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ABSTRACT 

 

A Non-Pyramidal Rectangular-to-Trough Waveguide Transition and Pattern 

Reconfigurable Trough Waveguide Antenna. (December 2010) 

Loizos Loizou, Diploma, National Technical University of Athens 

Co-Chairs of Advisory Committee: Dr. Gregory. Huff  

                                                          
  Dr. Robert D. Nevels 

 

Trough waveguides (TWG) have been utilized in a variety of radio frequency 

(RF) and other related applications including radar, the treatment of hypothermia and in 

the generation of plasmas. Perturbing the guided wave in these structures with blocks, 

rods, dielectrics, and other structures can create reconfigurable periodic line sources. 

These trough waveguide antennas (TWA) are then capable of providing both fixed-

frequency and frequency-dependent beam steering. This was originally performed using 

electro-mechanical “cam-and-gear” mechanisms. Previous work related to the excitation 

of TWG and the performance of TWA topologies are limited when compared to more 

common antenna designs, yet they possess many desirable features that can be exploited 

in a modern system. 

This thesis will examines an S-band rectangular-to-trough waveguide transition 

and trough guide antenna that has been designed for broadband reconfigurable antenna 

applications considering as well the airflow characteristics for sensing applications. The 

design, fabrication, and electromagnetic performance (mode conversion, impedance 
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matching, and antenna performance) are discussed, including the use of metallic 

cantilever perturbations placed along the troughguide sidewalls that are designed to 

provide improved impedance matching when steering the beam from the backward 

quadrant through broadside, towards the forward quadrant. Impedance matching 

techniques such as use of circular holes at the edge of each actuated cantilever are used 

to reduce power reflections and provide a low voltage standing wave ratio (VSWR) 

along the S-band. Finite element simulations will provide a demonstration of the airflow 

and turbulence characteristics throughout the entire structure, where the metallic 

cantilevers are used to manipulate the flow of air, to distribute it across the surfaces of 

the structure better and improve its potential for sensing operations.  
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NOMENCLATURE 

 

TWA Trough Wave Antenna 

TWG Trough Wave Guide 

RWG Rectangular Wave Guide 

P Pressure 

T Time 

TEM Transverse Electromagnetic 

TE Transverse Electric 

TM Transverse Magnetic 

EM Electromagnetics 

VSWR Voltage Standing Wave Ratio 

RF Radio Frequency 

DUT Device Under Test 

UAV Unmanned Aerial Vehicle 

PIFA Planar Inverted F-Antenna 

GPS Global Position System 

WSN Wireless Sensor Network 

PDA Personal Digital Assistant 

BAN Body Area Network 

LWA Leaky Wave Antenna 
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This thesis follows the style of IEEE Transactions on Antennas and Propagation. 

CHAPTER I 

INTRODUCTION 

 
Cell phones, electronic personal assistants (PDAs), global position systems 

(GPS), wireless and satellite television represent just a few of the examples of the impact 

wireless communication systems have made on everyday life. Wireless sensor networks, 

a subset of wireless systems, have been developed to play an important role in personal 

and public safety. Applications range from body area networks (BAN) for remotely 

monitoring and treating a patient’s health to more environmentally oriented applications 

such as temperature and humidity monitoring. Public safety applications include the 

detection of biological and chemical threats, toxins and poisons in air, and smoke for 

advanced fire safety and early warning measures. There are many other potential 

applications. 

Modern technology is driven toward constant miniaturization and integration of 

systems and devices. Meeting the demands of the former may be limited by the size of 

larger system components such as antennas, whose efficiency and performance is 

predominantly dependent on their effective aperture size. Antenna designs such as 

microstrip patches and planar inverted F-antennas (PIFAs) have led to conformal planar 

topologies that help reduce their size, but there are still fundamental physical limits that 

exist and certain applications will almost always require larger antennas with higher gain 

and directivity. To this end, the structural and functional integration of several 

subsystems can result in technologies that can support the demands of these systems. 
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Multifunctionality is a term describing this desire and the set of devices that can 

efficiently and simultaneously perform more than one function or operational objective; 

however, it can lead to a potentially complex integration process so the amalgamation of 

function must be done diligently. This work seeks to do this by blending antenna 

technologies amendable to the base stations of a wireless networks. These are commonly 

placed atop a rooftop, which provides an opportunity to include sensing mechanisms for 

measuring temperature, humidity in the air, and potentially the detection of smoke 

and/or poisonous gases. Future applications may also include the structural integration of 

these antennas into mobile platforms such as UAVS or even into high security buildings 

to detect weapons, explosives, chemical agents, biological threats, and possibly to 

perform imaging during sensing operations. 

Trough waveguides (TWG) are open structures that offer 50% more bandwidth 

than regular waveguides (RWG). Any perturbation inside the TWG can cause radiation 

to leak out through the effective aperture (e.g., the open end of the structure) and create a 

trough waveguide antenna (TWA). This process of facilitating radiation in the TWA can 

be controlled, thereby making it possible to create a reconfigurable antenna from this 

design. This kind of large aperture antenna based on leaky-wave structures can also 

support multifunction operations in many microwave applications. It is well known that 

most leaky-wave antennas have a main beam which is scanned by applying a frequency 

sweep. Some of these structures can also been designed to provide beam steering for a 

fixed frequency; this reduces the use of phase shifters and large feed networks in some 

cases and minimizes the system losses. These losses are actually present in the other 
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elements of the electromechanical system but they are removed from the flow or 

throughput of information that is the antennas primary function. By using an 

electromagnetically (EM) transparent cover (e.g., one that does not dramatically alter the 

performance of the antenna), the TWG structure can be sealed and pressurized fluids or 

gasses can be passed through it. More specifically, pressurized air can be guided through 

the TWA where sensors can be integrated inside the structure and passed to the antenna 

to transmit the information across a long distance.  

 This thesis discusses the electromagnetic and aerodynamic co-design of a non-

pyramidal RWG-to-TWG transition and a fixed-frequency pattern reconfigurable TWA 

providing  many of the desirable characteristics required by a platform which integrates 

reconfigurable antennas and sensing mechanisms into the same device. A review of the 

TWA and their applications is followed by the design, analysis, fabrication and 

evaluation procedures of an RWG-to-TWG transition examining both the 

electromagnetic and aerodynamic performance of the structure. The use of cantilever 

perturbations is then discussed for controlling the leaked power from the TWA for 

broadside radiation and pattern reconfigurable antennas (e.g., fixed frequency beam 

steering). An aerodynamic study of the structure investigates the airflow and turbulence 

characteristics throughout the entire RWG-to-TWG transition and within the TWA. The 

effect of the metallic cantilevers is also examined providing the means to control the 

flow of air, to better distribute it across the surfaces of the structure and improve its 

potential for sensing operations.   

 



 

 
A. S

 

wh

com

and

net

ma

eac

N-p

wa

Fig
 

S-Parameter

Directly

hen dealing 

mmonly use

d between e

twork as see

atrix) are a m

ch port with 

port network

ave on port N

g.  1.  An N por

rs 

y measuring

with high f

d as a mean

each port in

en at its N-p

measure of p

respect to th

k is shown 

N and nV   is t

rt network sho

C

BA

g the port cu

frequency ne

ns of analysis

n the netwo

ports. These

power that r

heir characte

on Fig.1, w

the amplitud

owing the inci

 

CHAPTER I

ACKGROUN

urrents and th

etworks so 

s. This meas

ork, and pro

e S-paramete

relate the in

eristic wave 

where nV   is 

de of the refl

ident and refle

II 

ND 

he voltages

the scatterin

sures the refl

ovides a co

ers (the N2

ncident and r

impedance.

the amplitu

lected wave 

ected voltages

is not easily

ng matrix, o

flection and t

omplete desc

elements in

reflected vo

. A diagram 

ude of the in

from port N

 

s and currents

y accomplish

or S-matrix,

transmission

cription of 

n an N-by-N

oltage waves

of an arbitr

ncident volta

N.  

s. 

4

hed 

, is 

n at 

the 

N S-

s at 

ary 

age 



  5

The S-matrix (1), or  S , has elements given by (2). This illustrates that Sij is found by 

applying a voltage jV   to port j and getting a voltage iV   out of port i. The excitation on 

all the other ports is set to zero (also known as a matched termination condition) so Sij 

gives the transmission coefficient from port j to port i. For reciprocal lossless networks, 

the elements in the S-matrix have the property shown in (3).   

  

1 111 12 1

212 2

1

 

 
 

 

    
    
                 
    
       


 

   
 

N

N NNn n

V VS S S

SV V
V S V

S SV V

 (1) 

 
0

| ,
k

i
ij V

j

V
S i j

V
 

   (2) 

 

*

1

*

1

1,

0,

N

ki ki
k

N

ki ki
k

S S i j

S S i j





 

 




 (3) 

Leaky-wave structures are typically 2-port networks (e.g.,  S  is a 2x2 matrix) based on 

a transmission line topology, in which relatively large values of attenuation are due to 

radiation. The propagation characteristics in these leaky-wave structures are given by the 

complex propagation constant  in (4), where α is the attenuation constant related to 

dissipated power (including radiation losses) and β is the phase constant that describes 

the propagation of EM energy within the structure. Each of these parameters is 

controllable through the design of the radiating or guiding structure. 

 j     (4) 
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The attenuation constant α accounts for ohmic and radiation losses, so for most materials 

(i.e. copper and aluminum) the ohmic losses are very small compared to radiation from 

the guide. Hence, this work seeks to maximize the equivalent α. The wave impedance of 

a waveguide is also an important quantity, and is given by (13), where 2 f  with f as 

the operational frequency, μ the permittivity and n the impedance of free space. The 

characteristic impedance of the waveguide Z0 is given by (14), where B is a constant 

depended on the b dimension of the guide [1]. Each mode in the waveguide has a cutoff 

frequency fc,mn (15). Frequencies below fc,mn cannot propagate in the corresponding mn 

mode. Frequencies below the lowest fc (typically the TE10 illustrated in Fig. 6) are in cut-

off and will not propagate. Typically, the waveguide's dimensions are selected to allow 

operation within the band of interest (fc,10 < fband < higher order fc). The separation 

between the lowest, or fundamental mode, and second lowest mode’s fc provide the 

concept of bandwidth for the waveguide. 
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The main beam’s direction is then given by (16) with a beamwidth from (17) using the 

free-space wave number (18). The maximum angle of the beam from broadside direction 

is m , with (19) a condition to ensure 90% of the input power is radiated. 

 sin m
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 Scan angle m behavior depends on the topology of the uniform leaky wave 

antenna. For an air filled guide the variation of scan angle with frequency is slower 

compared with the partially dielectric- filled type of waveguide. The radiation pattern is 

found by the Fourier transform of the aperture distribution and for an infinite antenna 

length (20); tapering the amplitude of this distribution can reduce the sidelobe level. 
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F. Periodic Leaky-Wave Antennas 

 In contrast to the uniform LWA, the periodic LWA topologies are modulated in a 

repetitive distribution along their length. The leakage mechanism is also different in a 

sense that uniform antennas support a “fast” mode which radiates. On the other hand, the 

dominate mode in a periodic structure needs to be introduced since it is a “slow” 

structure. The introduction of a periodic array in the guide perturbs the bounded mode in 

a manner that introduces an infinite number of space harmonics which are related to 

each other by (21), where 
1

o

d
f

  is the period and o  is the fundamental space 

harmonic. 

 2n od d n     (21) 

 If one of the space harmonics becomes fast, radiation is achieved. Since only one 

beam is desirable, the integer n = -1 is chosen and for a frequency sweep this beam will 

emerge from backfire and sweep through broadside towards the forward quadrant. The 

resulting beam direction is determined by (22) with 1

2
o d

     and  
1

o

d
f

 . 

 1sin o o
m

o gk d
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G. Phase Accumulation 

 The radiation mechanism previously described explains the "open stop band" 

region which occurs in such periodic structures at a narrow region around broadside 

where resonant lengths are required for broadside radiation. The system can be seen as a 



 

cas

bro

lon

giv

sum

tota

ref

 

Fig
 

 

 

 

 

scaded circu

oadside whe

ng each trans

ven by (23). 

m of the refl

al reflection

flected (givin

g.  9.  Reflectio

it of transmi

re the eleme

smission line

This means

flections from

n coefficient

ng a high VS

on from cascad

1[ ] [ ]

c

1

0

totT T

jY






 




 


ission lines c

ents of the p

e is then λ/2

s that the tot

m reactive lo

t (24). Most

SWR) when 

ded transmiss

2[ ]...[ ]

2
cos

2
2

sin
2

0 1 0

1 1

n

o

T T

Y

Y

 

 




 
 
 

 

connected to

periodic arra

2 long. The t

tal reflection

oads Y. Each

t of the pow

the beam sc

ion line sectio

cos

sin

2
sin

2
cos

2

1 0 1

0 1

o

o

l

jY l

jZ

Y






 






 
 
 

0
tot



  

o similar loa

ay are exact

total transmi

n seen at the

h of these sh

wer delivere

cans through 

ons. 

sin

cos

1 02 .
1

0 1
...

1

ojZ l

l

Y

Y












 
 
 


 
 

 

ads and show

tly half a wa

ission of the 

e input of the

hunt loads c

ed to the str

broadside.  

1 0
...

1

..

0

1

n

Y

 
 
 





 

wn in Fig. 9. 

avelength (λ

system is th

e system is 

contributes t

ructure will

(2

(2

15

At 

λ/2) 

hen 

the 

o a 

be 

 

23) 

24) 



 

H. 

 

stu

Oli

the

stu

 

Fig
 

the

and

ant

unb

rod

ele

Trough Wav

Trough

udied in the 

iner [3] wer

e center fin. 

udies for ante

g.  10.  TWA w
 

TWG a

ese perturbat

d came to a

tisymmetric 

bound TEM

d combined 

ement. A ser

veguide Ante

h waveguides

past as ante

re able to alt

An array of

enna scannin

with arrays of 

are open stru

tions. Rotma

a series of u

obstacles in

M mode, and 

with a vert

ries of perpe

ennas (TWA)

s have been 

ennas, filters

ter the prop

f circular ho

ng and filteri

holes and teet

uctures but 

an and Karas

useful concl

n TWA cou

symmetric 

tical rod in 

endicularly p

 

) 

around for 

s and other 

agation char

oles and an a

ing applicati

th ( from [3] ).

they do not 

s [4] introdu

lusions rega

uple energy b

obstacles ca

Fig. 11 (m

placed teeth 

some time 

microwave 

racteristics o

array of teet

ions as seen 

. 

t radiate effi

uced some m

arding their 

between the

an be used 

middle) facili

on the cente

and have be

application

of the guide

th are the ba

at Fig.10. 

iciently with

microwave a

functionality

e bound TE 

for tuning. 

itates a reso

er fin, Fig. 1

een extensiv

s. Rotman a

e by modifyi

asic geometr

 

hout the use

antenna desig

y; namely t

mode and 

The horizon

onant radiat

11 (left) cau

16

vely 

and 

ing 

ries 

e of 

gns 

that 

the 

ntal 

ing 

uses 



 

rad

tee

Fig
 

cha

wa

sec

the

fre

reg

 

If t

ang

the

on 

diation as we

eth (Fig. 11, r

 

g.  11.  TWA w
 

Rotman

anging the p

as based on 

cond was to 

e TW is mad

quency is g

gion), o  is t

the TW is m

gle of the m

e perturbatio

a fixed setu

ell as a contin

right) make 

with vertical an

n and Maest

phase velocit

the rotation

vary the hei

de continuo

given by (25

the free spac

made partial

main beam fo

n. In this pr

up and using

nuous asymm

the TWA a 

nd horizontal 

tri reported 

ty in the gui

n of symmet

ight of an ar

usly asymm

5) where 

ce wavelengt

lly asymmet

or a fixed fre

rior work the

g metallic b

 

metry on on

slow wave s

rods on the ce

a “scannabl

de. The first

trical structu

rray of teeth

metric the di

 is the beam

th, and g  is 

sin o

g






tric near bro

equency is g

e beam is sc

blocks as per

ne side of the

structure.  

enter fin ( from

le” array in 

t method use

ures along t

h placed on t

irection of th

m angle (lim

the guided w

oadside radi

given by (26

canned by ap

rturbations w

e TWA. A se

m [4] ). 

[5]; this wa

ed to achiev

the axis of t

the top of th

the main bea

mited to the

wavelength.

iation is ach

6), where l i

pplying a fre

with a varia

eries of verti

 

as achieved

ve this behav

the guide. T

he center fin

am for a fix

e near end f

 

(2

hieved and 

is the length

equency swe

able height t

17

ical 

by 

vior 

The 

n. If 

xed 

fire 

25) 

the 

h of 

eep 

that 



 

cha

len

the

 

 

wa

rad

equ

ana

Fig
 

 

occ

In 

rec

of 

anges the g

ngth of the b

e length of ea

In a m

ave antennas

diation and 

uivalent tran

alytical mod

g.  12.  An equi

Further

curs at broad

a later wor

configurable 

a W-band t

guided wave

locks chang

ach block is 

ore extensiv

s based on 

another m

nsmission li

del using the 

ivalent transm

rmore to add

dside the use

rk Huff and 

radiation us

trough wave

elength. By 

ges, effective

seen to be h

sin

ve work, Ro

the TWA. O

made periodi

ine circuit 

transverse r

mission line cir

dress the hi

e of tuning p

Long [7] s

sing cantilev

eguide anten

 

changing th

ely scanning

half free-spac

n
2

o

g

 


 

otman and O

One made c

ically asym

is presented

esonance tec

rcuit of the TW

igh reflectio

osts, Fig. 13

studied the e

ver perturbati

nna. It was 

he frequenc

 the beam aw

ce waveleng

2
o

l



Oliner [6] p

continuously

mmetric for 

d as seen i

chnique.  

WG. 

ons due to p

3(right) on th

effect of the

ions for fixe

shown that 

cy or height

way from br

gth. 

present two 

y asymmetr

broadside 

in Fig. 12 

 

phase accum

he center fin

e aperture d

ed frequency

tapering th

t the electri

roadside wh

(2

types of lea

ric for end-f

radiation.

along with 

mulation wh

n was propos

distribution 

y beam steeri

e shape of 

18

ical 

here 

26) 

aky 

fire 

An 

an 

hich 

sed. 

for 

ing 

the 



 

can

lob

to s

 

Fig
 

I. A

 

ant

abs

set 

a d

For

the

kno

 

ntilevers imp

be level at br

scan the bea

g.  13.  A contin
 

Antenna Mea

The me

tenna is the

solute gains.

the DUT (e

distance R fr

r the second

e received po

own gain (G

proves the ra

roadside. Th

am. 

nuously asym

asurements 

ethod used i

 Gain-Trans

. During this

e.g., the TWA

rom a standa

d measureme

ower (Ps) is

GT) the gain o

adiation beh

his work also

metric trough

in this work 

sfer method

s procedure 

A) is a recei

ard gain ant

ent the DUT

s again mea

of the DUT c

( )T sG dB G

 

havior away 

o examined 

h and a period

to measure 

d. A standar

two sets of 

iving antenn

tenna where

T is replaced 

sured. Since

can be calcu

( ) (s TdB P d

from broad

the use of v

dically antisym

 the radiatio

rd gain ante

f measureme

na that is pla

e the receive

d by another

e the standar

ulated using b

) ( )SdB P dB

dside but inc

variable-leng

mmetric troug

on pattern of

enna is used

ents are mad

aced on a rot

ed power is 

standard ga

ard gain (GS)

by (27). 

)

creases the s

gth perturbat

 

h ( from [5] ).

f the prototy

d to determ

de. For the fi

tating fixture

measured (P

ain antenna a

) antenna is

(2

19

ide 

ion 

 

ype 

mine 

first 

e at 

Pt). 

and 

s of 

27) 



  20

J. Aerodynamic Concepts 

 The aerodynamic behavior of this structure is also of interest to this work. The 

viscosity is an important parameter since it characterizes the internal resistance to flow 

within the structure. It also plays a significant role along with the velocity of the airflow 

and geometry confining the flow, which is described by two regimes – laminar and 

turbulent. Laminar flow occurs when a fluid flows in parallel layers or sheets, with no 

significant disruption between the layers. It is characterized by high momentum 

diffusion and low momentum convention. Flow is this regime usually corresponds to 

low Reynolds numbers (28); a dimensionless number that gives a measure of the ratio of 

inertial forces   ρV²L²  to viscous forces  µVL and quantifies the relative importance of 

these two types of forces for given flow conditions. It is used to characterize flow regime 

by linking the fluid density ρ, viscosity µ, velocity V, characteristic dimension L. For 

rectangular pipes and structures, the characteristic dimension is given by the hydraulic 

diameter DH (29) with A as the cross sectional area and P as the wetted perimeter. 

Turbulent is then oppositely characterized by chaotic, stochastic property changes and 

dominated by inertial forces which result to random eddies, vortices and other flow 

instabilities. Turbulent flow is characterized by a high Reynolds number.  
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CHAPTER III 

A NON-PYRAMIDAL RECTANGULAR-TO-TROUGH WAVEGUIDE TRANSITION 

 

A. Introduction 

 The TWAs in [3]-[4] have been utilized in a variety of antenna and other related 

applications including radar, the treatment of hypothermia [8], and in the generation of 

plasmas [9]. Excitation of the TWG from transmission line topologies like coaxial in [4] 

and [10], and guiding structures like RWG [8] are common. The latter requires a 

transition for broadband mode conversion and/or impedance transformation, which in-

turn presents a key challenge towards their effectiveness in many of these previous 

applications.  

 A candidate rectangular-to-trough waveguide transition was designed to provide 

the excitation to a TWG and a TWA with reconfigurable radiation characteristics. It was 

also desired that air can flow through the TWA to be turbulent around perturbation for 

their dual purpose in sensing operations. The proposed transition provides impedance 

transformation and mode conversion across the full waveguide band (S-Band) for the 

TWG antenna structure under consideration. This section first presents the transition and 

discusses its operation as a mode converter and impedance transformer; a small degree 

of physical insight into the design of the transition design is presented in an attempt to 

provide a more comprehensive and useful discussion. The measured and simulated 

results for an S-band design are presented next. A study of the aerodynamic performance 
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CHAPTER IV 

A PATTERN RECONFIGURABLE TROUGH WAVEGUIDE ANTENNA 

 

A. Introduction 

 Metallic blocks were used as perturbations in a TWA for both symmetric and 

periodically asymmetric leaky-wave antenna designs. These were discussed in Ch. II 

along with another design that examined the use of vertical and horizontal rods (with a 

frequency depended length) that were placed atop the center fin to scanned the main 

beam. This work proposes an alternative electromechanical design using cantilever 

perturbations in the troughguide; they offer a series of advantages compared with the 

blocks since they can be made much lighter, are easier to work, and can be 

functionalized according to the application. They also offer several degrees of freedom 

that include length for frequency scaling, width for tuning, and angle for amplitude 

tapering and leakage from the antenna. Cantilevers can also come in racks as modular 

component which makes them easily replaceable depending in the requirements of the 

application. Additionally sensors and other devises can be integrated on the cantilevers 

for multifunctional operations and potentially can be designed so they can control and be 

control by air flow without their electromagnetic performance being affected.  

 

B. Simulated Designs 

 The performance of different cantilever topologies was examined using [11] to 

better understand the attenuation properties of the cantilever in the TWA. Fig. 32 shows 
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H. Experimental Setup I 

 Two sets of cantilevers were fabricated according to the previous results; these 

were made from 0.6 mm thick copper sheets. Each set had four 60 cm long racks (due to 

the dimensions of the metal sheets) giving a 1.2 m (10λ) long aperture. Each rack has a 2 

mm base in order for mechanical stability at the bottom of the TWA. The width of the 

cantilevers is 22 mm (e.g., 2mm less than the width of the trough) and each has the 

length of 60 mm for broadside radiation near 3 GHz. The fabricated version without 

holes can be seen on the left of Fig. 52. The transitions were placed into the TWA and 

measured using an Agilent Technologies E8361C network analyzer that was calibrated 

with an S-Band waveguide calibration kit. The VSWR is shown on the right side of Fig. 

52, and Fig. 53 shows the radiation patterns for both the co-polarization and cross-

polarization patterns at 2.6 GHz, 3 GHz, and 3.9 GHz. Measured results are in no 

agreement with the simulated results for this configuration. This deviation was due 

primarily to fabrication errors in machining the cantilevers (not of all of the same exact 

length and width). Some cantilevers were also forced into the structure and deformed. 

This created air gaps between the troughguide walls and the cantilevers. A second set of 

cantilevers was made with a hole at the edge but it was not tested. 
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The paper cardstock was marked using a caliper and cut using a guillotine-style 

paper cutter. A piece of copper tape was placed on each card. For better electrical 

contact it was taped against the bottom wall of the troughguide (the tape has a 

conductive adhesive). The angle of these paper cantilevers was tapered in a sinusoidal 

manner starting from the center of the guide towards the ends. Small pieces of foam 

were used to support the cantilevers to the right angle. After measuring the structure the 

cantilevers were taken out and a hole, 12 mm in diameter, was cut on every one using a 

razor blade. 

 

1. λ/2 Cantilevers with No Holes 

 Half-wavelength cantilevers (at 3 GHz) were placed in the TWG and the 

performance of the antenna was measured using a network analyzer. The VSWR plots in 

Fig. 55 (left) show the spike in VSWR (due to phase accumulation) close to the 

operating frequency at both simulated and measured results. Insertion loss plots in Fig. 

55 (right) indicate that 90% power was attenuated via radiation through the aperture. 

Radiation pattern measurements in the anechoic chamber also indicate agreement 

between the simulated and measured results (co- and cross-polarization) at 2.6 GHz, 3 

GHz and 3.9 GHz (Fig. 56). An antenna gain G near 14 dBi was achieved at broadside. 
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1.  λ/4 Cantilevers  

 A new set of cantilevers was made using copper tape and paper. Each cantilever 

was 30 mm (λ/4) long 24 mm wide as represented at Fig. 61. The cantilevers were 

placed in the trough waveguide as before taped on the sidewalls, tapered with a cosine 

distribution given by (30) and supported by small pieces of foam (which are EM 

transparent due to their electrical permittivity being near unity). In (30) N is the number 

of cantilevers in half the trough and n corresponds to the index of the nth cantilever from 

the center. Fig. 62 (left) shows the simulated and measured VSWR. The cantilevers are 

not a half-wavelength so there is no phase accumulation problem. The measured and 

simulated S-parameters are potted at Fig. 62 (right). The measured radiation patterns, 

Fig. 63, show higher sidelobes compared to the simulated mainly because the tapering 

was made approximately. At 3 GHz the main beam is 50° from broadside towards the 

backward quadrant. 
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CHAPTER V 

FUTURE WORK 

  

The foundations of developing a multifunctional device based on the troughguide 

antenna and waveguide platform with integrated sensing capabilities has been discussed 

in this thesis. Ongoing and future work will examine more TWA designs and evaluate 

“better” self-matching networks in the cantilever (spiral slots, etc.) to better mitigate 

phase accumulation. Further, a more extensive study of the aerodynamic performance 

will be undertaken to explore different setups and conditions under which the structure 

will perform (air tunnel tests, etc.). Finally, the development of sensor systems for 

certain applications is of interest to this work.  
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CHAPTER VI 

CONCLUSIONS 

 
 The electromagnetic and aerodynamic co-design of a non-pyramidal RWG-to-

TWG transition and fixed-frequency pattern reconfigurable TWA can provide many of 

the desirable characteristics required by a platform which integrates reconfigurable 

antennas and sensing mechanisms into the same device. An S-band design (2.6 GHZ to 

3.95 GHz) of a non-pyramidal RWG-to-TWG transition was proposed for this. 

Simulated and measured results for a fabricated device validated this thesis by designing 

the structure to meet both its electromagnetic and aerodynamic performance 

requirements. The resulting pattern reconfigurable TWA using cantilever perturbations 

provided high gain and was also demonstrated using experimental and simulated results 

that showed scanning from the backward quadrant (-50°) to the forward quadrant (20°) 

can be achieved. Methods for treating high reflections due to phase accumulation 

problem at broadside were also discussed and as results showed how the requirements 

can be met. 
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APPENDIX A 

 

A. Matlab script for deembedding using ABCD-parameters 

 

%----------------Deembedding the transitions----------------- 
% 
%----------------Loizos Loizou------------------------------- 
%----------------Texas A&M University------------------------ 
%----------------October 2010------------------------------- 
% 
%Convert the measured data from db to watts and into a complex form. 
%First column of the data is the frequency, second is the S11 in db and 
the %third is the phase of S11.Same applies for all S parameters. 
 
data = data; 
S_11=10.^((data(:,2))./10); 
S_21=10.^((data(:,4))./10); 
S_12=10.^((data(:,6))./10); 
S_22=10.^((data(:,8))./10); 
F=data(:,1).*1e-9; 
%In order to perform calculations using the build in functions s2abcd 
is 
%needed that the data are arranged into a 2x2xm matrix. 
n=20501; 
for i=1:n 
sparam(1,1,i)=S_11(i,1); 
sparam(1,2,i)=S_12(i,1); 
sparam(2,1,i)=S_21(i,1); 
sparam(2,2,i)=S_22(i,1); 
end; 
abcd_params = s2abcd(sparam,50); %s to abcd parameters 
  
%for solving the system for A,B,C,D parameters 
syms a b c d am bm cm dm 
  
[a b c d] = solve(a.^2+b.*c-am,a.*b+b.*d-bm,a.*c+c.*d-cm,b.*c+d.^2-
dm,'a','b','c','d'); 
am = abcd_params(1,1,:); 
bm = abcd_params(1,2,:); 
cm = abcd_params(2,1,:); 
dm = abcd_params(2,2,:); 
a_m(1,:)=am; 
am=a_m; 
b_m(1,:)=bm; 
bm=b_m; 
c_m(1,:)=cm; 
cm=c_m; 
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d_m(1,:)=dm; 
dm=d_m; 
a = eval(vectorize(a(1))); 
b = eval(vectorize(b(1))); 
c = eval(vectorize(c(1))); 
d = eval(vectorize(d(1))); 
%creat again a 2x2xm matrix with all the ABCD parameters and convert 
back 
%to S parameters. 
for i=1:n 
abcd(1,1,i)=a(1,i); 
abcd(1,2,i)=b(1,i); 
abcd(2,1,i)=c(1,i); 
abcd(2,2,i)=d(1,i); 
end; 
s_params = abcd2s(abcd,50); 
  
for i=1:n 
    Single_connector_S_P(:,1)=F; 
    Single_connector_S_P(i,2)=10.*log10(abs(s_params(1,1,i))); 
    %Single_connector_S_P(i,3)=angle(s_params(1,1,i)); 
    Single_connector_S_P(i,3)=10.*log10(abs(s_params(1,2,i))); 
    %Single_connector_S_P(i,5)=angle(s_params(1,2,i)); 
    Single_connector_S_P(i,4)=10.*log10(abs(s_params(2,1,i))); 
    %Single_connector_S_P(i,7)=angle(s_params(2,1,i)); 
    Single_connector_S_P(i,5)=10.*log10(abs(s_params(2,2,i))); 
    %Single_connector_S_P(i,9)=angle(s_params(2,2,i)); 
end; 
figure 
    plot(F,Single_connector_S_P(:,3)); 
    title('S12'); 
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B. Matlab script of the transition impedance model 

 

% Impedance Model of the Taper Transition ----  Rectangular WG model 
% 
%------------------Loizos Loizou--------------------------------- 
%------------------Texas A&M University-------------------------- 
%------------------October 2010--------------------------------- 
% 
%---------------------------------------------------------------- 
%This script reads the waveguide dimensions from an excel file,  
%calculates the cutoff frequency and the real part of the  
%characteristic impedance of the waveguide at 3GHz for both troughguide  
%and rectangular sides. 
 
close all; 
clear all; 
clc; 
data = xlsread('TransitionData_Chen2.xls'); 
no=120*pi; 
eo=8.854e-12; 
mo=pi*4e-7; 
c=3e8; 
h=data(:,4)./1000; 
a2=data(:,2)./1000; 
t=data(:,3)./1000; 
ext=data(:,8)./1000; 
b1=data(:,5); 
b2=data(:,6); 
a1=data(:,7)/1000; 
L=320; 
%f=2.5e9:0.46e8:4e9; 
f=3e9; 
%lamda=1000*c./f; 
x=0:10:L; 
x2=sort(x','descend'); 
fc1=1./(2.*a1'.*(eo*mo)^0.5); 
fc2 = 1./(2.*(2.*h+2.*ext+2*t).*(eo*mo)^0.5); 
Zo1=(no)./(sqrt(1-((fc1./f).^2)));  
Zo2=(no)./(sqrt(1-((fc2./f).^2))); 
Rrect= 0.58*(real(Zo1')); 
Rtrough = 0.255*real(Zo2); 
  
figure (1); 
plot(x2,Rrect,'red'); 
title('Resistance'); 
hold on 
plot(x2,Rtrough); 
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