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ABSTRACT 

 

Improved Algorithms for Discovery of Transcription Factor Binding Sites in DNA 

Sequences. (December 2010) 

Xiaoyan Zhao, B.S., Beijing Normal University 

Chair of Advisory Committee: Dr. Sing-Hoi Sze 

 

Understanding the mechanisms that regulate gene expression is a major challenge in 

biology.  One of the most important tasks in this challenge is to identify the transcription 

factors binding sites (TFBS) in DNA sequences.  The common representation of these 

binding sites is called “motif” and the discovery of TFBS problem is also referred as 

motif finding problem in computer science. Despite extensive efforts in the past decade, 

none of the existing algorithms perform very well. 

 

This dissertation focuses on this difficult problem and proposes three new methods 

(MotifEnumerator, PosMotif, and Enrich) with excellent improvements. An improved 

pattern-driven algorithm, MotifEnumerator, is first proposed to detect the optimal motif 

with reduced time complexity compared to the traditional exact pattern-driven 

approaches. This strategy is further extended to allow arbitrary don’t care positions 

within a motif without much decrease in solvable values of motif length. The 

performance of this algorithm is comparable to the best existing motif finding algorithms 

on a large benchmark set of samples. 
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Another algorithm with further post processing, PosMotif, is proposed to use a string 

representation that allows arbitrary ignored positions within the non-conserved portion 

of single motifs, and use Markov chains to model the background distributions of motifs 

of certain length while skipping these positions within each Markov chain. Two post 

processing steps considering redundancy information are applied in this algorithm. 

PosMotif demonstrates an improved performance compared to the best five existing 

motif finding algorithms on several large benchmark sets of samples.  

 

The third method, Enrich, is proposed to improve the performance of general motif 

finding algorithms by adding more sequences to the samples in the existing benchmark 

datasets. Five famous motif finding algorithms have been chosen to run on the original 

datasets and the enriched datasets, and the performance comparisons show a general 

great improvement on the enriched datasets. 
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CHAPTER I 

INTRODUCTION 

 

A. Background Overview 

 

1. Introduction 

 

In molecular biology, transcription is the synthesis of a single-stranded RNA molecule 

using the DNA template (one strand of DNA is transcribed). The regulatory sequences 

are stretches of DNA sequences which are binding sites for RNA polymerase and its 

accessory molecules, and a wide variety of transcription factors. Together, the regulatory 

sequences with their bound proteins act as molecular switches that determine the activity 

state of the gene e.g., OFF or ON. These binding sites are located in the regulatory 

region of the gene and a single transcription factor can be bound to different binding 

sites that have different underlying DNA sequences. Motif is the common representation 

of these binding sites. The discovery of motifs will allow the biologist to understand the 

complex mechanism that regulates gene expression. However, it is very difficult due to 

the characteristics of real input samples. These are: 

1. The length of binding sites is unknown. It is usually 5-12, but can be up to 30. 

2. The binding site sequence preference is not exact. There may be some mismatches.  

3. The majority of motifs are unknown to us. 

____________ 

This dissertation follows the style of Journal of Computational Biology. 
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4. Samples with biased nucleotide composition. 

5. Corrupted samples (not every sequence contains a motif). 

6. Regulatory sites can lie on either DNA strand. 

 

A DNA motif is generally defined as a recurring pattern within a sequence of 

nucleotides. In real DNA sequence, it is usually a short segment that occurs frequently, 

but is not required to be an exact copy for each occurrence. A Motif can be visually 

represented by a motif logo (Figure 1.1), which is a summary of the possible nucleotide 

strings that correspond to the same motif. The motif logo length equals the length of 

those strings and, for each position, the logo represent the information content of that 

position. The total height of a motif logo in a position is proportional to the information 

content in that position, while the height of each letter is proportional to the frequency of 

the letter in that position. The sum of the heights of all letters in a position equals to the 

total height of the motif in that position.  

 

The general motif finding problem can be defined as follows: 

Input: A set of regulatory sequences that possibly bind to the same protein transcription 

factor. 

Aim: Use a computational algorithm to search for the common binding site pattern that 

occurs frequently.  

If an l -letter pattern appears exactly in every sequence, a simple enumeration of all 

patterns of length l  that appear in the sequences gives the solution. However, the real 
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problem is not that simple because patterns in DNA sequences may include mutations, 

insertions or deletions of nucleotides. In fact, the motif finding problem has been proven 

to be NP-hard.  

 

  

Depending how the motif is modeled, most of the motif finding methods can be grouped 

into two categories: probabilistic approach and combinatorial approach. In probabilistic 

approaches, a motif is modeled to be a matrix that each column represents a probability 

distribution for the four letters in that position; while in combinatorial approaches, a 

 

Figure 1.1: The graphic representation of an aligned set of 350 E. coli promoters. A 

logo displays the frequencies of bases at each position, as the relative heights of 

letters, along with the degree of sequence conservation as the total height of a stack 

of letters, measured in bits of information (T. D. Schneider and R. M. Stephens 

1990). 
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motif is usually modeled to be a string of characters. These characters can be any letters 

in DNA alphabet, or degenerate alphabet (Figure 1.2).  

 

 

2. Probabilistic Approaches 

 

One of the earliest implementation of probabilistic approaches was a greedy algorithm to 

find the binding sites with the highest information content by Hertz et al. (1990). They 

alignment position nucleotide 

char 1 2 3 4 5 

A 0.2 0 0 0.8 0 

C 0 0.2 0 0 1 

G 0 0 1 0 0 

T 0.8 0.8 0 0.2 0 

position weight 

matrix (PWM) 

 

T T G A C 

 

T C G A C 

 

T T G A C 

 

A T G A C 

 

T T G C C 

consensus 

string 
TTGAC (on DNA alphabet) 

WYGMC (including degenerate alphabet) 

Figure 1.2: Example of different motif representations of five given binding sites. 

The position weight matrix shows the frequency of each nucleotide char in that 

position, the consensus string  on DNA alphabet shows the most frequent nucleotide 

char in that position and the consensus string including degenerate alphabet shows 

the IUB code (degenerate base) in that position, for example, W represents A or T 

appearing in the first position.  
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used this algorithm to identify a consensus motif that was present once in every 

sequence and their latest implementation (Consensus) Hertz and Stormo (1999) provided 

methods to estimate the statistical significance of a given information content score, and 

tested their algorithm to identify binding sites for the Escherichia coli CRP protein. 

 

A well-known technique expectation-maximization (EM) is usually used in probabilistic 

motif finding algorithms.  EM for motif finding was first introduced by Lawrence and 

Reilly and was then extended by Bailey and Elkan (1995) to identify motifs in unaligned 

biopolymer sequences in Multiple EM for Motif Elicitation algorithm (MEME). The 

MEME method assumes little is known in advance about any motifs that may be present 

in a set of biopolymer sequences, and it used real biopolymer subsequences as EM 

algorithm starting point, which increases the probability of finding globally optimum 

motifs. It also removed the constraint that exactly one occurrence of the shared motif in 

each sequence and probabilistically removed shared motifs to avoid reporting redundant 

motifs. 

 

Another very popular statistical technique used in probabilistic motif finding is Gibbs 

sampling. The original Gibbs sampler for motif finding was developed by Lawrence et al. 

(1993) and it was only applied to protein sequences originally. It originally assumed that 

at least one instance of motif existed in every sequence. Gibbs sampling is a special case 

of a Markov Chain Monte Carlo method (MCMC) by sampling from unknown 

distributions by using Markov Chains and their properties of convergence to a stationary 
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distribution. Gibbs sampling is really easy to implement and it runs very fast, in linear 

time with the length of the sequences. It is more stable to initialization than EM methods, 

but also more dependent on all sequences exhibiting the motif. AlignACE ( Roth et al. 

1998) and MotifSampler (Thijs et al. 2001 )  are very useful motif finding applications 

built over Gibbs sampling.  The original AlignACE used MAP (maximum a priori log-

likelihood) score to evaluate different motifs sampled, which measures the degree of 

overrepresentation of a motif as compared to the expected random occurrence of that 

motif in the sequence under consideration. This measurement of scorning motifs was 

improved by Hughes et al. using group specificity, which avoids the main drawback of 

MAP score that some ubiquitously occurring but un-relevant motifs are scored too 

highly. MotifSampler incorporated a higher-order Markov-chain background model and 

used the probability distribution to estimate the number of motif occurrences in the a 

sequence. Other popular methods such as BioProspector Liu et al. and GibbsST Shida 

also applied Gibbs Sampling strategy with different modifications. 

 

3. Combinatorial Approaches 

 

The motif finding problem in combinatorial approaches can be formulated as: 

Given sequence },,,{ 21 k
xxxS L=  and each sequence of length n  

A motif is a consensus string of length l : 
l

www L21  

The aim is to find the optimal motif M, best matches for S, which minimizes the 

following distances: 
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),(),( ∑=
i ixMdSMd , 

where ),( ixMd = minimal hamming distance between M and any occurrence in ix . 

Based on the motif candidate search space, there are two groups in the category: pattern-

driven algorithms and sample-driven algorithms. Pattern-driven algorithms (Queen et al. 

1982; Waterman et al. 1984; Staden 1989; Pesole et al. 1992; Wolfertstetter et al. 1996; 

van Helden et al. 1998; Tompa 1999) usually use an exhaustive search over all possible 

strings of length l and report the one that minimizes the distance. Sample-driven 

algorithms ((Stormo and Hartzell 1989; Lawrence et al. 1993; Bailey and Elkan 1994; 

Hughes et al. 2000; Workman and Stormo 2000; Thijs et al. 2001) consider the 

candidate motifs appear in the sequences in S instead of enumerating every possible 

string of length l . The sample-driven algorithms have the advantage to suitable statistical 

models, but have the disadvantage that it is not possible to find the optimal motif unless 

the motif is very short (Leung and Chin 2005).  

 

A straightforward algorithm for the pattern-driven approach takes )4( lknO l  time, thus 

this strategy is feasible only for small l . By considering only candidate motifs that are at 

most d  substitutions away from a string appearing in the sample, an extended pattern-

driven approach has been proposed to reduce the number of candidate motifs (Waterman 

et al. 1984; Galas et al. 1985).  To further reduce the running time, another class of tree-

based pruning techniques have been proposed (Marsan and Sagot 2000; Pavesi et al. 

2001; Eskin and Pevzner 2002), while many approaches make use of the given 
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maximum distance d  to develop heuristics that guarantee a high probability of finding 

the optimal motif (Buhler and Tompa 2002; Keich and Pevzner 2002; Price et al. 2003). 

A common weakness of these approaches is that they either cannot guarantee that the 

optimal motif is found or do not improve the worst case time complexity. 

 

4. Evaluation Criteria and Benchmark Datasets 

 

There are many motif finding algorithms developed based on varied and complex motif 

models and most authors test their algorithm using different biological sequences and 

synthetic data sets as well. Sinha and Tompa (2002) compared the performance of YMF 

to the algorithms MEME and AlignACE and observed that different tools performed 

better with different datasets. Tompa et al. (2005) assessed performance of thirteen motif 

finding algorithms, which provide both the standard evaluation criteria and benchmark 

datasets for assessing motif finding tools. 

 

The evaluation criteria from Tompa et al. (2005) can be outlined as below.  

In nucleotide level define the true positives (nTP), false positives (nFP), and others as 

follows: 

� nTP is the number of positions that are in both predicted and known sites,  

� nFP is the number of positions that are in predicted sites but not in known sites,  

� nFN is the number of positions that are in known sites but not in predicted sites, and 

� nTN is the number of positions that are not in predicted nor known sites respectively. 
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From these statistics, we compute the sensitivity (nSn) and others as follows: 

� Sensitivity: 

)( nFNnTPnTPnSn +=  

� Positive Predictive Value: 

)( nFPnTPnTPnPPV +=  

�  Specificity:  

)( nFPnTNnTNnSP +=  

�  Performance Coefficient: 

)( nFNnFPnTPnTPnPC ++=  

� Correlation Coefficient:  

))()()(( nFNnTNnFPnTPnFPnTNnFNnTP

nFPnFNnTNnTP
nCC

++++

⋅−⋅
=  

 

A predicted site is defined to be overlapped with a known site if they overlap by at least 

one fourth of the known site, and similarly the site level statistics can be defined as: 

� sTP is the number of known sites that have overlap with a predicted site,  

� sFP is the number of predicted sites that do not have overlap with known sites, and 

� sFN the number of known sites that do not have overlap with predicted sites. 

From these statistics, we compute the sensitivity )( sFNsTPsTPsSn +=  , the positive 

predictive value )( sFPsTPsTPsPPV += , and the performance coefficient sPC = 

sTP/(sTP + sFP + sFN). 
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B. Our Contribution 

 

Despite of the noticeable improvement in motif finding accuracy, current available motif 

finding methods are far from perfect, especially for higher organisms. In Chapter II – 

Chapter IV, we propose three new motif finding methods, which improve motif finding 

accuracy using three different approaches.  

 

Since traditional motif finding formulations are NP-complete, a straightforward 

algorithm for the pattern-driven approach requires )4( lknO l  time, where k  is the 

number of sequences, n  is the length of each sequence and l  is the motif length, which 

means this strategy is feasible only for small l . In Chapter II, we propose an improved 

pattern-driven algorithm that guarantees that all statistically significant motifs are found 

in )4( lkO l  time. This algorithm saves a factor of n  in time complexity over the original 

pattern-driven approach. This is a significant improvement since n  can be as large as 

3000 and is at least 200 or 300 in many promoter finding applications. It can be adapted 

to handle the case when a maximum distance d   is given between a motif and its 

occurrences. It also extends the power of the pattern-driven approach to find all 

significant motifs of length around 12 or 13 (from the original limit of around 10), or 

substantially to around 20 while retaining most of the original sensitivity by allowing 

don’t care positions but disallowing mismatches. 
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We show the success of this approach by testing test our algorithm on a large set of yeast 

samples constructed from co-expressed gene clusters from Tavazoie et al. (1999) and 

comparing to the best existing motif finding algorithms on a large benchmark set of 

samples from Tompa et al. (2005). The most advantage of this motif finding method is 

that we can guarantee the optimal motif is found with reduced time complexity. 

 

In Chapter III, an improved algorithm based on skipping non-conserved positions in 

background Markov Chain is proposed. It is known in biology that there are often almost 

invariant positions that are critical for the binding process, thus we focus initially on 

positions that have fixed nucleotides to define core occurrences. While most approaches 

do not specifically take advantage of these positions, our model tries to capture them 

within positions that are not ignored. We compare the performance of our algorithm to 

other motif finding algorithms on a few benchmark data sets, and show that significant 

improvement in accuracy can be obtained. Furthermore, we applied Wilcoxon test to 

show that we have statistical improvements over some of the other tools.  

 

In Chapter IV, a new strategy, Enrich, is proposed to improve the performance of motif 

finding algorithms. By modifying the existing benchmark datasets, we show that this 

strategy is able to improve the performance of five existing motif finding algorithms. 

The performance comparisons also indicate that this strategy would help to improve the 

quality of existing benchmark datasets as well.  
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CHAPTER II 

IMPROVED PATTERN-DRIVEN ALGORITHMS 

 

In order to guarantee that the optimal motif is found, traditional pattern-driven 

approaches perform an exhaustive search over all candidate motifs of length l . We 

develop an improved pattern-driven algorithm that takes )4( lkO l  time, where k  is the 

number of sequences in the sample and l  is the motif length, which is independent of 

the length of each sequence n for large enough l  and saving a factor of n  in time 

complexity over the original pattern-driven approach. We further extend this strategy to 

allow arbitrary don’t care positions within a motif without much decrease in solvable 

values of l . Testing this algorithm on a large set of yeast samples constructed from co-

expressed gene clusters reveals that most biological motifs have many invariant or 

almost invariant positions and these positions can be used to define the motif while 

ignoring the other positions. This motivates the following two-stage strategy that extends 

the solvable values of l  substantially for the pattern-driven approach: first use an  

)2( lknO l  algorithm to exhaustively search over all candidate motifs allowing arbitrary 

don’t care positions but disallowing mismatches, then refine these motifs by allowing a 

limited amount of flexibility to model the almost invariant positions. We demonstrate 

that this seemingly restrictive motif definition is sufficiently powerful by showing that 

the performance of this algorithm is comparable to the best existing motif finding 

algorithms on a large benchmark set of samples. 
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A software program implementing these approaches (MotifEnumerator) is available at 

http://faculty.cs.tamu.edu/shsze/motifenumerator. 

 

A. Introduction 

 

There are roughly two types of general purpose motif finding algorithms. The first type 

includes sample driven approaches which identify the locations of the motif occurrences 

directly. The second type includes pattern-driven approaches which take advantage of 

the assumption that a motif can be specified by a central pattern and use it to reduce the 

search space. Although the sample-driven approach has more freedom to choose suitable 

statistical models (Stormo and Hartzell 1989; Lawrence et al. 1993; Bailey and Elkan 

1994; Hughes et al. 2000; Workman and Stormo 2000; Thijs et al. 2001), the search 

space is usually so large that it is not possible to guarantee that the optimal motif is 

found unless the motif is very short (Leung and Chin 2005). In contrast, by assuming 

that a central string (in the DNA four-letter alphabet) can be used to describe the motif, it 

is possible for a pattern-driven approach to perform an exhaustive search over all 
l

4  

candidate motifs for a moderately large motif length l and guarantee that the optimal 

motif is found (Queen et al. 1982; Waterman et al. 1984; Staden 1989; Pesole et al. 1992; 

Wolfertstetter et al. 1996; van Helden et al. 1998; Tompa 1999).  

 

A straightforward algorithm for the pattern-driven approach takes )4( lknO l  time, where 

k  is the number of sequences, n  is the length of each sequence and l  is the motif length, 
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thus this strategy is feasible only for small l . By considering only candidate motifs that 

are at most d  substitutions away from a string appearing in the sample, an extended 

pattern-driven approach has been proposed to reduce the number of candidate motifs 

from 
l

4  to less than kn
d

l
d

4







  (Waterman et al. 1984; Galas et al. 1985), and the 

reduction is significant when  d   is small relative to l . To further reduce the running 

time, another class of tree-based pruning techniques have been proposed (Marsan and 

Sagot 2000; Pavesi et al. 2001; Eskin and Pevzner 2002).  Fraenkel et al. (1995) 

proposed to combine short candidate patterns to form longer patterns, while many 

approaches make use of the given maximum distance d  to develop heuristics that 

guarantee a high probability of finding the best motif (Buhler and Tompa 2002; Keich 

and Pevzner 2002; Price et al. 2003). 

 

A common weakness of these approaches is that they either do not improve the worst 

case time complexity of the straightforward algorithm or they cannot guarantee that the 

optimal motif is found.  We have developed an improved pattern-driven algorithm that 

guarantees that all statistically significant motifs are found in )4( lkO l  time. This 

algorithm is similar to the original pattern driven algorithm in exploring all 
l

4  candidate 

motifs of length l , but with the important difference that its time complexity is 

independent of the length of each sequence n  (for large enough l ), thus saving a factor 

of n  in time complexity over the original pattern-driven approach. This is a significant 

improvement since n  can be as large as 2000 and is at least 200 or 300 in many 
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promoter finding applications. The proposed algorithm extends the power of the pattern-

driven approach to find all significant motifs of length around 12 or 13 (from the original 

limit of around 10). It can also be adapted to handle the case when a maximum distance 

d  is given between a motif and its occurrences. 

 

We further extend this strategy to allow arbitrary don’t care positions within a motif 

without much decrease in solvable values of l . This is in contrast with many previous 

approaches that place various constraints on the don’t care positions: Rigoutsos and 

Floratos (1998) imposed a constraint on the density of don’t care positions and 

developed an algorithm to identify protein motifs, while Apostolico and Parida (2004) 

imposed maximality and irredundancy constraints on motifs and gave an algorithm to 

solve the problem in cubic time when mismatches are not allowed. Although these 

algorithms can find very long motifs, a common weakness is that a large number of 

statistically significant motifs may be missed due to the constraints. Apart from these 

algorithms, many other approaches identify sets of composite motifs that are separated 

by a variable number of don’t care positions, but do not allow don’t care positions within 

each individual motif (Marsan and Sagot 2000; van Helden et al. 2000; GuhaThakurta 

and Stormo 2001; Liu et al. 2001; Eskin and Pevzner 2002). 

 

We allow arbitrary don’t care positions within a motif and test our algorithm on a large 

set of yeast samples constructed from co-expressed gene clusters from Tavazoie et al. 

(1999). From the results, we observe that most biological motifs have many invariant or 
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almost invariant positions and these positions can be used to define the motif while 

ignoring the other positions. This motivates the following two-stage strategy: first use an 

lknl2  algorithm to exhaustively search over all candidate motifs allowing don’t care 

positions but disallowing mismatches, then refine these motifs by allowing a limited 

amount of flexibility to model the almost invariant positions. With the much smaller 

exponential factor in the time complexity, this algorithm extends the solvable values of 

l substantially to around 20 while retaining most of the original sensitivity. We 

demonstrate that this seemingly restrictive motif definition is sufficiently powerful by 

showing that the performance of this algorithm is comparable to the best existing motif 

finding algorithms on a large benchmark set of samples from Tompa et al. (2005). 

 

B. Problem Formulation 

 

Our formulation makes a few simplifying assumptions: the central string is in the DNA 

four-letter alphabet and mutations occur at random positions within a motif. There are 

other approaches that do not have these restrictions, including those that use more 

general alphabets or profiles to represent a central pattern (Sinha and Tompa 2000; Price 

et al. 2003; Eskin 2004; Kel et al. 2004; Leung and Chin 2005) and those that take into 

account correlated positions within a motif (Barash et al. 2003; Zhou and Liu 2004). 

 

We first give a formulation that allows mismatches but does not allow don’t cares. Let 

{ }S s s s
k

= 1 2, , ...,  be a sample of k  sequences each of length n  and let l  be the 



 

 

17 

length of a motif s . We put A and T together in a group and G and C together in another 

group. Let a  be the number of A or T in s (thus l a−  is the number of G or C in s). Let 

p1  be the probability of finding an A in the sample (which is the same as the probability 

of finding a T), and let p2  be the probability of finding a C in the sample (which is the 

same as the probability of finding a G). The probability of s  occurring with up to d  

substitutions at a given position of a random sequence is given by  

 

where j  counts the number of substitutions within A or T positions while i  counts the 

total number of substitutions. To compute the p-value for s , denote the distance between 

s  and sequence si  by { }d s s d s s s si i( , ) min ( , ' ) ' ,= ∈  where s'  is a string of length l  

appearing in s
i
 and d x y( , )  is the distance (number of substitutions) between two 

strings x  and y  of length l . Fix a maximum distance d  and let k '  be the number of 

sequences s
i
 with d s s di( , ) .≤   The  p-value of s  with respect to d  is given by 

 

which is an estimate of the probability of s  occurring at least once with up to d  

substitutions in at least k '  sequences when complex correlations between overlapping 

patterns are ignored. Note that, for simplicity, this equation only takes into account at 

most one motif occurrence in each sequence. We then estimate the e-value of s  with 

respect to d  by 
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This equation ignores differences in the nucleotide composition of motifs which may not 

have comparable values of a , d  and k '  (but still takes into account the background 

nucleotide distribution) and assumes that p l a d k( , , , ' )  is the probability one wishes to 

attain for all motifs of length l . The above equations are generalizations of the equations 

in Buhler and Tompa (2002) to allow for biased background distribution and some of the 

sequences not having a motif occurrence. We define the e-value of s  to be the minimum 

e-value over all d . The goal of the motif finding problem is to find all motifs s  with e-

value below a cutoff, and the occurrences of s  are defined by finding the value of d  

that minimizes the e-value of s  and recovering all occurrences in the sample that are 

within distance d  of s  (there can be more than one occurrence in some sequences). In 

difference from many other approaches that assume that d  is given in advance (Marsan 

and Sagot 2000; Pevzner and Sze 2000; Pavesi et al. 2001; Buhler and Tompa 2002; 

Eskin and Pevzner 2002; Keich and Pevzner 2002; Price et al. 2003), our formulation 

does not assume that a fixed d  is given and will automatically find the best value of d  

for each motif s  independently.  

 

To allow for don’t care positions within a motif s , let l  be the length of s  and l '  be the 

number of positions within s  that contain a nucleotide character (i.e., there are l l− '  

don’t care positions). A string s'  of length l  that appears in the sample is defined to be 

an occurrence of s  if the total number of substitutions within these l '   positions is at 
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most d  while ignoring the other l l− '  don’t care positions. To estimate the statistical 

significance of a motif s , the p-value of s  with respect to d  is given by 

 

where p l a d( ' , , )  is the same as before with l '  substituting l . Since there is no need to 

allow don’t cares at the two ends of s , the e-value of s  with respect to d  is given by 

 

To allow don’t cares while not allowing mismatches, simply set d = 0  in the above 

equations. Note that the notion of don’t cares we use here is very different from the one 

in Buhler and Tompa (2002) since they used don’t care positions to randomize their 

search procedure rather than defining motifs. 

 

C.  Algorithm when Mismatches are Allowed 

 

We first develop an improved pattern-driven algorithm that allows mismatches but does 

not allow don’t cares. The original pattern-driven approach considers each candidate 

motif in turn and looks for its occurrences by comparing it to every string of length l  in 

the sample. To avoid these extensive comparisons, we encode each nucleotide by two 

bits and create an array D of size 4
l
 and a queue Q of size 4

l
. Our algorithm consists of 

two stages: the first stage computes all d s si( , )  between each candidate motif s  and 
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each sequence si  (to be stored in D and reused for each i ). We accumulate this 

information in another 4
l

l×  array N which stores for each candidate motif s , the 

number of times that d s s di( , ) =  for each d . The second stage computes the e-value of 

each candidate motif s  from N. The first stage iterates over each sequence si  and starts 

by initializing all values in D to l  (Figure 2.1). For each string s appearing in si , set D(s) 

to 0 and insert s  into Q. Repeat the following procedure that employs a depth-first 

search strategy: remove the first element s  from Q and generate all neighbors s'  of s  

that are one substitution away from s . For each s' , if D s D s( ' ) ( )> +1 , update D s( ' )  to 

D s( ) + 1 and add s'  to Q (Figure 2.1). It is easy to see that when Q becomes empty, we 

have D s d s si( ) ( , )=  for all s . It is easy to see that it takes ( 1+− ln ) time to find all 

substrings in si  and takes at most ( ll 34 ⋅ ) to process all possible elements from Q,  as 

each s  appears at most once in Q and there are l3  strings that are one substitution away 

from s . Thus the total time to process each sequence si  is )4()341( lOlln ll
=⋅++− , 

assuming that n
l

< 4 . As the processing of each sequence si  is completed, the values in 

D(s) are transferred to N. The second stage uses the values in N to compute the e-value 

of each candidate motif s (Figure 2.1). Since the binomial coefficients and the 

probability values can be preprocessed and stored in such a way that each e-value 

e l a d k( , , , ' ) can be obtained in constant time and the preprocessing time is negligible 

(polynomial in n  and l ), the entire procedure takes O lkl( )4  time and O ll( )4  space 

when l  is large enough. Note that the assumption n
l

< 4 is easily satisfied: with n  as 

large as 2000, only l > 5 is needed. 
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When implemented carefully, it is possible to store all the arrays in 4G memory when l  

is 12 or 13 (which works on 32-bit systems). To further save memory, observe that since 

the values of D(s) in Q are increasing, we can eliminate Q and replace it by a loop that 

generates neighbors s'  only for those s  with D s j( ) = −1  in iteration j . This strategy 

does not change the time complexity since neighbors are generated for at most 4
l
strings 

over l  iterations. Also, our approach can scan through all candidate motifs of length at 

most l  with not much increase in running time (at most 4/3 times longer) when 

compared to checking only one l . In difference from many other approaches, there is no 

implicit restriction on the minimum number of motif occurrences or on the maximum 

   

 
Figure 2.1: Algorithm MotifEnumerator for finding the e-values of all candidate motifs s 

of length l  when mismatches are allowed but don’t cares are not allowed. 
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distance d  between a motif and its occurrences. The algorithm explores all the 

possibilities to guarantee that the motif with the best e-value is found. When d  is given, 

the above procedure can be used to implement the extended pattern-driven approach by 

stopping the first stage when the first element s  in Q has D s d( ) =  for each sequence s
i
, 

resulting in a saving of a factor of n  over the straightforward approach. Note that our 

neighbor generation process is similar to the one in Blanchette et al. (2002) except that 

their computation is based on a phylogenetic tree. Our procedure also has some 

similarity to the one in Price et al. (2003) except that our approach is exact and their 

approach is a heuristic. 

 

We extend our algorithm to allow arbitrary don’t care positions within a motif s . Since 

there is no need to allow don’t cares at the two ends of s , a straightforward algorithm to 

enumerate all possible s  of length l  uses an array D of size 4 5
2 2l−

 to represent each s . 

For each sequence si , consider each string s'  that appears in si   and set D s( ) = 0  for 

each of the 2
2l−
 possible strings s  that can be generated from s'  while allowing don’t 

care positions. Then proceed in the same way as before while ignoring don’t care 

positions during the neighbor generation process, resulting in an algorithm that takes 

O lkl( )5  time and O ll( )5  space. Alternatively, the following algorithm only needs 

O ll( )4  space while having the same time complexity: for each value of s'  and each way 

of choosing l '  positions from l  positions (while always choosing the two end positions), 

treat each string of length l  with l '  chosen positions as a string containing only the l '  

chosen positions and apply the original procedure on strings of length l ' . Its time 
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complexity can be estimated more precisely as O
l

l
l k

l

l

l
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1
 When l  is small 

(e.g., l  ≤ 12), the running time to consider motifs of length at most l  with don’t cares 

is similar to the original algorithm that considers motifs of length at most l +1 without 

don’t cares, thus the modified strategy does not have a large effect on solvable values of 

l  ( l ≤ 11 or 12 are solvable in reasonable time). 

 

D. Algorithm when Mismatches are Not Allowed 

 

We first give an algorithm that takes O lkn( )  time and space when both mismatches and 

don’t cares are not allowed. Under these assumptions, each string s  of length l  that 

appears in the sample represents a candidate motif. We store these strings in a tree T of 

height l  so that each s  is represented by a path of length l  from the root. Each internal 

node t  of T can have at most four children t c. , one for each character c  of the DNA 

alphabet, with the path from the root to t  representing a prefix of one or more motifs; 

while each leaf node t  of T represents a unique motif s , with t k. '  denoting the number 

of sequences that s  occurs in (only at most one occurrence is counted in each sequence) 

and t i.  denoting the sequence number of the previous occurrence of s  during the tree 

construction (Figure 2.2). To allow for arbitrary don’t care positions, for each value of l '  

and each way of choosing l '  positions from l  positions (while always choosing the end 

positions), treat each string of length l  with l '  chosen positions as a string containing 

only the l '  chosen positions and build a tree T of height l ' .  
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The entire procedure takes O lknl( )2  time and O lkn( )  space, thus by disallowing 

mismatches, we extend the solvable values of l  to around 20 (from around 12 when 

mismatches are allowed). Also, our approach can scan through all candidate motifs of 

length at most l  with not much increase in running time (at most twice longer) when 

compared to checking only one l . Although the above procedure can be quite successful 

in identifying core motif occurrences, the requirement that each occurrence must be 

exactly the same except for the don’t care positions is very strict, thus it is likely that 

some motif variants are missed. We use the following strategy to allow for a limited 

number of mismatches while avoiding the introduction of many false positives: let s  be 

a motif of length l  with m occurrences o om1,...,  each of length l  (there can be more 

than one occurrence in some sequences). We construct a refined motif s'  as follows: for 

each position j , if there exists a nucleotide character c  such that its total frequency at 

the jth position within the m  occurrences is more than m / 2 , set the jth character of s'  

to c , otherwise set it to a don’t care character (note that c  is uniquely defined if it 

exists). Let d d s o i m
i

' max{ ( ' , ) },= ≤ ≤1  where the don’t care positions in s'  are ignored 

to c , otherwise set it to a don’t care character (note that c  is uniquely defined if it 

exists). Let d d s o i m
i

' max{ ( ' , ) },= ≤ ≤1  where the don’t care positions in s'  are ignored 

when computing distances. We define the occurrences of s'  to be all strings of length l  

that appear in the sample and are within distance d '  of s' . Note that this new set of 

occurrences of s'  must include the original occurrences of s . 
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E. Performance 

 

1. Yeast Test Samples 

 

To show that our model is reasonable and the e-values are comparable over different 

motif lengths, we first test our algorithm MotifEnumerator on artificial samples with 20 

sequences each of length 600 containing an (l, d)-motif (Pevzner and Sze 2000), which 

is a motif of length l  with d  substitutions between the motif and its occurrences. In 

each case, we check all candidate motifs of length at most 12 with no implicit 

assumption on the minimum number of motif occurrences in very difficult (8, 2)-, (10, 

2)- and (12, 3)-motifs. In each case, the motif found was always of the correct length and 

 

Figure 2.2: Algorithm MotifEnumerator for finding the e-values of all candidate 

motifs s of length l  when both mismatches and don’t cares are not allowed. 
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the correct motif always had the best e-value. To ensure that MotifEnumerator can 

identify biological motifs, we test it on a large set of yeast samples constructed from co-

expressed gene clusters from Tavazoie et al. (1999) and compare our results with those 

in Tavazoie et al. (1999) and Hughes et al. (2000). To allow for samples having 

sequences of similar but unequal lengths, we use the average sequence length to 

approximate n . To allow for motifs to appear in the reverse complementary direction, 

we assume that each sequence s
i
 is twice as long including both the forward and the 

reverse complementary sequences and replace the term n l− +1  by 2 1( )n l− +  in the p-

value formulas. We further preprocess each input sample by removing low complexity 

repeats using very simple rules. To find a set M of suboptimal motifs that are sufficiently 

different from each other, we first discard all motifs with e-value above a cutoff. With M 

initially empty, consider each remaining motif s  in increasing order of e-value and 

repeat the following: add s  to M if there are no overlaps between its occurrences and 

any motif occurrences already in M. 

 

This procedure finds a set of suboptimal motifs in one single run and it takes negligible 

time when compared to the previous stage since not many candidate motifs remain after 

the e-value cutoff is applied. For each cluster in Tavazoie et al. (1999), we extract 

upstream sequences of length 600 resulting in a total of 30 samples, each having from 50 

to 200 sequences with a nucleotide bias of around 60% A or T and 40% G or C. We run 

our algorithm MotifEnumerator over all motif lengths l ≤ 12  and allow motifs to appear 

in the reverse complementary direction. The running time ranges from hours for the 
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smaller samples to days for the larger samples. Table 2.1(a) shows all strong motifs 

found, while Table 2.1(b) shows a small subset of weaker motifs that are known 

biological motifs. Our algorithm found almost all the motifs in Tavazoie et al. (1999) 

and was able to identify an extra Rpn4 motif that is absent in their paper (although its e-

value is not very low, it appears in more than 20 sequences). This motif was identified in 

Hughes et al. (2000) when a different strategy of grouping genes by common names was 

used to construct samples. Some of the motifs were found in a different cluster from the 

one specified in Tavazoie et al. (1999), including M14a (found in cluster 2) and M4 

(found in cluster 16). Although they did not find any motifs in cluster 16, we found 

variants of M3a/M4 and M3b in cluster 16. Two motifs listed in their paper were 

missing from our results, including M14b and STRE that have repeating letters and were 

probably eliminated during the removal of low complexity repeats. 

 

One important observation from Table 2.1 is that for almost all the motifs found, the 

maximum distance d  that minimizes the e-value was 0. The only strong motif found in 

Table 2.1(a) with d = 1was Rap1, but another variant of it was also found with d = 0 . 

Two motifs M1a and Rpn4 were found in Table 2.1(b) with d = 1 , but they are very 

weak and may not be distinguishable from noise.  This suggests that the most biological 

motifs can be represented accurately by invariant or almost invariant positions within the 

motif, which motivates an alternative formulation that disallows mismatches when 

arbitrary don’t cares are allowed. With this restriction, the problem becomes easier to 

solve and longer motifs can be considered. To improve the sensitivity in finding 
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plausible motif occurrences, a limited number of mismatches can be allowed by adding a 

post-processing step to refine the initial motifs. 

 

Table 2.1: Performance of MotifEnumerator on 30 samples constructed from co-

expressed yeast gene clusters from Tavazoie et al. (1999). (a) All strong motifs 

found by MotifEnumerator on 30 samples constructed from co-expressed yeast gene 

clusters from Tavazoie et al. (1999). These motifs appear in at least 10 sequences 

with e-value below 10−5, where cl# denotes the cluster number, d denotes the 

maximum distance (between a motif and its occurrences) that minimizes the e-value, 

and don’t care positions are denoted by ‘-’. All these motifs correspond to known 

biological motifs, as shown in notes. (b) A small subset of weaker motifs that are 

known biologically. Some of these motifs have higher e-values than over 10 other 

non-overlapping candidate motifs within the same run (these suboptimal motifs do 

not overlap with each other). M3a/M4 and Cbf1p appear in less than 10 sequences.  



 

 

29 

2. Tompa Benchmark Test Samples 

 

We test the no-mismatch version of MotifEnumerator on a large benchmark set of 

samples from Tompa et al. (2005), each having up to 35 sequences with sequence 

lengths ranging from 500 to 3000. Since many biological motifs in the test set contain 

moderately repeating patterns, we use a less extensive procedure than before to remove 

low complexity repeats that include single-nucleotide repeats of length at least six, two-

nucleotide repeats with at least four repeating units, and three-nucleotide repeats with at 

least three repeating units, with no mismatches allowed within the repeats. We run 

MotifEnumerator over all motif lengths l ≤ 20  and look for motifs only on the forward 

strand. In each case, the refined occurrences of the top motif with e-value below 1.0 are 

used for evaluation (it is possible that no motif is found). The running time ranges from 

hours for the smaller samples to days for the larger samples. Table 2.2 shows the 

performance of MotifEnumerator on both the mixed set of samples that was assessed in 

Tompa et al. (2005) and on the original three sets of samples of type real, generic and 

markov from which the mixed set is derived but were not assessed in Tompa et al. 

(2005).  

 

On the mixed set, the overall performance of MotifEnumerator (with nCC=0.067) was 

roughly comparable to algorithms assessed in Tompa et al. (2005) that had overall 

performance ranging from above average to near-best, including AlignACE (Hughes et 

al. 2000) with nCC=0.068, MotifSampler (Thijs et al. 2001) with nCC=0.068, MEME 
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(Bailey and Elkan 1994) with nCC=0.073, Oligo/Dyad (van Helden et al. 1998; van 

Helden et al. 2000) with nCC=0.071, and ANN-Spec (Workman and Stormo 2000) with 

nCC=0.074. Only two algorithms definitely performed much better, including YMF 

(Sinha and Tompa 2000) with nCC=0.084 and Weeder (Pavesi et al. 2001) with 

nCC=0.156. Within the mixed set, MotifEnumerator followed a similar trend as most 

other algorithms, with better performance on samples of type generic and markov and 

worse performance on samples of type real.  

 

In particular, on samples of type real, MotifSampler (Thijs et al. 2001) with nCC=0.076 

and Weeder (Pavesi et al. 2001) with nCC=0.077 performed best among all the assessed 

algorithms, while YMF (Sinha and Tompa 2000) with nCC=0.013 performed much 

worse than MotifEnumerator with nCC=0.046. Overall, Weeder (Pavesi et al. 2001) had 

the best performance that was much higher than all the other assessed algorithms. When 

the samples were  categorized  by the  organism from which the upstream  sequences are 

obtained, MotifEnumerator also followed a similar trend as most other algorithms, with 

the best performance on yeast samples, medium performance on human and mouse 

samples and worst performance on fly samples. 
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Table 2.2: Performance of MotifEnumerator on benchmark test samples from 

Tompa et al. (2005) when arbitrary don’t care positions are allowed but mismatches 

are not allowed. Each entry represents the nucleotide-level correlation coefficient 

(nCC) computed by comparing the refined occurrences of the top motif returned 

from MotifEnumerator (if one exists) to the known annotation in each sample and 

treating a subset of samples as if it was a single large sample. Each row represents a 

set of 56 samples (except for the set of type real, which contains 52 samples). Each 

set of type real, generic or markov contains motifs corresponding to one 

transcription factor with a particular type of background sequences. Tompa et al. 

(2005) did not perform assessments directly on these sets, but constructed another 

set of type mixed with 56 samples by picking one background type for each 

transcription factor (out of a total of two or three possibilities) so that samples within 

this set may have different background types. Assessments were performed only on 

this mixed set in Tompa et al. (2005), which corresponds to the row and the column 

labeled mixed, while ignoring the other 108 samples from the original sets. Each set 

is further subdivided into four subsets according to the organism from which the 

upstream sequences are obtained (except for the mixed subset, which contains 

samples of a particular type within the entire mixed set). 
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We also analyze the performance of MotifEnumerator on the original three sets of 

samples of type real, generic and  markov from which the  mixed set is derived.  Each of  

these original sets contains about the same number of samples as the entire mixed set 

(Table 2.2). The most noticeable advantage of MotifEnumerator is that similar overall 

performance was obtained across all these original sets with distinct background types 

and thus MotifEnumerator does not seem to be affected much by differences in the 

background sequences. Also, there was a significant increase in the performance of 

MotifEnumerator on the fly samples within the real set, which is mainly due to a strong 

result on the dm01r sample (this sample was not assessed in Tompa et al. (2005)). 

Interestingly, Tompa et al. (2005) also reported that MotifSampler (Thijs et al. 2001) had 

similar performance over different background types within the mixed set and 

SeSiMCMC (Favorov et al. 2005) had strong performance on the fly samples within the 

mixed set (although SeSiMCMC (Favorov et al. 2005) had weak overall performance). 

 

F. Discussion 

 

Since allowing mismatches may still provide better sensitivity in some cases, both 

variants of MotifEnumerator are useful in different situations. The main advantage of 

allowing mismatches is that a one-step process can be used to guarantee that the optimal 

motif is found while automatically allowing appropriate variations if the resulting 

statistical evaluation is favorable. The time complexity of our algorithm contains an 

exponential factor and is independent of the length of each sequence n for large enough 
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l . Thus it is useful in most situations when the goal is to identify the conserved core 

region of a promoter. 

 

When mismatches are not allowed, the search space is much smaller and it becomes 

possible to develop an algorithm with a much smaller exponential factor in the time 

complexity that only needs polynomial space instead of exponential space, thus allowing 

longer motifs to be considered while still guaranteeing that the optimal motif pattern is 

found. Although the tests above show that the algorithm is not very fast when l  is 

around 20, it is extremely fast when l  is small. For example, it takes seconds to run the 

algorithm for the smaller samples in Tompa et al. (2005) and minutes to hours for the 

larger samples over 10≤l or 12. To avoid missing important motif occurrences, an 

additional step has been introduced to find plausible motif occurrences while allowing 

limited mismatches. Although we have used a strict definition in this step to avoid 

introducing many false positives, it is also possible to use less strict definitions to allow 

more occurrences to be identified. In spite of the seemingly restrictive motif definition in 

disallowing mismatches initially, our algorithm does not seem to lose much sensitivity 

when compared to most other algorithms assessed in Tompa et al. (2005) that use more 

general motif models. Only Weeder (Pavesi et al. 2001) consistently performed much 

better than MotifEnumerator in almost all situations. 

 

To further improve the algorithms, it may be desirable to allow a small amount of 

overlaps among suboptimal motif occurrences to avoid missing motifs. It is also 
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important to develop more accurate statistical formulas for samples that do not have 

sequences of similar lengths and for motifs with more than one occurrence per sequence. 

This has to be done very carefully since assigning scores that correspond to many 

occurrences on a sequence may not necessarily lead to an increase in sensitivity due to 

the larger flexibility that allows many other candidate motifs to have better scores. To 

further improve performance, it may be desirable to incorporate genome-specific 

information by using the overall genome nucleotide distribution, probably only in the 

non-coding regions, to serve as the background distribution. In many situations, there 

may be a need to find motifs that are significant in one sample but not in the other. This 

can be addressed by extracting motifs in one sample that have a good likelihood ratio 

with respect to another negative sample. 
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CHAPTER III 

ALGORITHMS BASED ON SKIPPING NONCONSERVED POSITIONS IN 

BACKGROUND MARKOV CHAINS 

 

One strategy to identify transcription factor binding sites is through motif finding in 

upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts, 

none of the existing algorithms perform very well. We consider a string representation 

that allows arbitrary ignored positions within the non-conserved portion of single motifs, 

and use )2( lO  Markov chains to model the background distributions of motifs of length 

l  while skipping these positions within each Markov chain. By focusing initially on 

positions that have fixed nucleotides to define core occurrences, we develop an 

algorithm that is efficient enough to identify motifs of moderate lengths. We compare 

the performance of our algorithm to other motif finding algorithms on a few benchmark 

data sets, and show that significant improvement in accuracy can be obtained when the 

sites are sufficiently conserved within a given sample, while comparable performance is 

obtained when the site conservation rate is low.  

 

A software program implementing this method (PosMotif) is available at 

http://faculty.cse.tamu.edu/shsze/posmotif. 
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A. Introduction 

 

One important application of motif finding is the identification of transcription factor 

binding sites from upstream DNA sequences of potentially co-regulated genes, in which 

the most popular approaches either represent a motif by a positional weight matrix and 

use statistical optimization techniques to identify the most overrepresented patterns 

(Stormo and Hartzell, 1989; Lawrence et al.,1993; Bailey and Elkan, 1994; Thijs et al., 

2001), or represent a motif by a string and use combinatorial techniques to identify 

frequent patterns (Queen et al., 1982; Waterman et al., 1984).  

 

In addition to using information from the given upstream sequences, recent approaches 

utilize additional information, including the use of evolutionary relationships between 

orthologous upstream sequences through the phylogenetic footprinting technique 

(Blanchette et al.., 2002), the inclusion of negative samples to define discriminative 

motifs (Sinha, 2003), and the use of binding energy models and structural knowledge 

(Kaplan et al., 2005; Leung et al., 2005). To investigate the relationships between motifs, 

the single motif finding problem has also been generalized to the identification of 

composite motifs and cis-regulatory modules (Marsan and Sagot, 2000; van Helden et al., 

2000; GuhaThakurta and Stormo, 2001; Liu et al., 2001; Eskin and Pevzner, 2002).  

 

While most approaches that use the string representation either allow mismatches 

(Pevzner and Sze, 2000; Pavesi et al., 2001; Buhler and Tompa, 2002) or use degenerate 
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letters (Sinha and Tompa, 2002; Peng et al., 2006), other approaches also allow positions 

within a motif to be ignored, either by allowing spacers between motif segments (Sinha 

and Tompa, 2002) or by imposing density constraints to restrict the number of ignored 

positions (Wijaya et al., 2007). To improve motif finding accuracy, recent approaches 

incorporate nucleotide dependencies within motifs (Barash et al., 2003; Zhou and Liu, 

2004; Chin and Leung, 2008).  

 

We consider a string representation that allows arbitrary ignored positions within the 

nonconserved portion of single motifs of length l . For each combination of ignored 

positions, we use aMarkov chain to model the background distribution while skipping 

these positions, resulting in a total of )2( lO  Markov chains that can model long range 

nucleotide dependencies. This approach is more general than using a single positional 

weight matrix or using a single string to model a motif. 

 

To obtain an algorithm that is efficient enough to identify motifs of moderate lengths, we 

focus initially on positions that have fixed nucleotides to define core occurrences. This is 

based on the biological motivation that there are often almost invariant positions that are 

critical for the binding process. While most approaches do not specifically take 

advantage of these positions, our model tries to capture them within positions that are 

not ignored.  
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We compare the performance of our algorithm to other motif finding algorithms on a 

few benchmark data sets, and show that significant improvement in accuracy can be 

obtained even without extensive post processing when the sites are sufficiently 

conserved within a given sample, while comparable performance is obtained when the 

site conservation rate is low. We also perform additional post processing to improve the 

modeling of motifs. 

 

B. Problem Formulation 

 

We represent a motif of length l  by a string lsssS L21=   in the alphabet {a,c,g,t,–}, 

where – represents an ignored position, with −≠1s  and −≠ls  . For a given sample S of 

sequences in the alphabet {a,c,g,t}, define the occurrences of s to be all strings of length 

l  in S that match s in all positions, where – matches any letter in {a,c,g,t}. Thus each 

ignored position represents a potentially non-conserved position that is ignored in the 

motif modeling (see Figure 3.1 for an example motif that is represented by the string s = 

cgg----ct-t-g--cg). 

 

For a particular combination of ignored positions within a string of length l  out of 

)2( lO  possibilities, we construct an m th order Markov chain M by skipping these 

positions. For each string s of length l , let 
'21'21 ''''

liiil sssssss LL == be the string of 

length 'l  obtained from s by removing the ignored positions. Define the set of states of 

M as 
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and create a transition from the state )'''( 2111 mmjjj wwwsss LL =−++  to the state 

)'''( 13221 ++++ = mmjjj wwwsss LL . 

 

We can visualize M as a leveled structure in which each row represents all states with 

the same w and the j th column represents the j th level that contains all states with the 

same j  (see Figure 3.2). For a given background sample BS of sequences in the alphabet 

{a,c,g,t} and the association 1211 ''' +++ = mmjjj wwwsss LL , we estimate the transition 

probabilities by 

∑
∈
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where 
11 −++ mjjj iii sss L  is a substring of the original string s that includes the ignored 

 
 

 

Figure 3.1: Example of representing four occurrences of the Gal4 binding site in the 

yeast sample yst02r from Tompa et al. (2005) by a motif with eight ignored 

positions (represented by -). The known consensus of the Gal4 binding site is 

cggnnnnnnnnnnnccg (Sinha and Tompa 2002). 
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positions. Note that when ignored positions are not allowed, this Markov background 

model is similar to the one used by other motif finding algorithms (Bailey and Elkan, 

1994; Pavesi et al.., 2001; Thijs et al., 2001; Sinha and Tompa, 2002). 

 

 

Figure 3.2: Illustration of a 2nd order Markov chain M for strings of length l  with 

5' =l  positions that are not ignored, represented by 521 ''' sss L  after removing the 

ignored positions. The states of M are of the form ( wss jj =+1'' ), with the jth row 

representing the jth level that contains all states with the same j and each column 

representing all states with the same w. Each column is labeled by a particular 

combination of values of js'  and 1' +js  as 
1+jj ii ss L , with potentially different number of 

ignored positions between them in the original string 
l

ssss L21=  for different  j. 
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Let S be a sample of k  sequences each of length n  that represent upstream DNA 

sequences of potentially co-regulated genes. By ignoring correlations between 

overlapping occurrences, we estimate the probability of s occurring at a given position of 

S by 

 

and 
mm iiii ssss 11111 −+ L   is a substring of s that includes the ignored positions. The 

probability of s occurring at least 'n  times in a sequence is estimated by 

 

Let 'k  be the number of sequences that s occurs at least 'n  times. We estimate the P-

value of s by the probability of s occurring at least 'n  times in at least 'k  sequences as  

 

Since positions at the two ends of s are never ignored, we estimate the E-value of s by 

 

By assuming that )',',( knsP  is the probability to be attained for all motifs of length l  

that have 'l  positions that are not ignored, this equation allows direct comparison of 

motifs. To allow for samples having sequences of similar but different lengths, we use 

the average sequence length to approximate n . The goal is to identify all motifs s with 
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E-value below a cutoff over all combinations of ignored positions and different 

parameters l and 'n .  

 

C. Algorithms 

 

1. Pre-processing 

 

Given a sample BS containing background sequences, we first perform preprocessing so 

that the transition probabilities can be efficiently computed. Given string length l  and 

Markov order m , we compute and store the number of occurrences of all strings of 

length p  from 1 to l  in BS with 1+m  positions that are not ignored, by considering 

each combination of 1−− mp  ignored positions among p  positions and scanning over 

all strings s of length p  that appear in BS. We remove the ignored positions from s to 

obtain a string 's  of length 1+m , and update the number of occurrences of 's  that 

represents the number of occurrences of the corresponding string of length p  before 

removing the ignored positions (Figure 3.3). 

 

Given a sample S, by ignoring small differences in occurrences around sequence starts 

and ends, the initial portion of the probability )(sP  of a string 
l

ssss L21=  of length l  

occurring at a given position of S can be estimated by using the approximation 
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where 
'21'21 ''''

liiil sssssss LL == is the string of length 'l  obtained from s by removing 

the ignored positions. This simplifies the procedure since there is no need to compute 

)'''( 21 m
sssP L   while )'''( 121 +m

sssP L  and )'''|'''( 1121 −+++++ mjjjmjjj ssssssP LL  

for each j  can be computed from the number of occurrences of the stored strings.  

 

 

 
 

Figure 3.3: Algorithm to preprocess the background samples. 
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The procedure takes 
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space. Although the size of the background sample |BS| is large, it is practical since the 

Markov order m  is small. Note that the memory requirement is lower than the case 

)2( lO  when the Markov chains are constructed explicitly, and the number of 

occurrences computed can be reused when considering strings of length larger than l . 

 

2. Algorithm Based on Skipping Non-conserved Positions 

 

Given a sample S and string length l , we consider each combination of ignored 

positions among l  positions, and enumerate all motifs with these ignored positions by 

scanning over all strings s of length l  that appear in S and removing the ignored 

positions from s to obtain s′. We insert s′ into a search tree T, in which each motif is 

represented by a path from the root to a leaf, each internal node has at most four children 

that correspond to each letter in {a,c,g,t}, and each leaf represents a motif that may have 

multiple occurrences(see Figure 3.4). 

 

To avoid repetitive motifs that have excessive number of overlapping occurrences, given 

a motif s and a parameter 'n  that specifies the number of occurrences that are counted 

for each sequence, we let 'k  be the number of sequences that have at least 'n  non-

overlapping occurrences of s. Within each leaf of T, we compute 'k  during the tree 

construction by remembering the number of non-overlapping occurrences found so far in 
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a sequence and the location of the last occurrence. Although more accurate formulas for 

computing P-values are available for this non-overlapping model (Leung et al.,2005), 

they have high time complexity and we use our original overlapping approximation to 

compute P-values and E-values within each leaf of T. 

 

 

 
 

Figure 3.4: Illustration of the search tree T constructed for the sequence 

aagggaacagtc that stores all motifs of length 9 while ignoring the 2nd, 3rd, 5th 

and 8th positions, including the motifs a--g-aa-a, a--g-ac-g, g--a-ca-t and g--a-ag-

c that appear from the left to the right in the sequence. Each motif is represented 

by a path from the root to a leaf while skipping these positions. Each 

horizontally marked level has a corresponding level in Figure 3.2. 
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For each combination of ignored positions out of )2( lO  possibilities, it takes |)|( SlO  

time and space to construct the search tree T, where |S| is the sample size (Figure 3.5). 

For each of the |)(| SO  leaves that corresponds to one motif s, each of the )(lO  terms in 

the  P-value formula for )(sP   can be  obtained in  constant time from the preprocessing 

results. By computing the binomial coefficients and each term within the summation of 

the two P-value formulas recursively and obtaining the powers 1))(1( +−
−

lnsP  and 

 
 

Figure 3.5: The main PosMotif Algorithm to compute e-values of each candidate 

motif from the input samples. 
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knsP ))',(1( −  by a recursive halving approach, the P-values and the E-values of s can 

be computed in |)|log'( SknlO +++  time. Thus the overall time complexity of the 

entire algorithm is |))|log'(||2( SknlSO l
+++ , which is practical for l  up to 18 or 20 

and moderate sample size |S| (Figure 3.5). 

 

3. Post-processing 

 

We consider all motifs of different lengths up to a maximum l  from the main algorithm 

with E-value below a cutoff, and perform initial post-processing (Figure 3.6) by merging 

pairs of motifs with a shift of at most one starting position. While there exist two motifs 

with the same number of occurrences in each sequence and the starting position of each 

occurrence of one motif is one position before the starting position of each occurrence of 

the other motif, we merge the two motifs into one motif and set its E-value to the lower 

E-value among them. While there exist two motifs with the same number of occurrences 

and the same set of starting positions in each sequence, we remove the motif with the 

higher E-value. Note that the motifs that are merged do not need to have the same or 

similar lengths, and the motifs after merging may have length larger than l . 

 

To perform this step efficiently, we sort the motifs by the locations of their occurrences 

and investigate those that are close in locations. At the end, we sort the motifs in 

increasing order of the E-value and report them. Since not many motifs have low E-

values, the running time is small when compared to the main algorithm. Note that this 
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strategy is different from the one in Apostolico and Parida (2004) since we do not 

remove non-maximal motifs and do not impose density constraints. 

 

 

Since previous approaches show that additional post-processing such as using motif 

redundancy (Pavesi et al., 2001; Wijaya et al., 2007) can lead to improved accuracy, we 

follow Peng et al. (2006) and use a hybrid ranking strategy to perform further post 

processing (Figure 3.7). For each motif s from among the top r  motifs after the initial 

post processing step, we compute the number of neighboring motifs s′ of s with the 

 
 

Figure 3.6: Algorithm to post-process the prediction results by merging motifs of 

same occurrences or strictly consecutive occurrences.  
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cost of alignment between s and s′ below a cutoff, and add the occurrences of s′to s, 

with overlapping occurrences combined into one site. Note that these added occurrences 

are possibly of different lengths, resulting in a general motif model, and this step helps to 

remove our initial restriction that nucleotides must be fixed in positions that are not 

ignored. 

 

 

 
 

Figure 3.7: Algorithm to combine the redundant motifs from the results after the 

initial post-processing step.  
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We compute two different ranks for each motif s, including rank1(s), which is the rank 

of s (between 1 and r ) when the motifs are sorted in decreasing order of the number of 

neighboring motifs, and rank2(s), which is the rank of s (between 1 and r ) when the 

motifs are sorted in increasing order of the E-value, and sort the motifs in increasing 

order of the hybrid rank rank(s) =rank1(s) + rank2(s). To avoid the situation in which all 

top motifs are very similar, for each motif s, we remove all motifs 's  with worse rank 

when the percentage of neighbors shared by s and 's  with respect to s is above a cutoff. 

 

D. Performance 

 

1. Experiment Setups and Evaluation Criteria 

 

For our algorithm, we consider two variants, including PosMotif1, which combines 

algorithm PosMotif with algorithm PostProcess that performs initial post processing, and 

PosMotif2, which combines algorithm PosMotif with algorithms PostProcess and 

PostProcess2 that perform both initial and further post processing. We compare our 

performance to YMF (Sinha and Tompa, 2002), which uses a statistical approach that 

performs very well on samples of type mixed from Tompa et al. (2005), to MEME 

(Bailey and Elkan, 1994), which is one of the most popular motif finding algorithms that 

use the expectation maximization strategy, to MotifSampler (Thijs et al., 2001), which 

uses a Gibbs sampling strategy that performs very well on samples of type real from 



 

 

51 

Tompa et al. (2005), and to Weeder (Pavesi et al., 2001), which uses a combinatorial 

approach that has the best accuracy as assessed by Tompa et al. (2005). 

 

For each algorithm, we use the default parameters as much as possible.  We follow Sinha 

and Tompa (2002) and run YMF over motif lengths from 6 to 10, allowing for at most 

two degenerate symbols and at most 11 spacers for motifs of length 6 and no spacers for 

motifs of length larger than 6, while using a 3rd order Markov background constructed 

from upstream sequences of entire species. We further use FindExplanator from YMF to 

extract independent motifs for each length, and sort these motifs of different lengths by 

z-score while extracting occurrences on both strands.  

 

We run MEME with the anr option, with motif lengths of up to 20 while considering 

only the forward strand and using a 5th order Markov background constructed from 

upstream sequences of entire species.  

 

We run MotifSampler 20 times for each motif length 6, 8, 10 and 12 while considering 

only the forward strand and using a 3rd order Markov background constructed from 

upstream sequences of entire species.  

 

We run Weeder with the large mode over motif lengths 6, 8, 10 and 12 while allowing 

sites to be on both strands and using appropriate frequency tables of the given species. 
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We run PosMotif1 and PosMotif2 using background Markov chains of order 2=m  

constructed from upstream sequences of entire species while considering only the 

forward strand. Since it is not necessarily more sensitive to count arbitrary number of 

motif occurrences in a sequence during the computation of P-values, we use a parameter 

'N  to control the maximum number of motif occurrences that are counted for each 

sequence. We count at most one non-overlapping occurrence per sequence unless the 

number of sequences k  is very small: 4' =N  for 1=k ,  2' =N  for 2=k  or 3, and 

1' =N for 4≥k k . For each sample S, we iteratively consider each possible 'n  from 1 to 

'N  , which put emphasis on occurrences in different sequences. We restrict the motif 

length l  to at most 18 before post processing and collect all motifs with E-value below 

l for post processing. The above parameters are determined by testing a few 

combinations and choosing one that gives satisfactory performance on samples of type 

real from Tompa et al. (2005). For each motif s, we define the occurrences of s to be all 

strings in S that match s, which is independent of 'n . 

 

In the second post processing step, we start with top 100=r  motifs from the first post 

processing step. We follow Peng et al. (2006) to define the alignment cost and 

neighboring motifs as follows: 1 for a mismatch of two letters in {a,c,g,t}, 0.7 for an 

indel of a letter in {a,c,g,t},  0.5 for matching – with a letter in {a,c,g,t}, and no cost for 

other combinations. We allow gaps to appear only at the beginning or the end of an 

alignment. We consider two motifs to be neighbors only when their difference in length 

is at most 0.2 times their maximum length, and define the cutoff for alignment cost to be 
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0.2 times their maximum length. We further define the cutoff for removal of worse 

ranked motifs to be 50% of shared neighbors. Note that motifs may become longer after 

initial post processing in PosMotif1 and can contain variable length occurrences after 

further post processing in PosMotif2. 

 

When constructing background Markov chains, we use background upstream sequences 

of the same length as the sequence length in a given sample. When processing samples 

that contain sequences from multiple species, background frequencies are added across 

multiple species for Weeder, while background upstream sequences are collected 

together across multiple species before constructing the background Markov chain for 

the other algorithms. 

 

For each prediction on a given sample, we compute the nucleotide level statistics nTP, 

nFP, nFN and nTN, which are the number of positions that are in both predicted and 

known sites, the number of positions that are in predicted sites but not in known sites, 

the number of positions that are in known sites but not in predicted sites, and the number 

of positions that are not in predicted nor known sites respectively. From these statistics, 

we compute the sensitivity nSn, the positive predictive value nPPV, the specificity nSp, 

the performance coefficient nPC, and the correlation coefficient nCC (see the detailed 

definition in Chapter I).  
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By following Tompa et al. (2005) to define an overlap between a predicted site and a 

known site if they overlap by at least one-fourth of the known site, we also compute the 

site level statistics sTP, sFP and sFN, which are the number of known sites that have 

overlap with a predicted site, the number of predicted sites that do not have overlap with 

known sites, and the number of known sites that do not have overlap with predicted sites 

respectively. From these statistics, we compute the sensitivity sSn, the positive 

predictive value sPPV, and the performance coefficient sPC (see the detailed definition 

in Chapter I). 

 

We use the top motif from each algorithm for performance evaluation. To evaluate the 

accuracy of each algorithm on a set of samples, we treat it as if it was a single large 

sample (Tompa et al., 2005). To further evaluate whether our algorithm leads to 

significant improvements, we use the Wilcoxon matched-pairs signed-ranks test 

(Wilcoxon, 1947) over a set of samples with 05.0=P as significance cutoff, in which 

values of nPC, nCC and sPC on each sample within the set are paired from two 

algorithms. 

 

2. Benchmark Datasets 

 

We test each algorithm on three sets of biological samples, including samples of type 

real from Tompa et al. (2005), in which each sample contains motifs that correspond to 

one transcription factor in the TRANSFAC database (Wingender et al., 1996), samples 
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from the SCPD database (Zhu and Zhang, 1999), which is a promoter database that 

contains yeast regulons, and samples from the ABS database (Blanco et al., 2006), in 

which each sample contains experimentally validated binding sites that have been 

manually curated from at least two orthologous vertebrate promoters. 

 

Figure 3.8 shows performance comparisons of the algorithms on samples of type real 

from Tompa et al. (2005), in which there are a total of 52 samples from four species, 

including fly, human, mouse and yeast, with each sample containing up to 35 upstream 

sequences from one species and sequence lengths ranging from 500 to 3000. Note that 

these samples contain real upstream sequences, which are different from the samples of 

type mixed used in Tompa et al. (2005). When all samples from different species are 

considered together, the P-values from the Wilcoxon test show that there are no 

significant performance differences between PosMotif and the other algorithms. When 

the samples from each species are considered separately, Table 3.1 shows that there are 

considerable accuracy fluctuations. This is especially true for fly, which contains only 

six samples. All the algorithms have high accuracy on yeast, with PosMotif generally 

performing better on yeast. The Wilcoxon test is not performed within each species since 

the number of samples is small.  
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Table 3.1: nCC values of motif finding algorithms on samples of type real from 

Tompa et al. (2005) within each species, including fly, human, mouse and yeast. In 

each case, the highest value is in bold. 

 

 

Figure 3.8: Performance of PosMotif and other motif finding algorithms on 

samples of type real from Tompa et al. (2005). For each algorithm, bars denote 

nSn, nPPV, sSn and sPPV from left to right, lines marked by crosses denote nPC, 

lines marked by diamonds denote nCC, and lines marked by triangles denote sPC, 

obtained by treating a set of samples as if it was a single large sample.  
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Figure 3.9 shows performance comparisons of the algorithms on samples that contain at 

least three genes in the SCPD database (Zhu and Zhang, 1999), in which there are a total 

of 35 samples, with each sample containing up to 25 upstream sequences in yeast and 

each sequence of length 1000. The P-values from the Wilcoxon test show that PosMotif 

performs better than the other algorithms in most cases (except for YMF when the 

performance differences are insignificant), with PosMotif2 generally performing better 

than PosMotif1 (Table 3.2). 

 

 
 

Table 3.2: P-value from the Wilcoxon matched-pairs signed-ranks test of 

PosMotif on samples that contain at least three genes in the SCPD database (Zhu 

and Zhang, 1999). Each algorithm on the left is compared against each algorithm 

on the top, with — indicating insignificant differences. 
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Figure 3.10 shows performance comparisons of the algorithms on samples from the ABS 

database (Blanco et al., 2006), in which there are a total of 68 samples, with each sample 

containing up to 95 upstream sequences in multiple species from among human, mouse, 

rat and chicken, and each sequence of length 500. The P-values from the Wilcoxon test 

show that PosMotif performs significantly better than YMF in all cases,  and it performs 

 

Figure 3.9: Performance of PosMotif and other motif finding algorithms on 

samples that contain at least three genes in the SCPD database (Zhu and Zhang, 

1999).  The notations are the same as in Figure 3.8. 
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significantly better than the other algorithms in most cases, with no significant 

performance differences between PosMotif2 and PosMotif1 (Table 3.3). 

 

 

 

Figure 3.10: Performance of PosMotif and other motif finding algorithms on 

samples from the ABS database (Blanco et al., 2006). The notations are the same 

as in Figure 3.8. 
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The above results show that PosMotif1 has high accuracy even before extensive post 

processing is performed when positions that are not ignored still contain fixed 

nucleotides. The second post processing step in PosMotif2 is useful, but does not always 

lead to significantly better accuracy. In general, the nucleotide level statistics nPC and 

nCC correlate well with each other, the site level statistics sSn and sPPV correlate well 

with the nucleotide level statistics nSn and nPPV respectively, and the site level statistic 

sPC correlates well with both the nucleotide level statistics nPC and nCC. To obtain 

good performance, appropriate tradeoffs have to be maintained between optimizing nSn 

and nPPV (or between sSn and sPPV), in which the former aims to reduce false 

negatives while the latter aims to reduce false positives. 

 

Table 3.3: P-value from the Wilcoxon matched-pairs signed-ranks test of 

PosMotif on samples from the ABS database (Blanco et al., 2006). The notations 

are the same as in Table 3.2. 
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To investigate the effectiveness of the post processing, we also tested the post processing 

steps on our previous motif-finding algorithm MotifEnumerator (Sze. S. and Zhao. X. 

2006). Similarly to PosMotif, we consider two variants, including MotifEnumerator1, 

which combines algorithm MotifEnumerator with algorithm PostProcess that performs 

initial post processing, and MotifEnumerator2, which combines algorithm 

MotifEnumerator with algorithms PostProcess and PostProcess2 that perform both initial 

and further post processing. 

 

We compare the performance of Motifenumerator to MEME (Bailey and Elkan, 1994), 

to Weeder (Pavesi et al.., 2001), and to AlignAce (Hughes et al., 1998). For each 

algorithm, we use the default parameters as much as possible. We run MEME with the 

anr option, with motif lengths of up to 20 on the default forward strand, and using a 5th 

order Markov background constructed from upstream sequences of entire species. We 

run Weeder with the large mode over motif lengths 6, 8, 10 and 12 on the default 

forward strand and using appropriate frequency tables of the given species.We run 

AlignAce with the minimum motif length as 6 and all other parameters as default. 

 

In addition, we applied the dust routine on each benchmark datasets to further improve 

the performance. 

 

Figure 3.11 shows performance comparisons of the algorithms on samples of type real 

from Tompa et al. (2005). When all samples from different species are considered 
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together, the P-values from the Wilcoxon test show that there are no significant 

performance differences between MotifEnumerator and the other algorithms except that 

both  invariants  of  MotifEnumerator  are  significantly  better  than  AlignAce  on  nCC 

values. The Wilcoxon test is not performed within each species since the number of 

samples is small.  

 

 

Figure 3.12 shows performance comparisons of the algorithms on samples that contain at 

least three genes in the SCPD database (Zhu and Zhang, 1999). The P-values from the 
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Figure 3.11: Performance of MotifEnumerator and other motif finding algorithms on 

samples of type real from Tompa et al. (2005). For each algorithm, bars denote nSn, 

nPPV, sSn and sPPV from left to right, lines marked by crosses denote nPC, lines 

marked by diamonds denote nCC, and lines marked by triangles denote sPC, obtained 

by treating a set of samples as if it was a single large sample.  
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Wilcoxon test show that MotifEnumerator performs better than the other algorithms in 

most cases, with MotifEnumerator2 generally performing better than MotifEnumerator1 

(Table 3.4). 
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Figure 3.12: Performance of MotifEnumerator and other motif finding algorithms on 

samples that contain at least three genes in the SCPD database (Zhu and Zhang, 1999).  

The notations are the same as in Figure 3.8. 
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Figure 3.13 shows performance comparisons of the algorithms on samples from the ABS 

database (Blanco et al., 2006). The P-values from the Wilcoxon test show that 

MotifEnumerator performs significantly better than the other algorithms in most cases, 

with MotifEnumerator2 generally performing better than MotifEnumerator1 (Table 3.5). 

 

Table 3.4: P-value from the Wilcoxon matched-pairs signed-ranks test of 

MotifEnumerator on samples that contain at least three genes in the SCPD 

database (Zhu and Zhang, 1999). Each algorithm on the left is compared against 

each algorithm on the top, with — indicating insignificant differences. 

 

P-value MEME AlignAce Weeder MotifEnumerator1 

nPC — — —  

nCC — — —  

 

 

MotifEnumerator1 

 sPC — — —  

nPC — — 0.05 0.0007 

nCC 0.04 — 0.02 0.001 

 

MotifEnumerator2 

 sPC — — 0.03 0.04 
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The above results on MotifEnumerator showed that the post processing algorithms are 

effective most of the time and greatly improved the performance of old 

MotifEnumerator algorithm. 
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Figure 3.13: Performance of MotifEnumerator and other motif finding algorithms on 

samples from the ABS database (Blanco et al., 2006). The notations are the same as in 

Figure 3.8. 
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To further investigate the relationship between motif conservation and algorithm 

performance, we combine overlapping occurrences of each motif into one site and align 

these occurrences by using ClustalW (Thompson et al., 1994) with default parameters. 

We remove columns in the alignment in which less than 50%  of the characters are gap 

characters and compute the consensus nucleotide in each remaining column while 

ignoring gap characters. Over a given set of samples, we define the motif conservation 

rate to be total number of nucleotides that are the same as the consensus nucleotide 

within a column divided by the total number of nucleotides in all the columns. Note that 

this procedure ignores the possibility that a motif can contain sites on both strands, but it 

should give a good approximation. Although some number of gap characters can appear 

in an alignment, they are rare and the above score reflects the conservation of core 

regions in a motif. 

Table 3.5: P-value from the Wilcoxon matched-pairs signed-ranks test of 

MotifEnumerator on samples from the ABS database (Blanco et al., 2006). The 

notations are the same as in Table 3.2. 

P-value MEME AlignAce Weeder MotifEnumerator1 

nPC — 0.006 —  

nCC — 0.006 —  

 

 

MotifEnumerator1 

 sPC — 0.02 —  

nPC — 0.01 0.06 0.0003 

nCC    0.03 6e-5 0.01 0.0006 

 

MotifEnumerator2 

 sPC — 0.003 0.008 0.01 

 



 

 

67 

 

Figure 3.14 shows that although the known sites generally have low conservation rates, 

each algorithm has its own focus on finding motifs within a narrow range of 

conservation rates due to the specific motif model being used and the  parameter settings. 

Among the three data sets, the high site conservation rate on the samples from the SCPD 

and ABS databases makes it easier for PosMotif to improve motif finding accuracy. 

Within the samples of type real from Tompa et al. (2005), the site conservation rate of 

the yeast samples is higher than that of the other species, which explains the better 

 
 

Figure 3.14: Conservation rate of known sites and top motifs from motif finding 

algorithms on each set of samples. 
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performance of PosMotif on the yeast samples. Since our model focuses initially on 

identifying invariant core positions, it is most successful in identifying sites that have a 

high enough conservation rate within a sample, in which case the invariant positions are 

more prevalent and are better captured by our model. This is especially true on the 

samples from the SCPD and ABS databases,  in which the site  conservation rate is much 

more prevalent and are better captured by our model. This is especially true on the 

samples from the SCPD and ABS databases, in which the site conservation rate is much 

higher than that on the samples of type real from Tompa et al. (2005). Note that these 

performance differences are mostly due to the differences in the site conservation rate 

and are not species-specific. 

 

E. Discussion 

 

We have shown that by skipping non-conserved positions, many background Markov 

chains can be used simultaneously to better model long range nucleotide dependencies 

within motifs. Our initial focus on positions that have fixed nucleotides allows the 

development of an efficient algorithm that can find long motifs in moderately sized 

samples, due to a small base of two in the exponential part of the time complexity. The 

later post processing step gives rise to a general motif model in which each motif can 

contain variable length occurrences. 
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It takes minutes to hours to find motifs of length up to 18 or 20 for the smaller samples 

to one or two days for the larger samples. When the maximum motif length is lowered to 

smaller values such as 12, the algorithm becomes very fast and takes only seconds for 

many samples. Since the running time approximately doubles when l  is increased by 1, 

it takes about twice as long to obtain all motifs of length at most l  when compared to 

obtaining motifs for only one l . 

 

To further improve accuracy, it is possible to develop more accurate formulas that have 

low time complexity for computing P-values and E-values, or consider more detailed 

models initially by allowing mismatches or degenerate letters within motifs. Another 

strategy is to use phylogenetic information on samples that contain sequences from 

multiple species. 
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CHAPTER IV 

ALGORITHM BASED ON ADDING MORE DNA UPSTREAM 

 SEQUENCES FROM OTHER SIMILAR PROTEINS 

 

We proposed a new strategy to improve the performance of identifying the transcription 

factor binding sites in DNA sequences via similar genes. The idea is to add more 

upstream sequences to the input sample from the genes that are sufficiently similar to the 

input genes. We have tried this strategy in one large benchmark datasets and tested on 

five famous motif-finding tools. The results showed great improvements for each tool on 

the enriched benchmark datasets compared to the original benchmark datasets. 

 

A. Introduction   

 

Most existing motif-finding algorithms are tested on datasets that contain upstream 

sequences from several co-regulated genes, as co-regulated genes are known to share 

similar regulatory mechanism and their promoter region might contain common binding 

sites for transcription factors. However, as there are still lots of genes are unknown to be 

co-regulated or not, the collection of currently known co-regulated genes is just a subset 

of the whole co-regulated genes set. Sometimes this collection did not contain enough 

information to detect the real motif pattern. Therefore, most of the existing motif-finding 

tools perform much better in yeast and other lower organisms than in higher organisms, 

because through knowledge can be obtained on the lower organisms. Based on this 
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observation, we are trying to enrich the existing datasets by adding more information 

from other sufficiently similar genes, so that the real motif pattern can stand out.  We 

can make a hypothesis that similar genes, even currently we don’t know if they are co-

regulated, may have similar patterns/features in their upstream sequences. So to avoid 

the limitations of the current available experiment data about the co-regulated genes, we 

proposed to add more upstream sequences from sufficiently similar genes. 

 

B. Methods   

 

1. Running BLAST  

 

To find sufficiently similar genes, we can use BLAST to search on the sequences. If the 

given sample contains the corresponding gene information, we could obtain the 

corresponding upstream sequences from similar genes using the input gene information 

as the query (TBLASTN); otherwise we need two steps.  The first step is trying to find 

the corresponding gene information by using the upstream sequences from the input 

sample as the query(BLASTN). It is possible that nothing may be found, and in this case 

we won’t process any further to the current input sequences.  If we can identify the gene 

information from the first step, then we can then use TBLASTN to search for similar 

genes. For each running of BLAST, we need to save the results for further processing as 

we only want to keep the ones that are interested to us.  
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2. Processing the Results from BLAST 

 

The processing for the results from BLASTN is straight-forward, since we only need to 

find the exact match against the input upstream sequence, or return nothing if there is no 

such match. We define the exact match as follows: 

i) the identity rate = 100 %  

ii) the positive rate = 100%  

iii) the aligned length=100% of input length 

 

After we find the exact match, we then go to the corresponding gene bank file and 

extract the corresponding cds information, which will be inputs to the TBLASTN 

program. 

 

The processing for the results from TBLASTN is similar to BLATN, except that we 

need to find suitable hits in this case. Obviously we don’t want the exact match or the 

very similar matches, as they may come from the same gene and can not provide 

additional information to help identify the binding sites in the upstream sequences. On 

the other hand, we don’t want the genes that are too different either, as they may have 

absolutely very different features, which can introduce noise for us to identify the 

binding sites. What we want is those genes that they are sufficiently similar so as to 

contain some common features as represented by their upstream sequences. 
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The criteria we find most suitable for processing TBLASTN results is as follows: 

i) 50% <= the identity rate <= 80%  

ii)  50% <= the positive rate <= 80%  

 

Since gene bank files will be needed to process the results from BLAST running, and the 

gene banks files are usually too much. We provide two options of processing the results. 

If you already have a database containing the gene bank files you will be interested, you 

can run the processing algorithm locally and search gene bank files in the database you 

specified. If you don’t have such a database or you don’t know if your database is large 

enough to contain all the possible gene bank files, you can run the processing algorithm 

with an option to download the gene bank files from online NCBI GenBank to your local 

machine.  The second option would first search for gene bank files in your local 

directory and then search in online NCBI genebank if it is not found locally.  

 

A mini database containing all geneBank files for the testing data sets we used are 

available for downloading, as well as the scripts to run BLAST and to process BLAST 

results. 

 

3. Modifying the Datasets by Adding More Sequences 

 

After we processed the results from TBLASTN, for each input upstream sequence, there 

might be multiple candidate upstream sequences from similar genes. Especially these 
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candidate upstream sequences for the upstream sequences from the same data sets may 

contain duplicates with each other. To avoid this, we used the cd-hit to remove the 

duplicates or highly similar upstream sequences, in the preference that the original 

upstream sequences will be kept. After this, we add the selected candidate upstream 

sequences to the end of the dataset. 

 

C. Performance 

 

We have picked five most popular motif finding tools to run on both the original datasets 

and the modified datasets with added sequences.  We picked MEME (Bailey and Elkan, 

1994), which is one of the most popular motif finding algorithms that use the expectation 

maximization strategy, Weeder (Pavesi et al., 2001), which uses a combinatorial 

approach that has the best accuracy as assessed by Tompa et al. (2005), MotifSampler 

(Thijs et al., 2001), which uses a Gibbs sampling strategy that performs very well on 

samples of type real from Tompa et al. (2005),  YMF (Sinha and Tompa, 2002), which 

uses a statistical approach that performs very well on samples of type mixed from 

Tompa et al. (2005),  and AlignAce (Hughes et al., 1998), which is a famous tool using a 

Gibbs sampling algorithm with  the weight matrix  motif model. 

 

For each of these tools, we use the default parameters as much as possible and use the 

same parameters for running on both the enriched datasets and the original datasets. 
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We run MEME with the anr option, with motif lengths of up to 20 on the default 

forward strand, and using a 5th order Markov background constructed from upstream 

sequences of entire species.  

 

We run Weeder with the large mode over motif lengths 6, 8, 10 and 12 on the default 

forward strand and using appropriate frequency tables of the given species. 

 

We run MotifSampler 20 times for each motif length 6, 8, 10 and 12 on the default 

forward strand and using a 3rd order Markov background constructed from upstream 

sequences of entire species.  

 

We run YMF over motif lengths from 6 to 10, allowing for at most two degenerate 

symbols and at most 11 spacers for motifs of length 6 and no spacers for motifs of length 

larger than 6, while using a 3rd order Markov background constructed from upstream 

sequences of entire species.  

 

We run AlignAce with the minimum motif length as 6 and all other parameters as 

default. 
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Figure 4.1 shows performance comparisons of the algorithms that contain at least three 

genes in the SCPD database (Zhu and Zhang, 1999) and on the enriched version samples 

of samples.  There  are  total  35  samples  in  this  SCPD  benchmark datasets, with each 

sample contains up to 25 upstream sequences in yeast and each of length 1000. The nPC, 

nCC and sPC values from the comparisons show that all these five algorithms have 

performance improvements on the enriched samples, with YMF, MEME and 
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Figure 4.1: Performance of motif finding algorithms on samples that contain at least 

three genes in the SCPD database (Zhu and Zhang, 1999) and on the enriched 

version of samples. For each algorithm, bars denote nPC_original, nCC_original, 

and sPC_original are the performance on the original samples, while bars denote 

nPC_improved, nCC_improved, and sPC are the performance on the enriched 

version of the original samples. 
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MotifSampler show great improvements on all three values, AlignAce and Weeder show 

good improvement on the sPC values and small improvements on the nPC and nCC 

values. 

  

D. Discussion 

 

We have shown that by adding suitable upstream sequences into the original given 

sample, the performance of motif finding algorithms can be greatly improved. Our focus 

is to demonstrate that this idea is useful to improve the performance of most motif 

finding algorithms and provide helpful guide to the future benchmark datasets creation. 

 

One possible future task is to run on some other existing difficult benchmark datasets, 

such as Tompa Benchmark and try to see the how the improvements can be. This will 

also give us hints how to evaluate different benchmark datasets, as if the performance on 

one benchmark datasets can be improved a lot by adding more relative sequences, this 

benchmark datasets may need improvements as well. 

 

Another possible future task is try to analyze the helpful sequences been added to the 

original samples and find out the underlying possible causes. The sequences might come 

from different genes or species. This analysis would help us to better understand the 

transcription mechanism. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

In this dissertation, we have developed three different methods to improve the 

performance of the motif finding problem. 

 

In Chapter II, we have proposed an improved pattern-driven algorithm, 

MotifEnumerator, which has a reduced the time complexity from )4( lknO l  to )4( lkO l   

over the traditional exact pattern-driven approaches, where k  is the number of 

sequences, n  is the length of each sequence and l  is the motif length.  It saves a factor 

of n  in time complexity when l  is large enough. This is a significant improvement since 

n  can be as large as 3000. It also extends the power of the pattern-driven approach to 

find all significant motifs of length around 12 or 13 (from the original limit of around 

10), or substantially to around 20 while retaining most of the original sensitivity by 

allowing don’t care positions but disallowing mismatches. The accuracy performance of 

this algorithm is comparable to the best existing motif finding algorithms on a large 

benchmark set of samples. To further improve MotifEnumerator, it may be desirable to 

allow a small amount of overlaps among suboptimal motif occurrences to avoid missing 

motifs. It is also useful if more accurate statistical formulas can be obtained so as to 

improve the accuracy of the motif scores. 
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In Chapter III, we have demonstrated another new algorithm with post processing, 

PosMotif, which uses a motif representation that allows arbitrary ignored positions 

within the non-conserved portion of single motifs, and uses Markov chains to model the 

background distributions of motifs of certain length while skipping these positions 

within each Markov chain. We have applied two post processing steps considering 

redundancy information in this algorithm and tested it on three large benchmark sets of 

samples. The performance comparisons with other five existing motif finding algorithms 

show significant improvement in motif prediction accuracy and the Wilconxon test show 

statistical improvements over the other tools. To further improve accuracy, it is possible 

to consider more detailed models initially by allowing mismatches or degenerate letters 

within motifs, or to use phylogenetic information on samples that contain sequences 

from multiple species. 

 

In Chapter IV, we have illustrated a new method, Enrich, to improve the performance of 

motif finding algorithms by adding relative sequences to the input samples. By 

modifying the existing benchmark datasets, we show that this strategy is able to improve 

the performance of existing motif finding algorithms. The performance comparisons also 

indicate that this strategy would help to improve the quality of existing benchmark 

datasets as well. To further demonstrate this strategy, it may be useful to test on more 

motif finding algorithms and more benchmark datasets.  
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Some other possible future work might try to combine the last two methods we proposed 

to further improve the performance of motif finding algorithms. For example, we can use 

both post processing method and sample enriching strategy for any motif finding 

algorithm. It is also desired to formally evaluate the existing motif finding benchmark 

data sets and guide the direction of the future benchmark datasets creation.   
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