
  

 

 

REGULATION OF PERLECAN AND 2OST EXPRESSION IN PROSTATE 

 

 CANCER PROGRESSION BY STRESS- ACTIVATED TRANSCRIPTION  

 

FACTORS 

 

 

 

A Dissertation 

by 

BRENT WADE FERGUSON  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

December 2010 

 

 

Major Subject: Biochemistry 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regulation of PERLECAN and 2OST Expression in Prostate Cancer Progression by
 

                                   Stress-activated Transcription Factors  

Copyright 2010 Brent Wade Ferguson  



  

 

 

REGULATION OF PERLECAN AND 2OST EXPRESSION IN PROSTATE  

 

CANCER PROGRESSION BY STRESS-ACTIVATED TRANSCRIPTION  

 

FACTORS 

 

 

 

A Dissertation 

by 

BRENT WADE FERGUSON  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  Sumana Datta 

Committee Members, Stephen Safe 
 Donald Pettigrew 
 Brian Perkins 
Head of Department, Gregory Reinhart 

 

December 2010 

Major Subject:  Biochemistry



 iii 

ABSTRACT 

 

Regulation of PERLECAN and 2OST Expression in Prostate 

 Cancer Progression by Stress-activated Transcription   

Factors.  (December 2010) 

Brent Wade Ferguson, B.S., West Texas A&M University 

Chair of Advisory Committee: Dr. Sumana Datta 

 Heparan sulfate proteoglycans modulate many of the growth factor pathways that 

drive prostate cancer progression.  Prior to being secreted into the extracellular matrix, 

the covalently attached HS chains are modified by sulfation which has been shown to 

increase the affinity of binding growth factors.  The specific HSPG that I focus on in this 

dissertation is Perlecan (Pln).   

 Previously, our group along with collaborators found that 54% of prostate cancer 

tumors had upregulated levels of Pln protein that correlated with increasing Gleason 

score [93].  The LNCaP-DU145-LN4 cell line series is introduced as a model for this 

subset of tumors because Pln levels increase 50-fold as the cells become more 

metastatic.  It was found that three stress-induced transcription factors, HIF1α, NFkB, 

and ATF2, all stimulate Pln expression.  ChIP analysis reveals that HIF1α and NFkB 

directly bind the Pln promoter while ATF2 does not.  The ROS-generating NADPH 

Oxidase and the ROS-inducible p38 MAPK were also found to induce Pln expression.   

 To address the subset of prostate cancer tumors that reach metastasis without 

upregulation of Pln, I focused on the 2-o-sulfotransferase enzyme and its effect on 
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proliferation and invasion in the LNCaP-C4-2B cell model which does not show 

upregulation of Perlecan expression.  2OST RNAi resulted in a significant decrease in 

proliferation in each line of the series.  2OST RNAi in highly metastatic C4-2B cells 

caused a significant decrease in cell invasion.  Cells with decreased levels of 2OST had 

increased accumulation of actin and E-cadherin suggesting the possible formation of 

adherens junctions.  I also found that expression of 2OST increases four-fold as cells 

become more metastatic.  I found HIF1α and ATF2 act in a direct manner while NFkB 

acts indirectly to stimulate 2OST expression.   

  In summary, I have analyzed the effect of cellular stress on the expression 

of the Pln and 2OST genes and investigated the phenotype of 2OST knockdown in 

metastatic prostate cancer cells.    These studies lead me to propose that the tumor stress 

response is necessary for prostate cancer progression due to the role of stress in the 

upregulation of extracellular HS that is required for growth factor signaling and 

metastatic behaviors.   
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CHAPTER I 

INTRODUCTION 

  

 According to the American Cancer Society, prostate cancer is the second leading 

cause of cancer death in American men, behind only lung cancer in its severity.  It is 

predicted that approximately 192,280 new cases of the disease will be diagnosed in the 

next year and 27,360 men will die because of it (1).  One in five American men will be 

diagnosed with prostate cancer at some point in their lifetime.  These statistics make it 

vitally important for the scientific community to learn as much as possible about the 

mechanisms of onset and progression as well as diagnosis and treatment of this disease. 

At present, patients who present with different stages of prostate cancer have 

dramatically different outcomes.  Patients whose prostate cancer is detected in its early 

stages have an excellent prognosis.  When the tumor is still localized to the prostate, 

patients have a 5-year survival rate that approaches 100 percent (1).  However, the 

majority of cases that are diagnosed are in an advanced stage in which the tumor has 

invaded or metastasized to other parts of the body.  The prognosis for patients in this 

category is still very poor.   

 

 
 
 
 
____________ 
This dissertation follows the style of Cancer Research. 
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 Currently the only effective therapy for advanced disease is androgen deprivation 

(2).  This therapy results in decreased symptoms and tumor volume in approximately 

80% of patients.  However most of these patients relapse within 2 years and develop 

hormone-refractory disease in which the tumor is no longer responsive to androgen 

signaling (3).     In summary, the majority of diagnosed cases are advanced, metastatic 

disease and currently not curable. 

 There are currently four different methods for detecting prostate cancer in 

patients.  Transrectal ultrasound and the Digital Rectal Exam (DRE) are used to either 

“see” (via ultrasound imaging) or feel a tumor on the prostate respectively.  The Prostate 

Specific Antigen (PSA) test is a blood test that quantifies the amount of a substance 

made exclusively in the prostate that has been shown to increase in patients that have 

prostate cancer (1).  This test is still thought to be the gold standard for non-invasive 

prostate cancer screening despite many problems with false-positives as well as false-

negatives.  If any of these diagnostic tests turn out to be positive for prostate cancer a 

biopsy will be done to both confirm the presence of a tumor as well as determine how 

advanced the tumor is.  The cells from the prostatic tumor are visualized under a 

microscope and assigned a Gleason Score.  This score is a number between 2 to 10 with 

a low number indicating that the cells look most similar to normal prostate cells and a 

high number indicating that the tumor is most likely to metastasize if it has not already 

(1).  The biopsy is the most invasive but also the most definitive way to analyze the 

progression of prostate cancer. 
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 In order to better understand advanced, metastatic disease it is imperative to learn 

the molecular mechanisms by which a prostate tumor progresses from normal prostate 

epithelium to a localized tumor, eventually becoming invasive and metastatic (Fig. 1-1, 

(4)).  Attempting to define a certain molecular “roadmap” that describes how a cell 

within the adult male prostate develops into a tumor and progresses has been impossible 

due to the extreme genetic and cellular heterogeneity of the disease.  The type of cell in 

which prostate tumors originate is still a mystery because cells within a tumor have 

phenotypic and morphological characteristics of both luminal epithelial and basal cells 

((5)  (6)).  Much of the heterogeneity of prostate cancer cells can be attributed to the 

genetic makeup of the individual patient.  Extensive research has gone into determining 

the key regions of chromosomes that have been altered in prostate cancer resulting in 

either overexpression of oncogenes or decreased expression of tumor-suppressor genes 

such as p53 (7).       

 These intracellular events have been the focus of cancer research for many years.  

In this dissertation I will describe a more recent trend in cancer biology that focuses on the 

role of the tumor  
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microenvironment and how cells within the prostate and prostate tumor communicate 

with one another via growth factor signaling pathways.  

Growth Factors and Prostate Cancer Progression 

 Humans and other multicellular organisms have highly coordinated mechanisms 

to control cellular interactions.  Growth factor signaling networks have been shown to 

mediate interactions involved in normal embryonic development, tissue homeostasis, 

wound healing and many others.  These factors can act as either positive or negative 

modulators of cell proliferation, patterning, and differentiation.  Genetic mutations in 

signaling components have been linked to developmental abnormalities as well as 

chronic diseases such as cancer.  It is thought that cancerous cells arise in a tissue due to 

the unregulated activation/deactivation of growth factor pathways in a subset of cells 
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thereby causing quiescent cells to exit the G0 phase of the cell cycle and proceed to G1 

for cell proliferation (8).  The hormone testosterone, and its more active form 

dihydrotestosterone, (collectively called androgens) continue to be the paramount 

signaling pathway that is studied in prostate cancer.  This pathway is not the focus of my 

research and will not be covered here but has been reviewed (9).   The five growth factor 

signaling pathways that I will focus on have also been intimately linked to prostate 

cancer progression:  Sonic Hedgehog (SHH), Fibroblast Growth Factor (FGF), Vascular 

Endothelial Growth Factor (VEGF), Transforming Growth Factor β (TGFβ), and Wnt 

signaling. Each of these pathways is crucial for normal human development and 

regulates such processes as cell proliferation, differentiation, motility, and survival.  

Upon cancer initiation these pathways can be hijacked in the adult prostate to promote 

progression of a tumor. 

Sonic Hedgehog and Prostate Cancer 

 The Hedgehog (Hh) growth factor and much of its signaling system was initially 

discovered in genetic screens by Nusslein-Volhard and Wieschaus in the fruit fly 

Drosophila melanogaster (10).   This pathway was found to play an essential role in 

embryonic patterning and development.  Since its discovery it has been shown to be 

highly conserved in other multicellular organisms and to regulate cell proliferation and 

differentiation in development. 
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 In mammals there are three known Hh ligands:  Sonic Hedgehog (SHH), Indian 

Hedgehog, and Desert Hedgehog.  These growth factors are secreted from the cell into 

the extracellular matrix where they can act in either an autocrine or paracrine fashion to 

activate signaling (Fig 1-2).  They exert their function on the receiving cell by binding to 

a 12-pass transmembrane protein called Patched (PTCH) (11).  This binding event 

results in relief of the inhibitory effect of PTCH on a serpentine protein called 
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Smoothened (SMOH) and allows signal transduction to occur.  The pathway ultimately 

activates the Gli family of transcription factors (Gli1, Gli2, and Gli3) that either activate 

or repress transcription of target genes.  GLI1 and PTCH are two examples of target 

genes and their expression is frequently used to determine the level of active Hh 

signaling.  For the purposes of this dissertation I will be focusing on the SHH growth 

factor due to the abundance of evidence that points to its role in prostate cancer 

progression. 

 The major role of the SHH pathway is in the embryo to control patterning and 

development but it can be reactivated in adult tissues in response to injury or genetic 

mutation of a pathway component.  In this case normally quiescent cells start to divide.  

If the pathway is activated for an extended period time it could then facilitate tumor 

initiation and progression (12).  This pathway is used in the development of a number of 

different organs and is reactivated in many types of cancer including pancreatic, 

esophageal, stomach, skin, and lung (reviewed (13)).  Prostate cancer is no exception.  

SHH signaling plays a vital role in prostate fetal development as well as carcinoma in 

adult males. 

 Most of what has been learned about SHH in prostate development has been 

from experiments done in rodent models.  The precursor to the mature prostate is the 

urogenital sinus, a hollow cylinder of pseudostratified urothelium surrounded by 

mesenchymal cells (14).  When an increase in testicular androgen occurs, the epithelial 

cells of urogenital sinus begin to invade the surrounding mesenchyme producing 

prostatic buds.  These buds continue to grow and form prostatic ducts ((14), (15)).  
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Expression of SHH can be seen throughout this ductal patterning process in the 

epithelium of the urogenital sinus and at the leading edge of the invading ducts.  

Complementary expression of PTCH and GLI1 can be seen in the adjacent mesenchymal 

cells showing active SHH signaling during the process ((16), (17), (18)).  A causal 

relationship between SHH signaling and progression of ductal morphogenesis has also 

been shown in mouse models (19).    

 Just as SHH is important in the development of the fetal prostate it is also critical 

for the development of carcinoma of the prostate.  Familial genetic mapping studies have 

shown that regions of chromosomes associated with prostate cancer susceptibility 

contain genes coding for critical SHH pathway components such as SMOH, GLI1, and 

GLI3 ((20), (21), (22)).  There is also significant data showing that this developmental 

pathway is indeed reactivated in prostate cancer, initially at lower levels, then more 

strongly as the disease progresses.  The SHH growth factor has been shown by many 

groups (including the Datta Lab) to be upregulated in prostate tumors compared to 

normal tissues.  This upregulation continues in more aggressive tumors and in their 

metastatic lesions ((23), (20), (24)).  Evidence of active signaling by localization of 

PTCH and GLI1 or use of a Hh reporter  suggest that SHH can act either in a paracrine 

or autocrine manner to promote tumor progression.     

FGF signaling and Prostate Cancer 

 There are currently 18 known mammalian FGF ligands that signal through four 

highly conserved receptor tyrosine kinases (FGFR-1, -2, -3, -4) to control a variety of 

biological processes (25).  These processes include cellular proliferation, angiogenesis, 
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differentiation, migration, and survival.  This signaling pathway has been shown to 

control such developmental events as mesodermal patterning in the early embryo as well 

as the formation of many organ systems ((26), (27)).  Much like SHH, FGF can also 

function in adults as it regulates both angiogenesis and wound repair.  Due to its role in 

these developmental events, FGF signaling can also be subverted by cancer cells to 

promote their progression. 

 FGFs are secreted glycoproteins that travel through the extracellular matrix 

(ECM) and have a high affinity for heparan-sulfate (HS) and heparan-sulfate 

proteoglycans (HSPGs) (discussed more fully below).  Due to this high affinity the 

growth factors are sequestered in the ECM as they bind to HSPGs (28).  This binding 

interaction is thought to protect against degradation and create a sort of extracellular 

growth factor repository (29).  The FGFs are then released from the HSPGs by enzymes 

such as heparinases or proteases to allow the ligand to migrate and bind to cell-surface 

HSPGs.  These HSPGs stabilize the interaction between the FGF ligand and the FGF 

receptor forming a ternary complex (30).  The specificity of the FGF-FGFR interaction 

is controlled by tissue-specific expression of both ligands and receptor paralogues (31).  

Upon ligand binding, FGFRs will dimerize, this activates the intracellular tyrosine 

kinase domains of the receptors which then transphosphorylate each other (Fig.1-3).  

The phosphorylated tyrosines of the receptor act as docking sites for adaptor proteins 

that facilitate the activation of a number of different signal transduction pathways.  

These pathways include the phospholipase Cγ, Phosphoinositide-3 Kinase, Mitogen-

Activated Protein Kinase (MAPK), or Signal Transducer and Activator of Transcription 
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(STAT) pathways (Fig. 1-3).  These pathways activate many target proteins including 

transcription factors in the nucleus that control target gene expression.   Each of these 

pathways is upregulated in prostate cancer and are important for its progression (32).   
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 In the normal human prostate, which is composed of ductal epithelial cells 

surrounded by stromal cells, the major source of FGF ligand expression is the stromal 

cells.  FGF ligands are secreted and act in a paracrine manner on FGFRs on the outer 

membrane of the ductal epithelial cells.  FGF-2, -7, and -9 are the ligands that are 

available in biologically significant quantities to exert their effect.   

 In prostate cancer the major FGF isoforms that are expressed are FGF-1, -2, and -

8 ((33), (34), (35)).  Each of these isoforms is expressed at much higher levels in 

localized tumors compared to normal tissue and increases further as the disease 

progresses to a metastatic state.  Immunohistochemical analysis of tumor tissue reveals 

that each can act in either an autocrine or paracrine manner as their expression is 

confined to stromal cells in early stage disease and expands to multiple cell types in later 

stages.  Due in part to analysis of relatively small sample sizes the expression of any one 

isoform has not been shown to be an independent prognostic factor (32). 

Multiple mechanisms exist to describe how FGF signaling is increased in prostate 

cancer.  These mechanisms include:  increased expression of FGFs and FGFRs, 

increased mobilization from the ECM, and loss of negative regulation of the pathway.  

This increase in signaling has been shown to upregulate proliferation (36), cell survival 

(37), motility (38), angiogenesis (39), and metastasis (40).   
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          Each of these processes is vital for the progression of prostate cancer.  Overall, the 

disruption of FGF signaling in prostate cancer has become an attractive therapeutic 

target.   

VEGF Signaling and Prostate Cancer 

 Angiogenesis is the sprouting of new blood vessels from pre-existing ones and is 

crucial for both fetal development as well as tissue repair.  This process has also been 

exploited in cancer progression.  Tumor cells must overcome many roadblocks in their 

growth and progression including hypoxia (low oxygen concentration) and nutrient 

deprivation (29).  A tumor cannot progress beyond 2 – 5 mm in diameter without 

obtaining its own blood supply ((41), (42), (43)).   In other words, tumor growth rapidly 

surpasses the ability of the surrounding blood vessels to deliver adequate amounts of 

oxygen and nutrients.  The hypoxic stress response induced by a lack of oxygen initiates 

the activation of oncogenes that promote neovascularization.  The major inducer of 

angiogenesis in tumor cells is Vascular Endothelial Growth Factor (VEGF).  This 

mitogenic growth factor binds to two types of tyrosine kinase receptors, VEGFRI and 

VEGFRII, located on the membranes of endothelial cells that makeup nearby blood 

vessels (44). Upon ligand binding at least two different cell survival/angiogenesis 

pathways are activated, PI3K/Akt and Ras-mediated MAPK signaling. (Fig. 1-4) 
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 VEGF is highly expressed in prostate cancer ((45), (46)) and increases with 

increasing Gleason grade (47).  VEGF expression can be induced by many different 

signals.  Since oxygen availability is such a dire need for the progression of tumors the 

transcription factor Hypoxia Inducible Factor-1α (HIF1α) plays a major role in VEGF 
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expression (43) (discussed more fully below).  Cytokines such as IL-8 and TNFα, 

generally associated with wound healing, also play a role in stimulating VEGF 

expression to induce angiogenesis (48).  The Signal Transducer/Activator of 

Transcription-3 (STAT3) transcription factor also binds directly to the VEGF promoter 

in prostate cancer cells to induce expression.   

 Overall, VEGF signaling plays a role in proliferation, angiogenesis, and survival 

of prostate cancer cells.  The ability to understand how this pathway is regulated both 

intra- and intercellularly is a critical step in stopping tumor growth and progression.   

TGFβ and Prostate Cancer 

 The prostate, like many other tissues, has a delicate balance between apoptosis, 

cell proliferation, and differentiation (2).  This balance is maintained by many factors in 

the normal prostate.  Growth and functional maintenance is achieved primarily by 

androgens as well as the growth factors discussed previously.  Inhibition of cell 

proliferation is primarily achieved by the action of Transforming Growth Factor β 

(TGFβ) (49).  This factor is extremely important for maintaining normal organ size since 

prostate cells are continually stimulated to grow by the presence of androgen.   
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         TGFβ counteracts this by inducing differentiation, activating apoptosis, and inhibiting 

cell proliferation ((50), (51)).  The efficacy of anti-androgen treatment is based upon the 

resultant activation of the TGFβ pathway and activation of apoptosis thus decreasing 

tumor volume (52).   

 TGFβ is a superfamily of more than 30 multifunctional growth factors that 

regulate a wide array of cellular processes.  The biological effect on the target cell is 

dependent upon what type of cell the target is, its growth conditions, the presence of 

other growth factors, and its stage of differentiation (2).  For example, TGFβ specifically 

is known to stimulate cell growth in fibroblasts but inhibits the same in epithelial and 

endothelial cells in normal prostate (53).   

 TGFβ is secreted from the stromal cells and acts in a paracrine manner to exert 

its effect on nearby epithelia.  The growth factor will traverse the extracellular matrix 

until it binds to its primary receptor TGFβRII on the target cell.  Upon binding TGFβRII 

will heterodimerize with TGFβRI to initiate the intracellular signal cascade (54). (Fig.1-

5)   Heterodimerization activates the serine/threonine kinase activity of the receptors 

which then recruits and phosphorylates SMAD proteins (SMAD2 and 3).   
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          The phosphorylated SMADs translocate to the nucleus and activate a series of 

transcription factors that induce genes involved in cell growth, apoptosis, induction of 

ECM proteins, regulation of cell adhesion, and modulation of protease expression ((53), 

(2)).  Experimentally, the phosphorylation of either SMAD2 or SMAD3 can be assayed 

to monitor active TGFβ signaling.   
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 The TGFβ pathway is interesting in that it has growth inhibitory effects in the 

early stages of prostate cancer (much like in normal prostate) but then switches to a more 

oncogenic effect in later stages of the disease by a still unknown mechanism (2).  The 

major isoform of TGFβ in the adult prostate is TGFβ1.  The expression of this isoform 

increases in low-grade tumors compared to normal tissue and continues to increase with 

increasing tumor grade and metastatic potential ((55), (56)).  At first glance this increase 

in a growth factor known to inhibit cell growth would seem to contradict the goal of 

tumor cells to rapidly proliferate and evade apoptosis.  However, tumor cells acquire a 

selective resistance to the growth-inhibitory/apoptotic effects of TGFβ while still 

retaining the other responses such as expression of ECM proteins, cell-adhesion proteins, 

and proteases ((57), (58)).  There have been several mechanisms proposed for this 

phenomenon.  Proposed mechanisms include alterations in TGFβ receptor or SMAD 

expression, modulation of binding partners, or loss of downstream mediators of growth 

inhibition and apoptosis (2).  Increased levels of proteins known to disrupt the ability of 

TGFβ to induce apoptosis such as Bcl-2 and Prostate Specific Antigen may also provide 

a possible mechanism ((59), (60)).   

 Overall, the TGFβ signaling pathway is intimately linked to the progression of 

prostate cancer.  The disruption of the pathway’s oncogenic effects, as well as the 

reintroduction of its ability to induce apoptosis, is avenues for therapeutic targeting.   

Wnt Signaling and Prostate Cancer 

 The Wnt signaling pathway has been implicated in embryonic development and 

regulation of processes such as proliferation, cell-fate specification, cell polarity, and 
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migration (61).  This highly conserved pathway is activated by the Wnt ligand of which 

there are currently 19 known genes (62).  Wnt ligand is a glycoprotein that is secreted 

from a signal sending cell into the extracellular matrix and remains tightly associated 

with components in the matrix until it is liberated to reach its receptor on a signal 

receiving cell (63).  Wnt ligands can be classified into two groups.  The first group 

activates the canonical Wnt pathway (examples Wnt-1, -2, -3, and -3a).  In this pathway, 

in the absence of Wnt ligand, the central cytoplasmic signal transducer β-catenin is 

sequestered and destroyed by the “destruction complex” (64).  This multiprotein 

complex consists of Glycogen Synthase Kinase 3β (GSK3β), Adenomatous Polyposis 

Coli (APC) and a scaffolding protein called Axin.  GSK3β will phosphorylate β-catenin 

thereby marking it for ubiquitin-mediated degradation (65).  Upon binding of the Wnt 

ligand to its seven-transmembrane receptor Frizzled and coreceptor LRP5 (or LRP6) 

(66), Frizzled activates the cytoplasmic protein Dishevelled (Dvl).  Dvl will then 

dephosphorylate Axin, causing it to disassociate from the destruction complex thus 

decreasing GSK3β kinase activity.  The result is a stabilized pool of β-catenin in the 

cytoplasm.  Stabilized β-catenin can act in two different ways.  The first is to participate 

in a complex with E-cadherin at the plasma membrane to facilitate inter-cellular 

adhesion (67).  The second mode of action is for β-catenin to accumulate in the 

cytoplasm and then translocate into the nucleus.  Once in the nucleus it will associate 

with members of the T-cell factor (TCF) and lymphoid enhancer factor (LEF) family of 

transcription factors and activate transcription of target genes (68).  (Fig.1-6)  
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         The other category of Wnt ligands consists of those that activate one of many non-

canonical pathways. These pathways are similar to the canonical pathway in that they 

require a Frizzled receptor but do not require a LRP coreceptor and are independent of β-

catenin (69).  One example of non-canonical  

 Wnt signaling is an increase in the influx of cytosolic calcium that leads to the 

activation of Protein Kinase C and Calmodulin kinase II (70).   
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         Wnt signaling is thought to be involved in three different functions that have relevance 

in cancer progression: maintenance of stem cell-like phenotypes, promotion of epithelial 

to mesenchymal transitions (EMT) and inhibition of apoptosis (67).  Increased Wnt 

signaling has been demonstrated in prostate cancer by increased expression of Wnt 

ligands ((71), (72), (73)) as well as decreased expression of Wnt inhibitory protein 

(WIF1) (74).  However, there is much debate surrounding the presence of nuclear-

localized β-catenin in tumor cells.  Data suggest that accumulation of β-catenin in the 

nucleus only occurs in a small percentage of prostate cancer (67).  However, increased 

accumulation in the cytoplasm and the nucleus in patients with more aggressive tumors 

has led scientists to infer that Wnt signaling is upregulated and important for the 

progression of the disease to advanced metastatic cancer (75).   This pathway has also 

been shown to play a key role in metastasis of prostate cancer cells to bone (76).  

Overall, it is very important to determine how this pathway is regulated and how to 

abolish it in prostate cancer. 

Regulation of Growth Factor Signaling by Heparan-Sulfate Proteoglycans 

  Research regarding the regulation of growth factor signaling in prostate cancer 

and cancer in general has focused on understanding how the signal is modulated inside 

the cell from the plasma membrane to the nucleus.  However, recently more and more 

groups are looking outside the cell in the extracellular matrix for points of regulation.  

Each of these growth factors is secreted into the ECM from the signal sending cell and 

travels through it until they reach their receptors on the signal receiving cell.  The 

growth factors come in contact with many ECM molecules.  This review will focus on a 
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class of molecules that is found in most mammalian tissues (77) called heparan-sulfate 

proteoglycans (HSPGs).   

 HSPGs are cell-surface molecules that consist of a protein core with covalently 

attached glycosaminoglycan (GAG) chains.  These molecules have been assigned a wide 

range of functions spanning from  regulation of cell adhesion, migration, proliferation, 

differentiation (78) all the way to  plasma membrane carriers for viruses (79).  HSPGs 

can either be located on the cell surface or secreted into the ECM.  This localization is 

determined by the protein component.  The attached GAG chains are primarily 

responsible for mediating interactions with extracellular ligands such as growth factors 

or adhesion molecules (78).  Three major groups of HSPGs have been described:  

syndecans, glypicans, and perlecan.  The focus of my research and this dissertation deals 

primarily with perlecan.   

Perlecan and Prostate Cancer 

 Perlecan (Pln) is a ubiquitous proteoglycan known to control many growth factor 

signaling pathways through either protein-protein or protein-heparan-sulfate interactions.  

This gives Pln a role in cellular proliferation, differentiation, and migration.  Pln was 

originally isolated from mouse Engelbreth-Holm-Swarm tumors by Hassell and 

colleagues in 1980.  This group also showed that it was expressed at the cell surface of 

human colon carcinoma cells (80).   Since this discovery it has been found that Pln is 

highly conserved in organisms ranging from nematodes to mammals.  It is found in the 

pericellular space of most cells and nearly all basement membranes that separate the 
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epithelial and stromal compartments of mesenchymal organs.  This localization is ideal 

for Pln to mediate either paracrine or autocrine growth factor signaling (81).   

 

 

 

 Pln is very large at both the gene and protein level.  It has an mRNA that is >15 

kilobases which is used to produce a protein of 4,391 amino acids of which 21 are cut 

off with signal peptidase (82).  This protein core of >400 kilodaltons is folded into 5 

distinct globular domains that are linked by short linear pieces giving it a “beads on a 

string” appearance.  This structural observation is where the name “perlecan” is derived.  

The 5 domains of the protein core are homologous to proteins involved in lipid 

metabolism and cell adhesion (81). Pln continues to increase in molecular weight during 

protein maturation as heparan-sulfate (HS) chains are added to three distinct HS 

attachment sites on Domain I of the protein core and possibly more on Domain V. (Fig. 
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1-7)  After these HS chains are modified by sulfation the secreted form of Pln is 

estimated to be >700-800 kilodaltons (83).  The expression and modification of Pln 

allows it to regulate growth factor signaling in many different contexts from 

development to diseases such as cancer. 

 Insights into the role of Pln in development and disease have come from 

observations of Pln-knockout mice.  Two articles in 1999 described the mice as having 

various complex phenotypes that extended into many different organ systems ((84), 

(85)).  These mice were embryonic lethal and had shortened long bones as well as a 

dwarf-like phenotype.  These observations eventually led to the discoveries that 

mutations in the Pln gene were associated with such diseases as Schwartz-Jampel 

syndrome as well as Silverman-Handmaker type dyssegmental dysplasia.  Loss-of-

function of Pln orthologs in other organisms has also been described.  UNC-52 in 

Caenorhabditis elegans was shown to be important for gonadal cell migration as well as 

the mediation of FGF, TGFβ, and Wnt signaling ((81), (86)).  Also, work from the Datta 

Lab has demonstrated the role of Trol, the Drosophila Pln homologue, in stimulating the 

proliferation of neural stem cells called neuroblasts in the embryonic brain of 

Drosophila.  Trol modulates FGF and Hh signaling in the developing brain (87), is 

present on and controls the number of circulating plasmatocytes suggesting a role in the 

mediation of VEGF signaling and modulates Decapentaplegic (a TGFβ family member) 

and Wingless (a Wnt growth factor) signaling in second instar brains and eye discs (88).  

Later studies in mouse have demonstrated that Pln plays an essential role in neurogenesis 

by regulating the amount of available SHH at the floor plate (89). 
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 The fact that Pln regulates many of the growth factor pathways that play essential 

roles in both development and cancer has led researchers to study its role in various 

types of cancer.  Cohen et al discovered that Pln mRNA and protein increased 15-fold in 

invasive tissue compared to normal in metastatic melanoma patient samples.  This group 

also utilized the MeWo and the more metastatic 70W melanoma cell lines and 

discovered a corresponding increase in Pln as metastatic potential increased (90).  This 

study suggested that Pln was involved in the progression to an invasive and possibly a 

metastatic phenotype.  Another study by Sharma et al demonstrated the importance of 

Pln in the proliferation and responsiveness to FGF signaling of colon carcinoma cells by 

way of gene-targeted knock-down (91).  In a beautiful set of experiments in mice, Zhou 

et al reported on the importance of the HS chains on the N-terminus of Pln.  In 

Hspg2Δ3/Δ3 mice the HS-attachment sites are mutated thus leaving an intact protein core 

without HS.  These mice demonstrated significant delays in wound healing, decreased 

FGF2-induced tumor formation, and defective angiogenesis (92).   

 Pln has also been associated with prostate cancer.  The Pln gene is located in 

region 1p36 of human chromosome 1.   A genetic association between prostate cancer 

and the brain cancer glioblastoma multiforme has been mapped to this region 

(Carcinoma Prostate Brain, CaPB locus).  Due to this association the Datta lab and their 

collaborators analyzed the expression and role of Pln in the progression of prostate 

cancer.  They demonstrated that Pln expression correlates significantly with increased 

metastatic potential of prostate cancer cells based upon tumor Gleason score in 600 

patient samples. It was also shown that Pln increased the activity of the SHH pathway 
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which in turn regulates cell proliferation (93).  Another study by Savore et al analyzed 

the effect of Pln in the androgen-independent, bone targeted prostate cancer cell line C4-

2B.  In these cells Pln expression was stably knocked down via ribozyme directed 

toward the Pln message.  The Pln knock-down clones showed decreased proliferation as 

well as decreased responsiveness to FGF2 and VEGF-A.  In vivo effects were analyzed 

by inoculating athymic mice with either control or knock-down clones.  The Pln-

deficient clones resulted in smaller tumor volume, decreased vascularization and had no 

increase in serum PSA levels (94).   

 The observations from these studies and others indicate that Pln has the potential 

to be a therapeutic target as well as a marker of advanced prostate cancer.  For this to 

become a reality we need to learn more about how Pln expression and activity is 

regulated.   

Synthesizing Perlecan   

 Pln is a secreted proteoglycan so it follows the protein secretion pathway.  The 

Pln gene is transcribed in the nucleus to produce Pln mRNA.  The message is 

translocated to the rough endoplasmic reticulum to be translated by the ribosomes.  

Since the mRNA contains a signal sequence the resulting protein is co-translationally 

funneled into the lumen of the ER.  From this point the Pln protein will be transported to 

the Golgi apparatus via transport vesicles.  Once in the Golgi apparatus, the Pln protein 

core will have HS chains polymerized onto HS attachment sites.  These sites consist of 

the Ser-Gly sequence usually with flanking acidic residues.   
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HS chain polymerization begins with the transfer of Xylose from UDP-Xylose by the 

enzyme Xylosyltransferase to the serine residue in the attachment site.  From there two 

consecutive Galactose residues and then a Glucuronic acid (GlcA) residue is added to 

form what is called the linker tetrasaccharide.  This linker region is common to the 

synthesis of chondroitin sulfate, dermatan sulfate, and HS.  However, the subsequent 

addition of α4-N-Acetylglucosamine (GlcNAc) commits the intermediate to HS chain 

synthesis.  Polymer formation then proceeds with alternating addition of GlcAβ4 and 

GlcNAcα4 residues by the EXT1 and EXT2 copolymerases that are products of the ext 

tumor suppressor genes.  

 At the same time the HS chain is polymerized it can be modified at different 

positions on the GlcA/GlcNAc disaccharide by HS modification enzymes (HSMEs). 

(Fig.1-8) These modification enzymes act in a stepwise manner such that the action of 

one enzyme provides the correct substrate for the next enzyme in the series (95).  The 

first modification is generally the removal of the N-acetyl group and subsequent N-

sulfation of GlcNAc residues by the enzyme GlcNAc N-deacetylase N-sulfotransferase 

of which four tissue-specific isoforms exist.  The next modification is usually the 

epimerization of the C5 position of GlcA residues into Iduronic acid (IdoA) by the 

enzyme C5-GlcA epimerase (GLCE).  GLCE has only one known isoform and provides 

the substrate needed for the transfer of sulfate to the C2 position of either GlcA or IdoA 

by the enzyme 2-O-sulfotransferase (2OST).  The single 2OST enzyme has a five-fold 

greater affinity for IdoA residues than GlcA.  Further sulfation reactions can occur at the 

C6 or C3 positions of glucosamine residues by way of the 6-O-sulfotransferase (6OST) 
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or 3-O-sulfotransferase (3OST) enzymes respectively.  Each of the 6OST and 3OST 

enzymes exists as multiple tissue-specific isoforms.  The redundancy of multiple 

isoforms of the same gene allows for maintenance of function in the event of a loss-of-

function mutation in one isoform.   

 

 

 

 Twenty four unique GlcA-GlcNAc disaccharides can be produced by the variable 

action of these HSMEs.  The number of possible modification patterns grows 
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exponentially when analyzing an entire HS chain that may reach 100 disaccharides in 

length.  The HS chain generally contains short segments of highly modified sugars 

interspersed between unmodified regions of variable length (95).  This variability in 

modification stems from the substrate specificity of each of the HSMEs as well as their 

tissue-specific and condition-specific expression levels.  HS modification patterns, 

especially sulfation patterns, regulate how well an HSPG will be able to bind a growth 

factor.  Thus Pln secreted from cells of different tissues or under different cellular 

conditions will have different capabilities of regulating growth factor signaling.  I 

described above the importance of Pln’s ability to regulate growth factor signaling in 

various cancers including prostate cancer.  Due to the importance of sulfation to this 

ability I have focused on the role the enzyme 2OST plays in regulating the HS fine 

structure of Pln and subsequently its biological effects in prostate cancer cells.  

2OST 

 As mentioned previously the 2OST enzyme catalyzes the transfer of sulfate from 

3’-phosphoadenosine-5’-phosphosulfate (PAPS) to the C2 position of either GlcA or 

IdoA residues of maturing HS chains (96).  HS with IdoA residues modified in this way 

have been found in virtually all HS preparations analyzed to date.  The enzyme was 

originally cloned, purified and functionally verified in Chinese Hamster Ovary (CHO) 

cells by Kobayashi et al in 1997 (97).  Since this breakthrough 2OST has been shown to 

be highly conserved from nematodes to vertebrates.  Mutations of this gene in various 

organisms have shown a wide array of phenotypes that point to the essential function 

that 2OST plays in development.  Hs2st-null mice were generated via a gene trap 
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strategy and resulted in renal agenesis, eye and skeletal defects, as well as neonatal 

lethality (98).  A mutation in the hst-2 gene in C. elegans resulted in severe cell 

migration defects (99).  Recently it was found that 2OST is essential for the FGF 

signaling required for chick limb bud outgrowth and development (100).   The dHs2st 

homolog in Drosophila from the Segregation disorder locus has been functionally 

verified (101) and enzymatically characterized (102).  dHs2st was also shown to affect 

FGF signaling in Drosophila tracheal formation (103).  The expression dynamics of the 

2-OST gene in zebrafish have also been elucidated (104).  The focus of my research is to 

determine the effect knockdown of 2OST expression has on growth factor signaling in 

prostate cancer cells as well as to determine how changes in cellular stress conditions 

affect its expression. 

Cellular Stress and Cancer 

 Many articles spanning scientific journals and mainstream media have addressed 

the effect of patient psychological stress on cancer onset and progression.  However, the 

stress stimuli that cells within a tumor sense and respond to may be the much more 

important form of stress on which to focus.  Cells respond to stress stimuli in various 

ways.  They can either activate signaling pathways that promote their survival and 

recovery from the insult or activate cell pathways designed to eliminate the damaged 

cell.  The first instinct is for self-preservation and recovery but if the insult is too great 

for the cell to respond to at that moment they choose the cell death pathway (105).  

Cellular or physiological stress can be present in many forms.  My focus will be on 
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hypoxia (decreased availability of oxygen) and Reactive Oxygen Species (ROS) and 

their effect on tumor progression.   

Hypoxia and Cancer 

 Solid tumors make up approximately 90% of all cancers and result in significant 

mortality due to cell invasion and metastasis to distant vital organs such as the brain and 

lungs (106).  These tumors progress via rapid cellular proliferation and changes in the 

tumor microenvironment.  A tumor can only grow to a certain diameter before it must 

obtain new vasculature via angiogenesis.  The process of angiogenesis is designed to 

provide the oxygen and nutrients that tumor cells need to continue to progress.  

However, tumor cells generally grow at a rate that angiogenesis cannot keep up with.  

Also, tumor cells can still be deficient in both oxygen and nutrients after angiogenesis 

due to problems in vessel formation in the tumor that cause leakage and a reduced 

amount of oxygen in the blood due to cancer treatment-induced anemia (107).  The 

oxygen diffusion limit through tissue has been measured at 150 microns (108).  Due to 

this hypoxia, tumors generally contain a central core of necrotic cells when examined 

histologically.  The lack of vasculature also has another drawback in the treatment of the 

disease in that chemotherapy drugs do not have an adequate delivery system into the 

tumor (109).   

 The hypoxic stress response of tumor cells can allow them to overcome the 

oxygen deficiency by inducing pathways that activate proteins involved in cell survival 

or metastasis that allows them to escape from the stressful environment.  The key 
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transcription factor involved in mediating the hypoxic stress response is hypoxia 

inducible factor 1 (HIF1). 

 

 

 

 HIF1 is a α/β heterodimeric complex of transcription factors (HIF1α and HIF1β) 

that induces a wide array of genes in response to oxygen deficiency.  It was first 

identified by Semenza and colleagues as a regulator of erythropoietin expression (110).  

It binds to hypoxia responsive elements (HREs) in the promoters of these genes.  It is 

estimated that 1-2% of the entire human genome contains HREs which leads to the 

upregulation or downregulation of gene transcription by HIF1 (111).  Under normoxic 

conditions HIF1β is constitutively expressed but HIF1α is continually degraded by 
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oxygen-dependent prolyl hydroxylases that destabilize the protein and target it for the 

von Hippel-Lindau E3 ubiquitin ligase and ultimately proteosomal degradation (112). 

(Fig.1-9)  Under hypoxic conditions, the hydroxylases are inhibited and HIF1α is 

stabilized which allows it to translocate into the nucleus, pair with HIF1β and regulate 

transcription of target genes.  The genes that are upregulated in cancer are those involved 

in angiogenesis, cell survival/death, metabolism, pH regulation, cell adhesion, ECM 

remodeling, migration, and metastasis ((113), (114), (115)).   

 Hypoxia has been associated with virtually all solid tumors and prostate cancer is 

no exception.  When analyzing prostate tumors with a polarographic needle oxygen 

electrode it was found that on average prostate cancer tissue had a partial pressure of 

oxygen of 2.4 mmHg while normal muscle tissue was 30 mmHg (116).  Hypoxia has 

been shown to correlate with increased tumor invasiveness and metastasis (117).  

Hypoxia is also suggested to provide resistance to radiotherapy in vivo (118).  Overall 

the effects of hypoxia and HIF1α have indicated a therapeutic target for solid tumors that 

must be addressed.   

Oxidative Stress and Prostate Cancer 

 Oxidative stress is defined as a cellular situation in which the balance between 

free radicals, reactive oxygen species (ROS) and the endogenous antioxidant defense 

system is disturbed and shifted toward being pro-oxidant.  This type of stress has been 

associated with processes such as DNA damage, proliferation, cell adhesion and 

survival.  Generally the levels of ROS are increased during oxidative stress.  There are 

two subgroups of ROS.  The first subgroup is made up of oxygen containing free 
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radicals such as superoxide (O2
-) and the second subgroup consists of non-radical ROS 

such as hydrogen peroxide (H2O2).  It is estimated that 1-3% of pulmonary oxygen 

intake by humans is converted into ROS (119).  These reactive species can be acquired 

via the environment from pollutants, tobacco smoke, and radiation as well as from inside 

the cell due to the activity of the electron transport chain in the mitochondria and the 

enzyme NADPH oxidase in the cytosol ((120), (121)).   

 The cellular defense against these damaging species are ROS scavengers such as 

superoxide dismutases (ie MnSOD and CuZnSOD) which convert superoxide radicals 

into peroxide which is in turn converted into water via peroxidases.  Loss of this defense 

system has been linked to many types of cancers.  CuZnSOD knockout mice have an 

increased rate of liver cancer in late life (122).  MnSOD knockout mice die soon after 

birth due to the deleterious effects of a large increase in ROS (123).  Heterozygotes of  

MnSOD mice are able to live to adulthood but have increased rates of many cancers 

(124).  Mice deficient in peroxidase activity have an increased rate of intestinal cancers 

(125).   

 One of the most studied results of ROS accumulation is the radiation-induced 

direct damage of DNA brought about by the formation of 8-hydroxy-2’-deoxyguanosine 

by the hydroxyl radical OH- (126).  However, oxidative stress is also an important 

regulatory mechanism for other processes involved in cancer progression.  Many of 

these processes depend on the cell type and the level of ROS accumulation (127).  For 

example, in “normal cells” high levels of ROS generally promote apoptosis due to the 

amount of damage to proteins, DNA and membranes.  However in some malignant cells 
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ROS has the opposite effect.  Overexpression of NADPH oxidase (NOX), a major 

contributor of cellular ROS, is anti-apoptotic in pancreatic cancer cell lines (128).  This 

is thought to be the result of oxidative inactivation of caspases involved in apoptosis 

(127).  ROS also promotes cellular proliferation.  NIH-3T3 cells transfected with the ras 

oncogene displayed increased superoxide production due to increased NOX activity and 

promoted abnormal proliferation (129).  As if ROS had not done enough to promote 

carcinogenesis and tumor progression, it also promotes metastasis by the expression and 

activation of matrix metalloproteases that degrade the ECM (130).  The accumulation of 

ROS correlates with the metastatic potential of cancer cells when compared to normal or 

benign cells (131).  The effect of ROS has also been seen in prostate cancer cells.  These 

cells have increased levels of mutations in their mitochondrial DNA that increase the 

levels of ROS (132).  Also overexpression of NOX1 in prostate cancer cell lines leads to 

the overproduction of superoxide radicals that increase cellular proliferation and 

angiogenesis (133).   

 As discussed the accumulation of ROS in cancer cells has many effects that 

promote the progression of tumors.  One of the principal effects of ROS accumulation is 

the regulation of gene expression via activation of stress-activated protein kinases 

(SAPKs).  Four examples of ROS-induced SAPKs are Src, Abl, c-Jun N-terminal kinase 

(JNK) and p38 MAPK.  These kinases are used to activate transcription factors that 

induce expression of genes involved in cancer progression.  I will focus on two ROS-

inducible transcription factors:  nuclear factor kappa B (NFkB) and activating 

transcription factor 2 (ATF2). (Fig.1-10) 
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  The NFkB transcription factor has been associated with the processes of 

inflammation and cancer for many years.  It is a member of the Rel family of 

transcription factors, is ubiquitously expressed and forms both homodimers and 

heterodimers with other members of the family to control gene expression (Verma, 

1995).  NFkB was originally identified in B cells as the transcriptional activator of the 

kappa immunoglobulin light chain gene (134).   Since this discovery it has been shown 

to activate many types of genes usually involved in cellular defense (135).  Under 

normal conditions where no stress is being perceived by the cell NFkB is sequestered in 

the cytoplasm by the protein Inhibitor of NFkB (IkB).  Upon stimulation by cellular 

stress, protein kinases phosphorylate IkB Kinase (IKK) which in turn phosphorylates 

IkB leading to IkB ubiquitination and degradation by the proteosome.  This allows 

NFkB to translocate into nucleus, dimerize with its partner and activate transcription.   

NFkB-induced gene expression affects many different cellular processes.  It is anti-

apoptotic in that mice with a deficiency of the p65 subunit of NFkB are embryonic lethal 

due to massive apoptosis in the liver (136).  NFkB activates many anti-apoptotic proteins 

such as bcl-2, TRAF1 and TRAF2.  It has also been shown to activate genes involved in 

cell growth, proliferation, angiogenesis, and metastasis.   
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  NFkB is activated by several SAPKs.  These kinases are responsible for 

phosphorylating downstream kinases that ultimately activate IKK which relieves the 

repression of IkB on NFkB allowing NFkB to enter the nucleus.  Src and Abl kinases are 

also activated by oxidative stress.  These kinases phosphorylate either Protein Kinase D 

(PKD) or Protein Kinase C γ (PKCγ) which in turn phosphorylate IKK on certain 

tyrosine residues (137).  Oxidative stress has also been shown to activate JNK ultimately 

resulting in the activation of NFkB though the exact mechanism is yet unknown (135).   

Constitutively activated NFkB is present in many types of cancer such as lymphomas, 

leukemias, and many solid tumors including prostate cancer (138).  It is constitutively 

activated in a number of prostate cancer cell lines as well as xenografts ((139), (140)).  

In these cell lines, NFkB activation was inversely correlated with Androgen Receptor 

(AR) signaling.  The highly metastatic lines that have lost their AR signaling had the 

highest amount of nuclear NFkB.  Blockade of NFkB activity in highly metastatic 

prostate cancer cells resulted in slow growing tumors and decreased metastatic ability 

when inoculated into nude mice (141).   
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 The ROS-inducible p38 mitogen activated protein kinase (MAPK) regulates gene 

expression by the direct phosphorylation of a variety of transcription factors.  Activation 

of the ATF2 transcription factor has been directly linked to p38 MAPK because 

inhibition of p38 results in decreased phosphorylation of ATF2 and subsequent decrease 

in proliferation (142). (Fig.1-10)  Transcription activation via the p38/ATF2 pathway has 

been seen in cell cycle genes such as cyclin D1, genes involved in invasion such as 

MMP2 and urokinase plasminogen activator, cytokines such as IL-8, cell adhesion 

molecules such as E-selectin and anti-apoptotic genes such as bcl-2 (143).   
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 ATF2 is a member of the ATF/CREB family of bZIP transcription factors.  All of 

the members of this family share the ability to respond to environmental signals such as 

oxidative stress (143).  These transcription factors can homodimerize or heterodimerize 

with other members of the family to regulate gene expression by directly binding 

promoters.  ATF2 knockout mice demonstrate the requirement for the transcription 

factor in skeletal and central nervous system development as well as maximal induction 

of genes with cAMP Response Elements (CRE) in their promoters (144).  

 The consensus binding site for ATF2 is TGACGT(C/A)(G/A) (145).  ATF2 

overexpression in multiple human and mouse cancer lines results in increased cell 

proliferation.  ATF2 localization has been extensively analyzed in prostate cancer 

patients.  Immunohistochemical analysis reveals that levels of nuclear localized, 

phosphorylated ATF2 is increased in benign tumors as compared to normal tissue and is 

even higher in advanced tumors.  These results along with gene expression data suggest 

that ATF2 promotes both cell survival and proliferation (146).  ATF2 has also been 

implicated in the progression of breast cancer, leukemias, melanoma, and lung cancer 

(143).   

Cell Line Models of Prostate Cancer Progression 

 Immunohistochemical analysis of protein levels in prostate cancer patients has 

revealed many correlations between stage of disease and the increasing or decreasing 

amount of a protein.  However, in order to gain a mechanistic understanding of the key 

events that promote prostate cancer progression one must look to models that reflect the 

system under study.  Over the years several different cell models have been developed to 
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address these types of questions in prostate cancer.  This has not been an easy task in 

that only rats, dogs and humans have been shown to spontaneously develop prostate 

cancer (147).  Several different in vivo models of prostate cancer have been used with 

the Dunning rat model and subsequent sublines being the most studied.  These cell lines 

have yielded substantial evidence as to the effects of androgen ablation therapy as well 

as epithelial-stromal interactions in prostate cancer (147).  Canine models of the disease 

are used mainly to study metastasis to bone and knockout and transgenic mouse cell 

lines can also be used to study a multitude of cancer processes.  Nonetheless, prostate 

cancer is primarily a human disease and thus models of human origin are usually more 

revealing on the actual nature of the disease.  I have taken advantage of two different 

human cell line models of prostate cancer progression to address the questions of my 

research.  Both of these models begin with the trademark benign cell line in prostate 

cancer research LNCaP. 

 The LNCaP prostate cancer cell line was originally derived from a 

supraclavicular lymph node metastasis of a primary prostatic carcinoma (148).  It was 

shown to be weakly tumorigenic when inoculated into nude male mice.  This line 

displays characteristics of early stages of prostate cancer in that it is sensitive to 

androgen signaling.  However, it has also been shown to be sensitive to anti-androgens 

due to expression of a mutated androgen receptor (149).  LNCaP also mimics early stage 

disease in that these cells secrete low levels of prostate specific antigen (PSA) (148). 

The first prostate cancer progression cell line model that I will describe was originally 

developed in the laboratory of Leland Chung ((150), (151)).  This series of lines was 
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established via serial transplantation of cancer cells into nude mice.  The C4 subline was 

developed by subcutaneous co-inoculation of LNCaP cells with non-tumorigenic MS 

fibroblasts from bone into intact male nude mice.  The resulting tumors were allowed to 

grow for eight weeks, the mice were castrated, and then tumors were extracted and 

expanded into cell culture four weeks after castration.  The resulting C4 cells show 

higher levels of PSA expression than LNCaP, produce approximately 10 times more 

colonies in soft agar, and are androgen-sensitive.  The next subline in the series is C4-2 

which was developed by co-inoculation of C4 cells with MS fibroblasts into a castrated 

male host where they were allowed to form tumors for 12 weeks, whereupon the cells 

were expanded into cell culture.  The resulting C4-2 cells are highly tumorigenic on their 

own, androgen-insensitive, and metastasize to both the lymph node and bone.  The final 

subline of the series is C4-2B which was developed by inoculation of C4 cells either 

subcutaneously or orthotopically into a castrated male host and selected for their ability 

to rapidly metastasize to the bone.  This subline mimics the most advanced stage of 

prostate cancer.  C4-2B cells are androgen-insensitive, secrete the highest levels of PSA 

and exhibit the highest rate of metastasis and invasion. 

 The other cell line model of prostate cancer progression that I will describe 

consists of three independent cell lines beginning with the aforementioned weakly 

tumorigenic LNCaP line and progressing with two lines of increasing metastatic 

potential, DU145 and LN4.  The DU145 cell line was originally derived from a 

metastasis of a primary prostatic adenocarcinoma in a human patient (152).  These cells 

grow slowly but produce large colonies in soft agar, are androgen-insensitive, and are 
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moderately metastatic.  The most metastatic cell line of the series is PC3M-LN4 (LN4).  

This cell line was derived from the androgen-insensitive PC3 cell line that was originally 

derived from a bone metastatic lesion.  PC3 cells were inoculated into nude mice and a 

resulting liver metastasis was expanded into the PC3M cell line.  These cells were used 

for four rounds of serial orthotopic implantation and the resulting lymph node metastasis 

of the fourth round was expanded into the highly metastatic LN4 cell line.  This line is 

rapidly growing, androgen-insensitive, and metastasizes to both regional and distant sites 

such as the abdomen and bone (153).   

 The purpose of this study was to evaluate two different models in which 

increased extracellular HS may drive prostate cancer progression. First I wanted to 

determine whether upregulation of an HS modification enzyme could contribute to 

metastatic behaviors as upregulation of the HSPG protein core Pln has already been 

shown to do. Secondly, I wanted to investigate whether increased expression of the Pln 

protein core and the 2OST enzyme is due to a common general mechanism, specifically 

stress responses that increase in prostate cancer cell lines with increasing metastatic 

potential.  

 From previous work in our lab and those of our collaborators, we identified two 

subsets of prostate tumors.  It was observed that 54% of tumors in this study had 

increased levels of Pln that correlated with increasing Gleason Grade while the 

remaining 46% either maintained or had decreased levels of Pln but still progressed to 

advanced disease.  I set out to determine possible molecular mechanisms for both of 

these subsets.   
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CHAPTER II 

 

STRESS-ACTIVATED TRANSCRIPTION FACTORS STIMULATE  

 

PERLECAN EXPRESSION IN A MODEL OF PROSTATE CANCER  

 

PROGRESSION 

 

 Prostate cancer is the second leading cause of cancer mortality in American men, 

behind only lung cancer in its severity (1).  Determining the molecular mechanisms that 

regulate the progression of prostate cancer is of utmost importance.  Perlecan (Pln) is a 

heparan sulfate proteoglycan that is secreted into the extracellular matrix and regulates 

many growth factor signaling pathways that are essential to prostate cancer progression 

(154).  The Datta lab and their collaborators recently found that the PLN gene is located 

in a region of chromosome one with a statistically significant genetic association 

between prostate cancer and the brain tumor glioblastoma multiforme termed carcinoma 

prostate brain or CAPB locus (93).  Immunohistochemistry of Pln protein secreted into 

the lumen of prostate cancer revealed that Pln is present in 54% of malignant prostate 

cancer glands but not normal glands and is significantly upregulated in invasive tumors 

when compared to benign tissue or high grade prostatic intraepithelial neoplasia.  Pln 

expression correlated with tumors of higher Gleason score and those with increased 

prostate cell proliferation.  Analysis of Pln mRNA in normal and tumor tissues 

correlated well with the data derived from tissue microarrays.  This increase in Pln 

protein and message levels in malignant versus normal tissue led me to seek to 

determine the mechanisms by which Pln expression is upregulated in prostate cancer 

progression. 
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 The rapid proliferation of malignant cells to form a solid tumor generally results 

in a situation of cellular stress.  Cells within a tumor can respond to this stressful 

situation in various ways.  They can choose to eliminate themselves through 

programmed cell death if the stress insult is too severe or decide to activate genes that 

are involved in cell survival and the ability to recover from the insult.  Therefore, 

cellular stress is a mechanism of selection for cells within a tumor that will progress to 

more advanced disease.  One source of cellular stress is decreased availability of oxygen, 

or hypoxia.  A solid tumor generally cannot grow larger than 2-5 mm in diameter before 

obtaining its own blood supply (43).   However, tumor cells usually grow at a rate that 

exceeds the requirement for new blood vessels.  The resulting hypoxia stabilizes the 

transcription factor hypoxia-inducible factor 1 α (HIF1α) which heterodimerizes with 

HIF1β in the nucleus and activates transcription of target genes (112).  The genes 

activated by the HIF heterodimer in cancer are those involved in angiogenesis, cell 

survival, metabolism, cell adhesion, migration, metastasis and many other cellular 

processes ((113), (114, 155)).  Prostate tumors are hypoxic (118) and this correlates with 

their tumor invasiveness and metastasis (117).  HIF1α is overexpressed in prostate 

tumors (156) as well as in rat and human prostate cancer cell lines (157), making 

hypoxia and the HIF transcription factor potential candidates for generating upregulation 

of Pln expression.  Another source of cellular stress is reactive oxygen species (ROS).  

ROS are generated by many different mechanisms.  The major source of ROS is the 

mitochondria where increased electron transport chain activity or mutations in 

mitochondrial DNA cause ROS to accumulate in the cytosol of prostate cancer cells and 
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activate signaling pathways (132, 158).  Another extra-mitochondrial source of ROS is 

the cytosolic enzyme NADPH oxidase (NOX).  Accumulation of ROS activates a 

number of stress-activated protein kinases that are used to activate transcription factors 

to induce expression of genes involved in cancer progression.  Nuclear factor kappa B 

(NFkB) is a ROS-inducible transcription factor that is constitutively activated in many 

cancers including prostate cancer (138).  The ROS-inducible p38 MAPK regulates gene 

expression by direct phosphorylation of a variety of transcription factors.  Activation of 

ATF2 has been directly linked to p38 MAPK because inhibition of p38 results in 

decreased phosphorylation of ATF2 and a subsequent decrease in proliferation (142). 

Transcription activation via the p38/ATF2 pathway has been seen in cell cycle genes 

such as cyclin D1, genes involved in invasion such as MMP2 and urokinase 

plasminogen activator, cytokines such as IL-8, cell adhesion molecules such as E-

selectin and anti-apoptotic genes such as bcl-2 (143).  Phosphorylated ATF2 is strongly 

overexpressed in prostate tumors compared to normal tissue (146).  ATF2 is pro-

proliferative and plays a role in prostate cancer progression (143).  These characteristics 

make ROS signaling through the p38/ATF2/NFkB pathway another attractive candidate 

for stimulating increased expression of Pln. 

 In the present study the role of stress-activated transcription factors in the 

overexpression of the PLN gene in prostate cancer progression was investigated using a 

cell line model of prostate cancer progression that overexpresses Pln as observed in a 

subset of prostate cancer patients.  My results also show that Pln modulates SHH, FGF, 

Wnt, and TGFβ signaling in this model.  I observed that the proximal Pln promoter 
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contains consensus binding sites for the transcription factors HIF1α, NFkB and ATF2.  

SiRNA-mediated knockdown of each transcription factor resulted in significantly 

reduced levels of Pln mRNA.  Overexpression of a stabilized HIF1α resulted in 

increased levels of Pln in more metastatic cell lines.  Inhibition of ROS mediated 

signaling pathways also resulted in decreased levels of Pln with the more metastatic lines 

being the most sensitive.  Chromatin immunoprecipitation analysis revealed that HIF1α 

directly binds the Pln promoter, NFkB binds in the most metastatic cell line, and the 

effect of ATF2 is indirect in all cell lines and no physical interactions with the Pln 

promoter were detected.   

Materials and Methods 

Cell Lines and Culture Conditions 

 LNCaP, DU145, and PC3M-LN4 (LN4) cell lines were obtained from ATCC and 

cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum and 5% 

Pen-Strep.  Cells were maintained at 37oC and 5% CO2.   

Reagents and Antibodies 

 SB202190 (Cat. # S7067) and diphenyliodonium chloride (DPI) (Cat. # 43088) 

were purchased from Sigma Aldrich.  Primary antibodies purchased from Santa Cruz 

Biotechnology (SCBT) are as follows:  mouse anti-β-catenin (sc-7963, 1:500), mouse 

anti-phospho-ERK (sc-81492, 1:1000), rabbit anti-phospho-SMAD2/3 (sc-11769, 

1:1000), mouse anti-phospho-ATF2 (sc-52941, 1:500).  Purified mouse anti-β-actin 

antibody (A5316, 1:1000) was purchased from Sigma Aldrich.  Anti-mouse HRP and 

anti-rabbit HRP secondary antibodies (1:10,000) were purchased from Jackson Labs.  
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Antibodies for chromatin immunoprecipitation were used at a final concentration of 0.3 

mg/mL and as follows:  mouse anti-HIF1α (Novus Biologicals #NB100), rabbit anti-

ATF2 (SCBT sc-6233), and rabbit anti-NFkB p65 (SCBT sc-109).   

Transient Transfections 

 Transient transfections of siRNA were performed using Lipofectamine 2000 

reagent (Invitrogen #11668027) according to manufacturer’s protocol.  Briefly cells 

were cultured in 6-well plates and allowed to attach for 24 hours.  siRNA was applied 

and cells were harvested for either protein or RNA after 24 hours.  Scrambled siRNA 

was used as the negative control.  Transient transfection of stabilized HIF1α (stHIF1α) 

(a kind gift from Dr. Eric Huang) was also performed using Lipofectamine 2000 reagent 

according to manufacturer’s protocol. 

RNA Isolation and Real-Time PCR 

 Cells were grown to 80-90% confluence, scraped, centrifuged and washed with 

PBS.  RNA isolation was performed with Qiagen RNEasy Mini-kit (#74104) according 

to manufacturer’s protocol.  2 μg of RNA was used in each DNAse I reaction using 

DNAse I Amplification Grade from Invitrogen (#18068).  Reverse transcription was 

performed with oligo dT and random hexamer primers using SuperScript III reverse 

transcriptase from Invitrogen (#18080044).  Real-time PCR was performed using 

Taqman Gene Expression Assays with Taqman Universal PCR Master Mix from 

Applied Biosystems (#4324018).  Each sample was run in triplicate at three different 

concentrations and normalized to levels of 18S rRNA.  Reactions were performed using 
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a BioRad C1000 Thermal Cycler machine.  Data for each sample is presented as the 

mean fold change compared to control and error is presented as standard deviation. 

Western Blotting 

 Isolation of total protein was done using the Mammalian Cell Lysis Kit from 

Sigma Aldrich (#MCL-1KT) according to manufacturer’s protocol.  Phosphatase 

inhibitors were used for each sample (Sigma Aldrich #P0044).  Samples were prepared 

and run on 15% SDS-PAGE and transferred onto nitrocellulose.  Western blots were 

developed with Pierce ECL Western Blotting Substrate (#32106).  Images and 

densitometry were obtained on a BioRad ChemiDoc XRS machine using Quantity One 

software.  Densitometry values represent the mean of two independent experiments. 

Chromatin Immunoprecipitation 

 LNCaP, DU145, and LN4 cells were cross-linked by adding formaldehyde 

directly to cell culture medium to a final concentration of 1%.  Cross-linking was 

allowed to proceed for 10 minutes at room temperature then stopped with addition of 

glycine to a final concentration of 0.125 M.  Cells were washed twice with ice-cold PBS 

and swollen with PBS for 10 minutes at 37oC.  Cells were scraped, washed once with 

PBS then pelleted by centrifugation.  Pellets were resuspended in Cell Lysis Buffer (5 

mM PIPES pH 8.0, 85 mM KCl, 0.5% Triton X-100, protease inhibitor cocktail) for 10 

minutes on ice.  Cellular extract was pelleted by centrifugation then nuclei were 

resuspended in Nuclei Lysis Buffer (50 mM Tris-Cl pH 8.0, 10 mM EDTA, 1% SDS, 

protease inhibitor cocktail) for 10 minutes on ice.   
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          Total chromatin was then sonicated for twelve 20 second pulses at setting 2.  After 

centrifugation chromatin was pre-cleared with Protein A/G Plus Beads then divided into 

aliquots.  Antibody was added to each aliquot for a final concentration of 0.3 mg/mL and 

incubated on a rotating platform overnight at 4oC.  Antibody-protein complexes were 

immunoprecipitated with Protein A/G Plus Beads.  Samples were washed extensively 

and eluted in Elution Buffer (50 mM NaHCO3, 1% SDS).  Bound DNA fragments were 

isolated and analyzed by PCR.  ChIP primers were used to amplify a short portion of the 

Pln promoter.  Primers used to amplify the region from -1199 to -964 (H1 and A2) were:  

5’-aggcactgtgattagtgggtgaga-3’ and 5’-cggcctcagcctcctgaata-3’.  Primers used to amplify 

the region from -697 to -470 (H2) were:  5’-ccctggtggaggtgagagtt-3’ and 5’-

ggatctccttcccacgctca-3’.  Primers used to amplify the region from -1786 to -1557 (A1 

and N2) were:  5’-atgagaggccccaatgtgct-3’ and 5’-gaaaaccttttgagtaatgatagaggagga-3’.  

Primers used to amplify the region from -2500 to -1970 (N1) were:  5’-

cggacagggagtttccaagtg-3’ and 5’-gctccaggcacagcactga-3’. 

Promoter Analysis 

 Prediction of transcription factor binding sites in the PERLECAN promoter was 

done with the ALGGEN-PROMO prediction program. 
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Results 

Perlecan Expression Increases Significantly with Increasing Metastatic Potential and 

Modulates Growth Factor Signaling in a Cell Line Model of Prostate Cancer Progression 

 Expression of the PLN gene is upregulated in 54% of prostate cancers (93).  I 

sought to identify an in vitro cell model of disease progression that demonstrated the 

increasing levels of Pln that correlated clinically with increasing metastatic potential.  

The cell line LNCaP was chosen as the least tumorigenic line of the model.  The LNCaP 

prostate cancer cell line was originally derived from a supraclavicular lymph node 

metastasis of a primary prostatic carcinoma (148).  It has shown to be weakly 

tumorigenic when inoculated into nude mice, is non-metastatic and androgen-sensitive.  

DU145 was chosen as the next cell line of the model.  DU145 was originally derived 

from a brain metastasis, is tumorigenic in mice, moderately metastatic, and androgen-

insensitive (152).  LN4 was the chosen as the final cell line of the series.  LN4 is a 

subline of the PC3 cell line which was originally derived from a bone metastasis as is 

androgen-insensitive (153).  The LN4 subline was developed from PC3 based on its 

rapid metastasis to the lymph node and bone in mice.   
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 To determine if Pln expression is upregulated with increasing metastatic potential 

of this cell line series, I evaluated Pln mRNA levels in each cell line via quantitative 

real-time PCR.  Each of the cell lines were grown at standard conditions and mRNA was 

isolated at 80% confluence.  Pln levels in DU145 and LN4 were normalized to those in 

the least metastatic cell line LNCaP which was set to 1.  Pln expression increased 20-

fold in DU145 and 50-fold in LN4 (Fig. 2-1A).  These results demonstrate that I have 

identified a cell line model of prostate cancer progression that mimics the upregulation 

of Pln expression observed clinically and correlates with increasing metastatic potential. 

To determine if Pln modulates growth factor signaling in my cell line model, I evaluated 

commonly used assays to determine levels of SHH, FGF, Wnt, and TGFβ signaling in 

cells transfected with Pln RNAi.  To verify that Pln levels were down-regulated by Pln 

RNAi in each cell line I used qRT-PCR to compare cells transfected with the RNAi 

(grey bars) to cells transfected with scrambled negative control RNAi (black bars).  Pln 

RNAi decreased levels of Pln approximately 70% in each of the cell lines (Fig. 2-1B).  

To determine the effect of Pln RNAi on SHH signaling, I performed qRT-PCR and 

evaluated levels of the response genes PTCH (black bars) and GLI1 (grey bars).  

 

 

 

 

 



 51 

           SHH signaling was decreased approximately 20% in LNCaP and 80-90% in DU145  

 and LN4 (Fig. 2-1C).  To determine the effect of Pln RNAi on FGF signaling, I performed 

quantitative western blots analyzing levels of phospo-ERK.  Densitometry shows that 

phospho-ERK levels were decreased 70% in LNCaP and DU145 and approximately 

50% in LN4 when using levels of actin as a normalization control (Fig. 2-1D).  I then 

assayed levels of β-catenin as a readout of the effect of Pln RNAi on Wnt signaling.  

Levels of β-catenin were increased 4.9, 2.2, and 3.6 fold in LNCaP, DU145, and LN4 

respectively (Fig. 2-1E).  Finally, I assayed the effect of Pln knockdown on TGFβ 

signaling by performing quantitative western blots for phospho-SMAD 2/3 while once 

again using actin as a normalization control.  Levels of phospho-SMAD were decreased 

approximately 85% in all three cell lines transfected with Pln RNAi (Fig 2-1F).  Overall, 

I have demonstrated that Pln modulates essential growth factor signaling pathways in 

this model of prostate cancer progression. 
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Figure 2-1:  Perlecan is upregulated and modulates growth factor signaling in cell 

line model of prostate cancer progression.  A.) Relative Pln mRNA levels as assayed 

by Real-time PCR.  LNCaP, DU145, and LN4 cells were seeded in 6-well culture plates 

and allowed to grow for 24 hours.  RNA was isolated as described in Materials & 

Methods.  Real-time PCR was performed in triplicate at three different concentrations.  

Levels of Pln were normalized to levels of 18S rRNA for each sample.  Pln levels for 

DU145 and LN4 are normalized to LNCaP at 1.  Error bars indicate standard deviation. 

B.)  Inhibition by Pln RNAi in LNCaP, DU145, and LN4 verified by Real-time PCR.  

Black bars represent cells treated with scrambled negative control RNAi and gray bars 

represent cells treated with Pln RNAi.  Pln RNAi samples were normalized to control at 

1.  Error bars indicate standard deviation. C.)  Decreased SHH signaling in cells treated 

with Pln RNAi.  Real-time PCR analysis of SHH pathway response genes PTCH and 

GLI1.  Error bars indicate standard deviation. Asterisk indicates p < 0.05.  D.)  

Decreased FGF signaling in cells treated with Pln RNAi.  Western blotting for phospho-

ERK and β-actin performed as described in Materials & Methods.  Levels of p-ERK are 

normalized to β-actin.  Densitometry figures are shown below each sample and are 

representative of two independent experiments.  E.)  Increased Wnt signaling in cells 

treated with Pln RNAi.  Levels of β-catenin normalized to β-actin.  F.)  Decreased TGFβ 

signaling in cells treated with Pln RNAi.  Levels of p-SMAD 2/3 normalized to β-actin.   
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HIF1α Activates Transcription of Perlecan 

 Hypoxia has been shown to correlate with increased tumor invasiveness and 

metastatic potential (117).  The presence of low amounts of oxygen is sensed by the cell 

and results in the stabilization of the HIF1α transcription factor that is then able to 

activate transcription of genes involved in the hypoxic tumor cell response by binding to 

Hypoxia Response Elements (HREs) in the promoter of the genes (155).  To determine if 
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HIF1α stimulates transcription of Pln, I first analyzed the sequence of the PLN promoter 

to see if it contained HREs that bind HIF1α.  Two regions of the PLN promoter (H1 and 

H2) contained putative HREs (Fig. 2-2A, H1 and H2).  To determine if overexpression 

of HIF1α affected levels of Pln mRNA, I transfected each cell line of the model with a 

vector expressing a stabilized form of HIF1α (stab. HIF1α, grey bars) and compared that 

to a vector only control (black bars).  qRT-PCR analysis of each sample resulted in a 

slight decrease in Pln levels in LNCaP cells while Pln was increased 2-fold in DU145 

and LN4 cells (Fig. 2-2B).  Western blot analysis showed that HIF1α accumulated in 

cells transfected with the stabilized HIF1α transgene (data not shown).  To determine if 

RNAi-mediated knockdown of HIF1α expression affected levels of Pln mRNA, I 

analyzed levels of both HIF1α (grey bars) and Pln mRNA (white bars) in samples 

transfected with HIF1α RNAi compared to control RNAi samples (black bars) (Fig. 2-

2C).  HIF1α levels were decreased 90% in LNCaP and DU145 and 40% in LN4 while 

Pln mRNA was decreased 50%, 75%, and 50% in LNCaP, DU145, and LN4 

respectively.  These results demonstrate that HIF1α stimulates Pln expression in prostate 

cancer cells.   
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 To determine if the effect of HIF1α on Pln transcription is direct or indirect, I 

performed chromatin immunoprecipition (ChIP) assays in each cell line of the series.  

HIF1α directly binds the VEGF promoter (43) and primers for this promoter flanking 

HREs were used as a positive control (PC). PCR analysis of chromatin pulled down with 

HIF1α IP demonstrated that HIF1α does indeed bind this promoter in the three cell lines 

of the model (Fig. 2-2D, top panels).  PCR analysis using primers flanking the H1 and 

H2 regions of the PLN promoter showed that HIF1α binds directly to both sites in the 

LN4 cell line while only the H2 site is bound in LNCaP and DU145 (Fig. 2-2D).  These 

results demonstrate that HIF1α is necessary for optimal Pln expression and the 

transcription factor binds directly to the PLN promoter to increase transcription. 

Perlecan Transcription Is Activated by NADPH Oxidase Signaling and NFkB 

 Recently Kumar et al analyzed levels of ROS in LNCaP, DU145, and PC3 

prostate cancer cells (159).  They found that oxidative stress is inherent to these cells and 

that PC3 had the highest levels of ROS.  The group also found that the extra-

mitochondrial ROS generator NADPH Oxidase (NOX) is critical for the malignant 

phenotype of these cells. 
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Figure 2-2:  HIF1α activates Pln expression in model of prostate cancer 

progression.  A.)  Schematic of PLN promoter with regions of HREs (H1 and H2).  B.)  

LNCaP, DU145 and LN4 cells were transfected with vector expressing stHIF1α.  Real-

time PCR for Pln levels normalized to 18S levels in each sample.  Black bars represent 

control vector alone transfected samples and gray bars represent stHIF1α transfected 

samples.  Error bars indicate standard deviation. C.)  Inhibition of HIF1α by RNAi 

results in decreased levels of Pln mRNA.  Real-time PCR analysis of HIF1α and Pln 

normalized to levels of 18S.  Black bars represent samples treated with scrambled RNAi 

treated samples, gray bars represent HIF1α levels in HIF1α RNAi treated cells, white 

bars represent Pln levels in HIF1α RNAi treated cells.  Error bars indicate standard 

deviation. Asterisk indicates p < 0.05.  D.)  HIF1α binds directly to the PLN promoter at 

predicted HREs.  Chromatin Immunoprecipitation analysis of LNCaP, DU145 and LN4 

total chromatin, HIF1α IP, no antibody (NoAB) and Mock samples.  Samples were 

analyzed by PCR with primers flanking each HRE site.  Positive control primers were 

used from the VEGF promoter (43). 
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 To determine if ROS generation by NOX affects Pln expression in the LNCaP-

DU145-LN4 cell line series, I evaluated Pln mRNA levels in cells treated with varying 

concentrations of the specific NOX inhibitor diphenyliodonium (DPI) by qRT-PCR (Fig. 

2-3B).  DPI treatment in LNCaP resulted in a slight increase in Pln expression at 20 µM 

but an 80% decrease at 40 µM.  Pln levels in DU145 decreased in a dose-dependent 

manner at 20 and 40 µM.  DPI treatment in LN4 resulted in a 75% decrease in Pln 

mRNA at 20 µM and a 60% decrease at 40 µM.  These results indicate that NOX 

activity stimulates Pln transcription in prostate cancer cells.  One possible way that 

NOX-induced accumulation of ROS could activate Pln expression is through the ROS-

inducible transcription factor NFkB.  I analyzed the PLN promoter and found two 

regions that contained putative NFkB binding sites (Fig. 2-3A, N1 and N2).  To 

determine if knockdown of NFkB expression by RNAi results in a decrease in Pln 

expression, I assayed NFkB (grey bars) and Pln (white bars) mRNA levels in cells 

treated with NFkB RNAi  or with scrambled negative control RNAi (black bars) (Fig. 2-

3C).  NFkB knockdown was successfully decreased 50-60% in all three cell lines.  In 

cell treated with NFkB RNAi, Pln levels were decreased approximately 70% in LNCaP 

and DU145 and 30% in LN4.   
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 These results indicate that NFkB stimulates Pln expression in prostate cancer 

cells. To determine if NFkB binds directly to the Pln promoter I performed ChIP assays 

in each of the three cell lines (Fig. 2-3D).  Primers from the PPM1D promoter were used 

as a positive control (PC) for direct NFkB binding (160).  PCR analysis of primers 

flanking either the N1 or N2 regions of PLN promoter demonstrated that NFkB binds 

directly to both sites in the most metastatic cell line LN4 but does not bind to either site 

in LNCaP or DU145.  These results indicate that the effect of NFkB on Pln transcription 

is direct in LN4 but indirect in the cell lines with lower metastatic potential and thus 

lower levels of Pln. 

Perlecan Transcription Is Activated by p38 MAPK Signaling and ATF2 

 Oxidative stress caused by the accumulation of ROS has also been shown to 

activate p38 MAP kinase (161).  Activation of p38 MAPK is also important for the 

malignant phenotype in prostate cancer cells, in part due to its ability to activate the 

transcription factor ATF2 by phosphorylation (146).  To determine if ATF2 is a possible 

activator of Pln transcription I analyzed the promoter of PLN and found two regions that 

contained putative ATF2 binding sites (Fig. 2-4A, A1 and A2). 
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Figure 2-3:  Inhibition of NADPH Oxidase (NOX) or NFkB results in decreased Pln 

mRNA.  A.)  Schematic of PLN promoter with regions of predicted NFkB binding sites 

(N1 and N2).  B.)  Real-time PCR analysis of Pln levels in cells treated with either 

DMSO (control, black bars), 20 uM, or 40 uM DPI (specific NOX inhibitor, white bars).  

Error bars indicate standard deviation. C.)   Inhibition of NFkB by RNAi results in 

decreased levels of Pln mRNA.  Real-time PCR analysis of NFkB and Pln normalized to 

levels of 18S.  Black bars represent samples treated with scrambled RNAi treated 

samples, gray bars represent NFkB levels in NFkB RNAi treated cells, white bars 

represent Pln levels in NFkB RNAi treated cells.  Error bars indicate standard deviation. 

Asterisk indicates p < 0.05.  D.)  NFkB binds directly to the PLN promoter at predicted 

binding sites in LN4 but not DU145 or LNCaP.  Chromatin Immunoprecipitation 

analysis of LNCaP, DU145 and LN4 total chromatin, NFkB IP, no antibody (NoAB) and 

Mock samples.  Samples were analyzed by PCR with primers flanking each predicted 

NFkB site.  Positive control primers were used from the PPM1D promoter (160). 
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         I then asked if inhibition of p38 MAPK with the specific inhibitor SB202190 would 

result in a decrease in Pln mRNA.  I used varying concentrations of the inhibitor in each 

cell and assayed for Pln transcription via qRT-PCR (Fig. 2-4B).  I found that treatment 

with 20 µM SB202190 in LNCaP and DU145 resulted in a slight increase in Pln mRNA 

while producing a 70% decrease in LN4.  Treatment with 40 µM and 80 µM inhibitor 

resulted in a dose-dependent decrease in Pln mRNA in all three cell lines.  To determine 

if inhibition of p38 MAPK was resulting in decreased phosphorylation of the ATF2 

transcription factor I treated each cell line with 40 µM SB202190 and performed 

quantitative western blots for phospho-ATF2.  The inhibitor indeed led to a decrease in 

activated ATF2 in all cell lines (Fig. 2-4C).  These results indicate that activity of p38 

MAPK stimulates Pln transcription and activates the transcription factor ATF2 in 

prostate cancer cells.  They also suggest that the most metastatic cell line LN4 is the 

most sensitive to p38 inhibition (Fig. 2-4D).  To determine if ATF2 is acting to stimulate 

Pln expression I assayed both ATF2 (grey bars) and Pln (white bars) mRNA levels in 

cells treated with ATF2 RNAi or the negative control RNAi (black bars) (Fig. 2-4E).  

The results demonstrate that ATF2 levels were knocked down 80-90% by the RNAi.  Pln 

levels were decreased approximately 75% in LNCaP and DU145 and 40% in LN4.   

 

 

 

 



 63 

This suggests that ATF2 stimulates Pln transcription probably due to activation of ATF2 

by p38 MAPK.  

  I then asked if the effect of ATF2 was direct or indirect by performing ChiP 

assays on the PLN promoter (Fig. 2-4F).  Primers flanking ATF2 binding sites in the 

Insulin promoter were used as a positive control (PC) (162).  PCR analysis with primers 

flanking the putative ATF2 binding sites in the Pln promoter demonstrates that ATF2 

does not bind to the PLN promoter in either the A1 or A2 sites in any of the cell lines.  

These results indicate that the effect of ATF2 on Pln transcription is probably indirect in 

this model of prostate cancer progression. 

Discussion 

Stress-Inducible Transcription Factors Stimulate Pln Expression 

 To address my goal of understanding the molecular mechanisms of Pln 

upregulation in prostate cancer progression, I have introduced the LNCaP-DU145-LN4 

cell line model that shows a 50-fold increase in Pln expression that correlates with 

increasing metastatic potential.  The growth factor signaling pathways known to 

facilitate the progression of prostate cancer were shown to be modulated by Pln in this 

model.   
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Figure 2-4:  Inhibition of p38 MAPK or ATF2 results in decrease in Pln mRNA.  

A.)  Schematic of PLN promoter with regions of predicted ATF2 binding sites (A1 and 

A2).  B.)  Real-time PCR analysis of Pln levels in cells treated with either DMSO 

(control, black bars), 20 uM (dark gray bars), 40 uM (light gray bars) or 80 uM 

SB202190 (specific p38 MAPK inhibitor, white bars).  Error bars indicate standard 

deviation. C.)  Quantitative western blot showing decreased phospho-ATF2 levels in 

cells treated with 80 μM SB202190.  phospho-ATF2 levels were normalized to actin in 

each sample.   D.)Dose response graph showing percent inhibition of Pln transcription in 

each cell line with each concentration of SB202190.  LNCaP samples (green line, 

diamonds), DU145 samples (red line, squares), LN4 samples (blue line, triangles).  E.)   

Inhibition of ATF2 by RNAi results in decreased levels of Pln mRNA.  Real-time PCR 

analysis of ATF2 and Pln normalized to levels of 18S.  Black bars represent samples 

treated with scrambled RNAi treated samples, gray bars represent ATF2 levels in ATF2 

RNAi treated cells, white bars represent Pln levels in ATF2 RNAi treated cells.  Error 

bars indicate standard deviation. Asterisk indicates p < 0.05.  F.)  ATF2 does not bind 

directly to the PLN promoter at predicted binding sites in any of the cell lines.  

Chromatin Immunoprecipitation analysis of LNCaP, DU145 and LN4 total chromatin, 

ATF2 IP, no antibody (NoAB) and Mock samples.  Samples were analyzed by PCR with 

primers flanking each predicted ATF2 site.  Positive control primers were used from the 

human insulin promoter (162). 

 

 



 65 

 

 

 

 

 

 



 66 

        With this model I was able to address my hypothesis that cellular stress pathways and 

their activated transcription factors stimulate Pln expression in prostate cancer 

progression.   

 Previous studies have demonstrated that Pln expression is regulated by two of the 

growth factor signaling pathways that it modulates.  TGFβ1 has been shown to induce 

Pln expression via the SMAD signal transducers ((163), (164), (165)).  VEGF165 

growth factor signaling through VEGFR2 has also been shown to stimulate Pln 

transcription in brain endothelial cells (166).  Pln expression is also regulated by the 

inflammatory response via interleukins (167).  Two studies evaluating the effect of 

hypoxia on Pln expression came to two different conclusions.  Studies in rat cardiac 

endothelial cells demonstrate a significant decrease in Pln mRNA as a result of hypoxia 

(168).  However, a study in T84 intestinal epithelial cells shows a large increase in Pln 

transcription via hypoxia (169).  My studies focused on the primary transcription factor 

used in the tumor hypoxic response HIF1α.  I show that, in general, HIF1α acts to 

stimulate Pln expression in this model of prostate cancer progression (Fig. 2-5).  One 

exception to this was in LNCaP where overexpression of stabilized HIF1α resulted in an 

approximate 50% decrease in Pln levels.  Since an estimated 1-2% of the human genome 

contains binding sites for HIF1α (111) producing a large pool of possible target genes, I 

propose that the concentration of HIF1α within these weakly tumorigenic LNCaP cells 

determines the overall effect on Pln expression.  A sharp decrease in HIF1α via RNAi 

would result in the loss of a direct transcriptional activator of Pln while overexpression 

of the transcription factor could induce the expression of possible transcriptional 
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repressors of the Pln gene that would override any direct stimulatory effect.  The 

approximate two-fold increases in Pln expression with overexpression of HIF1α coupled 

with the significant decrease via HIF1α RNAi in the more tumorigenic and metastatic 

DU145 and LN4 lines suggests that HIF1α is necessary for maximum Pln expression but 

may not be sufficient. 

 The accumulation of ROS in cancer cells has many deleterious effects.  One of 

these may be the increase in growth factor signaling pathways caused by an increase in 

Pln levels.  I have shown that both NFkB and ATF2 are necessary for the maximum 

transcription of Pln.  Inhibition of the intracellular signaling pathways that activate these 

two ROS-inducible transcription factors is most effective at decreasing Pln levels in the 

more metastatic cell lines (Fig. 2-3B and 2-4B &D).  These inhibitors were designed to 

decrease cellular levels of ROS (DPI) and the protein kinase p38 respectively.  The 

increased sensitivity of Pln expression in more metastatic lines could simply be due to 

the fact that more Pln is being transcribed in these cells or it could be that other stress-

inducible factors, in addition to NFkB and ATF2 that affect Pln expression are being 

affected in turn by these inhibitors.   
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 To determine if these transcription factors stimulate Pln expression directly or 

indirectly I evaluated interaction between transcription factor and the PLN promoter via 

ChIP.  I found that HIF1α binds to and occupies only the proximal H2 site in the LNCaP 

and DU145 lines while it occupies both H1 and H2 sites in the most metastatic LN4 line.  

I propose that increased levels of hypoxia that correlate with metastatic potential lead to 

increased levels of HIF1α protein.  This enables HIF1α to facilitate the approximate 50-

fold increase in Pln seen in the LN4 line.  This line of thinking can also be used in 

regards to NFkB that occupies both the N1 and N2 sites of the PLN promoter in LN4 

cells but seems to act indirectly in the LNCaP and DU145 cell lines.  I could not detect a 

physical interaction between ATF2 and the PLN promoter in any of the cell lines that we 

tested.  ATF2 must activate the expression of a different transcriptional activator that 

acts on the PLN promoter (Fig 2-5). 

 In summary, I demonstrate that the stress-inducible transcription factors HIF1α, 

NFkB, and ATF2 are involved in stimulating Pln expression in this model of prostate 

cancer progression using both direct and indirect mechanisms.  These results provide 

insight into the complex molecular pathways that drive Pln expression in a subset of 

prostate cancer patients.   
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Figure 2-5:  Model for regulation of Pln transcription by stress-activated 

transcription factors.   
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CHAPTER III 

 

HEPARAN SULFATE 2-O-SULFOTRANSFERASE REGULATES  

 

PROLIFERATION AND INVASION OF PROSTATE CANCER CELLS 

 
 Heparan sulfate proteoglycans (HSPGs) are ubiquitous cell surface molecules 

that consist of a protein core with attached heparan sulfate (HS) glycosaminoglycan 

chains.  HSPGs are extremely important in both development and cancer progression 

due to their regulation of cellular processes such as angiogenesis, tumor growth, 

proliferation, tumor invasion and metastasis.  HSPGs control various processes by 

modulating a variety of growth factor signaling pathways such as SHH, FGF, VEGF, 

and TGFβ.  All of these signaling pathways are abnormally activated in many cancers, 

including prostate cancer. 

 Prostate cancer is the second leading cause of cancer death in American men 

behind only lung cancer in its severity (1).  HSPGs such as syndecan-1 and Pln are 

involved in the regulation of tumor growth and proliferation of prostate cancer cells 

((170), (171),(93), (94)).  Our group, along with collaborators, demonstrated the 

association of high levels of Pln protein with 54% of advanced prostate cancer tumors 

and its role in tumor cell proliferation by regulating SHH signaling (93).  Interestingly, 

in the LNCaP-C42B cell line series, a well-known model of prostate cancer progression, 

SHH signaling increases with increasing metastatic potential but Perlecan protein levels 

do not.  Instead, in this cell line series Perlecan isolated from more highly metastatic cell 

lines binds more SHH than an equal amount of Perlecan from more benign cell lines.  

This data suggested an alternative mechanism whereby during prostate cancer 
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progression cells produce a different, more efficient isoform of Perlecan protein to 

increase SHH signaling rather than simply expressing more of the same isoform as 

before.  Given the bipartite structure of HSPGs and the known contribution of their sugar 

chains to the regulation of growth factor signaling, differential structure of the sugar 

chains is an obvious possibility in the generation of different Perlecan isoforms.  

Therefore we chose to investigate the role of HS chain structure on prostate cancer 

progression.  

 The HS chains attached to HSPGs can form specific complexes with growth 

factors as well as directly participate in growth factor-receptor complex formation.  HS 

is an unbranched polymer of alternating residues of glucuronic acid (GlcA) and N-

acetylglucosamine (GlcNAc).  These HS chains undergo modification by series of 

heparan sulfate modification enzymes (HSMEs).  The first modification is generally N-

deacetylation and N-sulfation of GlcNAc residues by the NDST enzyme of which four 

tissue-specific isoforms exist.  This modification is generally followed by the 

epimerization of GlcA residues at the C5 position by C5-GlcA epimerase (GLCE) 

yielding iduronic acid (IdoA).  Further modification by O-sulfation can occur at various 

positions of the disaccharide by O-sulfotransferases (OSTs).  Sulfation at either the C6 

or C3 position of GlcNAc occurs by action of the enzymes 6OST or 3OST respectively.  

Multiple different isoforms exist for each of these OSTs.  Sulfation at the C2 position of 

GlcA or IdoA residues occurs by the action of the enzyme 2OST.   

 The ability of HS to bind growth factors such as FGF, VEGF and hepatocyte 

growth factor has been shown to largely depend on the amount of HS sulfation ((172), 
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(173), (174), (175)).  The general rule is that the higher degree of sulfation on the HS 

chain the greater the binding to growth factors.  Of the different sulfotransferases that 

contribute to a higher degree of sulfation we have chosen to study the effect of 2OST on 

the proliferation and migration of prostate cancer cells in a cell line model of prostate 

cancer progression.  The fact that only one isoform of the 2OST enzyme has been found 

to date makes it a convenient initial candidate to analyze its role in regulating HSPG 

function in prostate cancer.  

Materials and Methods 

Cell Lines and Culture Conditions 

 The LNCaP series (LNCaP, C4, C4-2, C4-2B) were obtained from Dr. L. Chung 

and grown at 37oC and 5% CO2 in T-medium supplemented with 5% fetal bovine serum 

(Invitrogen). 

siRNA Transfection and Proliferation Assay 

 Purified and desalted siRNAs were purchased from either Sigma or Ambion as 

proprietary non-validated pool of two 2OST siRNAs (Sigma #’s: SASI_Hs01_00214049 

and SASI_Hs01_00214052) and a scrambled siRNA control (Ambion).  siRNA was 

carried out with Oligofectamine (Invitrogen) as described by the manufacturer.  The 

effects of transfections were measured 24 hours after addition of reagents.   BrdU 

(Sigma-Aldrich) was added to the cells at a final concentration of 20 µM and allowed to 

incubate for two hours.  Immunocytochemistry on cell lines with scrambled or 2OST 

RNAi was carried out with anti-BrdU (Becton Dickinson) and HRP-conjugated 

secondary antibodies (Boehringer Mannheim) using standard techniques.  Proliferation 
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was quantified by counting the number of BrdU-positive cells in a field of 100 done in 

triplicate.     

Real-Time PCR 

 Total RNA isolated from cell lines using RNeasy MiniKit (Qiagen).  Purified 

RNA was digested with DNase I (Invitrogen) and reverse transcribed using SuperScript 

III reverse transcriptase (Invitrogen).  Oligo dT and random hexamer primers were used 

for the RT reaction.  Samples were analyzed using Taqman Gene Expression Assays 

according to manufacturer’s protocols (Applied Biosystems) on a BioRad iCycler 

machine.  Each sample was run in triplicate at three different concentrations.  Fold 

increase/decrease comparisons were calculated using the delta-delta CT method.  Data 

for each sample is presented as the mean fold change compared to control and error is 

presented as standard deviation. 

Migration Assay 

 Cell migration assays were performed using Matrigel Invasion Chambers from 

BD Biocoat (#354480) and control inserts (#354578) according to manufacturer’s 

protocol.  Number of C4-2B cells migrated through Matrigel was counted in control 

cells (scrambled siRNA treated) and experimental cells (2OST siRNA treated) in four 

separate fields in three independent experiments.  The same experiment was performed 

in control inserts.  The average number of invading cells through Matrigel (n = 12) was 

normalized to the average number of cells on control inserts (n = 12) to determine 

percent invasion.  Error bars indicate standard deviation. 
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Phalloidin Staining and E-cadherin- phalloidin Double Labeling 

 C4-2B cells were treated with scrambled RNAi or 2OST RNAi as described 

above and cultured on glass coverslips coated in poly-L-lysine (BD Biocoat #354085).  

Cells were washed with PBS, fixed in 3% formaldehyde, permeabilized with PBST, 

treated with 1:1000 dilution of FITC-phalloidin (Dr. B. Perkins), and mounted in 

VectaShield mounting medium with DAPI (Vector Laboratories).  Cells were imaged 

with fluorescence microscopy.  Individual cells were first chosen by their nuclei under 

the DAPI channel, then the number of actin foci per cell were counted for each treatment 

(n=15 per treatment).  The double labeling experiment was performed in much the same 

way as the phalloidin staining of C4-2B cells treated with either control or 2OST RNAi 

with a few modifications.  Following permeabilization with PBST fixed cells were 

blocked with 0.1% FBS in PBS.  α-E-cadherin antibody was added to a final 

concentration of 0.5 µg/mL for 30 minutes then cells were washed with PBS three times.  

A 1:1000 dilution of α-mouse Alexa 488 secondary antibody was added for 30 minutes 

then followed with three more rounds of washing.  Cells were then treated with a 1:40 

dilution of Alexa 546 phalloidin for 20 minutes then washed again.  Cells were air dried 

and mounted on microscope slides in Vectashield mounting medium with DAPI.   

Western Blotting 

 Total protein was isolated from C4-2B cells treated with scrambled or 2OST 

RNAi.  60 mg of total protein was run on a 15% SDS-PAGE gel, blotted on 

nitrocellulose, and probed for β-actin (Sigma-Aldrich) as a loading control.  Primary 

antibodies used were either rabbit α-HS2ST1 (Santa Cruz #sc-130779) or mouse α-E-
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cadherin (Invitrogen #18-0223).  Secondary antibodies were either α-rabbit or α-mouse 

HRP.  Imaging and densitometry analysis performed on a BioRad ChemiDoc XRS 

machine with Quantity One software.  Densitometry values represent the mean of two 

independent experiments. 

Results 

Knockdown of 2OST Expression Results in Decreased Prostate Cancer Cell Proliferation 

 The LNCaP, C4, C4-2, and C4-2B cell line model of prostate cancer progression 

was originally identified in the laboratory of Dr. Leland Chung ((150), (151)).  This 

series of lines was established via serial transplantation of cancer cells into nude mice.  

The LNCaP cell line was originally derived from a supraclavicular lymph node 

metastasis of a primary prostatic carcinoma (148).  LNCaP cells mimic many of the 

characteristics of early stage prostate cancer in that they are weakly tumorigenic when 

inoculated into nude mice, their growth is androgen-sensitive, and they secrete low 

levels of PSA (148).  The C4 subline shows higher levels of PSA expression than 

LNCaP, produces approximately 10 times more colonies in soft agar, and are still 

androgen-sensitive in their growth.   
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        The next subline in the series, C4-2, is highly tumorigenic on its own, displays 

androgen-insensitive growth, and metastasizes to both the lymph node and bone.   

The final subline of the series, C4-2B, mimics the most advanced stage of prostate 

cancer.  It is androgen-insensitive, secretes the highest levels of PSA and has the highest 

rate of metastasis and invasion.   

 To determine if the 2OST enzyme plays a role in the biological processes of this 

cell line series we first evaluated proliferation in each cell line either transfected with a 

scrambled control RNAi (black bars) or an RNAi directed against 2OST (white bars) 

(Figure 3-1A).  We found that proliferation decreased in each of the four cell lines as a 

result of the 2OST RNAi.  The proliferation of the most severe cell lines seemed to be 

the most sensitive to knockdown of 2OST expression.  To verify a decrease in the 

amount of 2OST protein as a result of the RNAi treatment, I performed western blot 

analysis of C4-2B cells treated with either the control RNAi or 2OST RNAi.  I was able 

to reproducibly detect an approximate decrease of 50% in levels of 2OST protein (Figure 

3-1B).  In summary, the 2OST enzyme is necessary for optimal proliferation of prostate 

cancer cells in the LNCaP to C4-2B cell line series. 
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Figure 3-1:  Inhibition by 2OST siRNA decreases prostate cancer cell proliferation.  

A. BrdU incorporation in LNCaP, C4, C4-2, and C4-2B cell lines.  The cell lines are 

listed in order of increasing metastatic potential from left to right on the graph.  All 

samples were normalized to controls (scrambled siRNA treated).  Black bars represent 

control samples transfected with scrambled siRNA.  White bars represent samples 

transfected with 2OST siRNA.  Error bars represent n = 3 independent samples and 

standard deviation.  Asterisk indicates p < 0.05.  B.  Western blot for verification of 

2OST RNAi.  Levels of 2OST in each sample were normalized to actin by densitometry.  

Values are representative of two independent experiments. 
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2OST Expression Correlates with Metastatic Potential and Knockdown of 2OST 

Expression Results in Decreased Prostate Cancer Cell Migration 

 Along with proliferation, cell invasion is one of the principal processes that are 

required for cancer progression and metastasis.  To determine if 2OST plays a role in the 

invasive and metastatic potential of cell lines in the LNCaP-C42B series I first evaluated 

basal expression of the 2OST gene in each of the cell lines.  When I carried out 

quantitative real-time PCR analysis of 2OST mRNA levels in the weakly tumorigenic 

LNCaP line as a normalization standard I observed a step-wise increase in 2OST 

expression as the cell lines increase in their metastatic potential (Figure 3-2A).  Levels of 

2OST increased four-fold in the C4-2B cell line as compared to LNCaP.  This result 

demonstrates a direct correlation between metastatic potential and 2OST expression.  

This correlation led me to hypothesize that a decrease in 2OST expression would lead to 

a decrease in the invasive potential of these cells. 

 To determine if inhibition of 2OST by RNAi affects ability of prostate cancer 

cell invasion I evaluated the invasive potential of the most metastatic cell line C4-2B in 

an in vitro Matrigel invasion assay.   
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         I chose C4-2B for this experiment due to its proliferation being the most sensitive to 

2OST RNAi and it having the highest levels of 2OST expression.  Approximately 80% 

of C4-2B cells treated with control RNAi invaded through the Matrigel demonstrating its 

high invasive potential (Figure 3-2B & C).  Inhibition of 2OST by RNAi in C4-2B cells 

resulted in a significant decrease in the mean number of cells that invaded through the 

Matrigel (p < 0.01).  Percent invasion of 2OST RNAi treated cells dropped to 

approximately 50% (Figure 3-2B & C).  Figure 2C shows a representative field of cells 

for C4-2B cells treated with either the scrambled control RNAi (left panes) or the 2OST 

RNAi (right panes).  The mean number of cells that invaded through Matrigel (top 

panes) were counted and normalized to the mean number of cells that traveled through 

control inserts that contained no Matrigel (bottom panes) to determine percent invasion.   

Increased Actin and E-cadherin Accumulation in C4-2B Cells Treated with 2OST 

siRNA  

 Cell adhesion in epithelial cells is provided in the form of adherens junctions.  

These cell to cell contacts consist of the proteins E-cadherin, β-catenin, α-catenin, and 

actin filaments (176).   
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Figure 3-2:  2OST expression correlates with metastatic potential.  A.  2OST mRNA 

levels in LNCaP series of prostate cancer progression.  2OST mRNA was assayed by 

qRT-PCR and normalized to 18S rRNA.  All samples were run in triplicate and overall 

2OST message levels compared by setting 2OST levels in LNCaP to 1.  Samples are 

presented by increasing metastatic potential (LNCaP, C4, C4-2, C4-2B).  Error bars 

indicate standard deviation. Asterisk indicates p < 0.05.  B.  Inhibition by 2OST siRNA 

decreases Matrigel invasion by C4-2B cells.  The number of C4-2B cells that migrated 

through Matrigel was counted for control cells (scrambled siRNA treated) and 

experimental cells (2OST siRNA treated) in four separate fields in three independent 

experiments.  The same experiment was performed with control inserts.  The average 

number of invading cells (n = 12) was normalized to the average number of cells on 

control inserts (n = 12) to determine percent invasion.  Average % invasion for control 

and 2OST siRNA cells were 81.8 ± 6.88 and 49.8 ± 4.08 respectively (p < 0.01, 

asterisk).  C.  Representative images of C4-2B cells used in Matrigel assay.  Cells that 

migrated through the matrigel in either control or 2OST RNAi samples are shown in top 

two panels.  Cells used in control inserts are shown on the bottom two panels. 
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        Adherens junctions are formed between epithelial cells, such as those in the prostate, 

when plasma-membrane spanning E-cadherin proteins recruit catenin molecules which 

in turn bind to actin filaments.  The junctions are stabilized by the formation of E-

cadherin clusters and then further stabilized by the accumulation of actin filaments at the 

contact region ((177), (178)).  During the progression of metastatic disease, epithelial 

cells lose cell-cell contacts via adherens junctions and become fibroblast like in a 

process called the Epithelial-Mesenchymal Transformation (EMT).  This loss of cell 

adhesion is a critical step in invasion and metastasis of cancer cells (177).  Due to the 

decreased invasion of C4-2B cells that have been treated with 2OST RNAi, I 

hypothesized that 2OST acts to repress adherens junction formation.  To test this 

hypothesis I evaluated the accumulation of actin via phalloidin staining in C4-2B cells 

treated either with control RNAi or 2OST RNAi (Figure 3-3A & B).  I observed a 

significant increase in the mean number of actin foci per cell in C4-2B cells treated with 

2OST RNAi as compared to control RNAi (Figure 3-3B).  Figure 3A shows 

representative cells of each treatment.  Notice the accumulation of phalloidin staining in 

the 2OST RNAi treated cell. 

  

 

 

 

 



 83 

 To determine if these actin foci might be corresponding to the formation of 

adherens junctions I evaluated actin-E-cadherin double labeling in C4-2B cells treated 

with either control RNAi or 2OST RNAi (Figure 3-3C).  Control RNAi treated cells had 

very low levels of both actin and E-cadherin accumulation (top panes).  2OST RNAi 

treated cells once again had accumulation of actin as shown by phalloidin staining 

(bottom row, third panel from left).  These 2OST RNAi treated cells also had 

significantly increased levels of E-cadherin accumulation at the membrane especially in 

the same regions that had increased actin accumulation (bottom panes, second and fourth 

panes from left).  These results suggest that the inhibition of 2OST by RNAi is 

facilitating the formation of adherens junctions and thus a possible reversal of EMT and 

cancer progression.   

        The possibility exists that the loss of 2OST is allowing for an increase in E-cadherin 

expression that in turn allows for formation of these junctions.  To test this possibility I 

performed western blot analysis of E-cadherin protein in C4-2B cells treated with either 

control RNAi or 2OST RNAi (Figure 3-3D).  No significant increase in E-cadherin 

protein was observed in cells treated with 2OST RNAi.  This result suggests that the 

localization of available E-cadherin in C4-2B cells changes from a more diffuse pattern 

to accumulation into foci when treated with 2OST RNAi.   
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Figure 3-3:  Inhibition by 2OST RNAi increases actin foci in C4-2B cells.  A.  

Fluorescence staining for F-actin (A and C) and nuclei (B and D) in C4-2B cells treated 

with 2OST siRNA (A and B) or scrambled siRNA (C and D).  Notice the clustering of 

F-actin into foci in the 2OST siRNA treated cells.  B. Quantitation of number of actin 

foci present per cell in C4-2B cells treated with scrambled siRNA (control, black bar) 

and 2OST siRNA (white bar).  Mean number of foci per cell ± sem are 0.33 ± 0.03 and 

1.14 ± 0.06 respectively (n = 15).  Asterisk indicates p < 0.05.  C.  Inhibition by 2OST 

siRNA increases E-cadherin staining that colocalizes with actin foci in C4-2B cells.  

Fluorescence immunohistochemistry for DAPI stained nuclei (left column), E-cadherin 

(second column), F-actin (third column) and merged images (fourth column) in C4-2B 

cells treated with 2OST siRNA (bottom row) or scrambled siRNA (top row).  Notice 

accumulation of E-cadherin between cells treated with 2OST siRNA.  D.  Inhibition by 

2OST RNAi does not result in significant upregulation of E-cadherin protein.  Western 

blot of E-cadherin in samples treated with scrambled RNAi or 2OST RNAi.  Levels of 

E-cadherin were normalized to actin.  Values represent two independent experiments. 
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Discussion 

The 2OST Enzyme Is Involved in Prostate Cancer Cell Proliferation, Invasion, and 

Metastatic Potential 

         Studies analyzing the complete loss of HS in regards to organismal and molecular 

phenotypes show that HS is very important for biological processes in development and 

disease.  In an attempt to look closer at HS fine structure, Merry et al described the 

molecular phenotypes of 2OST-null mice (98).  They observed renal agenesis as well as 

eye and skeletal defects.  Recently it was found that 2OST is essential for the FGF 

signaling required for chick limb bud outgrowth and development (100).   I have chosen 

to analyze the effect of changes in HS fine structure via 2OST RNAi on prostate cancer 

cell proliferation and invasion.  Previous studies in our group demonstrated that 2OST is 

required for maximal proliferation in the LNCaP cell line model of prostate cancer 

progression.  The growth factors such as SHH and FGF that induce proliferation in these 

cells require a high degree of heparan sulfation to bind HS and ultimately activate 

signaling.  I propose that the loss of 2OST activity decreases the degree of heparan 

sulfation thus decreasing growth factor signaling.  However, studies in mice and 

Drosophila as well as my own unpublished work (results not shown) have shown that 

loss of 2OST results in compensatory increases in the activity of other HSMEs that 

attempt to maintain overall negative charge density on the HS chain ((98), (103)).  From 

this I can propose that the results of 2OST knockdown on proliferation may be 

conservative if this kind of compensation is taking place. 
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         I also demonstrate that increased expression of 2OST correlates with increasing 

metastatic potential in this cell line series.  The need for upregulation of growth factor 

signaling to drive cancer cells from benign to metastatic would require an increase in the 

amount of heparan sulfation available in the extracellular matrix.  I suggest that the 

expression of the 2OST enzyme is being upregulated to achieve this goal.  A significant 

decrease in invasion of the highly metastatic C4-2B cells through Matrigel was also 

observed as a result of 2OST knockdown.  I asked if this loss of 2OST was allowing the 

formation of adherens junctions that would increase cell adhesion and in turn decrease 

mobility.  I found a significant increase in actin and E-cadherin accumulation at the 

periphery of these cells.  One possible explanation for this is that C4-2B cells with 

normal levels of 2OST have increased Wnt signaling that would inhibit β-catenin from 

participating in formation of adherens junctions and toward the regulation of gene 

expression.  However, we found no change in β-catenin localization in cells treated with 

2OST RNAi (data not shown).  Further studies are needed to determine the mechanism 

by which loss of 2OST results in increased adherens junctions. 

         In summary, I have demonstrated that the 2OST enzyme is important for two of the 

biological processes required for cancer progression.  I believe that 2OST could be used 

as a therapeutic target in prostate cancer.  In chapter 4 a study into the effect of growth 

factor signaling and the molecular mechanisms of 2OST upregulation will be discussed. 
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CHAPTER IV 

 

 

HEPARAN SULFATE 2-O-SULFOTRANSFERASE REGULATES GROWTH 

 

 FACTOR SIGNALING AND ITS EXPRESSION IS STIMULATED BY STRESS- 

 

ACTIVATED TRANSCRIPTION FACTORS IN PROSTATE CANCER CELLS 

 

 The heparan sulfate (HS) covalently attached to heparan sulfate proteoglycans 

(HSPGs) acts to modulate a number of growth factor pathways in development and 

disease.  HS does this by controlling the interaction between the growth factor and its 

receptor in the extracellular matrix.  The biosynthetic modifications of HS by heparan 

sulfate modification enzymes (HSMEs) are thought to play a key role in the ability of 

HS to bind these growth factors.  Modulation of signaling pathways has been shown to 

affect biological processes in cancer progression such as angiogenesis, proliferation, 

invasion, and metastasis.  I will be focusing on the SHH, FGF, VEGF, and TGFβ 

pathways.  All of these signaling pathways are abnormally activated in many cancers, 

including prostate cancer. 

 Prostate cancer is the second leading cause of cancer death in American men 

behind only lung cancer in its severity (1).  If this disease is caught in its early stages the 

patient usually has a very good prognosis.  However, for advanced, androgen-insensitive 

prostate cancer the prognosis for patient survival is markedly decreased.  Understanding 

the molecular mechanisms of disease progression is very important in diagnosing and 

treating advanced prostate cancer.  Our group, along with collaborators, demonstrated 

the association of high levels of Pln protein, a HSPG, with 54% of advanced prostate 

cancer tumors and its role in tumor cell proliferation by regulation of SHH signaling 
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(93).  This led to the hypothesis that a subset of prostate cancers reaches advanced stage 

by increasing growth factor signaling through increasing the amount of Pln coreceptor in 

the extracellular matrix.  This increase in the secretion of Pln protein essentially causes 

an increase in the levels of extracellular HS available to modulate signaling.  However, 

the other 46% of advanced prostate cancers maintained or showed a decrease in the 

amount of Pln expression compared to more benign tissue.  Interestingly, in the LNCaP-

C42B cell line series, a well-known model of prostate cancer progression, SHH 

signaling increases with increasing metastatic potential but Perlecan protein levels are 

maintained or decreased. Basically, this subset of advanced prostate cancers would not 

have the benefit of more Pln to provide increased extracellular HS to facilitate signaling. 

In light of this, I asked how the same amount of HSPG being secreted from advanced, 

metastatic tissue as from benign tissue could still produce an increase in growth factor 

signaling.  Given the importance of the HS chains to a HSPG’s ability to modulate 

growth factor signaling I chose to investigate HS chain structure in prostate cancer 

progression.   

 HS is an unbranched polymer of alternating residues of glucuronic acid (GlcA) 

and N-acetylglucosamine (GlcNAc).  These HS chains undergo modification by series of 

HSMEs.  The first modification is generally N-deacetylation and N-sulfation of GlcNAc 

residues by the NDST enzyme of which four tissue-specific isoforms exist.  This 

modification is generally followed by the epimerization of GlcA residues at the C5 

position by C5-GlcA epimerase (GLCE) yielding iduronic acid (IdoA).  Further 

modification by O-sulfation can occur at various positions of the disaccharide by O-
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sulfotransferases (OSTs).  Sulfation at either the C6 or C3 position of GlcNAc occurs by 

action of the enzymes 6OST or 3OST respectively.  Multiple different isoforms exist for 

each of these OSTs and sulfation at the C2 position of GlcA or IdoA residues is 

catalyzed by the 2OST enzyme.   

 The amount of sulfate modifications on a HS chain has been shown to increase 

its ability to bind growth factors such as FGF, VEGF, hepatocyte growth factor ((172), 

(173),  (174),  (175)).  The general rule is that the higher the degree of sulfation on HS 

chains the greater the binding to growth factors.  One possible way of increasing the 

amount of sulfation on HS chains is for the cell to increase the expression of the 

different OSTs.  I have chosen to investigate the mechanisms controlling the expression 

of 2OST, in particular the role of stress, a common characteristic of growing tumors. 

Solid tumors, such as prostate cancer, make up approximately 90% of all cancers and 

result in significant mortality due to cell invasion and metastasis to distant vital organs 

such as the brain and lungs (106).  The rapid proliferation associated with formation of a 

solid tumor induces stress in the tumor which can respond in various ways.  Stressed 

cancer cells activate signaling pathways involved in survival by either repairing the 

damage caused by the stress or by activating cell migration to move away from the 

stress.  However, if the amount of damage is high the cell will activate cell death 

pathways (105).   Therefore, cellular stress is a mechanism of selection for cells within a 

tumor that will progress to more advanced disease. 

 Once a solid tumor forms, the decreased availability of oxygen, or hypoxia, 

becomes a source of cellular stress.  The initial lack of vasculature within the mass of 
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cancerous cells and the relatively low diffusion limit of oxygen are two of the main 

reasons for hypoxia.    In order for a tumor to grow larger than a diameter of 

approximately 2-5 mm it must be able to relieve the hypoxic stress by obtaining its own 

vasculature in the process of angiogenesis ((41-43)).  However, tumor cells usually grow 

at rates that exceed their angiogenic response.  Cells respond to this constant state of 

hypoxia by stabilizing the transcription factor hypoxia-inducible factor 1 α (HIF1α) 

which heterodimerizes with HIF1β and activates transcription of its target genes (112).  

The HIF1 heterodimer binds to specific sites called hypoxia response elements (HREs) 

within the promoter of a target gene.  Genes involved in processes such as cell survival, 

proliferation, angiogenesis, cell adhesion, and metastasis are activated by HIF1α in 

response to hypoxia ((113-114, 155)).  HIF1α is a logical candidate to control 2OST 

expression because it is overexpressed in prostate tumors (156) as well as in human 

prostate cancer cell lines (157).   

 The accumulation of ROS is another source of cellular stress shown to be 

associated with solid tumors (158).  Increased metabolism and electron transport activity 

within the mitochondria due to rapid cellular proliferation and mutations in 

mitochondrial DNA are the major sources of ROS accumulation (132).  ROS activates a 

number of stress-activated protein kinases.  These kinases activate transcription factors 

that stimulate the expression of genes involved in cancer progression.  One ROS-

inducible protein kinase/transcription factor system that I have evaluated as a candidate 

to increase 2OST expression is the p38 MAPK/ATF2 system.    Activation of 

p38/MAPK regulates gene expression by direct phosphorylation of a number of 
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transcription factors.   Activation of ATF2 has been directly linked to p38 MAPK 

because inhibition of p38 results in decreased phosphorylation of ATF2 and a 

subsequent decrease in cell proliferation (142).  Active phosphorylated ATF2 is 

overexpressed in prostate tumors  compared to normal tissue (146) and may be involved 

in prostate cancer progression (143).  Another ROS-inducible transcription factor is 

NFkB.  NFkB is overexpressed in many cancers including prostate cancer (138).  ROS-

dependent activation of p38 MAPK, ATF2 and NFkB will be investigated in this study 

as a possible molecular mechanism for regulating transcription of 2OST.  

 In the present study I set out to determine if the 2OST enzyme is needed for 

optimal growth factor signaling in the highly metastatic prostate cancer cell line C4-2B.  

I show that inhibition of 2OST by RNAi resulted in decreased growth factor signaling 

and this could be due to, in the case of SHH, decreased HSPG-growth factor complex 

formation.  I also set out to determine if the expression of 2OST in this cell line is 

activated by stress-activated transcription factors.  I found that the proximal promoter of 

2OST contains putative binding sites for HIF1α, ATF2, and NFkB.  Inhibition of these 

transcription factors by RNAi resulted in a decrease in 2OST mRNA.  Overexpression of 

a stabilized form of HIF1α led to an increase in 2OST expression.  I also investigated the 

effects of inhibition of p38 MAPK signaling by the specific inhibitor SB202190 on 

2OST mRNA levels.  I also set out to address whether or not the effects of these 

transcription factors was direct or indirect by performing a ChIP assay which showed 

that HIF1α and ATF2 directly bind the 2OST promoter while NFkB appears to act in an 

indirect manner.   
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Materials and Methods 

Cell Lines and Culture Conditions 

 C4-2B cells were obtained from ATCC and cultured in T-medium (Invitrogen) 

supplemented with 5% fetal bovine serum.  Cells were maintained at 37oC and 5% CO2.   

Reagents and Antibodies 

 SB202190 (Cat. # S7067) was purchased from Sigma Aldrich.  Primary 

antibodies purchased from Santa Cruz Biotechnology (SCBT) are as follows:  mouse 

anti-β-catenin (sc-7963, 1:500), mouse anti-phospho-ERK (sc-81492, 1:1000), rabbit 

anti-phospho-SMAD2/3 (sc-11769, 1:1000), mouse anti-phospho-ATF2 (sc-52941, 

1:500), and rabbit anti-SHH (sc-9024, 1:500).  Mouse anti-Pln antibody was purchased 

from US Biological (#H1890, 1:1000) and mouse anti-HIF1α antibody was purchased 

from Novus (NB100, 1:500).  Purified mouse anti-β-actin antibody (A5316, 1:1000) was 

purchased from Sigma Aldrich.  Anti-mouse HRP and anti-rabbit HRP secondary 

antibodies (1:10,000) were purchased from Jackson Labs.  Antibodies for chromatin 

immunoprecipitation were used at a final concentration of 0.3 mg/mL and as follows:  

mouse anti-HIF1α (Novus Biologicals #NB100), rabbit anti-ATF2 (SCBT sc-6233), and 

rabbit anti-NFkB p65 (SCBT sc-109).   

Transient Transfections 

 Transient transfections of siRNA were performed using Lipofectamine 2000 

reagent (Invitrogen #11668027) for RNAi directed towards HIF1α, NFkB, or ATF2 

(Ambion) according to manufacturer’s protocol.  2OST RNAi (Sigma #’s: 

SASI_Hs01_00214049 and SASI_Hs01_00214052) was performed using 
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Oligofectamine transfection reagent (Invitrogen # 12252011) according to 

manufacturer’s protocol.  Briefly cells were cultured in 6-well plates at allowed to attach 

for 24 hours.  siRNA was applied and cells were harvested for either protein or RNA 

after 24 hours.  Scrambled siRNA was used as the negative control.  Transient 

transfection of stabilized HIF1α (stHIF1α) (a kind gift from Dr. Eric Huang) as well as 

p2OST-lacZ reporter plasmid were also performed using Lipofectamine 2000 reagent 

according to manufacturer’s protocol. 

RNA Isolation and Real-Time PCR 

 Cells were grown to 80-90% confluence, scraped, centrifuged and washed with 

PBS.  RNA isolation was performed with Qiagen RNEasy Mini-kit (#74104) according 

to manufacturer’s protocol.  2 μg of RNA was used in each DNAse I reaction using 

DNAse I Amplification Grade from Invitrogen (#18068).  Reverse transcription was 

performed with oligo dT and random hexamer primers using SuperScript III reverse 

transcriptase from Invitrogen (#18080044).  Real-time PCR was performed using 

Taqman Gene Expression Assays with Taqman Universal PCR Master Mix from 

Applied Biosystems (#4324018).  Each sample was run in triplicate at three different 

concentrations and normalized to levels of 18S rRNA.  Reactions were performed using 

a BioRad C1000 Thermal Cycler machine. Error bars indicate standard deviation. 

Western Blotting and Co-Immunoprecipitations 

 Isolation of total protein was done using the Mammalian Cell Lysis Kit from 

Sigma Aldrich (#MCL-1KT) according to manufacturer’s protocol.  Phosphatase 

inhibitors were used for each sample (Sigma Aldrich #P0044).  Samples were prepared 
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and run on 15% SDS-PAGE and transferred onto nitrocellulose.  Western blots were 

developed with Pierce ECL Western Blotting Substrate (#32106).  Images and 

densitometry were obtained on a BioRad ChemiDoc XRS machine using Quantity One 

software.  Densitometry values represent the mean of two independent experiments.  

Pln-SHH co-immunoprecipitations were performed as previously described (93).  

Briefly, conditioned medium from C4-2B cells treated with either control RNAi or 

2OST RNAi was collected when cells reached 80-90% confluence in 100 x 15 culture 

dishes.  Equivalent amounts of conditioned medium were immunoprecipitated with anti-

Pln antibody and the bound complexes were run on SDS-PAGE.  Bound SHH was 

observed by immunoblotting. 

p2OST reporter plasmid and β-galactosidase assays 

 Two different constructs from the 2OST promoter were amplified by PCR and 

cloned into the pBLUE-TOPO TA vector (Invitrogen #K4831-01).  “Full-length” p2OST 

consists of 2500 bases upstream and 435 bases downstream of the transcription start site 

while “4C” p2OST consists of 1500 bases upstream and 435 bases downstream of the 

transcription start site.  Primers used to amplify the “full-length” promoter were:  5’-

tcaaacggtgaaccaagacgctgt-3’ and 5’-gaaacccgctgctcggg-3’.  Primers used to amplify the 

“4C” promoter were:  5’-actccggtgtagtcccttaaca-3’ and 5’-gaaacccgctgctcggg-3’.  β-

galactosidase assays to evaluate the amount of transcription from each of the p2OST 

constructs were performed using the β-gal Assay Kit (Invitrogen #K1455-01) according 

to manufacturer’s protocol.  Briefly, varying concentrations of each cell lysate were 

incubated with ONPG as a substrate and 1X Cleavage Buffer for 30 minutes and the 
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reactions were halted with Stop Buffer.  Absorbance at 420 nm was used to quantify 

activity in a Bio Mate 3 spectrophotometer. 

Chromatin Immunoprecipitation 

 C4-2B cells were cross-linked by adding formaldehyde directly to cell culture 

medium to a final concentration of 1%.  Cross-linking was allowed to proceed for 10 

min at room temperature then stopped with addition of glycine to a final concentration of 

0.125 M.  Cells were washed twice with ice-cold PBS and swollen with PBS for 10 

minutes at 37oC.  Cells were scraped, washed once with PBS then pelleted by 

centrifugation.  Pellets were resuspended in Cell Lysis Buffer (5 mM PIPES pH 8.0, 85 

mM KCl, 0.5% Triton X-100, protease inhibitor cocktail) for 10 minutes on ice.  

Cellular extract was pelleted by centrifugation then nuclei were resuspended in Nuclei 

Lysis Buffer (50 mM Tris-Cl pH 8.0, 10 mM EDTA, 1% SDS, protease inhibitor 

cocktail) for 10 minutes on ice.  Total chromatin was then sonicated for twelve 20 

second pulses at setting 2.  After centrifugation at 12,000 g chromatin was pre-cleared 

with Protein A/G Plus Beads then divided into aliquots.  Antibody was added to each 

aliquot for a final concentration of 0.3 mg/mL and incubated on a rotating platform 

overnight at 4oC.  Antibody-protein complexes were immunoprecipitated with Protein 

A/G Plus Beads.  Samples were washed extensively and eluted in Elution Buffer (50 

mM NaHCO3, 1% SDS).  Bound DNA fragments were isolated and analyzed by PCR.  

Primers used to amplify the region of the 2OST promoter from -1157 to -707 (H1) were:  

5’-ttaaaagcacaaatcgcactca-3’ and 5’-gaaaagggtggggaggact-3’.  Primers used to amplify 

the region from -581 to -231 (H2 and A2) were:  5’-ggcaccagacacccactc-3’ and 5’-
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aagaaggcggggctaaaac-3’.  Primers used to amplify the region from -1499 to -1219 (A1) 

were:  5’-actccggtgtagtcccttaaca-3’ and 5’-tttttaaatgatgttcgttgtcttc-3’.   Primers used to 

amplify the region from +224 to +435 (N1) were:  5’-gactggagaggcgagaagg-3’ and 5’-

gaaacccgctgctcggg-3’.  Primers used to amplify the region from -176 to +53 (N2) were:  

5’-caaccgtaaaccgaaccaag-3’ and 5’-tccctctcttccttccttcc-3’.   

Promoter Analysis 

 Prediction of transcription factor binding sites in the human 2OST promoter was 

done with the ALGGEN-PROMO prediction program. 

Results 

Inhibition by 2OST RNAi Results in Decreased Growth Factor Signaling and Complex 

Formation between Perlecan and SHH in Prostate Cancer Cells 

 The LNCaP, C4, C4-2, and C4-2B prostate cancer cells were originally 

developed in the laboratory of Dr. Leland Chung ((150-151)).  I have found that levels of 

2OST mRNA increase over four-fold as the metastatic potential of these cell lines 

increases (Fig. 3-2A).  I have chosen to investigate the effect of inhibition of 2OST by 

RNAi on essential growth factor signaling pathways in the highly metastatic cell line 

C4-2B.   

 To determine whether 2OST modulates growth factor signaling in C4-2B cells, I 

evaluated commonly used assays to determine levels of FGF, TGFβ, Wnt and Sonic 

Hedgehog SHH signaling in cells transfected with 2OST RNAi.  To first verify that 

transfection of C4-2B with 2OST RNAi was successful I evaluated 2OST mRNA levels 

via quantitative real-time PCR (qRT-PCR) in cells treated with either control RNAi 
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(black bar) or 2OST RNAi (white bar) (Fig. 4-1A).  2OST mRNA levels were 

successfully knocked down 86% in cells treated with 2OST RNAi as compared to the 

control RNAi sample used as a normalization control and set to 1.   

 To determine the effect of 2OST RNAi on FGF signaling, I performed 

quantitative western blots analyzing levels of phospo-ERK.  Densitometry shows that 

phospho-ERK levels were decreased 50% in C4-2B as a result of 2OST inhibition by 

RNAi when using actin levels as normalization controls (Fig. 4-1B).  I then assayed the 

effect of 2OST knockdown on TGFβ signaling by performing quantitative western blots 

for phospho-SMAD2 while using total SMAD2 as a normalization control.  Levels of 

phospho-SMAD were decreased approximately 35% in C4-2B transfected with 2OST 

RNAi (Fig 4-1C).  I assayed levels of β-catenin as readout of the effect of 2OST RNAi 

on Wnt signaling.  Levels of β-catenin were decreased approximately 15% in C4-2B 

transfected with 2OST RNAi compared to controls (Fig. 4-1D). 

 Finally, to determine the effect of 2OST RNAi on SHH signaling, I performed 

qRT-PCR on RNA isolated from C4-2B cells treated with either control RNAi (black 

bars) or 2OST RNAi (white bars) and evaluated levels of the response genes PTCH and  
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GLI1 (Fig. 4-1E).  I show that PTCH levels decrease approximately 40% and GLI1 

levels decrease approximately 70% as a result of 2OST knockdown.  Our group has 

previously shown that SHH binds more readily to Pln secreted from the highly 

metastatic C4-2B as compared to Pln secreted from the weakly tumorigenic LNCaP cell 

line (93).  To determine if the 2OST enzyme is required for optimal Pln-SHH complex 

formation in C4-2B, I performed co-immunoprecipitation analysis in which Pln protein 

was pulled down from conditioned medium of C4-2B cells treated with either control 

RNAi or 2OST RNAi.  Western blotting to determine the levels of SHH bound to 

equivalent levels of Pln in each treatment reveals a significant decrease in Pln-SHH 

complex formation in samples treated with 2OST RNAi as compared to control RNAi 

(Fig. 4-1F).  Overall, my results suggest that the 2OST enzyme is needed for optimal 

growth factor signaling in the highly metastatic prostate cancer cell line C4-2B. 

HIF1α Stimulates Expression of 2OST by Directly Binding Promoter in C4-2B 

 The cellular stress hypoxia has been shown to correlate with increased tumor 

invasiveness and metastatic potential (117).    
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Figure 4-1:  2OST modulates growth factor signaling in cell line model of prostate 

cancer progression.  A.)  Inhibition by 2OST RNAi in C4-2B verified by Real-time 

PCR.  Black bar represents cells treated with scrambled negative control RNAi and gray 

bar represents cells treated with 2OST RNAi.  2OST RNAi samples were normalized to 

control at 1.  Error bars indicate standard deviation. B.) Decreased FGF signaling in cells 

treated with 2OST RNAi.  Western blotting for phospho-ERK and β-actin performed as 

described in Materials & Methods.  Levels of p-ERK are normalized to β-actin.  

Densitometry figures are shown below each sample and are representative of two 

independent experiments. C.)  Decreased TGFβ signaling in cells treated with 2OST 

RNAi.  Levels of p-SMAD 2 normalized to total SMAD2.  D.)  Decreased Wnt signaling 

in cells treated with 2OST RNAi.  Levels of β-catenin normalized to β-actin.  E.)  

Decreased SHH signaling in cells treated with 2OST RNAi.  Real-time PCR analysis of 

SHH pathway response genes PTCH and GLI1 was performed.  Error bars indicate 

standard deviation. Asterisk indicates p < 0.05.  F.) Decreased complex formation 

between SHH and Pln.  Pln was immunoprecipitated from conditioned media from either 

control RNAi or 2OST RNAi cells.  Left pane shows western blot for SHH bound to 

equal amounts of Pln.  Right panel shows equal amounts of SHH in input samples from 

co-immunoprecipitation. 
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         Tumor cells respond to hypoxia by stabilizing the HIF1α transcription factor via the 

inhibition of hydroxylases that lead to HIF1α degradation.  HIF1α activates transcription 

by binding to HREs in promoters of target genes.  To investigate whether HIF1α 

activates 2OST expression, I analyzed the sequence of the proximal 2OST promoter and 

found putative HREs approximately 1000 bases (H1) and 500 bases (H2) upstream of 

the transcription start site (Fig. 4-2A).  I then asked if overexpression of HIF1α would be 

able to activate transcription of the 2OST gene.  To answer this question I evaluated 

levels of 2OST mRNA via qRT-PCR in C4-2B cells transfected with either an empty 

control vector (black bar) or a vector expressing a stabilized form of HIF1α (gray bar).  

It was found that 2OST levels increased approximately two-fold in cells overexpressing 

the stabilized HIF1α (Fig. 4-2B).  To verify accumulation of HIF1α due the 

overexpression vector I performed western blot analysis and found significantly 

increased levels of HIF1α as a result of the stabilized HIF1α transgene (Fig. 4-2C).  To 

determine if RNAi-mediated knockdown of HIF1α expression affected levels of 2OST 

mRNA, I analyzed levels of both HIF1α and 2OST mRNA in samples transfected with 

HIF1α RNAi (white bars) compared to control RNAi samples (black bars).   
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         HIF1α levels were decreased 90% while 2OST mRNA was decreased 45% as a result of 

the HIF1α RNAi (Fig 4-2D).  These results suggest that the HIF1α transcription factor 

activates expression of the 2OST gene in C4-2B prostate cancer cells.   

 I then asked if the effect of HIF1α on 2OST transcription was direct or indirect.  

To answer this I performed chromatin immunoprecipition (ChIP) assays to evaluate 

physical interactions between transcription factor and promoter at the putative HREs.  

HIF1α has previously been shown to directly bind the VEGF promoter (43).  Primers for 

the VEGF promoter flanking HREs were used as a positive control (PC) and PCR 

analysis of chromatin pulled down with HIF1α IP demonstrated that HIF1α does indeed 

bind this promoter in C4-2B.  PCR analysis using primers flanking the H1 and H2 

regions of the 2OST promoter showed that HIF1α binds directly to the proximal H2 site 

but no physical interaction was detected at the H1 site (Fig. 4-2E).  Overall these results 

suggest that HIF1α activates 2OST transcription by directly binding its promoter. 

p38 MAPK Signaling and ATF2 Stimulate Transcription of 2OST in C4-2B 

 Accumulation of ROS and the resulting oxidative stress has been shown to 

activate p38 MAP kinase (161).   
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Figure 4-2:  HIF1α activates 2OST expression in model of prostate cancer 

progression.  A.)  Schematic of 2OST promoter with regions of HREs (H1 and H2).  B.)  

C4-2B cells were transfected with vector expressing stHIF1α.  Real-time PCR for 2OST 

levels normalized to 18S levels in each sample.  Black bars represent control vector 

alone transfected samples and gray bars represent stHIF1α transfected samples.  Error 

bars indicate standard deviation. C.)  Western blot for HIF1α shows increased 

accumulation of stabilized transcription factor in cells transfected with stHIF1α vector.  

D.)  Inhibition of HIF1α by RNAi results in decreased levels of 2OST mRNA.  Real-

time PCR analysis of HIF1α and 2OST normalized to levels of 18S.  Black bars 

represent samples treated with scrambled RNAi treated samples, white bars represent 

levels of either HIF1α or 2OST in HIF1α RNAi treated cells. Error bars indicate 

standard deviation.  Asterisk indicates p < 0.05.  E.)  HIF1α binds directly to the 2OST 

promoter at predicted HREs.  Chromatin Immunoprecipitation analysis of C4-2B total 

chromatin, HIF1α IP, no antibody (NoAB) and Mock samples.  Samples were analyzed 

by PCR with primers flanking each HRE site.  Positive control primers were used from 

the VEGF promoter (43). 
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          Activation of p38 MAPK is also important for the malignant phenotype in prostate 

cancer cells, and this due in part activation of the transcription factor ATF2 by 

phosphorylation (146).  I asked if ATF2 could be a possible transcriptional activator of 

2OST expression.  Analysis of the sequence of the 2OST promoter showed two possible 

regions of ATF2 binding sites that I have labeled A1 and A2 (Fig. 4-3A).  To determine 

if p38 MAPK signaling was involved in 2OST expression I evaluated levels of 2OST 

mRNA by qRT-PCR in cells treated with either DMSO control (black bar) or increasing 

concentrations of the specific p38 inhibitor SB202190.  I found that treatment with 40 

µM SB202190 (gray bar) resulted in a 55% decrease in 2OST levels while treatment 

with 80 µM inhibitor (white bar) resulted in a 90% decrease (Fig. 4-3B).  This dose-

dependent effect of p38 MAPK inhibitor suggests that signaling from the ROS-inducible 

protein kinase is important for optimal 2OST expression.  I wanted to verify this effect 

by making two different β-galactosidase reporter constructs to assay for 2OST promoter 

activity.  The “full-length” promoter represents the region from 2500 bases upstream of 

the transcription start to 435 bases downstream and the “4C” promoter represents the 

region from 1500 bases upstream to 435 bases downstream.  I evaluated 2OST promoter 

activity in C4-2B cells transfected with one of the reporter constructs treated with either 

DMSO control (black bars) or 80 µM SB202190 (gray bars) (Fig. 4-3C).  I found that 

treatment with the p38 inhibitor resulted in a significant decrease in promoter activity 

with both constructs.  .  In addition, upon comparison of results from the ”full-length” 

reporter and the “4C” reporter it became evident that deletion of the 1000 bases most 5’ 
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in our promoter construct leads to an increase in 2OST reporter expression, suggesting 

the existence of a previously unsuspected inhibitory sequence between -1500 and -2500. 

I then asked if inhibition of p38 MAPK leads to a decrease in active ATF2 transcription 

factor in C4-2B.  To answer this, western blot analysis was performed evaluating levels 

of phospho-ATF2 in cells treated with DMSO control or 80 µM SB202190.  I observed a 

significant decrease in active phosphorylated ATF2 levels as a result of p38 inhibition 

(Fig. 4-3D).  To determine if ATF2 is acting to stimulate 2OST expression I assayed 

both ATF2 and 2OST mRNA levels in cells treated with ATF2 RNAi (gray bars) or the 

negative control RNAi (black bars) (Fig. 4-3E).  The results demonstrate that while 

ATF2 levels were knocked down 90% 2OST levels were decreased approximately 75% 

by the RNAi treatment.  These results suggest that p38 MAPK activates ATF2 which in 

turn stimulates 2OST expression in the C4-2B cell line.   

 I then asked if the effect of ATF2 was direct or indirect by performing ChiP 

assays on the 2OST promoter.  Primers flanking ATF2 binding sites in the Insulin 

promoter were used as a positive control (PC) (162). PCR analysis with primers flanking 

the putative ATF2 binding sites in the 2OST promoter demonstrates a physical 

interaction between ATF2 and the promoter at the A2 site (Fig. 4-3F).  This result 

suggests that the effect of ATF2 on 2OST expression is direct by binding of the proximal 

A2 site. 
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Figure 4-3:  Inhibition of p38 MAPK or ATF2 results in decrease in 2OST mRNA.  

A.)  Schematic of 2OST promoter with regions of predicted ATF2 binding sites (A1 and 

A2).  B.)  Real-time PCR analysis of 2OST levels in cells treated with either DMSO 

(control, black bars), 40 µM (gray bars), or 80 uM SB202190 (specific p38 MAPK 

inhibitor, white bars).  Error bars indicate standard deviation.  C.)  2OST promoter β-

galactosidase reporter assay in cells treated with either DMSO control (black bars) or 80 

µM SB202190 (gray bars).  Full length 2OST promoter represents region 2500 bases 

upstream to 500 bases downstream of transcription start site.  4C represents region 1500 

bases upstream to 500 bases downstream from start site.  Error bars indicate standard 

deviation. D.) Western blot showing decreased levels of phospho-ATF2 in cells treated 

with 80 µM SB202190.  E.)   Inhibition of ATF2 by RNAi results in decreased levels of 

2OST mRNA.  Real-time PCR analysis of ATF2 and 2OST normalized to levels of 18S.  

Black bars represent samples treated with scrambled RNAi, gray bars represent either 

ATF2 or 2OST levels in ATF2 RNAi treated cells. Error bars indicate standard 

deviation.  Asterisk indicates p < 0.05.  F.)  ATF2 does not bind directly to the 2OST 

promoter at predicted binding sites in any of the cell lines.  Chromatin 

Immunoprecipitation analysis of C4-2B total chromatin, ATF2 IP, no antibody (NoAB) 

and Mock samples.  Samples were analyzed by PCR with primers flanking each 

predicted ATF2 site.  Positive control primers were used from the human insulin 

promoter (162). 
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NFkB Indirectly Activates 2OST Expression in C4-2B 

 The ROS-inducible transcription factor NFkB is another candidate transcription 

factor that may induce 2OST expression.  NFkB activates genes involved in cell 

survival, cell growth, proliferation, angiogenesis, and metastasis.  I analyzed the 2OST 

promoter and found two regions that contained putative NFkB binding sites (Fig. 4-4A, 

N1 and N2). To determine if knockdown of NFkB expression by RNAi results in a 

decrease in 2OST expression, I assayed NFkB and 2OST mRNA levels in cells treated 

with NFkB RNAi (gray bars) or with scrambled negative control RNAi (black bars) 

(Fig. 4-4B).  NFkB levels were successfully knocked down approximately 80% by the 

RNAi treatment and 2OST levels also decreased approximately 80%.  These results 

indicate that NFkB induces 2OST expression in C4-2B prostate cancer cells. 

To determine if NFkB binds directly to the 2OST promoter I once again performed ChIP 

to assay for physical interaction with the promoter (Fig. 4-4C).  Primers from the 

PPM1D promoter were used as a positive control (PC) for direct NFkB binding (160).  

PCR analysis of primers flanking either the N1 or N2 regions of 2OST promoter 

demonstrated that NFkB does not bind directly to either putative binding site in the 

promoter.  These results indicate that the effect of NFkB on 2OST transcription is 

probably indirect in C4-2B. 
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Figure 4-4:  Inhibition of NFkB by RNAi results in decreased 2OST mRNA.  A.)  

Schematic of 2OST promoter with regions of predicted NFkB binding sites (N1 and N2).  

B.)   Inhibition of NFkB by RNAi results in decreased levels of 2OST mRNA.  Real-

time PCR analysis of NFkB and 2OST normalized to levels of 18S.  Black bars represent 

samples treated with scrambled RNAi treated samples and gray bars represent either 

NFkB or 2OST levels in NFkB RNAi treated cells.  Error bars indicate standard 

deviation. Asterisk indicates p < 0.05.  D.)  NFkB does not bind directly to the 2OST 

promoter at predicted binding sites in C4-2B.  Chromatin Immunoprecipitation analysis 

of C4-2B total chromatin, NFkB IP, no antibody (NoAB) and Mock samples.  Samples 

were analyzed by PCR with primers flanking each predicted NFkB site.  Positive control 

primers were used from the PPM1D promoter (160). 
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Discussion 

2OST Modulates Growth Factor Signaling in C4-2B and Its Expression is Stimulated by 

Stress-activated Transcription Factors 

 In this chapter I have presented my work towards understanding how 2OST 

affects growth factor signaling in highly metastatic prostate cancer cells and how the 

expression of 2OST is upregulated as the disease progresses.  I have shown that 

inhibition of 2OST results in a decrease in the levels of FGF, TGFβ, Wnt, and SHH 

signaling (Figs. 4-1B-F).  The hypothesis was that a decrease in 2OST levels would 

cause a decrease in the degree of heparan sulfation on the HS chains of HSPGs.  This 

decreased sulfation would limit the ability of the HSPG to bind these growth factors.  I 

show that the ability of Pln to bind the SHH growth factor is significantly reduced in 

cells with decreased 2OST.   

 As discussed in Chapter 3, the compensatory upregulation in the activity of other 

sulfotransferases such as 6OST or NDST1 to maintain overall negative charge density 

on the HS chain may be masking some of the effect of 2OST knockdown on growth 

factor signaling.  Due to this compensation, understanding the sole effect of 2OST may 

not be possible without understanding the regulatory mechanisms of the compensation.  

However, I believe that this data coupled with the data in Chapter 3 regarding decreased 

proliferation and invasion makes 2OST an attractive target for cancer therapy. 

The LNCaP, C4, C4-2, C4-2B cell line series was previously shown by our group to 

model progression to metastatic disease without the advantage of increasing levels of Pln 

in the extracellular matrix.  I show that 2OST is instead upregulated to help provide the 
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increase in extracellular HS that is needed.  My hypothesis was that the cellular stress 

known to correlate with advanced metastatic disease activates expression of 2OST.  I 

show that the stress-inducible transcription factors HIF1α, ATF2 and NFkB all stimulate 

2OST expression since expression of 2OST drops when any of these transcription 

factors are inhibited by RNAi.  However, overexpression of stable HIF1α by a transgene 

only increased 2OST expression two-fold compared to the four-fold increase observed 

across the cell line model (Fig. 4-2B&C).  I propose that HIF1α is necessary for 

maximum 2OST expression but may not be sufficient.   

 I also show that the ROS-inducible protein kinase, p38 MAPK, stimulates 2OST 

expression (Fig 4-5).  This is probably due to p38 MAPK activating ATF2 by 

phosphorylating it.  I analyzed the effect of this kinase via the specific p38 inhibitor 

SB202190.  Phosphorylation is a major event in many biological processes including 

those that drive cancer progression.  Many kinase inhibitors are in clinical trials to test 

their efficacy in therapy (179).  I propose that the effect of p38 MAPK signaling on 

2OST expression makes this kinase an ideal drug target. 

 The physical interactions between transcription factors and the 2OST promoter 

were also analyzed via ChIP.  I found that HIF1α binds the promoter at the proximal H2 

site but not the H1 (Fig. 4-2E).   
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         This suggests that HIF1α acts to stimulate 2OST expression in a direct manner (Fig. 4-

5).  I obviously cannot rule out an additional indirect effect of 2OST since I did not rule 

out every other possible HIF1α target and its effect on 2OST.  I also analyzed the ROS-

inducible transcription factors NFkB and ATF2 in regards to physical interaction with 

the promoter.  I found that ATF2 directly binds at the proximal A2 site while the effect 

of NFkB seems indirect with no physical interaction observed. (Fig. 4-5).   

 Overall, I have introduced a plausible alternative mechanism for prostate cancer 

cells to achieve metastasis without increase expression of Pln.  Another possibility 

would be to increase the expression of other HSPGs such as Glypican and Syndecan.  To 

date no correlation between Glypican and prostate cancer progression has been 

published.  Two recent studies suggest that Syndecan-1 correlates with increasing 

metastatic potential in prostate cancer patients ((170, 180)).  Analysis of expression of 

GlcA C5-epimerase, the only other HSME with only one known isoform, as well as the 

other HSMEs is also needed in prostate cancer to fully understand the mechanisms by 

which increased extracellular HS is achieved. 
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Figure 4-5:  Model for upregulation of 2OST transcription by stress-activated 

transcription factors.   
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CHAPTER V 

 

SUMMARY 

 

 The purpose of this study was to evaluate two different models in which 

increased extracellular HS may drive prostate cancer progression. First I wanted to 

determine whether upregulation of an HS modification enzyme could contribute to 

metastatic behaviors as upregulation of the HSPG protein core Pln has already been 

shown to do. Secondly, I wanted to investigate whether increased expression of the Pln 

protein core and the 2OST enzyme is due to a common general mechanism, specifically 

stress responses that increase in prostate cancer cell lines with increasing metastatic 

potential.  

 From previous work in our lab and those of our collaborators, we identified two 

subsets of prostate tumors.  It was observed that 54% of tumors in this study had 

increased levels of Pln that correlated with increasing Gleason Grade while the 

remaining 46% either maintained or had decreased levels of Pln but still progressed to 

advanced disease.  I set out to determine possible molecular mechanisms for both of 

these subsets.   

 To address how Pln is upregulated in prostate cancer progression, I introduced 

the LNCaP-DU145-LN4 cell line model that was representative of those tumors with 

increased Pln.   This model had a 50-fold increase in Pln expression when comparing the 

highly metastatic LN4 line to the weakly tumorigenic LNCaP line.  To further establish 

this cell line model, I demonstrate that Pln is required for maximum signaling of the 
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SHH, FGF, and TGFβ pathways, all known to be essential in cancer progression, in this 

model.   

 I then asked if stress-activated transcription factors were possible candidates for 

driving the increase in Pln expression.  I found that inhibition of HIF1α, NFkB, or ATF2 

by RNAi resulted in a significant decrease in Pln mRNA levels.  I propose that HIF1α is 

necessary but not sufficient for maximal Pln expression and it acts through direct contact 

with the Pln promoter.  HIF1α  occupation of the promoter increases in highly metastatic 

cell lines.  I also propose that the ROS-inducible NFkB and ATF2 transcription factors 

are necessary for maximal Pln expression.  Results suggest that NFkB acts through a 

direct mechanism in LN4 by occupying both putative binding sites of the promoter and 

acts indirectly in LNCaP and DU145 with no detectable occupation of the promoter.  It 

is possible that the expression of a coactivator needed by NFkB to bind the Pln promoter 

increases in the LN4 line.  This would allow for NFkB to directly participate in causing 

maximal Pln expression.  I propose that ATF2 acts to stimulate Pln expression 

exclusively in an indirect manner since I did not detect binding at putative ATF2 binding 

sites in any of the cell lines.   

 Small-molecule inhibition of either the extra-mitochondrial ROS generator NOX 

or the ROS-inducible protein kinase p38 MAPK resulted in decreased levels of Pln 

expression.  This inhibition of Pln expression was dose dependent for both inhibitors.  

Pln expression in more metastatic lines seemed to be more sensitive to this inhibition.   

I then asked how 46% of prostate cancers were able to reach advanced stage without this 

upregulation of Pln.  I focused on possible candidates that would provide increased 
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heparan sulfation in the extracellular matrix to make HSPGs better able to bind growth 

factors and facilitate disease progression.  Results suggest that the 2OST enzyme, a 

heparan sulfate sulfotransferase, is required for maximal growth factor signaling by 

SHH, FGF, TGFβ, and Wnt as well as proliferation and invasion of prostate cancer cells.  

 To determine a possible mechanism of the decreased invasion observed upon 

knock-down of 2OST expression, I analyzed two different hallmarks of adherens 

junction formation, accumulation of actin and E-cadherin into foci on the cell surface.  

Cells treated with 2OST RNAi had significant increase in these two hallmarks.  I 

propose that the activity of 2OST in prostate cancer progression is to inhibit cell 

adhesion through adherens junctions thus allowing cells to invade and possibly 

metastasize by Epithelial-Mesenchymal Transformation.  Results also show that the 

expression of 2OST increases four-fold as prostate cancer cells in the LNCaP, C4, C4-2, 

C4-2B series become more metastatic.   

 To determine if 2OST is regulated by cellular stress much like Pln, I once again 

analyzed the effect of HIF1α, NFkB, and ATF2.  I found that these transcription factors 

are necessary for maximal 2OST expression as well in the highly metastatic C4-2B cell 

line.  Once again, results indicate that HIF1α is necessary but not sufficient for 2OST 

expression and it acts by directly binding the 2OST promoter.  ATF2 also stimulates 

2OST expression by a direct mechanism with detectable binding at the proximal putative 

binding site.  Results suggest that NFkB stimulates 2OST expression in an indirect 

manner in the highly metastatic C4-2B.  The results for both NFkB and ATF2 binding at 
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the 2OST promoter are different than the direct and indirect mechanisms, respectively, 

that were seen for Pln expression in the highly metastatic LN4 line.   

 The overall model that guided the research of this dissertation is shown in Figure 

5-1.  The model proposes that stress, such as hypoxia or the accumulation of ROS that 

are inherent in solid tumors, activates an intracellular stress response such as the 

activation of p38 MAPK.  This response leads to the activation of a number of 

transcription factors that ultimately stimulate the expression of either HSPGs such as Pln 

or HSMEs such as 2OST.  Upregulation of either or both classes of genes leads to an 

increase in the amount of extracellular HS.  This increase of HS or heparan sulfation 

leads to more growth factor (GF) being able to interact with its receptor thus more GF 

signaling.  The increase in signaling, a hallmark of cancer progression, leads to increased 

expression of target genes of the pathway. 

 In comparing the two cell line models tested in this dissertation, we found that 

the LNCaP, DU145, LN4 series had increased Pln expression but maintained levels of 

2OST and the LNCaP, C4, C4-2, C4-2B had increased levels of 2OST but no increase in 

Pln.  I have shown that the respective increases in Pln or 2OST are stimulated by stress-

activated transcription factors.  The next question would be to ask if the factors to 

activate both genes are available and active in both cell line series, why are both genes 

not turned on in both series.  I propose that these transcription factors need specific 

binding partners to activate a specific gene.  The binding partners (other transcription 

factors) needed by HIF1α, NFkB, and ATF2 to activate Pln expression in the LNCaP, 

C4, C4-2, C4-2B series are not available but are present at high enough concentration in 
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the LNCaP, DU145, LN4 series.  The same though would apply to 2OST upregulation in 

these lines.  Another possibility to explain the difference in regulation of the Pln and 

2OST promoters in different cell models is the chromatin structure of the different 

promoters.  For example, the Pln promoter may be inaccessible to transcriptional 

activators in the LNCaP-C4-2B cell model whereas the 2OST promoter is more 

accessible.   
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 I propose that this model of hypoxia and ROS accumulation resulting in 

increased extracellular HS could be applied to the progression of many types of cancers 

other than prostate cancer.  The stress conditions analyzed in this model are inherent to 

the formation of solid tumors.  It is estimated that 90% of cancers diagnosed are solid 

tumors.  We know that HSPGs such as Pln are ubiquitously found in the basement 

membrane where they modulate growth factor signaling events.  This information 

suggests that my model could possibly be applied to the progression of most solid 

tumors.  Cancers of the blood such as leukemias and lymphomas would not be included 

due to the lack of hypoxia in the blood. 

 In this dissertation I have described the effect of stress on Pln and 2OST.  The 

future directions for this project are numerous.  In regards to the amount of stress needed 

to produce a response, quantitation of the level of hypoxic stress (via pO2) or the 

accumulation of ROS needed to activate expression of HSPGs or HSMEs could be done.  

Analysis of the effect of stress-activated pathways on other HSPGs such as Syndecan-1, 

that has recently been seen to correlate with advanced disease, should also be performed.  

I chose to analyze changes in 2OST expression partly due to the simplicity of analysis of 

an HSME with only one known isoform.  GlcA C5-Epimerase (GLCE), whose activity is 

thought to be needed prior to 2OST function, also has only one known isoform.  Other 

sulfotransferases such as NDST, 6OST, and 3OST could be analyzed in regards to the 

effect of stress on their expression.  Each of these enzymes has multiple known 

isoforms.  The isoforms known to not be expressed in the prostate could be excluded 

from the analysis.  Real-time PCR analysis of the 6OST1, 6OST2, NDST1, NDST2, and 
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GLCE genes in the LNCaP, C4, C4-2, C4-2B series shows that expression is increased 

as cells become more metastatic for all of these genes except for 6OST2 (data not 

shown).  Le et al performed a beautiful study in 2002 where they analyzed the effect of 

hypoxia on the expression of HSPGs and HSMEs in regards to FGF signaling in 

HUVEC endothelial cells (181).  They found that hypoxia resulted in a reduction of 

Syndecan -1, 2, and 4 as well as Glypican-1.  They saw no increase in Pln expression as 

a result of hypoxia.  This group also reported increases in 2OST, NDST1 and 2, as well 

as increased 6OST1 with hypoxic treatment.  This type of analysis needs to be done in 

models of cancer progression to obtain a full view of how increased extracellular HS is 

achieved.  To determine if increased expression of 2OST or any HSME via stress 

actually causes an increase in the degree of heparan sulfation on HSPGs, one could use 

emerging mass-spectroscopy techniques in the field of glycobiology.  This kind of study 

would be critical for determining the validity of the model shown.     

 Tumor cells respond to stress stimuli in many ways to promote progression to 

metastasis.  I propose that the primary response is to increase available extracellular HS 

because of the requirement for growth factor signaling in cancer progression.  These 

signaling pathways are enhanced by increases in extracellular HS.  To address this 

hypothesis one could induce stress in early stage prostate cancer cells while treating the 

cells with a reversible inhibitor of proteoglycan sulfation such as sodium chlorate and 

analyze the ability of these cells to progress to metastasis. These samples would be 

compared to stressed cells without sodium chlorate treatment and to unstressed cells.  If 

my hypothesis is correct the behavior of the stressed cells with sodium chlorate 
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treatment would be more similar to the unstressed cells than the stressed cells without 

sodium chlorate treatment.   

 I have shown that 2OST is required for prostate cancer cell proliferation and 

invasion.  The activity of this enzyme is to transfer sulfate groups to HS chains on 

HSPGs.  2OST could act on glypicans, syndecans, or Pln to modulate these cell 

behaviors in prostate cancer.  However, no association between glypicans and prostate 

cancer has been shown to date.  I propose that 2OST acts primarily by modifying the HS 

chains of Pln to promote prostate cancer progression.  To address this hypothesis, one 

could overexpress 2OST in prostate cancer cells while knocking down the expression of 

various HSPGs via RNAi.  These cells would be compared to cells overexpressing 

2OST.  If my hypothesis is correct, the largest decrease in cell proliferation, invasion, 

and metastasis would be in those cells overexpressing 2OST while knocking down 

expression of Pln via RNAi.   

 Both Pln and 2OST have been shown to be involved in development and Pln has 

been shown to be involved in various diseases such as prostate cancer, Schwartz-Jampel 

syndrome, and Silverman-Handmaker type dyssegmental dysplasia.  It is essential to 

understand how these genes are regulated.  My work has shown that the expression of 

both genes is stimulated by the cellular stress response.  I have also demonstrated a 

novel role of the 2OST enzyme in prostate cancer cell proliferation and invasion.  

Further studies are needed to acquire an exhaustive analysis of the regulation of these 

important genes.  I propose that my studies have laid the groundwork for identifying new 

therapeutic targets for treating prostate cancer and most cancers that form solid tumors. 
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