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ABSTRACT 
 

 

Multisensor Fusion of Ground-based and Airborne Remote Sensing Data for Crop 

Condition Assessment. (December 2010) 

Huihui Zhang, B.S., Tongji University, Shanghai; 

M.S., San Francisco State University 

Co-Chairs of Advisory Committee: Dr. Ronald Lacey 
                                                    Dr. Yubin Lan 

 

 

In this study, the performances of the optical sensors and instruments carried on 

both ground-based and airborne platforms were evaluated for monitoring crop growing 

status, detecting the vegetation response to aerial applied herbicides, and identifying 

crop nitrogen status. Geostatistical analysis on remotely sensed data was conducted to 

investigate spatial structure of crop canopy normalized difference vegetation index and 

multispectral imagery. 

A computerized crop monitoring system was developed that combined sensors 

and instruments that measured crop structure and spectral data with a global positioning 

system. The integrated crop monitoring system was able to collect real-time, multi-

source, multi-form, and crop related data simultaneously as the tractor-mounted system 

moved through the field.  

This study firstly used remotely sensed data to evaluate glyphosate efficacy on 

weeds applied with conventional and emerging aerial spray nozzles. A weedy field was 
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set up in three blocks and four aerial spray technology treatments were tested. Spectral 

reflectance measurements were taken using ground-based sensors from all the plots at 1, 

8, and 17 days after treatment. The results indicated that the differences among the 

treatments could be detected with spectral data. This study could provide applicators 

with guidance equipment configurations that can result in herbicide savings and 

optimized applications in other crops. 

The main focus of this research was to apply sensor fusion technology to ground-

based and airborne imagery data. Experimental plots cropped with cotton and soybean 

plants were set up with different nitrogen application rates. The multispectral imagery 

was acquired by an airborne imaging system over crop field; at the same period, leaf 

chlorophyll content and spectral reflectance measurements were gathered with 

chlorophyll meter and spectroradiometer at canopy level on the ground, respectively. 

Statistical analyses were applied on the data from individual sensor for discrimination 

with respect to the nitrogen treatment levels. Multisensor data fusion was performed at 

data level. The results showed that the data fusion of airborne imagery with ground-

based data were capable of improving the performance of remote sensing data on 

detection of crop nitrogen status. The method may be extended to other types of data, 

and data fusion can be performed at feature or decision level. 
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CHAPTER I 
 
 
 

GENERAL INTRODUCTION 
 
 
 
 

STATEMENT OF PROBLEMS 
 

With an increasing population and a commensurate need for increasing 

agricultural production, there is an urgent need to improve management of agricultural 

resources. In traditional crop field management, uniform input application not only does 

not consider the concept of spatial and temporal variability within a crop field, but also 

results in environmental pollution and reduction of farm profits. The need of site-specific 

management (SSM) or precision agriculture (PA) has been noticed by researchers, 

producers and farmers in the worldwide since the early 1990s. Advanced information 

technology that can provide quick and cost-effective ways to identify spatial variability 

within crop fields is the basis of precision agriculture.   

Remote sensing technologies have advanced rapidly in recent years and have 

become effective tools for site-specific management in crop protection and production. 

In agricultural applications, remote sensing has been conducted from different platform, 

e.g. ground-based, airborne and space, to obtain spectral information on crop field. 

Remotely sensed data measured by various types of optical sensors characterize spectral  

____________ 
This dissertation follows the style of Transactions of the American Society of 
Agricultural and Biological Engineers. 
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properties of crop canopy and provide a non-destructive measurement of crop growth 

status. Crop is the best sensor of its own environment (Legg and Stafford, 1998). 

Spectral reflectance properties of crop canopy based on the absorption of light at specific 

wavelengths are associated with specific plant characteristics. For health crops, spectral 

reflectance in the visible region of the spectrum (400-700 nm) is low because of the high 

absorption of light energy by chlorophyll. In contrast, reflectance in the near infrared 

(NIR) region of the spectrum (700-1300 nm) is high because of the multiple scattering of 

light by different leaf tissues (Taiz and Zeiger, 2006). Extensive studies have 

successfully suggested that crop spectral reflectance could be used to detect 

environmental stress, assess plant nutrient status, estimate plant physiological and 

biophysical variables, monitor plant growth status and conditions, and predict crop 

yields, and so on. 

Many optical sensors or instruments are commercial available and suitable for 

ground-based measurements. For example, Greenseeker® (NTech Industries, Inc., Ukiah, 

CA) sensor may be mounted on a tractor to map normalized difference vegetation index 

(NDVI) from crop canopy; an ultrasonic sensor may be mounted on a mobile vehicle to 

measure crop height. One may hold a chlorophyll meter to measure leaf chlorophyll 

content and canopy analyzer for leaf area index. Although these ground-based sensors or 

instruments are flexible to use and with limit effects by atmospheric and environmental 

factors, it is quite time-consuming to use them in large fields. It is also labor intensive if 

one wants to get two or more types of data simultaneously. New approaches are needed 

to rapidly detect, record, and process multiple forms of real time crop-related data for 
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use in precision agriculture. It is necessary to use sensors or instruments that can 

measure crop physical structure and spectral reflectance at the same time.  

Agricultural aircraft offer a different view of remote sensing. Airborne remote 

sensing technologies have made tremendous improvement and been used in precision 

agricultural application (Boegh et al., 2002; Lan et al., 2007a and b; Huang et al., 2008; 

Huang et al., 2009; Lan et al., 2009a). Multispectral cameras typically capture imagery 

that can be related to relative radiance in the visible and NIR regions. Multispectral data 

comprise a set of optimally chosen spectral wavebands that are not contiguous.  Airborne 

multispectral techniques are much less expensive and less data-intensive than 

hyerspectral imaging systems and can rapidly provide continuously remotely sensed data 

over a large field or region. However, all remote sensing measurements can be affected 

by variable ground conditions, such as plant architecture, canopy characteristics, crop 

row orientation and coverage, and background soil properties. Relatively low spectral 

resolution will limit the ability of the multispectral imagery for mapping crop conditions.  

 The concept of multisensor data fusion was first developed by Department of 

Defense (DoD) (Klein, 2004) and have been gained more attention in non-military area. 

In general, multisensor data fusion techniques try to combine data from multiple sensors 

to make better interferences, such as lower error rate or less uncertainty, regarding a 

physical entity, event and situation than that using individual sensor alone. In precision 

agricultural practice, only a few studies have investigated with multisensor data fusion. 

If the advantages of multisensor data fusion techniques can be realized, the efficiency of 

the use of remotely sensed data will be improved dramatically.  
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MULTISENSOR DATA FUSION OVERVIEW 
 

Multisensor data fusion has been developed to solve a diverse set of problem 

having common characteristics in the past two decades. Multisensor data fusion look for 

a combination of data from multiple sensors or sources to perform interference that may 

not be possible or may not be good from a single sensor or source itself (Hall and Llinas, 

1997; Hall and McMullen, 2004). Multisensor fusion techniques were firstly applied and 

studied in military area such as target recognition. With the advances in sensing and 

computing, multisensor data fusion has been widespread in not only military but also 

nonmilitary applications, for example, disease diagnosis in medical care, product quality 

evaluation, and remote sensing. 

Multisensor data fusion in remote sensing includes the determination of 

composition of land cover, forest inventory, the location of mineral resources, climate 

change, and so on. Data from different sensors may include the bright values of image 

pixels, coordinates and elevation of locations, spectral data, LiDAR, Radar, Sona data, 

and so forth. In principle, fusion of multisensor data provides significant advantages 

over a single data source. However, there are still risks in practical application. Data 

fusion may bring even worse results than that obtained by a single most appropriate 

sensor, for instance, one attempts to combine accurate data with biased data. Therefore, 

fundamental issues to be addressed in building a data fusion system for a particular 

application include (Hall and Llinas, 1997):  

1. What algorithm or techniques are appropriate and optimal? 

2. What architecture should be used? 
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3. How should the individual sensor data be processed to extract the maximum  

    amount of information? 

4. What accuracy can be achieved by a data fusion process? 

5. How does the data collection environmental affect the processing? 

Data Fusion Process Model 
 

The Joint Directors of Laboratories (JDL) Data Fusion Working Group, 

established in 1986, made big efforts to create a process model for data fusion. The top 

level of JDL data fusion process model is shown in Figure 1.1 which is adapted from 

Hall and Llinas (1997). At the top level of this model with a two-layer hierarchy, the 

data fusion process is summarized by source of information, human computer 

interaction, source preprocessing, Level 1 processing, Level 2 processing, Level 3 

processing, and level 4 processing. Each of these is summarized below: 

Sources of Information: A number of sources of information may be available as 

inputs including sensors or other reference information, e.g., geographical information. 

Human Computer Interaction (HCI): Communicates with human input. 

Source Preprocessing (Level 0 Processing): Allocates data to appropriate process 

and force the data fusion process to concentrate on the data most pertinent to the current 

situation. 

Level 1 Processing (Object Refinement): Achieves refinement of individual 

objects by combining locational, parametric and identity information of each sensor. 

Level 2 Processing (Situation Refinement): Develops a situation refinement 

among objects in the context of their environment. 
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Level 3 Processing (Threat Refinement): Draws inferences about threats, 

opportunities of operation by apply the current situation into the future. 

Level 4 Processing (Process Refinement): Assesses, refines, modify and improve 

the performance of data fusion. 

Figure 1.1. Data fusion process model (Adapted from Hall and Llinas, 1997).  
 
 
 

Architecture for Multisensor Data Fusion 
 

Depending on where the data fusion is happened in the data flow, for identity 

fusion in Level 1, there are several types of architectures can be used. Figure 1.2 shows 

the architecture which performs data level fusion. It combines raw data from different 

sensors. Subsequently, an identity declaration process is carried out by extracting a 

feature vector from the fused raw data and making a transformation between the feature 

vector and a declaration of identity. Bear in mind, the original sensor data must be 

commensurate in order to fuse the raw data. The advantage of raw data identity fusion 
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provides the most accurate results with proper sensor association and alignment. 

Methods for this level of fusion include neural networks, discriminant analysis, and 

cluster algorithm. 

 

Sensor
A

Sensor
B

Sensor
N

ASSOCIATION

Joint
Identity

Declaration
Data Level 

Fusion
FEATURE

EXTRACTION
Identity

Declaration

 

Figure 1.2. Raw data level data fusion (Adapted from Hall and Llinas, 1997).  
 
 
 

The second architecture for identity fusion is feature level (Figure 1.3). At first, 

feature vectors are extracted from individual sensor. Then these feature vectors are  

concatenated into a single feature vector as an input into identity declaration process. 

Methods in this level include neural networks, and cluster algorithm. 
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Figure 1.3. Feature level data fusion (Adapted from Hall and Llinas, 1997).  
 
 
 

The third architecture is decision level fusion (Figure 1.4). Each sensor makes its 

identity declaration based on its own data source. The identity declarations made by the 

individual sensors then are fused by using decision level fusion techniques such as 

Bayesian inference.  

 
 

Sensor
A

Sensor
B

Sensor
N

FEATURE
EXTRACTION ASSOCIATION

Feature
Level
Fusion

Identity
Declaration

Joint
Identity

Declaration

Identity
Declaration

Identity
Declaration

Identity
Declaration

I/DA

I/DA

I/DA

 

Figure 1.4. Decision level data fusion (Adapted from Hall and Llinas, 1997). 
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There is no universal architecture for all situations. One should select an 

architecture based on the capabilities of sensors, desired accuracy and available funding, 

etc.  

 
OBJECTIVES OF THIS RESEARCH 
 
 Nowak (1997) distinguished ‘soft’ and ‘hard’ technologies in SSM. ‘Soft’ 

technologies rely more on traditional means and farmers’ experiences to acquire field 

information; while ‘hard’ technologies for data acquisition include remote sensing and 

for management include the use of statistical analysis (Plant, 2001). Whether collected 

from airborne multispectral imaging systems, ground-based sensors and instrumentation 

systems, human observations, or laboratory samples, remotely sensed data must be 

analyzed properly to understand cause-and-effect relationships. Multisensor data can be 

integrated by classical statistical methods and spatial statistics. Typically, spatial 

statistics may be used for analysis of data having spatial component. Many factors can 

contribute towards spatial variability within the field and between fields. Data from 

imagery, ground-based measurements, and spatial analysis together allow for a more 

complete understanding of a field’s spatial complexity. Farmers are able to use these data 

and derived information to assess the growth stage and health status of their crops and 

make timely crop management decisions. 

 This study was investigating remote sensing technologies for agricultural 

applications from both ground-based and airborne platforms. The specific objectives of 

this research were to: 1) develop a computerized crop monitoring system that combines 

data from a global positioning system with other instruments to measure crop condition; 
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2) characterize spectral properties of various crop varieties at their different growth 

stages; 3) use remotely sensed data to evaluate efficacy of herbicide treatments with 

different aerial application technologies; 4) perform geostatistical analysis on remotely 

sensed data; 5) investigate the potential of multisensor data fusion of ground-based and 

airborne imagery data for  detection of crop nitrogen stress. 

 
STRUCTURE OF THIS DISSERTATION 
 
 This dissertation includes six individual studies which are stand-along and solve 

different problems. Chapter II to Chapter VII was six manuscripts.   

In Chapter II, a ground-based integrated sensor and instrumentation system to 

monitor crop condition was developed and tested in crop field. The performance of the 

system and repeatability of the measurements were investigated.  

In Chapter III, spectral properties of four agricultural crops were characterized by 

hyperspectral data at their different growth stages. The ability of hyperspectral data to 

separate crop types was verified and the significant wavelengths for discriminant 

analysis were determined.  

In Chapter IV, remotely sensed data was used to evaluate efficacy of herbicide 

treatments with different aerial application technologies.  

In Chapter V, the spatial structure of canopy NDVI within a small field with 

different sampling density was investigated using variogram analysis.  

In Chapter VI, variogram plays a crucial role in remote sensing application and 

geostatistics. A study was conducted to determine the changes of variograms which were 

calculated with various sample sizes from a multispectral image.  
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In Chapter VII, multisensor fusion was applied on SPAD chlorophyll readings, 

hyperspectral measurements and airborne imagery in the detection of nitrogen status on 

crop canopy. 

In Chapter VIII, conclusions and summary are made. 
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CHAPTER II 
 
 
 

DEVELOPMENT OF AN INTEGRATED SENSOR AND 

INSTRUMENTATION SYSTEM FOR MEASURING CROP 

CONDITION* 
 
 
 
 

OVERVIEW 
 

The study considers the possibility of gathering spectral information by various 

sensors simultaneously at field level to evaluate crop growth status. A ground-based 

integrated sensor and instrumentation system was developed to measure real-time crop 

conditions including normalized difference vegetation index (NDVI), crop canopy 

structure, and crop height. The integration system consists of a NDVI sensor, a 

spectroradiometer, a crop canopy analyzer for leaf area index, a crop height sensor, a 

multispectral camera, and a DGPS receiver to geo-reference data collected while the 

tractor which sensors were mounted was driven through the field. During the 2008 

growing season, field tests were conducted twice to evaluate the performance of the 

proposed sensing system on collecting crop-related data from cotton and soybean that  

 
____________ 
*Reprinted with permission from “Development of an integrated sensor and 
instrumentation system for measuring crop condition” by Y. Lan, H. Zhang, R. Lacey, 
W. C. Hoffmann, W. Wu, 2009. Agricultural Engineering International: The CIGR 
Ejournal. Manuscript IT 08 1115.Vol XI, Copyright [2010] by CIGR. 
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were under normal growing process. Two rows were chosen within each field. 

Measurements repeatability was investigated by driving through the same row three 

times. Two runs were in the same direction, and the other was in the reverse direction. 

The results show that the integration sensor and instrumentation system supports multi-

source information acquisition at field level. Spectral information, NDVI and spectral 

reflectance measurements, images, and crop height were able to be obtained by the 

proposed sensing system simultaneously from crop canopy with better measurement 

repeatability. 

 
INTRODUCTION 
 

Accurate and reliable information technology is the basis of precision agriculture. 

Remote sensing has been widely used to obtain and map temporal and spatial variability 

of crops in fields. Information on crop condition can be used to assess and monitor crop 

growth status, predict crop yield, or develop program for optimizing application of 

nitrogen fertilizer, fungicide, growth regulator, and other chemical inputs in order to 

reduce the impact on environment.  

Successful information acquisition is relied on the ability of sensor and 

instrument in detecting crop canopy variables, which are indicative of crop growth (Goel 

et al. 2003b). The normalized difference vegetative index (NDVI) is a commonly used 

measurement of crop health in agricultural applications. NDVI is calculated as: NDVI= 

(NIR – Red)/ (NIR + Red), where NIR and Red represent the reflectance values at the 

near infrared (NIR) and red regions of the spectrum, respectively. Healthier crop canopy 

will absorb more red and reflect more NIR light, and consequently has a higher NDVI 
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value. Jones et al. (2007a) used GreenSeeker® sensor (NTech Industries, Inc., CA.) to 

measure NDVI and there was strong correlation between NDVI and chlorophyll content 

per plant of spinach (R² = 0.91). NDVI was also found to be closely correlated with leaf 

area index (Bechtel et al., 1997; Aparicio et al., 2002; Leon et al., 2003). Leaf area index 

(LAI) is an important structural property of crop canopy. LAI is defined as the ratio of 

total upper leaf surface of vegetation divided by the surface area of the land on which the 

vegetation grows. High correlations were found between reflectance factor and LAI and 

biomass by Ahlrichs et al. (1983).  

Many researchers have used spectral reflectance techniques for monitoring 

nitrogen and chlorophyll status in different crops (Haboudane et al., 2002; Tumbo et al, 

2002; Goel et al., 2003a; Xue et al., 2004; El-Shikha et al., 2007; Jones et al., 2007a). 

Strong correlations between the spectral data from crops and various characteristics of 

crops have been elucidated in numerous studies (Yoder et al., 1995; Serrano et al., 2000; 

Goel et al., 2003b; Lee et al., 2004). Laudien et al. (2003) explained the contrast between 

healthy and diseased sugar beets by using a hyperspectral radiometer. Thenkabail et al. 

(2000) used a hand held spectral radiometer to obtain the correlation between spectral 

observations with crop parameters of cotton.  

Darvishzadeh et al. (2008) examined the utility of hyperspectral remote sensing 

in predicting canopy characteristics by using a spectral radiometer. Among the various 

investigated models, they found that canopy chlorophyll content was estimated with the 

highest accuracy.  Some studies used multispectral image senor system to measure crop 

canopy characteristics. Jones et al. (2007b) estimated biomass based on multispectral 
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images taken by a Duncan Tech MS 3100 multispectral camera (Auburnm Cal.). Inoue 

et al. (2000) successfully estimated LAI and biomass for soybean and rice by using a 

dirigible-mounted camera. Ultrasonic sensing technology is good for non-destructive 

crop canopy characterization. Kataoka et al. (2002) in Japan showed that ultrasonic 

sensors performed well for measuring the height of soybean and corn crops.  

Many remote sensing technologies have been conducted to obtain information 

from different platforms, such as ground-based, airborne and space. For truth 

measurement, ease of availability and cost-effective, ground-based methods have been 

widely developed and used. Tumbo et al. (2002) constructed the on–the–go system for 

sensing chlorophyll status in corn. A tractor traveled at 0.6 km h-1 and carried with a 

dual fiber–optic spectrometer, an analog-to-digital (A/D) converter, a fiber–optic sensing 

probe, a sensing probe holder, and a computer. The fiber–optic spectrometry was used to 

acquire spectral response patterns. A neural network model incorporated into the mobile 

system showed good correlation between predicted SPAD chlorophyll readings and 

actual chlorophyll readings (R2  = 0.85, RMSE = 1.82 SPAD units). Scotford et al. (2004) 

in European used a tractor–mounted radiometer system in parallel with an ultrasonic 

sensor to obtain information about crop cover and the structure of the crop canopy. The 

radiometer system used two radiometers. One was mounted pointing upwards to 

measure incoming radiation while the other pointed downwards to measure the 

reflectance light from the crop canopy. Reyniers et al. (2006) compared an aerial image 

with a measuring device on the ground platform to predict yield of winter wheat. A 

multi-spectral radiometer was mounted on the end of the boom on a tractor. NDVI of the 
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ground system was better related to yield variables at harvest compared to NDVI of the 

aerial system.  

The data acquisition methods and information resources used in previous studies 

were limited. Considering precision agricultural practice, it is necessary to acquire multi-

source information on crop rapidly while save the related costs. The use of a number of 

sensing techniques working in combination could provide a better characterization of 

crop canopy (Scotford et al., 2003). New approaches are needed to rapidly gather, 

record, and process multiple forms of crop-related data at field level.  

As a preliminary study on developing a ground-based multi-source crop-related 

information system to map crop vigor at field level, the particular aim of this work 

presented here was to investigate how to properly integrate sensor and instrument, and 

assess the performance of the system in monitoring crop condition.  

 
SYSTEM DESCRIPTION 
 
Integration System 
 

The proposed ground-based multi-source information system consists of crop 

height sensor, crop canopy analyzer for leaf area index, NDVI sensor, multispectral 

camera, and a spectroradiometer (Figure 2.1). The system was interfaced with a DGPS 

receiver (Thales Navigation, Santa Clara, CA) to provide spatial coordinates for  

measurements taken by the spectroradiometer. The goal was to collect and contrast 

multi-sensor data and store in spatial information and crop property information database. 

The components and how they were integrated are described in the following section. 
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Figure 2.1. The schematic diagram: ultrasonic senor, canopy analyzer, NDVI sensor,  
 

multispectral camera and spectroradiometer. 
 
 
 
NDVI Sensor  
 

NDVI is a good estimate of biomass and nitrogen content in many crops. The 

NDVI sensor used in the system is GreenSeeker® Hand-held Data Collection and 

Mapping Unit Model 505 (NTech Industries, Inc., Ukiah, Cal.) (Figure 2.2). 

GreenSeeker is equipped with a sensor, control box, pocket PC, and specific 

software for data collection. The sensor is adjustable in 15 degree increments and 

mounted on an adjusted-length pole to set the sensor parallel to the target canopy. The 

control box supplies power to the sensor and external connectors. The sensor is an active 

sensor, which uses light emitting diodes to generate its own red (660 ± 15 nm) and NIR  
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Figure 2.2. GreenSeeker hand-held data collection and mapping unit. 
 
 
 
(770 ± 15 nm) lights. As the sensor is passed over crop surface, it measures incident and 

reflected light from canopy and outputs both NDVI and Red to NIR ratio. The output 

rate is about 10 readings per second. The illuminated area is 60 by 1 cm, with the long 

dimension positioned perpendicular to the direction of travel. The distance between the 

sensor and target can be 60 to 120 cm and NDVI readings are not affected by height 

variance.  

 
LAI Canopy Analyzer  
 

Leaf area index is a primary variable for crop monitoring. Instead of the 

traditional, direct and labor-consuming method in the past, the optical instrument, 

SunScan canopy analysis system (Delta-T, Inc.) is used.  The instrument is indirectly 

measuring leaf area index by measuring the ratio of transmitted radiation through canopy 

to incident radiation. It is configured with SunScan probe, data collection terminal, and 

beam fraction sensor. Figure 2.3 shows SunScan probe and its data collection terminal.  

 

Sensor 
PDA 

Control box 
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Figure 2.3. SunScan canopy analyzer.   

 
 
 

The SunScan probe has an array of 64 photosynthetic active radiation (PAR) 

sensors embedded in a 1 m long probe, and may be connected via an RS-232 cable to the 

data collection terminal or a laptop for data collection and storage. The portable and 

weatherproof instrument can be used in most light conditions. When a reading is taken, 

all sensors are scanned and the measurements transmitted to data storage unit. The 

average light level along the probe is calculated and canopy leaf area index is estimated. 

All of the individual sensor readings are available if required for detailed PAR mapping.  

 
Spectroradiometer 
 

Spectroradiometers can be used to quickly measure light energy over a range of 

wavelengths and provide spectral reflectance or transmittance information on crop 

canopy. FieldSpec® Handheld, a portable field spectroradiometer (FieldSpec®, 

Analytical Spectral Devices, Inc.) (Figure 2.4), was used in the system. 
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Figure 2.4. FieldSpec spectroradiometer connected to a laptop via a RS232 to USB  
 

cable. 
 
 
 

The spectroradiometer arrives with manufacturer pre-calibrated and ready to be 

used. It has a 512-channel detector array and capable of measuring radiance from 325 to 

1075 nm wavelengths with a sampling interval of 1.6 nm of the spectrum. The field of 

view of the instrument is about 25º. The reflectance of light from crop canopy is 

collected by the spectroradiometer and data is sent to a portable personal computer via a 

RS232 to USB cable. Instantaneous graphs of spectral signature are displayed. To 

decrease the signal to noise ratio and increase the overall accuracy, integration time 

needs to be changed as light conditions change, while the dark current scan is 

automatically taken when every reflectance scan is taken. In addition, before taking the 

reflectance data, it should be calibrated by taking a white reference from a white 

reference panel.  
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Multispectral Camera 
 

The multispectral camera was a single sensor agriculture digital camera (ADC) 

(Teracam, Inc.) as shown in Figure 2.5. The simple and low-cost ADC camera has a 

resolution of 2048 × 1536 pixels per frame and able to measure visible light wavelengths 

longer than 520 nm and NIR wavelengths up to 920 nm. The camera is equipped with a 

4.5 to 10 mm CS mount vari-focus lens. Focusing can be carried out automatically or 

manually. Images are stored in Teracam DCM loseless format. These DCM files are 

grayscale images displaying “raw” pixel values. PixelWrench2, an image editing 

program working with ADC camera, provides full access and control of the camera.  

 
 

 
 

Figure 2.5. Multispectral ADC camera. 
 
 
 
Ultrasonic Sensor 
 

An ultrasonic sensor is inexpensive and accurate for detecting objects. An 

ultrasonic sensor can generate high frequency sound waves. When the waves strike and 



  22 

 

 

bounce off an object, the sensor receives and evaluates the echo. The sensor then 

determines its distance from the object based on the time interval between sending the 

signal and receiving the echo.  

Two ultrasonic sensors were tested for this system. One was a commercial 

ultrasonic sensor (Honeywell, Inc., NJ) (Figure 2.6 a). The sensing distance is from 20 to 

200 cm. The software for automatic data acquisition from the ultrasonic sensor was 

programmed in Labview 8.5 (National Instruments, 2007). The other was named U.S. 

Distance sensor and developed by Department of Biosystems Engineering, University of 

Tennessee (Figure 2.6 b). It is connected to laptop with RS232 cable and communicates 

by hyper terminal. The operation range is from 5 to 150 cm. Both ultrasonic sensors 

were operated with 12 voltages DC. 

 
 

 

(a) 

Figure 2.6. Ultrasonic sensors (a) Honeywell sensor, data logger and battery (from left 

to right); (b) U.S. distance sensor. 
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(b) 

Figure 2.6. Continued. 
 
 
 
SYSTEM REALIZATION AND DISCUSSION 
 
Integration System Construction 

 
System tests were conducted at the Texas A&M AgriLife Research Farm 

(30°31'19"N, 96°23'52"W) in College Station, Texas during the 2008 growing season. 

Cotton and soybean plants were grown in the field. Two sunny days was selected for 

field tests. Greenseeker, FieldSpec, SunScan canopy analyzer, ADC camera and the 

ultrasonic sensors were tested and calibrated in the lab before field tests. All the data 

were gathered around noon time.  

The first test was on May and crops at their vegetative growth stage of 

development. The sensors and instruments were mounted on a metal frame that allows 

the distance between sensors and plants to be adjusted. The metal frame was mounted in 
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front of the tractor. The width of the frame could be adjusted according to the row space. 

Figure 2.7 shows how the system was integrated for the test in May.  

 

 

Figure 2.7. The integration system construction in the first field test in May 2008.  
 
 
 
Greenseeker and the commercial ultrasonic sensor were mounted on the right 

hand side of the travel direction (they measured the same row); FieldSpec, Sunscan and 

the U.S. Distance ultrasonic sensor were mounted on the left hand side of the travel 

direction. The height of Greenseeker was 60 cm above the ground and the sensor head 

was positioned towards the travel direction. The distance between FieldSpec and ground 

was 1 m. With a field-of-view of 25o, it scanned about 0.154 m2 area on the ground.  The 

integration time was set to 217 ms. Sunscan and the commercial ultrasonic sensor were 

placed 20 cm above the crop canopy. FieldSpec, Sunscan and the U.S. Distance 

ultrasonic sensor were controlled by a laptop and all the data were stored in it for further 

process.  
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Figure 2.8 shows the system construction during the field test in July 2008. 

Greenseeker and FieldSpec were mounted on the right hand side of the travel direction. 

Sunscan, ADC camera and ultrasonic sensor were mounted on the left hand side. The 

height of Greenseeker was adjusted to 80 cm above the canopy.  The heights of 

FieldSpec and ADC camera were 1 m and 1.2 m above the ground, respectively. 

 

 
 

Figure 2.8. The integration system construction in the first field test in July 2008. 
 
 
 
NDVI Readings 
 

A part of NDVI readings from Greenseeker in both tests are given in Figure 2.9. 

As mentioned previously, Greenseeker is designed to be about 80 to 120 cm above the 

target. The width of sensor scanning is constant and doesn’t change with the distance 

between the sensor and target. The average width of cotton plants was less than 25 cm in 

May. The Greenseeker sensor not only scanned on the green vegetation but also did on 



  26 

 

 

the soil around the plants.  Therefore, the NDVI dataset had a large range and high 

variation. The average width of cotton plants became about 51 cm in July. Consequently, 

the variance of NDVI readings in July was much smaller than the one in May. 
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Figure 2.9. NDVI mapping in cotton field in May (above) and July (below) 2008.  

 
 
 

The tractor was driven at a speed of 2 km h-1 in order to reduce its deviation from 

the center of the row. To test the repeatability of the measurements by the system, three 

runs were conducted on the same row with two runs from east to west (E-W, row 
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orientation) and another from west to east (W-E) in July test. The number of samples, 

average, standard deviation and coefficient of variation of NDVI readings for three runs 

are summarized in Table 2.1.  

 

Table 2.1. Summary statistics of NDVI readings for three runs in the soybean field. 
 
Run No. of Sample Avg. NDVI SD CV (%) 
E-W 3100 0.7906 0.0635 8.03 
W-E 3027 0.7807 0.0538 6.89 
E-W 3150 0.7764 0.0662 8.53 
 
 
 

The Greenseeker gives an output every 0.11 second. This means a new value is 

recorded every 0.0627 m. While moving through the field, 16 readings were taken per 

meter. By averaging 80 readings for each 5-meter long distance, a total of 33 and 40 

NDVI values were gained for the two runs in the same direction on cotton and soybean 

rows, respectively. Figures 2.10 and 2.11 show the correlation between NDVI values 

measured on the same rows in the same direction for cotton and soybean, respectively.  



  28 

 

 

y = 0.7956x + 0.1444
R2 = 0.7563

0.7

0.75

0.8

0.85

0.7 0.75 0.8 0.85

NDVI (E-W)

ND
VI

 (W
-E

)

 
 

Figure 2.10. Correlation between NDVI readings of two runs on the same row of 

cotton plants in the same direction. 
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Figure 2.11. Correlation between NDVI readings of two runs on the same row of  

 
soybean plants in the same direction.   
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Reflectance Measurements 
 

Reflectance data were processed by Viewspec Pro 4.05 comes with FieldSpec. 

Reflectance measurements for each run were averaged to one curve for cotton and 

soybean, respectively. The reflectance curves of both cotton and soybean were 

characterized by low reflectance in the blue (450-495 nm) and red (620-700 nm) regions 

of the spectrum. The peaks in green and high reflectance in the NIR region of the 

spectrum appeared. However, there were considerable noises in the near infrared region 

of the spectrum.  

The spectra comparison and the coefficient of variation (CV) of the 

measurements of three runs for cotton and soybean were presented in Figures 2.12 and 

2.13. For cotton, the CV of the reflectance measurements from the run in the reverse 

direction was higher than the other runs in the same direction. By discarding the 

reflectance values from 750 to 775 nm and 1000 to 1075 nm where the noises appeared, 

the analysis of variance test was applied on the CV of the reflectance measurements 

from three runs. The CV of the reverse direction run was significantly different from the 

two other runs on the row in the same direction (p-value < 0.001). The reflectance 

measurements of the three runs in soybean field were not comparable. The CV of the 

reflectance data for the second run in the same direction was higher than those for the 

first run. The tendencies of the CV values in these two were similar from the lower 

visible to higher NIR wavelengths. 
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Figure 2.12. The reflectance spectra of three runs for cotton (above) and coefficient of 

variation (CV) of the spectral data (below). 
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Figure 2.13. The reflectance spectra of three runs for soybean (above) and coefficient 

of variation (CV) of the spectral data (below). 
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Crop Height Measurements 
 

The data of U.S. Distance ultrasonic sensor for three runs in the soybean field is 

plotted in Figure 2.14 and the summary statistics is reported in Table 2.2. 
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Figure 2.14. Map of the crop height data by the U.S. Distance ultrasonic sensor.   

 
 
 

Table 2.2. Summary statistics of ultrasonic crop height for three runs in the soybean 
field. 

 
Run No. of Sample Avg. Height (cm) SD CV (%) 
E-W 178 77.3 8.71 11.28 
W-E 180 80.1 10.0 12.48 
E-W 177 79.4 8.93 11.24 
 
 
 
Greenseeker NDVI vs. Height 
  
 The U.S. distance sensor gives an output every second. The every five 

measurements were averaged to represent the mean crop height within the 5-meter long 

distance. The correlation between crop height measurements and Greenseeker NVDI 

were investigated. Figure 2.15 gives the correlation for the data taken from soybean. The 
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correlation was only 0.2387. The correlation for the data taken from cotton by these two 

sensors was even lower. 
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Figure 2.15. Correlation between Greenseeker NDVI and the crop height measured by  

 
the U.S. distance sensor.   

 
 
 
Multispectral Images 
 

Figure 2.16 shows one of the images was taken by ADC camera when the tractor 

was driving through the soybean field. Only a few good quality images could be 

acquired by the ADC camera during the field tests. Some images were blurted or over 

exposure like the extremely bright part marked with a circle in Figure 2.16.  
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Figure 2.16. Multispectral image taken by ADC camera from soybean canopy. 
 
 
 
CONCLUSIONS 
 

Spectral information on field crop, such as NDVI, reflectance measurements, 

multispectral images, and crop height, has been acquired by the integration system. The 

authors did not get meaningful LAI data during two field tests.  This preliminary work 

indicates that the potential of the integration sensor and instrument system to realize 

multi-source information acquisition at field level. Two rows were chosen within cotton 

and soybean crop field, respectively. Measurements repeatability was investigated by 

driving through the same row three times. Two runs were in the same direction, and the 

other was in the reverse direction. Spectral information, NDVI and spectral reflectance 

measurements, images, and crop height were able to be obtained by the proposed sensing 

system simultaneously from crop canopy with good measurement repeatability. The 



  35 

 

 

reflectance data taken by spectroradiometer in the reverse direction were significantly 

different from the data taken in the same direction. These factors may influence the 

acquisition of reflectance data, for example, the time of the data being taken, solar zenith 

angle at the time, clear sky, need to be paid more attention for field data collection in the 

future.  
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CHAPTER III 
 
 
 

CHARACTERIZE SPECTRAL PROPERTY AND 

DISCRIMINANT ANALYSIS OF AGRICULTURAL CROPS 

AT DIFFERENT GROWTH STAGES WITH 

HYPERSPECTRAL DATA 
 
 
 
 
OVERVIEW 
 

  The spectral reflectance properties of cotton (Gossypium hirsutum L.), corn 

(Zea mays L.), soybean [Glycine max (L.)], and sorghum [Sorghum bicolor (L.)] crops 

during their different growth stages of development were examined to determine 

whether the spectral properties of plants could be used to distinguish cotton from other 

crops. Two field blocks with two different soil types (Belk clay (BaA) and Ships clay 

(ShA)) were set up with cotton, corn, soybean and sorghum in each block using 

conventional production practices for the area. Spectral information was collected from 

all crops at different growth stages from May to July 2009.  Reflectance spectra and the 

first derivative of the spectra were analyzed to characterize the spectral properties of 

crop varieties and to compare the crops grown in different soil types.  The red-edge 

positions were shown differences among cotton, corn, soybean and sorghum among 

crops at the vegetative growth stage, and soybean and sorghum at the reproductive 
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growth stage. The red-edge points of cotton, soybean and sorghum shifted with the 

growth stages of development. Principal component analyses were successful in 

reducing the dimensionality of hyperspectral data and identifying significant features 

from original data. Most significant wavelengths selected were among 548-556 nm, 679-

682 nm, 756-764 nm, and 928-940 nm regions of the spectrum. The discriminant 

analysis method was found to be able to differentiate crop types at four critical growth 

stages with 100 % accuracy of classification for all four days data, except for 1.32 % 

misclassification rate in cross-validation for the dataset from the early vegetative stage.  

 
INTRODUCTION 
 

The need to minimize populations of overwintering boll weevils, Anthonomus 

grandis Boheman, is widely recognized by eradication programs.  One tactic to reduce 

overwintering survival of boll weevils is timely post-harvest stalk destruction.  Even 

where cotton plants, Gossypium hirsutum L., are destroyed after harvest, regrowth from 

stalks or growth of volunteer plants from unharvested seed can occur when 

environmental conditions permit. Occurrence of regrowth or volunteer cotton, 

particularly fruiting plants, is a major concern of the Texas Boll Weevil Eradication 

Foundation (TBWEF) because such plants extend the opportunity for weevils to 

reproduce and/or acquire the necessary fat reserves to overwinter. 

Presently, regulations established by the Texas Department of Agriculture (TDA) 

permit the existence of regrowth or volunteer plants beyond the crop destruction 

deadline as long as plants do not possess fruiting structures.  TDA is solely responsible 

for monitoring fields and administering fees for non-compliance, but limited resources 
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restrict the frequency and coverage of field inspections.  Detecting volunteer cotton in 

other crops or uncultivated habitats is also problematic because these plants are usually 

hidden by the surrounding vegetation. Thus, there is a need to develop or identify 

technologies that can be used to efficiently detect regrowth and volunteer plants in both 

cultivated and uncultivated habitats.  One potential method may involve remote sensing 

with multispectral and hyperspectral sensors.  

During the past decade, hyperspectral and multispectral sensors have shown 

considerable promise as tools for efficiently detecting stressed plants in localized areas 

of fields. Spectral reflectance properties based on the absorption of light at a specific 

wavelength are associated with specific plant characteristics. For healthy crops, spectral 

reflectance in the visible region (400-700 nm) of the spectrum is low because of the high 

absorption of light energy by chlorophyll. In contrast, reflectance in the near infrared 

(NIR) region (700-1300 nm) of the spectrum is high because of the multiple scattering of 

light by different leaf tissues (Taiz and Zeiger, 2006). Reflectance in the green region is 

also higher than that in the blue and red regions of the spectrum. Stress or damage to 

crops can cause a decrease in chlorophyll content and change internal leaf structure 

(Curran, 1989). As a result, the reflectance in the green and NIR regions of the spectrum 

will decrease. Reflectance at the boundary between the visible and NIR region of the 

spectrum is called the “red-edge” region. The red-edge point is defined as the absolute 

maximum of the first derivative in the range 690-750 nm and can be found by plotting 

the first derivative of the reflectance spectrum, and then identifying the highest peak 

manually (Horler et al., 1983; Fillella and Peñuelas, 1994). Demetriades-Shah et al. 
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(1990) proposed the use of first and second derivative spectra in canopy measurements 

since these essentially eliminate the effects of soil background. Many researchers also 

have related the red-edge position to chlorophyll concentration, biomass and leaf area 

index estimation (Curran et al., 1991; Danson and Plummer, 1995; Mutanga and 

Skidmore, 2007).  

Several studies have used hyperspectral measurements in support of crop 

management, such as crop type identification, plant nutrition deficiency assessment, crop 

stress or damage, yield estimation and growth status evaluation. Thenkabail et al. (2000) 

used narrow-band spectral data between 350 and 1050 nm to determine appropriate 

bands for characterizing biophysical variables of various crops, including corn, soybean 

and cotton. Zhao et al. (2005a) evaluated the hyperspectral vegetative indices for 

discrimination of cotton nitrogen stress and growth stage. Zhao et al. (2005b) 

investigated the effects of nitrogen deficiency on grain sorghum growth and leaf 

hyperspectral reflectance properties. They reported that nitrogen deficiency increased 

leaf reflectance at 555 nm and 715 nm, but their experiments were conducted under 

outdoor pot-culture condition. Plant et al. (2000) investigated the relationships between 

remotely sensed reflectance data and cotton growth and yield. Muhammed (2005) used 

hyperspectral data to discriminate between healthy and diseased plants in a spring wheat 

crop which suffered from fungal infestation. Koger et al. (2003) determined the potential 

for wavelet-based analysis of hyperspectral reflectance signals for detecting the presence 

of early-season pitted morning glory when intermixed with soybean and soil. 

Hyperspectral reflectance data were analyzed with a variety of methods for 
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differentiating soybean, soil, and six weed species commonly found in Mississippi 

agricultural fields (Gray et al., 2009).  

In this study, four common agricultural crops, cotton (Gossypium hirsutum L.), 

corn (Zea mays L.), soybean [Glycine max (L.)], and sorghum [Sorghum bicolor (L.)], 

were planted in two blocks with different types of soil. The objective of this study was to 

investigate the spectral properties of four crop types at different growth stages under 

different types of soil and distinguish crop types at different growth stages with 

hyperspectral data.  

 
MATERIALS AND METHODS 
 
Study Site 
 

The study site was located at the Texas A&M AgriLife Research Farm 

(30°31'19"N, 96°23'52"W) in Burleson County, Texas. Dominant soil types in the field 

include a Belky clay (fine, mixed, active, thermic Entic Hapluderts) and a Ships clay 

(very-fine, mixed, active, thermic Chromic Hapluderts). The field was divided into two 

blocks, which were called block BaA and block ShA. Four agricultural crops, cotton, 

corn, soybean, and grain sorghum were planted and managed in each block during 2009 

using conventional production practices for the area (Table 3.1). Within each block, 

there were six rows of each crop with a row spacing of 1 m and rows oriented in the 

east-west direction.  
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Table 3.1.  Crop varieties with respective planting dates in 2009, Texas A&M AgriLife  

Research Farm, Burleson Co., TX. 
 

Agricultural crop Variety Planting date 

Corn Integra INT9673VT3 March 24 

Cotton Deltapine DP174RF April 16 

Sorghum DynaGro DG771B April 15 

Soybean Asgrow O361380 March 24 
 
 
 
Spectral Measurements and Analysis 
 

Hyperspectral measurements were carried out from May to July during 2009 

growing season. Plant canopy spectra were collected with an ASD FieldSpec® Handheld 

spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO).  Sunny days were 

chosen for the field tests and all data were collected around solar noon time. The 

instrument optimization and white reference measurements were performed prior to 

taking measurements (Castro-Esau et al., 2006). Reflectance was calculated as the ratio 

between the reflected radiation from the canopy and the incident energy on the white 

reference panel (BaSO4). The spectroradiometer was adjusted to 10 scans per dark 

current and the integration time was set at 217 ms. Spectral reflectance data, which were 

uncorrected for sun angle or atmospheric effects, were used for analysis in this study 

since the data were taken at field level and at noon time. The spectroradiometer was 

mounted on a tractor with a nadir-looking view at the top of plant canopies. Because the 

field-of-view (FOV) of the sensor is an important factor in determining how much of the 
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canopy will be viewed, the mounted height of the spectroradiometer was adjusted to 

maximize plant coverage and subsequently minimize soil background effects.  For 

example, the average width of the cotton plants at May 27 was 35.7 cm, so the sensor 

was placed about 80 cm above the canopy with a 25o FOV. Measurements were taken at 

about a 4-m interval from the two middle rows for each crop. An average of 18-20 

readings was taken for crop within block BaA and 10 readings for crop within block 

ShA (The block ShA was about half size of the block BaA). The average reflectance of 

these readings was used to represent the spectral reflectance signature of each crop 

variety within the block. 

The spectral data ranged from a wavelength of 325 to 1075 nm with a sampling 

interval of 1.6 nm. The spectroradiometer outputs 512 continuous data points with each 

sample. The ViewSpec Pro® software supplied by ASD was used to interpolate each 

sample into 1-nm intervals. This resulted in 751 individual wavebands for each sample. 

All 751 wavebands were presented as spectral signatures of crop varieties at different 

growth stages. According to the previous study and other studies (Thenkabail et al., 2000, 

2002), spectral data in 325-395 nm and 1000-1075 nm had significant noise problems. 

Therefore, except for spectral signature comparison, all the further analyses were only 

based on spectral data from 400-1000 nm.    

The data collection day and the corresponding growth stages are summarized in 

Table 3.2.   
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Table 3. 2. Hyperspectral measurement dates, days after planted (DAP) and respective 

 stages of plant development designation in parentheses, 2009 growing season. 
 

Crop May 7 [DAP] May 27 [DAP] June 11 [DAP] July 16 [DAP] 

Cotton Early vegetative  
(EV) [21] 

Early squaring 
[41] 

Squaring (SQ) 
[56] 

Bolls & Blooming  
(Boll/BM) [91] 

Corn Early vegetative  
(EV/V) [44] 

Vegetative / Ear 
developing 
(V/E) [64] 

 

Dough stage  
(DS) [79] 

Hard dent  
(HD) [114] 

 

Soybean Early vegetative 
(EV/V) [44] 

Pod developing 
 (POD) [64] 

Pod 3/16 inch at one of four 
upper nodes (PF) [79] 

Seeding/full seed  
(SD) [91] 

Sorghum Early vegetative  
(EV) [22] 

Vegetative (V) 
[42] 

Boot (head surrounded by 
 flag leaf) (BT) [57] 

Black 
layer/mature  

(BL) [92] 
 
 
 
Data Analysis 
 

The spectral reflectance values at each of the 1-nm wavebands were analyzed 

with principal component analysis (PCA) to extract features prior to processing by 

discriminant analysis (DA).  PCA is a multivariate technique used as a tool for reducing 

high dimensional data.  The information content contained in original variables is 

projected onto a smaller number of principal components (PCs) which are linear 

combinations of those variables. The process of PCA returns PCA scores which are the 

estimated values for each principal component and PCA loadings. The PCA score plot 

can present the clustering of the data and the PCA loading plot can be used to investigate 

the contribution of each variable. In this case, PCA was used to reduce the dimension of 

the hyperspectral data to a few bands that explain most of the variation among the 

original data. PCA was performed using PRINCOMP procedure in SAS (SAS Institute, 
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Cary, NC) in which a new principal component was created for each wavelength 

variable in the original data. 

The DISCRIM procedures in SAS were applied on various numbers of derived 

PCs for classification. The parameters being used to develop discriminant function were 

pooled covariance matrix and prior probability of the groups. The DISCRIM procedure 

divided the data into two subsets. One subset was used to develop calibration model and 

the other was used to validate the model. Leave-one-out method was used for cross-

validation in this procedure. The output matrix provided the misclassification rate of 

calibration and cross-validation. 

 
RESULTS AND DISCUSSION 
 
Reflectance Spectra   
 

The average height of corn plants was more than 2.7 m on DAP 79, which 

exceeded the height of the frame of the ground-based system described in Chapter II 

(Lan et al., 2009b). Consequently, the reflectance spectra of corn plants were only 

available at their early vegetative and vegetative growth stages. 
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at “pod formation” and sorghum at “boot”. There was considerable variation in the 

reflectance spectra of sorghum during the late growth stage. Contributing factors could 

be the leaf and canopy structures of the sorghum plants and the considerable movement 

of the plant canopies when the tractor was driving through the rows. Moreover, the seeds 

of sorghum plants were fully mature, and it is likely that the sensor measured reflectance 

not only from leaves but dark kernels. 

Figures 3.1 (a) and (b) shows the mean spectral reflectance characteristics across 

the 325 to 1075 nm wavelength for these four crops in two blocks at their early 

vegetative, vegetative, reproductive and late growth stages of development. At the early 

vegetative stage, all the spectra had two peaks at the green and NIR regions except for 

cotton and sorghum. The maximum contrast of the reflectance value of cotton to those of 

other crops was around the 680 nm wavelength. The highest reflectance in the NIR 

region was observed at the reproductive stage, which was cotton at “squaring”, soybean 
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Figure 3.1. The mean spectral reflectance of cotton, soybean and sorghum measured at 

four growth stages and corn at early vegetative and vegetative stages. (a) block BaA (b) 

block ShA. 
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Figure 3.1. Continued. 
 
 
 

(a) BaA. 

(a) BaA. 
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(b) ShA. 

(b) ShA. 
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(b) ShA. 

(b) ShA. 

Figure 3.1. Continued. 
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Figures 3.2 (a) to (d) illustrate the mean spectral reflectance of each crop in two 

blocks at four growth stages, respectively. Each spectrum curve represents the average 

of all the measurements for each crop at the certain stage.  The average reflectance of 

each crop in block BaA was higher than those in block ShA. The reflectance spectra of 

corn at the vegetative stage, soybean and sorghum at the vegetative and late stages in 

both blocks were similar to each other. In other cases, the spectral reflectance values of 

crops in block BaA were higher than those in block ShA. We also noticed that the 

reflectance of sorghum in the green and red regions increased at the late growth stage. 
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(a) Cotton. 

Figure 3.2. The mean spectral reflectance of cotton (a), corn (b), soybean (c) 

andsorghum (d) measured in block BaA and ShA  at early vegetative stage, vegetative 

stage, reproductive stage, and late stage. 
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Figure 3.2. Continued. 
 

(a) Cotton. 

(a) Cotton. 
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(a) Cotton. 
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Figure 3.2. Continued. 

 
(b) Corn. 
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(b) Corn. 
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Figure 3.2. Continued. 

(c) Soybean. 



  54 

 

 

 

0%

20%

40%

60%

80%

100%

300 500 700 900 1100

Wavelength (nm)

R
ef

le
ct

an
ce

BaA
ShA

 

 

0%

20%

40%

60%

80%

100%

300 500 700 900 1100

Wavelength (nm)

Re
fle

ct
an

ce

BaA
ShA

 

Figure 3.2. Continued. 
 

 (c) Soybean. 

 (c) Soybean. 
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(c) Soybean. 
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(d) Sorghum. 

Figure 3.2. Continued. 
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Figure 3.2. Continued. 

(d) Sorghum. 

(d) Sorghum. 
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Figure 3.2. Continued. 
 
 
 
1st Derivative of Reflectance Spectra 
 

Figure 3.3 represents the first derivative of reflectance spectra of cotton, soybean 

and sorghum in two blocks at the vegetative, reproductive and late stages, respectively. 

The first derivative of reflectance spectra of corn is only available for the vegetative 

stage and is not plotted in the figure. 

Cotton, soybean and sorghum could be distinguished from each other by the red-

edge points of the spectra at the vegetative and reproductive growth stages of 

development. In block BaA, the red-edge points were found at 710 nm, 726 nm, 720 nm, 

and 728 nm for cotton, corn, soybean and sorghum respectively at vegetative stage; the 

red-edge points were found at 718 nm, 721 nm, and 730 nm for cotton, soybean and 

sorghum, respectively, at the reproductive stage.  The same wavelengths were found in 

(d) Sorghum. 
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block ShA except that 714 nm was found for cotton at the vegetative stage. The red-edge 

positions were shifted to longer wavelengths with later crop development. This result is 

consistent with the findings by Railyan and Korobov (1993) that studied the red-edge 

structure of canopy reflectance spectra of Triticale and concluded that the red-edge 

position varied according to the plant growth stage.  

Two or more peaks were identified in the red-edge region at late stage. The 

maxima were at 704 and 732 nm, and 702 and 732 nm for cotton in blocks BaA and ShA, 

respectively; 704 and 735 nm for soybean in both blocks; and 700 and 732 nm for 

sorghum in both blocks.  Horler et al. (1983) reported that the first peak was attributed to 

the chlorophyll content in the leaves and the second was attributed to cellular scattering 

in the leaves. In our case, the reflectance spectra were measured at the plant canopy scale 

instead of individual leaves. The soybean plants were at seeding/full seed stage, and the 

leaves had started senescence. For sorghum plants, aside from the noise of the raw 

reflectance spectra, other factors which may cause more peaks in the red edge region 

need to be investigated in a future study. 

 

 

 

 

 

 

 



  59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
(a)                                                                                       (b) 

Figure 3.3. First derivative of the spectra of cotton, soybean and sorghum at different 

stages in block BaA (a) and block ShA (b). 
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PCA Feature Extraction 
 

PCA procedures were undertaken on the spectral measurements for crops in 

block BaA. There were a total of four spectral datasets for four test days. Figure 3.4 

gives the first three principal components which explained 99% of the variation from 

PCA for dataset on May 7, 2009. The corresponding wavelengths could be selected 

based on the minimum and maximum of PC loadings in the different regions of 

spectrum. For example, PC3 had peaks at the wavelengths of 557 nm and 747 nm. 
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Figure 3.4. The PC loadings of the first three principal components for spectral data 

on May 7. 
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The selected wavelengths based on their PC loadings for all datasets and the 

proportion of variation explain by each principal component are summarized in Table 

3.3. The wavelengths picked up by PCs varied for four datasets, but most of them were 

between 548-556 nm, 679-682 nm, 756-764 nm, and 928-940 nm.  These wavelengths 

carried significant information on the discrimination of crop types.    

 

Table 3.3. Selected wavelengths by principal component analysis. 
 

Test Date Principal 
Components 

Selected Wavelengths (nm) Explained 
Variation (%) 

May 7, 2009 PC1 
PC2 
PC3 
PC4 
PC5 
PC6 

554, 680 
516, 540, 688, 757 
557, 684, 747, 940 
607, 625, 759, 940 
556, 680, 720, 756, 940 
607, 625, 718, 892 

86.32 
10.38 
2.72 
0.29 
0.18 
0.02 

May 27, 
2009 

PC1 
PC2 
PC3 

550, 680, 758 
710, 754, 758, 764, 928 
516, 686, 728, 758, 764, 932 

90.93 
8.36 
0.32 

June 11, 
2009 

PC1 
PC2 
PC3 
PC4 
PC5 
PC6 

549, 550, 700, 760 
548, 690, 720, 780, 818, 872, 943 
549, 721, 762, 946, 818 
555, 679, 730, 816, 868, 928 
552, 682, 730, 928 
624, 759, 762, 778, 817, 867, 927, 
936 

93.72 
3.83 
1.65 
0.55 
0.13 
0.04 

July 6, 2009 PC1 
PC2 
PC3 
PC4 

552, 757, 762, 928, 960 
581, 695, 757, 762, 928, 960 
545, 621, 755, 762, 928, 960 
553, 710, 715, 753, 759, 919, 932 

76.9 
20.79 
1.63 
0.26 
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Discriminant Analysis 
 

The classification results for four datasets are reported in Table 3.4. For four days, 

the DISCRIM procedure was able to identify the crop varieties during the calibration 

step  

Table 3.4. Summary of misclassification matrices obtained from DISCRIM procedure. 
 

Test 
Date 

No. of Principal 
Components 

Calibration 
(%) 

Cross-
Validation (%) 
 

Misclassification 
 

May 7, 
2009 

1  
2 
3 
4 
5 
6 

36.84 
21.05 
2.63 
1.32 
2.63 
0 

51.32 
22.37 
3.95 
2.63 
2.63 
1.32 

 
 
 
 
 
corn vs. soybean 
 

May 27, 
2009 

1 
2 
3 

35.29 
5.05 
0 

38.24 
1.47 
0 
 

 
soybean vs. sorghum 

June 11, 
2009 

1 
2 
3 
4 
5 
6 

33.33 
12.5 
10.42 
0 
0 
0 

33.33 
14.58 
16.7 
4.17 
2.08 
0 
 

 
 
 
 
soybean vs. sorghum 

July 6, 
2009 

1 
2 
3 
4 

3.17 
1.59 
0 
0 

4.76 
1.59 
1.59 
0 

 
 
cotton vs. soybean 

 
 
 

with different numbers of PCs. For May 27 and July 6 datasets, the accuracy of 

classification was 100 % with three or four PCs for both calibration and cross-validation 

steps. For June 11 dataset, six PCs were used to get 100 % accuracy of classification in 
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both calibration and cross-validation steps. Only May 7 dataset gained a 

misclassification rate of 1.32 % in cross-validation. The misclassified crop types from 

four days datasets were corn vs. soybean on May 7; soybean vs. sorghum on May 27 and 

June 11; cotton vs. soybean on July 6. Generally speaking, the discriminant analysis was 

able to differentiate cotton from corn, soybean and sorghum. 

 
CONCLUSIONS 
 

Field tests were carried out to investigate the spectral properties of cotton, corn, 

soybean and grain sorghum crops at their different growth stages of development during 

the growing season in 2009. Four crops were grown in two blocks with different soil 

types, Belk clay and Ships clay. Hyperspectral data was collected from crop canopies at 

the early vegetative, vegetative, reproductive and late growth stages of development. 

The spectral characteristics of crops at different growth stages were compared. Using the 

first derivative of the spectral data, the red-edge position of cotton crop was at the 

shorter wavelength than those of corn, soybean and sorghum at the vegetative stage and 

soybean and sorghum at the reproductive stage. The red-edge points of cotton, soybean 

and sorghum shifted about 4 nm, 1 nm, and 2 nm, respectively, from the vegetative stage 

to the reproductive stage. Two or more peaks were observed from the first derivative of 

spectra, and the maxima were at 732 and 735 nm wavelengths.  

Principal component analyses were successful in reducing the dimensionality of 

hyperspectral data and identifying significant features from original data. The 

discriminant analysis method was found to be able to differentiate crop types at four 

critical growth stages with 100 % accuracy of classification for all four days data, except 
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for 1.32 % misclassification rate in cross-validation for the dataset from early vegetative 

stage.  

In light of our findings, the spectral properties of plants shows considerable 

promise as method for discriminating among crop types and continued investigation of 

this technology is warranted.  
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CHAPTER IV 
 
 
 

GROUND-BASED SPECTRAL REFLECTANCE 

MEASUREMENTS FOR EVALUATING THE EFFICACY 

OF AERIALLY-APPLIED GLYPHOSATE 

TREATMENTS* 
 
 
 
 

OVERVIEW 
 
 Aerial application of herbicides is a common tool in agricultural field 

management. The objective of this study was to evaluate the efficacy of glyphosate 

herbicide applied using aircraft fitted with both conventional and emerging aerial nozzle 

technologies. A weedy field was set up in a randomized complete block experimental 

design using three replicates. Four aerial spray technology treatments, electrostatic 

nozzles with charging off, electrostatic nozzles with charging on, conventional flat-fan 

hydraulic nozzles and rotary atomisers, were tested. To evaluate the glyphosate efficacy 

and performance of aerial spray technologies, spectral reflectance measurements were 

acquired using a ground-based sensing system for all treatment plots. Three  

 
____________ 
*Reprinted with permission from “Ground-based spectral reflectance measurements for 
evaluating the efficacy of aerially-applied glyphosate treatments” by H. Zhang, Y. Lan, 
R. Lacey, W. C. Hoffmann, D. E. Martin, B. Fritz, J. Lopez Jr., 2010. Biosystems 
Engineering, Vol. 107, Page 10-15, Copyright [2010] by Elsevier. 
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measurements were taken at 1, 8, and 17 days after treatment (DAT). The statistical  

analyses indicated that glyphosate applied with different methods killed the weeds 
 
effectively compared to untreated areas at 17 DAT. Conventional flat-fan nozzles and 

rotary atomisers performed better than the electrostatic nozzles with charging off. There 

was no evidence to show that the electrostatic nozzle performed better with charging on 

or charging off. The results could provide applicators with guidance equipment 

configurations that can result in herbicide savings and optimized applications in other 

crops.  

 
INTRODUCTION 
 

Glyphosate, a non-selective contact herbicide, is used extensively for weed 

control in agricultural production systems. Use of glyphosate has increased dramatically 

due to the introduction of transgenic crop varieties that tolerate over-the-top or directed 

applications during some growth phases without significant impact on yield. It has also 

increased because of the increase in reduced-tillage or no-tillage farming systems. 

Jordan et al. (1981) evaluated the efficacy of glyphosate alone and in combination with 

other herbicides, but their work was limited to ground applications. Specialised 

agricultural aircraft have developed largely as a result of convenience as they allow for 

better timing of and greater efficiency in application treatments. Aircraft are able to 

apply agricultural products, such as fertilizers and pesticides, in a timely manner over 

large areas. Aerial applications of glyphosate have increased with the requirement for 

more effective weed management prior to planting spring-seeded crops. Many studies 

have been conducted to evaluate the performance of aerial spray technologies.  For the 
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most part these studies have indicated that optimum spray rate and droplet size 

combinations vary with pesticide product, pest, and specific crop (Bouse et al., 1992, 

Hoffmann et al., 1998, and Kirk et al., 1992, 1998 and 2001).  Latheef et al. (2009) 

investigated the efficacy of different insecticides applied with aerial electrostatic-

charged sprays and conventional sprays and found comparable deposition and insect 

control between both electrostatic and conventional flat fan nozzles. 

Spectral reflectance properties based on the absorption of light at a specific 

wavelength are associated with specific plant characteristics. The spectral reflectance in 

the visible wavelengths (400-700 nm) is low because of the high absorption of light 

energy by chlorophyll. Reflectance of the near infrared (NIR) wavelengths (700-1300 

nm) is high because of the multiple scattering of light by different leaf tissues (Taiz and 

Zeiger, 2006). For example, plant stress usually results in an increase in visible 

reflectance and a decrease in NIR reflectance. Lamb and Brown (2001) suggested that 

differences in spectral reflectance between weeds and their background could be used to 

remotely sense weeds. Detecting weeds against a soil background on fallow ground is a 

straightforward process as the weeds and soil have significantly different spectral 

reflectance characteristics in the Red and NIR wavelength bands. It is also well known 

that the normalized difference vegetative index (NDVI) is a good indicator of vegetation, 

crop biomass and health in agricultural applications (Rouse et al., 1973; Tuker, 1979; 

Sembiring et al., 1998). NDVI is calculated by: NDVI= (NIR – Red) / (NIR + Red), 

where Red and NIR are the spectral reflectance measurements acquired in the red and 

near-infrared regions, respectively. Healthier crop canopies will absorb more red and 
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reflect more near infrared light than stressed or unhealthy canopies, and consequently 

have a higher NDVI value.  

Many on-the-go, ground-based sensors are available for collecting real time 

spectral reflectance data and calculating NDVI. The Greenseeker has been widely used 

for mapping NDVI in a variety of different crops. Martin et al. (2005 and 2007) used this 

sensor to collect NDVI data at multiple growth stages during the life cycle of maize and 

evaluate the relationship between NDVI and maize grain yields. Jones et al. (2007a) 

estimated chlorophyll yield and concentration in spinach by using NDVI values from a 

Greenseeker sensor and a multispectral imaging system. Freeman et al. (2007) collected 

Greenseeker sensor NDVI values and plant height measurements on individual corn 

plants at various growth stages and related them to individual plant biomass, forage yield 

and nitrogen (N) uptake. Flynn et al. (2008) evaluated spatial properties of grassland 

biomass with Greenseeker sensor NDVI data. A spectroradiometer is also a useful tool 

for the detection and monitoring crop growing status. Bronson et al. (2005) used 

Greenseeker NDVI to compare to NDVI values taken by a spectroradiometer to 

determine which device better estimated in-season plant N status. Darvishzadeh et al. 

(2008) examined the utility of hyperspectral remote sensing in predicting canopy 

characteristics by using a spectroradiometer. Zhang et al. (2009) characterised the spatial 

variation of NDVI derived from spectral reflectance measurements with a FieldSpec® 

(Analytical Spectral Devices, Inc., Boulder, CO, USA) spectroradiometer. 

At the time this study was conducted, there were no other studies involved in 

evaluating aerial application of glyphosate using remotely sensed data. The objective 
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was to characterise the glyphosate efficacy applied with conventional and emerging 

aerial spray nozzles using ground-based spectral reflectance data. 

 
MATERIALS AND METHODS 
 
Study Site 
 

The field used for this study was located in Burleson County, TX, USA 

(30°31’28”N, 96°24’25”W) and was treated with glyphosate on Mar 2, 2009.  The field 

had been left fallow for the previous eight months and thus, was inundated with both 

broadleaf and grass weeds. Figure 4.1 is the photo of the study weedy field which was 

taken on Feb 24, 2009. The soil type of the study area, ShA, was Ships clay, 0 to 1 % 

slope, and rarely flooded (http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey). 

 

 

Figure 4.1. The photo of the study site taken on Feb 24, 2009. 
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Treatment Protocol 
 

Treatments were applied in randomized complete blocks with three replications 

(Figure 4.1). Each replicate block was subdivided into five unique randomized 

treatments. This design strategy improved the accuracy of the comparisons among 

nozzle technologies by eliminating the variability among the replicates with a block, the 

order in which the five treatments were tested was randomly determined. Each treatment 

plot was three swaths wide (59 m) and (183 m) long and was delineated with a disked 

strip of soil (Figures 4.1 and 4.2).  

 

 

Figure 4.2. Sampling locations layout within each treatment plot.   
 
 
 

A turbine-powered Air Tractor AT-402B agricultural aircraft (Air Tractor, Inc., 

Olney, TX, USA) was used to make all applications. Treatments were made with aerial 

electrostatic nozzles (Spectrum Electrostatic Sprayers Inc, Houston, TX, USA), CP-

11TT 4015 hydraulic flat-fan nozzles (CP Products, Tempe, AZ, USA) and AU-5000 

windmill-driven rotary atomisers (Micron Sprayers Ltd., Bromyard, Herefordshire, UK).  

Table 4.1 shows aircraft and nozzle settings for each treatment.  The droplet DV0.5 (or 

Volume Median Diameter (VMD)) is the diameter of droplet such that 50 % of the total 

20 m 

91.5 m 

Swath 3 

Swath 1 

Swath 2 
X 
X 
X 
X 
X 
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volume of droplets is in droplets of smaller diameter.  The VMD values were determined 

using the USDA-ARS Spray Quality models (Kirk, 2007) using the nozzle and aircraft 

operating parameters, including spray pressure, nozzle type and deflection, and airspeed. 

The aircraft approached the field from the northwest and three passes (swaths) were 

required to apply chemical over one experimental plot. The spray height was 3 m. 

 

Table 4.1. Spray treatment setups and droplet size information. 
 
Treatment   Nozzle       Number of        Rate         Orifice         Deflection     Pressure      Airspeed      Target VMDa 
                                         Nozzles           (l ha-1)                           (degrees)       (kPa)             (km h-1)               (µm) 
 

1        Electrostatic        100               9.4          TXVK-8               0               483                   209                  200 
                      Off 
2             Electrostatic        100               9.4          TXVK-8               0               483                   209                  200  
                      On 
3             CP-11TT              39               28.1              15                     0               241                  210                  350 

 
4             AU-5000               8                28.1        VRU=Maxb      Blade-65        241                  177                  350 
 
5      Untreated           N/A              N/A             N/A                N/A             N/A                  N/A                 N/A 

                  Check  
 

[a] VMD or DV0.5

 

  is the volume median diameter which is the diameter of droplet such that 50% of the total 
volume of droplets is in droplets of smaller diameter; values were estimated using the USDA-ARS Spray Quality 
model (Kirk 2007)  [b] VRU is the variable rate unit for the Micronair AU5000 and is used to adjust flowrate to the 
nozzle.  Max is the full open setting. 

 
 

All treatments were made with Helosate PlusTM (Helm Agro US, Inc., Memphis, 

TN, USA) at 1168 ml ha-1 and 0.5 % v/v R-11 non-ionic surfactant (Wilbur-Ellis Co., 

Fresno, CA, USA). Helosate Plus contains 41% glyphosate (n-(phosphonomethyl) 

glycine), in the form of its isopropyl amine salt.  The spray mixture also contained 

Caracid Brilliant Flavine fluorescent dye at a rate of 37 g ha-1. 
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Sensing System 
 

A sensing system (Lan et al., 2009b) was assembled using a Greenseeker® hand-

held data collecting and mapping unit (NTech Industries, Inc., Ukiah, CA, USA) and a 

FieldSpec® (Analytical Spectral Devices, Inc., Boulder, CO, USA) handheld 

spectroradiometer. The Greenseeker and FieldSpec sensors were mounted on a tractor at 

the height of 1 m above the ground. Sampling was carried out as the tractor was driven 

along the strips which were marked in the centre of each treatment plot (Figures 4.1 and 

4.2). The spectral data collection in the centre swath was used for statistical analyses to 

avoid the effects of cross contamination between treatments. 

As the Greenseeker sensor moved over the field, it measured incident and 

reflectance light from the target and outputted NDVI readings. Weeds within each plot 

responded in a similar manner to treatments, so the NDVI data of the centre swath of 

each treatment plot were averaged to give a single value for each treatment. The analysis 

of variance (ANOVA) was carried out based on the experimental data using R statistics 

software (http://cran.r-project.org). Treatment variables were considered fixed and 

variations in experimental treatments were considered random.  

The FieldSpec, with an angular field-of-view of 25o, scanned approximately 

0.154 m2 of weedy field.  The spectroradiometer collected spectral data from the ground 

ranging from a wavelength of 325 nm to 1075 nm with a sampling interval of 1.6 nm. 

The spectroradiometer produced 512 continuous data points with each reading.  Ten 

spectral measurements were taken from each treatment plot. By averaging these ten 

measurements, a single reflectance measurement was obtained for each treatment plot, 



  73 

 

 

thereby, minimising measurement noise.  The instrument optimisation and white 

reference measurements were performed prior to each treatment plot measurements 

according to Castro-Esau et al. (2006). The spectroradiometer was adjusted to 10 scans 

per dark current and the integration time was set at 217 ms. The reflectance values at the 

680 nm wavelength in the red region and the 800 nm wavelength in the NIR region were 

used to calculate the narrowband NDVI for each spectral measurement (Castro-Esau et 

al., 2006). ANOVA test was also carried out based on the NDVI data measured with the 

FieldSpec. All the field tests were conducted between 12:00 and 14:00 at 1, 8, and 17 

days following aerial treatment (DAT).  

 
RESULTS AND DISCUSSION 
 
Greenseeker NDVI  
 

The ANOVA test results on DAT 1 and DAT 8 did not show any difference 

among treatment means. The ANOVA test on DAT 17 is shown in Table 4.2. Nozzle 

type had a significant effect on glyphosate efficacy (p = 0.0315 at α = 0.05). The normal 

plot of residuals and the residuals versus predicted value plot were checked and there 

was no severe indication of non-normality, nor was there any evidence pointing to 

possible outliers. 

The analysis indicated a significant difference in treatment means, so the 

comparisons between paired treatments were conducted using Tukey’s HSD (Honestly 

Significant Difference) in R (Table 4.3). Only treatment 3 was significantly different 

from treatment 5 at α = 0.1 level. There was no significant difference between the other 

two treatments.  
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Table 4.2. Analysis of variance test result on DAT 17 (Greenseeker data). 
 
 Source Degree of freedom              F-Value                   P-value (Prob > F) 

     Block                              2 
     Model                              4                          4.62                          0.0315  significant 
          A-Treatment              4                                           4.62               0.0315 
     Residual                         8  
     Cor Total                      14 
  
     Std. Dev.                   0.036                                          R2                               0.6981 
     Mean                           0.26                                          R2

adj                            0.5471 
 

 
 

Table 4.3. Tukey’s HSD (Greenseeker data). 
 
                            Mean Standard t for H0  
   Treatmenta        Difference       d.f.    Error Coeff=0            Prob > |t| 
 

  1 vs  2                0.066               1                    0.029                           2.26               0.2505 
  1 vs  3                0.083               1                    0.029                           2.87               0.1117 
  1 vs  4                0.065               1                    0.029                           2.24               0.2579 

       1 vs  5               -0.015              1                    0.029                          -0.53               0.9821 
       2 vs  3                0.018               1                    0.029                           0.61               0.9698 
       2 vs  4     -6.667E-004               1                    0.029                        -0.023               0.9999 
       2 vs  5               -0.081               1                    0.029                         -2.78               0.1250 
       3 vs  4               -0.018               1                    0.029                         -0.63               0.9657 
       3 vs  5               -0.099               1                    0.029                         -3.39               0.0545* 
       4 vs  5               -0.080               1                    0.029                         -2.76               0.1289 
 
  [a] Treatment 1: electrostatic (off); treatment2: electrostatic (on); treatment 3: CP-11TT; Treatment 4: AU-5000;  
       treatment 5: control 
     *Significant at α=0.1 level 
 
 
 
FieldSpec Spectral Reflectance 
 

The ANOVA test results for DAT 1 and DAT 8 did not show any difference 

among treatment means. The ANOVA test results on DAT 17 are presented in Table 4.4. 

Nozzle type had a significant effect on glyphosate efficacy (p = 0.0002 at α = 0.01 level). 

The result of Tukey’s HSD (Table 4.5) reported that treatment 2, 3 and 4 were 
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significantly different from treatment 5 at α = 0.01 level; treatment 1 was significantly 

different from treatment 3 and 5 at α = 0.05 level; and treatment 1 was significantly 

different from treatment 4 at α = 0.1 level. The result did not show any difference  

 
 

Table 4.4. Analysis of variance test result on DAT 17 (FieldSpec data) 
            

      Source                Degree of freedom                    F-Value                           P-value (Prob > F) 
  
     Block                              2 
     Model                              4                         21.38                          0.0002  significant           
          A-Treatment              4                                           21.38               0.0002 
     Residual                         8  
     Cor Total                      14 
 
     Std. Dev.                   0.029                                          R2                                 0.9145 
     Mean                           0.17                                          R2

adj                              0.8717 
 
 

 

Table 4.5. Tukey’s HSD (FieldSpec data). 
 

                         Mean                            Standard                     t for H0  
Treatmenta       Difference          df         Error                           Coeff=0                Prob > |t| 

 
           1 vs  2                     0.044                1           0.024                             1.86                         0.4046 
           1 vs  3                     0.098                1           0.024                             4.15                         0.0198** 
           1 vs  4                     0.076                1           0.024                             3.22                         0.0690* 
         1 vs  5                   -0.097                1           0.024                            -4.12                         0.0206** 
         2 vs  3                    0.054                1           0.024                              2.28                         0.2427 
         2 vs  4                    0.032                1           0.024                              1.36                         0.6685 
         2 vs  5                     -0.14                1           0.024                            -5.98                         0.0022*** 
         3 vs  4                   -0.022                1           0.024                            -0.93                         0.8784 
         3 vs  5                     -0.19                1           0.024                            -8.27                         0.0002*** 
         4 vs  5                     -0.17                1           0.024                            -7.34                         0.0005*** 

 
[a ]   Treatment 1: electrostatic (off); treatment2: electrostatic (on); treatment 3: CP-11TT; Treatment 4: AU-5000; 

       treatment 5: untreated check       
     *     Significant at α=0.1 level 
     **   Significant at α=0.05 level 
     *** Significant at α=0.01 level 



  76 

 

 

between treatments 1 and 2, 2 and 3, 2 and 4, and 3 and 4.  Therefore, conventional flat-

fan nozzles and rotary atomizers had better performance than the electrostatic nozzles 

with charging off. There was no evidence that the electrostatic nozzle with charging on 

was better than the electrostatic nozzles with charging off.  

The average spectral reflectance values obtained by the FieldSpec 

spectroradiometer for each treatment plot from three replicates at DAT 1, DAT 8 and 

DAT 17 are shown in Figure 4.3, Figure 4.4 and Figure 4.5, respectively. Overall 

changes within the study field were observed from the shapes of the reflectance curves. 

Overall decreases in healthy weed area due to herbicidal control resulted in an increase 

in the blue and red reflectance and a decrease in the NIR reflectance. Since the soil type 

of the study field was the same, the effect of soil property was not a factor. As shown in 

Figure 4.3, the spectral reflectance responses from five treatment plots were similar at 

DAT 1. Treatment 3 had higher reflectance both in the visible and NIR wavelength 

regions at DAT 8 (Figure 4.4). At 17 days after treatment, there was a significant 

increase in the visible reflectance under treatment 3 (Figure 4.5). Compared to DAT 1, 

the reflectance at DAT 17 increased from about 8 % to 20 % in the blue region, 15 % to 

38 % in the green region, and 15 % to 30 % in the red region. Basically, changes in the 

reflectance in the NIR region were not significant. Treatment 2 and 4 were comparable. 

It should be noted that at DAT 17, the untreated control (TRT5) had the smallest 

reflectance in the visible region but the largest reflectance in the NIR. It was concluded 

that the glyphosate herbicide efficacy under different aerial spray treatments could be 

differentiated from spectral responses over the visible and NIR spectrum regions.   
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Figure 4.3. Average spectral reflectance curves for each treatment plot from three 

replicates at DAT 1. 
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Figure 4.4. Average spectral reflectance curves for each treatment plot from three 

replicates at DAT 8. 
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Figure 4.5. Average spectral reflectance curves for each treatment plot from three  

replicates at DAT 17. 
 
 
 

CONCLUSIONS 
 

The analysis of variance test results of NDVI measurements from the 

Greenseeker and FieldSpec collected data on DAT 1 and DAT 8 did not show any 

difference among treatments; however, a significant difference among treatment means 

on DAT 17 was observed. All the glyphosate application treatments provided effective 

weeds control as compared to untreated areas at DAT 17. The Tukey’s HSD result of the 

Greenseeker data shows that there was no significant difference between any other two 

treatments except for treatment 3 and untreated area. The Tukey’s HSD test result of 

NDVI measurements from the FieldSpec shows that applications using CP-11TT flat-fan 

nozzles and AU-5000 rotary atomisers were more efficacious in controlling weed 

populations than the electrostatic nozzles with charging off; but no evidence was 
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available to show that electrostatic nozzles with charging on was better than the 

electrostatic nozzles with charging off. Based on the analysis of spectral reflectance 

measurements with the FieldSpec spectroradiometer, the overall changes within the 

study field were observed from the shapes of the reflectance curves. Glyphosate 

herbicidal efficacy under different aerial spray treatments could be differentiated from 

spectral responses over the visible and NIR spectrum regions. At DAT 17, treatment 3 

had the highest spectral reflectance in the visible wavelength bands.  

Overall, the ground-based spectral reflectance data could be used to assess the 

glyphosate efficacy applied with different aerial spray technologies. This research 

showed that reflectance data obtained from ground based platform can be used to 

compare treatment performance for aerial herbicide application using different nozzle 

technologies. For this study, aerial herbicide applications performed within product label 

recommendations and were efficacious, regardless of the nozzle technology employed. 
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CHAPTER V 
 
 
 

SPATIAL ANALYSIS OF NDVI READINGS WITH DIFFERENT  
 

SAMPLING DENSITY 
 
 
 
 

OVERVIEW 
 

Advanced remote sensing technologies provide researchers an innovative way to 

collect spatial data in precision agriculture. Sensor information and spatial analysis 

together allow for a detailed understanding of the spatial complexity of a field and its 

crop. The objective of the study was to describe field variability in the normalized 

difference vegetative index (NDVI) and characterize the spatial structure of NDVI data 

by geostatistical variogram analysis. Data sets at three different sampling densities were 

investigated and compared to characterize NDVI variation within the specified study 

area. Variograms were computed by Matheron’s method of moments (MoM) estimator 

and fitted by theoretical models. The fitted spherical model was determined to be the 

best model for the data analysis in the study. The range of spatial dependence of the 

NDVI data was 40 m for sampling area of 4x3 m2. Knowing the amount of remotely 

sensed data needed to characterize the spatial variation of the field with NDVI allows us 

to save sampling costs and prescribe nitrogen and other agrichemical applications.  
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INTRODUCTION  
 

Advanced remote sensing technologies provide researchers an innovative way to 

collect spatial data in precision agriculture. Many commercially available sensors or 

optical instruments provide the capability of acquiring real time spectral information 

from vegetation. Studies have suggested that crop spectral reflectance can be used to 

assess plant nutrient and pigment status (Goel et al., 2003a; Osborne et al., 2002), 

monitor plant conditions at various scales (Blackmer et al., 1994; Plant et al., 2001), and 

crop biophysical variables (Thenkabail et al., 2000; Goel et al., 2003b).  

Canopy spectral reflectance properties based on the absorption of light at a 

specific wavelength are associated with specific plant characteristics. The spectral 

reflectance in the visible wavelengths (400-700 nm) is low because of the high 

absorption of light energy by chlorophyll. The reflectance in the near infrared (NIR) 

wavelengths (700-1300 nm) is high because of the multiple scattering of light by 

different leaf tissues (Taiz and Zeiger, 2006).  Vegetation indices have been developed 

with the reflectance data from red and NIR wavelengths and are often used to monitor 

crop growth conditions. The normalized difference vegetative index (NDVI) is a good 

indicator of vegetation, crop biomass and health in agricultural applications (Rouse et al., 

1973; Tuker, 1979). NDVI is calculated as: NDVI= (NIR – Red) / (NIR + Red), where 

Red and NIR stand for the spectral reflectance measurements acquired in the red and 

near-infrared regions, respectively. Healthier crop canopies will absorb more red and 

reflect more near infrared light than stressed or unhealthy canopies, and consequently 

have a higher NDVI value. Sembiring et al. (1998) found that NDVI was a good 
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indicator of nitrogen (N) uptake of winter wheat. Freeman et al. (2007) collected NDVI 

with Greenseeker® (NTech Industries, Inc., Ukiah, Cal.) handheld sensor and plant 

height measurements on individual corn plants at various growth stages and related them 

to individual plant biomass, forage yield and N uptake. Bronson et al. (2005) used NDVI 

collected from different sensors to give a better estimation of in-season plant N status.  

Remotely sensed data and spatial analysis together allow for a detailed 

understanding of the spatial complexity of a field and its crop. Determination of the 

spatial variability of field parameters is usually based on the concept that sampled values 

at nearby locations are more similar than those farther apart. Measurements from the 

field are usually gathered as point data, such as samples from an individual plant. Spatial 

analysis methods can be used to interpolate measurements to create a continuous surface 

map or to describe its spatial pattern (Cressie, 1993). As a powerful tool in geostatistics, 

variograms (also referred to as semivariograms) characterize the spatial dependence of 

data and give the range of spatial correlation, within which the values are correlated with 

each other and beyond which they become independent. The parameters of the best fitted 

model for a variogram can be used for kriging (Matheron, 1963; Stein and Corsten, 

1991).  Kriging has been recommended as the best method to interpolate point data since 

it minimizes the error variance using a weighted linear combination of the data 

(Panagopoulos et al., 2006). There are also numerous studies demonstrating the benefits 

of the geostatistical analysis techniques to agricultural management. Heisel et al. (1996) 

used kriging to map the density of weeds in winter wheat. Stewart et al. (2002) had used 

geostatistical methods to interpolate the data and produce maps of the field representing 
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the spatial variability of all the soil and wheat properties. With the aid of these maps and 

empirical modeling techniques, relationships between the wheat and soil factors were 

determined. Yamagishi et al. (2003) investigated the spatial variability of crop biomass 

and determined if site-specific management could be applied to a small field by using a 

variogram.  

The large amount of remotely sensed data also could increase the sampling costs, 

provide redundant information and require complicated data analysis techniques. The 

issue has drawn considerable attention to specify the sampling requirements needed to 

accurately analyze the spatial property of an object. The objectives of this study were to 

describe the variability of a soybean field in NDVI, characterize the spatial structure of 

NDVI with different sampling data sets using variogram analysis, and determine an 

optimum sampling size that could adequately describe the field variation in canopy 

NDVI for the future studies.  

 
MATERIALS AND METHODS 
 
Study Site 
 

The study site consisted of a 15 x 65-m2 area within an approximately 1- ha 

soybean field near College Station, Texas (30°12’13”N, 96°12’57”W). The soybeans 

(Variety HBK C5025, Hornbeck Seed Co., Dewitt, AR) were planted on March 31, 2008 

with a row spacing of 1 m and rows oriented in the east-west direction. Nitrogen was 

applied as ammonium sulfate (336 kg ha-1) broadcast prior to planting and incorporated 

into the beds. The field was irrigated weekly as needed during the pod fill period. 
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Sampling Design and Data Collection 
 

At the end of June 2008, the plants on the north side of plot reached senescence, 

while the other plants were growing vigorously. To assess the spatial variation of 

soybean plants within this area, spectral reflectance measurements were conducted along 

four selected rows with a FieldSpec® handheld hyperspectroradiometer (Analytical 

Spectral Devices, Inc., Boulder, CO). The distance between selected rows was 3 m. The 

sampling position along each row was marked by a 2-m. Thus, the sampling grid was 

2x3-m2. Each row comprised 32 sampling points for a total of 128 observations.  

The FieldSpec handheld hyperspectroradiometer was positioned with a nadir 

view from a height of about 2 m above the ground. With an angular field-of-view of 25o, 

it scanned approximately 0.62 m2 of field area.  The spectroradiometer collects data from 

the canopy ranging from a wavelength of 325 nm to 1075 nm with a sampling interval of 

1.6 nm. The spectroradiometer outputs 512 continuous data points with each reading. A 

sunny day was chosen for the field test and all data were collected around solar noon 

time. The instrument optimization and white reference measurements were performed 

prior to sample measurements using the RS3 software (Analytical Spectral Devices, Inc., 

Boulder, CO). The spectroradiometer was adjusted to 10 scans per dark current and the 

integration time was set at 217 ms. All the reflectance measurements taken from each 

rows were completed within half an hour. The reflectance values of 680 nm wavelength 

in the red region and 800 nm wavelength in the NIR region were chosen to calculate 

NDVI (Castro-Esau et al., 2006).  
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Statistical Analysis 
 

Descriptive statistics for NDVI values was performed and the outliers and 

anomalies were examined using R-2.8.0 (R Development Core Team 2008). The 

autocorrelation analysis was applied to each row. The spatial structure of NDVI readings 

was determined by using geostatistical techniques and variogram analysis. 

 
Variogram 
 

Variograms were computed for three data sets, one was all the NDVI data at the 

2-m sampling interval (2x3-m2 sampling area); the second one was reduced to sampling 

points at a 4-m interval (4x3-m2 sampling area); and the third one was reduced to 

sampling points at a 6-m interval (6x3-m2 sampling area). This resulted in 128, 64 and 

40 measurements being used for the 2-, 4-, and 6-m spatial analysis, respectively. The 

procedures for detecting trend and anisotropy were performed.  

The experimental variogram was computed by Matheron’s (Matheron, 1965) 

method of moments (MoM) estimator. The equation is given by equation: 
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hγ  is an unbiased estimate of the variance of these m(h) pairs of NDVI readings; 

m(h) is the number of sampling pairs separated by a lag h for i=1, 2, . . ., m(h); z(xi) and 

z(xi+h) are the NDVI values at locations xi and (xi+h), respectively. 
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Theoretical Models 
 

The experimental variograms were fitted (based on a weighted least squares 

approximation) with theoretical models that provide three key parameters: the nugget 

variance, the sill variance, and the range of spatial dependence. These model parameters 

described the spatial structure of NDVI readings. With sample sizes of 128 and 64 in this 

study, it satisfied the requirement of acquiring reliable estimation of a variogram by 

MoM (Webster and Oliver 1992; Kerry and Oliver 2007). Therefore, the spherical and 

exponential models were fitted to the variogram computed from the 2-m interval and 4-

m interval data sets. For the 6-m interval data set, the variogram was estimated by the 

maximum likelihood (ML) approach and compared to those estimated by MoM (Lark 

2000). On the basis of the least Sum of Squares or Akaike information criterion (AIC) 

(Akaike, 1973), a good fit model was chosen and the parameters of the model were used 

for kriging. Overall, the model with a smaller nugget and lower nugget to sill ratio will 

be chosen. 

The spherical model is one of the most commonly used models for experimental 

data (Webster and Oliver, 2007) and expressed as: 

)(hγ = 










>+

≤<−+

( =

ahc

ah  
a
h

a
hc

hco

n        whe                    c

0     when)(
2
1

2
3c( 

lag) small very awhen 

0

0

                                                                            

)3

ε

            (5.2) 

where co is the nugget variance, c is the sill, h is the lag and a is the range. All 

variograms computed in this study are all fitted with spherical model. 
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The exponential model has been used commonly because of its generality. In the 

isotropic case it is given by equation:  

)(hγ = 




=
>−+

0for                                        0
0for          ))/exp(1c( 0

h
  hrhc
                                  (5.3) 

The non-linear parameter r defines the spatial scale of the variation. The sill is 

approached asymptotically. For practical purposes a = 3r is regarded as the effective 

range of the exponential model, which is the lag at which the sill reaches approximately 

c0 + 0.95c (Webster and Oliver, 2007). The variogram analyses, experimental variogram 

computing, model fitting and kriging were performed with the geoR package in R 

software.  

 
RESULTS AND DISCUSSION 
 
Descriptive Statistics 
 

For the four rows, NDVI data were plotted (Figure 5.1) and descriptive statistics 

of NDVI data at three sampling intervals were calculated (Table 5.1). Mean, median, and 

standard deviation of three data sets were similar. Student t-tests were performed for 

three data sets and there was no significantly difference among means. In other words, 

the decrease in the sampling density did not affect the properties of NDVI data.  No 

transformation of the data was necessary for geostatistical analysis.  
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Figure 5.1. NDVI data for four rows. 
 
 
 

 
Table 5.1. Descriptive statistics of NDVI for three data sets in the study area. 

 
Parameter 2m data set 4m data set 6m data set 

Mean 0.3850 0.3810 0.3780 
Median 0.3721 0.3876 0.3653 

SD 0.1601 0.1640 0.1589 
Skewness -0.0198 -0.19 -0.097 
CV (%) 41.59 43.08 42.04 
Count 128 64 44 

 
 
 
Geostatistical Analysis 
 

The existence of anisotropy was assessed first. Anisotropy was tested in four 

directions. The direction of the maximum continuity was found along rows and the 

direction of the minimum continuity was perpendicular to rows. The calculation of 
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semivariance was restricted to the direction of rows only. The NDVI variograms 

computed for 2-m interval, 4-m interval and 6-m interval data sets are shown in Figure 

5.2. There were no evident differences in shape and semivariance magnitude between 

sample densities. 
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Figure 5.2. Variograms of three NDVI data sets in the study field:  2-m interval (red), 

4-m interval (blue) and 6-m interval (green). 

 
 
 

Exponential and spherical models were fitted to the variograms computed for the 

2-m interval and 4-m interval data sets (Figures 5.3 and 5.4). Figure 5.5 indicated that 

the variogram computed for the 6-m interval data set was fitted with exponential and 

spherical models estimated by weighted least squares and maximum likelihood. 
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Figure 5.3. Variogram of NDVI data set (2-m interval) in the study field: experimental 

variogram calculated by method of moments estimator (o); exponential (red solid) and 

spherical (blue dashed) models fitted by weighted least squares. 
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Figure 5.4. Variogram of NDVI data set (4-m interval) in the study field: experimental 

variogram calculated by method of moments estimator (o); exponential (red solid) and 

spherical (blue dashed) models fitted by weighted least squares. 
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Figure 5.5. Variogram of NDVI data set (6-m interval) in the study field: experimental 

variogram calculated by method of moments estimator; exponential (red solid) and 

spherical (blue dashed) models fitted by weighted least squares and exponential (green 

dotted) and spherical (orange dotdash) models fitted by Maximum Likelihood.   

 
 
 

The variogram parameters are summarized in Table 5.2. For the 2-m interval data 

set, the sum of squares of exponential model and spherical model were same, but the 

exponential model had a smaller nugget and nugget to sill ratio. For the 4-m interval data 
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set, both exponential and spherical models had zero nuggets. The sum of squares of 

spherical model was smaller than that of exponential model. Moreover, the range of the 

exponential model was larger than the length of the row. The range of the spherical 

model was 40 m, beyond which the NDVI became independent. Although the 

calculation of a variogram is suggested to use with maximum likelihood when the data 

size is less than 50, both models fitted for 6-m interval data set had high nugget to sill 

ratios in this case. Also from Figure 5.5, the maximum likelihood models were far away 

from the variogram and could not give a better fit and more information than the other 

two models estimated by MoM. Overall, the spherical model for 4-m interval dataset had 

the range of 40 m, zero nugget and nugget to sill ratio, the smallest sum of squares and 

good fit with visual inspection (Figure 5.4). The parameters of the spherical model for 

the 4-m interval data set were used for kriging and predicting of NDVI values at 

unsampled locations. 
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Table 5.2. Parameters of exponential and spherical models fitted to the experimental 

variogram estimated by method of moments (MoM) (n=128) and maximum likelihood 

(n=64) that describe the spatial structure of NDVI in the study field. 

Model Range (m) Nugget Sill Nugget% a Sum of  
Squares AIC 

2-m Interval       
Exponential 209 0.0003 0.0728 0.4 0.0108  
Spherical 60 0.0005 0.0379 1.3 0.0108  
        
4-m Interval       
Exponential 119 0 0.0522 0 0.0061  
Spherical 40 0 0.0319 0 0.0036  
       
6-m Interval       
Exponential 89 0 0.0413 0 0.0047  
Spherical 50 0.0011 0.0434 25.34 0.0051  
ML/exponential 0.15 0.018 0.0247 72.87  -30.01 
ML/spherical 2.5 0.0147 0.0247 59.51  -30 

a. Percentage nugget is calculated as Nugget/Sill x 100 
 
 
 

Figure 5.6 shows the NDVI data map of the study area. The map describes the 

spatial variation of NDVI within the study field in a better way and adds more 

information and an easier understanding than the classical descriptive statistics analysis. 

Within the 15 x 65-m2 area, NDVI values were very low on the northwest side, which 

indicated that the soybean plants were not vigorous and/or plants coverage was low. The 

variability perpendicular to the rows was large.  
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Figure 5.6. NDVI map of the study field. 
 
 
 
CONCLUSIONS 
 

This study revealed that the remote sensing vegetation index, NDVI, was suitable 

to assess crop ground cover and monitor crop growing status. NDVI data, analyzed by a 

geostatistical method, variogram and kriging, gave a better description of spatial 

variation within the field. In the study, the spatial dependence of NDVI data was 40 m 

with a sampling area of 4x3 m2.  Although it is possible to increase the sampling interval 

N N 
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to 6-m without lost spatial information, the parameters of the fitted model are not 

accurate enough for kriging. Compared to a sampling interval of 2 m, the use of the 4-m 

interval data set reduces the processing of redundant data without affecting the quality of 

the variation described. Knowing the amount of remotely sensed data needed to 

characterize the spatial variation of the field with NDVI allows us to save sampling costs 

and prescribe nitrogen and other agrichemical applications.  

The study only considered three sampling densities for this field. The distance 

between rows was consistent. Different sampling area and spatial structure of other 

remotely sensed data will be examined in a future study.  
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CHAPTER VI 
 
 
 

ANALYSIS OF VARIOGRAMS WITH VARIOUS SAMPLE 

SIZES FROM A MULTISPECTRAL IMAGE* 
 
 
 
 
OVERVIEW 
 

Variogram plays a crucial role in remote sensing application and geostatistics. It 

is very important to estimate variogram reliably from sufficient data. In this study, the 

analysis of variograms computed on various sample sizes of remotely sensed data was 

conducted. A 100 x 100 - pixel subset was chosen randomly from an aerial multispectral 

image which contains three wavebands, Green, Red and near infra-red (NIR). Green, 

Red, NIR and normalized difference vegetation index (NDVI) datasets were imported 

into R software for spatial analysis. Variograms of these four full image datasets and 

sub-samples with simple random sampling method were investigated. In this case, half 

size of the subset image data was enough to reliably estimate the variograms for NIR and 

Red wavebands. To map the variation on NDVI within the weed field, ground sampling 

interval should be smaller than 12 m. The information will be particularly important for 

kriging and also give a good guide of field sampling on our weed field in the future 

____________ 
*Reprinted with permission from “Analysis of variograms with various sample sizes 
from a multispectral image” by H. Zhang, Y. Lan, R. Lacey, Y. Huang, W. C. Hoffmann, 
D. Martin, G. C. Bora, 2009. International Journal of Agricultural & Biological 
Engineering, Vol 2, Page 62-69, Copyright [2010] by IJABE. 
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study. 

 
 
INTRODUCTION 

The techniques of spatial statistics were first developed and formalized in the 

1950s. Recently, with the development of GIS, spatial statistical techniques have drawn 

considerable attention and have been widely applied in spatial data modeling and 

analysis for natural sciences such as geophysics, biology and agriculture. There are 

numerous studies demonstrating the benefits of the spatial analysis techniques to 

agricultural management (Stein et al., 1997 and Stewart et al., 2002). Geostatistics is a 

part of the spatial statistics. Geostatistical analysis consists of computing some function 

such as variogram (also referred to as semivariogram) to characterize the spatial 

variation in a region of interest.  
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 The determination of the spatial variability of field parameters is usually based 

on the concept that sampled values at nearby locations are more similar than those from 

further apart. Measurements from the field are usually gathered as point data, such as an 

individual plant. Geostatitical analysis methods can be used to interpolate the 

measurements to create a continuous surface map or to describe its spatial pattern 

(Cressie, 1993). As a powerful tool in geostatistics, variogram describes the spatial 

dependence of data and gives the range of spatial correlation, within which the values 

are correlated with each other and beyond which they become independent. The 

parameters of the best fitted model for a variogram can be used for kriging (Matheron, 

1963, and Stein and Corsten, 1991). Kriging has been recommended as the best method 

to interpolate point data since it minimizes the error variance using a weighted linear 

combination of the data (Panagopoulos et. al., 2006). Therefore, it is very important to 
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estimate variograms reliably from sufficient data and modeled properly (Oliver and 

Webster, 1991). The effect of sampling on the accuracy of sample variograms was 

studied from independently generated random fields (Webster and Oliver, 1992) and 

from experimental data (Van Meirvenne and Hofman, 1991).  Brus and De Grunijtar 

(1994) concluded that design-based sampling strategies based on classical sampling 

theory offered unprecedented potentials for estimation of theoretical variograms. A 

sampling configuration, simple random sampling design, was tested for estimating the 

variograms of three soil properties in that study. Gascuel-Odoux and Boivin (1994) 

investigated the consistency of the sample variograms and spatial estimates by a sub-

sampling procedure. They took five series of 20 sub-samples with different sample size 

of data points from the initial sample and found that the consistency of both 

experimental and fitted variograms increased with sample size.  

Remotely sensed imagery constitutes a record of distinct spatial properties of the 

Earth’s surface. Images can be treated as “field” data depicted by varied digital numbers 

(DN). These spectral values of pixels are spatially autocorrelated and their spatially 

dependent structures can be represented by variogram. Variogram has been estimated 

and investigated in a wide range of remote sensing applications (Curran, 1988; Jupp et 

al., 1988 a and b; Curran and Atkinson, 1998; Cohen et al., 1990; Atkinson and Curran, 

1995; Oliver et al., 2000). Woodcock et al. (1988a and b) had studied the sensitivity of 

variogram by varying parameters of scene models in calculating explicit variograms, 

simulating images and real digital images. They found that the height of the variogram 

was affected by the density of the coverage of the objects in the scene and the range of 
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the variogram changed with the size of the object. They also found that when the 

variance in the distribution of the sizes of objects increased, the shape of the variogram 

curve becomes more round. Atkinson and Emery (1999) explored the relationship 

between wavelength and spatial structure which was summarized by the variogram. 

Several studies have applied the geostatistical analysis on various agricultural 

applications, such as soil properties (Cambardella and Karlen, 1999; Hengl et al., 2004; 

Iqbal et al., 2005; Ge et al., 2007), crop yield monitor data (Yang and Everitt, 2002; 

Dobermann and Ping, 2004; Miao et al., 2006) and crop qualities (Kravchenko and 

Bullock, 2002; John and Richard, 2005; Ge et al, 2008).   

With advanced multispectral imaging systems, aerial images are now collected in 

several bands. Few studies investigated how the variogram changes with various sample 

sizes of data by given a certain remotely sensed imagery. The objective of the study was 

to explore the effect of sample size of image data on sample variogram estimation and 

find out how much image data could be used to estimate variogram reliably. Design-

based simple random sampling was used for the sub-sampling procedure.  

 
MATERIALS AND METHODS 
 
The Image 
 

The imaging system used to acquire multispectral image is TerraHawk® Aerial 

Imaging System. An MS4100 multi-spectral camera (Geospatial Systems, Inc., 

Rochester, NY) is the central component of the airborne multi-spectral imaging system. 

The image sensors are charge coupled device (CCD) array sensors with spectral 

sensitivity from 400-1000 nm and support three standard models for RGB, Color 
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Infrared (CIR) and RGB/CIR with blue band between 437 and 483 nm, green band 

between 520 and 560 nm, red band between 640 and 680 nm, and near infra-red (NIR) 

band between 767 and 833 nm. They approximated Landsat satellite (NASA, 

Washington DC and USGS, Reston, VA) bands. NIR, Red, and Green bands can be 

combined to make CIR image, which is often called “false-color” image. This band 

combination makes vegetation appear as shades of red. Brighter reds indicate more 

vigorously growing vegetation. Soils with no or sparse vegetation will range from white 

to greens or browns depending on moisture and organic matter content (Stein et al., 

1999).   

A CIR aerial image was obtained over the Texas AgriLife Research Farm 

(30.524588°N, 96.407181°W), College Station, Texas in Feb 2009. The field had been 

left fallow for the previous eight months and thus, was inundated with both broadleaf 

and grass weeds. The acquired raw image was calibrated and processed into reflectance 

image. A 100 x 100-pixel subset was randomly chosen from the reflectance image and 

highlighted in Figure 6.1. 

 
 

 
 

Figure 6.1. Aerial multispectral image of Texas AgriLife Research Farm field, College  

Station, Texas obtained in Feb, 2009. 
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Variogram and Fitting Model 
 

The sample variogram was computed by Matheron’s method of moments (MoM) 

estimator. The spatial variance between the digital numbers of any two distinct pixels 

would depend on their separation distance, lag h. The semivariance, )(hγ , between any 

two pixels at a lag h can be expressed as: 

                              )(hγ = 2)]()([
2
1 hxzxzE +−                                    (6.1) 

 
where: )(hγ is the semivariance at lag distance h, z(x) is the digital number of the pixel 

at location x. In the region of interest, suppose there will be m(h) pairs of pixels 

separated by a particular lag h. Their semivariance is given by equation: 
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where )(
^

hγ  is an unbiased estimate of the variance of these m(h) pairs of pixels, m(h) is 

the number of pairs of pixels separated by a lag h for i=1, 2, . . ., m(h), z(xi) and z(xi+h) 

are the digital numbers of z(x) at locations x and x+h, respectively. )(
^

hγ  is a useful 

measure of dissimilarity between spatially distributed regionalized variables. The larger 

)(
^

hγ  is, the less similar the pixels. The similarity between two pixels increases with 

decrease in the value of )(
^

hγ . 

When a variogram is plotted using discrete experimental data points, it is called 

an experimental or sample variogram. A theoretical model can be fitted through the 
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experimental data points to quantify spatial patterns. The shape and description of a 

“classic” variogram (Curran, 1988; Curran and Aktinson, 1998) is shown in Figure 6.2.  

 

 

 

Figure 6.2. The shape and description of a “classic” variogram (Curran, 1988; Curran 

and Atkinson, 1998). 

 
 
 

There are three key terms in each model, the sill, the range, and nugget variance. 

The sill corresponds to the overall variance in the dataset and the range is the maximum 

distance of spatial autocorrelation (Matheron, 1965). The nugget variance is the positive 

intercept of the variogram and can be caused by measurement errors or spatial sources of 

variation at distances smaller than the sampling interval or both.  
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The spherical model is the most commonly used model for experimental data 

(Webster and Oliver, 2007) and expressed as: 
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             (6.3) 

where c0 is the nugget variance, c + c0 is sill, h is the lag and a is the range. All 

variograms computed in this study are all fitted with spherical model. 

 
Data Collection and Analysis 
 

The image was processed in the Environment for Visualizing Images (ENVI) 

software package (Version 4.5, ITT Visual Information Solution, www.ittvis.com). A 

100 x 100-pixel subset was randomly selected from the image. The subset image and its 

NDVI were shown in Figure 6.3, respectively. Each subset comprised of total of 10,000 

pixels. Since the spatial resolution of the image was 0.51 m, it covered 0.51 x 0.51 m2 

area of the field.  

 
 

 
 

Figure 6.3.  The subset image (left) and its NDVI (right). 
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These two datasets were exported as ASCII text files. The data file from original 

image contained the coordinates of the pixels and the pixel values of three wavebands, 

NIR, Red and Green. The data file of NDVI image contained the coordinates and the 

NDVI values of the pixels. These two data files were then imported into R statistical 

software(R 2.8.1, www.r-project.org) and converted into four geostatistical datasets, 

NIR, Red, Green wavebands and NDVI, with as.geodata function.  Variograms were 

computed for each of the NIR, Red, Green wavebands and NDVI. The spherical model 

was fitted to those variograms and the sill, nugget and range were identified.  To 

investigate how variograms and those parameters change with sample size, these four 

geodatasets were randomly sub-sampled in R. The sub-samples were taken 

independently from each other. For each sub-sample, locations were selected randomly 

and independently.  

 
RESULTS AND DISCUSSION 
 
Full Datasets Analysis  
 

Geostatistical methods are optimal when data are normally distributed and 

stationary (mean and variance do not vary significantly in space). Significantly deviation 

from normality and stationarity can cause problems. The scatter plots of four geodatasets 

were shown in Figure 6.4. Each scatter plot consists of four subplots, which were x 

versus y coordinate plot, data versus y coordinate plot, x coordinate versus data plot, and 

the histogram plot. By looking at the histograms in the subplots of three wavebands and 

NDVI, severe deviation from normality was not observed. It can be noticed that there 
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were some hint of NW- SE trends from the subplots of data versus y coordinate for NIR 

and Green wavebands. 

 

             
NIR                 Red 

 

              
Green                                                                    NDVI 

 
Figure 6.4. Plots of geodatasets: NIR, Red, Green, and NDVI. 

 
 
 

Variograms were computed on them and fitted with spherical models (Figure 

6.5). If the semivariance increases steadily over the separation distance, it is often 
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indicative of a significant spatial trend in the variable. The variograms for green 

waveband data indicated a significant trend. A spatial trend usually results in a negative 

correlation between variables separated by large lags. Trend surface fit is always needed. 

After trend surface fit for NIR, the range of variogram dropped from 137 to 23 pixels; 

the sill decreased from 141 to 41; and the nugget variance reduced from 50 to 34. For 

Red, detrending only reduced the range by 7 pixels but the partial sill and nugget 

variance  
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Figure 6.5.  Variograms computed on NIR, Red, Green wavebands and NDVI with 

and without detrending. 
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Figure 6.5.  Continued 
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Figure 6.5.  Continued 
 
 
 

increased slightly. For Green, both range and partial sill of variogram decreased 

dramatically with detrending. There is no noticeable difference between two variograms 

for NDVI. 

 
Sub-sampling on the NIR Band 
 

The sample variograms for NIR were computed with samples sizes 50, 100, 300,  

500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, and 9000 pixels (Figure 6.6). 
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Variograms with various sample sizes for NIR
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Figure 6.6. Sample variograms with sample sizes from 50 to 9,000 pixels for NIR. 
 
 
 

All the parameters of variograms fitted with spherical models for NIR are 

summarized in Table 6.1. The range and partial sill of the sample size 50 were similar to 

those of the sample size 10,000. The range was 50 pixels for the sample size 100. The 

range was increasing until the sample size reaches 5000, which is half of the total sample 

size. After that, the range became almost stable. The nugget, sill, and nugget to sill ratio 

became stable after the sample size 1000. 
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Table 6.1. Parameters of variograms fitted with spherical models with various sample 

sizes for NIR waveband. 

Sample size 
(pixel) Rang (pixel) Nugget Sill Nugget/Sill 

(%) 
50 138 35 161 22 
100 50 50 138 36 
300 60 46 151 30 
500 83 48 154 31 
1000 107 55 165 33 
2000 116 49 177 27 
3000 128 49 183 27 
4000 118 49 176 28 
5000 136 50 187 27 
6000 131 48 184 26 
7000 136 52 188 27 
8000 130 49 182 27 
9000 139 51 193 26 

10,000 137 51 192 26 
 
 
 
Sub-sampling on the Red Band 
 

The sample variograms for Red were computed on samples size 50, 100, 300, 

500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, and 9000 pixels (Figure 6.7). 
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Variograms with various sample sizes for Red
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Figure 6.7. Sample variograms with sample sizes from 50 to 9,000 pixels for Red. 
 
 
 

All the parameters of variograms fitted with spherical models for Red are 

presented in Table 6.2. The sample sizes of 50 and 100 appeared to be pure nugget 

models, which mean there was no spatial dependence in the data. From the sample size 

300, the range gradually increased until the sample size 5000 with exception of sample 

size 1000, which might be caused by the randomly sampling process by the computer. 

Beyond the sample size 5000, all parameters became stable.  
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Table 6.2. Parameters of variograms fitted with spherical models with various sample 

sizes for Red waveband. 

Sample size 
(pixel) Rang (pixel) Nugget Sill Nugget/ Sill 

(%) 
50 361 54 54 100 
100 656 58 58 100 
300 14 10 53 19 
500 14 10 53 19 
1000 505 44 80 55 
2000 28 16 48 33 
3000 29 17 50 34 
4000 31 19 51 37 
5000 30 17 50 34 
6000 30 17 50 34 
7000 30 17 49 35 
8000 29 17 50 34 
9000 30 17 50 34 

10,000 30 17 50 34 
 
 
 
Sub-sampling on the Green Band and NDVI 
 

Similar procedures had been undertaken for Green and NDVI. For Green, all 

variograms computed on all subsample sizes were similar to the variogram without 

detrending shown in Figure 6.5. For NDVI, all the variograms and model parameters 

were remarkably consistent. The scale of spatial dependence of the NDVI was 24 pixels, 

which was about 12 m on the ground.   

 
CONCLUSIONS 
 

In this study, the analysis of variograms computed on various sample sizes of 

remotely sensed data was conducted. A 100 x 100 - pixel subset was chosen randomly 

from an aerial multispectral image which contains Green, Red and NIR wavebands over 
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our weed study field. Green, Red, NIR and NDVI datasets were imported into R 

software for spatial analysis. By fitting with spherical models, behaviors of the major 

parameters of those variograms were investigated. In this case, it turned out that half size 

of the subset image data was enough to reliably estimate the variograms for NIR and 

Red wavebands. To map the variation on NDVI within the weed field, sampling interval 

should be smaller than 12 m. The information will be particularly important for kriging 

and also give a good guide of fieldwork in a future study.  
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CHAPTER VII 
 
 
 

MULTISENSOR FUSION OF CHLOROPHYLL  

READINGS AND HYPERSPECTRAL MEASUREMENTS  

AND AIRBORNE IMAGERY IN THE DETECTION OF  

NITROGEN STATUS ON CROP CANOPY 
 
 
 
 
OVERVIEW 
 

Taking the advantages of airborne multispectral imagery and ground-based 

remote sensing data, the objective of this work was to investigate whether the 

multisensor fusion of ground-based SPAD chlorophyll meter readings, hyperspectral 

reflectance data, and aerial imagery data can improve the performance of remotely 

sensed data for the discrimination of crop nitrogen status under different treatment 

levels. 

The multispectral imagery was acquired by an airborne imaging system over crop 

field; at the same period, leaf chlorophyll content and spectral reflectance measurements 

were gathered with SPAD 502 chlorophyll meter and spectroradiometer at canopy level 

on the ground, respectively. Statistical analyses were applied on the data from individual 

sensor for discrimination with respect to the nitrogen treatment levels. Multisensor data 

fusion was performed at data level. The results of analysis of variance on imagery, 

SPAD meter readings, and fused data of them showed that extracted first principal 
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component was able to detect the difference among different nitrogen treatment levels 

for cotton at the significant level of 0.05 (p-value = 0.0307). The results of discriminant 

analyses on imagery, FieldSpec hyperpectral reflectance data, and fused data with them 

indicated that the classification accuracy of fused data to detect the difference between N 

treatment and without N treatment on soybean was 100 % in both calibration and cross-

validation steps with DISCRIM procedure in SAS. Fused data had better performance 

than the imagery for discrimination analysis.  

Further research may be conducted to improve the performance of data fusion by 

using non-parametric classification models, such as neural network. The data fusion 

method may be extended to other types of data, and other level data fusion. 

 
INTRODUCTION 
 

Remote sensing technologies have been widely used for modern agricultural 

management. Various types of data have been provided for detecting crop conditions or 

soil properties by optical sensors or instruments from ground-based, airborne and space 

borne platforms. However, despite the availabilities of these sensors, few studies have 

examined multisensor fusion techniques for their data. In this study, the potential of 

multisensor fusion of ground-based and airborne imagery data was investigated for 

detecting crop nitrogen status. The method may be extended to other types of data. 

Nitrogen (N) fertilizers are effective in driving crop yield improvement. The use 

of nitrogen fertilizer will be continued to increase substantially as global population and 

food requirements grow. International Fertilizer Industry Association (IFA) forecasts 

suggest that under current conditions nitrogen fertilizer applications will be totally 100 
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million tons per year by 2010-11. However, nitrogen fertilizers also have a negative 

impact on environment. Stern (2006) pointed out that nitrogen fertilizer accounts for 

one-third of greenhouse gases produced by agriculture. 

Nitrogen is also one of the most expensive nutrients used for cotton production in 

Texas, and also the most difficult to properly manage because of its reactivity and 

mobility in the soil environment (Lemon et al., 2009). Inadequate N will cause the 

reduction of fruit quality and yield, whereas overdosed N will increase problems with 

disease, insects, and defoliation. Moreover, most plants are only able to utilize less than 

one-half of the N applied by growers and the remaining will leach into air, soil and 

water. Therefore, advanced nondestructive methods are needed to detect crop N status in 

the field and make a timely decision on where and in what amount N fertilizer needs to 

be applied. Remote sensing has been a promising tool for rapid identification of crop N 

status. 

The presence of chlorophyll pigments in the leaf tissues influences the light 

reflectance by vegetation in the visible region of the spectrum. Since chlorophyll a and b 

absorb light in the red (660 and 650 nm) and blue (around 430 and 450 nm) regions of 

the spectrum (Jensen, 2005), they provide diagnosis of absorption features. The light 

reflected by vegetation in the NIR region of the spectrum is influenced by internal 

structure of leaf cell. Healthy green vegetation reflects 70 % light in the NIR region. 

Therefore, leaf chlorophyll content can be effectively characterized by spectral 

transmittance or reflectance measurements.  The absorption and high reflectance feature 
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by crop canopy and leaf will provide critical information on leaf chlorophyll content, 

and subsequently, detect N status.  

A positive correlation between leaf N or N fertilization rate and chlorophyll 

content has been well documented for a large number of plant species. Plants with 

increased levels of available N typically have greater leaf N concentrations, and more 

chlorophyll (Wolfe et al., 1988). The positive relationship means it should be possible to 

assess crop N needs from remotely sensed reflectance measurements of crop canopy and 

leaves (Walburg et al., 1982; Dwyer et al., 1991). Based on the difference in attenuation 

of transmitted light through a leaf sample at peak wavelengths of 650 and 940 nm, a 

hand-held chlorophyll meter, SPAD 502, has been developed by Minolta Co., Ltd. 

(Osaka, Japan) to measure leaf chlorophyll content. The value determined by the 

instrument provides an indication of the relatively amount of chlorophyll present in plant 

leaves. Wu et al. (1998) found highly significant linear relationships between SPAD 

values and contents of both N and chlorophyll at each growth stages. They also reported 

that the linear regression between SPAD values and N fertilizer levels were also highly 

significant. Their data provided evidence that the SPAD meter could be used to 

determine sidedress N requirements of short-season cotton before boll opening stage. 

Thompson et al. (1996) observed strong correlation of chlorophyll content with SPAD 

readings in soybean.  Madeira et al. (2000) indicated that SPAD values may be used to 

determine algorithms to accurately estimate leaf chlorophyll in green beans. Fritschi and 

Ray (2007) found good correlation between extracted chlorophyll and SPAD readings 

for two soybean genotypes. 
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The major limitation of the chlorophyll meter is that readings are generally taken 

at a limited number of locations in the field. As such, the chlorophyll meter alone is not 

practical for characterizing crop N status on the whole field based. (Han et al. 2002).  

Nowadays, airborne or space borne remote sensing has become important tools 

to provide time-specific information on crop within a large field or region. Shanahan et 

al. (2001) collected aerial imagery data with four bands periodically through the growing 

season. They showed that reflectance in the green and NIR bands in the form of green 

normalized difference vegetation index (GNDVI) had greater potential for assessing 

corn canopy variation when collected after tasseling than before tasseling. Han et al. 

(2002) compared the satellite and aerial imagery for detecting leaf chlorophyll content in 

corn. They reported that the correlation between SPOT images and SPAD data was 

similar to that between aerial images and SPAD data and it indicated that SPOT imagery 

has potential for detecting chlorophyll levels and nitrogen stress in corn. Tilling et al. 

(2007) reported that the normalized difference red edge (NDRE) index calculated from 

airborne multispectral imagery accounted for 41% of variability in wheat crop N status. 

Goel et al (2003a) used airborne hyperspectral data to estimate crop biophysical 

parameters within corn plots which were treated with combined different levels of weed 

control and N rates. The incorporation of more spectral reflectance in different 

wavelengths regions resulted in a better regression model. More than 90 % of the 

variation could be explained for many crop biophysical variables. However, it should be 

noticed that both satellite and aerial imagery can be comprised by cloud cover. More 

time are needed and more works need to be done to process the images, especially, 
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hyperspectral imagery. Although hyperspectral imagery can provide hundreds of 

wavebands, they are expensive and needs a lot of work to process a proper image. They 

are also not always available for farmers. 

In precision agriculture practice, although those optical sensors and instruments 

which are fitted for different platforms have been demonstrated as promising tools for 

crop spectral reflectance measurements, only a few studies involved with multisensor 

data fusion for assessment of crop conditions. Bravo et al. (2004) combined 

hyperspectral reflection information between 450 nm and 900 nm and fluorescence 

imaging to detect and recognize foliar disease in wheat. Kaleita (2003) developed a 

methodology for mapping surface soil moisture content across an agriculture field from 

optical remote sensing data and limited ground sampling data. More efforts need to be 

made to apply multisensor fusion techniques to fuse data from different sensors and 

improve the performance of sensing systems. 

Multispectral images can be a very useful tool for identifying crop N status and is 

relatively cheaper than hyperspectral imagery. Taking the advantages of airborne 

multispectral imagery and ground-based remote sensing data, the objective of this work 

was to investigate whether the multisensor fusion of ground-based SPAD chlorophyll 

meter readings, hyperspectral reflectance data, and aerial imagery data can improve the 

performance of remotely sensed data for the discrimination of crop nitrogen status under 

different treatment levels. 
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MATERIALS AND METHODS 
 
Flowchart of Methodology 
 

Figure 7.1 presents the flowchart of the methodology of data fusion. The data 

was gathered from remote sensing system onboard on aircraft and ground. The data from 

two platforms were preprocessed individually before being combined together. Different 

statistical analyses were applied on individual sensor data and fused data. The 

performance of data fusion was evaluated at last. 
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Figure 7.1. Flowchart of methodology. 
 
 
 
Experimental Design 
 

Field experiments were conducted at the Texas ArgiLife Farm of Texas A&M 

University at College Station. The cotton and soybean were planted on April 30, 2010. 
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Each crop field was divided into three blocks (replicates). Each replicate block was 

subdivided into three unique randomized nitrogen treatments, control (N0), 70 kg N ha-1, 

(N1), and 140 kg N ha-1 (N2). Nitrogen treatments were supplied at the time of seeding. 

The plot size was about 9 x 21 m2 with a 1 m buffer. Each plot consisted of eight rows of 

crop with a row spacing of 1 m and rows oriented in the east-west direction. The crops 

were grown under conventional tillage practice, and irrigated throughout the growing 

season. Plot layout is shown in Figure 7.2. 

 

Figure 7.2. Layout of the experimental field. 
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Data Collection 
 
Airborne Multispectral Image 
 

The airborne imaging system described in Yang (2010) was used to capture 

aerial image in this study. The system consists of four high resolution charge coupled 

device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and 

image acquisition software. The cameras are sensitive in the 400 to 1000 nm spectral 

range and provide 2048 × 2048 active pixels with 12-bit data depth. The four cameras 

are equipped with blue (430-470 nm), green (530-570 nm), red (630-670 nm), and near-

infrared (810-850 nm) band pass interference filters, respectively, but has the flexibility 

to change filters for desired wavelengths and bandwidths.  

The multispectral image was acquired on June 18, 2010. The four bands image 

was georeferenced to the Universal Transverse Mercator (UTM), World Geodetic 

Survey (WGS 84), Zone 14, coordinate system based on ground control points around 

the field located with a meter-accuracy GPS unit. Then the image was rectified to a 

DOQQ image by performing image-to-image rectification. The pixel size for the 

rectified image was adjusted to 1 m. The total root mean square error (RMSE) was less 

than 1 m. All the steps were done in ENVI 4.5. Since this study was to evaluate the 

relationship between imagery data and ground-based reflectance data, the raw digital 

numbers of the image needs to be converted into reflectance values. For radiometric 

calibration of the imagery, two 8 m by 8 m tarpaulins were placed near the fields during 

image acquisition. The actual reflectance values from the tarpaulins were measured 

using the FieldSpec spectroradiometer. The rectified multispectral image was converted 
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to reflectance image based on the digital values of pixels and the reflectance data from 

the spectroradiometer. 

 
Ground-based Data Collection 
 

The sampling locations are shown in Figure 7.3. The five sampling locations (1 

m2 area) were marked within each plot with color flags. The measurements were not 

taken from the boundary rows of the plots.  The coordinates was recorded with a meter-

accuracy GPS unit (Thales Navigation, Santa Clara, CA) and later were used to 

correspond with the pixel data of the image. At each marked location, leaf chlorophyll 

content (greenness) was measured with SPAD 502 chlorophyll meter. Each recorded 

observation was the mean of five measurements from the plants within 1 m2 of each flag. 

Measurements were taken on the middle of fully developed leaves on the top of the 

plants. Five measurements were averaged to one value to represent the mean leaf  
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Figure 7.3. Sampling locations within a subplot.  
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chlorophyll content of the 1 m2 sampling area. Total 45 data points were obtained from 

cotton and soybean fields, respectively. FieldSpec hyperspectral data also were collected 

at each sampling location. By holding it at a height of 2.5 m above the ground, it 

scanned approximately 1 m2 of ground area. 

 
Data Association 
 

A shape file was created with the GPS coordinates of 45 ground sampling 

locations in ArcGIS 9.3.1 (Esri, Redlands, CA, USA). The regions of interest were 

selected for cotton and soybean plots by eye and the subset image were exported into 

ArcGIS too. The ground sampling points were overlaid on the image. The four bands 

values of the image pixels which were collocated with ground sampling points were 

extracted to be further analyzed.  

 
Data Analysis 
 
Principal Component Analysis 
 

The image datasets and SPAD data were normalized into the same scale. Then 

they were combined into a matrix and analyzed with principal component analysis (PCA) 

to extract features. PCA is a multivariate technique used as a tool for reducing high 

dimensional data. The information content contained in original variables is projected 

onto a smaller number of principal components (PCs) which are linear combinations of 

those variables. The process of PCA returns PCA scores which are the estimated values 

for each principal component and PCA loadings. The PCA score plot can present the 

clustering of the data and the PCA loading plot can be used to investigate the 
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contribution of each variable. PCA was performed using proc PRINCOMP in SAS in 

which a new principal component was created for each wavelength variable in the 

original data. 

 
Partial Least Square (PLS) Disciminant Analysis 
 

Partial least square (PLS) is a dimension reduction approach that is coupled with 

a regression model. In PLS regression, the original independent variables (X) is 

projected onto a set of latent components (LCs). These latent components perform 

simultaneous decomposition of X and response variables (Y) while explain as much as 

possible of the covariance between X and Y. 

PLS regression is to decompose X and Y using model   

Y=TQT+F                                (7. 1) 

 X=TPT+E                                (7. 2) 

where T is a matrix giving the latent components for the observations;  P and Q are 

matrices of coefficients and often denoted as ‘X loadings’ and ‘Y loading’, respectively; 

E and F are matrices of random errors. 

To investigate whether the fused imagery and ground hyperpsectral data (1-nm 

bandwidth, 400 to 1000 nm) could improve the performance of the differentiation 

between the N treatments, the partial least square was applied on the high dimension 

hyperspectral dataset and the combined imagery and hyperspectral data for compression. 

Five measurements were taken from each sub-plot. Thus, the dimension of hyperspectral 

data was 45 by 601, and the dimension of fused data was 45 by 605. Unlike in similar 

approaches such as principal components regression, the PLS compresses data by 
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considering the relationship between the independent variable X (reflectance values) and 

the response variable Y (treatment level). 

 
Data Fusion 
 

There were six datasets for each crop field, the four wavebands data of the 

extracted image pixels, SPAD data, and first principal component. Five data of each sub 

treatment plot were averaged for each dataset. The analysis of variance (ANOVA) test 

was performed on the data (three treatments with three replicates) to determine the 

differences among the N treatments. Tukey’s HSD (Honestly Significant Difference) 

was used for multiple comparisons between the treatments. 

The DISCRIM procedure in SAS (SAS Institute, Cary, NC) was applied on 

various numbers of derived PCs and band combinations for classification. The 

parameters being used to develop discriminant function were pooled covariance matrix 

and prior probability of the groups. The DISCRIM procedure divides the data into two 

subsets. One subset was used to develop calibration model and the other is used to 

validate the model. “One data out” method was used for cross-validation in this 

procedure. The output matrix provided the misclassification rate of calibration and cross-

validation. 

 
Image and FieldSpec Data 
 

A 45 by 4 of image data matrix was combined with a 45 by 601 of FieldSpec 

data matrix (the spectral range was 400-1000 nm). Dummy variables were assigned 

artificially as 1, 2, and 3, respectively, to represent control, N1 and N2 treatments. There 
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were 15 measurements for each class level (treatment). The derived principal 

components by PLS need to be applied by linear discriminant analysis in SAS.  

 
RESULTS AND DISCUSSION 
 
Principal Component Analysis 
 

The first principal components explained 58% and 66% of all variability in the 

combined image and SPAD data of cotton and soybean, respectively. Although the 

percentage of explained by the first PCs were not high, the first PCs were further 

analyzed by ANOVA tests. 

 
ANOVA Tests 
 

ANOVA tests were performed to verify whether the differences among 

treatments were statistically significant for six datasets, which were the image data of 

Blue, Green, Red and NIR wavebands, SPAD data, and derived first principal 

components. Table 7.1 shows the ANOVA table testing the equality of means for each 

dataset of cotton. None of the Blue, Green, Red, NIR and SPAD data had significant F 

values, which meant all these datasets were equal for the treatments. Only the first 

principal component derived from data fusion of the image and SPAD data had 

significant F values at significant level 0.05, indicating that  the differences did exist 

among N treatments  Although the block effect was only significant for SPAD data, the 

block was kept in the models. Table 7.2 gives the results of Tukey’s HSD multiple 

comparisons for PC, for which significant F value was found. However, the difference 

between control and the N treatment of 70 kg N ha-1 could not be detected.  
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Table 7.1 Summary of analysis of variance F tests for equality of means among N  

treatments on six datasets for cotton. 
 
Source DF Sum of Squares Mean Squares F Value Pr > F 
  Blue    
Model 4 0.0161 0.0040 1.47 0.3589 
Error 4 0.0110 0.0027   
Corrected Total 8 0.0271    
  Green    
Model 4 0.0085 0.0021 1.4 0.3762 
Error 4 0.0061 0.0015   
Corrected Total 8 0.0146    
  Red    
Model 4 0.0336 0.0084 5.83 0.058 
Error 4 0.0058 0.0014   
Corrected Total 8 0.0393    
  NIR    
Model 4 0.0376 0.0094 5.25 0.0685 
Error 4 0.0072 0.0018   
Corrected Total 8 0.0448    
  SPAD    
Model 4 0.0107 0.0027 6.26 0.0517 
Error 4 0.0017 0.0004   
Corrected Total 8 0.0124    
  PC1    
Model 4 0.0831 0.0208 8.53 0.0307* 
Error 4 0.0097 0.0024   
Corrected Total 8 0.0928    

*significant at α = 0.05 level 
 

Table 7.2. Summary of multiple comparisons on PC1. 
 

Dependent Variable Mean Treatment Difference P-value 
PC1 Control vs. N1 -0.060 0.2624 
 Control vs. N2 0.14 0.0355* 
 N1 vs. N2 0.20 0.0115* 
*significant at α = 0.05 level 
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Table 7.3 reports the results of ANOVA test on the datasets for soybean. The 

Blue, Green, NIR and SPAD data had non-significant F values, which meant all these 

datasets were equal for the treatments. The Red and first principal component were able 

to detect the treatment differences at the significant level 0.1. However, the first 

principal component derived from the image and SPAD data did not have better 

performance than the Red dataset alone. 

 

Table 7.3. Summary of analysis of variance F tests for equality of means among N 

treatments on six datasets for soybean. 

Source DF Sum of Squares Mean Squares F Value Pr > F 
  Blue    
Model 4 0.028 0.0069 2.98 0.1575 
Error 4 0.009 0.0023   
Corrected Total 8 0.037    
  Green    
Model 4 0.029 0.007 2.5 0.1981 
Error 4 0.012 0.003   
Corrected Total 8 0.041    
  Red    
Model 4 0.056 0.014 5.45 0.0647· 
Error 4 0.011 0.0026   
Corrected Total 8 0.067    
  NIR    
Model 4 0.023 0.006 1.86 0.2809 
Error 4 0.012 0.003   
Corrected Total 8 0.035    
  SPAD    
Model 4 0.015 0.004 1.59 0.3313 
Error 4 0.010 0.002   
Corrected Total 8 0.025    
  PC1    
Model 4 0.110 0.028 4.58 0.085· 
Error 4 0.024 0.006   
Corrected Total 8 0.134    

·Significant at α = 0.1 level 
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Table 7.4 shows the multiple comparisons results on the Red and first PC. 

Neither of them was able to differentiate the treatment N1 from N2. 

 
 

Table 7.4. Summary of multiple comparisons on soybean. 
 

Dependent Variable Mean Treatment Difference P-value 
Red Control vs. N1 -0.18 0.0120* 
 Control vs. N2 -0.12 0.0435* 
 N1 vs. N2 0.06 0.2191 
PC1 Control vs. N1 -0.22 0.0273* 
 Control vs. N2 -0.21 0.0289* 
 N1 vs. N2 0.0037 0.9557 

*significant at α = 0.05 level 
 
 
 

The result indicates that the ground SPAD data did not have any contribution in 

the data fusion procedure.  

 
Discrimination of N Treatments  
 

Table 7.5 gives the proportion of variation explained by each principal 

component in dependent variables X and dependent variable Y for FieldSpec 

hyperspectral dataset and the fused imagery and hyperspectral dataset for cotton and 

soybean. According to the percentages of the explained variation in Y by principal 

components, nine to twenty PCs were chosen for classification since they accounted for 

about 90 %, 95 % and 99.8 % of the variance in Y. 
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Table 7.5. Summary of PLS applied on FieldSpec hyperspectral data and fused imagery 

and hyperspectral data. 

Data Source No. of PCs Explained variation in 
X (%) 

Explained variation 
in Y (%) 

  Cotton  

FieldSpec 9 
12 
20 

99.94 
99.96 
99.99 

89.41 
96.74 
99.83 

FieldSpec+Image 10 
13 
20 

99.92 
99.96 
99.98 

90.47 
96.28 
99.62 

  Soybean  
FieldSpec 10 

13 
20 

99.82 
99.90 
99.98 

91.53 
96.26 
99.78 

 
FieldSpec+Image 
 

9 
12 
20 

99.74 
99.85 
99.97 

89.77 
95.09 
99.72 

 
 
 

The classification results are reported in Table 7.6. The results show both the 

FieldSpec hyperspectral data and the fused imagery and hyperspectral data were able to 

detect differences between different N treatment levels with different numbers of PCs in 

calibration step in DISCRIM procedure. The classification accuracy was 100 %. 

However, using imagery alone, the classification accuracy was only 77.8 % and 82.2 % 

for different N treatment levels on cotton and soybean, respectively. In cross-validation 

step, both FieldSpec and fused datasets reduced the misclassification rate compared to 

that of imagery.  
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The fused data set did not have better performance than FieldSpec data for 

classification on N treatment levels on cotton; but it did for soybean with only 6.6 % 

misclassification rate in cross-validation step.  

Table 7.6. Summary of misclassification matrices obtained from DISCRIM procedure 

(%) for cotton and soybean. 

Data Source No. of PCs Calibration (%) Cross-Validation (%) 
  Cotton  
Image  22.2 42.2 
FieldSpec 9 

10 
20 

0 
0 
0 

15.6 
17.8 
11.1 

FieldSpec+Image 9 
10 
13 
20 

0 
0 
0 
0 

22.2 
26.7 
40 
37.8 

  Soybean  
Image  17.8 31.1 
FieldSpec 
 

10 
13 
20 

0 
0 
0 

20 
44.4 
13.3 

FieldSpec+Image 
 
 

9 
12 
20 

0 
0 
0 

24.4 
35.6 
6.7 

 
 
 
Discrimination of N vs. No N Treatments  
 

Beside the discrimination on three N treatment levels, the classification also was 

applied on two treatment levels, which were crop with N treatment and without N 

treatment. Table 7.7 indicates the results. Again, by imagery alone, the misclassification 

rate was 17.8 % and 15.6 % for cotton and soybean in calibration, respectively. Both 
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FieldSpec hyperspectral data and fused imagery and hyperspectral data were capable of 

detecting differences between N and without N treatment in calibration. The fused 

dataset improved the classification accuracy for N treatment on soybean than FieldSpec 

dataset. With 10 PCs derived by PLS, the classification accuracy in both calibration and 

cross-validation steps were 100 %; while FieldSpec dataset still had 2.2 % error rate in 

cross-validation.  

 
 

Table 7.7. Summary of misclassification matrices obtained from DISCRIM 

procedure (%) for N vs. No N. treatment on cotton and soybean. 

Data Source No. of PCs Calibration (%) Cross-Validation (%) 
  Cotton  
Image  17.8 33.3 
FieldSpec 8 

10 
20 

0 
0 
0 

0 
4 
3.3 

FieldSpec+Image 9 
12 
20 

0 
0 
0 

4.4 
8.9 
33.3 

  Soybean  
Image  15.6 20 
FieldSpec 
 

10 
13 
20 

0 
0 
0 

2.2 
2.2 
33.3 

FieldSpec+Image 
 
 

10 
13 
20 

0 
0 
0 

0 
4.4 
33.3 

 
 
 

These two procedures of multisensor data fusion were both applied at data level. 

It combines raw data from different sensors, in our case, multispectral camera (four 
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sensors) and spectroradiometer (512 detector array). Not only was the multisensor data 

fusion procedure performed with multiple sensors, but also the fusion process involved 

with the sensors from different platforms. Aforementioned, the advantage of raw data 

identity fusion provides the most accurate results only if with proper sensor association 

and alignment. Although the consistent results were not found for the fused data to 

detect different N treatment levels on cotton or soybean, no matter ANOVA test on 

fused data of imagery and SPAD chlorophyll meter readings, or discriminant analysis on 

fused data of imagery and FieldSpec hyperspectral data, the fused data did have better 

performance than two original datasets as expected. 

A few factors that need to pay more attention during the data fusion process are 

discussed as follows: 

1. The quality of airborne multispectral imagery. The aerial images need to be 

taken in clear atmospheric conditions, such as cloud free; around noon time; and with 

high spatial resolution. During the period of image being taken, in situ ground truth 

spectral reflectance measurements need to be collected with a spectroradiomter. The 

ground truth measurements can be used to convert the digital number of image pixel into 

reflectance data.  

2. Geometric correction of imagery. Remote sensing systems without 

stabilization equipment will introduce some geometric error into the remote sensing 

dataset through variations in roll, pitch, and yaw (Jensen, 2005). The geometric 

distortion can be corrected using a set of ground control points (GCP). A ground control 

point is a location on the ground surface that can be identified on the imagery and 
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located accurately on a map. There are two types of geometric correction, image-to-map 

rectification and image-to-image rectification. The study site was a poorly mapped 

region. Global positioning system (GPS) collection of map coordinate information to be 

used for image rectification is especially effective in this kind of region (Jensen, 2005). 

A sub-meter GPS unit needs to be used to collect at least 20 GCPs around the study area. 

The total root mean square error (RMSE) of all ground control points needs to be 

minimized, in this case, 1 pixel (1 m). 

3. Ground data and imagery pixel association. The spatial coordinates of 

sampling locations within field should be recorded with a differential GPS unit with high 

accuracy, meter or sub-meter. Around each sampling point, a 1 m2 square of ground area 

was marked. Leaf chlorophyll content needs to be taken from all the plants within the 1 

m2 area with SPAD chlorophyll meter to get an average value for the location. FieldSpec 

should be held at the height of 2.5 m to scan about 1 m2 spot size on the ground. The size 

of image pixel should be resampled to 1 m also. All the ground data need to be collected 

within one hour when the image was taken. 

 
CONCLUSIONS 
  

In this study, the potential of multisensor fusion of ground-based and airborne 

imagery data was investigated for detecting nitrogen status on cotton and soybean crops. 

The multispectral imagery was acquired by an airborne imaging system over crop field; 

at the same period, leaf chlorophyll content and spectral reflectance measurements were 

gathered with SPAD 502 chlorophyll meter and FieldSpec spectroradiometer at canopy 

level on the ground. Three datasets were preprocessed individually. Then the image 
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pixels were associated with ground sampling location according to their spatial 

coordinates. The raw data of imagery and SPAD meter readings, imagery and FieldSpec 

hyperspectral reflectance measurements were combined. Principal component analysis 

was applied on the combination of imagery and SPAD data for fusion. Partial least 

square compression technique was carried out on the combination of imagery and 

Fieldspec hyperspectral data to reduce the dimension of data and extract features.   

The results of analysis of variance on imagery, SPAD meter readings, and fused 

data of them showed that extracted first principal component was able to detect the 

difference among different nitrogen treatment levels for cotton at the significant level of 

0.05 (p-value = 0.0307). The results of discriminant analyses on imagery, FieldSpec 

hyperpectral reflectance data, and fused data with them indicated that the classification 

accuracy of fused data to detect the difference between N treatment and without N 

treatment on soybean was 100 % in both calibration and cross-validation steps with 

DISCRIM procedure in SAS. Fused data had better performance than the imagery for 

discrimination analysis.  

Further research may be conducted to improve the performance of data fusion by 

using non-parametric classification models, such as neural network. The method may be 

extended to other types of data, and the data fusion can be performed at feature or 

decision level. 
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CHAPTER VIII 
 
 
 

CONCLUSIONS AND SUMMARY 
 
 
 
 

 The overall goal of this dissertation was to evaluate the performances of optical 

sensors and instruments which were carried on both ground-based and airborne 

platforms for monitoring crop or vegetation growing status. Six individual studies 

addressed several aspects of applying remote sensing technology for agricultural 

applications. The major conclusions regarding these studies are as follows: 

1. a). The proposed integrated sensor and instrumentation system was able to gather 

spectral information by various sensors simultaneously at ground level. The 

collected spectral information was real-time, multi-source, multi-form, and crop 

related data.  

b). Spectral reflectance, NDVI, multispectral image, and crop height data showed 

good repeatability of measurements.  

2. a). Ground-based hyperspectral data was able to distinguish four agricultural 

crops, cotton, corn, soybean, and sorghum at their different growth stages of 

development.  

b). Selected narrowbands which carried significant information on the 

discrimination of crop types were between 548-556 nm, 679-682 nm, 756-764 

nm, and 928-940 nm. 
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c). Using the first derivative of the spectral reflectance, the red-edge position of 

cotton crop was found at the shorter wavelength than those of other crops. The 

red-edge position of cotton, soybean and sorghum shifted to longer wavelength 

with later crop development.  

3. a). Ground-based remote sensing was a promising tool for evaluating glyphosate 

herbicide applied using agricultural aircraft fitted with different aerial nozzle 

technologies.   

b). Spectral reflectance data showed that all the glyphosate treatments provided 

effective weed control as compared to untreated check areas at day 17 after  

treatments were applied.  

c). Based on hyperspectral data, conventional flat-fan nozzles and rotary 

atomizers had better performance than the electrostatic nozzles with charging off. 

d). No evidence showed that the electrostatic nozzles with charging on performed 

better than the electrostatic nozzles with charging off.  

e). Glyphosate herbicidal efficacy under different aerial spray treatments could 

be differentiated from spectral response over visible regions of the spectrum. 

4. Spatial structure of canopy NDVI was characterized by variogram analysis with 

different sampling density. It was possible to decrease data density without 

influencing the field’s NDVI spatial structure. 

5. The analyses of variograms computed on various sample sizes taken from a 

multispectral image were conducted. Half size of the subset image data was 

enough to reliably estimate the variogram for NIR and Red wavebands data.  
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6. a). Data level multisensor data fusion was applied to combine the chlorophyll 

meter readings and airborne imagery; and hyperspectral data and airborne 

imagery, to achieve better performance on crop nitrogen status detection 

compared to using single sensor alone. 

b). None of individual multispectral wavebands and chlorophyll readings was 

able to detect different nitrogen treatments. However, first principal component 

derived from combined chlorophyll readings and airborne imagery was able to 

detect the difference among different nitrogen treatment level for cotton crop at 

the significant level of 0.05 (p-value = 0.0307).   

c). Multisensor data fusion of hyperspectral data and imagery indicated that the 

classification accuracy with fused data to detect the difference between nitrogen 

treatment and without nitrogen treatment on soybean crop was 100 % in both 

calibration and cross-validation steps with DISCRIM procedure in SAS. Fused 

data had better performance on crop nitrogen status detection than single sensor 

data alone.  
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