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ABSTRACT 

 

Microstructures and Rheology of a Limestone-Shale Thrust Fault.  

(December 2010) 

Rachel Kristen Wells, B.S., The University of Texas at Austin 

Chair of Advisory Committee: Dr. Julie Newman 

 

The Copper Creek thrust fault in the southern Appalachians places Cambrian 

over Ordovician sedimentary strata.  The fault accommodated displacement of 15-20 km 

at 100-180 °C. Along the hanging wall-footwall contact, microstructures within a ~2 cm 

thick calcite and shale shear zone suggest that calcite, not shale, controlled the rheology 

of the shear zone rocks. While shale deformed brittley, plasticity-induced fracturing in 

calcite resulted in ultrafine-grained (<1.0 µm) fault rocks that deformed by grain 

boundary sliding (GBS) accommodated primarily by diffusion creep, suggesting low 

flow stresses. 

Optical and electron microscopy of samples from a transect across the footwall 

shale into the shear zone, shows the evolution of rheology within the shear zone.  

Sedimentary laminations 1 cm below the shear zone are cut by minor faults, stylolites, 

and fault-parallel and perpendicular calcite veins.  At vein intersections, calcite grain 

size is reduced (to ~0.3 µm), and microstructures include inter-and-intragranular 

fractures, four-grain junctions, and interpenetrating boundaries.  Porosity rises to 6% 

from <1% in coarse (25 µm) areas of calcite veins. In coarse-grained calcite, trails of 
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voids follow twin boundaries, and voids occur at twin-twin and twin-grain boundary 

intersections.  

At the shear zone-footwall contact, a 350 µm thick calcite band contains coarse-

and ultrafine-grained layers.  Ultrafine-grained (~0.34 µm) layers contain 

microstructures similar to those at vein intersections in the footwall and display no 

lattice-preferred orientation (LPO).  Coarse-grained layers cross-cut grain-boundary 

alignments in the ultrafine-grained layers; coarse grains display twins and a strong LPO. 

Within the shear zone, ultrafine-grained calcite-aggregate clasts and shale clasts (5-350 

µm) lie within an ultrafine-grained calcite (<0.31 µm) and shale matrix. Ultrafine-

grained calcite (<0.31 µm) forms an interconnected network around the matrix shale. 

Calcite vein microstructures suggest veins continued to form during deformation.  

Fractures at twin-twin and twin-grain boundary intersections suggest grain size reduction 

by plasticity-induced fracturing, resulting in <1 µm grains.  Interpenetrating boundaries, 

four-grain junctions, and no LPO indicate the ultrafine-grained calcite deformed by 

viscous grain boundary sliding.  The evolution of the ultrafine-grain shear zone rocks by 

a combination of plastic and brittle processes and the deformation of the interconnected 

network of ultrafine-grained calcite by viscous GBS enabled a large displacement along 

a narrow fault zone. 



 v

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Julie Newman, and my committee 

members, Dr. Will Lamb and Dr. Adam Klaus, for their guidance and support 

throughout the course of this research.  I want to give an extended thanks to Dr. Steven 

Wojtal for his guidance in the development of, and throughout, the research.  This 

research was supported by American Association of Petroleum Geologist Halbouty 

Grant, Sigma Xi, and Texas A&M Graduate Enhancement Fund.  The FE-SEM 

acquisition was supported by the National Science Foundation grant DBI-0116835, the 

Vice President for Research Office, and the Texas Engineering Experimental Station.   

I would like to thank Kristen Mullen, Caleb Holyoke, Ray Guillemette, Tom 

Stephens, Harold Johnson, and Mike Tice for assistance.  Thanks also go to my friends 

and colleagues and the department faculty and staff for making my time at Texas A&M 

University a great experience.  

Finally, thanks to my parents and sister for their continued encouragement. 

 



 vi

NOMENCLATURE 

 

BSE Backscatter electrons 

CL Cathodoluminescence  

CC Copper Creek thrust 

EBSD Electron backscatter diffraction 

EDS Energy dispersive spectroscopy 

FW Footwall 

GBS Grain boundary sliding 

HW Hanging wall 

LPO Lattice preferred orientation 

SEM Scanning electron microscopy 

SZ Shear zone 

TEM Transmission electron microscopy 

SE Secondary electrons 

WDS Wavelength dispersive spectroscopy 
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1. INTRODUCTION 

 The ability of large thrust sheets to move long distances along narrow zones has 

been a subject of great debate in efforts to understand the formation of fold-and-thrust 

belts.   In early work to resolve this problem, Hubbert and Rubey (1959) proposed that 

increased fluid pressure along a thrust fault may reduce normal stress, allowing thrust 

sheets to move large distances along a narrow zone.  Later, Dahlen et al. (1984) , Dahlen 

(1990), and Davis and Engelder (1985) proposed that internal deformation within the 

thrust sheet accommodates deformation until a critical taper is reached, at which point 

the sheet easily slides along a weak layer - a localized zone of deformation.  Much work 

has focused on the rheology and evolution of the rocks within these localized zones of 

deformation (e.g., Mitra, 1984; Wojtal and Mitra, 1986; O’Hara, 1988; 1990, Newman 

and Mitra, 1993;1994; Kennedy and Logan, 1997;1998; Liu et al., 2002).  Along 

foreland thrusts, one common observation is the presence of shale along major thrust 

faults, which has been thought to act as a weak layer allowing large displacements (e.g., 

Wiltschko and Chapple, 1977; Thomas, 2001; Ikari et al, 2009).  Shale may contribute to 

the weakness of a fault zone by increasing the fluid pressure and reducing friction (e.g., 

Cobbold et al., 2009). 

 The Copper Creek (CC) thrust fault, in the southern Appalachians, is a classic 

example of a foreland thrust fault that exhibits a narrow shear zone (~2 cm) that 

accommodated large displacement (~15 km) (e.g., Suppe, 1985; Wojtal and Mitra, 

1986).  As observed along other foreland thrusts, this fault contains shale layers 

____________ 
This thesis follows the style of Journal of Structural Geology.  
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in both hanging wall and footwall along much of the length of the fault as well as 

numerous calcite veins.  Recent work on the CC thrust, as well as other foreland thrusts 

such as the Hunter Valley in the southern Appalachians and the McConnell thrust in the 

Canadian Rockies, has suggested that fluids played an important role in deformation, but 

due to its role in enhancing diffusive mass transfer (e.g., Wojtal and Mitra, 1986) and/or 

dislocation creep (Kennedy and Logan, 1997; 1998) rather than by increasing fluid 

pressure.  These previous studies, using optical microscopy as well as observations from 

transmission electron microscopy (TEM), document evidence for multiple deformation 

mechanisms, including fracturing, diffusive mass transfer, and crystal plasticity.  

However, due to limitations on the resolution of the optical microscope, and limits on 

the area observed using TEM, interactions between deformation mechanisms, and the 

relative contributions of different deformation mechanisms, are difficult to discern.  

Using a high-resolution scanning electron microscope (FEI Quanta 600 FE-SEM), this 

study documents microstructures at a scale that allows observation of spatial relations 

between microstructures in a transect across the narrow shear zone, thus addressing 1) 

the relative contributions of shale and calcite to the deformation and 2) the role of 

different deformation mechanisms, and their interactions, on the evolution of the weak, 

narrow zone.      

 Consistent with results from previous work on foreland thrusts in general, and the 

CC thrust in particular, I conclude that fluids played a critical role in deformation and 

localization along the fault.  Calcite veins were emplaced parallel to the shear zone, 

suggesting high fluid pressures in the vicinity of the fault.  While the emplacement of 
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these veins may have provided some contribution to displacement along the fault, their 

critical contribution was in providing starting material for the fault zone rocks.  

Deformation along the fault was dominated by ultrafine grained (<1.0 µm) calcite that 

had been emplaced as coarser-grained veins.  This contribution focuses on the 

deformation of these carbonate veins and the footwall shale along the narrow transition 

(2 cm) from non-penetratively deformed footwall shale to the shear zone.  
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2.  GEOLOGIC SETTING 

 The Copper Creek thrust, eastern Tennessee, is one of approximately 20 foreland 

thrusts located in the transition from the Blue Ridge to the Valley and Ridge of the 

southern Appalachian fold-and-thrust belt (Harris, 1976; Harris and Milici, 1977; 

Wojtal, 1986; Wojtal and Mitra, 1986) (Figure 1).  Reconstructed cross-sections across 

the region estimate that the fault accommodated offset of 15-20 km with an overburden 

of 4-6 km (Harris, 1976; Harris and Milici, 1977; Wojtal and Mitra, 1986), suggesting 

temperatures of 100-180 ºC (assuming 30˚C/km) during deformation.  The hanging wall 

along the CC thrust is Cambrian shale with interbedded limestone and the footwall 

consists of Ordovician carbonates with interbedded shale (Wojtal, 1986; Lemiszki and 

Kohl, 2006).  

The Copper Creek thrust exposure, north of Knoxville, TN, is bound by shale in 

both the HW and FW at the studied location.  The HW/FW contact contains a ~2 cm 

thick band of intensely deformed rocks, oriented N20°W.  Mesoscale structures in the 

hanging wall and footwall consist of numerous minor faults, fractures, folds, stylolites, 

and cross-cutting veins (Wojtal, 1986; Wojtal and Mitra, 1986).  
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B
 

Figure 1. Structure map of the CC thrust fault.  (A) Location of thrust faults in eastern 
Tennessee, near Knoxville.  (B) Generalized structure map (after Wojtal, 1986).  CC-
Copper Creek thrust, HV-Hunter Valley thrust, CP-Cumberland Plateau, BR-Blue 
Ridge, S-Saltville thrust, CV-Carter Valley thrust, CH-Chattanooga thrust, PM-Pine 
Mountain thrust, C-Clinchport thrust.  Location of exposure of CC thrust used in this 
study (star). 
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3.  METHODS 

 Samples for microstructural investigation were collected along a transect from 3 

m above the hanging wall to 4 m below the shear zone in the footwall (Figure 2).  

Standard and ultrathin sections were made from the collected samples, oriented 

perpendicular to the shear zone foliation, and parallel to the shear zone lineation. Optical 

microscopy was used to select samples for detailed study.  Because of the fine-grained 

nature of these rocks, much of the observation was carried out using secondary (SE) and 

backscattered electron (BSE) imaging on the scanning electron microscope (SEM: FEI 

Quanta 600 FE-SEM housed in the Microscopy and Imaging Center, Texas A&M 

University).   Electron backscatter diffraction (EBSD: Channel 5, Oxford Instruments) 

on the SEM was used to determine the lattice-preferred orientations (LPO) of calcite 

grains.  Grain size, void size, and shape preferred orientations were determined by image 

analysis (Image SXM) on figures made by tracing grains on overlays on BSE images. 

The number, thickness, and orientation of veins were measured in linear transects 

oriented +45˚ from the shear zone foliation. Porosity was determined using ImageSXM 

on thresholded BSE images of polished samples.  Compositional analyses were carried 

out using x-ray fluorescence (XRF), wavelength dispersive spectroscopy (WDS), and 

energy dispersive spectroscopy (EDS).  Cathodoluminescence (CL) images were 

obtained using both optical and electron microscopy. 
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4. RESULTS 

 The Copper Creek thrust contains a 2 cm thick, light gray layer at the hanging 

wall-footwall contact with a 30 cm-thick coherent shale bed in its footwall and a 6 cm 

thick shale bed in its hanging wall (Figure 2).  Very little penetrative deformation is 

observed in the hanging wall or footwall beyond the shear zone.  This study focuses on 

the transition from the footwall into the shear zone (Figure 3).  At 1 cm below the shear 

zone-footwall contact, sedimentary laminations are observed in the shale, cross-cut by 

veins of calcite and calcite + ankeritic dolomite. Stylolites also occur within the footwall, 

perpendicular to the shear zone, with spacings of 50-300 µm.  

Within the footwall shale, the calcite is confined to veins, while within the shear 

zone it is intermixed with shale. The contact between the shear zone and the footwall is 

marked by a 300 µm thick continuous calcite layer composed of multiple calcite veins. 

The 2 cm transition from non-penetrative deformation within the footwall shale to the 

shear zone is seen clearly and can be divided into four layers based on microstructural 

(Figure 3a) and compositional (Figure 3b) variations.   

 The layer farthest from the footwall-shear zone contact (> 1 cm below the 

contact) is a non-penetratively deformed shale layer.  In this layer, deformation of calcite 

veins is observed where fault-parallel veins cross-cut and displace fault-perpendicular 

veins.  Above the shale layer is the densely-veined shale layer, which contains shale and 

more calcite veins than the layer below.  The 300 µm thick calcite band forms the 

contact between the densely-veined shale and the shear zone.  The shear zone is 
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le 

 

Figure 2. Exposure of the CC thrust fault.  Copper Creek thrust fault 32 km north of 
Knoxville, TN.  The footwall (FW) is composed of shale and micrite beds, while the 
hanging wall (HW) is composed of shale, carbonate, and sandstone beds.  The hanging 
wall is displaced to the north.  Samples taken near the FW-HW contact (circles). 
 
 
 
 
 
 
 

A
B

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


 
Figure 3. Sample at FW-SZ contact.  (A) Sample across footwall-shear zone contacts.  
Sample is divided into four distinct layers based on composition and microstructures: 
shale layer, densely-veined shale, calcite band, and shear zone. (B) Calcite veins (black) 
are oriented parallel or perpendicular to the shear foliation.  Shear zone contains Ca, Al, 
and K.  XRF image. Si-red, Al-green, K-blue, Ca-black. 
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composed of foliated bands of calcite, shale and intermixed calcite and shale.     

Deformation within the footwall is observed predominantly within calcite veins.  

CL, at the optical and electron microscope scale, indicates no variation in luminescence 

of calcite across the transition from the footwall shale to the shear zone.  The 

microstructures within each layer are described below.  

 

4.1 Shale layer 

 The footwall host rock shale is composed of illite with chlorite, quartz, and 

calcite.   The shale contains sedimentary laminations that are cross-cut by calcite veins 

(0.88 fractures/mm; mean thickness 289.3 µm) approximately parallel and perpendicular 

to the shear zone, although most (66 %) are orientated at a low angle to the shear zone 

(Figure 4a).  There is a discontinuous layer of silica-rich shale at the top of the shale 

layer, which is fractured and contains carbonate veins.  Calcite grains in undeformed 

sections of the veins have a mean grain size of 73.41 µm (Figure 5a), with an average 

axial ratio of 1:1.8.  The long axes are variably oriented, with a weak maximum at a low 

angle (~20˚) to the shear zone (Figure 5a).  

Deformation within the calcite veins is observed where veins approximately 

parallel to the shear zone cross-cut and displace veins approximately perpendicular to 

the shear zone (Figure 3a; 6a).  Within these vein intersections, grain size is reduced to 

<1.0 µm (average grain size 0.87 µm; Figure 5b).  These ultrafine grains contain 
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Figure 4. Calcite veins and void orientations.  (A) Calcite veins in shale layer and (B) 
densely-veined shale layers plotted relative to orientation of shear zone (SZ).  (C) Voids 
plotted relative to orientation of shear zone. 



 11

A B

C D

E

SZ SZ

SZ

SZ

SZ

 

Figure 5. Calcite grain size and long axis orientations.  Calcite grain size vs. the percent 
of total calcite grains.  The mean grain size and range of grain sizes within a layer 
decreases towards the shear zone.  Insets show long-axes of calcite grains in the veins in 
footwall-shear zone layers plotted relative to the orientation of the shear zone (SZ).  
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Figure 6. Cross-cut calcite veins in shale.  (A) Cross-cut calcite veins in shale layer.  (B) 
Ultrafine-grained calcite at intersection of cross-cut veins contain fractures ("F" arrow), 
twins ("T" arrow), and interpenetrating grain boundaries.  BSE imaging. 
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twins, and fractures, and voids are common at calcite grain boundaries (Figure 6b).  

Long axes of calcite grains within vein intersections are dominantly oriented parallel to 

the displacement of the cross-cut vein (Figure 5b). Voids have a mean size of 0.26 µm, 

with long axes also dominantly oriented parallel to the displacement of the cross-cut 

vein.   

 

4.2 Densely-veined shale 

 Within the densely-veined shale, sedimentary laminations are observed only  

locally.  The shale in this layer has a higher density of veins (1.46 fractures/mm; mean 

thickness is 146.9 µm) relative to the shale layer below (Figure 3a). The orientations of 

the veins in this layer are also more variable than in the layer below, although many 

veins (45 %) are still at a low angle to the shear zone (Figure 4b).  The mean grain size 

within the calcite veins is 8.69 µm in coarse-grained areas of veins (Figure 5c).  Calcite 

grains have an average axial ratio of 1:2.2 with long axes variable, but dominantly at a 

low angle to the shear zone (Figure 5c). 

 Within this layer, a higher percentage of the calcite veins (~80%) contain fine to 

ultrafine grains (<5 µm) than the veined shale described in section 4.1.  Twins are visible 

primarily within the coarser calcite grains (Figure 7a).  In coarse-grains, trails of voids 

are common (Figure 7a).  The trails follow twin boundaries in grains, and voids are 

observed at twin-twin and twin-grain boundary intersections (Figure 7b).  Locally, 

irregular twin boundaries are also observed within coarser calcite grains (Figure 7b).  In 
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regions of fine-grained calcite, inter- and intragranular fractures, interpenetrating grain 

boundaries, twins, and voids along calcite grain boundaries are common (Figure 7c, 4c).  

 

4.3 Calcite band 

 Between the densely-veined shale and the shear zone is a band of calcite (~ 300 

µm total thickness) intermixed with minor shale (less than 6 % shale).  The mean calcite 

grain size within this band alternates between layers with grain size ≤ 1 µm, and coarser- 

grained layers with grain size 1 – 30 µm (Figure 5d). Calcite grains within the coarser-

grained (mean grain size of 5.5 µm) calcite layers have an axial ratio of 1:1.4 and 

straight grain boundaries.  Voids and shale particles are only very rarely observed within 

the coarser calcite layers (porosity less than 1 %).  The dominant microstructure 

observed within the coarse calcite layers is twinning (Figure 7d). 

 Coarse- and ultrafine-grained layers are occasionally separated by narrow areas 

with an intermediate grain size (mean grain size is 2 µm), containing voids and minor 

shale  (1-2% each).  Grain boundaries of the intermediate grains are often curved (Figure 

7d) and variations in grayscale within individual grains are observed in the BSE images 

of these single phase areas (Figure 7d). 

 The mean grain size within the ultrafine-grained layer is 0.34 µm (Figure 5d), 

with a long axis-preferred orientation parallel to the shear zone (axial ratio of 1:1.9) 

(Figure 5d).  Porosity and shale within the ultrafine-grain layers increases to ~6 % and 

4.5%, respectively.  The average void diameter is 0.07 µm, with an axial ratio of 1:2.  

Most long axes of the voids are 10˚ anticlockwise from the shear zone foliation  
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Figure 7. Calcite microstructures. (A) Trails of voids (black) follow twin boundaries.  
Densely-veined shale layer. (B) Voids at twin-twin intersections (arrow).  Irregular twin 
boundaries are rare (dashed area). Densely-veined shale layer. (C) Intragranular fractures 
("F" arrow), twins ("T" arrow), interpenetrating grain boundaries, and grid pattern in 
ultrafine-grained calcite (arrow). Densely-veined shale layer. (D) Boundary between 
coarse-grained calcite and ultrafine-grained calcite layers.  Aligned grain boundaries 
(arrows) in ultrafine-grained calcite cross-cut by coarse-grained calcite. Calcite band. 
(E) Four-grain junction (dashed area). Calcite band. BSE imaging.  
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(Figure 4c).  Long-axis orientations of the voids are parallel to the vein orientations in 

shale layers below (Figure 4).  Microstructures within the ultrafine–grain layers include 

twins, intragranular fractures, interpenetrating grain boundaries (most common), voids at 

grain boundaries, and four-grain junctions (Figure 7f). Twins are observed rarely within 

the ultrafine-grains, and where observed, are frequently cross-cut by fractures.  A 

majority of the ultrafine-grained calcite grains contain angular to rounded 

interpenetrating grain boundaries, which are not cross-cut by fractures.  The grains that 

form four-point junctions also contain interpenetrating grain boundaries between each 

other and adjacent grains.  Linear features defined by aligned grain boundaries across 

several grains (minimum length 4 µm) are developed within the calcite band, at a low 

angle (~23°) to the shear zone (Figure 7d, Figure 8a).  The coarser-grained calcite layers, 

which are parallel to the shear zone, cross-cut these linear features (Figure 7d, Figure 

8a). 

 The lattice preferred orientations of calcite grains were determined along a 

transect from a coarser-grained (> 5 µm) calcite layer into an ultrafine-grained (< 1 µm) 

calcite layer (Figure 8a, 8b).  Orientations of grains from a coarse calcite layer indicate a 

strong LPO, with c-axes oriented perpendicular to the shear zone foliation (Figure 8c).  

In contrast, orientations of grains from the adjacent ultrafine-grained layer suggest no 

LPO (Figure 8d).  In addition, the orientation map of the ultrafine-grained layer (Figure 

8b) shows no similarities in orientations between adjacent grains (i.e., no groupings of 

grains of a given orientation). 

  



 17

A B

C. Coarse-grain calcite

D. Ultrafinge-grain calcite

g
{0001} {11-20} {-1-120}

n=167

2
4
6

min=0.00

max=10.44

8

{0001} {11-20} {-1-120}

n=659

1

2
3

min=0.11

max=3.84

B

 

Figure 8. EBSD data. (A) Transition from coarse-grained calcite to ultrafine-grained 
calcite.  Aligned grain boundaries (lines).  BSE imaging.  (B) EBSD map of coarse-
grained calcite layer to ultrafine-grained calcite layer. (C) and (D) Contoured plots of 
one point per grain on the c, a, and r axes on a upper hemisphere projection. Note max 
contour value differences. (C) Coarse-grained calcite displays a strong maximum, 
perpendicular to shear zone foliation.  (D) No LPO in ultrafine-grained calcite.  



 18

4.4 Shear zone 

 The shear zone is composed of aggregate clasts of ultrafine-grained calcite (5 µm 

- 400 µm) and shale (10-350 µm) surrounded by an interconnected network of ultrafine-

grained matrix of mixed calcite and shale (Figure 9a, 9b).  The microstructures within 

the calcite aggregate clasts are similar to the microstructures in the calcite band (section 

4.2.3) and in the calcite veins in the shale below (sections 4.2.1 and 4.2.2) (Figure 9b).  

Within the clasts, areas of coarser-grained (>5 µm) calcite contain trails of voids along 

twin boundaries and voids at twin-twin and twin-grain boundary intersections (Figure 

7c). Ultrafine-grained (<1 µm) areas in calcite clasts contain voids at grain boundaries 

and exhibit interpenetrating grains, and less commonly, fractures and twins (Figure 7c). 

 Along the edges of the calcite aggregate clasts, individual calcite grains are 

detached from the clasts (Figure 9c, 9d).  Trains of calcite grains are observed adjacent 

to the clasts, within the mixed shale and calcite matrix (Figure 9c).  Calcite matrix grains 

are finer-grained (mean grain size 0.31 µm; axial ratio 1:2) (Figure 5d) than matrix shale 

grains (mean grain size 0.50 µm), and form an interconnected network around the fine-

grained shale matrix grain (Figure 9a; 9b). Calcite-calcite grain boundaries in the shear 

zone matrix are typically interpenetrating (Figure 9c, 9d).  The long axes of calcite 

grains are dominantly parallel to the shear zone (Figure 5e).  While the matrix grain size 

is only marginally finer than the calcite grain size within the calcite band, note that the 

range of grain sizes is substantially reduced (Figure 5).  
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Figure 9. Shear zone microstructures.  (A) EDS map of the shear zone (SZ), calcite 
band (CB), and densely-veined shale (DVS). Interconnected network of ultrafine-grained 
calcite and shale surround calcite aggregate and shale clasts.  Si-red, Na-green, K-blue, 
Al-white, Ca-black. (B) Voids and offset at twin-twin and twin-grain boundary 
intersections.  (C) Calcite aggregate clast surrounded by shale (s) and ultrafine-grained 
calcite (c). BSE imaging. (C) Detached and interpenetrating grain boundaries at calcite 
clasts edge. SE imaging. (D) Edge of calcite aggregate clast. BSE imaging.  
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5. DISCUSSION 

 While the footwall and hanging wall of the CC thrust fault are composed of 

shale, calcite veins, emplaced parallel to the shear zone at the shear zone-footwall 

boundary, played the critical role in accommodating displacement along this fault zone.  

The formation of the fault parallel and perpendicular veins, particularly at the base of the 

shear zone, was intermittent during the fault zone deformation.  The calcite underwent 

significant grain size reduction to <1 µm, and the resulting ultrafine-grained calcite 

deformed by multiple, concurrent deformation mechanisms that contributed to grain 

boundary sliding. These processes are discussed, below. 

 

5.1. Grain size reduction 

Grain size reduction from >5 µm to <1 µm is observed in calcite veins where 

fault-parallel veins cross-cut fault-perpendicular veins within the footwall shale, as well 

as in the fault-parallel calcite band at the shear zone-footwall contact.  Within coarse 

calcite grains, voids occur in trails following twin boundaries (Figure 7a), and are 

especially pronounced at observed twin-twin intersections (Figure 7b).  The voids at 

these intersections suggest that twin boundaries were obstacles to twin boundary glide, 

resulting in stress concentrations and plasticity (twinning) – induced fracturing (e.g., 

Mitra, 1978). The unusual square to rectangular shape of the calcite grains (Figure 7c) 

further suggests that the twins exerted control over the fracturing that formed the 

ultrafine-grains (Figure 7c).  The voids observed at the intersections of twins and grain 
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boundaries (Figure 7c; 7e) suggest that grain boundary mobility at these intersections 

was limited, further contributing to grain size reduction. 

Intermediate-sized grains (~2 µm), observed locally at the boundary between 

coarse and ultrafine grained layers within the calcite band, exhibit curved grain 

boundaries as well as variable grayscales in BSE images within grains suggesting a 

contribution to grain size reduction from dislocation accommodated dynamic 

recrystallization.  Variable grayscales in BSE images suggest variations in lattice 

orientation within the grains that may represent subgrains and suggest subgrain rotation 

recrystallization.  Irregular twin boundaries are observed as well (Figure 7b), resulting in 

~1 – 2 µm grains, suggesting a contribution to the reduced grain size from twin 

boundary migration recrystallization.   However, these intermediate size grains (~2 µm) 

are only rarely observed, suggesting that dislocation processes did not contribute 

significantly to grain size reduction.  Note, as well, that the ~2 µm calcite grains that 

result from these processes are significantly coarser than the ~0.3 µm calcite grains 

observed in the ultrafine-grained layers of the calcite band and in the shear zone (Figure 

5c, 5d). 

 

5.2. Multiple deformation mechanisms 

5.2.1 Calcite 

Microstructures within the coarse (>5 µm) layers and fine-grained (<1 µm) layers 

of the calcite band suggest that the layers experienced different deformation histories.   

Within the coarse-grained layers, twins are common (Figure 7d).  The orientations of 
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grains within a coarse-grained layer indicate a strong LPO developed during deformation 

with c-axes oriented perpendicular to the shear zone foliation (Figure 8).  The strong 

LPO is evidence for crystal plasticity within the coarse-grained calcite during 

deformation.  The frequent voids at twin-twin and twin-grain boundary intersections 

observed in coarser grained calcite in clasts in the shear zone suggest plasticity-induced 

fracturing (Figure 9b; as described in section 5.1), and indicate that dislocation climb 

was limited in the coarse calcite grains. 

Intermediate-size grains (~2 µm) that occur locally between coarse and ultrafine 

layers, as described in section 5.1, suggest that dislocation processes and subgrain 

rotation recrystallization were active locally. 

The ultrafine-grained layers exhibit microstructures similar to the microstructures 

observed in vein intersections within the shale layers below.  These layers exhibit a 

variety of microstructures, including twins, intragranular fractures, interpenetrating grain 

boundaries, four-grain junctions, voids at grain boundaries, and, rarely, irregular twin 

boundaries (Figure 7b, 7c, 7e).  Twins within the ultrafine-grained calcite are one of the 

least common microstructures and are likely remnant from coarser grains, as we have 

observed no relationship between twins and locations of likely stress concentration 

(Newman, 1994).  Calcite grains with twins are frequently cross-cut by other 

microstructures, particularly intragranular fractures (Figure 7c, 7e).  Interpenetrating 

grain boundaries are the most common microstructure that we observe (Figure 7c, 7e), 

and are common between grains that contain twins and/or intragranular fractures, and 

cross-cut these other microstructures (Figure 7c, 7e).  The interpenetrating grain 
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boundaries suggest grain boundary mobility that could result from either diffusive mass 

transfer or dislocation-accommodated grain boundary migration.  The interpenetrating 

grain boundaries are, however, frequently angular (Figure 7c, 7e), and the radii of 

curvature are far smaller than in the 1-2 µm grains observed locally from dynamic 

recrystalliztion, suggesting that diffusive mass transfer is more likely (Figure 7d). 

Four-grain junctions are common in the ultrafine-grained calcite and suggest 

grain boundary sliding (Drury and Humphries 1988; Passchier and Trouw, 2005), likely 

accommodated by diffusive mass transfer at grain boundaries. The lack of a LPO further 

supports the interpretation that diffusion accommodated grain boundary sliding was the 

dominant deformation mechanism within the ultrafine-grained calcite layers. Grain 

boundary alignments continuous across many grains (Figure 7d, Figure 8a) within the 

ultrafine-grained layers of the calcite band suggest that grain boundary sliding along 

these surfaces also contributed to the deformation.  The grain orientation map of the 

ultrafine-grained calcite (Figure 8b) shows no groupings of grains of similar 

orientations, indicating that individual ultrafine grains have moved relative to one 

another, and are not static, fractured remnants of coarser grains.  Movement of the 

calcite grains likely contributed to mixing of shale with the ultrafine-grained calcite 

(4.5%), as well as the formation of porosity, which increases from 1% in the coarse-

grained calcite to 6% in the ultrafine-grained calcite.  The voids along grain boundaries, 

largely parallel to the shear zone (Figure 4c) and veins below in the shale layer and 

densely-veined shale layer, suggest that grain growth was not able to keep pace with 
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strain within the deforming zone.    

 

5.2.2  Shale 

 Sedimentary laminations within the shale layer, and observed locally within the 

densely-veined shale layer, suggest that the shale did not experience penetrative 

deformation.   Rather, shale deformation was dominated by vein-forming brittle fracture.  

The similarity in orientation of the voids within the deforming calcite band and the veins 

in the shale, below, suggest that the shale continued to deform by brittle fracture during 

deformation of the calcite. 

 

5.3. Mixing of ultrafine-grained calcite and shale within shear zone 

The shear zone is composed of calcite aggregate clasts and shale clasts within an 

interconnected network of ultrafine-grained calcite and shale.  The calcite aggregate 

clasts display microstructures similar to those observed within the ultrafine-grained 

layers of the calcite band (ultrafine-grained, interpenetrating grain boundaries; compare 

Figure 9c, 9d and Figure 7e, 7f), suggesting that the aggregate calcite clasts originated as 

vein calcite. 

 Individual calcite grains along the edges of the calcite aggregate clasts are 

detached from the clasts and are entrained within the matrix, mixing with shale (Figure 

9c, 9d). The mixed ultrafine-grained matrix calcite and shale form an interconnected 

network around the remaining clasts.  Within the matrix, the ultrafine-grained calcite 

forms an interconnected network around the matrix shale, suggesting that within the 
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matrix, the ultrafine-grained calcite forms the stress-supporting network, and controls 

the strength of the shear zone rocks.  Interpenetrating grain boundaries suggest that the 

ultrafine-grained matrix calcite deformed primarily by grain boundary sliding 

accommodated by diffusion creep.  The equation for diffusion creep is 

1

3
σε







 −
= RT

H

e
d

A
& ,          (1) 

where d – grain size, T – temperature, ε&  – strain rate, and σ  – stress. The ultrafine-

grain size of the calcite (0.31 µm) suggests that the calcite, deforming by grain size 

sensitive diffusion creep, and therefore the shear zone, was very weak. 

 

5.4. Intermittent vein formation 

 The coarse and ultrafine-grained layers within the calcite band suggest 

intermittent vein formation during deformation.  The grain boundary alignments 

observed in the ultrafine-grained calcite layers are cross-cut by the coarse-grained calcite 

layers (Figure 7d; Figure 8a), indicating that the coarse-grained layers are younger than 

the ultrafine-grained calcite.  The coarse-grained layers likely formed as fractures within 

the ultrafine-grained calcite layers, within which calcite precipitated.  Coarse-grained 

calcite layers are likely the starting material for the ultrafine-grained calcite. 

 Additional evidence for intermittent vein formation is found in the comparison of 

the texture of the coarse-grained calcite and ultrafine-grained calcite in the calcite band 

(Figure 7d, 7f, 7g; Figure 8). Areas of coarse-grained calcite display a maximum of c-

axes oriented perpendicular to the shear zone foliation, while areas of ultrafine-grained 
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calcite contain no LPO.  The newly precipitated calcite more easily deformed by crystal-

plastic mechanisms, such as dislocation glide and twinning.  As strain increased, 

twinning was insufficient to accommodate the strain, stress concentrations occurred at 

twin-twin intersections, resulting in intragranular fractures and a reduction in grain size.  

The ultrafine grains deformed by grain boundary sliding, thus destroying the LPO in 

ultrafine-grained layers.  As new veins formed, this process was repeated, resulting in 

layers within the calcite band with different grain sizes, deformed by different 

deformation mechanisms. 

The repeated emplacement of calcite veins within one zone at the contact 

between the shear zone and the footwall, resulting in a thick calcite band 300 µm thick, 

further suggests that the ultrafine-grained calcite represented a weak zone.  While the 

intermittent vein formation may have contributed to strain along the CC thrust fault by 

displacement associated with the formation of the calcite veins, the more significant 

contribution from these fluids was the precipitation of calcite that served as the starting 

material for the weak ultrafine-grained calcite that deformed by diffusion accommodated 

grain boundary sliding (GBS). 

 

5.5. Evolution of fault zone rheology 

The microstructures in the shear zone and footwall of the CC suggest an 

interpretation for the evolution of the shear zone, and its rheology.  Deformation initiated 

by fracturing of the shale, likely as a result of high fluid pressure, with the precipitation 

of calcite veins.  The fluids, therefore, were the source of calcite along the footwall-shear 
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zone contact, as described in section 5.4.  The coarse-grained calcite (observed at the 

base of the shear zone) initially deformed by twining and dislocation glide, resulting in a 

strong LPO (Figure 8c).  Voids at twin-twin and twin-grain boundary intersections 

suggest that dislocation climb was limited, resulting in stress concentrations at these 

intersections and plasticity-induced fracturing, the primary mechanism for grain size 

reduction to an ultrafine grain size (0.34 µm).  Interpenetrating grain boundaries, with 

very small-radius serrations, 4-grain junctions, frequent voids along grain boundaries 

and the lack of a LPO, suggest that the ultrafine-grained calcite deformed primarily by 

grain-size sensitive, grain boundary sliding accommodated by diffusion creep. 

The similarity in orientation of the voids within the calcite and the veins within the 

shale, below, suggest that shale continued to deform by brittle fracture as the 

deformation continued within the calcite, perhaps producing shale clasts that mixed with 

calcite within the shear zone.  Coarse-grained layers within the calcite band that cross-

cut grain boundary alignments in the calcite band indicate that calcite veins continued to 

form within the calcite, as well. 

 Shale clasts and clasts of aggregate calcite from the calcite band were entrained 

into the shear zone, where they continued to be reduced in size.  Calcite grains detached 

from the aggregate calcite clasts and mixed with shale that continued to fracture, 

resulting in a fine-grained matrix that anastomoses around remaining clasts. 

Within the fine-grained matrix, calcite is finer-grained than shale matrix grains, and 

forms an interconnected network around the shale matix grains, suggesting that the 
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rheology of the shear zone was controlled by the deformation of the ultrafine-grained 

calcite by viscous grain boundary sliding. 

 Other foreland thrusts, the Hunter Valley in the southern Appalachians, (Wojtal, 

1986; Wojtal and Mitra, 1986; Kennedy and Logan, 1998) and the McConnell thrust, in 

the Canadian Rockies (Kennedy and Logan 1997), contain similar lithologies, and have 

experienced similar displacements at similar conditions as the Copper Creek thrust fault.  

However, both the Hunter Valley and McConnell thrust faults developed a 1 m thick 

zone of penetrative deformation (Wojtal and Mitra, 1986; Kennedy and Logan, 1997; 

1998), compared to the 2 cm thick zone along the CC thrust, suggesting that the 

rheology of the CC thrust is weaker than the Hunter Valley and McConnell thrust faults.  

Fracturing followed by dynamic recrystallization reduced grain size along the Hunter 

Valley (~3 µm grain size) and McConnell (~1 µm grain size) thrust faults (Wojtal and 

Mitra, 1986; Kennedy and Logan, 1997; 1998).  Along the CC thrust, however, 

plasticity-induced fracturing dominated within the coarse-grained calcite, reducing grain 

size to 0.34 µm. 

One possible reason for the different behaviors along these faults is that 

deformation may have occurred at different temperatures.  Both the CC and the Hunter 

Valley thrust faults formed during the same Allegheny Orogeny, and reached 

temperatures of 100-180 °C (Wojtal and Mitra, 1986), based on reconstructed cross-

sections (Harris, 1976; Harris and Milici, 1977), so that variations in temperature may 

not be easy to explain.  Elevated fluid temperatures at Hunter Valley may have 

contributed to the development of higher temperature deformation mechanisms, such as 
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dislocation climb.  However, Kennedy and Logan (1997) suggested that the McConnell 

thrust experienced slightly higher temperatures of 200-300 °C, which may have allowed 

dislocation climb, so that intragranular fractures from dislocation pile-ups did not form.  

While all three faults formed narrow shear zones, the shear zone at CC is an order of 

magnitude narrower, as a result of the mechanism for grain size reduction.  Plasticity-

induced fracturing at CC resulted in an ultrafine-grain size and a different dominant 

deformation mechanism than resulted from dynamic recrystallization along the other 

thrusts.   The finer grain size at CC, deforming by diffusion accommodated GBS, thus 

resulted in a weaker rheology and a narrower shear zone. 

Another possible reason for the variation in grain size and thickness of the shear 

zone is differences in lithologies between the three faults.  All three faults are carbonate-

shale thrust faults (Wojtal and Mitra, 1986; Kennedy and Logan, 1997; 1998); however, 

the Hunter Valley thrust contains dolomite (clasts and veins) and quartz clasts (Wojtal 

and Mitra, 1986) and the McConnell thrust also contains dolomite (Kennedy and Logan, 

1997).  The CC thrust only contains calcite and shale.  The different strengths of calcite 

(Rutter, 1995; Brodie and Rutter, 2000a) and dolomite (Davis et al., 2008; Delle Piane et 

al., 2008) and quartz (Griggs, 1967; Brodie and Rutter, 2000b) under similar conditions 

could explain the different behaviors along these faults.  The addition of dolomite and 

quartz within the Hunter Valley and McConnell thrusts, may have contributed to the 

strength of these shear zones, relative to the CC thrust. 
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6. CONCLUSIONS 

The intermittent vein formation along the CC thrust fault contributed to the large 

displacement along a narrow shear zone primarily by providing the starting material for 

the weak ultrafine-grained calcite that deformed by diffusion accommodated GBS.  The 

microstructures in a transect from the footwall to the shear zone along the CC thrust fault 

suggest the following evolution of rheology: 

 

 1.  Areas of coarse- and ultrafine-grained calcite near the shear zone-footwall 

contact are the result of intermittent vein formation.   

 

 2.  Stress concentrations at twin-twin and twin-grain boundary intersections in 

coarse-grained calcite resulted in intragranular fractures.  This plasticity-induced 

fracturing reduced the grain size within the calcite grains to <1.0 µm. 

 

 3. Within coarse-grained calcite, the dominant deformation was by plasticity-

induced fracturing. Once grain size was reduced, ultrafine-grained calcite grains 

deformed by brittle, diffusive, and plastic deformation mechanisms.  

 

 4.  Shale deformation, concurrent with calcite deformation, was dominated by 

brittle fracture.  
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 5.  Formation of an interconnected network of the ultrafine-grained calcite, in the 

shear zone, suggests calcite, not the shale, was the weak phase.  The resulting ultrafine-

grained calcite flowed by diffusion creep accommodated GBS, leading to a weak 

interconnected network around the shale that enabled large displacement along the 

narrow shear zone. 

.   
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