4 4.1 4 4.1 4 4.1 4 4.1 

0.86231 27 23 4.5 4 4.5 4 4.5 4 4.5 4 4.5 4 4.5 

0.88147 27.6 23 4.6 4 4.6 4 4.6 4 4.6 4 4.6 4 4.6 

0.90063 28.2 23 4.7 4 4.7 4 4.7 4 4.7 4 4.7 4 4.7 

0.91980 28.8 23 4.8 4 4.8 4 4.8 4 4.8 4 4.8 4 4.8 

0.93896 29.4 23 4.9 4 4.9 4 4.9 4 4.9 4 4.9 4 4.9 

0.95812 30 23 5 4 5 4 5 4 5 4 5 4 5 

0.97728 30.6 23 5.1 4 5.1 4 5.1 4 5.1 4 5.1 4 5.1 

0.99644 31.2 23 5.2 4 5.2 4 5.2 4 5.2 4 5.2 4 5.2 
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Table A.3 

A set of starting individuals from a deterministic approach for grinding schedules with 10 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.35846 11 20 
1 2 1 2 1 2 1 2 1 2   

1 2 1 2 1 2 1 2 1 2 1 

0.39430 12.1 20 
1.1 2 1.1 2 1.1 2 1.1 2 1.1 2   

1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 

0.43015 13.2 20 
1.2 2 1.2 2 1.2 2 1.2 2 1.2 2   

1.2 2 1.2 2 1.2 2 1.2 2 1.2 2 1.2 

0.46599 14.3 20 
1.3 2 1.3 2 1.3 2 1.3 2 1.3 2   

1.3 2 1.3 2 1.3 2 1.3 2 1.3 2 1.3 

0.50184 15.4 20 
1.4 2 1.4 2 1.4 2 1.4 2 1.4 2   

1.4 2 1.4 2 1.4 2 1.4 2 1.4 2 1.4 

0.53768 16.5 20 
1.5 2 1.5 2 1.5 2 1.5 2 1.5 2   

1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 

0.57353 17.6 20 
1.6 2 1.6 2 1.6 2 1.6 2 1.6 2   

1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 

0.60938 18.7 20 
1.7 2 1.7 2 1.7 2 1.7 2 1.7 2   

1.7 2 1.7 2 1.7 2 1.7 2 1.7 2 1.7 

0.64522 19.8 20 
1.8 2 1.8 2 1.8 2 1.8 2 1.8 2   

1.8 2 1.8 2 1.8 2 1.8 2 1.8 2 1.8 

0.68107 20.9 20 
1.9 2 1.9 2 1.9 2 1.9 2 1.9 2   

1.9 2 1.9 2 1.9 2 1.9 2 1.9 2 1.9 

0.71691 22 20 
2 2 2 2 2 2 2 2 2 2   

2 2 2 2 2 2 2 2 2 2 2 

0.75276 23.1 20 
2.1 2 2.1 2 2.1 2 2.1 2 2.1 2   

2.1 2 2.1 2 2.1 2 2.1 2 2.1 2 2.1 

0.78860 24.2 20 
2.2 2 2.2 2 2.2 2 2.2 2 2.2 2   

2.2 2 2.2 2 2.2 2 2.2 2 2.2 2 2.2 

0.82445 25.3 20 
2.3 2 2.3 2 2.3 2 2.3 2 2.3 2   

2.3 2 2.3 2 2.3 2 2.3 2 2.3 2 2.3 

0.86029 26.4 20 
2.4 2 2.4 2 2.4 2 2.4 2 2.4 2   

2.4 2 2.4 2 2.4 2 2.4 2 2.4 2 2.4 

0.89614 27.5 20 
2.5 2 2.5 2 2.5 2 2.5 2 2.5 2   

2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 

0.93199 28.6 20 
2.6 2 2.6 2 2.6 2 2.6 2 2.6 2   

2.6 2 2.6 2 2.6 2 2.6 2 2.6 2 2.6 

0.96783 29.7 20 
2.7 2 2.7 2 2.7 2 2.7 2 2.7 2   

2.7 2 2.7 2 2.7 2 2.7 2 2.7 2 2.7 

0.67797 18.9 20 
1.7 2 1.7 2 1.7 2 1.7 2 1.7 2   

1.6 2 0.9 2 1.7 2 2.8 2 1.7 2 1.7 

0.59185 16.1 22 
1.5 2 0.5 2 1.5 2 1.5 2 1.5 2   

1.5 2 1.5 2 1.5 2 1.5 2 2.1 2 1.5 
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Table A.4 

A set of starting individuals from a deterministic approach for grinding schedules with 20 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.98837 29.4 20 

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4 

0.35299 10.5 20 

0.5 1 0.5 1 0.5 1 0.5 1 0.5 1   

0.5 1 0.5 1 0.5 1 0.5 1 0.5 1   

0.5 1 0.5 1 0.5 1 0.5 1 0.5 1   

0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 

0.42359 12.6 20 

0.6 1 0.6 1 0.6 1 0.6 1 0.6 1   

0.6 1 0.6 1 0.6 1 0.6 1 0.6 1   

0.6 1 0.6 1 0.6 1 0.6 1 0.6 1   

0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 

0.49419 14.7 20 

0.7 1 0.7 1 0.7 1 0.7 1 0.7 1   

0.7 1 0.7 1 0.7 1 0.7 1 0.7 1   

0.7 1 0.7 1 0.7 1 0.7 1 0.7 1   

0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 

0.56478 16.8 20 

0.8 1 0.8 1 0.8 1 0.8 1 0.8 1   

0.8 1 0.8 1 0.8 1 0.8 1 0.8 1   

0.8 1 0.8 1 0.8 1 0.8 1 0.8 1   

0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 

0.63538 18.9 20 

0.9 1 0.9 1 0.9 1 0.9 1 0.9 1   

0.9 1 0.9 1 0.9 1 0.9 1 0.9 1   

0.9 1 0.9 1 0.9 1 0.9 1 0.9 1   

0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 

0.70598 21 20 

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1 1 

0.77658 23.1 20 

1.1 1 1.1 1 1.1 1 1.1 1 1.1 1   

1.1 1 1.1 1 1.1 1 1.1 1 1.1 1   

1.1 1 1.1 1 1.1 1 1.1 1 1.1 1   

1.1 1 1.1 1 1.1 1 1.1 1 1.1 1 1.1 

0.84718 25.2 20 

1.2 1 1.2 1 1.2 1 1.2 1 1.2 1   

1.2 1 1.2 1 1.2 1 1.2 1 1.2 1   

1.2 1 1.2 1 1.2 1 1.2 1 1.2 1   

1.2 1 1.2 1 1.2 1 1.2 1 1.2 1 1.2 

0.97359 27.9 20 

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1   

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1   

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1   

1.5 1 1.3 1 1.7 1 1.3 1 1.3 1 1.3 
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Table A.4 

Continued 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.77709 22.8 20 

1.1 1 1.1 1 1.1 1 1.1 1 1.1 1   

1.1 1 1.1 1 1.1 1 1.1 1 0.6 1   

1.1 1 1.1 1 1.1 1 1.3 1 1.1 1   

1.1 1 1.1 1 1.1 1 1.1 1 1.1 1 1.1 

0.99727 31.1 20 

1.4 1 3.3 1 0.8 1 1.4 1 1.4 1   

1.4 1 1.4 1 2 1 1.4 1 1.2 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4 

0.98144 28.4 21 

1.4 1 1.4 1 0.6 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.2 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4 

0.91777 27.3 20 

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1   

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1   

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1   

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1 1.3 

0.86730 26.3 15 

1.3 1 1.3 1 1.3 1 1.3 1 1.2 1   

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1   

1.3 1 1.3 1 1.3 1 1.3 1 0.4 1   

1.3 1 1.3 1 1.3 1 1.3 1 1.3 1 1.3 

0.99866 31.1 20 

1.4 1 3.3 1 0.8 1 1.4 1 1.4 1   

1.4 1 1.4 1 2 1 1.4 1 1.2 1   

1.2 1 1.6 1 1.4 1 1.4 1 1.4 1   

1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4 

0.70598 21 20 

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1 1 

0.70129 20 20 

1 1 1 1 1 1 0.4 1 1 1   

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1 1 1 0.6 

0.56656 16.6 20 

0.8 1 0.8 1 0.4 1 0.8 1 0.8 1   

0.8 1 0.8 1 0.8 1 1 1 0.8 1   

0.8 1 0.8 1 0.8 1 0.8 1 0.8 1   

0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 

0.68287 19.7 20 

1 1 1 1 1 1 0.4 1 1 1   

1 1 1 1 1 1 1 1 1 1   

1 1 1 1 1 1 0.8 1 1 1   

1 1 1 1 1 1 0.9 1 1 1 0.6 
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Table A.5 

A set of starting individuals from a stochastic approach for grinding schedules with 4 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.82467 13.4 16 1.7 5 1.2 7 7.3 2 1.1 6 2.1 

0.98617 21.5 9 1.8 5 8.3 2 1.7 7 2.3 6 7.4 

0.86695 17.5 15 2.6 6 1.9 6 7.9 6 1.6 2 3.5 

0.43043 11.6 23 2.1 1 1.7 6 1.9 7 2.6 6 3.3 

0.66793 10.6 6 1.6 1 2.2 2 3.8 16 1.3 1 1.7 

0.57212 13.9 10 3 2 2.1 5 4.1 6 3.6 7 1.1 

0.64722 12.2 22 2 4 3.3 14 3.5 1 1.8 1 1.6 

0.70717 10.1 5 4 1 1.8 1 2 17 1.4 1 0.9 

0.74397 14.2 6 3 2 3.3 1 2.2 16 2.2 1 3.5 

0.69542 15.3 23 1.5 4 3.8 7 3.1 7 3.8 2 3.1 

0.82861 15 10 1.6 7 8 6 2 2 1.5 5 1.9 

0.51822 12.6 7 3.5 4 3.3 4 2.3 5 1.6 7 1.9 

0.87324 16.3 8 2.1 5 8 6 3.4 5 0.9 4 1.9 

0.76787 17 3 7.8 6 1.8 7 1.8 2 3.6 5 2 

0.91430 19.2 8 1.9 5 8.5 7 3.4 1 2.4 7 3 

0.77772 16.9 3 7.9 6 3.9 6 1.8 1 2.3 7 1 

0.49346 12.7 12 2.9 2 1.9 7 4 6 1.9 5 2 

0.69550 14.5 9 2.9 1 3.2 4 1.8 1 2.9 14 3.7 

0.68912 18.6 3 7 6 3.8 6 1.9 7 3.1 1 2.8 

0.98692 22.2 23 3.9 7 1.4 1 1.8 6 8.2 6 6.9 
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Table A.6 

A set of starting individuals from a stochastic approach for grinding schedules with 5 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.85562 13.9 7 1.2 1 0.7 1 5.5 1 1.2 2 2.2 15 3.1 

0.70458 11.9 6 0.9 2 1.2 1 5.4 4 1 11 1.2 2 2.2 

0.98351 16.8 4 2.5 1 7.6 5 1.1 5 3.1 4 1.2 5 1.3 

0.85648 20.6 3 8.7 5 1.7 3 0.9 1 1.2 6 0.7 5 7.4 

0.67015 12.7 17 2.8 11 5.6 2 0.8 1 0.7 1 1.6 5 1.2 

0.56034 10.4 17 3 5 0.7 6 1.6 2 2.9 1 1.4 6 0.8 

0.80996 14.8 23 1.8 4 1.4 10 2.5 1 2.3 1 1.1 4 5.7 

0.91582 15.1 23 2.3 2 1.4 1 1.5 13 1.4 3 1 1 7.5 

0.85074 15.9 19 1.6 6 1.6 3 1.2 5 1.5 2 6.8 4 3.2 

0.43903 10.8 23 0.9 4 3.1 3 1.6 6 1.3 6 1.2 1 2.7 

0.79593 14.7 22 3 2 2.8 15 3.2 1 2.6 1 1.5 1 1.6 

0.94596 22 23 2.6 1 5.6 1 1.3 4 3.2 13 1.1 1 8.2 

0.98712 22.9 18 8.2 5 1.5 1 0.7 5 5.5 4 6.2 5 0.8 

0.93357 20.3 23 1.9 3 1.3 6 1.4 1 2.9 4 6 6 6.8 

0.82666 16.6 10 0.7 3 2.6 4 6.8 6 3.3 1 1.1 6 2.1 

0.71865 14.4 3 7.3 5 0.9 1 1.6 5 1.6 3 1.6 6 1.4 

0.79304 15.2 10 0.9 6 1.8 1 6.1 4 2 6 1.4 3 3 

0.80780 17.6 12 3.1 2 1.5 1 2.6 6 6.4 5 1.7 6 2.3 

0.44891 10.9 13 1.7 1 2.5 5 1 4 3.3 4 1.1 6 1.3 

0.95253 17.5 18 2.7 13 1.6 1 5.9 1 2.4 4 1.7 1 3.2 
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Table A.7 

A set of starting individuals from a stochastic approach for grinding schedules with 8 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.90907 24.7 22 
4 4 4.5 3 1 2 0.7 1 4.8 3 

1.6 3 1.1 3 5.4 1 1.6       

0.84327 13.7 8 
1 1 1.8 1 1.2 1 4.3 1 0.5 1 

0.6 1 2 13 1.4 1 0.9       

0.81788 17 7 
1.6 1 6.7 3 1.2 1 1.9 2 1.9 2 

1.2 8 0.5 1 1.1 2 0.9       

0.70794 14 16 
1.5 2 0.9 1 0.8 1 1.7 4 0.5 1 

1.5 4 5.5 4 1 3 0.6       

0.75053 14.7 15 
1.8 1 0.5 1 0.5 4 1.2 1 0.7 1 

1.6 4 5.7 4 1.7 4 1       

0.88855 18.2 13 
0.9 4 4.6 3 0.5 3 7 3 1.1 1 

1 4 1.2 1 0.6 1 1.3       

0.99983 29.1 4 
1 1 9.2 8 6.3 1 0.9 4 3.9 1 

1 3 0.6 1 0.7 1 5.5       

0.57535 12.3 8 
1.6 2 1.7 1 1.3 2 2.1 1 1 9 

1.6 1 0.8 2 1.6 2 0.6       

0.79823 16.8 22 
1.6 2 4.7 1 0.8 10 0.9 1 1 1 

0.6 3 2 1 4.1 1 1.1       

0.68148 15.7 23 
2 3 0.6 4 0.9 1 0.7 1 0.9 1 

1.5 4 3.6 3 1.1 3 4.4       

0.94949 19.5 23 
3.4 1 1.5 1 0.6 3 0.6 8 3.5 2 

2 3 1 1 0.9 1 6       

0.88462 22.8 15 
1.3 1 6.8 4 0.5 1 4 3 1 3 

5.8 4 1.3 3 0.6 1 1.5       

0.71295 11.8 20 
0.7 9 1 2 0.6 1 0.9 1 1 3 

3.6 1 1.1 1 1.6 2 1.3       

0.94960 20.3 18 
0.9 4 1.8 4 6.6 3 1.1 2 1.4 1 

0.9 1 4.9 4 0.8 1 1.9       

0.52739 12.3 21 
1.2 1 0.9 3 1.1 1 1.2 9 4.8 3 

0.6 1 1.2 1 0.7 1 0.6       

0.90214 18.9 23 
5 1 0.5 1 0.7 1 1.7 1 1 4 

0.9 10 0.9 1 1.1 1 7.1       

0.81703 14 7 
1.3 1 5.2 1 0.8 1 0.7 1 1 1 

1.9 1 0.5 1 0.6 13 2       

0.79796 14.2 20 
1.6 1 1 1 1.5 3 0.8 9 0.6 1 

1.5 1 1.6 1 4.6 3 1       

0.98758 16.6 20 
0.9 4 1.1 1 2 1 0.9 7 0.9 1 

1.3 2 1.2 1 7 3 1.3       

0.99822 15.1 22 
1 1 0.9 13 1.9 1 3.4 1 0.9 1 

0.9 1 1 1 4.6 1 0.5       
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Table A.8 

A set of starting individuals from a stochastic approach for grinding schedules with 10 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.65591 16.5 21 
0.8 1 5 3 0.8 3 1.7 2 0.8 3   

0.6 2 0.5 1 0.5 2 1.6 1 3.6 2 0.6 

0.62632 15.8 22 
4.9 1 0.9 10 0.5 1 0.9 1 1 2   

3 1 0.5 1 1.4 1 0.6 1 0.6 1 1.5 

0.76273 15.2 23 
1 1 1.4 3 1.1 1 0.7 3 0.5 3   

1.6 1 0.8 2 0.6 2 0.7 1 0.8 3 6 

0.63252 12.8 8 
0.7 1 0.9 1 0.8 1 1.6 1 0.7 1   

3 10 1.6 2 0.7 1 0.7 1 1.3 1 0.8 

0.98490 26.6 12 
7.5 6 1.3 1 0.7 1 0.4 1 6.3 1   

0.6 2 1.3 3 0.9 1 4.8 3 1.3 1 1.5 

0.89024 18.1 14 
0.4 3 0.6 1 4.5 3 0.7 2 0.7 1   

1 1 4.9 1 1.1 6 2.8 1 0.8 1 0.6 

0.97164 20.4 8 
0.9 3 5.2 1 0.5 1 4.4 2 0.8 1   

0.8 1 1 1 1.3 1 0.5 8 4.1 1 0.9 

0.95727 25.9 23 
3.5 1 4.6 1 1.4 1 0.8 3 0.7 1   

1.2 2 0.8 6 6.2 3 0.7 1 1.6 1 4.4 

0.90445 19.7 8 
0.8 1 3.4 1 0.8 1 0.8 1 1.2 1   

4.5 6 1.2 6 1.3 1 0.6 1 1.2 1 3.9 

0.72893 16.9 13 
0.4 1 0.6 2 1 1 3.6 1 0.4 2   

0.8 1 1.3 2 3.2 1 0.8 1 0.6 8 4.2 

0.88433 22.9 11 
0.7 2 0.7 1 6.6 3 0.8 2 4.5 1   

0.7 3 0.6 1 0.7 3 0.6 1 5.5 3 1.5 

0.88348 16.3 6 
0.6 1 1.4 1 6.1 1 0.7 1 0.9 10   

2.7 1 0.6 2 1.4 1 0.7 1 0.6 1 0.6 

0.71699 16.8 20 
1 5 4.4 2 0.7 1 0.5 1 1.1 2   

0.4 2 0.9 1 1.5 3 4.3 1 0.4 2 1.6 

0.99569 24.1 9 
0.7 1 4.8 1 2.9 2 0.4 1 1.4 1   

3.8 1 0.8 2 0.5 9 5.6 1 1.6 1 1.6 

0.81441 21.9 13 
3.7 3 0.7 1 4.8 6 5.1 1 1.1 2   

0.5 1 1.6 1 1 3 1.5 1 0.4 1 1.5 

0.56580 14.5 14 
3.7 3 1.4 1 0.6 3 0.7 1 1.5 3   

3.3 2 0.4 3 0.6 1 0.6 2 0.9 1 0.8 

0.87648 23.4 23 
5.2 1 0.4 1 1.3 1 1.1 2 1.6 1   

0.5 7 0.7 1 5.6 3 0.9 1 1.1 2 5 

0.80882 18.5 22 
1.2 1 0.8 3 1.6 7 4.9 1 1.2 1   

1.5 2 1.5 2 0.9 1 0.9 1 2.9 1 1.1 

0.67553 16.7 23 
2.7 2 1.2 1 0.7 1 0.8 3 1.6 2   

0.5 3 0.7 2 1.6 1 1.6 3 0.8 2 4.5 

0.93511 21.5 11 
0.5 1 1.7 3 6 1 0.8 1 0.7 2   

4.1 2 1.5 3 4 3 0.7 1 0.8 3 0.7 
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Table A.9 

A set of starting individuals from a stochastic approach for grinding schedules with 15 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.87840 23.7 22 

0.5 1 5.1 1 0.5 1 1.1 2 0.5 1   

1.1 1 0.4 1 2 2 0.5 2 0.3 1   

0.5 1 3.7 1 2 2 0.8 2 4.1 1 0.6 

0.76119 18.8 17 

3.8 1 0.5 1 0.7 2 0.8 5 0.9 1   

0.3 1 0.3 1 3.1 1 1 1 2.2 1   

0.8 1 0.3 1 0.3 1 0.8 1 2.4 1 0.6 

0.93287 20 8 

3.8 1 0.5 1 3.4 1 0.3 1 0.8 1   

3.7 1 0.3 1 0.8 1 0.4 1 0.6 6   

0.9 1 0.5 1 0.5 1 2.2 1 0.7 1 0.6 

0.97875 25.3 23 

0.3 1 4.6 1 0.5 5 0.5 1 0.6 1   

4 1 2.3 1 0.3 1 1 2 0.7 1   

0.4 1 3.9 1 0.5 1 0.4 1 0.9 1 4.4 

0.78341 18.2 15 

1 1 0.5 2 3.4 1 0.4 1 0.5 1   

0.3 1 0.5 1 4.3 2 0.9 1 1.1 1   

0.9 1 1.9 2 0.3 2 0.7 2 0.8 1 0.7 

0.89256 20 7 

0.4 1 3.5 1 0.8 2 4.1 1 2.2 2   

0.3 1 0.4 1 0.3 1 0.6 1 0.4 1   

0.5 2 0.9 2 3.8 2 0.9 1 0.5 1 0.4 

0.72374 17.5 8 

0.6 2 3.5 1 0.9 1 0.9 1 2.8 2   

0.8 1 0.9 1 0.6 1 1.9 1 0.3 2   

0.8 2 0.7 2 0.7 1 0.4 1 0.8 1 0.9 

0.91224 22.8 6 

3.5 1 2.5 2 3.8 1 1.1 1 0.4 2   

0.6 1 0.5 1 4.2 1 0.7 1 0.5 2   

1.1 2 0.7 1 0.9 1 0.4 1 0.9 2 1 

0.93838 24.8 10 

0.5 1 2.8 1 3.9 1 0.5 1 0.3 1   

3.4 2 0.5 1 3.8 2 0.4 1 2.6 1   

0.9 2 0.5 1 0.8 1 3 2 0.3 2 0.6 

0.81000 21.9 18 

1 1 2.7 1 2.7 1 0.5 2 3.1 2   

0.5 2 3.5 1 0.3 1 0.4 2 0.3 1   

0.6 1 4.3 1 0.5 1 0.6 1 0.4 2 0.5 

0.99818 27.1 13 

3.4 2 0.8 1 4.1 1 0.6 1 1.1 1   

3 1 0.3 1 0.8 2 4.3 1 1 2   

0.7 2 0.6 1 0.9 1 1.1 2 0.5 1 3.9 

0.83303 19.3 4 

3.4 1 4.8 1 0.4 1 0.5 2 0.8 1   

0.6 1 0.5 2 0.5 1 0.7 4 0.4 1   

3 1 0.3 1 0.8 1 0.9 1 1.1 1 0.6 

0.87329 23.2 22 

0.5 1 0.3 2 0.4 1 4.4 1 0.7 1   

0.8 1 0.6 2 1.1 2 0.9 1 3.7 1   

0.6 1 2.1 2 0.6 2 2 1 1 1 3.5 

0.92164 22.9 15 

0.4 2 0.8 1 3.4 1 0.4 2 0.3 1   

0.6 1 0.6 2 4.8 1 0.6 1 2.4 1   

0.9 2 0.7 2 3.3 1 0.6 1 1 1 2.1 
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Table A.9 

Continued 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.80269 19.7 22 

0.3 1 0.4 1 0.7 2 2.9 1 0.4 1   

0.6 1 0.5 1 0.9 1 0.6 1 0.6 2   

2.9 2 2.2 2 0.4 1 0.5 1 3.2 2 2.6 

0.83609 25.3 19 

3.4 1 0.8 1 3.6 1 0.6 2 0.6 1   

0.5 2 3 1 0.4 1 3.2 2 0.5 1   

0.5 2 0.5 1 4.5 1 0.6 2 0.7 1 1.9 

0.98169 24.3 21 

0.8 1 1.1 1 0.4 2 5.7 1 0.4 1   

0.4 1 0.3 1 0.8 2 3.1 2 0.5 1   

0.5 1 3.5 1 0.5 1 0.8 2 5.2 2 0.3 

0.78983 19.4 16 

0.6 2 0.6 1 3.2 2 0.8 1 0.5 1   

0.5 1 2.1 1 0.4 2 0.4 1 3.9 1   

0.8 1 1 1 0.3 2 0.5 2 3 1 0.8 

0.99596 27.4 11 

0.6 1 4.3 1 1.1 1 4 1 0.3 1   

1.1 1 0.5 2 5.2 2 0.6 1 0.4 1   

0.4 2 4.2 2 0.5 1 1 1 2.7 2 0.5 

0.82152 18.3 21 

0.9 1 0.5 1 0.8 2 2.8 1 0.8 1   

0.4 1 0.3 1 0.3 1 0.7 1 0.5 2   

2 1 0.6 1 0.4 2 2.5 2 4.3 2 0.5 
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Table A.10 

A set of starting individuals from a stochastic approach for grinding schedules with 20 steps 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.67039 15.6 20 

0.6 1 0.4 1 0.4 1 0.7 1 0.2 1   

0.2 1 0.5 1 0.8 1 0.5 1 0.9 1   

2.2 1 0.3 1 0.2 1 2.2 1 0.8 1   

0.7 1 1.4 1 0.3 1 1.7 1 0.3 1 0.3 

0.99590 26.2 17 

2.1 1 0.7 1 2 1 3.1 1 0.3 1   

0.5 1 0.2 1 0.3 1 1.4 1 0.3 1   

0.5 1 2 1 0.4 1 3.3 1 2.5 1   

0.7 1 0.7 1 0.5 1 0.2 1 0.2 1 4.3 

0.93269 23.7 21 

0.5 1 1.4 1 0.2 1 0.5 1 2.3 1   

0.5 1 2.6 1 0.8 1 0.3 1 2 1   

0.3 1 0.7 1 1.9 1 1.6 1 0.4 1   

0.3 1 0.4 1 4 1 0.3 1 2.3 1 0.4 

0.72551 17.4 23 

0.4 1 0.8 1 0.5 1 0.3 1 0.3 1   

2.7 1 1.9 1 0.2 1 0.4 1 0.3 1   

0.6 1 0.5 1 0.4 1 0.5 1 0.7 1   

0.4 1 0.3 1 0.4 1 0.3 1 1.8 1 3.7 

0.98582 25.9 16 

2.5 1 1.5 1 0.7 1 0.4 1 0.4 1   

3 1 2.8 1 1.8 1 0.3 1 0.9 1   

0.6 1 2.7 1 0.3 1 1.6 1 2.8 1   

0.3 1 0.2 1 1.8 1 0.9 1 0.2 1 0.2 

0.97479 24.7 17 

0.4 1 0.3 1 2.8 1 1.6 1 0.4 1   

0.4 1 0.4 1 0.8 1 2.5 1 0.4 1   

2 1 1.5 1 0.3 1 3.1 1 0.5 1   

2.4 1 0.4 1 0.3 1 1.8 1 0.4 1 2 

0.79403 20.8 9 

4.6 1 0.3 1 2.8 1 0.7 1 0.3 1   

0.4 1 3 1 0.8 1 0.2 1 0.4 1   

0.4 1 0.3 1 0.4 1 0.7 1 0.6 1   

2.3 1 0.2 1 0.5 1 0.8 1 0.8 1 0.3 

0.99355 29.7 21 

2.3 1 3.2 1 2.6 1 0.7 1 1.8 1   

2.3 1 0.4 1 0.4 1 0.4 1 0.5 1   

2.4 1 0.3 1 0.4 1 0.5 1 3.2 1   

2.3 1 0.3 1 0.7 1 1.8 1 2.8 1 0.4 

0.77909 22 13 

0.3 1 4 1 0.4 1 0.7 1 0.2 1   

3 1 1.6 1 0.6 1 0.3 1 0.4 1   

3.1 1 0.4 1 0.4 1 0.7 1 0.4 1   

0.4 1 1.8 1 0.3 1 0.3 1 2.5 1 0.2 

0.92854 28.2 12 

2.7 1 0.3 1 2.9 1 1.4 1 0.6 1   

2.3 1 0.4 1 0.7 1 2.4 1 1.4 1   

1.8 1 0.3 1 0.4 1 2.1 1 1.7 1   

0.9 1 0.8 1 0.4 1 0.4 1 0.5 1 3.8 
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Table A.10 

Continued 

Max. Damage Total LU Crack depth (mm) Individuals (LU | mm) 

0.70810 15 11 

1.4 1 0.3 1 0.5 1 0.2 1 0.7 1   

2 1 3.2 1 0.4 1 0.3 1 1.6 1   

0.6 1 0.3 1 0.2 1 0.7 1 0.5 1   

0.3 1 0.5 1 0.5 1 0.3 1 0.2 1 0.3 

0.91688 24.4 21 

0.4 1 0.8 1 3.2 1 0.6 1 1.6 1   

0.4 1 0.6 1 0.3 1 3.2 1 0.3 1   

2.7 1 0.5 1 0.8 1 0.3 1 1.4 1   

0.3 1 0.5 1 3.2 1 2.3 1 0.3 1 0.7 

0.85868 23 15 

2.1 1 0.6 1 0.4 1 0.8 1 3.1 1   

0.2 1 0.3 1 0.7 1 2.7 1 0.3 1   

0.3 1 3 1 0.2 1 2.5 1 0.3 1   

0.3 1 0.8 1 0.4 1 3.1 1 0.6 1 0.3 

0.95397 24.5 8 

0.2 1 2.6 1 0.7 1 0.3 1 0.5 1   

6.3 1 0.8 1 0.3 1 0.3 1 0.6 1   

0.7 1 0.8 1 3.2 1 0.4 1 0.3 1   

1.4 1 0.7 1 0.8 1 0.5 1 0.4 1 2.7 

0.92380 22.1 14 

0.4 1 0.8 1 0.4 1 1.8 1 0.8 1   

1.4 1 2.1 1 0.5 1 2.6 1 0.7 1   

1.9 1 0.4 1 2.8 1 0.3 1 0.3 1   

0.5 1 0.5 1 0.6 1 0.2 1 2.6 1 0.5 

0.85189 21.5 8 

0.3 1 3.2 1 0.6 1 0.4 1 3.1 1   

2.6 1 0.3 1 0.4 1 0.4 1 0.6 1   

0.3 1 0.6 1 0.9 1 0.8 1 0.8 1   

3.6 1 0.5 1 0.7 1 0.3 1 0.4 1 0.7 

0.62529 18.2 15 

3.1 1 0.4 1 0.2 1 2.1 1 0.3 1   

0.4 1 0.7 1 0.5 1 1.8 1 0.3 1   

0.3 1 1.8 1 0.5 1 1.4 1 0.5 1   

0.3 1 0.4 1 2.2 1 0.4 1 0.3 1 0.3 

0.91837 20.9 17 

0.2 1 0.3 1 0.4 1 0.4 1 2.1 1   

2.6 1 0.8 1 1.6 1 0.4 1 0.7 1   

1.5 1 0.4 1 0.7 1 2.4 1 2.9 1   

0.3 1 0.5 1 1.7 1 0.3 1 0.3 1 0.4 

0.82672 19.6 18 

0.7 1 0.8 1 0.4 1 0.4 1 0.8 1   

0.4 1 1.7 1 0.6 1 0.6 1 1.8 1   

0.8 1 0.7 1 0.7 1 0.4 1 0.6 1   

4.4 1 0.3 1 0.4 1 0.5 1 2.2 1 0.4 

0.64307 19.6 7 

2.5 1 1.5 1 2 1 0.8 1 0.4 1   

1.4 1 0.6 1 0.3 1 1.8 1 0.4 1   

0.7 1 0.8 1 0.2 1 0.5 1 0.4 1   

0.3 1 2 1 0.3 1 2.1 1 0.2 1 0.4 
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APPENDIX C 

OPTIMIZATION PARAMETERS 

 

Parameters used in the first step of optimization with genetic algorithm (GA) 

Probability of mutating LU                                                    = 50%  

Probability of mutating grinding thickness                                 = 50% 

Minimum improvement rate                                                       = 0.3% 

Allowable mutation for each evolution                                      = 30 

LU mutation mode                                                                      = linearly random 

Number of LU components to be mutated                                 = 2 - 11 

LU mutation rate                                                                        = 10 – 100% 

Grinding thickness mutation mode                                             = linearly random 

Number of grinding thickness components to be mutated    = 2 – 4 

Grinding thickness mutation rate                                               = [1 2 3 4] mm 

Number of mutations allowed without improvement                = 50 

 

Parameters used in the optimization local search using genetic algorithm (GA) 

Probability of mutating LU                                                        = 50%  

Probability of mutating grinding thickness                                = 50% 

Minimum improvement                                                             = 1 LU  

Allowable mutation for each evolution                                      = 30 

LU mutation mode                                                                     = linearly random 
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Number of LU components to be mutated                                = 1 

LU mutation step                                                                       = 0.1 LU 

Grinding thickness mutation mode                                           = linearly random 

Number of grinding thickness components to be mutated      = 2 

Grinding thickness mutation rate                                              = 1 mm 

Number of mutations allowed without improvement             = 50  
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