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ABSTRACT 

 

Development of a Prediction Model for Skid Resistance of Asphalt Pavements. 

(December 2010) 

Arash Rezaei, B.S., Sharif University of Technology; 

M.S., Sharif University of Technology  

Chair of Advisory Committee: Dr. Eyad Masad 

 

 The skid resistance of asphalt pavement is a major characteristic that determines 

the driving safety on a road, especially under wet surface conditions. Skid resistance is 

primarily a function of the microtexture and macrotexture of a pavement surface. 

Microtexture is influenced by aggregate surface characteristics and is required to disrupt 

the continuity of surface water film and attain frictional resistance between the tire and 

the pavement surface. Macrotexture is affected mostly by mixture design or aggregate 

gradation and contributes to skid resistance by providing drainage paths of water that can 

be otherwise trapped between a tire and a pavement surface. The increase in macrotexture 

contributes to preventing hydroplaning and improving wet frictional resistance, 

particularly at high speeds. While much research has been conducted in the past to 

identify material factors that affect skid resistance, there is still a need to develop a model 

for predicting asphalt pavement skid resistance as a function of mixture characteristics 

and traffic level. The purpose of this study was to develop such a model based on 

extensive laboratory experiments and field measurements involving different mixture 

types and aggregate sources. The model incorporates functions that describe the 

resistance of aggregates to polishing and aggregate size distribution. The aggregate 

resistance to polishing was quantified by measuring aggregate texture using the 

Aggregate Imaging System (AIMS) before and after polishing in the Micro-Deval device. 

The analysis in this dissertation demonstrates how this model can be used to design 

mixtures and classify aggregates that provide desirable skid resistance levels. 
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CHAPTER I  

INTRODUCTION 

 

In 2005, 6.1 million traffic crashes, 43,443 traffic fatalities, and approximately 

2.7 million traffic-related injuries were reported by the National Highway Traffic Safety 

Administration (NHTSA) throughout the United States (1). 

Nationwide studies show that between 15 to 18 percent of all crashes occur on 

wet pavements (2,3,4). According to the National Transportation Safety Board and the 

Federal Highway Administration (FHWA), approximately 13.5 percent of fatal accidents 

occur when pavements are wet (5,6). Several researchers indicated that there is a 

relationship between wet-weather accidents and pavement friction (7,8,9,10,11). During 

wet conditions, the water film covering the pavement acts as a lubricant and reduces the 

contact between the tire and the surface aggregate (12,13). Hence, wet-pavement surfaces 

exhibit lower friction levels than dry-pavement surfaces. In addition to the lubrication 

effect of water at high speeds, certain depths of water film without any facility to drain 

may result in hydroplaning, which is considered the primary cause of accidents in wet-

weather conditions (12,14). 

Current accident rates can be reduced greatly by implementing corrective 

measures in hazardous areas. Safety evaluation of the roads and analysis of the different 

factors affecting pavement friction are necessary for future safety improvements. 

Research studies have shown that an increase in average pavement friction from 0.40 to 

0.55 would result in a 63 percent decrease in wet-pavement crashes (15,16). Research by 

Kamel and Gartshore also showed that by improving skid resistance, wet-weather crashes 

decreased by 71 percent on intersections and 54 percent on freeways (15,17). A study by 

the Organization for Economic Cooperation and Development (OECD) revealed that 

there was a linear relationship between the slipperiness of the pavement surface and 

crashes. Moreover, with an increase in slipperiness of the pavement surface, the rate of 

crashes increased (15,18).  

____________ 
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Roe et al. reported that with an increase in pavement friction, the rate of crashes 

decreased (19). Wambold et al. reported a statistically significant relationship between 

wet-weather crashes and the skid numbers measured with a skid trailer (20). Other 

researchers also demonstrated the relationship between pavement skid resistance and the 

effect of pavement friction improvement on crash rates (21,22,23,24,25).  

Pavement friction is primarily a function of the surface texture, which includes 

both microtexture and macrotexture. Pavement microtexture is defined as ―a deviation of 

a pavement surface from a true planar surface with characteristic dimensions along the 

surface of less than 0.5 mm,‖ while the pavement macrotexture is defined as ―a deviation 

of 0.5 mm - 50 mm‖ (26,27).  

Microtexture is primarily an aggregate surface characteristic that provides a rough 

surface that disrupts the continuity of the water film and produces frictional resistance 

between the tire and pavement. Macrotexture is an overall asphalt mixture characteristic 

that provides surface drainage paths for water to drain quickly from the contact area 

between the tire and pavement. As a result, macrotexture helps to prevent hydroplaning 

and improve wet frictional resistance, particularly at high speeds (28,29,30). In addition 

to the physical characteristics of the pavement surface, several other factors that influence 

the level of skid resistance on the pavement surface are (5): 

 age of the pavement surface, 

 seasonal variation, 

 traffic intensity, and 

 road geometry. 

While there is much research about increasing the life span of pavement 

materials, there is no direct specification for the selection and use of aggregate and 

mixture design to assure satisfactory frictional performance. In addition, current methods 

of evaluating aggregates for use in asphalt mixtures are mainly based on historical 

background of the aggregate performance (31,32).  

The high correlation between pavement skid resistance and rate of crashes 

demands a comprehensive material selection and mixture design system. This study 

focuses on the analysis of the material characteristics including aggregate and mixture 

type that affect skid resistance. In addition, this study aims to develop a model for 
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predicting skid resistance as a function of mixture design, aggregate characteristics, and 

traffic level that can be used as a tool for maintenance purposes.   

 

PROBLEM STATEMENT 

 

 Aggregate physical characteristics and asphalt mixture design are important 

factors that influence the skid resistance of asphalt pavements. There is a need for 

developing a model for predicting asphalt pavement skid resistance as a function of 

aggregates and asphalt mixture design, as well as traffic level. This model can be used to 

design and maintain asphalt pavements that exhibit safe levels of skid resistance. It can 

also be used to select the proper combination of aggregate source and mixture design that 

is needed to achieve the required skid resistance for a given traffic level.  

 

OBJECTIVES 

 

The objectives of this project are to (1) study the influence of aggregate properties 

and mix types on asphalt pavement skid resistance, and (2) develop a model for 

predicting asphalt pavement skid resistance. These objectives were achieved by 

measuring and analyzing frictional properties of laboratory-prepared specimens and 

asphalt pavement sections that included a wide range of aggregates and mix designs. This 

research study involved the following tasks: 

1) Measure some characteristics of various aggregate sources. 

2) Prepare laboratory specimens and measure their skid resistance, friction, and 

texture after different polishing intervals. 

3) Develop a prediction model for skid resistance as a function of polishing 

cycles in the laboratory based on measurable aggregate characteristics and 

mix gradation.  

4) Measure and analyze the skid resistance of many sections in the field with 

different mixture types and aggregate sources.  
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5) Measure the texture using the circular texture meter (CTMeter) and the 

friction using the dynamic friction tester (DFT) in the field.  

6) Relate the laboratory and field results to develop a prediction model for skid 

resistance as a function of aggregate texture, aggregate gradation, and traffic 

level. 

7) Demonstrate the use of the new model in estimating the skid resistance of 

asphalt pavement sections incorporating different aggregate sources and 

mixture types. 

 

ORGANIZATION OF THE STUDY 

 

Chapter II of this dissertation includes the results of the literature review, while 

Chapter III includes a description of the materials and equipment used in this study. 

Chapter IV presents the results and discussion of the laboratory experiments, Chapter IV 

discusses the findings of the laboratory phase of this study, and Chapter V documents the 

development of the prediction model of skid resistance based on laboratory 

measurements. Chapter VI describes the analysis of the skid resistance measurements in 

the field, which is followed by a presentation of the results of measuring asphalt 

pavement frictional properties in Chapter VII. The system for predicting asphalt 

pavement skid number as a function of aggregate properties and mixture design is 

presented in Chapter VIII. The last chapter, Chapter IX, includes the conclusions and 

recommendations of this study.   
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CHAPTER II  

LITERATURE REVIEW 

 

INTRODUCTION 

 

This chapter summarizes research studies that have been carried out on the 

characterization of the frictional properties of the pavement surface. It also explains the 

friction mechanism, the factors affecting frictional properties of the pavement surface, 

and the contributions of asphalt pavement microtexture and macrotexture to asphalt 

pavement surface friction. Additionally, methods that are currently used to measure the 

skid resistance and indices that have been used to describe friction and skid resistance are 

discussed. This chapter also discusses the different aggregate characteristics that have 

been reported to influence skid resistance, and the test methods that are used to measure 

these characteristics. 

 

DEFINITION OF FRICTION 

 

Pavement surface friction is a measure of pavement riding safety and has a great 

role in reducing wet-pavement skid accidents (33,34,35). Friction force between the tire 

and the pavement surface is an essential part of the vehicle-pavement interaction. It 

provides the driver with the ability to accelerate, maneuver, corner, and stop safely (36).  

Skid resistance is the friction force developed at the tire-pavement contact area 

(1). There are many factors contributing to the development of friction between tires and 

a pavement surface including the texture of the pavement surface, the vehicle speed, and 

the presence of water. Additionally, the characteristics of the construction materials, 

construction techniques, and weathering influence pavement texture (36). Wilson and 

Dunn addressed several factors that affect the frictional characteristics of a tire-pavement 

system. These factors can be categorized as (37): 

 vehicle factors: 
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o vehicle speed, 

o angle of the tire to the direction of the moving vehicle, 

o the slip ratio, 

o tire characteristics (structural type, hardness, and wear), and 

o tire tread depth; 

 pavement surface aggregate factors: 

o geological properties of the surfacing aggregate, 

o surface texture (microtexture and macrotexture), and 

o type of surfacing; 

 load factors: 

o age of the surface, 

o the equivalent number of vehicle traffic loadings, 

o road geometry, and 

o traffic flow conditions; 

 environmental factors: 

o temperature; 

o prior accumulation of rainfall, rainfall intensity, and duration, and 

o surface contamination. 

Li and others stated that it is very difficult to develop comprehensive models to 

predict in-situ pavement friction because of the complicated nature of the tire-pavement 

interaction (34).  

Moore, in an attempt to explain the friction phenomenon between the tire and the 

pavement, showed that frictional forces in rubber materials are comprised primarily of 

adhesive and hysteresis components, as shown in FIGURE 1 (38,39). During sliding on a 

wet pavement, a complex interplay between adhesion and hysteresis forces contributes to 

vehicle stopping distance.  

Intermolecular binding or adherence at the surface level creates the adhesive 

component of friction. As the microasperities or surface irregularities of the two surfaces 

are exposed to each other, Van der Waals or dipole forces provide an attractive force, 

keeping the two asperities together and preventing further movement (36,40).  



7 
 

 
FIGURE 1  Schematic plot of hysteresis and adhesion (39). 

 

The adhesion relates to the actual contact area between the tire and the pavement 

surface as well as the shear strength of the interface (39,41). The adhesion friction is 

dominant until critical slip occurs. Typically, at a driving speed on wet pavement, the 

adhesion accounts for two-thirds of the resistance force (42).  

The hysteresis component of friction arises from the energy loss associated with 

the bulk deformation of rubber around the protuberance and depression of the pavement 

surface (43). It reflects the energy loss as the rubber is alternately compressed and 

expanded as it passes over the asperities of a rough surface pavement (39). Moreover, 

during a bulk deformation process, the friction force takes place at the interface of the 

moving objects. In this process, the tire drapes over, in, or around each macroasperity. 

After passing over the asperity, the rubber returns to its initial state but with a net loss of 

energy. This loss of energy contributes to the hysteresis part of friction (43). 

Several researchers tried to relate the pavement texture and friction. Yandell 

emphasized the contribution of various texture scales to the hysteresis friction (44,45,46). 

Forster used linear regression analysis to show that the texture shape, defined also by an 
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average slope, explains friction satisfactorily (47). Roberts showed that the forces and the 

energy dissipation between the tire and the pavement surface depend on the material 

properties and the separation velocity (48). Kummer and Meyer reported that at high-

speed sliding, the hysteresis component reaches a maximum value, while at relatively low 

speeds of sliding, adhesion is at a maximum value (36,49). Davis and others stated that 

there is a significant influence of mixture parameters on the ribbed tire skid resistance 

measurements and pavement texture as measured by a laser (3). Moreover, they stated 

that it is possible to predict some of the frictional properties of the surface mixes based on 

asphalt mix design properties (3). 

In general, several studies reported that pavement texture influences skid 

resistance and friction. For example, Bond and others showed how differences in 

microtexture and macrotexture of pavement surfaces influence peak brake coefficients of 

a standard test tire (50,51). Leu and Henry demonstrated how skid resistance 

measurements on pavement surfaces are different based on their microtexture and 

macrotexture (52). Horne and Buhlmann, however, showed that surface friction 

measurements are poorly related to pavement texture measurements (51,53).  

 

PAVEMENT TEXTURE 

 
As travel safety and efficiency of road systems are of increasing importance to 

state agencies, friction measurements have become an essential part of pavement 

management systems (39). The friction-related properties of a pavement depend on its 

surface texture characteristics. These characteristics, as previously stated, are known as 

macrotexture and microtexture (49).  

Macrotexture refers to the larger irregularities in the pavement surface (coarse-

scale texture) that affect the hysteresis part of the friction. These larger irregularities are 

associated with voids between aggregate particles. The magnitude of this component 

depends on the size, shape, and distribution of coarse aggregates used in pavement 

construction, the nominal maximum size of aggregates, as well as the particular 

construction techniques used in the placement of the pavement surface layer (1,54). 
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Microtexture refers to irregularities in the surfaces of the aggregate particles 

(fine-scale texture) that are measured at the micron scale and are known to mainly be a 

function of aggregate particle mineralogy (1). These irregularities make the stone 

particles smooth or rough when touched. The magnitude of microtexture depends on 

initial roughness of the aggregate surface and the ability of the aggregate to retain this 

roughness against the polishing action of traffic and environmental factors (1,55). 

Microtexture affects mainly the adhesion part of the friction (1). 

Several researchers tried to find quantitative measures to define microtexture and 

macrotexture and relate them to pavement friction. Moore defined three parameters for 

characterizing a surface texture: size, interspace or density, and shape (56). Taneerananon 

and Yandell showed that, compared with the two other parameters, the role of density or 

interspace is of minor importance in the water drainage mechanism (57). Kokkalis and 

Panagouli tried to explain surface texture by using fractals (58). They developed a model 

to relate surface depth and density to pavement friction. 

According to the American Society for Testing and Materials (ASTM), pavement 

texture is divided into the two size classes of microtexture and macrotexture (ASTM E 

867) (59). Surface asperities less than 0.5 mm (0.02 inch) in height are classified as 

microtexture, while asperities greater than 0.5 mm (0.02 inch) in size are considered as 

macrotexture (36). FIGURE 2 shows the different categories of pavement texture.  

FIGURE 3 shows the schematic plot of the effect of micro/macrotexture on 

pavement friction. Adequate macrotexture is important for the quick dispersion of water 

accumulated on the surface of the pavement to prevent hydroplaning. Additionally, it aids 

in the development of the hysteresis component of friction that is related to energy loss as 

the tire deforms around macroasperities and consequently increases pavement friction 

(36,47,60). Macrotexture of the pavements could be estimated by simulating the 

percentage of contact points within the area of a tire footprint on the pavement surface 

(47). Bloem showed that an average texture depth of about 0.5 mm (0.02 inch) is required 

as the minimum to assure the desired depletion of water from the tire-pavement contact 

area (61). 
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FIGURE 2  Pavement wavelength and surface characteristics (15). 

 

 
FIGURE 3  Schematic plot of microtexture/macrotexture (1). 

 

Experiments conducted by Balmer showed that changes in surface textures from 

about 0.5 mm to over 3 mm (0.02 inch to 0.12 inch) resulted in a difference of 16 km/h 

(10 mph) in the speed for the initiation of hydroplaning (62,63). 

Microtexture plays a significant role in the wet tire-pavement contact area. The 

size of microasperities plays a key role in overcoming the thin water film. Existence of 

microtexture is essential for squeezing the thin water film present in the contact area and 

generating friction forces (46). Moreover, the role of microtexture is to penetrate into the 
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thin water film present on the surface of the pavement so that the intimate tire-pavement 

contact is maintained (47). Drainage is controlled by the shape of microasperities 

(46,57,64). Savkoor also showed that drainage of the water film between the tire and the 

pavement is a function of amplitude and number of microasperities on a surface (46,65). 

Forster developed a parameter to account for microtexture (47). This parameter is a 

combination of average height and average spacing between microasperities. Horne 

stated that pavements with a good microtexture could delay hydroplaning (66,67). Pelloli 

based his research on five different types of surfaces found for which the amount of 

microtexture would affect the relationship between friction coefficient and the water 

depth accumulated on the surface (67,68). A study by Ong et al. showed that in the 

pavements comprised of coarse aggregates with high microtexture in the range of 0.2 mm 

to 0.5 mm, hydroplaning occurs at a 20 percent higher speed. This means that using 

materials with better microtexture reduces the chance of hydroplaning (67). 

Moore reported a minimum water film thickness to be expelled by microasperities 

in the order of 5 10-3 mm (56). Bond and others stated the same order of magnitude 

from visual experiments conducted to monitor the water film between a tire and a smooth 

transparent plate (50). 

Hogervorst stated that the change of skid resistance with vehicle speed depends 

on both microtexture and macrotexture (42). Microtexture defines the magnitude of skid 

resistance, and macrotexture controls the slope of skid resistance reduction as speed 

increases. Moreover, macrotexture affects the skid resistance of pavements at high speeds 

by reducing the friction-speed gradient and facilitating the drainage of water. 

Macrotexture has little effect on friction level at low speeds. Microtexture dominates and 

defines the level of friction at low speeds, as shown in FIGURE 4 (15,69,70). 

Researchers noted that both macrotexture and microtexture of pavement surface are 

influenced by the properties of the coarse aggregates exposed at the wearing course 

(36,47) 
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FIGURE 4  Schematic plot of the effect of microtexture/macrotexture on pavement friction 

(1). 

 

MEASUREMENTS METHODS OF TEXTURE AND FRICTION  

 

Field skid resistance is generally measured by the force generated when a locked 

tire slides along a pavement surface (71). These measurements should be precise, 

repeatable, and reproducible to reflect the real condition in the field (49). In general, 

pavement skid resistance is measured using a standard tire with the controlled wheel slip 

from 0 to 100 percent slip (ASTM E274, E303, E503, E556, E670, E707) (51,59). 

There are four main types of skid resistance measuring approaches (72,73,74): 

 locked wheel, where the force is measured while a 100 percent slip condition 

is produced; 

 sideways force, where the force is measured on a rotating wheel with a yaw 

angle of 20°; 

 fixed slip, where friction is measured for wheels that are constantly slipping; 

and 
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 variable slip, where devices are designed to measure at any desired slip, sweep 

through a predetermined set of values, or detect the maximum friction. 

In each technique, the locked-wheel and variable-slip of tires and the relationship 

to the rolling, braking, or cornering friction coefficient is measured on wet-pavement 

surfaces (51). 

Pavement friction testing with the locked wheel tester can be conducted with 

either a standard ribbed tire or a standard smooth tire (75). The most common method is 

the locked-wheel braking mode, which is specified by ASTM E274 (59). The concept of 

a skid trailer was introduced in the mid-1960s to improve the safety and efficiency of 

friction testing operations (39).  

According to Saito et al., there are also some disadvantages associated with 

locked-wheel testers (76): 

 Continuous measurement of skid resistance is not possible. 

 Initial and operating costs of the test equipment are still high (49). 

 Tests are conducted at only one speed so that speed dependency of skid 

resistance cannot be determined without repeated measurements on the same 

sections of road at different speeds. 

Other types of measurement modes include the fixed slip, the variable slip, and 

the sideways force or cornering mode. In the slip mode (fixed or variable), the friction 

factor is a function of the slip of the test wheel while rolling over the pavement. The 

sideways mode uses a test wheel that moves at an angle to the direction of motion. The 

use of this test procedure is based upon the assumption that the critical situation for skid 

resistance occurs in cornering (76). 

The above-mentioned methods are categorized as field modes. Other testing 

modes include portable and laboratory testers. The most common tester is the British 

pendulum tester (BPT), which is a dynamic pendulum impact-type tester and is specified 

in ASTM E303. The British pendulum tester (77) is one of the simplest and least-

expensive instruments used in the measurement of friction characteristics of pavement 

surfaces. The BPT has the advantage of being easy to handle both in the laboratory and in 

the field. However, this method provides only a measure of a frictional property at a low 

speed (76). Although it is widely suggested that BPT measurements are largely governed 
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by the microtexture of the pavement surface, experience has shown that the macrotexture 

can also affect the measurements (35,78). Moreover, Fwa et al. and Liu et al. showed that 

the British pendulum measurements could be affected by the macrotexture of pavement 

surfaces, the aggregate gap width, or the number of gaps between aggregates (78,79). The 

BPT can also produce misleading results on coarse-textured test surfaces (75). Other 

researchers also pointed out that the BPT exhibited unreliable behavior when tested on 

coarse-textured surfaces (80,81,82). Won and Fu showed that the test results using a BPT 

were highly sensitive and resulted in a large variability (83). For the test results to be 

purely indicative, several factors need to be carefully controlled: the coupon curvature, 

the arrangement of aggregate particles on the coupon, the length of the contact path, and 

the slider load. All of these factors have significant effects on the results. The aggregates 

are further polished or conditioned during slider swing; consequently, the degree of 

polishing varies from aggregate type to aggregate type (83). 

The DFT is a disc-rotating-type tester that measures the friction force between the 

surface and three rubber pads attached to the disc. The disc rotates horizontally at a linear 

speed of about 20 to 80 km/hr (12 to 50 mph) under a constant load. It touches the 

surface at different speeds, so the DFT can measure the skid resistance at any speed in 

this range (76). Studies by Saito et al. showed that there is a strong relationship between 

the coefficient of friction of the DFT and the British pendulum number (BPN) at each 

point for each measuring speed (76). 

Measuring the pavement microtexture and macrotexture and relating these 

measurements to pavement skid resistance has been a major concern for pavement 

researchers (84,85,86). Macrotexture is generally measured using a volumetric technique. 

Essentially, this method consists of spreading a known volume of a material (sand, glass 

beads, or grease) on the pavement surface and measuring the resulting area. Dividing the 

initial volume by the area gives mean texture depth (MTD) (60,87). It has been reported 

that the sand patch method, Silly Putty method, and volumetric methods are burdensome 

to use in routine testing (55). 

The outflow meter test (OFT) is another method to measure pavement 

macrotexture (88). The outflow meter measures relative drainage abilities of pavement 

surfaces. It can also be used to detect surface wear and predict correction measures (89).  
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The OFT is a transparent vertical cylinder that rests on a rubber annulus placed on 

the pavement. Then, the water is allowed to flow into the pavement, and the required time 

for passing between two marked levels in the transparent vertical cylinder is recorded. 

The recorded time indicates the ability of the pavement surface to drain water. This time 

is reported as the outflow time and can be related to pavement macrotexture (84). 

As a result of significant advances in laser technology, computational power, and 

speed of small computers, several systems are now available to measure macrotexture at 

traffic speeds. The profiles produced by these devices can be used to compute various 

profile statistics such as the mean profile depth (MPD), the overall root mean square 

(RMS) of the profile height, and other parameters that reduce the profile to a single 

parameter (84). The mini-texture meter developed by British Transport and Road 

Research Laboratory (55), the Selcom laser system developed by researchers at the 

University of Texas at Arlington (55,90), and the noncontact high-speed optical scanning 

technique developed by the researchers at Pennsylvania State University (55,91) are 

examples of these systems. The first two of these devices use a laser beam to scan the 

pavement surface and, consequently, estimate pavement texture depth. The third device 

makes use of a strobe band of light with high infrared content to produce shadowgraphs. 

This equipment can collect data from a vehicle moving with traffic speed (55). 

A device for measuring MPD called the CTMeter was introduced in 1998 (1,92). 

The CTMeter is a laser-based device for measuring the MPD of a pavement at a certain 

location. The CTMeter can be used in the laboratory as well as in the field. It uses a laser 

to measure the profile of a circle 11.2 inches (284 mm) in diameter or 35 inches (892 

mm) in circumference (84). The profile is divided into eight segments of 4.4 inches 

(111.5 mm). The mean depth of each segment or arc of the circle is computed according 

to the standard practices of ASTM and the International Standard Organization (ISO) 

(84). Testing indicated that the CTMeter produced comparable results to the ASTM E965 

sand patch test. Studies by Hanson and Prowell indicated that the CTMeter is more 

variable than the sand patch test (29). 

There are several methods for measuring the microtexture (46). Schonfeld 

developed a method for the Ontario Transportation Department based on subjective 

assessment using photos taken from the pavement (93). He defined microtexture levels 
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from road stereo photography. Despite the fact that this method is a subjective and global 

method, the attributed levels were related to microasperity size and shape (46). 

 In a research study at Pennsylvania State University, it was found that there is a 

high correlation between the zero speed intercept of the friction-speed curve of the Penn 

State model and the RMS of the microtexture profile height. In addition, researchers 

found that the BPN values were highly correlated to this parameter. Therefore, the BPN 

values could be considered as the surrogate for microtexture measurements (94).  In other 

studies, scanning electron microscope (SEM) imagery was used to capture images of the 

aggregate surface and measure aggregate microtexture and polishing action of traffic 

simulated in the laboratory by the British accelerated polishing test (95,96,97).  

Direct measurements using optic or laser devices are gaining popularity because 

of their simplicity and ease of use. Forster used cameras to digitize and measure road 

profile images obtained from a projection device (47). He developed a parameter that 

combines measurements of the average height and average spacing of the microtexture 

asperities. Samuels used a laser sensor to record profiles directly (98). The laser system, 

with a measuring range of 6 mm and a spot size of around 0.1 to 0.2 mm, was not able to 

detect significant differences in microtexture between pavement surfaces (46). Yandell 

and Sawyer developed a device using the same measurement principle for in-situ use 

(45). 

Improvements of measuring devices in recent years have made the measuring 

techniques faster and more reliable. New data acquisition techniques include 

interferometry, structured light, various 2D profiling methods, and the Scanning Laser 

Position Sensor (SLPS). FIGURE 5 shows a chart of topographic data acquisition 

techniques operating near the target scales that could be used on pavements (51). 
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FIGURE 5  Different data acquisition methods (51). 

 

Interferometry and the stylus profiling techniques are two different methods for 

measuring topographic data at scales that can be used for determining pavement texture 

(51).  
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Structured light and the SLPS are new methods of acquiring surface topography. 

These methods, however, have been proven to have limited functionality in measuring 

the surface asperities in the full range of different surfaces elevations. The SLPS was 

designed specifically for acquiring topographic data from pavement surfaces. This device 

is highly portable and can be easily utilized for in-situ measurement (51).  

Stereo photography is a historical tool for the qualitatively visual inspection of 

surface features (93). Visual inspection requires special focusing tools and a pair of 

images (stereo pair), each taken at a specific distance perpendicular to the inspected 

surface. This technique can potentially be used to measure the topographic features of the 

surface, but the precision is obviously limited by the imagery equipment. Digital 

scanning systems and computer algorithms have recently been developed to analyze the 

pictures taken and generate the surface texture (51). TABLE 1 shows a summary 

comparison between different measuring devices and the advantages and disadvantages 

of each method (99). 

The Aggregate Imaging System (AIMS) introduced by Masad et al. is one of the 

most recent methods, measuring the aggregate texture directly by use of a microscope 

and a digital image processing technique. This technique and the relationship of its results 

to asphalt pavement skid resistance will be discussed in the following chapter (100). 

 

EFFECT OF PAVEMENT AGE AND WEATHER ON SKID RESISTANCE 

 
Pavement skid properties or friction decreases over the life of the pavement due to 

an increase in accumulated traffic (35). Both microtexture and macrotexture change as a 

result of traffic loading. The rate of change in pavement texture depends on the aggregate 

type and mix design and traffic configuration. 
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TABLE 1  Comparison between Different Skid Resistance and Texture Measuring Techniques (99) 

Device 
About 
Device 
 

Properties 
 

Strengths 
 

Weaknesses 
 

Specs/used 
by 
 

British     
Pendulum Tester 

Pendulum arm 
swings over 
sample 

Evaluates the amount of kinetic 
energy lost when a rubber slider 
attached to the pendulum arm is 
propelled over the test surface  

Portable, very simple, 
widely used 
 

Variable quality of results, 
cumbersome and sometimes 
ineffective calibration, pendulum 
only allows for a 
small area to be tested 
 

ASTM E303 
 

Michigan 
Laboratory 
Friction Tester 
 

Rotating 
wheel 
 

One wheel is brought to 
a speed of 40 mph and 
dropped onto the surface 
of the sample. Torque 
measurement is recorded 
before wheel stops. 
 

Good measure of the 
tire/surface interaction, 
similar to towed 
friction trailer 

Poor measurement of pavement 
Macrotexture, history of use on 
aggregate only 
 

MDOT 
 

Dynamic 
Friction Tester 
 

Rotating 
sliders 
 

Measures the coefficient 
of friction 
 

Laboratory or field 
measurements of 
microtexture 
 

N/A 
 

ASTM E1911 
 

North Carolina 
Variable Speed 
Friction Tester 
 

Pendulum- 
type 
testing 
device 
 

Pendulum with locked-wheel 
smooth rubber tire 
at its lower end 
 

Can simulate different 
vehicle speeds 
 

Uneven pavement surfaces in 
the field may provide inaccurate 
results. 
 

ASTM E707 
 

Pennsylvania 
Transportation 
Institute (PTI) 
Tester 
 

Rubber 
slider 
 

Rubber slider is 
propelled linearly along 
surface by falling weight 
 

Tests in linear 
direction 
 

Companion to Penn State 
reciprocating polisher, fallen 
into disuse 
 

Formerly by 
PTI 
 

Sand Patch 
 

Sand spread 
over circular 
area to fill 
surface voids 
 

Measures mean texture 
depth over covered area 
 

Simple 
 

Cumbersome, poor 
Repeatability, average depth 
only 
 

ASTM E965 
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Device 
About 
Device 
 

Properties 
 

Strengths 
 

Weaknesses 
 

Specs/used 
by 
 

Grease Patch 
 

Grease spread 
over surface 
 

Measures mean texture 
depth over covered area 
 

Simple 
 

Cumbersome, poor 
repeatability, average depth 
only, not widely used 
 

NASA 
 

 

 

Outflow 
Meter 
 

Water flows 
from cylinder 
through 
surface 
voids 
 

Estimates average texture 
 

Simple, quick 
 

For non-porous surfaces 
only 
 

FHWA 
 

Dromometer 
 

Stylus traces 
surface 
 

Lowers a tracing pin that 
creates a profile of the 
specimen surface 
 

Can measure 
both microtexture and 
macrotexture 
 

Can only be used on small 
areas of pavement 
 

---- 

Surtronix 3+ 
Profilometer 
 

Stylus traces 
profiles 
 

Horiz. Res = 1 micrometer 
Vert. Res = 0.001 micrometer 
Traverse Length = 25.4 mm 
 

Can read microtexture 
and macrotexture 
 

Can only be used on small 
areas of pavement 
 

---- 

Circular 
Track Meter 
 

Laser based 
 

Laser mounted on an arm 
that rotates on a 
circumference of 142 mm 
and measures the texture 
 

Used with DFT, 
fast, portable, 
repeatable 
 

Measures small area,           
relatively new 
 

ASTM E2157 
 

 

TABLE 1  Continued 
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Moreover, weather-related factors also affect the surface microtexture and 

macrotexture properties of in-service pavements, and thus the pavement friction (12). The 

following subsections describe these factors that influence skid resistance. 

 

Age of the Surface 

 

Almost all new pavement surfaces have high texture and skid resistance. 

Aggregates used in road construction have to be resistant to crushing and abrasion to 

provide adequate skid resistance (42). Pavement texture, however, decreases over time 

because of the abrasive effects of traffic. 

Traffic has a cumulative effect on a pavement; it wears the pavement surface and 

polishes the aggregate over time (12). The traffic wears and polishes the pavement 

surface to a value that may be less than that determined by the standard polished stone 

value (PSV) test in the laboratory (101). This polishing effect is caused by the horizontal 

forces applied by the vehicle tires on the pavement surface. The protruding aggregates are 

worn off and polished, and the surface microtexture and macrotexture reduce under these 

forces (36, 47,102,103,104,). In addition, under the compacting effect of traffic, the 

protruding aggregates may be embedded in the pavement layer, which leads to a 

reduction in the depth of macrotexture. Accordingly, up to a 40    percent reduction in 

skid resistance as a result of pavement wear has been reported (105). Polishing of 

aggregates also relates to traffic intensity and classification. Furthermore, commercial 

vehicles contribute to most of the polishing (106). The geometries of the road gradients, 

curves, pedestrian crossings, roundabouts, and stop and give-way controlled intersections 

experience higher stresses, resulting in more polished surfaces. Polishing is related to 

traffic volumes, where high-volume areas require a better mixture design and 

construction (5). 

The general trend for pavement skid resistance is such that pavement surfaces 

attain their peak skid resistance condition after a few weeks of traffic action because of 

wearing of the pavement surface. After that, skid resistance declines at a rapid rate at first 

as the exposed aggregate is worn, and some of its microtexture and macrotexture 

properties are lost as traffic loads polish the surface aggregates in the wheel paths. Then, 
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it declines more slowly and reaches an equilibrium state in which small deviations in skid 

resistance are experienced while traffic levels are constant and no structural deterioration 

is evident. This usually happens after 1 to 5 million passenger vehicles pass, or two years 

(3, 5, 76,107,108). FIGURE 6 shows the variation of pavement skid resistance versus 

pavement age. 
 

 
FIGURE 6  Decrease of pavement skid resistance as a result of polishing under traffic 

loading (109). 

 

Seasonal and Daily Weather Variation 

 

Weather-related factors (e.g., rainfall, air temperature, wind, etc.) are partially 

responsible for seasonal variations in the frictional properties of the tire-pavement 

interface (12). There are distinct seasonal patterns in skid resistance levels. Studies in the 

United Kingdom (81), U.S. (13,110), and New Zealand (111) showed a sinusoidal variation 

in skid resistance with seasonal change (37). 

Generally, there is a decrease in pavement skid resistance from the seasonal 

changes of spring to fall (112). Summer months have the lowest levels of skid resistance 

caused by a decrease in precipitation. Dry weather in the summer allows the 

accumulation of fine particles and debris that accelerate polishing of the pavement 

surface. West and Ross showed that the size of grit affects the polishing rate of 

aggregates (113). The combination of polishing and particle accumulation, together with 
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contamination from vehicles, such as oil drippings and grease, results in a loss of 

microtexture and macrotexture during the summer months (37). A variation of 

approximately 30 percent of skid resistance has been observed between the minimum in 

the summer to the peak during the winter (112).  

In winter, rainwater rinses the finer particles responsible for polishing and reacts 

with some aggregate surfaces. This results in a higher microtexture and macrotexture and, 

consequently, higher friction in the pavement surface (37). Some researchers also suggest 

that the water film covering the pavement for longer periods in winter acts as a lubricant 

and reduces the polishing effect of vehicles on the surface aggregate (37). 

Day-to-day fluctuation of up to 15 pavement skid numbers has also been reported 

as a result of extreme changes in weather conditions (3,114). FIGURE 7 shows the 

generalized pavement-polishing model. 

 

 
FIGURE 7  Generalized pavement-polishing model (5). 

 

Temperature variation can also affect the frictional properties of pavement 

surfaces. Flintsch et al., through statistical analysis, showed that pavement temperature 

has a significant effect on the pavement frictional properties (12). In their studies, they 

found that for the finer wearing surface mixes, pavement friction tends to decrease with 

an increase in the pavement temperature at low speeds. At high speeds, the effect is 

reversed, and pavement friction tends to increase with an increase in pavement 

temperatures. The temperature-dependent friction versus speed models appears to be 

mix-dependent (12).  
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In another research study, Subhi and Farhad showed that both components of 

friction (hysteresis, adhesion) decrease with an increase in temperature (115). 

 

AGGREGATE POLISHING CHARACTERISTICS 

 

The ability of an aggregate to resist the polishing action of traffic has long been 

recognized as a highly important requirement for its use in pavement construction 

(61,116,117,118,119,120,121). Coarse aggregate characteristics (e.g., angularity and 

resistance to wear) are believed to have a significant role in providing adequate skid 

resistance in pavements. Generally, the desired pavement texture is attained and retained 

by use of hard, irregularly shaped coarse aggregate. Hard, polish-resistant coarse 

aggregate is essential to avoid reducing skid resistance of asphalt surfaces (61). The role 

of fine aggregate becomes significant only when used in relatively large quantities (122). 

Hogervorst showed that sharp, hard sand particles are highly desirable for enhancing the 

adhesion component of pavement friction (42). 

Aggregates vary in their ability to maintain their microtexture against the 

polishing action of traffic. More specifically, aggregates polish or become smoother at 

different rates based upon their mineralogy (30,99). It is a common practice to assume 

that aggregates with lower Los Angeles (LA) abrasion loss, lower sulfate soundness loss, 

lower freeze-thaw (F-T) loss, lower absorption, and higher specific gravity have better 

resistance to polishing. Many researchers, however, believe that the LA abrasion test and 

other physical tests (e.g., freeze and thaw test) may not yield good predictions of 

polishing susceptibility, and reliability of predicting aggregate field polishing resistance 

using a single laboratory test is poor (30,113,123). 

The petrographic examination is a valuable tool to understand the polishing 

process and to make recommendations for the use of aggregates (46,122). Generally, 

rocks containing igneous and metamorphic constituents are less susceptible to polishing 

than sedimentary rocks and could improve the overall frictional properties of the 

pavement surface (113).  
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Synthetic aggregates, e.g., slag or expanded lightweight aggregate (fabricated by 

heating natural clay), can also improve pavement frictional resistance (30,124,125). 

Limestone, the most common type of aggregate used in road construction and the 

most susceptible aggregate type to polishing, produces the lowest skid resistance and is 

the main cause of slipperiness on pavements (120). Individual limestone deposits differ 

considerably in their resistance to polishing. For some types of carbonate aggregates 

(e.g., dolomite), polishing susceptibility has been found to decrease with an increase of 

clay content (31). Liang and Chyi found that as the calcite and dolomite contents 

increase, the polish susceptibility of aggregates decreases to a certain level. Further 

increases in the calcite and dolomite content results in an increase in polish susceptibility 

(126). The difference between polishing susceptibility in different aggregates can also be 

attributed to differences in the content of wear-resistant minerals, mainly silica (61). The 

siliceous particle content is considered to be equal to the insoluble residue after treatment 

in hydrochloric acid under standardized conditions. The resistance of limestone to 

polishing decreases as its purity increases (127). Bloem stated that the siliceous particle 

content should be at least 25 percent to have satisfactory polish resistance (61). 

Furthermore, the size of the siliceous particle is also important and affects polishing 

susceptibility. Quartz sandstone is considered excellent in frictional properties and 

exhibits higher wet-friction values because differential wear and dislodging of individual 

particles under traffic contribute to the desired surface texture (128,129). Furthermore, 

the quartz sandstone group is composed of hard quartz particles cemented together with a 

brittle silica binder. The resistance of these particles against abrasion is very satisfactory 

(61). These particles are exposed when the cement is worn away by traffic; therefore, this 

kind of aggregate has an excellent frictional performance, and its resistance to polishing 

is always high. As stated previously, the limestone and flint groups yield the lowest 

resistance. These types of aggregates have a simple fine cryptostalline structure and 

uniform hardness. Other groups, such as basalt, granite, and quartzite, have intermediate 

resistance against polishing. This intermediate resistance is related to the presence of 

altered feldspars and shattered grains of quartz and quartzite dislodging from a more 

resistant matrix. The basalt group, however, yields high resistance because of its softer 

mineral composition and the proportion and hardness of secondary minerals. In 
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indigenous rock groups, the petrologic characteristics that affect resistance to polishing 

are the variation in hardness between the minerals and the proportion of soft minerals. 

Finer-grained allotriomorphic igneous rocks have a tough, cohesive surface that will 

polish considerably. Rocks with cracks and fractures in the individual mineral grains 

have higher resistance because such grains are weak and dislodge from the matrix easily, 

whereas finer-grained rocks tend to polish more readily (5,61,130). Sand and gravel are 

usually comprised of wear-resistant particles and have desirable frictional properties (61).  

FIGURE 8 shows four different methods by which aggregates provide texture to a 

pavement surface. The first aggregate is a very hard, angular aggregate composed of a 

single mineral type. This aggregate resists polishing action, but it will eventually become 

less textured and more polished. Furthermore, rocks consisting of minerals with nearly 

the same hardness wear uniformly and tend to have a high polishing susceptibility (5). 

The second aggregate type results in nearly the same type of wear pattern as the 

first, but the crystals forming the particle are not well cemented together. The soft 

mineral wears away rapidly, exposing the hard grains to traffic and providing a harsh and 

more textured surface. Before polishing the asperities of these hard grains, the aggregate 

matrix has been worn out to such an extent that it can no longer hold the hard particles, 

allowing them to be dislodged so that new angular, harsh grains can be exposed 

(109,131). This continual renewal of the pavement surface is believed to maintain good 

skid resistance properties. The aggregates that have coarse, angular, and harder mineral 

grains uniformly scattered in a softer mineral matrix have higher skid resistance (58). 

The third and fourth aggregate types wear in similar fashion. Both of these 

aggregates are composed of a hard mineral and a weak matrix. For the fourth type, the air 

voids act as the weak matrix. As the particles are polished, the weak matrix breaks down 

and releases the worn hard minerals exposed to traffic. This exposes fresh, unweathered 

surfaces that maintain their texture for extended periods of time and keep their frictional 

properties for a longer period (132).  
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FIGURE 8  Aggregate methods for providing pavement texture (133). 

 

PRE-EVALUATION OF AGGREGATE FOR USE IN ASPHALT MIXTURE 

 

The resistance against polishing of an aggregate type is the key factor in 

providing skid resistance. The use of polish-resistant coarse aggregates or other 

aggregates with good frictional performance has always been considered a useful way to 

maintain friction above an acceptable level (58). The evaluation of the aggregates with 

respect to their polishing behavior can be achieved by using a laboratory test procedure 

(1). 

Several researchers tried to develop laboratory test methods to pre-evaluate the 

aggregates and relate the properties of aggregates to skid resistance; however, there is 

little agreement among researchers in terms of the engineering properties that should be 

considered in an aggregate to provide adequate frictional resistance at various average 

daily traffic (ADT) levels. 

Methods that are used for pre-evaluation of aggregates are mainly based upon 

using the British polish value (BPV). This test, however, is believed to measure only the 

microtexture of the pavement or the terminal polished value once the pavement reaches 
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its equilibrium skid resistance (134). Recent studies performed by Fwa et al. and Liu 

et al. showed that the BPN value is a function of many factors (e.g., magnitude and 

number of gaps between the aggregates‘ coupon curvature, the arrangement of aggregate 

particles in a coupon for heterogeneous materials such as gravel, the length of the contact 

path, and the slider load), and this test has a high variability (78,79,83). 

Crouch et al. believed that current methods of pre-evaluating the aggregates for 

asphalt surface courses, such as the British pendulum and British polishing wheel, as well 

as chemical or mineralogical methods, are only able to classify well-performing 

aggregates (132,135). They used a modified version of the American Association of State 

Highways and Transportation Officials (AASHTO) standard device (AASHTO TP33) to 

measure the uncompacted voids in coarse aggregates that were subjected to various times 

in the LA abrasion test. Measuring the change in aggregate weight in the LA abrasion test 

for various times is an indication of the aggregates‘ abrasion and breakage rate. By this 

method, they were able to measure the angularity change indirectly. Although this 

method does evaluate how the aggregates change over time, it is still considered an 

indirect method, and it uses the LA abrasion test, which primarily breaks aggregates 

rather than abrading them (132). 

Do and others used lasers to measure the surface profile of pavement sections to 

determine the microtexture and macrotexture of the pavement. These measurements were 

related to skid resistance (46,132). Gray and Renninger showed that polish susceptibility 

decreases as the presence of insoluble constituents such as silica increases (118). Tourenq 

and Fourmaintraux proposed a formula to calculate the PSV values of stones from their 

mineral hardness (96). Prowell et al. suggested Micro-Deval as a surrogate to determine 

an aggregate‘s resistance to weathering and abrasion instead of a sulfate soundness test 

(136). This Micro-Deval abrasion loss is also related to the change in macrotexture over 

time. Mahmoud recommended the use of Micro-Deval to polish aggregate and AIMS to 

measure loss of texture (137).  
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Polishing techniques are part of any aggregate classification system that evaluates 

the aggregate for use in the pavement surface. There have been several types of polishing 

equipment used in the past for polishing asphalt mixes, including:  

 the Penn State Reciprocating Polishing Machine (ASTM E1393), 

 the circular track polishing machine, 

 the Michigan wear track, and 

 the North Carolina State University (NCSU) Wear and Polishing Machine 

(ASTM E660). 

Among the polishing techniques mentioned above, only the Michigan wear track 

is still being used; the others have been discontinued. The Michigan wear track polishes 

flat circular specimens, and the polishing action is simulated by three conical rubber 

rollers in the presence of water and grit (30,138). The National Center of Asphalt 

Technology (NCAT) has recently developed a new machine for polishing asphalt 

pavement slabs. In this machine, three rotating wheels move around a circle with the 

same diameter as the DFT and CTMeter devices, making it a suitable device for studying 

the effect of polishing with these devices (139). This machine is discussed in detail in the 

next chapter. TABLE 2 shows comparisons between different polishing devices. 

 

PREDICTIVE MODELS FOR SKID RESISTANCE  

 

Having a good model to predict friction change during the lifetime of a pavement 

would aid in predicting pavement performance and identifying the appropriate time for 

any treatment and rehabilitation measures. 
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TABLE 2  Comparison of Different Polishing Techniques (99) 

Device About Device Properties Strengths Weaknesses Specs/used by 
British 
Polishing 
Wheel 
 

Wheel for 
polishing 
away 
macrotexture 
 

Curved aggregate 
specimens polished by a 
rotating wheel 
 

Accelerated polishing 
for laboratory testing, 
bench sized 
 

Coarse aggregate coupons 
only, does not affect 
macrotexture or 
mix properties 
 

ASTM D 
3319 
 

Michigan 
Indoor Wear 
Track 
 

Large 
circular 
track 
 

Wheels centered around 
pivot point, move in 
circle around track 
 

Close to real world 
 

Track is very large and 
Cumbersome, time-
consuming sample 
preparation, used for 
aggregates only 
 

MDOT 
 

NCSU 
Polishing 
Machine 
 

Four  wheels 
rotate 
around 
central 
pivot 
 

Four pneumatic tires 
adjusted for camber and 
toe-out to provide 
scrubbing action for 
polishing 
 

No need for water or 
grinding compounds, 
can polish aggregate or 
mixes 
 

Polishes a relatively small 
area or few number of 
samples 
 

ASTM E 660 
 

NCAT 
Polishing 
Machine 
 

Three  wheels 
rotate 
around 
central 
pivot 
 

Three pneumatic tires 
adjusted for camber 
and toe-out to provide 
scrubbing action for 
polishing 
 

Sized to match DFT 
and CTMeter 
 

New device developed by 
NCAT based on older 
devices 
 

NCAT 
 

Penn State 
Reciprocating 
Polishing 
Machine 
 

Reciprocating pad 
 

Reciprocates rubber pad 
under pressure against 
specimen surface while 
slurry of water and 
abrasive are fed to surface 
 

Portable, can be used 
to polish aggregate or 
mix in laboratory or field 
 

Polishes a relatively small 
area, oscillation obliterates 
directional polishing, 
fallen into disuse 
 

ASTM E 
1393 
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Because of the complex interaction between many factors affecting pavement skid 

resistance, developing such a model is not an easy task. Many researchers have tried to 

develop theoretical and empirical models to predict skid resistance. These models range 

from ones based on simple laboratory tests to complicated ones based on theoretical 

interaction between the tire and the pavement surface. These models are useful tools to 

predict pavement skid resistance over its life span.  

Tire-pavement models are categorized into three different categories including 

(30): 

 statistical-empirical, which is mainly based on collected road data with different 

characteristics and statistical analysis;  

 fundamental, which is based on physical modeling of the pavement surface and 

tire; and  

 hybrid, which is a combination of statistical and fundamental models. 

Stephens and Goetz used the fineness modulus as a key factor to predict the skid 

resistance of an asphalt pavement (140). Dahir and others were the first to try relating 

aggregate characteristics to pavement skid resistance (141). In their research, they found 

some correlation between amount of acid insoluble particles and field skid performance, 

but not enough data to support a regression equation. They were the first to propose the 

use of the laboratory BPV as a surrogate for field terminal condition. They also 

considered the difference between the initial and terminal laboratory BPV as a measure 

of polishing characteristics of the aggregate (132). Henry and Dahir and Kamel and 

Musgrove then used the BPV of an aggregate sample as a parameter for the prediction of 

a pavement skid resistance (134,142). Henry and Dahir in other research found a 

relationship between BPV and microtexture (134). Moreover, they introduced the concept 

of percent-normalized gradient, which is a gradient of friction values measured below 

and above 60 km/hr speed and shows how strongly friction depends on the relative 

sliding speed. Moreover, this index incorporates both microtexture and macrotexture into 

the prediction of pavement skid resistance (15,134). 
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Mullen et al. studied the mineralogy of aggregates in relation to skid resistance. 

An optimum percentage of hard minerals distributed within a softer matrix was 

discovered, which allowed for the selection of materials that should perform well in the 

field (FIGURE 9) (143).  

 

 
FIGURE 9  Mineral composition related to skid resistance (143). 

 

Emery developed a pavement friction prediction model relating skid resistance to 

pavement age, accumulated traffic level, and mix properties including aggregate polish 

resistance, mixture volumetrics, and Marshall stability and flow. The field measurements 

showed a good agreement between measured and predicted values (144). Yandell et al. 

developed a complex physical model based on tire-pavement interaction (86). In their 

model, they considered the pavement surface and tread rubber properties as main factors 

affecting the skid number. Field verification showed a good agreement between predicted 

and measured values (86). Ergun et al. tried to relate pavement skid resistance and texture 

measurements by use of image analysis. They also showed there is a good agreement 

between measured and predicted skid values (60). 
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Stroup-Gardner and others found a good correlation between MPD and skid 

number. They also developed a model to predict skid number (145). Ahammed and Tighe 

found a close relationship between vehicle speed, surface texturing method, cumulative 

traffic volume, concrete compressive strength, and concrete pavement skid resistance and 

developed a model that was able to predict skid numbers for concrete pavements (146). 

Luce et al. investigated the relationship between pavement friction and polishing 

susceptibility, mix gradation, and aggregate type. Based on measuring changes in the 

aggregate texture caused by abrasion in Micro-Deval, they proposed a method to relate 

pavement skid resistance to aggregate polishing resistance that was verified for nine 

different field test sections (132).  

 

 INTERNATIONAL FRICTION INDEX (IFI) 

 

There are several measurement techniques throughout the world to assess 

pavement skid resistance. There are many indices explaining the skid resistance of a road 

including coefficient of friction, BPV, skid number, friction number, and IFI (30,85). 

How to harmonize different measurements of the skid resistance and make a unique base 

for comparing them is a concern. The IFI is a recent index that has been developed to 

harmonize friction and texture measurements by means of different test methods (20,26, 

30,92, ,147,148,). This index was developed through collecting a wide range of friction 

data measured by several test methods on different pavement surfaces mainly in Spain 

and Belgium during an international Permanent International Association of Road 

Congresses (PIARC) study. In this study, a model originated by Penn State researchers 

was used. In this model, two important factors affecting pavement skid resistance were 

considered. The original model has the form of: 

  Ps

s

eFsF
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where: 

S is sleep speed, 

Fμ is friction, 

F0 is a constant that relates to microtexture, and 

SP is a constant that relates to macrotexture (30,148). 

During the international study done by PIARC, a curve relating slip speed was 

established for each pavement section. This so-called golden curve shows the friction 

experienced by a driver during emergency breaking. Then, by using proper calibration 

factors, the equipment was able to predict the golden curve. It is worthwhile to know that 

the friction reported for each test section was at a speed of 60 km/h. The IFI is composed 

of two numbers—F60 and Sp—that are calculated as follows (30,148). 

 Speed constant (Sp) parameter is calculated based on texture measurements: 

Sp = a + b Tx        (2) 

where ―a‖ and ―b‖ are calibration factors and different for each measuring device and Tx 

is a measure of pavement texture. 

 The friction measurement at a slip speed FR(S) is then converted to a 

measurement at 60 km/h FR(60):  

   









 

 PS

S

eSFRFR

60

60       (3) 

 Finally, the F(60) is recalculated by the application of a speed adjusted 

friction value FR(60) and the following equation: 

F60 A B FR(60) C Tx      (4) 

where ―A,‖ ―B,‖ and ―C‖ are calibration constants for a selected friction device. These 

values have been standardized for each measuring device in ASTM E1960. 

Two parameters used in the IFI calibrated model—wet friction at 60 km/h (F60) 

and the speed constant of wet pavement friction (SP)—are indications of the average wet 

coefficient of friction experienced by a driver during a locked-wheel slide at a speed of 

60 km/h and dependence of the wet-pavement friction on the sliding speed, respectively 

(30,111). 
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Based on ASTM E 1960, the calibration factors for the CTMeter are a = 14.23 b = 

89.72 and for DFT are A = 0.081, B = 0.732. Based on these values, the IFI and Sp could 

be calculated as (59): 

PS
eDFIFI

40

20732.0081.0



        (5) 

MPDSP 7.892.14          (6) 

where: 

DF20 = wet friction number measured by DFT at the speed of 20 km/h, 

MPD = MPD measured by CTMeter (mm). 

These equations indicate that the effect of the wet friction coefficient at 20 km/h 

is more important than MPD. MPD is a parameter defined by ASTM E1845 as ―the 

average of all of the mean segment depths of all of the segments of the profile,‖ where 

mean segment depth is ―the average value of the profile depth of the two halves of a 

segment having a given base length,‖ and profile depth is ―the difference between the 

amplitude measurements of pavement macrotexture and a horizontal line through the top 

of the highest peak within a given baseline.‖ This value could be easily read from a 

CTMeter (30,59). 

The IFI values for the locked-wheel friction trailer using a smooth tire 

(A = 0.04461, B = 0.92549, and C = 0.097589) and rib tire (A = -0.02283, B = 0.60682, 

and C = 0.097589) at desired speeds are (30):  

TireSmoothForeSSNIFI PS

4

.)64(01.0925.0045.0    (7) 

TireRibForMPDeRSNIFI PS
 098.0.)64(01.0607.0023.0

4

 (8) 

where SN(64)S is the skid number measured at test speed of 64 km/h using a smooth or 

rib tire divided by 100. 

Because the texture value is not measured during the friction measurement by 

trailer, using the previous equations for calculating the IFI requires two separate 

measurements by rib and smooth tire. Moreover, to determine the IFI, the two equations 
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for rib and smooth tire should be set equal; using another equation relating MPD and Sp 

values, the total unknowns reduce to one. Then, the IFI can be easily calculated (30). 

 

WET WEATHER ACCIDENT REDUCTION PROGRAM (WWARP) IN TEXAS 

 

In 1999, Texas Department of Transportation (TxDOT) implemented a statewide 

program to reduce skid-related accidents in the state of Texas. The objective of this 

program was to develop the most effective method to minimize wet-weather skidding 

accidents at a reasonable cost. This program uses all available resources such as accident 

data and analytical expertise, friction test devices, and local knowledge of roadway 

friction conditions to identify and correct sections of the roadway with a high number of 

skid accidents to ensure that the pavement has adequate and durable skid resistance 

throughout the design life of pavement (149).  

Based on this program, the minimum acceptable friction level on the pavement 

surface is identified. TxDOT required that friction level be classified into three 

categories—low, moderate, and high—based on roadway attributes. The amount of 

rainfall (inches/year), traffic (average daily traffic), speed (mph), percent of trucks, 

vertical grade (percent), horizontal curve, driveway (per mile), cross slope (inches/ft), 

surface design life, and intersecting roadways are pavement attributes that define the 

required friction level.  

The WWARP includes material testing and evaluation, pavement design and 

construction, and pavement management and rehabilitation practices to ensure that the 

pavement meets the acceptable friction level. Pavement design and construction, as part 

of this program, consists of evaluating the aggregate capability to provide adequate skid 

resistance properties. 

Selecting the polish-resistant aggregate is a key factor to ensure adequate and 

durable pavement skid resistance. The Surface Aggregate Classification (SAC) system is 

one of the WWARP‘s outcomes that has experienced several changes since the inception 

of WWARP. The SAC system enables the mixture design engineer to select appropriate 
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aggregate type to be used in the pavement surface based upon pavement frictional 

requirements.  

The first SAC was developed in 1999. In this SAC, the aggregates were classified 

into four groups based on their PSV and magnesium sulfate soundness test results, as 

shown in FIGURE 10. The following classification chart was used from October 1, 1999, 

to February 28, 2006. 

 

 
FIGURE 10  First aggregate classification chart.  

 

The chart changed after February 28, 2006, and the inclined line between class B 

and class C was removed.  

FIGURE 11 shows the second version of the SAC chart, which was used from 

March 2006 to December 2007. Based on this system: 

Surface Aggregate Classification for Hot Mix 
Asphalt Concrete (HMAC) Mg. vs. Solid Tire Polish  

Class D 

Class C 

Class B 

Class A 

Mg = 25 

Mg = 30 

Mg = 35 

15 20 25 30 35 40 45 50 55 
5 

10 

15 

 20 

25 

30 

5 35 

40 

PSV 

H
M

A
C

  M
g 



38 

 
 

 All bituminous coarse aggregates that had both an acid insoluble residue of 

70 percent or greater and magnesium sulfate soundness loss of 25 percent or less 

were classified as class ―A‖ sources.  

 All aggregate sources that did not meet the criteria of a low carbonate source as 

defined above were classified based on a combination of their residual solid tire 

PSV and magnesium sulfate soundness weight loss. These materials were 

classified into groups (A, B, C, and D), as shown in FIGURE 11. 

 

 
 

FIGURE 11  Modified aggregate classification chart (second edition). 

 

In 2006, TxDOT contracted with the Texas Transportation Institute (TTI) to 

undertake a project to implement the AIMS in TxDOT operations. The research focused 

on measuring aggregate shape characteristics. Moreover, a new method was proposed in 
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the research to better test aggregate resistance to polishing. The proposed method was 

based on the magnesium sulfate soundness and texture results from AIMS. It proved to 

be more sensitive than the method that was being used by TxDOT. Furthermore, the new 

SAC system allowed the aggregates to be spread more evenly in four different categories 

(150).  

TxDOT began a program called Aggregate Quality Monitoring Program (AQMP) 

in 1995 to provide the requirements and procedures for the Construction Division, 

Materials and Pavements Section (CST/M&P) to accept aggregate products that have 

demonstrated continuing quality and uniformity. In this program, TxDOT has revised the 

SAC system and released a new aggregate classification system. This system has been 

effective since December 2007. Based on the new system, the aggregates are classified 

according to TABLE 3 (151).  

 

TABLE 3  Aggregate Classification Table 

Property Test Method SAC A SAC B SAC C 

Acid Insoluble 

Residue, % min 
Tex-612-J 55   

5-Cycle Mg, % max Tex-411-A 25 30 35 

Crushed Faces, 2 or 
more, % min 

Tex-460-A 85 85 85 

 

SUMMARY 

 
In this chapter, the importance of providing adequate levels of skid resistance was 

explained. Previous studies were reviewed, the results of which indicated that there is a 

strong relationship between wet-weather accidents and skid resistance of the pavement 

surface. Improving the pavement skid resistance was found to reduce the number of 

crashes in numerous research studies. This chapter also discussed the mechanism of 

friction between tire and pavement and the adhesion and hysteresis components of 

friction were explained.  

Several research studies pointed out the pavement skid resistance is attributed to 

pavement microtexture and macrotexture. Macrotexture refers to the larger irregularities 
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on the pavement surface and associated with voids between aggregate particles and 

mainly affect the hysteresis part of the friction. The magnitude of this component 

depends on the size, shape, and distribution of coarse aggregates used in pavement 

construction. Microtexture refers to irregularities in the surfaces of the aggregate particles 

and is known to mainly be a function of aggregate particle mineralogy and affect the 

adhesion part of the friction. 

Different methods for measuring pavement friction and texture were discussed in 

this chapter. Field skid resistance is generally measured by the force generated when a 

locked tire slides along a pavement surface. Other pavement texture and friction 

measuring techniques such as British pendulum, patch test, outflow meter, CTMeter, 

DFT, and recently developed imaging systems were also explained in this chapter.  

Furthermore, the concept of IFI, which is used to harmonize different pavement 

friction measuring tools and express the pavement friction as a unique value measured by 

different equipment, was introduced. 

Several research studies found that pavement friction decreases over time and 

reaches an equilibrium state in which the skid resistance remains almost constant. The 

polishing susceptibility of the aggregate was found to be one of the most important 

factors on the rate of decrease and terminal value of skid resistance. Many researchers 

tried to quantify polishing susceptibility of aggregates based on simple laboratory tests.  

Petrographic examinations proved to give information about the polishing 

susceptibility. For example, the content of acid insoluble particles of an aggregate has the 

most influence on the polishing susceptibility. Some researchers concluded that limestone 

aggregate is more prone to polishing than granite. Several research studies, however, 

showed that other mechanical tests are also required to evaluate the aggregate resistance 

to polishing. Different test methods, such as the British pendulum test, LA abrasion test, 

and magnesium sulfate soundness test, were discussed in this chapter, and advantages and 

disadvantages of each one were explained.  

The method currently used by the Texas Department of Transportation to evaluate 

the aggregate polishing susceptibility was also described. This method classifies 

aggregate based upon measuring the acid insoluble content, magnesium sulfate soundness 

weight loss, and percentage of aggregate with two or more crushed faces. 
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In order to plan for maintenance and rehabilitation of pavement surface, pavement 

friction prediction models are required. Different approaches to obtain such models were 

discussed in this chapter. The three main categories of predictive models discussed were 

(1) statistical-empirical, which is mainly based on collected road data with different 

characteristics and statistical analysis; (2) fundamental, which is based on physical 

modeling of the pavement surface and tire; and (3) hybrid, which is a combination of 

statistical and fundamental models. The literature search revealed that there are no 

models available to predict skid resistance based on material characteristics and traffic 

level.  The following chapters present the experimental and analytical methods to develop 

such a model. 

  



42 

 
 

CHAPTER III  

MATERIALS AND LABORATORY TEST METHODS 

 

INTRODUCTION 

 

This chapter presents the properties of aggregates and mixtures that were used in 

the laboratory experiments. These materials were selected to represent various aggregate 

sources and mixture designs used in the state of Texas. In addition, the chapter includes 

descriptions of the experimental methods that were used to measure the properties of 

aggregates and mixtures related to skid resistance. 

 

AGGREGATE SOURCES 

 

As mentioned previously, aggregate type and geological sources have a 

significant effect on the skid resistance of the pavement. Aggregates from five different 

sources in Texas were selected from: 

 Beckman, 

 Brownlee (partly composed of George town aggregate),  

 Brownwood, 

 Fordyce , and 

 McKelligon (referred to as El Paso aggregate). 

Because the frictional performance of the asphalt mixes is mainly governed by 

coarse aggregates, mineralogy of the coarse aggregate fractions was considered as the 

representations of the aggregate source. Because it is a common practice in Texas to 

blend soft limestone aggregates with a polish-resistant aggregate, another combination 

including 50 percent sandstone and 50 percent soft limestone was also tested. FIGURE 

12 shows the geographical location of aggregate sources on a Texas map. 
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FIGURE 12  Map of Texas showing aggregate quarries by county location. 

 

FIGURE 13 shows the aggregate classification based on the old system used in 

Texas. The classification of the aggregates used in this research has been show in this 

figure. 

El Paso Aggregate 

Fordyce Aggregate 

Beckman Aggregate 

Georgetown 
Aggregate  

Brownwood Aggregate 

Brownlee Aggregate 
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FIGURE 13  Aggregate classification based on old aggregate classification system. 

 

Based on the two older versions of TxDOT SAC (FIGURE 13), Brownlee 

aggregate falls in class A, Beckman aggregate is classified as class C, and the remaining 

aggregates are classified as class B.  

The new aggregate classification system in Texas uses TABLE 3, with aggregates 

classified as shown in TABLE 4. TABLE 4 shows that Fordyce aggregate, which was 

classified as B in a previous version of the SAC system, was promoted to class A, and 

Beckman aggregate is classified as SAC B in the new system. Other aggregates remain 

the same in both systems. 

Surface Aggregate Classification  
HMAC Mg. vs. Solid Tire PV 
 

Brownwood Aggregate 

Fordyce Aggregate 

Beckman Aggregate 

Brownlee Aggregate 

50% Brownlee + 50% Beckman Aggregate 

El Paso Aggregate 

Solid Residual, PV 
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TABLE 4  Aggregate Classification Based on New System 

Aggregate  Class 

Brownlee SAC A 

El Paso SAC B 

Fordyce SAC A 

Brownwood SAC B 

Beckman SAC B 

50% Brownlee + 50% Beckman NA 

 

PETROGRAPHIC ANALYSIS OF AGGREGATES  

 

To understand skid properties of the aggregates used in this study, thin sections of 

selected aggregates from six different Texas aggregate sources were analyzed (TABLE 

5). The mineralogy and relative hardness (Mohs hardness scale) of each aggregate are 

listed as well. Different size fractions from each aggregate source were washed in 

distilled water to remove foreign matter and allow close inspection with a Meiji binocular 

microscope of select pieces of aggregate that were representative of the variations in each 

source. The aggregate pieces were selected for thin-section analysis based on color, 

angularity, density, and variations in surface texture. 

 

TABLE 5  Aggregates Analyzed in Petrographic Study 

Aggregate Source Mineralogy Mohs Hardness 

Beckman pit Calcite 3 

Brownlee pit Quartz, Feldspar, Dolomite,  
Calcite, Glauconite 

7, 6, 3.5-4, 
3, 2 

Brownwood pit Zircon, Quartz, Rutile, Feldspar, 
Dolomite, Calcite 

7.5, 7, 6-6.5, 6, 
3.5-4, 3 

Fordyce pit Quartz, Feldspar, Dolomite 
Siderite, Calcite 

7, 6, 3.5-4, 
3.5-4, 3 

McKelligon  pit Quartz, Feldspar, Dolomite 
Siderite 

7, 6, 3.5-4, 
3.5-4 

Georgetown pit Quartz, Dolomite, Calcite 7, 3.5-4, 3 
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The aggregate pieces were then shipped to Texas Petrographic Services, Inc., in 

Houston to make thin sections. Each thin section was impregnated with blue-dyed epoxy 

(for easy pore delineation), and one-half of the section was stained with Alizarin Red-S to 

distinguish calcite and aragonite from dolomite. The calcite and aragonite were stained a 

red color, and dolomite remained unstained (152). 

The thin sections were analyzed with a Zeiss Axioskop 40 petrographic 

microscope equipped with a rotating stage and a Pixelink digital camera. 

Photomicrographs were made of representative features for each aggregate fraction. The 

following sections explain the results of the observations and petrographic analysis 

performed on each aggregate type. 

 

Beckman Pit  

 

The Beckman pit is located near San Antonio, Texas. Samples from this site are 

characterized by a monomineralic composition (100 percent calcite). The texture varies 

from a low porosity fossiliferous grainstone to poorly cemented euhedral calcite with 

moldic porosity. FIGURE 14 illustrates a micritic limestone composed of 100 percent 

calcite. The red stain shows that the sample is composed of pure calcite. The darker areas 

are calcite mud (micrite), and the light areas are fossil fragments made of calcite. The 

grainstone in FIGURE 15 shows a low porosity limestone with abundant fossil 

fragments, which are composed entirely of calcite. This aggregate would normally have 

better skid resistance than the micrite shown in FIGURE 14, but it is monomineralic, 

which could decrease the skid resistance. However, this isn‘t always true because 

sometimes the monomineralic aggregates have a different hardness between the fabric 

and the matrix of the rock depending on whether the matrix weathered more than the 

fabric. If the fabric is more durable than the matrix, texture is created.  
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FIGURE 14  Micritic, low porosity limestone from the Beckman pit. 

 

 

FIGURE 15  Grainstone with coated fossil fragments from the Beckman pit. 
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The limestone shown in FIGURE 16 has moldic (vuggy) porosity that increases 

its skid resistance. However, there is very little of this material in the aggregate sample 

collected. This aggregate would have a lower skid resistance because it is composed 

predominantly of only one mineral. Moreover, characterizing this aggregate can best be 

done by measuring the skid resistance of prepared samples of mixes containing this type 

of aggregate. 

 

 
FIGURE 16  Coarsely crystalline limestone with Moldic pores from the Beckman pit. 

 

Brownlee Pit 

 

The Brownlee pit is a blend of sandstone and limestone. There are numerous rock 

types in this aggregate that include chert, glauconitic sandstone, limestone, sandy 

limestone, dolomite, and glauconitic dolomite. Some of the aggregate pieces are heavily 

weathered, and other pieces are unaltered rock. Examples include an altered glauconitic 

sandstone, as well as fresh to highly altered dolomite. FIGURE 17 shows an unaltered 

glauconitic dolomite. The unweathered glauconite grains are dark green, and the dolomite 
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crystals are white to gray. FIGURE 18 illustrates a calcite and dolomite-cemented 

sandstone. This rock should have good skid properties because it has constituents with 

different hardness, and there is very little porosity to weaken the rock. The sand grains 

are angular, which will contribute to improved skid properties. 

 

 
FIGURE 17  Glauconitic dolomite from the Brownlee pit. 



50 

 
 

 

FIGURE 18  Calcite and dolomite-cemented sandstone from the Brownlee pit. 

 

FIGURE 19 shows a heavily weathered dolomite. One can see abundant pore 

space (blue areas) between individual crystals in addition to many crystals being etched 

or partially dissolved. The mineralogy and texture of the Brownlee pit is very diverse. 

The skid properties of this aggregate will be highly dependent on relative percentages of 

fresh and heavily altered rock. The microtextural properties of the Brownlee pit are 

higher in the altered rock because of the continual rejuvenation of the aggregate surface 

because sand being plucked during wear. Moreover, this fresh rock may have better 

wear-resistance characteristics but may have less texture over time. Furthermore, a 

detailed laboratory study is needed to characterize the frictional properties of this rock.  
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FIGURE 19  Heavily weathered dolomite from the Brownlee pit. 

 

Brownwood Pit 

 

The Brownwood pit is located near Brownwood, Texas. The aggregate from this 

location is predominantly limestone with variations in sand content. Most of the samples 

exhibit very little to no porosity and contain a variety of minerals. There was no evidence 

of heavily weathered aggregate in the Brownwood samples. FIGURE 20 illustrates a 

limestone with abundant dolomite and quartz sand clasts. The dolomite may be primary, 

or it may be a replacement of original aragonite filling voids in fossil fragments. Quartz 

grains are sub-rounded to angular white grains dispersed throughout the image along with 

calcite fossil fragments; micrite fills the intergranular volume. Although the properties 

give an indication of good skid resistance, other characteristics, such as skid insoluble 

material, are needed to estimate the amount of skid resistance particles in this aggregate 

type. Moreover, relying only on the result of a geological test on aggregate could be 

misleading.  
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FIGURE 20  Sandy dolomitic limestone from the Brownwood pit. 

 

The image in FIGURE 21 is sandstone with quartz and feldspar as the dominant 

constituents cemented by calcite (red) and lesser amounts of dolomite. This sample has a 

heterogeneous distribution of intergranular pore space. The angularity of the detrital 

grains and the carbonate cement should give this aggregate good skid properties. Heavy 

minerals (zircon, rutile) abound in the photomicrograph of the carbonate-cemented 

sandstone shown in FIGURE 22. The heavy minerals appear opaque and are concentrated 

in the lower half of the figure. There is no porosity visible in this image.  
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FIGURE 21  Calcite and dolomite-cemented sandstone from the Brownwood pit. 

 

 

FIGURE 22  Carbonate-cemented sandstone with abundant heavy minerals.  



54 

 
 

Fordyce Pit 

 

The Fordyce pit is near Victoria, Texas. Aggregates selected from the Fordyce pit 

samples show a diverse origin. Rock types range from a metamorphosed sandstone to 

sedimentary chert, fossiliferous limestone, silica-cemented sandstones, and dolomite. 

FIGURE 23 shows chalcedony replacing a fossil fragment (cigar-shaped object) as well 

as moldic pores derived from the dissolution of dolomite or calcite (blue). Calcite, 

dolomite, and siderite are preserved in the heavily silica-cemented region in the right half 

of the image. This aggregate should have good skid properties. 

 

 
FIGURE 23  Chalcedony replacement of fossils and moldic porosity of Fordyce pit 

aggregates. 

 

The aggregate depicted in FIGURE 24 is composed predominantly of chalcedony 

(microcrystalline quartz) with some rhombohedral calcite, dolomite, and siderite crystals 

preserved. There are some rhombohedral pores developed from the dissolution of 

dolomite or calcite that may give this aggregate good skid properties if the pores are large 
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enough. Overall, the different aggregate types found in this pit should provide good skid 

resistance for the pavement surface. 

 

 
FIGURE 24  Chalcedony matrix with moldic pores from the Fordyce pit.  

 

McKelligon Pit  

 

The McKelligon pit is near El Paso, Texas. There is some highly weathered 

granite in the finer fractions (< 3/8 inch), but the aggregate is predominantly dolomite 

and sandy dolomite with minor fossiliferous limestone and sandstones with dolomite and 

siderite cement. This aggregate should have good skid properties, provided that fine-

grained limestone be kept to a minimum. 

The most dominant rock type in this pit is a sand-bearing dolomite, shown in 

FIGURE 25. The sand grains (white) are angular and composed of quartz, which will 

make a rough surface when the rock is polished, so this rock should give good skid 

properties. FIGURE 26 displays a very fine-grained limestone, composed of small calcite 
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crystals. This rock would not have good skid properties because of the small crystals all 

composed of the same mineral, which would generate a uniform polish. 

 

 
FIGURE 25  Sandy dolomite from the El Paso, McKelligon pit. 
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FIGURE 26  Fine-grained limestone from the El Paso, McKelligon pit. 

 

The sandstone shown in FIGURE 27 is composed of quartz and feldspar detrital 

grains with dolomite dominating the intergranular volume. There is minor siderite 

(opaque-looking rhombs) and pore space (blue). There is also some quartz overgrowth 

cement present that would greatly increase the durability of the sample. This aggregate 

should have good skid properties. 
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FIGURE 27  Dolomite and siderite-cemented sandstone from the McKelligon pit. 

 

FIGURE 28 depicts one of only four granite samples. This piece is from a 

weathered rock because many of the grains are etched and are being chemically altered 

(as shown by the mottled texture of feldspar grain in the upper left corner of the image). 

Because of the sharp contacts and large grain sizes, and alteration of granite can be 

considered to have satisfactory skid resistance, but a more comprehensive field and 

laboratory study is required to classify this aggregate as a good skid resistant aggregate. 
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FIGURE 28  Cross-polarized light view of altered granite from the McKelligon pit. 

 

Georgetown Pit 

 

The Georgetown pit constitutes part of the aggregate called sandstone from 

Brownlee in this research. The aggregate samples from Georgetown are generally not 

very durable, but the poor durability can be an asset when it comes to skid performance. 

These aggregates will abrade rapidly and provide a continuously rough texture. FIGURE 

29 displays an image of a fine-grained limestone with chalcedony (microcrystalline 

quartz) in the lower right side of image. This image was taken under cross-polarized light 

to accentuate subtle differences in crystallography. There is a large percentage of 

chalcedony and chert in these samples that will aid in skid resistance. Moldic pores 

(vesicles) also provide good skid resistance in rocks with lower durability (see FIGURE 

30). The aggregate is extremely porous and poorly cemented, which will result in low 

durability, but it will generally increase the skid resistance. 
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FIGURE 29  Fine-grained limestone with chalcedony from the Georgetown pit. 

 

 

FIGURE 30  Moldic pores in limestone from the Georgetown pit. 
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In summary, all sources but one (Beckman aggregate) contained multiple mineral 

types and textures that have been shown to exhibit favorable skid properties. The quality 

depends on the percentage of good to poor aggregate present in a sample. Aggregate 

durability does not necessarily correlate with skid performance. 

From a mineralogical point of view, El Paso, Brownwood, and Fordyce are 

predicted to have satisfactory skid properties. The combination of Georgetown and 

Brownlee, considered as Brownlee aggregate in this study, would have good skid 

properties. The worst aggregate would be from the Beckman pit. 

The Beckman pit contained 100 percent calcite, which would result in the poorest 

skid resistance. The Brownlee pit contained a fair amount of weathered aggregates that 

not only could significantly reduce skid resistance but also might be able to maintain its 

skid properties as a result of the rejuvenation of the aggregate texture. The Georgetown 

pit sample has a lot of low durability aggregates, but the texture would help give it better 

skid properties. The El Paso (McKelligon pit) aggregates contained a fair percentage of 

weathered rocks, but weathering is not as detrimental for the El Paso aggregates because 

of the coarse grain size and variable mineralogy.  

Although the petrographic analysis yields a good insight into mineral constituents, 

the results of petrographic analysis cannot be relied on as the only evaluation technique. 

Other mechanical and physical tests, e.g., soundness and Micro-Deval, are necessary to 

evaluate aggregate polishing susceptibility.  

 

TESTING OF AGGREGATE RESISTANCE TO POLISHING AND 

DEGRADATION 

 

As discussed previously, macrotexture and microtexture are two important factors 

providing skid resistance on the pavement surface. Macrotexture depends on the mixture 

characteristics and aggregate gradation, while microtexture depends mainly on the 

aggregate surface texture.  

Microasperities on the surface of the aggregates provide surface microtexture, 

which plays a key role in providing skid resistance at lower speeds. The ability of an 
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aggregate type to maintain its rough texture against traffic loading is an important factor 

that has to be considered in a comprehensive aggregate classification system. There are 

several methods to evaluate the potential of an aggregate to resist polishing made by 

traffic loading. These methods can be classified into two major groups—the methods that 

measure the aggregate abrasion (loss of angularity and some breakage) during traffic 

loading and the methods that measure aggregate polishing (loss of texture). Furthermore, 

in these methods, change in one aggregate characteristic, e.g., magnesium sulfate 

soundness weight loss or BPV, is measured after special load application, and the 

changes are attributed to the aggregate polish or breakage resistance ability. These 

changes in aggregate properties are related to aggregate potential to resist polishing. 

Recent studies reveal that change in aggregate physical characteristics such as texture and 

angularity are good indicators of aggregate skid properties; hence, methods that are able 

to measure aggregate shape characteristics directly, such as AIMS, are preferable (132). 

In this study, several methods were applied to evaluate the aggregate polishing, abrasion, 

and breakage characteristics. These methods are discussed in this section. 

 

Los Angeles Abrasion and Impact Test 

 

The LA abrasion and impact test is an indication of aggregate degradation during 

transport and handling. It has been standardized under ASTM C535, AASHTO T 96, and 

Tex-410-A. In this test, the portion of aggregate retained on a sieve #12 is placed in a big 

rotating drum. This drum has some plates attached to its inner walls. A specified number 

of steel spheres are added to the drum, and it starts to rotate at 30 to 33 rpm for 500 

revolutions. The material is then extracted and separated by use of a #12 sieve, and the 

proportion of the materials remaining on the sieve is weighed. The difference between 

this new weight and the original weight is compared to the original weight and reported 

as LA value or percent loss. The LA abrasion and impact test is believed to assess an 

aggregate resistance to breakage rather than abrasion as a result of wear (132,153).  
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Magnesium Sulfate Soundness 

 

The magnesium sulfate soundness test is an indication of the durability of 

aggregates and is standardized under AASHTO T104 or Tex-411-A. The test involves 

submerging an aggregate sample in a solution of magnesium sulfate for a specified 

number of cycles (often five) and measuring the weight loss afterwards. According to the 

standard procedure for performing this test, the aggregate sample is dried and placed in 

the magnesium sulfate solution for 18 hr. Then, it is removed from the solution and dried 

again at oven temperature. This process is repeated five times; then, the loss of aggregate 

weight is reported.  

 

British Pendulum Test  

 

The British polish value is a measure of aggregate surface texture and shows the 

roughness of the aggregate surface. This test has been standardized under ASTM E3033-

93 and Tex-438-A. The test was discussed in detail in Chapter II.  

 

Micro-Deval Test 

 

The Micro-Deval test is used to evaluate aggregate capability to resist abrasion in 

a wet environment. The test method originated in France in 1960 and was accepted as a 

European Union standard afterwards. The first use of this method was in Canada by the 

Ontario Ministry of Transportation, and it was adopted by AASHTO under the 

AASHTO T 327-05 test method entitled ―Standard Test Method for Resistance of Coarse 

Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus‖ (153). In this test, 

the durability and aggregate resistance to abrasion in the presence of water is evaluated. 

Moreover, this test evaluates how aggregates degrade when tumbled in a rotating steel 

container with steel balls in a wet environment (153,154). This test method has been 

adopted by TxDOT in the Tex-461-A standard procedure. In this test, a steel container is 

loaded with 5000 grams of steel balls and 1500 grams of an aggregate sample in the 

range of 4.75 mm to 16 mm and 2000 ml tap water. This material is subjected to 9600 to 
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12,000 revolutions, and the sample weight loss (weight of aggregate passing the #16 

sieve size) is calculated and reported. FIGURE 31 shows the Micro-Deval apparatus, and 

FIGURE 32 shows the schematic mechanism of aggregate degradation. 

 

 
 

FIGURE 31  Micro-Deval apparatus. 

 
FIGURE 32  Mechanism of aggregate and steel ball interaction in Micro-Deval apparatus. 

 

This test addresses aggregate resistance to abrasion better than other tests, such as 

the LA abrasion test, specifically in base and hot mix asphalt (HMA) materials where 

stone-to-stone interaction in a wet condition is more important. Moreover, the wet 

environment of the Micro-Deval is believed to simulate field conditions (155). 

Furthermore, recent studies show that this method is more repeatable and reproducible 
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than the other aggregate degradation tests, such as the magnesium sulfate soundness test 

and LA abrasion and breakage test (156).  

 

Aggregate Imaging System  

 

AIMS is an automated aggregate imaging system used to characterize aggregate 

shape characteristics. This system determines the angularity, shape, and texture of coarse 

aggregate as well as the shape and angularity of fine aggregates based on a scanning 

system and digital image processing. Masad et al. showed that there is no operator bias 

associated with this test method, and operator training for using this equipment is not 

complicated (157). In this system, coarse aggregates are placed on a tray with 7 × 8 grid 

points, and fine aggregates are spread uniformly on the tray with 20 × 20 grid points. 

Then, a digital camera with a predefined zoom level takes digital pictures of the 

aggregates. This system is also equipped with back-lighting and top-lighting units that 

can provide enough light intensity to capture a clear image of the aggregates. Three 

measures of aggregate shape properties are calculated based on these 2-D images taken 

from aggregates (132).  

Texture is measured using AIMS by analyzing gray-scale images of the aggregate 

surface using the wavelet method. Moreover, the surface microasperities are visible from 

the variations in gray-level intensities that range from 0 to 255. A large variation in gray-

level intensity indicates a rough surface texture, whereas a smaller variation in gray-level 

intensity shows a smooth surface. The wavelet transform analyzes the image as a two-

dimensional signal of gray-scale intensities, and it gives a higher texture index for 

particles with rougher surfaces. Aggregate angularity, described as a deviation from a 

perfect circle, shows the irregularities on the aggregate surface on the macro level. 

Angularity is calculated using the gradient method and presented as an angularity index. 

Sphericity is another index that is extracted from digital images of aggregate samples. 

This index simply shows how close the aggregate is to a perfect sphere. The system is a 

result of a very comprehensive study at Texas A&M University, and all details and 

analysis procedures have been documented in Al-Rousan‘s Ph.D. dissertation (158). 

FIGURE 33 shows a schematic view of the AIMS system. 
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FIGURE 33  Schematic view of the AIMS system. 

 

ASPHALT MIXTURE TYPES 

 

During the laboratory part of the study, different asphalt mixture types containing 

different aggregate types were prepared and compacted into laboratory slabs and then 

tested. Three different mix designs were selected. These three mix designs are known to 

exhibit different frictional field performance and are common mix types used by TxDOT. 

During the sample preparation stage, laboratory-produced mixes were compacted into 

special metal molds and polished in a laboratory polisher to obtain the frictional 

resistance curve. Friction and texture measurements were performed intermittently after 

sample compaction and during polishing. The following sections describe each mix 

design. 

 

Type C Mix Design 

 

Type C mix design has a maximum aggregate size of 0.75 inch and consists of a 

minimum of 60 percent particles with two or more crushed faces. Moreover, this mix is 

used in asphalt layer thickness of 2 to 4 inches. Type C mix design is used as both an 

file:///C:/Arash/courses and research/project 5627/Reports/Agg_Image_sys640x480.wmv


67 

 
 

intermediate and a wearing course in TxDOT projects. This mix is usually utilized on the 

highways and major arterials. In general, this mix has good performance against 

permanent deformation and also has good skid properties. Type C mix design has become 

the most common mixture design in TxDOT projects (159). 

 

Type D Mix Design 

 

 Type D mix design is exclusively used for surface application and has a 0.5-inch 

maximum aggregate size. Moreover, this mixture gives smooth riding characteristics to 

the road and has good frictional properties. This mix is also used in overlay projects 

(159). 

 

Porous Friction Course  

 

Porous friction course (PFC) consists of an open-graded asphalt mixture 

containing a large proportion of one-sized coarse aggregates, typically from 0.375 to 

0.5 inch in size, and a small percentage of fine aggregates. The large air content in the 

range of 20 ± 2 percent allows the water to pass through and drain quickly; therefore, this 

mixture has high skid resistance and reduces the chance of hydroplaning. Utilizing this 

mixture also improves visibility and reduces water splash and spray. PFC is usually laid 

over a stronger dense-graded asphalt mixture. Different kinds of additives are used 

(e.g., polymers, cellulose fibers, lime) to make PFC more durable in terms of resistance 

to moisture damage (159).  

TABLE 6 lists the mixtures and aggregates used in this study, along with their 

selected abbreviations. 
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TABLE 6  Abbreviation Selected for Aggregates and Mix Types in This Study 

             Mixture Type 

 

Aggregate Type 

Type C PFC Type D 

Fordyce Aggregate CFY   

Beckman Aggregate C-BK P-BK D-BK 

Brownwood Aggregate C-BW P-BW  

El Paso Aggregate C-EP P-EP  

Brownlee Aggregate C-BL P-BL D-BL 

50% Beckman + 50% 

Brownlee 
C-BKBL  D-BKBL 

 

ASPHALT MIXTURE PREPARATION  

 
The mixture designs for each asphalt mixture were adopted based upon a mixture 

design that had been used in the field. In view of this, the mixture design for each mixture 

was collected by contacting TxDOT officials and consultant engineers who were 

responsible for the mixture design. Tables 53 to 64 in Appendix A illustrate the mix 

designs. For the mixes whose mix design was not available —Type D with 50 percent 

Beckman aggregate + 50 percent Brownlee aggregate, and Brownlee—a separate mixture 

design procedure according to TxDOT specification for Type D mix was performed. The 

optimum asphalt content was also estimated and used in preparation of test specimens. 

The required amount of each aggregate type was collected from the producer, and 

the gradation of each of the individual types of aggregate was determined following the 

ASTM C 136 specification. The final gradation used in the production of the mixes was 

obtained by blending individual fractions in proportions specified in the mix design. The 

final blend did not differ from the target gradation by more than ±5 percent for each sieve 

size during the blending of each bin. A modified PG 76-22s binder was used to prepare 

the laboratory mixtures. This binder grade is commonly used in Texas.  

One slab from each mixture type was prepared and tested. Given that the 

minimum slab size required to measure the skid resistance by DFT and CTMeter is 

17.75 inches by 17.75 inches, it was decided to prepare a 60-inch by 26-inch slab from 
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each mixture. This slab size provided three locations for measuring the skid resistance of 

the asphalt mixture surface. FIGURE 34 shows a schematic layout of the locations of the 

DFT and CTMeter measurements on the slab. Measurements were not taken close to the 

slab edge because of the unevenness caused during compaction. 

 
FIGURE 34  Schematic layout of each slab. 

 

The experimental design for this study dealt with a large amount of materials. The 

amount of mix batch used for each slab was about 125 kg, with a total of about 1900 kg 

for all mixtures. About 100 kg of binder was used in preparing all mixes.  

Aggregates for each mix were blended and split into seven 4-gal buckets for 

heating. The mix weight was calculated to produce a 2.5-inch-thick slab given the mold 

volume and bulk specific gravity (Gmb). The target percent air voids was 7 percent for 

Type C and Type D mixtures and 20 percent for the PFC mixture.  

The 4-gal buckets containing aggregates were put into the oven one night before 

compaction at the mixing temperature. The asphalt binder was also split into small cans 

to achieve uniform heating. The small cans of the PG 76-22 asphalt type were also heated 

to their mixing temperature. The heated aggregate was weighed, and the optimum asphalt 

content was added to it and placed in the mixer for Type C and Type D mixtures. For the 

PFC mixtures, a 15-sec dry-mixing time was applied to the aggregate and fiber blend 

prior to adding asphalt to have a consistent mix. The mixing was performed in a 4-gal 

bucket-type laboratory mixer. In both cases, mixing continued to assure a consistent mix 

with a uniform asphalt film thickness around each particle. During the mixing time, a 

60 inches 

26 inches 17.75 inches 17.75 inches 17.75 inches 
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long spatula was used to aid the mixing process and scratch off any fines and asphalt 

from the side of the container. This process helped to obtain a uniform mix with 

minimum segregation and a minimum number of uncoated aggregates (139). After 

mixing, the mix samples were placed into an oven in separate batches, and the mixes 

were conditioned for 2 hr at the compaction temperature (145°C or 293oF) according to 

the AASHTO R30 (2002) specification.  

A specially developed laboratory compaction procedure was adopted to prepare 

the specimens in this study. Because the large size of the slabs limits the use of 

conventional compaction methods (e.g., kneading compactor), it was decided to use a 

walk-behind roller compactor. This equipment has been successfully utilized in the field 

and is fast. A metal mold was fabricated to confine the mix during the compaction. This 

mold consists of five metal pieces bolted together and forms a frame to confine the 

mixture. In this form, a 66-inch × 33-inch baseplate is underlying two 2.36-inch × 2.36-

inch L-shape sections forming the walls. Two ramp-shape metal pieces were also 

fabricated and mounted at both ends of the frame to facilitate moving of the walk-behind 

roller compactor up to the frame. FIGURE 35 shows the schematic of the mold used to 

confine the mixture during compaction. 

 



71 

 
 

 
FIGURE 35  Schematic of the mold used in slab compaction. 

 

It is difficult to measure the air void content directly by using a nuclear gauge 

because the metallic baseplate interrupts any direct measurement and results in incorrect 

measurements. Therefore, a scale was built to control the thickness of the slab as an 

indirect measure of air void (see FIGURE 36). Consequent measurements showed that 

this method was successful in controlling the compaction effort to obtain the desired air 

voids.  

 

 
FIGURE 36  Slab-thickness measuring scale used to adjust slab thickness. 
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After mixing, the mixture was transported to the compacting area by a cart in the 

metal buckets and spread inside the frame, being uniformly distributed and flattened by a 

30-inch rake. This process was done quickly and carefully to provide a smooth surface 

with minimum segregation and temperature loss (139). The mixture was then compacted 

by using the vibratory roller compactor (Ingersoll-Rand SX-170H). According to factory 

specifications, this compactor has a 595-lb operating weight and a 60.4-inch-long and 22-

inch-wide drum size. Based on the manufacturer‘s recommendation, this compactor was 

used to compact the layers up to 9 inches in thickness. FIGURE 37 shows a picture of 

this compactor. 

 

 
FIGURE 37  Walk-behind roller compactor.  

 

During compaction, the slab thickness was measured periodically to assure the 

correct slab thickness. Rolling was continued until a regular surface was obtained at the 

required thickness. The typical rolling process took about 20-25 min. The slab was then 

left for 1 day to cool down and become ready for polishing and further measurement. 

As previously mentioned, the target air voids of Type C, Type D, and PFC mixes 

were 7, 7, and 20 percent, respectively. To investigate the uniformity of compaction 

throughout the slab, six cores with 6-inch diameters were taken from each slab after 
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measuring terminal skid resistance. ASTM D 2726 (saturated surface-dry technique for 

dense-graded mixes) and D6752 (CoreLok apparatus for PFC mixes) test methods were 

used to determine the bulk specific gravity (Gmb). The air void content for each sample 

was calculated based on this Gmb and previously measured Gmm. TABLE 7 shows the 

results of the average air voids for each slab, with an average air void content of 7.9, 9.9, 

and 21 percent for Type C, Type D, and PFC, respectively. 

 

TABLE 7  Average Air Void Content Measured for Each Slab 

Aggregate Type  Mix Type Average Air Void 
Content (%) 

Brownlee 

Type C 

8.9 
Brownwood 7.7 
Beckman 7.1 
El Paso 7.8 
Fordyce 7.8 
50% Brownlee + 50% Beckman 8.0 
Brownlee 

PFC 

23.0 
Brownwood 18.8 
Beckman 24.0 
El Paso 18.0 
Brownlee 

Type D 
9.0 

Beckman 10.8 
50% Brownlee + 50% Beckman 9.8 

 

SLAB-POLISHING METHODS 

 
Several methods for polishing the slabs were investigated. It was desired to select 

a method that has the ability to polish large-scale asphalt mixture specimens and with 

good control on number of polishing cycles. 

The first polishing method that was evaluated was the one-third scale Model 

Mobile Load Simulator (MMLS3). MMLS3 is an accelerated pavement testing system. 

Load frequency, tire pressure, temperature, and speed can be adjusted with this 

equipment (160). The MMLS3 consists of four rotating axles equipped with a 300 mm 

(11.8-inch) diameter pneumatic tire. The load level on each tire can vary between 2.1 kN 

to 2.7 kN by adjusting the suspension system. The tire pressure can be raised up to 

800 kPa. This equipment is able to apply up to 7200 loads per second (161). FIGURE 38 
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shows a picture of the MMLS3. Slabs were compacted and placed under the MMLS3 for 

polishing. After several attempts, the use of MMLS3 for polishing was discontinued 

because of the following issues: 

 The rate of polishing was very slow, and even after 200,000 cycles, the surface 

was not polished significantly. 

 In each turn, only one strip with a 3-inch width is polished, and to make a 

measurement with the DFT and CTMeter, at least six polished strips were needed 

side by side. Therefore, the polishing process was time consuming.  

 A significant amount of rutting was observed that was believed to adversely affect 

the friction measurements by the DFT and CTMeter.  

 

 
FIGURE 38  Schematic view of MMLS3 (162). 

 

In the second method, a polishing test machine already evaluated by NCAT was 

used. The results of the study by Vollor and Hanson showed that this machine had 

satisfactory performance and could simulate field conditions (139). This machine has 

three 8-inch × 3-inch caster wheels attached to a turntable. These three wheels spin on an 

11.188-inch-diameter path; therefore, it is possible to measure the polished area by the 

DFT and CTMeter. It is believed that this configuration polishes the surface of the slabs 

similar to the action of traffic on a pavement. To guide the wheels in an 11.188-inch 
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circular track, the wheels are equipped with ball bearings that use a mounted fixture, 

maintaining the wheels on the track during the polishing time. The applied load on the 

wheels is variable and can be adjusted by adding or subtracting circular iron plates on the 

turning table. The turntable is hinged to the motor shaft by use of a square shaft and can 

easily move up and down; hence, this system facilitates adjusting the applied load to the 

wheels. FIGURE 39 shows the polishing machine assembly. This system is turned by a 

0.5-hp electrical motor through a gearbox. The motor is equipped with a Baldor motor 

speed controller that facilitates changing the rotation speed. There is also a counter 

system provided to control the number of revolutions by use of an Omega digital counter 

and laser light pick-up. Moreover, this system can turn off the motor by reaching a preset 

value for number of revolutions. The turntable was put in a cage for safety. There is also 

a water spray system included in this polisher. The spraying system consists of three 

0.25-inch PVC pipes on each side of the cage that can wash away the abraded material 

from the surface and allow polishing of the slab. An electric cut-off valve attached to the 

water spray system is synchronized with the Omega counter that cuts off the water after 

reaching the desired revolutions (139). The original machine was designed with the slabs 

inserted into the protecting cage, but in this study, the square rod linking the turntable and 

motor was modified so that it was possible to place the polisher on the slab and polish it. 



76 

 
 

 
FIGURE 39  Polishing machine assembly.  

 

TESTING OF MIXTURE RESISTANCE TO POLISHING 

 

There is no standard test procedure for measuring pavement friction during mix 

design; however, four different tests have been widely used to evaluate mixture skid 

properties such as macrotexture and microtexture. These tests include the British 

pendulum skid tester (ASTM D3319-00 and E303-93 [re-approved 2003]), a volumetric 

technique—sand patch test—(ASTM E965), the dynamic friction tester for measuring 

pavement surface friction (E1911-98), and the circular texture meter for measuring 

pavement macrotexture (ASTM E2157-01) (59). The following sections give a brief 

review of these methods (139). 
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British Pendulum Skid Tester 

 

The British pendulum skid tester is probably the most widespread equipment in 

the world to measure skid resistance. BPT was invented by Percy Sigler in the 1940s and 

modified by UK Transport Laboratory in the 1960s (163). The skid tester is comprised of 

―a pendulum with tubular arm that rotates about a spindle attached to a vertical column. 

At the end of the tubular arm a head of constant mass is fitted with a rubber slider‖ (163). 

This test utilizes low-speed testing equipment to measure the frictional properties of the 

test material by swinging a pendulum with a specific normal load and standard rubber 

pad. The test results are reported as a number (British pendulum number) that is a 

measure of kinetic energy loss when the rubber slider is dragged on the surface, and that 

number is an indirect measure of pavement microtexture. This equipment can be used to 

measure the change in material skid characteristics as described in ASTM D 3319-00. 

The rubber slider has two different sizes for testing aggregate samples and pavement 

surface. The small rubber slider has a 1.5-inch width used for measuring aggregate 

properties. The large rubber slider, with a 3-inch width, is used for measuring pavement 

surface skid resistance. FIGURE 40 shows a picture of the British pendulum device 

(163). 
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FIGURE 40  British pendulum device. 

 

Sand Patch Method 

 

This is a simple test to measure the pavement macrotexture. The test is undertaken 

on any dry surface by spreading a known quantity of sand or any particulate fine-grain 

materials with uniform gradation, e.g., glass beads on the surface. The material is then 

evenly distributed over a circular area to bring it flush with the highest aggregate peaks. 

The diameter of this circle is measured in four different angles evenly spaced and 

averaged. By knowing the test material volume and diameter of the circle, the MTD can 

easily be calculated. FIGURE 41 shows the sand patch test being performed on an asphalt 

slab. 
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FIGURE 41  Schematic of sand patch method. 

 

 Dynamic Friction Tester  

 

 The DFT as described by ASTM E 1911 consists of three rubber sliders and a 

motor that reaches to 100 km/h tangential speed. The rubber sliders are attached to a 

350 mm circular disk by spring-like supports that facilitate the bounce back of the rubber 

sliders from the pavement surface. The test is started while the rotating disk is suspended 

over the pavement and driven by a motor to a particular tangential speed. The disk is then 

lowered, and the motor is disengaged. In the meantime, water is sprayed on the rubber 

and pavement interface through surrounding pipes to simulate wet-weather friction. By 

measuring the traction force in each rubber slider by use of transducers and considering 

the vertical pressure that is reasonably close to the contact pressure of vehicles, the 

coefficient of friction of the surface is determined. The DFT can measure a continuous 

spectrum of dynamic coefficient of friction of pavement surfaces over the range of 0 to 

80 km/h with good reproducibility (139,164). In addition, the DFT measurement at 
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20 km/h is an indication of the microtexture and is being used as a replacement of the 

BPN (15). FIGURE 42 shows a picture of the DFT. 

 

 
FIGURE 42  Schematic of measuring pavement skid resistance by DFT. 

 

Circular Texture Meter  

 

The most current technology for measuring pavement macrotexture is the 

CTMeter described in ASTM E2157. In this device, a charged couple device (CCD) laser 

displacement sensor mounted on an arm 80 mm above the surface rotates around in a 

circle with a 142 mm radius. A motor at a tangential velocity of 6 mm/min drives the 

arm. The CCD laser takes 1024 samples of the pavement surface in one round with 

0.87 mm spacing. The data are converted to digital format and stored in the memory of a 

laptop. To calculate the MPD, the data are divided into eight equal 111.5 mm arcs. The 

calculated MPD for each segment is averaged and presented as MPD for the test surface. 

The individual MPD values for each segment are also available for further investigation 

(165). FIGURE 43 shows a picture of a CTMeter.  
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FIGURE 43  CTMeter (29). 

 

LABORATORY MIXTURE TESTS 

 

Thirteen different slabs were prepared and polished by the polishing machine. The 

measurements were done after predefined polishing cycles. The polishing cycles 

continued to 100,000 cycles for dense mixes and 200,000 cycles for PFC mixtures. 

TABLE 8 presents the different slabs and polishing cycles for the designed mixtures. 
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TABLE 8  Experimental Setup 

Mixture Type Aggregate Type Polishing Cycles 

Type C 

Beckman 

Before Polishing, 5000, 10,000, 

20,000, 35,000, 50,000, 75,000, 

100,000 cycles, Completely Polished 

Brownwood 

Brownlee 

El Paso 

Fordyce 

50% Beckman + 50% Brownlee 

PFC 

Beckman 
Before Polishing, 5000, 10,000, 

20,000, 35,000, 50,000, 75,000, 

100,000, 150,000, 200,000 cycles, 

Completely Polished 

Brownwood 

Brownlee 

El Paso 

Type D 
Beckman Before Polishing, 5000, 10,000, 

20,000, 35,000, 50,000, 75,000, 

100,000 cycles, Completely Polished 

Brownlee 
50% Beckman + 50% Brownlee 

 

According to TABLE 8, each slab was prepared and tested the day after 

compaction. The sand patch test, British pendulum test, DFT, and CTMeter were 

conducted on each slab before the slab was subjected to any polishing. Then, the polisher 

was placed on top of a slab and polishing started. 

All Type D mixes degraded after 5000 polishing cycles and showed signs of 

raveling (see FIGURE 44). Because of raveling occurring in these mixes, it was decided 

to discontinue polishing these mixes, and they were dropped from the experimental 

design program.  
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FIGURE 44  Type D mixes degraded after 5000 cycles. 

 

After application of the specified number of wheel passes on Type C and PFC 

mixtures, the specimen was removed and tested for texture and friction using CTMeter 

and DFT according to ASTM E 1911 and ASTM E 2157, respectively. Two 

measurements with DFT and six readings with CTMeter were taken from each polished 

strip. Because the limited width of the polished area restricted performing the sand patch 

and the British pendulum test, it was decided to continue performing the British 

pendulum test using a 1.5-inch rubber slider rather than a 3-inch rubber slider and to 

remove the sand patch test from the experimental program. This test was only used to 

measure the macrotexture of slabs before polishing and after reaching the terminal 

condition. After testing, the polisher was properly positioned on top of the slab such that 

the polishing was performed in the same path and polishing continued to the next level. 

This continued to 100,000 polishing cycles for dense-graded mixes and to 200,000 

polishing cycles for PFC. 

To achieve an entirely polished surface, the slabs were polished by a floor 

polisher. This machine included a rotating plate driven by a 175-rpm electrical motor. A 

#150 sandpaper mesh was used along with the floor polisher to polish the slabs to their 

terminal condition.  
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SUMMARY 

 

As presented in this chapter, the aggregates used in the preparation of the asphalt 

mixtures were selected to represent different sources and exhibit a wide range of 

properties.  Similarly, the mixtures were designed to represent those that are used in the 

State of Texas. 

Petrographic examination was carried out to study the mineralogy of each 

aggregate type by preparing thin sections of each aggregate sample. Petrographic 

examination provided some preliminary speculations about the frictional performance of 

each aggregate, where aggregates with high calcite content (aggregates A and C) were 

assumed to have bad to moderate frictional properties and aggregates with high contents 

of insoluble materials (aggregates B and D) were assumed to have satisfactory frictional 

properties.  

Several tests, such as the British pendulum test, LA abrasion test, magnesium 

sulfate soundness test, acid insoluble particle test, Micro-Deval test, and AIMS texture 

and angularity measurements before and after Micro-Deval, were performed on 

aggregates to evaluate aggregate resistance to polishing. The details of each test method 

were explained in the chapter.  

Two dense-graded mix designs, i.e., Type D and Type C, and one open-graded 

mix design, i.e., PFC, were tested to study the effect of mix type on pavement friction. 

Different method were tried to polish the slabs but the one that found to be appropriate 

was NCAT polisher which contains a turn table and three caster wheels that rotate on 

each slab and polish it. Polishing of PFC continued up to 200,000 cycles and 100,000 for 

dense graded mixes. Several test methods including, British pendulum, sand patch test, 

CTMeter, and DFT were used to measure pavement texture and friction during polishing. 

Next chapter explains the results of each test method.  
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CHAPTER IV  

RESULTS AND DATA ANALYSIS 

 

INTRODUCTION 

 

This chapter contains the results of the different laboratory measurements 

performed on the aggregates and mixes. The aggregate tests included the LA abrasion 

test, magnesium sulfate soundness test, British pendulum test, Micro-Deval test, acid 

insolubility value, and AIMS texture and angularity before and after Micro-Deval. The 

mixture tests included the sand patch, British pendulum, DFT, and CTMeter. Statistical 

analysis was conducted to determine the relationship between aggregate properties and 

mixture friction and texture. 

 

AGGREGATE TEST RESULTS  

 

As mentioned previously, aggregate properties such as gradation, size of particle, 

texture, shape, porosity, toughness, abrasion resistance, mineralogy, and petrography 

affect the pavement skid resistance (137). A complete set of measurements for evaluating 

different aggregate characteristics were performed, and the results are tabulated in 

TABLE 9.  

 

TABLE 9  Aggregate Test Results 

Test Procedure Brownlee Brownwood El Paso Beckman Fordyce Beckman + 
Brownlee  

LA % Wt. Loss 24 25 30 33 19 28.5 
Mg Soundness 19 9 19 26 4 22.5 
Polish Value 38 21 24 25 28 31.5 

Micro-Deval % Wt. 
Loss 16.2 11.2 14 24 2.1 20.1 

Coarse Aggregate        
Acid Insolubility 58 1 10 1 80 29.5 
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It has been a common practice in Texas to mix aggregates with different 

performance levels to obtain a better-performing blend of aggregate. In this study, the 

aggregates from the Beckman quarry showed unsatisfactory field performance with 

respect to polishing combined with aggregates from the Brownlee quarry on a 50/50 

proportion basis. The aggregate characteristic for this mix is believed to be the average of 

two values for Brownlee and Beckman. FIGURE 45 illustrates the different aggregate 

characteristics. 

 

 

FIGURE 45  Aggregate properties (151,166). 

 

FIGURE 45 shows that the Brownlee aggregate has the highest polish value. The 

Beckman aggregate has the highest weight loss in the Micro-Deval, magnesium sulfate 

soundness, and LA abrasion tests. Aggregate shape characteristics were also measured, 

and results are tabulated in TABLE 10.  
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TABLE 10  Result of Shape Measurements by AIMS 

Test 
Procedure Brownlee Brownwood El Paso Beckman Fordyce 

Beckman + 
Brownlee 
(average) 

Texture 
before              

Micro-Deval 
265 193 269.3 80 142 172.5 

Texture after                 
Micro-Deval 222 95 192.6 36 108 129 

Angularity 
before    

Micro-Deval 
2868 2323 2865.6 2195 3959 2531.5 

Angularity 
after         

Micro-Deval 
1883 1730 2126.5 1671 2787 1777 

 

Figures 46 and 47 show the change in texture and angularity before and after 

Micro-Deval. Figures 134 to 141 in Appendix B show the texture distribution for each 

aggregate type measured by AIMS.  
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FIGURE 46  Aggregate texture before and after Micro-Deval and percent change. 

 

 

FIGURE 47  Aggregate angularity before and after Micro-Deval and percent change. 
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Figures 46 and 47 show that the El Paso aggregate and Brownlee aggregate had 

the highest texture before and after Micro-Deval. The Brownlee aggregate experienced 

the lowest drop in texture. The Beckman aggregate had the lowest texture before and 

after Micro-Deval, and the highest change in texture occurred in this aggregate type.  

Luce performed a more detailed study to model the texture change in different 

aggregate types (132). In his study, he evaluated the aggregates‘ resistance to abrasion 

and polishing using the method originally developed by Mahmoud (137). In this method, 

the Micro-Deval test and the AIMS are used to estimate the aggregate polish resistance. 

Aggregates are subjected to 15, 30, 45, 60, 75, 90, 105, and 180 min of abrasion time in 

the Micro-Deval machine, according to Tex-461-A. Aggregates are scanned after 

polishing using AIMS to determine the change in aggregate shape properties over time 

and at their terminal condition (132). Mahmoud proposed the following equation to 

describe texture as a function of polishing time (137): 

 tcbaTextureAIMS  exp       (9) 

In this equation, a, b, and c are regression constants, while t is the time in the 

Micro-Deval (132). The regression constants can be determined using non-linear 

regression analysis. TABLE 11 shows the values of the regression constants for the 

different aggregate types. 

 

TABLE 11  Regression Coefficient of Texture Model (132) 

Parameter Sandstone Hard Limestone Soft Limestone Gravel Granite 
A 167.90 83.531 39.125 99.813 178.689 
B 70.56 119.931 37.463 14.288 39.021 
C 0.00788 0.020 0.025 1.600 0.013 

  

Luce showed that texture and angularity of the aggregates decrease as the time in 

the Micro-Deval increases. Furthermore, he found that sandstone aggregate can maintain 

its original texture, and the curve is almost flat for this type of aggregate (132). FIGURE 

48 shows the texture change for different aggregates versus polishing time in Micro-

Deval. 
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FIGURE 48  Aggregate texture as function of Micro-Deval time (150). 

 

Further analysis by Masad et al. revealed that the loss of texture curve could be 

obtained by using only three different polishing intervals in Micro-Deval polishing (0, 

105, and 180 min) instead of nine different times (150). The regression constants fitted, 

using three time intervals, are shown in TABLE 12. 

 

TABLE 12  Regression Constants Based on Three Measuring Times (150) 

Parameter Brownlee Brownwood Beckman Fordyce El  Paso 

A 166.7 93.6 39.13 105.67 189.1 

B 99.43 99.15 37.46 36.33 72.704 

C 0.00553 0.04087 0.02505 0.02617 0.023 
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 MIXTURE TEST RESULTS 

 

This section presents the results of the sand patch, British pendulum, DFT, and 

CTMeter measurements for pavement texture and friction. It is followed by an analysis of 

the effect of each aggregate type on frictional properties of asphalt mixtures.  

 

Sand Patch Test  

 

The sand patch test was performed on the slabs at six locations, before polishing 

and after final polishing (terminal condition). FIGURE 49 shows the MTD for different 

mixes before and after polishing. This test was not performed on the slabs fabricated with 

PFC mixes because the glass beads used to measure the MTD penetrated into PFC voids.  

FIGURE 49 and TABLE 13 show that the average MTD for Type C mixes was 

about 23 percent greater than it was for Type D mixes. A smaller MTD value indicates a 

smoother surface. The smaller nominal aggregate size used in Type D provided a 

smoother pavement with less macrotexture. Except for Brownlee and Brownwood 

aggregates, all mixes lost their macrotexture as a result of the abrasion effect of the 

polishing machine. It could be seen that the macrotexture of mixes containing 

Brownwood aggregate slightly increased after polishing. 
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FIGURE 49  Measured MTD by sand patch method for different aggregates before and 

after polishing. 

 

TABLE 13  Measured MTD by Use of Sand Patch Method for Different Mixes 

Aggregate Type Mix Type 
            MTD 
Before 

Polishing 
After 

Polishing 
El Paso 

Type C 

0.60 0.43 
Beckman 0.72 0.40 

Brownwood 0.45 0.57 
Brownlee 0.78 1.10 
Fordyce 0.79 0.78 

Brownlee-Beckman 0.74 0.78 
Brownlee-Beckman 

Type D 
0.60   

Beckman 0.48   
Brownlee 0.52   

  

To study the effect of aggregate type, mixture type, and polishing on the 

measured macrotexture of each slab using the sand patch method, a one-way analysis of 

variance (ANOVA) was performed.  
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The one-way ANOVA was used to test the equality of two population means for 

statistical significance. This analysis is done by partitioning the total variance into two 

components; one component is calculated based on random error, and the other one is 

determined based on the difference between two means. The second component is then 

tested for statistical significance. The F-distribution is used to investigate the significance 

of this component. If the test indicates significance, the null hypothesis that there is no 

significant difference between different groups of data is rejected, and the alternative 

hypothesis that the groups of data are different is accepted.  

An important step in the ANOVA is verifying the validity of assumptions used in 

this analysis. One assumption of ANOVA is that the variances of different groups are 

equivalent. The Levene test is a standard approach to test homogeneity of variances. The 

Levene statistic in TABLE 14 rejects the null hypothesis that the group variances are 

equal. ANOVA, however, is robust to this violation when the groups are of equal or near-

equal size and can still be used.  

 
TABLE 14  Levene Statistic to Check the Homogeneity of Variances 

Levene 
Statistic df1 df2 Sig. 

5.864 5 83 .000 
 

TABLE 15 shows the results of the ANOVA analysis for the effect of aggregate 

type. The significance of the F-test in the ANOVA analysis is less than 0.001. Thus, the 

hypothesis that the average macrotexture values for different aggregates are equal is 

rejected. Therefore, mixtures with different aggregate types have different macrotexture. 

The results of the ANOVA analysis for different mix types are also tabulated in TABLE 

16. 

 

TABLE 15  Results of the ANOVA Analysis for the Effect of Aggregate Type 

Sum of Squares df Mean Square F Sig. 

Between Groups 1.774 5 .355 24.766 .000 
Within Groups 1.189 83 .014   
Total 2.963 88    
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TABLE 16  Results of the ANOVA Analysis for the Effect of Mix Type 

Sum of Squares df Mean Square F Sig. 

Between Groups .003 1 .003 .099 .753 
Within Groups 2.960 87 .034   
Total 2.963 88    
 

The significance of the F-test in ANOVA is 0.753. This suggests that the null 

hypothesis that the macrotexture for Type C and Type D are equal cannot be rejected. 

These results show there is no significant difference between Type C and Type D mixes. 

The results of the F-test in TABLE 17 indicate that the difference between macrotexture 

before and after polishing is also not significant.  

 

TABLE 17  Results of the ANOVA Analysis for the Effect of Polishing Cycles 

Sum of Squares df Mean Square F Sig. 

Between Groups .012 1 .012 .350 .555 
Within Groups 2.951 87 .034   
Total 2.963 88    

 

The results of this analysis indicate that the sand patch does not detect the 

difference between macrotexture before and after polishing. The ANOVA shows the 

equality or inequality of the means between different groups. To learn more about the 

structure of the differences, other statistical methods are required. A pairwise comparison 

was performed for both Type C and Type D mixtures to find the source of the difference 

within each group. Tables 18 and 19 display the results for Type C and Type D mixes, 

respectively. The numbers in the third column show the mean difference between 

measured values of macrotexture for two different aggregates. A small asterisk next to 

the number denotes that the mean difference is significant at a 0.05 level.  

In almost all cases, Brownlee aggregate had higher macrotexture. Beckman 

aggregate produced the lowest macrotexture. The higher macrotexture of Brownlee 

aggregate can be attributed to the continuous removal of the softer matrix and the 

dislodging of the hard particles during polishing that leads to a higher texture after 

polishing.  
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TABLE 18  Significance Level for Different Aggregate Types in Type C Mix 

(I) 
Aggregate 

Type 
(J) Aggregate Type 

Mean 
Difference  

(I-J) 
Std. Error Sig. 

95% Confidence Interval 

Lower 
Bound 

Upper Bound 

Brownlee Brownwood .4189(*) .06390 .000 .1963 .6415 
  Beckman .3343(*) .07783 .006 .0740 .5945 
  El Paso .4114(*) .06295 .000 .1902 .6326 
  Fordyce .1431 .05986 .407 -.0751 .3613 
  Brownlee-Beckman .2373(*) .06395 .032 .0146 .4600 
Brownwoo
d 

Brownlee -.4189(*) .06390 .000 -.6415 -.1963 
  Beckman -.0847 .05993 .949 -.2954 .1261 
  El Paso -.0075 .03870 1.000 -.1346 .1196 
  Fordyce -.2758(*) .03342 .000 -.3882 -.1635 
  Brownlee-Beckman -.1817(*) .04030 .003 -.3139 -.0495 
Beckman Brownlee -.3343(*) .07783 .006 -.5945 -.0740 
  Brownwood .0847 .05993 .949 -.1261 .2954 
  El Paso .0772 .05891 .972 -.1321 .2864 
  Fordyce -.1912 .05559 .080 -.3977 .0154 
  Brownlee-Beckman -.0970 .05998 .872 -.3078 .1138 
El Paso Brownlee -.4114(*) .06295 .000 -.6326 -.1902 
  Brownwood .0075 .03870 1.000 -.1196 .1346 
  Beckman -.0772 .05891 .972 -.2864 .1321 
  Fordyce -.2683(*) .03157 .000 -.3737 -.1629 
  Brownlee-Beckman -.1742(*) .03878 .003 -.3015 -.0468 
Fordyce Brownlee -.1431 .05986 .407 -.3613 .0751 
  Brownwood .2758(*) .03342 .000 .1635 .3882 
  Beckman .1912 .05559 .080 -.0154 .3977 
  El Paso .2683(*) .03157 .000 .1629 .3737 
  Brownlee-Beckman .0942 .03352 .159 -.0185 .2069 
Brownlee-
Beckman 
  
  
  
  

Brownlee -.2373(*) .06395 .032 -.4600 -.0146 
Brownwood .1817(*) .04030 .003 .0495 .3139 

Beckman .0970 .05998 .872 -.1138 .3078 
El Paso .1742(*) .03878 .003 .0468 .3015 
Fordyce -.0942 .03352 .159 -.2069 .0185 

* The mean difference is significant at the 0.05 level. 
 

TABLE 19  Significance Level for Different Aggregate Types in Type D Mix 

(I) 
Aggregate 

Type 
(J) Aggregate Type 

Mean 
Difference  

(I-J) 
Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 
Brownlee Beckman .2933(*) .04685 .002 .1402 .4464 
  Brownlee-Beckman .0417 .05254 .833 -.1145 .1978 
Beckman Brownlee -.2933(*) .04685 .002 -.4464 -.1402 
  Brownlee-Beckman -.2517(*) .03119 .000 -.3466 -.1567 
Brownlee-
Beckman Brownlee -.0417 .05254 .833 -.1978 .1145 

  Beckman .2517(*) .03119 .000 .1567 .3466 
* The mean difference is significant at the 0.05 level. 
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British Pendulum Test  

 

The British pendulum test was performed three times in each of the three 

locations on the slabs. Figures 50 and 51 show the BP values for different mixes. 

 
FIGURE 50  Results of British pendulum test for Type C mixes. 

 

 

FIGURE 51  Results of the British pendulum test for PFC mixes. 
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As a general trend, it is clear that the BP value decreases as the number of 

polishing cycles increases. The rate of decrease in the British pendulum value is 

dependent on the aggregate type. TABLE 20 summarizes the results of the ANOVA at a 

95 percent confidence level for different aggregates. The results show that there is a 

significant difference between the mean BP values for each aggregate type in each 

polishing cycle. Moreover, it indicates the polisher has the ability to decrease the surface 

skid resistance in terms of BP value and can obviously polish the surface.  

TABLE 21 shows the mean BP values at different numbers of polishing cycles. In 

almost all cases—except sandstone—the p-value is very small, which supports the idea 

that there is a significant difference between measured BP values in different aggregates 

at a 95 percent confidence level. Further analysis presented subsequently, however, 

reveals that this difference is only due to Brownlee aggregate, and there is no significant 

difference between other aggregates. 

Another ANOVA was done to examine the effect of mixture type on frictional 

characteristics of asphalt pavements (see TABLE 22). The results indicate that there is no 

statistical difference between the skid resistance of Type C and PFC mixes containing 

Brownlee aggregate. Furthermore, this aggregate has the same frictional performance in 

Type C and PFC mixes in both low and high numbers of polishing cycles. This is a result 

of continuous renewal of the aggregate surface exposed to a rubber slider. Moreover, 

Brownlee aggregate consists of hard particles in a softer matrix. Wearing the softer 

matrix off the aggregate allows the new hard particles to be exposed to traffic and will 

help this mix maintain its frictional properties. The PFC and Type C mixes containing 

Brownwood aggregate have statistically equal BP values in low-polishing cycles; 

however, when the polishing cycles increase, the PFC can maintain its skid properties 

relatively better than Type C mixes, and the BP value is higher. The difference between 

the BP value of Type C and PFC mixes containing Beckman aggregate is always 

significant. Moreover, PFC mixes containing Beckman aggregate always have a higher 

BP value than Type C mixes. The difference between skid properties of the mixes 

containing El Paso aggregate does not follow a clear trend. The PFC mixes containing 

this kind of aggregate are likely to have a higher BP value in low-polishing cycles, and 
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the results of the analysis do not show a significant difference between PFC and Type C 

mixes in high-polishing cycles. 

 

TABLE 20  Significance Level for the Effect of Different Polishing Cycles  

on Mixtures with Different Aggregates 

Aggregate Type Mix Type 
Polishing Cycle (thousands) 

0 5 10 20 35 50 75 100 150 200 
El Paso  

Type C 0.039 0.009 0.002 0 0 0 0 0 NA NA 

Beckman 
Brownwood 
Brownlee 
Fordyce 
Brownlee-Beckman 
Brownlee 

PFC 0 0.001 0 0 0.054 0 0 0 0 0 
El Paso  
Brownwood 
Beckman 

 

TABLE 21  Significance Level for the Mean BP Values for Different Loading Cycles 

Aggregate Type Mix 
Type Sig. 

El Paso  

Type C 

0.0001 
Beckman 0 
Brownwood 0 
Brownlee 0.0581 
Fordyce 0 
Brownlee-Beckman 0 
Brownlee 

PFC 

0 
El Paso  0 
Brownwood 0 
Beckman 0 
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TABLE 22  Significance Level for the Mean BP Values for Different Mixture Type 

Aggregate Type Mix Type 

Cycle (thousands) 

0 5 10 20 35 50 75 100 

El Paso  Type C 
0.30* 0.027 0.630 0.015 0.105 0.346 0.354 0.448 PFC 

Beckman Type C 
0.000 0.005 0.024 0.00 0.003 0.000 0.002 0.006 

PFC 

Brownwood Type C 
0.148 0.11 0.36 0.001 0.014 0.005 0.001 0.006 

PFC 

Brownlee Type C 
0.001 0.281 0.067 0.168 0.107 0.964 0.796 0.715 

PFC 

                           * Highlighted numbers show the difference is not statistically significant. 
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To have a better understanding of the variation of the BP values for different 

mixes, the equation suggested by Mahmoud (Equation 9) was fitted to the data 

substituting texture with British pendulum value and time with polishing cycles in terms 

of 1000 cycles (137). 

Figures 52 to 61 show the data and the fitted lines for different mixes. The results 

show that this equation could fit the data very well. TABLE 23 shows the values of the 

regression coefficients for different mixes after removing the outliers that were deemed 

unlikely based on mean and standard deviation of the data and fitting the function to the 

data by the least square method. 

 

TABLE 23  Regression Coefficients for Different Aggregate  

Aggregate Type Mix Type A B C 

El Paso 

Type C 

35 9 0.026 

Beckman 29 16 0.091 

Brownwood 30 16 0.140 

Brownlee 39 3 0.027 

Fordyce 32 14 0.064 

Brownlee-Beckman 33 11 0.053 

Brownlee 

PFC 

37 3 0.052 

El Paso 35 11 0.042 

Brownwood 32 15 0.070 

Beckman 33 11 0.050 
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FIGURE 52  British pendulum values for El Paso aggregate vs. polishing cycles. 

 

 
FIGURE 53  British pendulum values for Beckman aggregate vs. polishing cycles. 
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FIGURE 54  British pendulum values for Brownwood aggregate vs. polishing cycles. 

 

 
FIGURE 55  British pendulum values for Brownlee aggregate vs. polishing cycles. 
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FIGURE 56  British pendulum values for Fordyce aggregate vs. polishing cycles. 

 

 
FIGURE 57  British pendulum values for the 50 percent Beckman–50 percent Brownlee vs. 

polishing cycles. 
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FIGURE 58  British pendulum values for El Paso aggregate vs. polishing cycles in PFC mix. 

 

 
FIGURE 59  British pendulum values for Brownlee aggregate vs. polishing  

cycles in PFC mix. 
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FIGURE 60  British pendulum values for Brownwood aggregate vs. polishing  

cycles in PFC mix. 

 

 
FIGURE 61  British pendulum values for Beckman aggregate vs. polishing  

cycles in PFC mix. 
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Figures 55 and 59 show that the change of BP values versus polishing cycle for 

Brownlee aggregate is very small. The same results were reported by Luce (132). This 

aggregate has the lowest change in BP values as a function of polishing cycles, and the 

highest terminal value compared to other aggregates. Moreover, this small change in BP 

value with polishing cycles in Brownlee aggregate texture contributes to its high skid 

resistance. El Paso aggregate has the second-lowest rate of decrease in BP value against 

polishing cycles and is polish-resistant. Mixing Beckman aggregate with Brownlee 

aggregate shows promising results because this mixture has the third-lowest rate of BP 

value change versus polishing cycles. Brownwood and Beckman aggregates as shown in 

Figures 60 and 61 have the highest rate of BP value loss versus polishing cycle and does 

not have a high terminal BP value. BP values for Brownlee aggregate in the PFC mixture 

are almost constant, which is similar to the BP values for Type C mixes. 

The results of the ANOVA tabulated in TABLE 24 show the comparison between 

measured BP values for each pair of aggregates. The numbers in the third column 

illustrate the mean difference between BP values of corresponding aggregates. An 

asterisk next to a number indicates that the difference is significant at the 0.05 level. 

TABLE 24 does not show a statistical difference between each pair except for very high 

values (i.e., Brownlee aggregate). This indicates the limitation of British pendulum to 

detect the difference between frictional performances of aggregates with known 

differences in frictional characteristics.  
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TABLE 24  Pairwise Comparison of Different Aggregates in Type C Mix 

(I) Aggregate Type (J) Aggregate Type Mean Difference (I-J) Std. Error Sig. 
El Paso Beckman 6.70875(*) 1.42299 .000 
  Brownwood 5.92500(*) 1.43491 .003 
  Brownlee -1.35375 .94971 .928 
  Fordyce 2.86958 1.31902 .418 
  Beckman-Brownlee 2.61208 1.12609 .315 
Beckman El Paso -6.70875(*) 1.42299 .000 
  Brownwood -.78375 1.72790 1.000 
  Brownlee -8.06250(*) 1.35226 .000 
  Fordyce -3.83917 1.63294 .296 
  Beckman-Brownlee -4.09667 1.48147 .120 
Brownwood El Paso -5.92500(*) 1.43491 .003 
  Beckman .78375 1.72790 1.000 
  Brownlee -7.27875(*) 1.36480 .000 
  Fordyce -3.05542 1.64334 .660 
  Beckman-Brownlee -3.31292 1.49293 .387 
Brownlee El Paso 1.35375 .94971 .928 
  Beckman 8.06250(*) 1.35226 .000 
  Brownwood 7.27875(*) 1.36480 .000 
  Fordyce 4.22333(*) 1.24239 .025 
  Beckman-Brownlee 3.96583(*) 1.03528 .006 
Fordyce El Paso -2.86958 1.31902 .418 
  Beckman 3.83917 1.63294 .296 
  Brownwood 3.05542 1.64334 .660 
  Brownlee -4.22333(*) 1.24239 .025 
  Beckman-Brownlee -.25750 1.38191 1.000 
Beckman-Brownlee El Paso -2.61208 1.12609 .315 
  Beckman 4.09667 1.48147 .120 
  Brownwood 3.31292 1.49293 .387 
  Brownlee -3.96583(*) 1.03528 .006 
  Fordyce .25750 1.38191 1.000 

* The mean difference is significant at the 0.05 level. 
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 CTMeter and DFT Tests 

 

As previously stated, the frictional properties of each mix were measured by 

CTMeter and DFT periodically during polishing. Using Equations 5 and 6 presented in 

the previous chapter, IFI components were calculated. The measured friction at 20 km/h 

(DF20) was also reported as a good representation of the microtexture change against 

polishing. Figures 62 through 64 show the results of the IFI, DF20 , and MPD values. 

 

 

 
FIGURE 62  Calculated IFI for different aggregates vs. polishing cycle. 
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FIGURE 63  Coefficient of friction for different aggregates vs. polishing cycle at 20 km/h. 

 

 
FIGURE 64  MPD for different aggregates vs. polishing cycle. 
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It is evident from FIGURE 63 that the coefficient of friction decreases with 

polishing cycle. In addition, some aggregates, such as the Beckman aggregate, show a 

rapid change in their measured coefficient of friction, while others, such as the Brownlee 

aggregate, remain almost constant during the polishing. It is clear that after a particular 

number of polishing cycles, each mix reaches a terminal condition in which no other 

changes occur afterwards. The rate of change and the terminal value of DF20 can be an 

indication of an aggregate‘s susceptibility to polishing and was investigated in this study.  

The MPD values of different mixes displayed in Figure 64 vary in terms of 

number of polishing cycles and do not show a clear trend. Small changes in MPD could 

be related to aggregate abrasion during polishing or experimental error. For some types of 

aggregates (Brownlee aggregate), aggregate raveling related to moisture susceptibility 

was noticed.  

Figure 62 shows the calculated IFI based on Equations 5 and 6. The IFI decreases 

as the polishing cycle increases. Moreover, the variation of microtexture—DF20—has a 

more important role in the variation of IFI than macrotexture does. Therefore, the 

variation of DF20 and IFI are consistent and follow the same trend. An ANOVA was 

performed to study the effect of polishing cycles, speed, and aggregate type on measured 

values of DF20 for different mixes at different speeds and polishing cycles. The results are 

tabulated in Tables 25 and 26. 
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TABLE 25  Significance Level (p-value) of the Mean DF20 Values for Different Aggregate Types in Type C Mix 

Mix Type Aggregate Speed Polishing 
Before Polish 5000 10,000 20,000 

Speed  
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed  
Effect 

Aggregate 
Type 

Type C 

Brownlee-Beckman 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

El Paso 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

Fordyce 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

Brownwood 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

Brownlee 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

Beckman 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 
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TABLE 25  Continued 

Mix Type Aggregate 
35,000 50,000 75,000 100,000 

Speed  
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Type C 

Brownlee-Beckman 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

El Paso 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

Fordyce 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 2.53 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.03 0.00 

Brownwood 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

Brownlee 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

Beckman 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
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TABLE 26  Significance Level of the Mean DF20 Values for Different Aggregate Types in PFC Mix 

Mix Type Aggregate Speed Polishing 
Before Polish 5000 10,000 20,000 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

PFC 

El Paso 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

Brownwood 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

Brownlee 20   0.20* 0.00 0.00 0.03 0.00 0.00 0.00 0.09 0.00 
40 0.29 0.00 0.00 0.00 0.00 
60 0.29 0.00 0.00 0.00 0.00 
80 0.38 0.00 0.00 0.00 0.00 

Beckman 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 
80 0.00 0.00 0.00 0.00 0.00 

                * Highlighted numbers show the difference is not statistically significant. 
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TABLE 26  Continued 

Mix Type Aggregate 
35,000 50,000 75,000 100,000 150,000 200,000 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

Speed 
Effect 

Aggregate 
Type 

PFC 

El Paso 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

Brownwood 0.03 0.00 0.06* 0.00 0.01 0.00 0.53 0.00 0.27 0.00 0.58 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

Brownlee 0.02 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

Beckman 0.00 0.00 0.00 0.00 0.58 0.00 0.01 0.00 0.45 0.00 0.37 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

* Highlighted numbers show the difference is not statistically significant. 
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The numbers in Tables 25 and 26 show the significance of the equality of means 

for each variable (e.g., aggregate type, speed, mix type) evaluated by the ANOVA. The 

statistical difference between the compared entities is significant when the p-value is less 

than 0.05.  

The results in Table 25 show that the difference between the measured dynamic 

friction values for different aggregates in Type C mixes are significant at a 95 percent 

level of confidence. In this mix type, the measured values at different speeds for each 

polishing cycle are significantly different. The trends show that dynamic friction 

decreases as the speed increases in Type C mixes. The results also show that the 

difference between the measured values of friction in different polishing cycles is 

significant. These results confirm that the selected equipment is capable of polishing the 

surface that leads to a decrease in measured DF20 value as the number of polishing cycles 

increases. 

TABLE 26 also indicates that the mean DF20 values for different aggregates in a 

PFC mix are not significant, and that the null hypothesis can be rejected. This indicates 

that aggregate type is a significant factor affecting frictional properties. 

The results in Table 26 show that the significance level of the mean difference of 

the measured DF20 values for different speeds is significant in most cases except for 

El Paso aggregate. This means, in most cases, that there is no evidence for changing the 

friction at different speeds. The results also show that for all cases except for the 

Brownlee aggregate, the difference between measured DF20 in different polishing cycles 

is significant. Moreover, there is not a significant difference between the measured DF20 

values for the Brownlee aggregate during polishing. Furthermore, owed to its 

petrographic nature, continuous polishing of this sandstone aggregate does not change its 

frictional properties. 

Based on the measured values of dynamic friction at 20 km/h and MPD measured 

by CTMeter, the IFI was calculated for each mix and plotted against polishing cycles. 

The ANOVA was performed by SPSS® software to study the effect of aggregate 

and mix type on the calculated IFI. The results tabulated in Tables 27 and 28 support the 

hypothesis that there is a significant difference between the calculated IFI in Type C and 
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PFC mixes. This result indicates that the PFC mixture has a higher IFI value and, 

consequently, can provide better skid resistance.  

 

TABLE 27  Results of Comparing Calculated Values of IFI for Type C and PFC Mixes 

Mix 
Type N Mean Std. Deviation Std. Error 

Mean 
Type C 132 .3190 .09861 .00858 
PFC 105 .4058 .13285 .01296 

 

TABLE 28  Results of the T-test for Comparing IFI Mean Values in Type C and PFC Mixes 

T-Value 
 

df 
 

Sig.               
(2-Tailed) 

 

Mean 
Difference 

 

Std. Error 
Difference 

 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

-5.581 186.669 .000 -.0868 .01555 -.11745 -.05610 

 

An equation with the same form as the one proposed by Mahmoud (Equation 9) 

was fitted to the data (137). Figures 65 through 68 show the measured DF20 and IFI 

values and the fitted curves for different mixes. The results show that this equation could 

fit the data substituting texture with IFI or DF20 values and time with polishing cycles in 

terms of 1000 cycles. 
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FIGURE 65  Calculated IFI values vs. polishing cycle and fitted line for PFC mixes. 

 

 
FIGURE 66  Calculated IFI values vs. polishing cycle and fitted line for Type C mixes. 
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FIGURE 67  DF20 values vs. polishing cycle and fitted line for Type C mixes. 

 

 
FIGURE 68  DF20 values vs. polishing cycle and fitted line for PFC mixes. 
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The model parameters were found by the least sum of square errors (SSE) 

method. In this method, it is assumed that the minimum SSE would result in the model 

that best fits the measured data. Tables 29 and 30 show the magnitude of the regression 

coefficients for the DF20 and IFI.  

 

TABLE 29  Values of the Regression Parameters of Proposed Model for DF20 

Mix 
Type Aggregate Type a b c 

Type C 

Brownlee 0.764 0.079 0.014 
Brownwood 0.354 0.223 0.093 

Beckman 0.317 0.251 0.054 
Fordyce 0.465 0.171 0.033 
El Paso 0.430 0.201 0.031 

Brownlee-Beckman 0.555 0.119 0.022 

PFC 

Brownlee 0.817 0.105 0.014 
El Paso 0.619 0.192 0.024 

Beckman 0.370 0.562 0.059 
Brownwood 0.258 0.201 0.129 

 

TABLE 30  Values of the Regression Model Parameters for IFI 

Mix 
Type Aggregate Type a b c 

Type C 

Brownlee 0.474 0.061 0.001 
Brownwood 0.212 0.058 0.102 

Beckman 0.213 0.097 0.050 
Fordyce 0.275 0.065 0.038 
El Paso 0.250 0.060 0.023 

Brownlee-Beckman 0.225 0.170 0.003 

PFC 

Brownlee 0.539 0.048 0.013 
El Paso 0.416 0.101 0.025 

Beckman 0.279 0.288 0.055 
Brownwood 0.221 0.117 0.155 

 

The polishing rate (corresponding to the ―c‖ parameter) is an important factor for 

the evaluation of pavement frictional properties. The lower the ―c‖ value, the more 

resistant the specimen is to polishing. The other important parameter of the model is the 

―a‖ value, equivalent to the terminal friction value for either DF20 or IFI. A high ―a‖ 

value corresponds to high pavement terminal friction and indicates a pavement that could 

better maintain its frictional properties. 
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Figures 69 through 74 depict the values shown in Tables 29 and 30 and indicate 

that the variation of both IFI and DF20 are consistent. In both cases, the Brownlee 

aggregate has the highest terminal and initial values, and the Beckman and Brownwood 

aggregates have the lowest values. Figures 69 through 74 also indicate that normally PFC 

mixes have higher IFI terminal and initial values than Type C mixes do. The rate of IFI 

change in Beckman and Brownwood aggregates is greater than for other types of 

aggregates, which shows that limestone aggregates are not able to maintain their initial 

frictional properties against polishing action.  

 

 
FIGURE 69  Terminal IFI values for different aggregate types. 
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FIGURE 70  Rate of IFI change for different aggregate types. 

 

 
FIGURE 71  Initial IFI values for different aggregate types. 
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FIGURE 72  Terminal DF20 values for different aggregate types. 

 

 
FIGURE 73  Rate of DF20 change for different aggregate types. 
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FIGURE 74  Initial DF20 values for different aggregate types. 

 

In subsequent sections, the influence of different aggregate properties on the 

frictional properties of different mixes is discussed. Two parameters of the proposed 

model, the polishing rate (―c‖ value) and the terminal friction value IFI (―a‖ value), were 

selected as a measure of surface frictional properties. These two values were used to 

compare the influence of the aggregate properties on the skid resistance characteristics. A 

statistical correlation analysis was performed to evaluate the correlation between these 

two parameters and other aggregate properties. 

In this analysis, two important statistical parameters were estimated, i.e., 

coefficient of correlation (R-value) and significance of correlation (p-value). The former 

is an indication of a linear relationship among variables, and the latter is determined from 

the hypothesis testing that the chosen independent variable is significant. A low p-value 

below the significance level— =0.05 was used in this study—indicates that the chosen 

variable is important in explaining the behavior of the dependent variable. Furthermore, 

this parameter shows if there is any significant statistical correlation between parameters. 
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Hence, different aggregate characteristics discussed in previous chapters were 

considered as the main aggregate characteristics affecting the frictional characteristics. 

To explain the effect of each aggregate‘s properties, a linear regression analysis was 

done, and the significance of the regression coefficients was studied. Tables 31 and 32 

summarize the regression coefficients and the results of the statistical test on the 

significance of the regression parameters for Type C and PFC mixes. 

 

TABLE 31  Results of Regression Analysis on Type C Mix 

Mixture Frictional 
Characteristics 

Aggregate Properties 

LA % Wt Loss Mg. Soundness Polish Stone Value MD % Wt. Loss Acid 
Insolubility 

R2 p-value R2 p-value R2 p-value R2 p-value R2 p-value 

DF20 Change 0.01 0.45 0.09 0.28 0.67 0.02 0.01 0.45 0.43 0.08 
DF20 Terminal 0.14 0.23 0.01 0.43 0.90 0.00 0.00 0.50 0.38 0.09 
IFI    Change 0.00 0.45 0.09 0.28 0.68 0.02 0.05 0.33 0.27 0.14 
IFI   Terminal 0.16 0.22 0.01 0.43 0.70 0.02 0.01 0.44 0.35 0.11 
 

Mixture 
Frictional 

Characteristics 

Aggregate Properties 
Texture Change BMD 

and AMD 
Angularity Change BMD 

and AMD Texture AMD Angularity 
AMD 

R2 p-value R2 p-value R2 p-value R2 p-value 

DF20 Change 0.73 0.01 0.35 0.11 0.38 0.10 0.10 0.27 
DF20 Terminal 0.69 0.02 0.84 0.01 0.62 0.03 0.00 0.46 
IFI    Change 0.64 0.03 0.32 0.12 0.37 0.10 0.02 0.39 
IFI    Terminal 0.44 0.08 0.64 0.03 0.53 0.05 0.01 0.43 

Note: BMD = Before Micro-Deval; AMD = After Micro-Deval. 
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TABLE 32  Results of Regression Analysis on PFC Mix 

Mixture 
Frictional 

Characteristics 

Aggregate Properties 

LA  
% Wt Loss 

Mg. 
 Soundness 

Polish Stone 
 Value 

MD  
% Wt. Loss 

Acid  
Insolubility 

R2 p-value R2 p-value R2 p-value R2 p-value R2 p-value 

DF20 Change 0.05 0.39 0.43 0.17 0.55 0.13 0.07 0.32 0.63 0.10 
DF20 Terminal 0.05 0.39 0.09 0.35 0.81 0.05 0.00 0.48 0.96 0.01 
IFI    Change 0.09 0.35 0.53 0.13 0.51 0.14 0.13 0.32 0.54 0.13 
IFI    Terminal 0.09 0.35 0.08 0.36 0.83 0.04 0.00 0.48 0.97 0.01 

 

Mixture 
Frictional 

Characteristics 

Aggregate Properties 

Texture Change BMD 
and AMD 

Angularity 
Change 

BMD and AMD 
Texture AMD Angularity AMD 

R2 p-value R2 p-value R2 p-value R2 p-value 

DF20 Change 0.61 0.11 0.10 0.34 0.42 0.18 0.35 0.20 
DF20 Terminal 0.91 0.02 0.39 0.19 0.77 0.06 0.32 0.22 
IFI    Change 0.50 0.15 0.08 0.36 0.32 0.22 0.28 0.24 
IFI    Terminal 0.91 0.02 0.42 0.18 0.77 0.06 0.30 0.23 

 

Tables 31 and 32  show a variety of aggregate properties assumed to have some 

effects on the measured friction of different surfaces. These properties include: 

 LA abrasion weight loss, 

 magnesium soundness test value, 

 polish stone value, 

 Micro-Deval weight loss, 

 coarse aggregate acid insolubility, 

 terminal texture measured by AIMS after Micro-Deval, 

 terminal angularity measured by AIMS after Micro-Deval,  

 change in texture before and after Micro-Deval measured by AIMS, and 

 change in angularity before and after Micro-Deval measured by AIMS. 

These tables show that the LA abrasion value could explain less than 20 percent 

variation in DF20 and IFI change, and the coefficient of regression is not significant at the 

95 percent confidence level. Therefore, the LA abrasion weight loss does not seem to be 

a significant factor in pavement skid resistance analysis. The same result could be 
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concluded for magnesium sulfate soundness value, Micro-Deval weight loss, and 

terminal angularity after Micro-Deval. Moreover, R-squared values for both Type C and 

PFC mixes are very low, and the p-value is higher than 0.05. The coarse aggregate acid 

insolubility value is likely to be an important factor in both IFI and DF20 terminal values 

and rate of change, although the R-squared values are not high in Type C mixes. The low 

R-squared value might be a result of data outliers. Further analysis was performed to 

investigate the effect of the coarse aggregate insolubility value without considering 

outliers. The results are discussed subsequently. 

The results of the analysis show that British pendulum is a significant factor at a 

95 percent confidence level. The R-square values are about 0.6 for rate of change in both 

Type C and PFC mixes and 0.8 for terminal values. This indicates that the BP value 

affects more on terminal IFI and DF20 values. Moreover, the results of the analysis show 

that the IFI and DF20 terminal values increase and IFI and DF20 rates of change decrease 

when the British pendulum value increases. 

Change in texture before and after Micro-Deval and the texture after Micro-Deval 

are significant factors in terminal DF20 and IFI values and rates of change. Moreover, 

change in texture before and after Micro-Deval accounts for 73 and 64 percent change in 

DF20 and IFI variation, respectively, and is significant in Type C mixes. Texture change 

before and after Micro-Deval accounts for a 91 percent change in DF20 and IFI terminal 

values and is significant in PFC mixes. It is evident that the texture change has more 

influence on DF20 than IFI. This, in part, can be justified by the contribution of 

macrotexture in calculating the IFI value that makes the IFI change less dependent on 

microtexture than DF20. Measured texture after Micro-Deval defines 62 and 53 percent 

change in DF20 and IFI terminal values, respectively, and is statistically significant in 

Type C mixes. In PFC mixes, the terminal texture value after the Micro-Deval test is 

responsible for 77 percent change in DF20 and IFI terminal values and is significant. As a 

general trend, an increase in terminal texture will result in an increase in DF20 and IFI 

terminal values and a decrease in DF20 and IFI rates of change. The same effect could be 

seen in texture change before and after Micro-Deval. Increase in texture change before 

and after Micro-Deval decreases the terminal value of DF20 and IFI and increases their 

rates of change.  
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Change in angularity before and after Micro-Deval affects the terminal DF20 and 

IFI values. When the angularity change before and after Micro-Deval increases, the 

terminal IFI and DF20 values increase.  

Because the Brownlee aggregate had very high microtexture that might affect the 

results of the analysis, the mixes containing Brownlee aggregate were removed from the 

database and another analysis was performed. TABLE 33 summarizes the estimated R-

squared values and significance level of considered parameters in the analysis. 

 

TABLE 33  R-Squared Values and Significant Level for Type C Mix 

Mixture 
Frictional 

Characteristics 

Aggregate properties 

LA % Wt Loss Mg. Soundness MD % Wt. Loss 

R2 p-value R2 p-value R2 p-value 

IFI Change 0.05 0.36 0.19 0.23 0.04 0.37 

IFI Terminal 0.36 0.14 0.31 0.16 0.59 0.06 

 

Mixture 
Frictional 

Characteristics 

Aggregate properties 
Acid 

Insolubility 
Texture Change 
BMD and AMD 

Angularity 
AMD 

R2 p-value R2 p-value R2 p-value 

IFI Change 0.17 0.24 0.55 0.08 0.06 0.34 

IFI Terminal 0.83 0.02 0.59 0.06 0.97 0.00 

 

This analysis revealed that LA weight loss and magnesium soundness values are 

not statistically significant in predicting the DF20 and IFI terminal values and rates of 

change. However, the coarse aggregate insolubility value is a significant factor on the 

terminal IFI value and could explain the 83 percent change in IFI. This analysis further 

showed that angularity after Micro-Deval is also a statistically significant factor on 

explaining the IFI terminal values. Moreover, the terminal IFI value increases when 

angularity after Micro-Deval increases. Similarly, an increase in coarse aggregate acid 

insoluble value increases terminal IFI value.  
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AGGREGATE RANKING BASED ON LABORATORY RESULTS 

 

Selection of an aggregate type based on its frictional properties is an important 

step toward constructing a safe pavement with adequate skid resistance. A ranking 

system according to frictional properties will assist the selection of the most appropriate 

aggregate. The frictional properties of each aggregate type could be assessed by using a 

friction-polish cycle curve. An ANOVA was done to study the effect of mix type and 

aggregate on the measured F60. It was demonstrated that the difference between the 

measured IFI values of Type C and PFC mixes is significant. Moreover, any aggregate 

classification system that tends to classify aggregates should consider the mix type as an 

important factor.  

FIGURE 75 shows the terminal IFI values of different aggregates for different 

mixes. The Brownlee aggregate had superior frictional performance in both Type C and 

PFC mixes. The results of the ANOVA in the previous section showed that there is a 

significant difference between measured IFI values of the Brownlee aggregate and those 

of other aggregates. This result is in agreement with the result of the TxDOT aggregate 

classification that considers Brownlee aggregate in class A. The next aggregate in the list 

is the El Paso aggregate that has been used in PFC mixes. This aggregate, however, does 

not have high terminal friction in Type C mixes. The El Paso aggregate in the PFC mix 

also had significant differences with all other aggregates and was the third in the list.  

Mixing 50 percent Brownlee aggregate with 50 percent Beckman aggregate gives 

the blend superior frictional properties. Although the blend is classified as class B based 

on the current classification system, the frictional properties of the blend are significantly 

better than the Fordyce aggregate and the El Paso aggregate in Type C mixes. 

The Beckman aggregate shows relatively good frictional properties in PFC mixes. 

This aggregate has a high amount of carbonate material that abraded quickly from the 

surface of the aggregate, filled the pores of PFC mixture in the laboratory experiment, 

and improved the skid resistance of the mix. This effect, however, could lead to a 

decrease in permeability. 
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FIGURE 75  Mean IFI values for different aggregate types. 

 

Although the Fordyce aggregate is the next in the group and has slightly better 

frictional properties than the El Paso aggregate, the difference is not statistically 

significant. The El Paso aggregate showed better frictional characteristics than Beckman 

and Brownwood aggregates. 

Using the Brownwood aggregate in the PFC mix gives the mix slightly better 

frictional performance than in the Type C. No significant differences were observed in 

frictional properties of the Beckman and Brownwood aggregates.  

 

SUMMARY 

 

Several asphalt mix slabs were prepared and compacted in the laboratory, and 

their frictional properties were measured using the sand patch method, British pendulum 

test, dynamic friction test, and circular texture meter. The results of each test are 

summarized in this section. 
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Sand Patch Test 

 

The sand patch test was performed on Type C and Type D mixes only. 

Comparing the mean MTD values of these two mixes before polishing showed that the 

average MTD values of Type C mixes were greater than those of Type D mixes. This is 

attributed to the larger maximum aggregate size in the Type C mix.  

Although it seemed as if the MTD values of almost all mixes (except for 

sandstone) after polishing were less than the MTD values before polishing, statistical 

analysis did not show any significant differences between MTD values before and after 

polishing. Hence, it was concluded that the sand patch test was not able to detect changes 

in macrotexture due to polishing with the selected polishing device. The results showed 

that mixes with different aggregates had different MTD values. Thus, a pairwise 

comparison analysis was performed among mixtures with different aggregates to find the 

differences between MTD values of different aggregate types. The results showed that 

Brownlee aggregate had the highest MTD values among all aggregates, and both 

Beckman and Brownwood aggregates produced the lowest MTD values.  

 

British Pendulum Test 

 

The British pendulum test was performed on three different locations on each 

slab, and three measurements were conducted on each location. The TxDOT test requires 

using a 3-inch slider in the BP. However, it was not feasible to use this size because of 

the limited polished area resulting from the polishing machine used in this study. As a 

result, a 1.5-inch-wide rubber slider was used in all BP measurements. 

The results indicated that BP values decreased with an increase in polishing 

cycles for all mixtures except mixtures containing Brownlee aggregate. For Brownlee 

aggregate, the BP values remained almost constant. 

The BP values of PFC mixes were generally higher than those for Type C mixes. 

In addition, the frictional characteristics of some aggregates varied depending on the mix 

in which the aggregate was used. For example, the PFC and Type C mixes with 

Brownwood aggregate had similar BP values at a low number of polishing cycles. 
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However, the PFC mixes with Brownwood aggregate had higher BP values than 

corresponding Type C mixes at a high number of polishing cycles.  

An analysis was performed to compare the results of measured BP values for each 

aggregate type. The results of the comparison among same mixtures with different 

aggregate types did not reveal any significant differences. Consequently, it was 

concluded that the British pendulum test was not able to detect the difference between 

frictional performances of aggregates with known differences in frictional characteristics. 

 

CTMeter and DFT Tests 

 

The CTMeter and DFT tests were performed at three different locations on each 

slab. The DFT was performed twice in each location, while the CTMeter was conducted 

six times at each location. No particular trend was observed for MPD values from the 

CTMeter of different mixes in terms of number of polishing cycles.  

The result of dynamic friction testing at 20 km/h (DF20) is an indication of 

microtexture (15). Therefore, this measure is a good indication of the aggregate 

contribution to pavement skid properties. A plot of measured dynamic friction in terms of 

polishing cycles showed that DF20 decreased as polishing cycles increased. The DF20 

curves leveled off and reached a terminal value after a certain number of polishing 

cycles.  

Statistical analysis was performed to evaluate the effect of several variables (i.e., 

aggregate type, mix type, polishing cycles, and speed) on the measured dynamic friction. 

The results showed that aggregate type affected the magnitude of dynamic friction in 

both Type C and PFC mixes. The results also showed that there was a significant 

difference in the measured friction at different numbers of polishing cycles for Type C 

mixes. In contrast, the magnitude of dynamic friction in PFC mixes did not have a 

significant difference between polishing cycles. The results also revealed that the PFC 

mix had a higher friction value than the Type C mix. 

The equation proposed by Mahmoud (see Equation 9) was fitted to the calculated 

F60 values. The rate of change and terminal value of friction were estimated from this 

equation. Comparing the rate of change and terminal values for different aggregates 
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revealed that in all cases, the Brownlee aggregate had the highest terminal values and 

lowest rate of change in both Type C and PFC mixes. In contrast, mixes containing 

Beckman and Brownwood aggregates had the lowest terminal values and highest rates of 

change. This indicated that Beckman and Brownwood aggregates failed to preserve their 

frictional performance during load application. A combination of Brownlee and Beckman 

aggregates, however, performed satisfactorily and had a high terminal value and low rate 

of change compared to the Beckman aggregate. Fordyce and El Paso aggregates were 

almost the same and had fair frictional properties. 

The dependency of terminal value and rate of change of DF20 and IFI on different 

aggregate characteristics was analyzed. The aggregate characteristics included in the 

analysis were LA impact and abrasion percent weight loss, magnesium soundness percent 

weight loss, British pendulum value, Micro-Deval percent weight loss, coarse aggregate 

acid insolubility, texture measurements after Micro-Deval by AIMS, angularity 

measurements after Micro-Deval by AIMS, change in texture before and after 

Micro-Deval, and change in angularity before and after Micro-Deval. The coefficient of 

determination (R-square) and the statistical significance were evaluated to study if the 

considered variable is important and at what percent it could define the variability of 

DF20 and IFI. 

The results indicated that the LA impact and abrasion percent weight loss, 

magnesium soundness percent weight loss, Micro-Deval percent weight loss, angularity 

measurements after Micro-Deval by AIMS, and change in angularity before and after 

Micro-Deval were not significant factors in determining DF20 and IFI rates of change and 

terminal values. 

The BP value, texture measured using AIMS after Micro-Deval, and change in 

texture before and after Micro-Deval were proved to be significant factors in explaining 

the rates of change and terminal values of DF20 and IFI. Furthermore, the rates of change 

of DF20 and IFI decreased as the BP value and texture after Micro-Deval increased. In 

addition, the terminal value of DF20 and IFI increased as the BP value and texture after 

Micro-Deval increased. The rate of change in texture before and after Micro-Deval 

affected the rates of change and terminal values of DF20 and IFI. The results showed that 

the rates of change in DF20 and IFI decreased and the terminal values increased as the rate 
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of change in texture before and after Micro-Deval decreased. The coarse aggregate acid 

insolubility test showed a significant effect on rates of change and terminal values of 

DF20 and IFI only when Brownlee aggregate was removed from the comparison. In such 

a case, the terminal DF20 and IFI increased as the acid insolubility test value increased. A 

change in angularity before and after Micro-Deval affected the terminal DF20 and IFI 

values. When the angularity change before and after Micro-Deval increased, the terminal 

IFI and DF20 values increased. 

In summary, the results of the research indicated that it is possible to control and 

predict frictional properties of the pavement by selecting the aggregate type and HMA 

mix type. A new laboratory testing methodology to evaluate the key parameters in 

frictional characteristics of a flexible pavement was developed. These two key parameters 

were defined to be the rate of change in friction and terminal value for friction. These two 

values could be used as a basis for further comparisons between frictional performance of 

different aggregate types.  

During this study, a complete set of experiments was performed to evaluate the 

aggregate properties by all current testing methods. The results of this research confirmed 

the findings of the previous research about the superior performance of the Brownlee 

aggregate. The results also showed the polishing susceptibility of Beckman and 

Brownwood aggregates. 

The influence of aggregate type on asphalt concrete skid properties was 

investigated through preparing and testing laboratory slabs. The results of the analysis 

confirmed the strong relationship between mix frictional properties and aggregate 

properties. The main aggregate properties affecting the mix skid resistance were 

recognized to be British pendulum value, texture change before and after Micro-Deval 

measured by AIMS, terminal texture after Micro-Deval measured by AIMS, and coarse 

aggregate acid insolubility value.  

Based on the findings, a model that is able to predict initial IFI, terminal IFI, and 

rate of polishing was developed using the parameters in the texture model developed by 

Mahmoud (see Equation 9). This model confirmed the benefits of texture measurements 

by AIMS, and it will help to predict mix friction based on gradation and aggregate 

resistance to polishing. Furthermore, this model facilitates selecting the appropriate 
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aggregate type for the desired mixture friction, and it could be used to classify aggregates 

based on their frictional properties. The next chapter explains the steps taken to develop 

the pavement prediction model. 

  



135 
 

 
 

CHAPTER V  

A MODEL FOR ASPHALT MIX SURFACE FRICTION BASED ON 

LABORATORY RESULTS 

 

INTRODUCTION 

 

This chapter presents a new model that expresses the IFI as a function of 

aggregate resistance to polishing and mix gradation. The concept of the model, as shown 

in FIGURE 76, incorporates aggregate shape characteristics measured by AIMS, mix 

design gradation, and polishing cycles in an equation that gives the IFI. 

 
FIGURE 76  Overview of the friction model. 

 

The friction model shown in FIGURE 76 consists of a set of equations that can 

predict IFI value at any given polishing cycle. Moreover, this model should predict three 

important parameters—initial IFI level (―a‖ + ―b‖), rate of change in IFI ―c,‖ and terminal 

IFI value ―a.‖  
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MODELING APPROACH 

 

The previous chapter showed that mixture type in terms of aggregate gradation 

has a significant effect on IFI parameters. To consider the aggregate gradation as a 

parameter in the friction model, a cumulative two-parameter Weibull distribution was 

used to fit the standard aggregate size distribution data (cumulative percent passing size). 

The cumulative two-parameter Weibull distribution has the form of: 

 
 kx

ekxF 


1,;         (10) 

where x is the variable (aggregate size in millimeter), and k and λ are model parameters 

known as shape and scale parameters, respectively. Figures 77 through 86 show the 

aggregate gradation and fitted line for different mixes. 

 

 
FIGURE 77  Aggregate gradation and fitted line for Brownlee-Beckman Type C mix. 
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FIGURE 78  Aggregate gradation and fitted line for Fordyce aggregate Type C mix. 

 

 
FIGURE 79  Aggregate gradation and fitted line for Brownwood aggregate Type C mix. 
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FIGURE 80  Aggregate gradation and fitted line for Brownlee aggregate Type C mix. 

 

 
FIGURE 81  Aggregate gradation and fitted line for Beckman aggregate Type C mix. 
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FIGURE 82  Aggregate gradation and fitted line for El Paso aggregate Type C mix. 

 

 
FIGURE 83  Aggregate gradation and fitted line for Brownwood aggregate PFC mix. 
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FIGURE 84  Aggregate gradation and fitted line for Beckman aggregate PFC mix. 

 

 
FIGURE 85  Aggregate gradation and fitted line for Brownlee aggregate PFC mix. 
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FIGURE 86  Aggregate gradation and fitted line for El Paso aggregate PFC mix. 

 

TABLE 34 summarizes the calculated k and λ value for each mix. These 

parameters have been calculated using the SSE method. 
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TABLE 34  Calculated Weibull Parameters for Different Mixes 

Aggregate Type Mix Type λ κ 
Brownlee-Beckman 

Type C 

5.653 0.843 
Fordyce 5.419 0.983 

Brownwood 5.245 0.842 
Brownlee 5.554 0.764 
Beckman 5.942 0.777 
El Paso 3.495 0.863 

Brownwood 

PFC 

9.213 5.755 
Beckman 10.503 3.150 
Brownlee 9.698 2.909 
El Paso 10.399 3.908 

 

The results of the previous chapter showed that AIMS texture indices have a high 

correlation with rate of change and terminal values of IFI, and this value could be 

potentially used in any model explaining the IFI. Selecting other aggregate properties that 

can be used in the model should be based on a statistical analysis. This analysis will show 

the minimum number of independent variables that can be used in the model. Any 

correlation between the independent variables will decrease the reliability of the model. 

TABLE 35 shows the cross-correlation between different parameters considered to be 

significant in the model. This table shows that the ―a‖ (terminal value), ―c‖ (rate of 

change), and ―a‖ + ―b‖ (initial value) parameters of the aggregate texture model have 

high correlation with polish value, texture after Micro-Deval, texture change before and 

after Micro-Deval, and coarse aggregate acid insolubility. This analysis shows that 

developing a model that includes parameters of the aggregate texture model proposed by 

Mahmoud (137) along with aggregate gradation parameters could satisfactorily explain 

the variation of IFI for different mixtures without any redundancy and cross-correlation. 
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TABLE 35  Correlation Coefficients for Different Aggregate Properties 

Parameter (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1)  85.5% -27.2% 82.4% -77.4% -77.4% -62.5% -19.2% -63.7% -16.0% -27.4% -4.3% 
(2) 85.5%  24.4% 95.4% -48.0% 12.6% -14.3% 1.1% -68.1% -7.4% -14.7% -47.9% 
(3) -27.2% 24.4%  14.9% 62.3% 62.3% 90.0% 61.4% 2.8% 42.6% 44.3% -91.0% 
(4) 82.4% 95.4% 14.9%  -62.2% 32.8% -15.9% -16.5% -84.6% -27.5% -22.9% -29.9% 
(5) -77.4% -48.0% 62.3% -62.2%  -80.7% 72.9% 44.4% 77.9% 39.9% 27.7% -48.6% 
(6) -77.4% 12.6% 62.3% 32.8% -80.7%  -72.6% -82.1% -49.4% -77.8% -61.6% 73.9% 
(7) -62.5% -14.3% 90.0% -15.9% 72.9% -72.6%  52.5% 15.3% 34.3% 47.0% -65.1% 
(8) -19.2% 1.1% 61.4% -16.5% 44.4% -82.1% 52.5%  16.6% 96.8% 92.3% -67.3% 
(9) -63.7% -68.1% 2.8% -84.6% 77.9% -49.4% 15.3% 16.6%  27.6% 2.1% -1.2% 

(10) -16.0% -7.4% 42.6% -27.5% 39.9% -77.8% 34.3% 96.8% 27.6%  88.9% -53.2% 
(11) -27.4% -14.7% 44.3% -22.9% 27.7% -61.6% 47.0% 92.3% 2.1% 88.9%  -42.1% 
(12) -4.3% -47.9% -91.0% -29.9% -48.6% 73.9% -65.1% -67.3% -1.2% -53.2% -42.1%  

 

    (1)    LA weight loss (percent)    (2)    magnesium weight loss (percent) 

    (3)    polish stone value     (4)    Micro-Deval weight loss (percent) 

    (5)    coarse aggregate acid insolubility   (6)    change in texture before and after Micro-Deval 

    (7)    change in angularity before and after Micro-Deval (8)    texture after Micro-Deval 

    (9)    angularity after Micro-Deval    (10)  terminal texture for aggregates (aagg value) 

    (11)  initial texture for aggregates (aagg + bagg)  (12)  rate of texture change for aggregates (cagg value) 
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A nonlinear regression analysis was performed to determine the coefficients for 

model parameters. TABLE 36 shows parameter estimates for the model. 

 

TABLE 36  Different Parameter of the Friction Model Estimated by Regression Analysis 

Parameter Model R2 

Terminal IFI 
(amix) 

 0.96 

Initial IFI 
(amix + bmix) 

   8619.010985.410846.510656.5ln4984.0 224   kba aggagg   0.82 

IFI 
Rate of 
Change 
(cmix) 








  


aggc

e

210297.7

765.0  

0.90 

 

where:  

AMD = aggregate texture after Micro-Deval, 

aagg + bagg = aggregate initial texture using texture model, 

cagg = aggregate texture rate of change using texture model, 

k-value = Weibull distribution shape factor, and 

λ-value = Weibull distribution scale factor. 

The developed model for the terminal IFI value is significant at the 95 percent confidence 

level. This model consists of the aggregate terminal texture value measured after 

Micro-Deval and λ-value related to mix gradation. It was noted that this model has a high 

R-square and can account for 96 percent of the variation in terminal IFI.  

FIGURE 87 shows the predicted terminal IFI values versus measured terminal IFI values. 

Based on this model, a higher texture after Micro-Deval will result in a higher terminal 

value for IFI. Likewise, the mixes with high λ-values—primarily PFC mixes—will have 

higher terminal IFI values. 

TABLE 36 also shows that the initial IFI value depends on the aggregate initial 

texture value (aagg + bagg), which is calculated by fitting a model to a texture and 

corresponding gradation parameters k-value and λ-value. The model is significant overall 

and has a high R-square of 0.82. FIGURE 88 depicts the measured and predicted initial 

IFI values. 

 2
0013.0936.118

422.18

AMD
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The rate of IFI change in TABLE 36 is only dependent upon the rate of texture 

change in the corresponding aggregate. The model is significant, and the R-square is 

0.91. FIGURE 89 shows the predicted and measured rate of IFI change (―c‖ value). 

 
FIGURE 87  Predicted vs. measured terminal IFI values. 

 
FIGURE 88  Predicted vs. measured initial IFI values. 
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FIGURE 89  Predicted vs. measured IFI rate of change. 

 

The R-square value for each parameter is reasonably high and could be used in 

the IFI model (Equation 9). Equation 9 could also be rewritten as Equation 11 to include 

all three parameters discussed above: 

  mix

Nc

mix

nc

mixmix aeaebaIFI mixmix 


           (11)  

where N = polishing cycle in thousands of repetitions. 
 

SUMMARY 

 
The details of the approach to develop the laboratory pavement friction model 

were described in this chapter. The coefficients of the model previously proposed by 

Mahmoud (see Equation 9) were used to describe the change in aggregate texture. The 

two-parameter Weibull cumulative distribution function was used to fit the gradation 

curves.  

Nonlinear regression analysis was performed to express the coefficients of the IFI 

model as functions of the coefficients of the Weibull cumulative distribution and the 

coefficients of the aggregate texture model consequently, a model for prediction of IFI as 
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a function of polishing cycles, mix gradation parameters, and aggregate texture 

characteristics was developed. Subsequent analysis showed that the developed model 

does a good job in predicting the rate of change, initial, and terminal values of IFI.  The 

following chapters of this dissertation describe the extension of this model to describe the 

IFI and Skid Number based on field measurements. 
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CHAPTER VI  

ANALYSIS OF SKID RESISTANCE 

OF ASPHALT PAVEMENT SECTIONS 

 

INTRODUCTION 

 

The objective of the field measurement phase of this study was to correlate 

laboratory measurements of the asphalt-mix friction and aggregate resistance to polishing 

to field skid-resistance measurements. This objective was achieved by developing and 

completing a comprehensive experiment of measuring skid resistance of field test 

sections incorporating different surface mixes.  

Skid resistance is typically measured using the friction trailer, which is towed at a 

constant speed over the tested pavement. When the test is initiated, water is sprayed 

ahead of the tire so the wet pavement friction can be tested. The wheel is fully locked, 

and the resulting torque is recorded. Based on the measured torque (converted to a 

horizontal force) and dynamic vertical load on the test wheel, the wet coefficient of 

friction between the test tire and the pavement surface is calculated. The skid number 

(SN) is then reported as the coefficient of friction multiplied by 100 (15). The same speed 

should be maintained before the test and when the wheel is locked. The friction trailer is 

typically equipped with two types of tires: a rib tire on the right side, according to 

ASTM E501, and a smooth tire on the left side, according to ASTM E524 (59). 

Following the recommendation of the ASTM E-274 specification, the test speed (48, 64, 

or 80 km/h; 30, 40, or 50 mph) and type of tire (R for rib tire and S for smooth tire) 

should be cited when the skid number is reported (59). For example, SN(64)S indicates 

that the test was performed at a speed of 64 km/h (40 mph) with the smooth type of tire 

(SN40S is used if speed is reported in miles per hour). The friction trailer used by 

TxDOT is equipped with smooth tires and travels at a speed of 80 km/h (50 mph). 

Extensive work was conducted in this project to create a database of sections with 

different friction characteristics. The initial selection of sections was intended to include 

the mixes and aggregates that were already tested in the laboratory phase of this research 
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study and to include sections for which the skid performance was available. The 

experimental design was revised several times to agree on a sound and inclusive 

experimental design. Moreover, the availability of skid data, availability of traffic data, 

variety of aggregate lithologies, variety of mix types, and availability of construction and 

maintenance records were the main factors considered in the selection of sections. The 

experimental design was then finalized and implemented in the field measurement phase 

of this project. 

Intensive work was performed to collect all the data required in the experimental 

design. A huge amount of data was studied to choose and extract the most reliable data. 

Several meetings with TxDOT research groups were held to decide on the desired 

sections. Because the skid data and construction records of each project are kept in two 

different databases, a comparative study was done to select the sections with a wide range 

of construction history and a long record of skid data. Any discrepancies between the 

data and field observations were thoroughly investigated. TxDOT district offices were 

contacted to confirm the data integrity and accuracy. Many meetings and conference calls 

were held with data providers to obtain details about the data collection (e.g., the exact 

location of the tested field section, date and time, etc.). Afterward, the data were analyzed 

using statistical analysis methods. 

 

SELECTION OF THE FIELD SECTIONS AND DATA MINING 

 

After all the data was reviewed, 65 roads including 1527 Pavement Management 

Information System (PMIS) sections that cover a wide range of skid performance were 

identified. Each PMIS section is a particular stretch of roadway with predefined 

boundaries defined by reference markers. These sections are distributed across nine 

TxDOT districts. 

 
TABLE 37 shows the number of sections in each district. The majority of PMIS 

sections are located within the Corpus Christi, Brownwood, San Antonio, and Yoakum 

Districts. These 1527 PMIS sections contain 4068 data records including different 

aggregate types and different mix types in different years. TABLE 38 shows 21 different 
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aggregate sources in Texas that were used in these sections. These aggregates were 

classified in different categories according to the TxDOT SAC system. 

 

TABLE 37  Number of Road Sections in Each District 

District Number of Sections 
Beaumont 12 
Brownwood 285 
Bryan 6 
Corpus Christi 862 
El Paso 46 
Houston 116 
Lubbock 24 
San Antonio 182 
Yoakum 148 
Total 1527 

 

TABLE 38  Aggregate Sources Used in Pavement Sections 

No. Aggregate  Material Type TxDOT 
Classification 

1 A Crushed Siliceous Gravel SAC A 
2 B Crushed Limestone-Dolomite SAC B 
3 C Crushed Limestone-Dolomite SAC B 
4 D Crushed Granite SAC A 
5 E Crushed Limestone-Dolomite SAC B 
6 F Crushed Limestone-Dolomite SAC B 
7 G Crushed Limestone-Dolomite SAC B 
8 H Sandstone SAC A 
9 I Crushed Siliceous & Limestone Gravel SAC A 

10 J Crushed Limestone Rock Asphalt SAC B 
11 K Crushed Limestone-Dolomite SAC B 
12 L Lightweight Aggregate SAC A 
13 M Crushed Limestone-Dolomite SAC B 
14 N Crushed Limestone-Dolomite SAC B 
15 O Crushed Traprock SAC A 
16 P Crushed Traprock SAC A 
17 Q Crushed Limestone SAC B 
18 R 50 Percent Aggregate H + 50 Percent Aggregate K SAC B 
19 S Crushed Rhyolite SAC A 
20 T Crushed Granite SAC A 
21 U Crushed Limestone SAC B 
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Four different mixture designs were used in the selected PMIS sections. These 

four mixture designs were surface treatment with grade 4 (GR-4) aggregate, surface 

treatment with grade 3 (GR-3) aggregate, PFC, and Type C mixture design. TABLE 

39 shows the number of roads within each mixture group (PFC and Type C are 

combined in the last column). FIGURE 90 shows the number of road segments with 

the specified mixture design. Although it is desirable to have a full record of the skid 

data for several years, some data were missing for some sections. FIGURE 91 shows 

the data coverage for each district. 

 

TABLE 39  Mixture Types Used in Road Segments 

District Surface Treatment GR-4 Surface Treatment GR-3 Hot Mix Asphalt 
Concrete (PFC 

and Type C 
Mixes) 

Beaumont 1   
Brownwood 17 12  
Bryan   1 
Corpus Christi 33  2 
El Paso   7 
Houston 3  5 
Lubbock   4 
San Antonio 7  14 
Yoakum  1 1 
Total 61 13 34 
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FIGURE 90  Mixture types used in the selected road segments. 

 

To have a better understanding of the data variation, plots were produced that 

show the variation of the skid number versus PMIS section for each road segment. These 

graphs were the basis for the next step of the data analysis. It was found that road 

segments had a wide range of variation in the measured skid resistance. This variation 

can be caused by different factors such as aggregate type, mix type, traffic, environmental 

conditions, etc. The effects of different factors in the variation of the skid resistance are 

discussed subsequently. 
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FIGURE 91  Data availability for the different TxDOT districts. 
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ANALYSIS OF THE COLLECTED FIELD DATA 

 

Careful evaluation of the variation of the skid number reveals that the data have 

high variability. FIGURE 92 shows the coefficient of variation of the measured skid 

resistance for different road segments for each year. For example, in 2005, about 

30 percent of the data have a coefficient of variation between 30 to 40 percent.  

 
FIGURE 92  Coefficient of variation of measured skid resistance for different sections. 

 

Because of the high variability of the data, analysis should consider the separate 

effects of different factors influencing skid resistance in order to be conclusive. In this 

section, the effects of different factors on the measured skid resistance are analyzed and 

discussed after making the following simplifications:  

 As long as gradation remained the same, regardless of asphalt type, the 

surface treatment was assumed to be identical; e.g., surface treatment grade 4 

was a combination of size 4 aggregates with AC-15P, AC-20-5TR, AC 20XP, 

and CRS-2P asphalt types. Furthermore, only two types of surface treatments 
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were considered in the analysis, and the effect of binder type on frictional 

characteristics was not considered. 

 In order to compare different road categories in different service years, a 

parameter called the traffic multiplication factor (TMF) was defined. As 

shown in Equation 12, TMF is the multiplication of the annual average daily 

traffic (AADT) and number of years in service.  

 

 (12) 
 

This factor reflects the effect of both years in service and AADT for the most 

critical lane in the highway, i.e., the outer lane.  

In order to study the variation of measured skid numbers as a function of traffic, it 

was decided to identify homogeneous subgroups of pavement sections in which the 

variation of skid number as a function of traffic is more consistent. A cluster analysis 

algorithm included in the SPSS statistical software package known as the two-step cluster 

method was implemented for this purpose. In this algorithm, the number of groups is 

established so that within-group variation is minimized and between-group variation is 

maximized. All the data in the database were classified in terms of their TMF for further 

analysis. The SPSS manual contains additional information about the details of this 

clustering analysis. TABLE 40 shows the TMF range for each cluster. A summary of the 

records based on the TMF class, aggregate type, and mix type is tabulated in TABLE 41. 

 
TABLE 40  Traffic Clusters in Terms of Traffic Multiplication Factor 

Level Traffic Multiplication Factor 

Low 0-5499 

Medium 5500-13,499 

High 13,500-24,999 

Very High 25,000-40,000 

 

1000

SERVICEINYEARSAADT
TMF
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TABLE 41  Summary of Skid Resistance Measurements 

TMF Cluster Mixture Design Aggregate Type N Mean Median Min. Max. Std. Dev. 

0-5500 Type C Aggregate R 30 30.87 31.50 21 42 6.96 

Aggregate I 25 37.36 38.00 24 43 3.47 

Aggregate K 374 28.22 32.00 5 52 11.35 

Aggregate M 9 29.11 33.00 15 41 9.29 

PFC Aggregate R 16 35.88 37.00 31 40 3.01 

Aggregate F 550 33.16 34.00 8 47 4.13 

Aggregate I 163 33.64 34.00 13 41 2.79 

Aggregate H 6 42.50 45.50 25 53 9.52 

Aggregate K 19 47.00 48.00 33 61 7.81 

Aggregate L 197 55.66 62.00 6 80 17.32 

Aggregate M 30 36.50 35.50 20 51 8.79 

Aggregate N 474 30.88 30.00 13 54 6.74 

Surface Treatment GR-4 Aggregate B 26 40.42 40.00 38 42 1.17 

Aggregate H 1 24.00 24.00 24 24 . 

Aggregate J 13 51.92 53.00 31 61 10.03 

Aggregate K 198 27.95 28.00 13 74 7.77 

Aggregate L 8 54.38 54.00 27 78 18.84 

Aggregate M 172 41.47 33.00 12 77 17.88 

Aggregate N 51 36.22 34.00 16 56 7.97 

Aggregate O 452 32.18 33.00 6 68 14.64 

Aggregate P 46 29.17 28.00 16 65 8.42 

Aggregate Q 55 30.05 29.00 12 53 8.84 
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TMF Cluster Mixture Design Producer Name N Mean Median Min. Max. Std. Dev. 
5500-13,500 Type C Aggregate R 114 26.82 25.50 14 55 6.54 

Aggregate F 12 22.17 22.00 17 27 3.19 
Aggregate I 37 32.46 35.00 21 39 5.32 
Aggregate K 127 13.28 12.00 7 45 5.00 

PFC  Aggregate R 16 34.50 34.50 30 38 2.42 
Aggregate F 126 31.92 31.00 27 38 2.61 
Aggregate I 185 30.78 29.00 9 42 4.92 

Aggregate M 46 29.37 30.50 14 33 4.52 
Surface Treatment GR-3 Aggregate L 9 39.89 27.00 14 73 25.00 

Aggregate H 1 25.00 25.00 25 25 . 
Aggregate J 2 61.50 61.50 61 62 0.71 
Aggregate K 58 26.76 29.00 11 42 8.00 
Aggregate M 60 31.17 27.50 12 71 12.52 
Aggregate N 5 30.20 32.00 24 36 5.02 
Aggregate O 95 24.53 27.00 6 36 8.35 
Aggregate Q 7 25.14 23.00 18 40 6.99 

13,500-25,000 Type C Aggregate R 62 22.53 21.50 14 38 4.57 
Aggregate K 2 17.00 17.00 15 19 2.83 

PFC Aggregate R 16 29.94 30.50 26 32 2.08 
Aggregate I 72 24.78 24.50 13 36 2.96 

Aggregate M 19 28.32 28.00 26 35 2.36 
Surface Treatment GR-4 Aggregate K 12 14.33 14.00 11 20 2.64 

Aggregate M 9 23.33 23.00 11 34 7.66 
Aggregate Q 3 18.33 17.00 17 21 2.31 

25,000-40,000 Type C Aggregate R 32 18.34 18.50 12 27 3.15 
PFC  Aggregate R 16 29.94 29.50 26 36 2.54 

Surface Treatment GR-4 Aggregate K 10 18.10 14.00 11 59 14.43 
 

TABLE 41  Continued 
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Traffic Load 

 

FIGURE 93 shows the values of different skid numbers in terms of traffic level. 

Although the values of SN have high variability, a decreasing trend of SN values as a 

function of traffic level is identifiable. Because of high standard-error-of-mean values, a 

plot of median values was produced to extract the possible trend of SN values (see 

FIGURE 94). A clear trend shows that the SN value decreases when the traffic level 

increases. FIGURE 95 shows the standard deviation of measured SN values versus traffic 

level. Moreover, the mixes with very high or high traffic level have lower variability 

compared to mixes at the low traffic level. 

 

 

FIGURE 93  Measured SN values versus traffic level. 
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FIGURE 94  Median SN values versus traffic level. 

 

 
FIGURE 95  Standard deviation of measured SN values versus traffic level. 
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Mix Design 

 

FIGURE 96 shows the measured SN values for different mix designs and clearly 

reveals that the results of skid measurements are highly variable and depend on the mix 

type. A plot of median values, as shown in FIGURE 97, gives a better understanding of 

the behavior of different mixes. These results confirm the findings from the laboratory 

phase of this study, which found that PFC mixes had higher skid resistance than Type C 

mixes.  

FIGURE 98 shows the standard deviation of the measured skid number for 

different mixes; the standard deviation for PFC mixes is less than five in all cases. This 

result demonstrates the low variability and consistency in frictional performance of PFC 

mixes. Type C mixes have more variability than PFC mixes. Surface-treatment mixes 

have more variation than Type C and PFC mixes.  

 

 
FIGURE 96  Measured SN values for different mix types. 
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FIGURE 97  Median of measured SN values for different mix types. 

 

 
FIGURE 98  Standard deviation of measured SN values for different mixes. 
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Figures 99 and 100 show the variability of measured SN values for different 

mixes in low and medium/high traffic-level categories, respectively. The variability of 

skid resistance decreased significantly from low traffic levels to high traffic levels. 

Moreover, the variability of skid measurement for surface treatments is high, and the 

variability for PFC mixes is the lowest among all mixes. The variability of Type C mixes 

is generally higher than PFC mixes. These results confirm that the PFC mix is the most 

consistent and has the lowest variability among all mixes. One reason for this might be 

the requirement for using aggregate SAC A or SAC B in preparing the PFC mixes. 

 

 

FIGURE 99  Standard deviation of the measured SN values for low TMF level. 
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FIGURE 100  Standard deviation of the measured SN values for medium 

and high TMF level. 

 

Aggregate Type 

 

FIGURE 101 shows the values of measured SN for different aggregate types. The 

influence of aggregate type on skid resistance cannot be studied in isolation from the 

effect of mix design and traffic level. Therefore, a detailed analysis of the measured skid 

values for different mix types and traffic level was performed.  

FIGURE 102 shows that in almost all aggregate types, surface treatments grade 3 

have the highest SN value, and among dense-graded mixes, PFC mixes have the highest 

skid number.  
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FIGURE 101  Values of measured SN for different aggregate types. 

 

TABLE 42 shows the median value for measured skid resistance and aggregate 

ranking for surface treatments grade 3. In this mix design, aggregate L has the highest 

skid value. Furthermore, aggregate K (classified as SAC B in the TxDOT classification 

system) shows satisfactory skid characteristics and lies in second place. Aggregate H, 

which is classified as SAC A in the TxDOT classification system, has the third rank in 

this group, and both M and N aggregate types, classified as SAC B, are ranked in the 

fourth and fifth places, respectively.  

 



165 
 

 
 

 157 

 
(a) Low TMF level. 

 

 
(b) Medium TMF level. 

 
FIGURE 102  Median of measured SN values for different aggregate and mix types.  
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(c) High TMF level. 

 
 

 
TABLE 42  Aggregate Ranking Based on Measured Skid Resistance for Surface Treatment 

Grade 3 in Low Traffic Level 

Aggregate Type 
Skid 

Number 
Median 

Rank TxDOT 
Classification 

Aggregate L 62 1 SAC A 
Aggregate K 48 2 SAC B 
Aggregate H 45 3 SAC A 
Aggregate M 36 4 SAC B 
Aggregate N 30 5 SAC B 

 

The results of skid number values measured for surface treatment grade 4 are 

tabulated in TABLE 43. The results indicate that both aggregate L and aggregate J have 

satisfactory skid properties and are ranked the first and second place, respectively.  

 
 
 
 

FIGURE 102  Continued.  
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TABLE 44 shows the median skid resistance values and aggregate ranking for the 

Type C mixture. In this mixture type, aggregate I provides the highest friction level. The 

results of the analysis of field data confirmed the findings from the laboratory phase of 

this project, which showed aggregate R to have superior skid properties compared with 

aggregates K and M individually. Furthermore, data in Table 8 show that mixtures 

containing aggregate K lose the initial texture faster than other aggregate types. The skid 

number of mixtures containing aggregate K dropped below 20 at higher traffic levels. 

TABLE 45 illustrates the results for PFC mixes. It appears that aggregate R has the 

highest skid value. Again, this finding is in accordance with the results of the laboratory 

phase of this study. Aggregates F and I function well, and their skid values are close to or 

above 30. 

 

TABLE 43  Aggregate Ranking Based on Measured Skid Resistance for Surface Treatment 

Grade 4 in Medium and Low Traffic Levels 

Cluster Number 
of Case Producer Name 

Measured 
Skid 

Resistance 
Rank TxDOT Classification 

Low (0-5500) Aggregate L 54 1 SAC A 
Aggregate J 54 2 SAC B 
Aggregate B 40 3 SAC B 
Aggregate N 35 4 SAC B 
Aggregate O 33 5 SAC A 
Aggregate M 33 6 SAC B 
Aggregate Q 30 7 SAC B 
Aggregate K 29 8 SAC B 
Aggregate P 28 9 SAC A 
Aggregate H 25 10 SAC A 

Medium (5500-
13,500) 

Aggregate J 62 1 SAC B 
Aggregate N 32 2 SAC B 
Aggregate K 29 3 SAC B 
Aggregate M 28 4 SAC B 
Aggregate O 27 5 SAC A 
Aggregate H 25 6 SAC A 
Aggregate Q 23 7 SAC B 
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TABLE 44  Aggregate Ranking Based on Measured Skid Resistance for Type C Mixture in 

High, Medium, and Low Traffic Levels 

Cluster Number of Case Producer Name 
Measured 

Skid 
Resistance 

Rank TxDOT 
Classification 

Low (0-5499) Aggregate I 38 1 SAC A 
Aggregate R 32 2 SAC B 
Aggregate K 31 3 SAC B 
Aggregate M 31 4 SAC B 

Medium (5500-13,499) Aggregate I 35 1 SAC A 
Aggregate R 26 2 SAC B 
Aggregate F 22 3 SAC B 
Aggregate K 12 4 SAC B 

High (13,500-24,999) Aggregate R 22 1 SAC B 
Aggregate K 17 2 SAC B 

 

TABLE 45  Aggregate Ranking Based on Measured Skid Resistance for PFC Mixture in 

High, Medium, and Low Traffic Levels 

Cluster Number of Case Producer Name Measured Skid 
Resistance Rank TxDOT 

Classification 
Low (0-5499) Aggregate R 37 1 SAC B 

Aggregate F 34 2 SAC B 
Aggregate I 34 3 SAC A 

Medium (5500-13,499) Aggregate R 35 1 SAC B 
Aggregate F 31 2 SAC B 
Aggregate M 31 3 SAC B 
Aggregate I 30 4 SAC A 

High (13,500-24,999) Aggregate R 31 1 SAC B 
Aggregate M 28 2 SAC B 
Aggregate I 25 3 SAC A 
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FIGURE 99, presented previously, shows the standard deviation of the measured 

values of skid number for different aggregate types at low traffic levels. Aggregates used 

in surface treatments grade 3 and grade 4, such as aggregates L, O, and M, have high 

variability (a standard deviation higher than 20). Conversely, aggregates used in PFC 

mixes, such as aggregates M, F, and I, have a standard deviation less than 5.  

Because the majority of the collected data lie in low and medium traffic 

categories, a new classification was used to capture the variation of each aggregate source 

against TMF level. FIGURE 103 shows the median of measured SN values for the 

Type C mix design and clearly shows that aggregate K was polished rapidly and loses its 

frictional characteristics in the early stages of its service life. The terminal SN value for 

this aggregate (about 9) seems to be less than that for other aggregates. This observation 

confirms the laboratory findings regarding the rapid polishing of this aggregate type. 

Aggregate R seems to modify the skid characteristics compared with aggregate K alone 

because this combination has a terminal value of about 11. These graphs show that an 

exponential equation with the form presented in Equation 1 in Chapter II can fit the data. 

Moreover, the rate of change in aggregate R is lower than that of aggregate K. 

Aggregate I has the highest skid number in this mix and can maintain its initial texture. 

The collected data for aggregate M do not extend over a number of years to allow for a 

conclusion. This aggregate, however, shows a high rate of decrease in friction compared 

to other aggregate sources. 
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(a) Aggregate K (SAC B) 

 

 
(b) Aggregate R (SAC B) 

FIGURE 103  Median of measured SN values for Type C mix design.  
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(c) Aggregate I (SAC A) 

 

 
(d) Aggregate M (SAC B) 
FIGURE 103  Continued.
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FIGURE 104 shows the median of measured SN values for the PFC mix design. 

Equation 1 can fit the data reasonably well. FIGURE 104 illustrates that aggregates I and 

R have low polishing rates compared to aggregates F and N. The terminal values of 

aggregates I and M are less than 30. Aggregates R and F can maintain their initial texture 

over 30. The duration of collected skid data for aggregate M is not long enough to make a 

conclusive statement, but it seems this aggregate loses its initial texture rapidly and falls 

below 30 in its initial stages of service life. This observation confirms the finding of the 

laboratory phase of this study. 

FIGURE 105 shows the median of measured SN values for surface treatments 

grade 3. The collected data displayed in FIGURE 105 do not cover the complete range of 

traffic levels but show that aggregate L provides high initial skid resistance. A longer 

traffic range is needed to estimate the frictional performance of this aggregate in the field. 

Moreover, aggregates M and N have the lowest skid values in this mixture type. 

Aggregate K provides a fairly high level of friction (SN > 40), although in other mix 

types, it does not provide acceptable friction levels. Surface treatments grade 3 have an 

almost uniform skid number value throughout the range of TMF levels, and all 

aggregates are able to provide acceptable friction levels. These results suggest that the 

skid values for this mix are affected by gradation more than aggregate type.  

 FIGURE 106 illustrates the median of measured SN values for surface treatments 

grade 4. Aggregate J provides considerably high skid resistance over 40. Aggregate K has 

the lowest terminal skid value at around 10. There is no significant difference between 

the median values of skid values for other aggregates. Similar to the performance in 

Type C mixes, aggregate K has the lowest terminal skid values. Aggregates M, O, and N 

have a fair terminal skid number between 25 and 30. Aggregate Q shows a decreasing 

rate of polishing, but a wider range of traffic data is needed to analyze the characteristics 

of this aggregate. 
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 Aggregate R (SAC B) 

 

 
 Aggregate F (SAC B) 

FIGURE 104  Median of measured SN values for PFC mix design. 
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 Aggregate I (SAC A) 

 

 
 Aggregate M (SAC B) 

FIGURE 104  Continued. 
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FIGURE 105  Median of measured SN values for surface treatments grade 3: (a) aggregate 

H (SAC A); (b) aggregate K (SAC B); (c) aggregate L (SAC A); (d) aggregate M (SAC B); 

(e) aggregate N (SAC B). 

 
 

 
 
 
 

(a) (b) 

(c) (d) 

(e) 
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FIGURE 106  Median of measured SN values for surface treatments grade 4: (a) aggregate 

Q (SAC B); (b) aggregate J (SAC B); (c) aggregate K (SAC B); (d) aggregate M (SAC B); 

(e) aggregate N (SAC B); (f) aggregate O (SAC A). 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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SUMMARY  

 

The field experiments involved many sections that incorporated several mixtures 

and aggregate sources.  These sections had experienced different traffic loading levels.  

In order to facilitate comparing different pavement sections, a single factor denoted TMF 

was defined. This factor was the multiplication of AADT in the design lane and years in 

service divided by 1000, and it considered both traffic level and years of operation.  

As expected, the results of the data analysis showed the measured skid number 

decreased as TMF increased. The measured skid numbers had less variation at higher 

TMF levels. This phenomenon could be attributed to mixtures reaching close to a 

terminal skid condition, which is associated with aggregates approaching their 

equilibrium (or terminal) state of texture after a high number of polishing or loading 

cycles. 

Four mix types (surface treatment grade 3, surface treatment grade 4, PFC, and 

Type C) were included in the field measurements. The results showed that surface 

treatments generally had higher skid numbers than Type C mixes, which are conventional 

dense-graded mixes. Additionally, PFC mixes exhibited better skid resistance than 

Type C mixes and surface-treatment mixes. The results further revealed that the PFC 

mixes had the lowest variation in skid number, while surface-treatment mixes had the 

highest variability. 

The effect of aggregate type was studied, and the results illustrated that there was 

a high level of interaction between aggregate performance, mix type in which aggregate 

was used, and traffic level. In general, it is hard to classify aggregates without specifying 

mixture type and traffic levels. 

Overall, the results of the field-data analysis are in agreement with the findings of 

the laboratory phase. The same equation form (i.e., Equation 1) that was used to describe 

the aggregate rate of polishing can be used to describe skid number versus TMF values in 

the field and to describe skid number versus polishing cycles in the laboratory. 

The next chapter explains the results of the analysis performed on the measured 

values of dynamic friction and macrotexture using DFT and CTMeter on selected 

pavement sections.  
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CHAPTER VII  

ANALYSIS OF FRICTION AND TEXTURE OF 

ASPHALT PAVEMENT SECTIONS 

 

INTRODUCTION 

 

This chapter presents the analysis and results of field measurements using the 

DFT and CTMeter, as well as the development of a theoretical relationship between 

laboratory and field data. During the field testing, efforts were made to test the same part 

of the pavement section that was already tested by the TxDOT towed friction trailer. 

Friction and macrotexture tests using the DFT and CTMeter, respectively, were 

conducted in the selected sections in such a way that the total number of tests was 

distributed uniformly within the length of the tested section (section length was about 

0.5 mi for the highway). 

 

SELECTION OF THE FIELD SECTIONS  

 

In this study, 64 pavement sections were chosen for friction and macrotexture 

evaluation. The sections were selected to cover a wide range of material type and traffic 

levels and to represent different road types (i.e., interstates, state highways, U.S. 

highways, and farm-to-market roads); in addition, selection was based on the availability 

of a complete record of the construction and skid measurement in the TxDOT database. 

The pavement age of these sections was between 2 and 11 years. These sections were 

distributed in different TxDOT districts. TABLE 46 shows a list of the sections.
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TABLE 46  Field Sections Used in Measuring Friction and Texture 

District County Highway Des. Mix Design TRM Dir. 

Abilene 

Nolan IH20 L CRM  247+0.1 WB 

Taylor 
IH20 

 PFC  272+0.1 WB 
L Superpave 1/2"  280+0.8 WB 
 PFC  284-0.55 WB 

US83 L PFC  328-0.30 NB 
Atlanta Harrison IH20 R SMA-C  634+320' EB 

Austin Bastrop US290 K PFC  628+0.53 EB 
Travis SH71 L Type C  582-0.61 WB 

Beaumont 

Hardin FM421 K Type C  747+0.7 EB 
US69 K SMA-D  489+0.1 SB 

Jefferson SH73 L PFC  772+0.1 WB 
US69 L PFC  538-0.05 NB 

Tyler SH146 K Type C  422+0.7 NB 

Brownwood 

Brown 

FM2376 K Type D  460+1.6  NB 
FM2524 K Type D  340+ 0.4 SB 
FM3064 K Type D  458+0.9  WB 
SH153 K Type D  372+0.7 WB 
US67 K Type D  570+0.4 WB 

Eastland IH20 L Type D  362+0.6  WB 
SH36 K Type C  346+1.6 WB 

McCullough US87 R Type D  458+0.2 SB 
Bryan Limestone US84 K Type C  736+150' EB 

Chorus Christi Nueces IH37 R PFC  15+0.73 NB 
San Patricio IH37 R PFC  17+0.64 NB 

Fort Worth Johnson IH35 WL Type D  29-100' SB 

Houston 

Brazoria SH288 R PFC  496+1.35 SB 
Conroe IH45 L PFC  93+0.1 SB 
Fort Bend SH6 K PFC  682+0.75 SB 
Waller SH6 L PFC  628+1 NB 

Lubbock 

Crosby US 62 L CMHB-C  352+1.7 WB 
Floyd US 62 R CMHB-C  386+0.1 EB 

Garza SH207 K CMHB-F  254+1.7 SB 
US84 L CMHB-C  352+1.7 NB 

Lynn 
FM1317 K CMHB-F  296 +80' EB 
US380 K CMHB-C  320+1.7 EB 
US87 L CMHB-C  306+1-400' NB 

Terry US62 L Novachip   296+0.5+100' WB 

Odessa Ector IH20 R CMHB-F  117+0.7 EB 
Midland IH20 R PFC  147+0.5+400' EB 
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District County Highway Des. Mix Design TRM Dir. 

Paris 
Hopkins IH30 L PFC  134-.035 WB 

SH154 K Type D  674-0.74 NB 

San Antonio 

Bexar 
IH35 R PFC  168+0.8 NB 
SH16 R Type C  614 SB 
US90 R Type C  560+1.75 EB 

Wilson US181 R Novachip  518 SB 

Tyler 

Anderson US287 K Type D  604+0.1 NB 

Greg IH20 L Type D  580+0.7 WB 
Type C  591-200' WB 

Smith IH20 L Type C  550-500' WB 
Type C  557-500' WB 

Van Zandt IH20 L Type C  518-200' WB 

Waco 
Hill IH35 L SMA-D  358-200' SB 
McLennan SH6 L PFC  502-0.1 WB 

Wichita Falls 

Clay US287 K PFC  532+0.5 NB 
US287 L PFC  368 + 1.8 WB 

Wichita SH240 L PFC  470-0.85 NB 
SL473 K PFC  192-0.35 SB 

Yoakum 

Gonzales IH10 L PFC  636+0.2 WB 

Victoria 
US59 L Type C  632+60' NB 

US59 R PFC  632+0.5 SB 
PFC  634+120' SB 

Wharton US59 L Type C  562-550' NB 
US59 R PFC  560+1+260' SB 

Austin SH36 K Type D  612+1.5+200' SB 
 

Measurements were conducted in the outer lane, as the skid trailer measurements 

are typically performed on this lane in the case of multiple lanes. The outer lane 

experiences the most polishing because most truck traffic uses this lane. Measurements 

were done on the travel lane and shoulder. Because the shoulders are subjected to little or 

no traffic, skid resistance measurements were assumed to represent the initial skid 

measurements of travel lane.  

The DFT and CTMeter devices were positioned in the left wheel-path in all test 

sections because the skid number is measured by the trailer by locking the left wheel. Six 

locations were tested in each section. Two locations were at the shoulder and four 

locations were in the outer lane. Two DFT and six CTMeter readings were performed at 

TABLE 46  Continued 
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each location. The DFT and CTMeter measurements were conducted at the same exact 

locations following ASTM E 2157 and ASTM E 1911 procedures, respectively. FIGURE 

107 shows the layout of the measurement locations. During the testing, the research team 

avoided extreme cold ambient temperature or rain. Information about construction, 

traffic, and skid trailer measurement data was also collected. These sections did not 

include any surface treatments. Appendix D shows some examples of pavement texture 

measured by CTMeter and DFT during filed measurements.  

 

(a) 

 

 
 
 
 
 
 
 
 
 

                                  (b)                                                                        (c) 
FIGURE 107  Layout of the measurement section: (a) schematic of measurement plan; 

(b) CTMeter measurement; (c) DFT measurement. 
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Based on the AADT traffic information, the TMF on the test section was 

calculated. The following assumptions were made in calculating the TMF: 

 The number of vehicles is the same in both directions (AADT was divided by 

two). 

 The TxDOT-recommended traffic lane distribution factors, shown in TABLE 

47, are applicable for calculating the percent of traffic in the outer lane. 

 All vehicle types have the same polishing effect on the pavement surface. This 

assumption was employed because there is no published information available 

on the difference in polishing effects between trucks and passenger cars. 

 

TABLE 47  Lane Distribution Factor 

Total Number of Lanes in Both Directions Lane Distribution Factor 

Less than or equal to 4  1 

6 0.7 

Greater than or equal to 8 0.6 

 

ANALYSIS OF FIELD MEASUREMENTS 

 

This section presents the DFT and CTMeter results and a comparison between the 

frictional characteristics of field sections and the laboratory slabs that were tested in the 

laboratory phase of this study. The PIARC model was developed to express IFI as a 

function of DFT results obtained according to ASTM E 1911 (Equation 13) and skid 

number obtained by a skid trailer with a smooth tire according to ASTM E 274 

(Equation 14) (167). The Sp value in these two equations is a function of MPD (see 

Equation 15), which is obtained using the CTMeter device: 

        (13) 

PS
eSNIFI

20

)50(01.0925.0045.0        (14) 
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40

20732.0081.0
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         (15) 

The measured range of the MPD values using the CTMeter for selected pavement 

sections was quite wide (from 0.32 mm to 2.65 mm). FIGURE 108 shows the mean MPD 

values measured at the shoulder for the different mixes, with the PFC mixes having 

higher MPD values compared with Type C and Type D mixes. Type D mixes had the 

lowest MPD values because the gradation used in this mix is finer than the other mixes. 

Higher macrotexture mixes allow water to drain quickly from the tire-pavement interface 

and increases the skid resistance at higher speeds. The porous nature of PFC surface also 

expedites the drainage of water from the surface.  

 

 
FIGURE 108  Measured MPD values for different mix types. 

 
 

MPDSP 7.892.14 
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FIGURE 109 shows very high scatter in the relationship between measured skid 

number and MPD. The results indicate that there is no direct relationship between MPD 

and measured skid number. 

 

 
FIGURE 109  Mean profile depth vs. measured skid number. 

 

FIGURE 110 shows the mean DFT20 for the different aggregate types used in 

constructing pavement sections. Dynamic friction measured at 20 km/h measured by DFT 

is a measure of microtexture. FIGURE 110 illustrates that the initial microtexture level 

depends on aggregate type. Moreover, sandstone has a very high microtexture compared 

to other aggregate types. The microtexture of limestone aggregate is generally low. 

Because of the diversity of constituents included in the limestone aggregates used in this 

study, the variability of measured microtexture for this aggregate is high. FIGURE 110  
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FIGURE 110  Mean dynamic friction at 20 km/h for different aggregates. 

 

also shows that the combination of limestone with other aggregate types such as quartzite 

or traprock results in a higher microtexture. 

FIGURE 111 demonstrates the measured DFT20 values at different traffic levels 

for different aggregate types. Limestone aggregate rapidly loses its initial texture under 

the polishing effect of traffic. Other aggregate types such as sandstone, quartzite, and 

granite are able to maintain their initial texture. Moreover, mixing limestone with other 

aggregate types such as quartzite and granite can help this aggregate in maintaining the 

initial texture. 
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FIGURE 111  Mean dynamic friction at 20 km/h for different aggregate types. 

 

FIGURE 112 shows that there is high scatter in the relationship between dynamic 

friction at 20 km/h and measured skid value. This plot shows that the SN value has some 

correlation to the dynamic friction measured at 20 km/h. 
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FIGURE 112  Dynamic friction at 20 km/h vs. measured skid number for different mix 

types.  

 

SUMMARY 

 

This chapter presented the results of measuring pavement friction and texture 

analysis of 64 field sections using the DFT and CTMeter, respectively. The sections were 

selected such that they cover a wide range of material types and traffic conditions and, 

more importantly, included some of the mixtures that were tested in the laboratory.  

The results of the macrotexture measurements by CTMeter showed that the PFC 

mixes had higher MPD values compared with other mixes. Type D had the lowest MPD 

values due to its finer gradation.  
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The DF20 value, which is an indication of microtexture, revealed that the initial 

pavement microtexture depended on aggregate type. Mixes containing sandstone 

aggregate had higher initial microtexture compared to other aggregate types such as 

limestone. The rate of polishing was also found to be a function of aggregate type. For 

example, limestone aggregate had a high rate of polishing, but sandstone and granite 

could maintain their initial texture over time. Aggregate combinations were found to help 

with maintaining the overall pavement friction. For example, a combination of sandstone 

and limestone functions considerably better than limestone alone. 

The results illustrated that there was no correlation between the MPD values and 

measured skid number. The results also indicated that there was a fair correlation 

between DF20 and measured skid number for all mixes. The next chapter describes the 

method to combine the result of the laboratory measurements and field measurements to 

develop a model for asphalt pavement skid number. 

. 
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CHAPTER VIII  

A MODEL FOR PREDICTING SKID NUMBER 

OF ASPHALT PAVEMENTS 

 

INTRODUCTION 

 

The results of laboratory and field measurements of this study have shown that 

the influence of a certain aggregate type on mixture skid resistance depends on the 

mixture design. Therefore, a method is presented in this chapter to predict the skid 

number of asphalt pavements as a function of traffic based on aggregate characteristics 

and mix design. This system will be very valuable for selecting the optimum combination 

of aggregate type and mixture design in order to achieve the desired level of skid 

resistance. Some of the equations presented previously in this dissertation are also 

included in this chapter in order to present a complete procedure for predicting the field 

skid number without having to refer to equations presented in other chapters. 

 

DEVELOPMENT OF THE SYSTEM FOR PREDICTING SKID NUMBER 

 

As discussed in Chapter V of this dissertation, a method was developed during the 

laboratory phase for predicting IFI as a function of number of loading cycles (N) using 

the NCAT polishing device. As shown in Equations 16 to 20, the parameters of the 

relationship of IFI versus N are dependent on aggregate texture measurements from 

AIMS before and after polishing in the Micro-Deval and aggregate gradation. 

 

IFI (N) = amix + bmix·exp(-cmix·N)       (16) 

F(x;κ,λ) = 1- exp[(-x/λ)
κ]        (17) 

            

           (18) 
 2

0013.0936.118

422.18

AMD
amix
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   8619.010985.410846.510656.5ln4984.0 224   aggaggmixmix baba  
           (19) 

       (20) 

where:  

amix = terminal IFI value for the mix; 

amix + bmix = initial IFI value for the mix; 

cmix = rate of change in IFI for the mix; 

AMD = aggregate texture after Micro-Deval; 

aagg + bagg = aggregate initial texture using texture model; 

cagg = aggregate texture rate of change using texture model; 

k-value = shape factor of Weibull distribution used to describe aggregate gradation; and 

λ-value = scale factor of Weibull distribution used to describe aggregate gradation. 

The aagg + bagg and cagg are obtained from measuring aggregate texture after 105-

and 180-min time intervals of polishing in the Micro-Deval. It would be desirable to 

predict these values from only two texture measurements of aggregates using AIMS 

before Micro-Deval (BMD) and after Micro-Deval (AMD) polishing for 105 min, which 

is the standard time currently used by TxDOT. For this purpose, nonlinear regression 

analysis was used to examine the possibility of predicting aagg, bagg, and cagg from AMD 

and BMD texture. A total of nine aggregate samples were used in this regression analysis. 

Moreover, these samples were part of a database of AIMS measurements of aggregates in 

the laboratory phase combined with three other aggregate sources. Equations 21 through 

23 can be used to determine the texture model coefficients: 

 
20.983 5.258 0.98agg agga b BMD R         (21) 

 
20.811 4.258 0.94agga AMD R        (22) 

 
2 0.74agg

A TL
c R

B C ARI


 

 
     (23) 

where BMD and AMD are the AIMS texture indices measured before and after Micro-

Deval polishing of aggregates, respectively. A, B, and C are regression constants and 
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have the value of −0.357, 20.18, and −23.676, respectively. TL and ARI are texture loss 

and aggregate roughness index, respectively, and are defined as: 

 
BMD AMD

TL
AMD


           (23a) 

 
2

1

AMD
BMDARI

AMD
BMD





         (23b) 

 

The polishing rate (cmix) and the terminal friction value (amix) of an asphalt 

mixture can be determined using Equations 21 to 23 along with Equations 18 and 20. 

Because the scale and shape parameter (λ and κ) of the Weibull cumulative distribution 

function are also required in Equations 18 and 20, a nonlinear regression analysis can be 

used. Eight Texas mix designs were included in this analysis, as shown in TABLE 48. 

The gradation boundaries for these mix designs were extracted from the TxDOT 

specification manual, and the scale and shape parameter (λ and κ) of the cumulative 

Weibull distribution was calculated using the SOLVER function of Microsoft® Excel. For 

most cases, the coefficient of determination of the regression was more than 0.95. 

 

TABLE 48  Calculated Scale and Shape Factors for Different Mixes 

Mix Design Scale Parameter λ Shape Parameter κ 
Type C 5.605 0.830 
Type D 4.052 0.864 
PFC 10.054 3.954 
SMA_D 9.201 1.494 
Crack Attenuating Mixture (CAM) 3.168 1.000 
SMA_C 9.431 1.276 
CMHB_C 8.578 1.077 
CMHB_F 5.574 1.415 

 

Next, the results of the laboratory measurements and field measurements were 

used to develop a relationship between laboratory polishing and field polishing in terms 

of the number of polishing cycles in the laboratory (N) and TMF. Equation 16 was 
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developed for predicting the IFI values in a mixture as a function of N (number of the 

cycles in terms of thousands of cycles in the NCAT polishing device). Based on the 

measured DF20 values and macrotexture measurements by the CTMeter, the IFI values 

were determined for each section using Equations 13 and 15 for each pavement section. 
Then, Equation 16 was used to determine the N value that would give the same 

IFI that is calculated using Equation 13. The coefficients amix, bmix, and cmix that were 

substituted in Equation 16 were for the same mixtures that were tested in the field. A 

statistical analysis was performed to determine the outliers that were removed from the 

analysis. A non-linear regression analysis was performed to find the relationship between 

TMF and number of polishing cycles (N), as in Equation 24 and Figure 29. 
1

210 0.74
mix

mix

C
A B c

c
N TMF R

  

        (24) 

where A, B, and C are regression coefficients and have the values of −0.452, −58.95, and 

5.834 × 10-6, respectively. The relationship between N and TMF is not only a function of 

traffic but also a function of mixture polishing characteristics denoted as the rate of 

change in IFI (cmix) in Equation 24. FIGURE 113 shows the relationship between the 

measured and calculated number of polishing cycles. The proposed equation has a high 

R-squared value and can be used to estimate the variation of IFI in the field in terms of 

TMF. 
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FIGURE 113  TMF vs. number of polishing cycles. 

 

The last step in the analysis was to predict the SN value given the IFI. In order to 

obtain the relationship between measured skid resistance by the skid trailer and 

DFT/CTMeter combination, the PIARC procedure for finding the IFI value was used and 

the IFI values were calculated via DFT, CTMeter, and skid number using Equations 13 to 

15. 

In principle, Equations 13 and 14 should give the same value for the IFI. 

Therefore, IFI calculated from Equation 13 can be substituted in Equation 14 to find the 

SN(50). As illustrated in FIGURE 114, the measured value of SN by the skid trailer is 

greater than the calculated value using the PIARC equation (167). The R-squared value 

for the relation is 0.76 and is relatively high. There are two main factors that could 

explain this difference between SN(50) obtained from Equation 14 and measured values. 

The first is the propagation of errors. Error is present in the PIARC regression equation 

and is propagated during the mathematical manipulation required to back-calculate the 

SN. The second factor is experimental error. Each friction measuring device will generate 

some experimental error due to the equipment design and human factors and different 
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simplifying assumptions made in this research. The presence of these errors could 

account for the differences between the measured and calculated SN.  

Based on the relationship between measured and calculated SN values, 

Equation 14 was modified to account for the difference between calculated and measured 

skid numbers. Equation 25 shows the modified form of Equation 14 to predict the field 

skid number: 

 

20

(50) 1.41 143.19 0.045 P
S

SN IFI e



        (25) 

 
FIGURE 114  Measured skid number vs. calculated skid number using PIARC equation. 

 

FIGURE 115  shows the measured and calculated skid number values using the 

modified PIARC equation (Equation 25). The calculated and measured values are 

relatively close, and the modified equation can be used to predict the measured skid 

number. 
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FIGURE 115  Measured skid number vs. calculated skid number using modified PIARC 

equation. 

 

Equation 25 includes the Sp value, which is a function of MPD. Macrotexture, 

which is represented by MPD, is a function primarily of mixture gradation. Therefore, a 

nonlinear regression analysis was conducted to determine MPD as a function of the 

gradation parameters λ and κ. The best correction found between measured MPD and 

Equation 26 shows these gradation parameters. FIGURE 116 shows the relationship 

between measured and calculated MPD values. 

2

0 4

0.041
0.139 0.086 0.79MPD R 


        (26) 

where λ and κ are Weibull distribution function coefficients.  
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FIGURE 116  Relationship between measured and calculated MPD values. 

 

SENSITIVITY ANALYSIS OF PREDICTION SYSTEM 

 

The sensitivity analysis was conducted using several aggregate types and mixture 

designs. Aggregates were selected to represent a wide spectrum of texture values 

corresponding with the minimum, maximum, first quartile, second quartile, and third 

quartile of terminal texture (aagg) and polishing rate (cagg), as shown in Tables 49 and 50, 

respectively. 
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TABLE 49  Selected Aggregates Based on Terminal Texture 

Sample Quartile 
Terminal 
Texture 

amix 

Polish 
Rate 

Material 
Type Material Group 

1 Minimum 26.67 0.0233 
 

Crushed 
Limestone 3. LS-Dolomites 

2 1st 56.34 0.0094 
 

Crushed 
Limestone 3. LS-Dolomites 

3 Median 72.46 0.0145 
 

Crushed 
Limestone 3. LS-Dolomites 

4 3rd 92.43 0.0049 
 

Crushed 
Sandstone 2. Sandstone 

5 Maximum 216.34 0.0298 
 

Crushed 
LS Rock 
Asphalt 

6. Miscellaneous 

 

TABLE 50  Selected Aggregates Based on Polishing Rate 

Sample Quartile 
Polish 
Rate 
cmix 

Terminal 
Texture 

amix 

Aggregate 
Type 

TxDOT 
Aggregate  

Group 

6 Minimum 0.0001 84.55 
 

Crushed 
Sil. & LS 

Gravel 
4. Gravels 

7 1st 
Quarter 0.0182 216.34 

 

Crushed 
LS Rock 
Asphalt 

6. Miscellaneous 

8 Median 0.0227 109.58 
 

Crushed 
Limestone 3. LS-Dolomites 

9 3rd 
Quarter 0.0253 69.17 

 
Crushed 

Limestone 3. LS-Dolomites 

10 Maximum 0.0364 279.45 
Crushed 
LS Rock 
Asphalt 

6. Miscellaneous 

 

Using Equations 18 and 20, the terminal friction value and polish rate of change 

were calculated. FIGURE 117 shows the terminal friction values for different aggregates 

and mix designs. 
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FIGURE 117  Terminal friction values for different aggregates and mix designs. 

 

The PFC mixes have the highest terminal friction values. Stone mastic asphalt 

(SMA-C and SMA-D) and a coarse matrix high binder (CMHB-C) are the next mixes in 

the list. The terminal polish values of the Type C and CHMB-F mixes are almost the 

same. Type D mixes and crack attenuating mix (CAM) have the lowest terminal friction 

among all mixes. Among the aggregates, sample 10 and sample 5 have the highest 

terminal friction values. These values can be attributed to the high texture index after 

Micro-Deval. The difference among other aggregates is not significant. FIGURE 118 

shows the polishing rate for different aggregates. 

Given polishing rate and initial and terminal friction values, IFI can be calculated 

using Equations 16 and 24 as a function of TMF. For instance, Figures 119 and 120 

illustrate the IFI and SN values for sample 1. The SN values were calculated using 

Equation 23 as a function of TMF and are plotted in FIGURE 120. Figures 119 and 120 

indicate the use of the model to predict the variation of skid number as a function of 

traffic.  
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FIGURE 118  Polishing rate for different aggregates. 

 

 
FIGURE 119  IFI values as a function of TMF for sample 1. 
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FIGURE 120  SN values as a function of TMF for sample 1. 

 

RECOMMENDED SYSTEM FOR PREDICTING SKID NUMBER  

 

This chapter presented a system for predicting the skid number of asphalt 

mixtures. This system consists of the following steps: 

1. Measure aggregate texture using AIMS before Micro-Deval (Appendix C). 

2. Measure aggregate texture using AIMS after Micro-Deval (Appendix C). 

3. Calculate aagg + bagg using Equation 21. 

4. Calculate aagg Equation 22. 

5. Calculate TL using Equation 23a. 

6. Calculate ARI using Equation 23b. 

7. Calculate cagg using Equation 23. 

8. Determine the gradation parameters (λ and κ) from TABLE 48 or by fitting 

the cumulative Weibull function (Equation 17) to the gradation curve. 

9. Calculate amix using Equation 18. 
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10. Calculate amix + bmix using Equation 19. 

11. Calculate cmix using Equation 20. 

12. Calculate MPD using Equation 26. 

13. Calculate SP using Equation 15. 

14. Calculate IFI as a function of N using Equation 11. 

15. Calculate TMF in terms of N using Equation 24. 

16. Calculate SN using Equation 25. 

 

ILLUSTRATION OF AN AGGREGATE CLASSIFICATION SYSTEM BASED 

ON PROPOSED MODEL  

 

In this section, the model is used to illustrate the influence of aggregate 

characteristics and aggregate gradation on skid resistance. In addition, the results 

presented herein demonstrate how this model can be used to select the optimum 

aggregate characteristics and gradation such that the required skid resistance level is 

achieved given a certain traffic level. 

The analysis involved the use of four AADT/lane levels representing interstate, 

U.S. highway, state highway, and farm-to-market sections from the state of Texas. Four 

different mix types commonly used in the state of Texas were selected, and scale and 

shape parameters of the corresponding Weibull function were determined. The analysis 

utilized the texture characteristics of aggregates K, H, and M, as listed in TABLE 38. In 

order to facilitate the comparison between the various sections, the SN(50) values in 

TABLE 51 were used to classify the pavement sections after 5 years of service.  

 

TABLE 51  Skid Number Threshold Values after 5 Years of Service 

Aggregate 

Class 

SN Threshold Value 

High SN(50)>30 
Medium   21< SN(50) <29  

Low SN(50)<20 
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Table 8 shows the classification of the various pavement sections. All types of 

mixtures with aggregate H achieved high skid resistance (level H after 5 years) for all 

mixtures and all traffic levels. However, the performance of mixtures incorporating 

aggregates K and M was dependent on the mixture type and traffic level. Another 

observation is that PFC and SMA mixes with aggregate K maintained level H of skid 

resistance irrespective of the traffic level, while mixture M with the same aggregate 

experienced a reduction in skid resistance from H to M when the AADT/lane reached 

5800. These results clearly demonstrate how the proposed model provides flexibility for 

engineers to select an aggregate source and a mixture design that achieves the required 

skid number after a certain traffic level.  

 

TABLE 52  Aggregate Classification for Different Roads 

AADT/Lane 

Mix Type  

Type C Type D PFC SMA 

Aggregate K 
550 H L H H 
5800 M L H H 
16800 M L H H 
34000 M L H H 

Aggregate H 
550 H H H H 
5800 H H H H 
16800 H H H H 
34000 H H H H 

Aggregate M 
550 H M H H 
5800 M L H H 
16800 M L H H 
34000 M L M M 

 

SKID ANALYSIS OF ASPHALT PAVEMENTS (SAAP)  

 

A computer program was developed using Visual Basic programming language to 

execute the steps needed to calculate the skid resistance of asphalt pavements as a 
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function of traffic. This section describes the program and the steps needed to be taken in 

order to calculate the pavement skid resistance. 

First window (see FIGURE 121) shows the software credentials. In the second 

step (see FIGURE 122), the mixture gradation is input in the software. The user can 

either enter the gradation or select one of the standard mixture gradations used in the 

Texas. If the user chooses to manually enter gradation by clicking on the <input 

gradation> button, a window pops up (see FIGURE 123) where the amount of percent 

passing for selected sieves is entered. The user can select any number of sieves and enter 

the percent passing values for each selected sieve. 

 

 
FIGURE 121  Initial window of the program. 
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FIGURE 122  Aggregate gradation input window. 

 

 

FIGURE 123  Manual aggregate gradation window.  
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In the next step, the aggregate texture values measured using AIMS are entered 

(see FIGURE 124). Here, the user has the option to input either the texture measured at  

two points (before and after polishing for 105 min in the Micro-Deval) or the texture 

measured at three points (before polishing, after polishing for 105 min and 180 min in the 

Micro-Deval; see FIGURE 125). The use of three data points provides more accurate 

estimation of aggregate resistance to polishing. This step as shown in Figures 126 and 

127 will be followed by windows to enter the texture data of aggregates from one or more 

sources. The user can select up to three aggregate sources used in the mixture. As shown 

in Figures 22 and 23, users can input the texture value of component aggregate sources.  

 

 
FIGURE 124  AIMS texture data input window.  
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FIGURE 125  Texture data points selection window.  

 

 
FIGURE 126  Two-point texture measurement input window. 
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FIGURE 127  Three-point texture measurement input window. 

 

By clicking on the <Next > button, the MPD value is entered or calculated (see 

FIGURE 128). The MPD value can be either entered by the user if the user has the 

measured the MPD value for that particular mix or estimated by the software based on 

gradation. The following step is when the user inputs the traffic data. In this step, users 

enter the information about the highway type, total number of through traffic lanes, total 

AADT for both directions, and percent truck traffic (see FIGURE 129). 
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FIGURE 128  MPD value input window. 

 

 
FIGURE 129  Traffic data input window. 
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The next step in the software provides the options on how the user wants to see 

the output. One option is to obtain a prediction of skid resistance as a function of years in 

service; the other option is to get a classification of the pavement section based on its skid 

resistance after a specified number of years (see FIGURE 130).  

 

 
FIGURE 130  Analysis type window. 

 

If the user chooses <Skid Resistance Prediction Model>, the software will provide 

a plot of skid number over the service life (see FIGURE 131). If the user selects the 

<Aggregate Classification>, a window pops up in which the user needs to input some 

additional information used for pavement classification (see FIGURE 132). These input 

parameters are the number of years in service based on which pavement section is 

classified, and the skid resistance thresholds based on which pavement section will be 

classified (see FIGURE 132). The first threshold value is the acceptable skid number 

above which the designer is not concerned. The second threshold value is the skid 

number above which (but below the acceptable value) one should monitor the surface 
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condition more frequently and below which one should take corrective measures to 

restore surface friction. 

After clicking on the <Set> button, a window with the pavement classification 

will be presented (see FIGURE 133). Depending on the predicted skid number at the end 

of service life and designer selected threshold values, the pavement is classified as high, 

medium, or low. By clicking on the <Finish> button, the program will be terminated and 

Microsoft® Excel will be closed. 

 

 
FIGURE 131  A sample plot of skid number over the service years. 
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FIGURE 132  Classification value setting window. 

 

 
FIGURE 133  Classification sample. 
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SUMMARY 

 

This chapter explained the details of the development of a model for predicting 

pavement skid resistance. The laboratory results led to development of a pavement 

prediction model as a function of polishing cycles caused by the NCAT polishing 

machine. The results of the field measurements confirmed the laboratory findings in 

which the aggregate texture characteristics and mix type were proved to be significant 

factors in pavement friction. Statistical analysis was performed and the relationship 

between traffic and the NCAT polishing machine was established. It was found that the 

correlation between the NCAT polishing cycles and traffic depends on mix type as well. 

Based on the findings of the laboratory and field measurements, a simple 

procedure for obtaining components of the pavement friction prediction model was 

presented. This procedure involves measuring the aggregate texture before and after 

Micro-Deval by AIMS, calculating the coefficients of the Weibull cumulative 

distribution function from gradation data, and calculating the pavement macrotexture 

using the mix gradation parameters.  

The prediction model was used to classify aggregates based on their frictional 

performance. Furthermore, a design service life was considered and the pavement skid 

resistance in terms of skid number was predicted. Based on the predicted skid number 

and some threshold values, the performance of the aggregate was rated. 

In order to facilitate analyzing the data, a user-friendly software was developed in 

this study. In this software, the user is able to input aggregate and gradation data and 

obtain the prediction curve and aggregate classification. The user can input aggregate 

gradation or select some conventional mixes from a list or input different aggregate 

combinations and study the effect of combinations on predicted skid resistance.  
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CHAPTER IX  

CONCLUSIONS AND RECOMMENDATIONS 

 

CONCLUSIONS 

 
The main outcome of this study was the development of a model to predict the 

skid number of asphalt mixtures as a function of traffic level.  This model requires input 

parameters that can be easily obtained.  These input parameters are aggregate texture 

measured using AIMS before Micro-Deval polishing, aggregate texture measured using 

AIMS after Micro-Deval polishing, and aggregate gradation. 

A computer program was developed using Visual Basic programming language to 

execute the steps needed to calculate the skid resistance of asphalt pavements as a 

function of traffic. This software can be used to estimate the skid number of a pavement 

section over the service years. Different combination of aggregates and mix types can be 

evaluated to obtain the optimum mix design that meets the safety requirements of the 

pavement surface. This software can also be used to plan the maintenance and 

rehabilitation measures to keep the pavement friction above an acceptable limit.   

In addition to this main contribution of the dissertation, the following are some 

specific findings from the laboratory experimental measurements:    

 Statistical analysis of the laboratory Sand Patch test results did not show any 

significant differences between Mean Texture Depth (MTD) values before and 

after polishing. Hence, it was concluded that the sand patch test was not able to 

detect changes in macrotexture due to polishing with the selected polishing 

device.  

 The British Pendulum (BP) values obtained in the laboratory decreased with an 

increase in polishing cycles for all mixtures except those containing Brownlee 

aggregate. For Brownlee aggregate, the BP values remained almost constant. The 

BP values of PFC mixes were generally higher than those for Type C mixes. In 

addition, the frictional characteristics of some aggregates varied depending on the 

mix in which the aggregate was used. For example, the PFC and Type C mixes 
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with Brownwood aggregate had similar BP values at a low number of polishing 

cycles. However, the PFC mixes with Brownwood aggregate had higher BP 

values than corresponding Type C mixes at a high number of polishing cycles.  

 Statistical analysis showed that the British Pendulum test was not able to detect 

the difference between frictional performances of mixtures incorporating 

aggregates with known differences in frictional characteristics.  

 The results of dynamic friction measurements at 20 km/h (DF20) showed that DF20 

decreased as polishing cycles increased. The DF20 curves leveled off and reached 

a terminal value after a certain number of polishing cycles. Analysis of the 

measured DF20 values showed that there was a significant difference in the 

measured friction at different numbers of polishing cycles for Type C mixes. In 

contrast, the magnitude of dynamic friction in PFC mixes did not have a 

significant difference between polishing cycles. The results also revealed that the 

PFC mix has a higher friction value than the Type C mix. 

 Comparing the rate of change and terminal values of F60 for mixtures with 

different aggregates revealed that in all cases the Brownlee aggregate had the 

highest terminal values and lowest rate of change in both Type C and PFC mixes. 

In contrast, mixes containing Beckman and Brownwood aggregates had the 

lowest terminal values and highest rates of change. 

The following are some specific findings from the field measurements: 

 In order to account for the influence of traffic on the skid resistance of pavement 

sections, a single factor denoted as Traffic Multiplication factor (TMF) was 

defined.  This factor is the multiplication of AADT in the design lane and years in 

service divided by 1000. As such, TMF considers both traffic level and years of 

operation. The results of the field data analysis showed that the measured skid 

number decreased as TMF increased.  The measured skid numbers had less 

variation at higher TMF levels. This phenomenon could be attributed to mixtures 

reaching close to a terminal skid condition that is associated with aggregates 

approaching their equilibrium (or terminal) state of texture after a high number of 

polishing or loading cycles. 
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 The field measurements showed that surface treatments generally had higher skid 

numbers than Type C mixes, which is a conventional dense graded mix. 

Additionally, PFC mixes exhibited better skid resistance than Type C mixes and 

surface treatment mixes. The results showed the PFC mixes had the lowest 

variation in skid number, while surface treatment mixes had the highest 

variability. 

 It is very difficult to classify aggregates without specifying mixture type in which 

they are used.  Some aggregate types performed poorly in certain mixtures, while 

their performance was acceptable in other mixtures. 

 There was no correlation between the Mean Profile Depth (MPD) values obtained 

from CTMeter and measured skid number. However, the results also indicated 

that there was a fair correlation between friction and measured skid number for all 

mixes 

 

RECOMMENDATIONS 

 

The system that was developed in this study is very promising and has been 

verified using the data collected in this study. Although extensive field testing on HMA 

surfaces was conducted, the evaluation of surface treatment skid resistance was limited to 

the analyses of corresponding data from the PMIS database. There is a need for further 

testing so that the HMA asphalt prediction model can be tailored to the skid prediction 

model of surface treatments. There is also a need for validation of the skid prediction 

model to a wide variety of conditions and for more asphalt mixtures types.  

The developed model uses a simple parameter to account for the influence of 

traffic on the skid resistance. This parameter describes only the number of traffic loading 

in the outer lane of the pavement without making a distinction between different traffic 

categories. An analysis is needed to evaluate the influence of traffic distribution on skid 

number and subsequent assessment of developing a new method for including the 

influence of traffic and its distribution on skid resistance. 
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This study primarily focused on developing skid prediction of HMA surface 

mixes. The prediction model should be modified so that it can also be applied for surface 

treatments. Using the data from testing on surface treatments, the necessary adjustments 

in the model and the software can be made to accommodate the method to be used for 

surface treatments.  

It is recommended that a rational method for setting the acceptable values of skid 

resistance based on climatic data and pavement geometry be developed. This can be 

achieved by studying the relationship between accident data, skid resistance, climatic 

data, and pavement and highway geometry.  
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TABLE 53  Mix Design for Brownwood Aggregate and Type C Mixture 

Aggregate  
Source 

Vulcan 
Total  

Cumulative  
Pass % 

TxDOT 
Specs. 

Brownwood Brownwood Brownwood Brownwood 
C-Rock DF M-Sand Field Sand 

Sieve Size 
Bin #1 Total Bin #2 Total Bin #3 Total Bin #4 Total 
26.0 % 32.0 % 32.0 % 10.0 % 

1" 100.0 26.0 100.0 32.0 100.0 32.0 100.0 10.0 100.0   
7/8" 100.0 26.0 100.0 32.0 100.0 32.0 100.0 10.0 100.0 98 100 
5/8" 95.0 24.7 100.0 32.0 100.0 32.0 100.0 10.0 98.7 95 100 
3/8" 15.5 4.0 98.5 31.5 100.0 32.0 100.0 10.0 77.5 70 85 
#4 0.8 0.2 40.0 12.8 99.0 31.7 100.0 10.0 54.7 43 63 
#10 0.4 0.1 5.0 1.6 79.5 25.4 100.0 10.0 37.1 30 40 
#40 0.3 0.1 0.8 0.3 23.2 7.4 96.0 9.6 17.4 10 25 
#80 0.3 0.1 0.4 0.1 6.6 2.1 35.0 3.5 5.8 3 13 
#200 0.1 0.0 0.3 0.1 1.8 0.6 8.8 0.9 1.6 1 6 
Pan            

Optimum Asphalt Content 5.20%      
Asphalt Source & Grade Koch Pav Solutions 76-22      
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TABLE 54  Mix Design for Beckman Aggregate and Type C Mixture 

Aggregate  
Source 

Beckman 
Total 

Cumulative 
Pass % 

TxDOT 
Specs. 

3/4"-5/8" 5/8"-1/2" 3/8"-1/4" Grade 10 Mfg Sand W. Poteet 
Sand 

Sieve  
Size 

Bin 
#1 

Total Bin 
#2 

Total Bin 
#3 

Total Bin 
#4 

Total Bin 
#5 

Total Bin 
#6 

Total 

20.0 % 19.0 % 13.0 % 10.0 % 28.0 % 10.0 % 100.0% 
1" 100.0 20.0 100.0 19.0 100.0 13.0 100.0 10.0 100.0 28.0 100.0 10.0 100.0 100 100 

3/4" 94.6 18.9 100.0 19.0 100.0 13.0 100.0 10.0 100.0 28.0 100.0 10.0 98.9 95 100 
3/8" 3.8 0.8 58.1 11.0 100.0 13.0 100.0 10.0 100.0 28.0 100.0 10.0 72.8 70 85 
# 4 1.1 0.2 3.6 0.7 26.0 3.4 84.0 8.4 99.9 28.0 100.0 10.0 50.7 43 63 
# 8 1.1 0.2 2.8 0.5 14.7 1.9 2.0 0.2 85.6 24.0 99.8 10.0 36.8 32 44 
# 30 1.0 0.2 1.7 0.3 2.8 0.4 2.0 0.2 32.9 9.2 88.0 8.8 19.1 14 28 
# 50 1.0 0.2 1.5 0.3 2.0 0.3 1.7 0.2 18.6 5.2 52.2 5.2 11.3 7 21 
# 200 0.7 0.1 1.3 0.2 1.6 0.2 1.5 0.2 8.6 2.4 1.6 0.2 3.3 1 6 
Pan  0.0  0.0  0.0  0.0  0.0  0.0 0.0   

Optimum Asphalt Content 4.5%     
Asphalt Source & Grade Valero PG 76-22       
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TABLE 55  Mix Design for 50 Percent Brownlee + 50 Percent Beckman Aggregate and Type C Mixture 

Aggregate  
Source 

Delta Materials Beckman 
Total 

Cumulative 
Pass % 

TxDOT 
Specs. 

Type C Type D 3/4"-5/8" 3/8"-1/4" Mfg Sand Washed 
Poteet Sand 

Sieve 
Size 

Bin 
#1 Total Bin 

#2 Total Bin 
#3 Total Bin 

#4 Total Bin 
#5 Total Bin 

#6 Total 

9.0 % 19.0 % 8.0 % 22.0 % 27.0 % 15.0 % 100.0% 
7/8" 100.0 9.0 100.0 19.0 100.0 8.0 100.0 22.0 100.0 27.0 100.0 15.0 100.0 98 100 
5/8" 96.6 8.7 100.0 19.0 89.2 7.1 100.0 22.0 100.0 27.0 100.0 15.0 98.8 95 100 
3/8" 3.8 0.3 70.9 13.5 3.8 0.3 100.0 22.0 100.0 27.0 100.0 15.0 78.1 70 85 
# 4 1.5 0.1 16.3 3.1 1.1 0.1 26.0 5.7 99.9 27.0 100.0 15.0 51.0 43 63 
# 10 1.0 0.1 4.0 0.8 1.0 0.1 3.4 0.7 70.9 19.1 99.6 14.9 35.7 30 40 
# 40 0.7 0.1 2.3 0.4 1.0 0.1 2.1 0.5 25.0 6.8 69.2 10.4 18.3 10 25 
# 80 0.6 0.1 1.8 0.3 0.9 0.1 1.9 0.4 13.1 3.5 14.4 2.2 6.6 3 13 
# 200 0.4 0.0 1.1 0.2 0.7 0.1 1.6 0.4 8.6 2.3 1.6 0.2 3.2 1 6 
Pan  0.0  0.0  0.0  0.0  0.0  0.0 0.0   

Optimum Asphalt Content 4.7%          
Asphalt Source & Grade Valero PG 76-22        
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TABLE 56  Mix Design for Brownlee Aggregate and Type C Mixture 

Aggregate  
Source 

Delta Materials Capitol-GT RTI-N TXI 
Total 

Cumulative 
Pass % 

TxDOT 
Specs. 

Delta C D-Rock F-Rock Dry Screenings Washed 
Screening Field Sand 

Sieve 
Size 

Bin 
#1 Total Bin 

#2 Total Bin 
#3 Total Bin 

#4 Total Bin 
#5 Total Bin 

#6 Total 

24.0 % 27.0 % 5.0 % 9.0 % 23.0 % 12.0 % 100.0% 
7/8" 100.0 24.0 100.0 27.0 100.0 5.0 100.0 9.0 100.0 23.0 100.0 12.0 100.0 98 100 
5/8" 95.6 22.9 100.0 27.0 100.0 5.0 100.0 9.0 100.0 23.0 100.0 12.0 98.9 95 100 
3/8" 3.8 0.9 88.4 23.9 100.0 5.0 100.0 9.0 100.0 23.0 100.0 12.0 73.8 70 85 
#4 3.7 0.9 37.6 10.2 73.2 3.7 99.8 9.0 98.7 22.7 100.0 12.0 58.4 43 63 
#10 3.6 0.9 4.4 1.2 10.2 0.5 80.7 7.3 46.6 10.7 100.0 12.0 32.5 30 40 
#40 3.5 0.8 0.7 0.2 2.2 0.1 49.6 4.5 17.4 4.0 87.2 10.5 20.1 10 25 
#80 3.4 0.8 0.6 0.2 1.7 0.1 36.4 3.3 11.0 2.5 28.7 3.4 10.3 3 13 
#200 3.3 0.8 0.4 0.1 1.1 0.1 27.6 2.5 4.7 1.1 6.0 0.7 5.2 1 6 
Pan  0.0  0.0  0.0  0.0  0.0  0.0 0.0   

Optimum Asphalt Content 4.50%          
Asphalt Source & Grade Fina or Valero PG 76-22        
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TABLE 57  Mix Design for Fordyce Aggregate and Type C Mixture 

Aggregate  
Source 

Fordyce C  Fordyce D/F 
Fordyce Man 

Sand 

Cl Mt 
Limestone 
Screening 

Austin White 
Total 

Cumulative 
Pass % 

TxDOT 
Specs. 

1323505 1323505 1323505 1504605 Lime 

Sieve 
Size 

Bin 
#1 Total Bin 

#2 Total Bin 
#3 Total Bin 

#4 Total Bin 
#5 Total 

18.0 % 57.0 % 10.0 % 14.0 % 1.0 % 
1" 100.0 18.0 100.0 57.0 100.0 10.0 100.0 14.0 100.0 1.0 100.0   

3/4" 100.0 18.0 100.0 57.0 100.0 10.0 100.0 14.0 100.0 1.0 100.0 98 100 
1/2" 70.0 12.6 100.0 57.0 100.0 10.0 100.0 14.0 100.0 1.0 94.6 90 100 
3/8" 10.0 1.8 95.0 54.2 100.0 10.0 100.0 14.0 100.0 1.0 81.0 70 95 
# 4 5.0 0.9 50.0 28.5 100.0 10.0 100.0 14.0 100.0 1.0 54.4 43 63 
# 8 3.0 0.5 15.0 8.6 99.0 9.9 92.0 12.9 100.0 1.0 32.9 32 44 
# 30 2.0 0.4 4.0 2.3 49.0 4.9 54.0 7.6 100.0 1.0 16.2 14 28 
# 50 1.5 0.3 3.0 1.7 23.0 2.3 41.0 5.7 100.0 1.0 11.0 7 21 
# 200 0.5 0.1 1.0 0.6 3.0 0.3 25.0 3.5 100.0 1.0 5.5 1 6 
Pan              

Optimum Asphalt Content 4.50%        
Asphalt Source & Grade 

 Eagle PG 76-22        
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TABLE 58  Mix Design for El Paso Aggregate Type C and PFC Mixtures 

Property 
Mixture Type 

Superpave-C PFC 

Binder Grade PG 76-22 
Binder Content,% 4.8 6.6 

Sieve Size, 
inch (Sieve No.)  

1 1" 100 100 
0.75 3/4" 99 100 
0.492 1/2" 95 90 
0.375 3/8" 92.5 47.5 
0.187 # 4 77.5 10.5 
0.0929 # 8 43 5.5 
0.0469 # 16 30 5 
0.0234 # 30 - 4.5 
0.0117 # 50 - 3.5 
0.0029 # 200 6 2.5 
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TABLE 59  Mix Design for Brownlee Aggregate and PFC Mixture 

Aggregate  
Source 

Delta Capitol Austin White Total 
Cumulative 

Pass % 
TxDOT 
Specs. 

C-Rock GR. 4 F-Rock Lime 
Sieve Bin #1 Total Bin #2 Total Bin #3 Total Bin #4 Total 
Size 21.0 % 68.0 % 10.0 % 1.0 % 100% 
3/4" 100.0 21.0 100.0 68.0 100.0 10.0 100.0 1.0 100.0  100 
1/2" 58.2 12.2 98.7 67.1 100.0 10.0 100.0 1.0 90.3 90 100 
3/8" 19.1 4.0 65.4 44.5 100.0 10.0 100.0 1.0 59.5 35 60 
# 4 2.0 0.4 2.2 1.5 84.5 8.5 100.0 1.0 11.4 10 25 
# 8 1.5 0.3 1.8 1.2 29.1 2.9 100.0 1.0 5.4 5 10 

# 200 0.5 0.1 1.3 0.9 2.3 0.2 100.0 1.0 2.2 1 4 
Pan            

Optimum Asphalt Content 6.0%      
Asphalt Source & Grade Marlin PG 76-22S      
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TABLE 60  Mix Design for Beckman Aggregate and PFC Mixture 

Aggregate  
Source 

Beckman Austin White 
Hi-tech Fibers Total 

Cumulative 
Pass % 

TxDOT 
Specs. 

C-Rock D-Rock Lime 
Sieve Bin #1 Total Bin #2 Total Bin #3 Total Bin #4 Total 
Size 32.7 % 66.0 % 1.0 % 0.3 % 100.0% 
3/4" 100.0 32.7 100.0 66.0 100.0 1.0 100.0 0.3 100.0 100 100 
1/2" 54.1 17.7 99.3 65.5 100.0 1.0 100.0 0.3 84.5 80 100 
3/8" 4.0 1.3 76.0 50.2 100.0 1.0 100.0 0.3 52.8 35 60 
# 4 1.1 0.4 7.5 5.0 100.0 1.0 100.0 0.3 6.6 1 20 
# 8 1.0 0.3 3.9 2.6 100.0 1.0 100.0 0.3 4.2 1 10 

# 200 0.4 0.1 1.4 0.9 100.0 1.0 100.0 0.3 2.4 1 4 
Pan  0.0  0.0  0.0  0.0 0.0   

Optimum Asphalt Content 6.0%     

Asphalt Source & Grade Marlin PG 76-22S     
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TABLE 61  Mix Design for Brownwood Aggregate and PFC Mixture 

Aggregate  
Source 

Vulcan BWD Total 
Cumulative 

Pass % 

TxDOT Specs. 
Grade 4 

Sieve Bin#1 Total 
Size 100.0 Percent 100.0% 
3/4" 100.0 100.0 100.0 100 100 
1/2" 99.2 99.2 99.2 95 100 
3/8" 69.7 69.7 69.7 50 80 
# 4 2.0 2.0 2.0 0 8 
# 8 0.7 0.7 0.7 0 4 

# 200 0.1 0.1 0.1 0 4 
Optimum Asphalt Content 6.40% 
Asphalt Source & Grade Valero 76-22 
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TABLE 62  Mix Design for Beckman Aggregate and Type D Mixture 

Aggregate  
Source 

Beckman Total 
Cumulati
ve Pass 

% 
TxDOT 
Specs. 

1/2"-3/8" 3/8"-1/4" Grade 10 Mfg Sand/LSF W. Poteet 
Sand 

Sieve Size Bin 
#1 

Total Bin 
#2 

Total Bin 
#3 

Total Bin 
#4 

Total Bin 
#5 

Total 

9 % 34 % 20 % 22 % 15 % 100% 

3/4" 100 9 100 34 100 20 100 22 100 15 100 100 100 
1/2" 100 9 100 34 100 20 100 22 100 15 100 98 100 
3/8" 66 5.94 100 34 100 20 100 22 100 15 96.94 85 100 
# 4 4.7 0.423 26 8.84 84 16.8 99.9 21.978 100 15 63.041 50 70 
# 8 3.8 0.342 14.7 4.998 2 0.4 85.6 18.832 99.8 14.97 39.542 35 46 
# 30 2.7 0.243 2.8 0.952 2 0.4 32.9 7.238 88 13.2 22.033 15 29 
# 50 2.4 0.216 2 0.68 1.7 0.34 18.6 4.092 52.2 7.83 13.158 7 20 
# 200 2.1 0.189 1.6 0.544 1.5 0.3 8.6 1.892 1.6 0.24 3.165 2 7 
Pan  0  0  0  0  0 0   

Optimum Asphalt Content 4.7        
Asphalt Source & Grade Valero PG 64-22        
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TABLE 63  Mix Design for Brownlee Aggregate and Type D Mixture 

Aggregate  
Source 

Delta Capitol-GT Brownlee RTI-N TXI 
Total 

Cumulative 
Pass % TxDOT 

Specs. 

D-Rock F-Rock Grade #4 Dry 
Screenings 

Washed 
Screening Field Sand 

Sieve 
Size 

Bin 
#1 Total Bin 

#2 Total Bin 
#3 Total Bin 

#4 Total Bin 
#5 Total Bin 

#6 Total 

50.0 % 10.0 % 7.0 % 0.0 % 21.0 % 12.0 % 100.0 

7/8" 100.0 50.0 100.0 10.0 100.0 7.0 100.0 0.0 100.0 21.0 100.0 12.0 100.0 100 100 
5/8" 100.0 50.0 100.0 10.0 100.0 7.0 100.0 0.0 100.0 21.0 100.0 12.0 100.0 98 100 
3/8" 79.9 40.0 100.0 10.0 60.0 4.2 100.0 0.0 100.0 21.0 100.0 12.0 87.2 85 100 
# 4 40.3 20.1 77.9 7.8 10.4 0.7 97.5 0.0 99.6 20.9 100.0 12.0 61.6 50 70 
# 10 14.7 7.3 10.2 1.0 0.7 0.1 74.5 0.0 84.0 17.6 99.3 11.9 38.0 35 46 
# 40 9.4 4.7 2.7 0.3 0.6 0.0 41.9 0.0 32.0 6.7 84.4 10.1 21.8 15 29 
# 80 8.5 4.2 2.0 0.2 0.5 0.0 34.6 0.0 11.4 2.4 15.9 1.9 8.8 7 20 
# 200 6.9 3.4 1.5 0.2 0.5 0.0 26.7 0.0 3.1 0.7 0.7 0.1 4.4 2 7 

Optimum Asphalt Content 5.3%          

Asphalt Source & Grade Valero PG 76-22          
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TABLE 64  Mix Design for 50 Percent Beckman and 50 Percent Brownlee and Type D Mixture 

Aggregate  
Source 

Delta Materials Beckman Beckman 
Total 

Cumulative 
Pass % TxDOT 

Specs. 

Brownlee Type 
D 3/8"-1/4" Mfg Sand W. Poteet Sand Sieved Mfg Sand 

Sieve 
Size 

Bin 
#1 Total Bin 

#2 Total Bin #3 Total Bin #4 Total Bin #5 Total 

20.0 % 31.0 % 31.0 % 11.0 % 7.0 % 100% 

7/8" 100.0 20.0 100.0 31.0 100.0 31.0 100.0 11.0 100.0 7.0 100.0 100 100 
5/8" 100.0 20.0 100.0 31.0 100.0 31.0 100.0 11.0 100.0 7.0 100.0 98 100 
3/8" 70.9 14.2 100.0 31.0 100.0 31.0 100.0 11.0 100.0 7.0 94.2 85 100 

No. 4 16.3 3.3 26.0 8.1 99.9 31.0 100.0 11.0 100.0 7.0 60.3 50 70 
No. 10 4.0 0.8 3.4 1.1 70.9 22.0 99.6 11.0 100.0 7.0 41.8 35 46 
No. 40 2.3 0.5 2.1 0.7 25.0 7.8 69.2 7.6 100.0 7.0 23.5 15 29 
No. 80 1.8 0.4 1.9 0.6 13.1 4.1 14.4 1.6 100.0 7.0 13.6 7 20 
No. 200 1.1 0.2 1.6 0.5 8.6 2.7 1.6 0.2 0.0 0.0 3.6 2 7 
Optimum Asphalt Content 5.3%        
Asphalt Source & Grade Valero PG 76-22        

 
 



254 
 

 
 

APPENDIX B 

 



 

 
 

255 

 
FIGURE 134  Results of angularity measurements by AIMS for Brownwood aggregate. 

 

 
FIGURE 135  Results of angularity measurements by AIMS for Beckman aggregate. 
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FIGURE 136  Results of angularity measurements by AIMS for Brownlee aggregate. 

 

 
FIGURE 137  Results of angularity measurements by AIMS for El Paso aggregate. 
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FIGURE 138  Results of texture measurements by AIMS for El Paso aggregate. 

 

 

FIGURE 139  Results of texture measurements by AIMS for Beckman aggregate. 
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FIGURE 140  Results of texture measurements by AIMS for Brownwood aggregate. 

 

 
FIGURE 141  Results of texture measurements by AIMS for Brownlee aggregate  
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APPENDIX C 
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TEX-461-A, DEGRADATION OF COARSE AGGREGATE BY MICRO-DEVAL 

ABRASION 

 

Section 1 

 

Overview 

 

Use this test method to test coarse aggregate for resistance to abrasion and weathering 

using the Micro-Deval apparatus. 

 

Units of Measurement 

 

The values given in parentheses (if provided) are not standard and may not be exact 

mathematical conversions. Use each system of units separately. Combining values from 

the two systems may result in nonconformance with the standard. 

 

Section 2 

 

Definitions 

 

The following term is referenced in this test procedure. 

♦ Constant weight. Constant weight is defined as aggregates other than limestone rock 

asphalt are dried at a temperature of 230 ±9°F (110 ±5°C) to a condition such that they 

will not lose more than 0.1% moisture after 2 hr of drying. Limestone rock asphalt 

samples will be dried at a temperature of 140 ±5°F (60 ±3°C) to a condition such that 

they will not lose more than 0.1% moisture after 2 hr of drying. Such a condition of 

dryness can be verified by weighing the sample before and after successive 2-hr drying 

periods. In lieu of such determination, samples may be considered to have reached 

constant weight when they have dried at a temperature of 230 ±9°F (110 ±5°C) for an 

equal or longer period than that previously found adequate for producing the desired 

constant condition under equal or heavier loading conditions of the oven. 
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Section 3 

 

Apparatus 

 

Use the following apparatus: 

♦ Micro-Deval Abrasion machine and accessories that meet department specification No. 

845-49-40. 

♦ Standard U.S. sieves and pans, meeting the requirements of ―Tex-907-K, Verifying the 

Accuracy of Wire Cloth Sieves,‖ including: 

• 3/4 in. (19.0 mm). 

• 1/2 in. (12.5 mm). 

• 3/8 in. (9.5 mm). 

• 1/4 in. (6.3 mm). 

• No. 4 (4.75 mm). 

♦ Oven, capable of maintaining a temperature of 230 ±9°F (110 ±5°C) 

♦ Balance, accurate and readable to 0.1 g or 0.1% of the mass of the test sample, 

whichever is greater. 

 

Section 4 

 

Preparing Sample 

 

Wash and dry the test sample to constant weight. Separate the sample into individual size 

fractions according to ―Tex 401-A, Sieve Analysis of Fine and Coarse Aggregate‖ and 

recombine to meet the grading as shown. Dry limestone rock asphalt to constant weight 

at140 ±9°F (60 ±5°C). 
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♦ For bituminous aggregate, use the following standard gradation: 

 
♦ For concrete aggregate, use the following standard gradation: 

 

 

SECTION 5 

 

Procedure 

 

The following table outlines the procedure for testing coarse aggregate for resistance to 

abrasion and weathering using the Micro-Deval apparatus. 
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Testing Coarse Aggregate 

Step Action 

1 ♦ Prepare a representative 1500 ±5 g sample according to the applicable 
standard grading. A maximum of 10% of an adjacent size material from the 
standard grading may be substituted if the sample does not contain 
appropriate weights. Crush parent material to obtain sizes if necessary. 

♦ Record the weight to the nearest 1.0 g, as ‗A‘ under ―Calculations.‖ 

2 Saturate the sample in 0.5 gal (2000 ±500 mL) of tap water (temperature 68 
±9°F [20 ±5°C]) for a minimum of 1 hr either in the Micro-Deval container 
or in another suitable container. 

3 ♦ Place the sample, water, and 5000 ±5 g of stainless steel balls in the Micro-
Deval container. 
♦ Place the Micro-Deval container on the machine. 

4 ♦ Set the timer and start the machine. 
♦ Test concrete aggregate samples at 100 ±5 rpm for 120 ±1 min. 
♦ Test bituminous aggregate samples at 100 ±5 rpm for 105 ±1 min. 

♦ Record the rpms registered by the tachometer at the end of the test period. 
5 ♦ Stack a No. 4 (4.75 mm) and a No. 16 (1.18 mm) sieve together and 

carefully decant the sample over them. Take care to remove the entire 
sample from the stainless steel jar. 

♦ Wash the retained material with water until the wash water is clear and all 
materials smaller than No. 16 (1.18 mm) pass the sieve. 

6 ♦ Remove the stainless steel balls using a magnet or other suitable means. 
♦ Discard material passing the No. 16 (1.18 mm) sieve. 

7 ♦ Oven-dry the sample to constant weight at 230 ±9°F (110 ±5°C). 
♦ Oven-dry limestone rock asphalt to constant weight at 140 ±9°F (60 ±5°C). 

8 ♦ Weigh the sample to the nearest 1.0 g. 
♦ Record the oven-dry weight as ‗B‘ under ―Calculations.‖ 

 

Section 6 

 

Calculations 

 

Calculate the Micro-Deval abrasion loss as follows: 

Percent loss = ( A −B ) / A × 100 

Record the nearest whole percentage point. 
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DETERMINING AGGREGATE SHAPE PROPERTIES BY MEANS OF 

DIGITAL IMAGE ANALYSIS 

SCOPE 

This standard covers the measurement of aggregate shape properties using the digital 

image analysis techniques. 

This standard may involve hazardous materials, operations, and equipment. This standard 

does not purport to address all of the safety problems associated with its use. It is the 

responsibility of the user of this standard to establish appropriate safety and health 

practices and determine the applicability of regulatory limitations prior to use. 

REFERENCED DOCUMENTS 

AASHTO Standards: 

 M 92  Standard Specification for Wire-Cloth Sieves for Testing Purposes 

 T 2  Sampling of Aggregates 

 T 11  Amount of Material Finer Than 75m in Aggregate 

 T 27  Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates 

 T 84  Standard Method of Test for Specific Gravity and Absorption of Fine 

Aggregate 

 T 85  Standard Method of Test for Specific Gravity and Absorption of Coarse 

Aggregate 

 T 248  Standard Method of Test for Reducing Samples of Aggregate to Testing Size  

Other References: 

 ASTM C 802, ―Standard Practice for Conducting an Interlaboratory Test Program to 

Determine the Precision of Test Methods for Construction Materials.‖ 

 ASTM C 670 ―Standard Practice for Preparing Precision and Bias Statements for 

Test Methods for Construction Materials.‖ 

TERMINOLOGY 

Aggregate Size—sieve size in which material is retained after passing the next larger 

sieve. 

Fine Aggregate—Aggregate material passing 4.75mm (#4) sieve. 
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Sieve sizes: 2.36mm (#8), 1.18mm (#16), 0.60mm (#30), 0.30mm (#50), 0.15mm (#100), 

0.075mm (#200). 

Coarse Aggregate—Aggregate material retained on 4.75mm (#4) sieve. 

Sieve sizes: 25.0mm (1‖), 19.0mm (3/4‖), 12.5mm (1/2‖), 9.5mm (3/8‖), 4.75mm (#4) 

Shape Properties for each Retained Sieve (X). 

 

Gradient Angularity (GA)—Applies to both fine and coarse aggregate sizes and is related 

to the sharpness of the corners of 2-dimensional images of 

aggregate particles.   The gradient angularity quantifies 

changes along a particle boundary with higher gradient 

values indicating a more angular shape.  Gradient angularity 

has a relative scale of 0 to 10000 with a perfect circle having 

a value of 0. 

Gradient Angularity:  
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GA       (1) 

where:  θ  angle of orientation of the edge points 

 n is the total number of points 

 subscript i denoting the ith point on the edge of the particle 

Texture or Micro-Texture (TX)—Applies to coarse aggregate sizes only describing 

relative smoothness or roughness of surface features 

less than roughly 0.5 mm in size which are too small to 

affect the overall shape.  Texture has a relative scale of 

0 to 1000 with a smooth polished surface approaching a 

value of 0. 
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where:  

 D = decomposition function 
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 n = decomposition level 

 N = total number of coefficients in an image 

 i = 1, 2,or 3 for detailed images 

 j = wavelet index 

 x,y = location of the coefficients in transformed domain 

Sphericity (SP)—Applies to coarse aggregate sizes only and describes the overall three 

dimensional shape of a particle.  Sphericity has a relative scale of 0 to 

1.  A sphericity value of one indicates a particle has equal dimensions 

(cubical). 

3
2

*

L

IS

d

dd
SP           (3) 

where:  dS = particle shortest dimension 

 dI = particle intermediate dimension 

 dL = particle longest dimension 

Form 2D—Applies to fine aggregate sizes only and is used to quantify the relative form 

from 2-dimensional images of aggregate particles.  Form2D has a relative 

scale of 0 to 20.  A perfect circle has a Form 2D value of zero. 
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where:  Rθ is the radius of the particle at an angle of θ  

 ∆θ is the incremental difference in the angle 

 

Flat and Elongated—those particles having a ratio of longest dimension to shortest 

dimension greater than a specified value. 

Aggregate particle dimensions in an x, y, z coordinate system 

dS = particle shortest dimension 

dI = particle intermediate 
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dL = particle longest dimension 

Flatness Ratio (S/L):  
I

S

d

d
Flatness         (5) 

Elongation Ratio (I/L):  
L

I

d

d
Elongation        (6) 

Flat and Elongated Value (F&E):  
S

L

d

d
SL /      (7) 

Flat or Elongated—those particles having a ratio of intermediate dimension to shortest 

dimension or longest dimension to intermediate dimension greater 

than a specified value. 

Flat or Elongated Value (ForE):  Ratio
d

d
or

d

d

I

L

S

I   (i.e.: 1, 2, 3…)   (8) 

SIGNIFICANCE AND USE 

Shape, angularity, and surface texture of aggregates have been shown to directly affect 

the engineering properties of highway construction materials such as hot mix asphalt 

concrete, Portland cement concrete, and unbound aggregate layers.  This standard 

provides direct measurement of aggregate shape, angularity, and texture.  For coarse 

aggregates, the shape properties include: gradient angularity, sphericity, texture, and flat 

and elongated value.  For fine aggregates the shape properties include: gradient 

angularity and form-2d.  

 

Note 1—The National Cooperative Highway Research Program Report 

555 provides background information relevant to characterizing aggregate 

shape, texture, and angularity. 

This test method may be used to characterize and monitor the shape properties of 

aggregate material samples sizes 0.075 mm (#200) through 25.0mm (1").  This method 

may be used to characterize a single size within a material source or all sizes within the 

source. 
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APPARATUS 

Digital image acquisition and analysis system—a computer controlled electro-mechanical 

instrument for capturing digital images at variable magnification and software for image 

analysis.  Instrumentation and analysis software shall include algorithms for gradient 

angularity, form 2d, flat and elongated, sphericity, and texture. 

 

A camera and optic system capable of providing the required resolutions over the range 

of particles being analyzed. 

A system for positioning the particle for imaging.  This can be a movable camera, a 

movable support tray, or a combination thereof. 

A system for auto-focusing the image. 

A system for determining particle three-dimensional measurements x, y, z in millimeters. 

A system for detecting and removing touching particles from the analysis. 

A system for presenting the particles for imaging consisting of trays or other support 

surface for aggregate sizes from 0.075 mm (#200) through 

25.0mm (1").  The particles shall be presented for imaging on a 

flat surface.  A small recess for aligning particles is acceptable. 

A variable lighting system for backlighting and/or top lighting the material sample.   

Note 2—The Aggregate Image Measurement System and the associated 

AIMS SOFTWARE algorithms for image analysis computations have 

proven to be an acceptable system for this analysis. 

Balance—a balance meeting the requirements of m 231, class g 5, for determining the 

mass of aggregates. 

Oven—an oven of appropriate size capable of maintaining a uniform temperature of 

110±5°c (290±9°f) 

Miscellaneous— equipment to perform sample preparation methods AASHTO t 2, t 11, t 

27,   t 248. 

HAZARDS 

Use standard safety precautions and protective clothing when handling materials and 

preparing material samples. 
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STANDARDIZATION 

Confirm the image acquisition system has been standardized.  Frequency and method of 

standardization shall follow manufacturer‘s instructions. 

PREPARATION OF APPARATUS 

Confirm the system has been standardized by verifying the standardization date. 

Confirm the machine operation settings are correct for the analysis to be performed. 

 

SAMPLE PREPARATION 

Sample the aggregate according to procedures in AASHTO T2.   

Note 3—Material samples obtained for AASHTO T84 and T85 specific gravity 

determinations have proven to be acceptable. 

Thoroughly mix the sample and reduce it to the approximate quantity needed using the 

applicable procedures in AASHTO T248.  

Determine the amount of material finer than 0.075 mm (#200) by AASHTO T11. 

Oven dry the sample at 110±5°c (230±9°f) to substantially constant mass. 

Determine the sample grading on the washed, dry sample in accordance with AASHTO 

T27.  Calculate the percentage of material in each size fraction.  Maintain sample 

material as separate retained sieve sizes. 

Obtain the required aggregate of each size from the sample using the procedures 

described in AASHTO T248.   

Maintain the necessary size fractions obtained in a dry condition in separate containers 

for each size.   

The following list provides suggested sample mass to achieve the required minimum 

particle count for each size fraction: 
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Size Approx. Mass Minimum Number of Particles 

0.075 mm (#200)  200 g  150 

0.15 mm (#100) 200 g  150 

0.3 mm (#50) 200 g  150 

0.6 mm (#30) 200 g  150 

1.18 mm (#16) 200 g  150 

2.36 mm (#8) 200 g   150 

4.75 mm (#4) 2 kg  50 

9.5 mm (3/8 inch) 2 kg  50 

12.5 mm (1/2 inch) 2 kg  50 

19.0 mm (3/4 inch) 2 kg   50 

25.0 mm (1 inch)   5 kg   50 

PROCEDURE FOR COARSE AGGREGATE 

Position the coarse aggregate sample for image acquisition by size fraction.  Each size 

fraction of retained material may be run separately. 

Distribute the coarse aggregate sample over the support surface in a manner that provides 

separation of at least 1.0 mm between particles.  Particle orientation shall be determined 

by permitting them to come to rest randomly.   

Initiate the image acquisition sequence and analysis algorithms.  This process is typically 

automated.  The operator inputs the material size and the system automatically captures 

the required images and calculates the shape properties for each particle. 

Each characterization requires the minimum number of particles for each size fraction 

listed in section 0 to be analyzed.  If the required particle count is not achieved in one 

sequence, repeat the sequence with additional particles until the required number of 

images is acquired. 

For sizes that contain inadequate percent retained mass to achieve minimum particle 

count use the shape value obtained from the next larger or the next smaller size, 

whichever is present. 
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PROCEDURE FOR FINE AGGREGATE 

Position the fine aggregate sample for image acquisition by size fraction.  Each size 

fraction of retained material may be run separately.  

Note 4—Most fine aggregate materials are analyzed using backlighting.  However, some 

translucent materials may require a dark background and top lighting to achieve the 

appropriate image contrast.  If the system fails to capture usable images with 

backlighting, use a dark background and top lighting.  A dark background is typically 

required for 0.30mm (#50) and smaller sizes. 

Distribute the fine aggregate sample over the support surface in a manner that provides 

separation between particles.  Typically only a very light coating is needed.  Particles 

orientation shall be determined by permitting them to come to rest randomly. 

Initiate the image acquisition sequence and run the analysis routines.  This process is 

typically automated.  The operator selects the material size and the system automatically 

captures the required images and calculates the shape properties for each particle.  

Each characterization requires the minimum number of particles for each size fraction 

listed in section 0 to be analyzed.  If the required particle count is not achieved in one 

sequence, repeat the sequence until the required number of images is acquired.  

For sizes that contain inadequate percent retained mass to achieve minimum particle 

count use the shape value obtained from the next larger or the next smaller size, 

whichever is present. 

CALCULATIONS 

Calculate gradient angularity value for each fine and coarse aggregate particle. 

Calculate the gradient angularity mean and standard deviation for each size fraction. 

Calculate the texture (TX) value for each coarse particle. 

Calculate the texture mean and standard deviation for each coarse size fraction. 

Calculate the sphericity (Sp) for each coarse aggregate particle. 

Calculate the sphericity mean and standard deviation for each coarse size fraction. 

Calculate the form 2d value for each fine particle. 

Calculate the form2d mean and standard deviation for each fine size fraction. 

Calculate the percent distribution of flat and elongated at the following ratios: 
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≥1:1, >2:1, >3:1, >4:1, >5:1 

%L/S(≥1)x = % of Particles with   dL/dS ≥ 1  

%L/S(>2)x = % of Particles with   dL/dS > 2  

%L/S(>3)x = % of Particles with   dL/dS > 3   

%L/S(>4)x = % of Particles with   dL/dS > 4   

%L/S(>5)x = % of Particles with   dL/dS > 5   

where: x designates the retained sieve size 

Calculate the percent distribution of flat or elongated at the following ratios: 
≥1:1, >2:1, >3:1, >4:1, >5:1 

%ForE(≥1)x = % of Particles with   dI/dS or dL/dI ≥ 1  

%ForE(>2)x = % of Particles with   dI/dS or dL/dI > 2  

%ForE(>3)x = % of Particles with   dI/dS or dL/dI  3   

%ForE(>4)x = % of Particles with   dI/dS or dL/dI > 4   

%ForE(>5)x = % of Particles with   dI/dS or dL/dI > 5   

where: x designates the retained sieve size 

REPORT 

Report the following information: 

Procedure used. 

Date of the analysis. 

Material sample identification:  type, source, and size. 

Number of particles analyzed. 

Material shape property mean and standard deviation.  Graphical representations of the 

property distributions may be included. 

PRECISION AND BIAS 

Precision—an inter-laboratory study (ILS) was conducted in 2009 in accordance with 

ASTM C802, ―standard practice for conducting an inter-laboratory test program to 
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determine the precision of test methods for construction materials.‖  The ILS results were 

used to develop a precision statement for the test method using ASTM C670, ―standard 

practice for preparing precision and bias statements for test methods for construction 

materials.‖  The ILS featured eight systems, 32 laboratories, and three material sources.  

Precision for Sizes (mm) 25, 19, 12.5, 9.5, 4.75, 2.36, 1.18, 0.60, 0.30, and 0.15. 

 
 Within Laboratory Between Laboratory 

Aggregate Shape 
Characteristic 

Coefficient of 
Variation 

(% of mean) 

Acceptable Range 
of Two Results 

(% of mean) 

Coefficient of 
Variation 

(% of mean) 

Acceptable Range 
of Two Results 

(% of mean) 
Angularity 2.9% 8.2% 4.3% 12.1% 

Texture 4.5% 12.7% 7.1% 19.8% 

Sphericity 1.2% 3.4% 2.6% 7.2% 

Flat or Elongated 2.1% 5.9% 3.4% 9.6% 

2D Form 2.8% 7.7% 3.5% 9.9% 

Bias—since there is no accepted reference device suitable for determining the bias in this 

method, no statement of bias is made. 

KEYWORDS 

Aggregate; angularity; consensus property, shape, texture, form, elongated.  
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DETERMINING AGGREGATE SOURCE SHAPE VALUES FROM DIGITAL 

IMAGE ANALYSIS SHAPE PROPERTIES 

SCOPE 

This standard covers the determination of aggregate source and source blend shape 

characteristics using gradation analysis and shape properties determined by means of 

digital image analysis. 

This standard may involve hazardous materials, operations, and equipment. This standard 

does not purport to address all of the safety problems associated with its use.  It is the 

responsibility of the user of this standard to establish appropriate safety and health 

practices and determine the applicability of regulatory limitations prior to use. 

REFERENCED DOCUMENTS 

AASHTO Standards: 

 T 11  Amount of Material Finer than 75m in Aggregate 

 T 27  Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates 

 T 84  Standard Method of Test for Specific Gravity and Absorption of Fine Aggregate 

 T 85  Standard Method of Test for Specific Gravity and Absorption of Coarse Aggregate 

 TP XX  Standard Method of Test for Determining Aggregate Shape Properties by Means 

of Digital Image Analysis 

TERMINOLOGY 

Aggregate Size—material retained on a given sieve size after passing the next larger 

sieve. 

Fine Aggregate—Aggregate material passing 4.75mm (#4) sieve. 

Sieve Sizes: 2.36mm (#8), 1.18mm (#16), 0.60mm (#30), 0.30mm (#50), 0.15mm (#100), 

0.075mm (#200). 

Coarse Aggregate—Aggregate material retained on 4.75mm (#4) sieve. 

Sieve Sizes: 25.0mm (1"), 19.0mm (3/4"), 12.5mm (1/2"), 9.5mm (3/8"), 4.75mm (#4). 
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Shape Properties For Each Retained Sieve (X). 

Gradient Angularity (GA)—Applies to both fine and coarse aggregate sizes and is related 

to the sharpness of the corners of 2-dimensional images of 

aggregate particles.  The gradient angularity quantifies 

changes along a particle boundary with higher gradient 

values indicating a more angular shape.  Gradient angularity 

has a relative range of 0 to 10,000 with a perfect circle 

having a value of 0. 

Gradient Angularity:  
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GA       (1) 

where:  θ  angle of orientation of the edge points 

 n is the total number of points 

 subscript i denoting the ith point on the edge of the particle 

Texture (or Micro-Texture) (TX)—Applies to coarse aggregate sizes only and describes 

the relative smoothness or roughness of surface 

features less than roughly 0.5 mm in size that are too 

small to affect the overall shape.  Texture has a 

relative scale of 0 to 1000 with a smooth polished 

surface approaching a value of 0. 
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where:  

 D = decomposition function 

 n = decomposition level 

 N = total number of coefficients in an image 

 i = 1, 2,or 3 for detailed images 

 j = wavelet index 

 x,y = location of the coefficients in transformed domain 
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Sphericity (SP)—Applies to coarse aggregate sizes only and describes the overall three 

dimensional shape of a particle.  Sphericity has a relative scale of 0 to 

1.  A sphericity value of one indicates a particle has equal dimensions 

(cubical). 

3
2

*

L

IS

d

dd
SP           (3) 

where:  dS = particle shortest dimension 

 dI = particle intermediate dimension 

 dL = particle longest dimension 

 

Form 2D—Applies to fine aggregate sizes only and is used to quantify the relative form 

from 2-dimensional images of aggregate particles.  Form2D has a relative 

scale of 0 to 20.  A perfect circle has a Form 2D value of zero. 
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where:  Rθ is the radius of the particle at an angle of θ  

 ∆θ is the incremental difference in the angle 

 

Flat and Elongated—those particles having a ratio of longest dimension to shortest 

dimension greater than a specified value. 

Aggregate particle dimensions in an x, y, z coordinate system 

dS = particle shortest dimension 

dI = particle intermediate 

dL = particle longest dimension 

Flatness Ratio (S/L):  
I

S

d

d
Flatness         (5) 
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Elongation Ratio (I/L):  
L

I

d

d
Elongation        (6) 

Flat and Elongated Value (F&E):  
S

L

d

d
SL /      (7) 

Flat or Elongated—those particles having a ratio of intermediate dimension to shortest 

dimension or longest dimension to intermediate dimension greater 

than a specified value. 

Flat or Elongated (ForE):  Ratio
d

d
or

d

d

I

L

S

I  (i.e.:  1, 2, 3…)   (8) 

%Passx = % passing sieve x 

%Rx = % retained on sieve x (passing sieve x+1) 

SIGNIFICANCE AND USE 

Shape, angularity, and surface texture of aggregates have been shown to directly affect 

the engineering properties of highway construction materials such as hot mix asphalt 

concrete, Portland cement concrete, and unbound aggregate layers.  This standard is used 

to characterize the combined shape values for an aggregate source from the individual 

particle shape properties determined by digital image analysis from AASHTO test 

method xx-xx.  The aggregate shape characterization includes gradient angularity, form 

2d, sphericity, texture, and flat and elongated value.   

 

Note 1—The National Cooperative Highway Research Program Report 

555 provides background information relevant to characterizing aggregate 

shape, texture, and angularity. 

 

This practice may be used to characterize the shape characteristics of single source 

aggregate materials and multiple source aggregate material blends. 

PROCEDURE 

Determine the aggregate sample grading according to AASHTO T27 and the amount 

finer than 75m according to AASHTO T11. 
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Determine the aggregate sample specific gravities according to AASHTO T84 and T85. 

Determine the material sample shape values for form 2d, gradient angularity, sphericity, 

form ratios (F&E, F or E), and texture according to AASHTO TP xx. 

CALCULATIONS – SINGLE SOURCE 

The material sample is typically characterized by individual evaluation of material 

retained on each sieve size, passing the next larger sieve.  For the purpose of calculating 

the combined shape values, consider any sizes that contain inadequate percent retained 

mass to achieve minimum particle count to have the same shape value as the average of 

the next larger or the next smaller size, whichever is present. 

Calculate the percent retained for the aggregate sample on each sieve using the AASHTO 

T27 results.: 

Sieve Sizes (x): 

Coarse: 25.0mm(1‖), 19.0mm(3/4‖), 12.5mm(1/2‖), 9.5mm(3/8‖), 4.75mm(#4) 

Fine: 2.36mm(#8), 1.18mm(#16), 0.60mm(#30), 0.30mm(#50), 0.15mm(#100), 

0.075mm(#200) 

 

Percent Passing:  %Passx = % passing sieve x  

 

Percent Retained:  %Rx = % retained on sieve x 

xxx PassPassR %%% 1           (9) 

Calculate average particle size, volume, and surface area for each sieve size x for unit 

mass. 

For the purposes of shape characterization, volume and surface area of an average 

particle is estimated by using a cubical shape with side dimensions estimated by the 

average of the retained sieve and next larger sieve dimension.  
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Average Particle Size:  
2

)( 1
 xx

x

SieveSieve
D  (mm)    (10) 

Average Particle Surface Area (cubical):  2
*6 xx DPSA   (mm2)   (11) 

Average Particle Volume (cubical):  3

xx DV   (mm3)    (12) 

Calculate number of particles per sample unit mass for each sieve size from the size 

distribution of AASHTO T27 and the respective specific gravities from AASHTO T84 

and T85. 

Number of particles per sieve size:  
xsb

x
x

VG

R
P

*

1000*%
#      (13) 

Note 2—A mass of 1 is assumed in Eq 13.  This calculation determines the weighting 

factor applied to each sieve size for a material sample, therefore, actual mass is not 

required. 

Calculate total particle surface area for each sieve size per sample unit mass. 

Particle Surface Area (each sieve x) (mm2):  xxx PPSASSA *#    (14) 

Calculate sample surface area (per unit mass): 

Total Surface Area (mm2):   




0.25

075.0x

xSSATSA

     (15) 

Coarse Surface Area (mm2):   




0.25

75.4x

xSSACSA

     (16) 

Fine Surface Area (mm2):   



36.2

075.0x

xSSAFSA

      
(17) 

Calculate sample particles count (per unit mass): 

Total Particles:   



0.25

075.0

##
x

xPTP        (18) 

# Coarse Particles:   



0.25

75.4

##
x

xPCP        (19) 

# Fine Particles:   



36.2

075.0

##
x

xPFP        (20) 
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Calculate sample gradient angularity (weighted by surface area): 
 

Fine Gradient Angularity:   



36.2

075.0

*
1

x

xx GASSA
FSA

FGA     (21) 

 

Coarse Gradient Angularity:   



0.25

75.4

*
1

x

xx GASSA
CSA

CGA    (22) 

 

Overall Gradient Angularity:   



0.25

075.0

*
1

x

xx GASSA
TSA

GA     (23) 

 

Calculate sample fine aggregate form 2D (weighted by surface area): 

 



36.2

075.0

2*
1

2
x

xx DSSA
FSA

DForm        (24) 

Calculate sample coarse aggregate texture (weighted by surface area): 

 



0.25

75.4

*
1

x

xx TXSSA
CSA

TX         (25) 

Calculate sample coarse aggregate sphericity (weighted by particle count): 

 



0.25

75.4

*#
#

1

x

xx SPP
CP

SP         (26) 

Calculate sample sphericity range distribution (weighted by particle count): 

% of Particles with Sphericity  0.3:  

 



0.25

75.4

)3.0(*#
#

1
)3.0(

x

xx SPP
CP

SP        (27) 

% of Particles with Sphericity 0.3  SP  0.7:   

 



0.25

75.4

)7.0(*#
#

1
)7.0(

x

xx SPP
CP

SP        (28) 
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% of Particles with Sphericity 0.7  SP  1.0:   

 



0.25

75.4

)0.1(*#
#

1
)0.1(

x

xx SPP
CP

SP        (29) 

Calculate sample weighted percentages of coarse aggregate flat and elongated values 

(weighted by mass fraction) at the following ratios:  ≥1:1, >2:1, >3:1, >4:1, >5:1  

% dL/dS ≥ 1 :  









 


0.25

75.4 100

)1(/%*%
)1(/%

x

xx SLR
SL     (30) 

% dL/dS > 2 :  









 


0.25

75.4 100

)2(/%*%
)2(/%

x

xx SLR
SL     (31) 

% dL/dS > 3 :  









 


0.25

75.4 100

)3(/%*%
)3(/%

x

xx SLR
SL     (32) 

% dL/dS > 4 :  









 


0.25

75.4 100

)4(/%*%
)4(/%

x

xx SLR
SL     (33) 

% dL/dS > 5 :  









 


0.25

75.4 100

)5(/%*%
)5(/%

x

xx SLR
SL     (34) 

Calculate the sample weighted percentages of Coarse Aggregate Flat or Elongated 

(weighted by mass fraction) at the following ratios:  ≥1:1, >2:1, >3:1, >4:1, >5:1  

% dI/dS or dL/dI ≥ 1 :  









 


0.25

75.4 100

)1(%*%
)1(%

x

xx ForER
ForE    (35) 

% dI/dS or dL/dI > 2 :  









 


0.25

75.4 100

)2(%*%
)2(%

x

xx ForER
ForE    (36) 

% dI/dS or dL/dI > 3 : 









 


0.25

75.4 100

)3(%*%
)3(%

x

xx ForER
ForE    (37) 

% dI/dS or dL/dI > 4 : 









 


0.25

75.4 100

)4(%*%
)4(%

x

xx ForER
ForE    (38) 

% dI/dS or dL/dI > 5 : 









 


0.25

75.4 100

)5(%*%
)5(%

x

xx ForER
ForE    (39) 
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CALCULATIONS – MULTIPLE SOURCE BLEND 

Use the calculations in this section to estimate the shape characteristics of multiple 

material source blends.  Each source must be sampled and characterized according to 

section 0 calculations. 

Determine blend composition percentages 

%ASn = Percent Aggregate Source n  

100%
1




n

i

iAS          (40) 

where: n = # of aggregate sources 

Calculate blend surface area 

Blend Total Surface Area (each sieve):   

 () 

 
 









n

i x

ixi
xBlend

SSAAS
SSA

1

5.37

075.0

_
100

*%  

where: x= 0.075 to 25.0 mm 

 n= # of aggregate sources 

Total Surface Area Blend (all sieves x = 0.075 to 25.0 mm) 





0.25

075.0

_

x

xBlendBlend SSATSA         (41) 

Coarse Surface Area Blend (sieve x = 4.75 to 25.0): 





0.25

75.4

_

x

xBlendBlend SSACSA         (42) 

Fine Surface Area Blend (sieve x =0.075 to 2.36): 





36.2

075.0

_

x

xBlendBlend SSAFSA         (43) 

Calculate number of particles per blend unit mass for each sieve size: 

 
 









n

i x

ixi
xBlend

PAS
P

1

0.25

075.0

_
100

*#%
#        (44) 
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Calculate number of particles per blend unit mass 

Total Particle Count Blend:  





0.25

075.0

_##
x

xBlendBlend PTP         (45) 

# Coarse Particles Blend:  





0.25

75.4

_##
x

xBlendBlend PCP         (46) 

# Fine Particles Blend:  





36.2

075.0

_##
x

xBlendBlend PFP         (47) 

Calculate blend gradient angularity for each size x = 0.075 to 25.0 mm and combined 

(weighted by surface area): 

















 



i

i

ixixi

xBlend

xBlend
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Blend Fine Gradient Angularity:  
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Blend Coarse Gradient Angularity:  
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Blend Overall Gradient Angularity:  
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Calculate blend fine aggregate form 2Dfor each size x = 0.075 to 2.36 mm and combined 

(weighted by surface area): 
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Blend Form 2D: 
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Calculate blend texture for each size x = 4.75 to 25.0 mm and combined (weighted by 

coarse aggregate surface area): 
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Blend Texture: 
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Calculate average blend sphericity for each size 4.75 to 25.0 and blend (weighted by 

coarse particle count):  
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Blend Sphericity:  

 







 



0.25

75.4

__ *#
#

1

x

xBlendxBlend

Blend

Blend SPP
CP

SP       (57) 

 

Calculate blend sphericity distribution for each sieve 4.75 to 25.0 mm and blend 

(weighted by coarse particle count): 

% of Particles with Sphericity  0.3 (Blend):  
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% of Particles with Sphericity 0.3  SP  0.7 (Blend):  
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% of Particles with Sphericity 0.7  SP  1.0 (Blend):  
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Calculate combined flat and elongated values for each sieve 4.75 to 25.0 mm and blend 

(weighted by mass fraction): 

% dL/dS ≥ 1 (Blend):  
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% dL/dS > 2 (Blend):  
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% dL/dS > 3 (Blend):  
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% dL/dS > 4 (Blend):  
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% dL/dS  5 (Blend):  
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Calculate flat or elongated values for each sieve 4.75 to 25.0 mm and blend (weighted by 

mass fraction): 

% dI/dS or dL/dI ≥ 1 : (Blend):  
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% dI/dS or dL/dI > 2 : (Blend):  
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% dI/dS or dL/dI > 3 : (Blend):  
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% dI/dS or dL/dI > 4 : (Blend):  
















 
 



i

i

ixixi
xBlend

ForERAS
ForE

1
2_

100

)4(%*%*%
)4(%     (80) 

 







 



0.25

75.4

_)4(%)4(%
x

xBlendBlend ForEForE      (81) 

 

% dI/dS or dL/dI > 5 : (Blend):  
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REPORT 

Report the following information: 

Project name. 

Date of the analysis. 

Material sample identifications:  type, source, size, gradation. 

Number of particles analyzed for each size. 

Material shape property mean and standard deviation.  Graphical representations of the 

property distributions may be included. 

PRECISION AND BIAS 

Precision—this practice uses data generated from other testing methods to develop 

cumulative information, therefore the precision of the values generated in this practice 

are established by the precision of the standards used to collect the raw data. 

Bias—since there is no accepted reference device suitable for determining the bias in this 

method, no statement of bias is made. 

KEYWORDS 

Aggregate; angularity; consensus property, shape, texture, form, elongation. 
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APPENDIX D 
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FIGURE 143  Type D mixture on wheelpath of SH 36 in Yoakum District.  

 

 
FIGURE 144  Type D mixture on shoulder of SH 36 in Yoakum District. 

 

Mix: Type D 

Highway: SH 36 

District: Yoakum 

Age: 4 Years 

AADT: 4800 

MPD: 0.48 mm 

DFT 20: 0.331 

DFT 80: 0.307 

Aggregate: 
Colorado 
Materials 

Skid Number: 21 

Mix: Type D 

Highway: SH 36 

District: Yoakum 

Age: 4 Years 

AADT: 4800 

MPD: 0.49 mm 

DFT 20: 0.643 

DFT 80: 0.535 

Aggregate: 
Colorado 
Materials 

Skid Number: N.A 
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FIGURE 145  CMHB mixture on wheelpath of US 87 in Lubbock District. 

 

 
FIGURE 146 CMHB mixture on shoulder of US 87 in Lubbock District. 

 

Mix: CMHB-C 

Highway: US 87 

District: Lubbock 

Age: 5 Years 

AADT: 2905 

MPD: 0.98mm 

DFT 20:0.498 

DFT 80:0.411 

Aggregate: 
Vulcan/Brownwood
, Hanson/Davis 

Skid Number: 38 

Mix: CMHB-C 

Highway: US 87 

District: Lubbock 

Age: 5 Years 

AADT: 2905 

MPD: 1.2mm 

DFT 20:0.502 

DFT 80:0.418 

Aggregate: 
Vulcan/Brownwood, 
Hanson/Davis 

Skid Number: 51 
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FIGURE 147  SMA-C mixture on wheelpath of IH 20 in Atlanta District.  

 

 
FIGURE 148  SMA-C mixture on shoulder of IH 20 in Atlanta District.  

 

Mix: SMA-C 

Highway: IH 20 

District: Atlanta 

Age: 7 Years 

AADT: 15610 

MPD: 0.86mm 

DFT 20: 0.505 

DFT 80:0.423 

Aggregate: Martin 
Marietta/Jones Mill, 
Malvern Ark 

Skid Number: 31 

Mix: SMA-C 

Highway: IH 20 

District: Atlanta 

Age: 7 Years 

AADT: 15610 

MPD: 0.86mm 

DFT 20: 0.485 

DFT 80:0.402 

Aggregate: Martin 
Marietta/Jones Mill, 
Malvern Ark 

Skid Number: 37 
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FIGURE 149  Type C mixture on wheelpath of SH 16 in San Antonio District. 

 
 

 
FIGURE 150  Type C mixture on shoulder of SH 16 in San Antonio District. 

 

Mix: Type C 

Highway: SH 16 

District: San 
Antonio 

Age: 6 Years 

AADT: 6400 

MPD: 0.61mm 

DFT 20:0.294 

DFT 80:0.282 

Aggregate: Martin 
Marietta/Beckman 

Skid Number: 13 

Mix: Type C 

Highway: SH 16 

District: San 
Antonio 

Age: 6 Years 

AADT: 6400 

MPD: 0.46mm 

DFT 20:0.424 

DFT 80:0.420 

Aggregate: Martin 
Marietta/Beckman 

Skid Number: 20 
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FIGURE 151  PFC mixture on wheelpath of IH 35 in San Antonio District. 

 
 

 
FIGURE 152  PFC mixture on shoulder of IH 35 in San Antonio District. 

Mix: PFC 

Highway: IH 35 

District: San 
Antonio 

Age: 4 Years 

AADT: 107000 

MPD: 1.15mm 

DFT 20:0.437 

DFT 80:0.360 

Aggregate: Martin 
Marietta/Beckman, 
Delta/Brownlee 

Skid Number: 24 

Mix: PFC 

Highway: IH 35 

District: San 
Antonio 

Age: 4 Years 

AADT: 107000 

MPD: 1.37mm 

DFT 20:0.547 

DFT 80:0.468 

Aggregate: Martin 
Marietta/Beckman, 
Delta/Brownlee 

Skid Number: 31 
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FIGURE 153  Superpave mixture on wheelpath of IH 20 in Abilene District. 

 
 

 
FIGURE 154  Superpave mixture on shoulder of IH 20 in Abilene District. 

  

Mix: Superpave 

Highway: IH 20 

District: Abilene 

Age: 7 Years 

AADT: 9535 

MPD: 0.56mm 

DFT 20:0.218 

DFT 80:0.255 

Aggregate: 
Vulcan/Black Lease 

Skid Number: 15 

Mix: Superpave 

Highway: IH 20 

District: Abilene 

Age: 7 Years 

AADT: 9535 

MPD: 0.61mm 

DFT 20:0.682 

DFT 80:0.629 

Aggregate: 
Vulcan/Black Lease  

Skid Number: 31 
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