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ABSTRACT 

 

Assessing Diet and Seasonality in the Lower Pecos Canyonlands:  An Evaluation of 

Coprolite Specimens as Records of Individual Dietary Decisions.  (December 2010) 

Timothy E. Riley, B.A., The College of the University of Chicago 

Chair of Advisory Committee: Dr. Vaughn M. Bryant 

 

 This dissertation presents an evaluation of coprolite specimens from the Lower 

Pecos canyonlands as records of individual dietary decisions.  Prior studies of coprolites 

from this region have greatly expanded our knowledge of Archaic subsistence patterns, 

but have not taken full advantage of the record of individual dietary decisions recorded 

in each coprolite specimen.  The menu, or dietary combinations, reflected in individual 

coprolite specimens are assessed through the identification of several congruent 

botanical components derived from the same food resource, phytoliths, fiber ultimates, 

and epidermal sheets.  The data is analyzed with hierarchical cluster analysis, an 

exploratory statistical technique.  The resultant menus reflected in these clusters are 

evaluated with reference to the diet-breadth model developed for the known staple 

resources of the canyonlands as well as the seasonal subsistence patterns observed in the 

ethnohistoric record of modern-day Mexico and Texas.  This same technique is also 

applied to the coprolite data available from previous studies in the Lower Pecos 

canyonlands.   



 iv

 Overall, the combined dietary data available for the Lower Pecos canyonlands 

presents a similar dependence on desertic plant resources throughout the Archaic.  Three 

main menus are apparent in the specimens.  The first menu consists of prickly pear 

(Opuntia sp.) cladodes, or nopales, and was principally, although not exclusively, 

consumed in the late spring.  This menu is primarily consumed when other resources 

were not readily available and may be considered a dependable but undesirable meal.  

The second menu consists of pit-baked lechuguilla (Agave lechuguilla) and sotol 

(Dasylirion sp.) caudices, or hearts, common throughout the cool season.  This menu 

entails high processing costs, but would provide a reliable caloric return.  The third 

menu exhibits a monolithic reliance on prickly pear fruits, or tunas, during the summer.  

The ease of harvest and consumption is reflected in the seasonal dominance of this 

resource, which was assuredly a highly desirable meal.  The dietary patterns recorded in 

the coprolite specimens from the Lower Pecos canyonlands demonstrate a seasonally 

variable diet-breadth that incorporated low-ranked resources during times of seasonal 

scarcity as well as a monolithic dependence on high-ranked resources when they were 

available in the local landscape.   
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CHAPTER I 

DIET AND SEASONALITY IN THE LOWER PECOS CANYONLANDS 

 

This study uses dietary data from coprolite specimens to assess questions of diet-

breadth and seasonality of occupation for the human populations occupying Hinds Cave 

(41VV456) and the Lower Pecos canyonlands of Texas.  Previous cultural 

reconstructions of the canyonlands, centered around the confluence of the Pecos River 

and the Rio Grande, suggest a consistent cultural exploitation of the region throughout 

the Holocene (Bement 1989; Collins 1974; Hester 1989; Prewitt 1983; Shafer 1986; 

Story and Bryant 1966; Turpin 1991a, 2004).  The hunter-gatherers occupying this area 

practiced a conservative foraging adaptation to the semi-arid environment consisting of 

small, nomadic social groups with a broad-based subsistence economy (Sobolik 1996b).   

Previous research has shown that the human populations exploiting the 

canyonlands were heavily dependent on sotol (Dasylirion texanum Scheele) caudex 

(heart), lechuguilla (Agave lechuguilla Torr.) caudex, prickly pear (Opuntia sp.) fruits 

(tunas) and cladodes (nopales) as dietary staples (Bousman and Quigg 2006; Bryant 

1974b, 1977a; Dering 1979, 1999; Edwards 1990; Huebner 1991; Poinar et al. 2001; 

Shafer 1986; Shafer and Holloway 1979; Sobolik 1988b; Sobolik 1991a, c, 1996a, b; 

Stock 1983; Turpin 1991a; Williams-Dean 1978; Woltz 1998).   

 

 

____________ 
This dissertation follows the style of American Antiquity. 
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A similar dependence on these xeric resources is recorded in the early ethnohistoric 

accounts of colonial New Spain (De Leon 1971; Krieger 2002; Wade 2003).  

 Hinds Cave is a limestone solution rockshelter located approximately ten miles 

upstream from the confluence of the Pecos River and Rio Grande (Figure 1) (Shafer and 

Bryant 1977).  The fill in the cave is almost entirely the result of human activity and 

contains an abundance of organic material including plant and animal remains (Shafer 

and Bryant 1977).  Hinds Cave excavations by Shafer and Bryant of Texas A&M 

University resulted in the largest collection of coprolites (desiccated or mineralized 

feces) from a single hunter-gatherer site in North America (Dean 2006).  Several 

thousand coprolites were recovered from a variety of contexts during the two field 

seasons spent excavating the site (Shafer and Bryant 1977).  Coprolite specimens were 

recovered from excavation contexts that span the Holocene, providing a framework to 

address changes in the subsistence strategies employed by these hunter-gatherer 

populations.  Four previous studies have been conducted on coprolites recovered from 

Hinds Cave (Edwards 1990; Reinhard 1989; Stock 1983; Williams-Dean 1978).  Each of 

these studies has added to our knowledge of diet and nutritional health of the hunter-

gatherer groups that populated the canyonlands.  However, they provide only limited 

identification of the major plant constituents recovered from these specimens, namely 

epidermal cells, fiber cells, and calcium oxalate phytoliths, which are correlated 

indicators of staple resource exploitation.  This is rectified in the current study, which 

uses these three congruent datasets to assess the diet-breadth of the meals represented in 

each coprolite as well as the seasonality of deposition.  This novel approach relies on the 
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temporally precise window into individual decision making that is recorded in coprolite 

specimens.  

 

Figure 1.  Map of Hinds Cave (adapted from Sobolik 1996) 
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Coprolites provide a unique perspective within the archaeological record, as they 

record the dietary choices of a single individual over a single day, or possibly, several 

days.  This precise temporal record of diet allows for the direct application of diet-

breadth models derived from optimal foraging theory, as each coprolite represents a 

related suite of subsistence decisions by an individual actor in the archaeological record.  

A diet-breadth model ranking these previously identified staple plant resources is applied 

to the available coprolite data from the region.  This model is derived, in part, from 

earth-oven experiments developed by Dering (1999) and views the optimization of 

caloric return as the objective of the archaeological actors.  This simplified model of the 

previously identified staple resources of the Lower Pecos canyonlands provides some 

important insight into the dietary decisions of hunter-gatherers in the region.   

A total of thirty coprolites were examined for macroscopic and microscopic 

residues of plant resources in this analysis.  These samples were taken from a set of three 

associated lenses chosen because they contain the  oldest specimens excavated in area B, 

which has been interpreted as a latrine feature re-used throughout the Holocene (Shafer 

and Bryant 1977).  The data from these specimens were assessed with hierarchical 

cluster analysis to assign groups of specimens based on overall similarities of 

constituents.  The resultant clusters were examined with reference to the diet-breadth 

model generated for the known staple resources of the canyonlands and the seasonal 

round reconstructed from the ethnohistoric literature.   

This same statistical method is applied to the previously available coprolite data 

from Hinds Cave and four other sites.  While there are certain limits in the identification 
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of the major components of specimens in some of these studies, they provide a useful 

record of some aspects of diet-breadth.  The four other sites with coprolite data are 

spread across and beyond the Lower Pecos canyonlands.  Conejo Shelter (Bryant 1974b) 

and Parida Cave (Riskind 1970) are located near the mouth of the Pecos River, while 

Baker Cave (Sobolik 1991a) is located east of the Devils River in a more mesic 

environment.  Frightful Cave (Fry 1975), located in the center of the modern state of 

Coahuila, Mexico, provides an external point of comparison in evaluating the Lower 

Pecos canyonlands as a distinct cultural area.   

 The combined coprolite data provide a robust set of data to explore the 

subsistence strategies employed by the Holocene hunter-gatherer populations in the 

Lower Pecos canyonlands.  There are a total of 224 coprolite specimens from Hinds 

Cave, ranging from the Early Archaic to the Late Archaic, and another 124 coprolite 

specimens from the other four sites.  Three major menus, or dietary combinations, 

account for the meals represented in the majority of the coprolites from the canyonlands.   

The first menu is dominated by the consumption of roasted sotol or lechuguilla 

caudex.  Both of these resources were available year round, although the ethnographic 

evidence indicates that they were primarily consumed during the early spring or late 

winter.  The caloric return for both of these resources compares favorably with other 

seasonally available resources, indicating that this menu would have been a preferential 

cold-season meal, despite the relatively high processing costs.   

The second menu indicates a diet of nopales supplemented with onion bulbs 

(Allium sp.).  The ethnohistoric literature observes that nopales were an important 
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resource only during seasons of scarcity.  This is corroborated by the diet-breadth model 

developed in Chapter II.  The caloric return for both of these resources is extremely 

limited and suggests that they would only be incorporated into the diet-breadth during 

times of nutritional stress.   

The third menu commonly observed in coprolite specimens from the 

canyonlands reflects the importance of prickly pear tunas as a seasonal staple.  Tunas 

have low processing costs and a caloric return that surpasses the other plant staples of 

the canyonlands.  This suggests that tunas would become the primary focus of the 

regional subsistence strategy whenever they are available and abundant.  This is exactly 

the pattern of exploitation seen in the ethnohistoric record.  Multiple ethnohistoric 

sources attest to the seasonal dominance of this resource across modern day Northern 

Mexico and Texas (De Leon 1971; Krieger 2002; Wade 2003).  This abundant and 

highly-ranked resource formed the major component of the diet for several months every 

summer, providing a seasonal caloric surplus that supported the  formation of large inter-

ethnic gatherings and trade fairs.   

Overall, the data indicate that many of the meals represented by these coprolite 

specimens were dominated by one or two staple plant resources.  While this is frequently 

supplemented with trace amounts of secondary resources such as hackberry fruits (Celtis 

sp.) and other small fruits and seeds, the data indicate a stable exploitation of the four 

major resources considered in this study that spans the Holocene.  This fits well with the 

ethnohistoric observations, which indicate that the diet of native groups tended to be 
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focused on the exploitation of one or two preferred resources (De Leon 1971; Krieger 

2002; Thoms 2008b).   

 The data presented in this study show that the human populations living along the 

northern fringe of the Chihuahuan Desert were dependent on fructan-based plant 

resources for the majority of their carbohydrate intake (Darbyshire and Henry 1981; 

Lopez and Urias-Silvas 2007b; Mancilla-Margalli and Lopez 2006).  The temporal depth 

and spatial breadth of this strategy across most of arid North America has some 

important dietary implications for modern populations exhibiting high levels of diet-

induced health issues, such as obesity and diabetes (Archer et al. 2002; Fogg 2010; 

Wiedman 2005).  Soluble dietary fibers generally, and specifically fructans, have been 

shown to have a positive, ameliorating effect on lipid and glucose metabolism (Beylot 

2005; Daubioul et al. 2002; Daubioul 2005; Delzenne and Daubioul 2000; Roberfroid 

1999; Williams and Jackson 2002).  Studies have shown that the fructan components of 

both Agave sp. and Dasylirion sp. have similar effects on metabolic function as the 

commercially available fructans derived from chicory root (Cichorium intybus (LINN.)) 

(Ur et al. 2008).  This research suggests that attempts to address the high prevalence of 

obesity and diabetes among modern indigenous populations through diet should focus on 

the promotion of neglected, tradititional food resources, both as whole foods as well as a 

source of fructans for the commercial food industry.  The incredible temporal depth of 

fructan consumption by human populations in the Chihuahuan desert has already been 

noted by some researchers (Leach 2007; Leach and Sobolik 2010) and, it is hoped, may 

inform on the community health strategies applied in the borderlands today.   
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CHAPTER II 

OPTIMAL FORAGING THEORY AND DIET-BREADTH MODELS 

 

Coprolites are the most direct evidence of diet available from an archaeological 

context (Reinhard and Bryant 1992; Sutton et al. 2010).  While the differential 

digestibility of dietary components hinders a complete reconstruction of diet from 

coprolites (Fry 1985), these rarely preserved specimens have the unique potential to 

inform on the past dietary choices of both individuals and populations.  Each coprolite 

reflects the dietary consumption patterns of an individual over one to several days.  This 

window into individual behavior over such a short temporal period is unparalleled in 

archaeology.  The discrete temporal record of diet recorded in a coprolite is an 

appropriate context for the application of models based upon individual decision 

making, such as those derived from optimal foraging theory (OFT) (Broughton 2002; 

Gremillion 2002; Yesner 1985).  This chapter begins with an analysis of the potential for 

applying models derived from OFT to coprolite data sets from Hinds Cave.  This will 

include a review of other applications of OFT models to anthropological datasets as well 

as a brief history of human behavioral ecology.  This will be followed by an overview of 

diet-breadth models in OFT and the development of such a model for the coprolite data 

from the Lower Pecos canyonlands.    

The Hinds Cave Assemblage and Optimal Foraging Theory 

The Hinds Cave excavation presents an excellent opportunity to study prehistoric 

subsistence with diet breadth models for several reasons.  Human habitation of the site 



 9

extends to the Late Pleistocene, which is verified by both the radiocarbon record 

(Valastro et al. 1979) and diagnostic artifacts (Saunders 1986; Shafer 1986; Shafer and 

Bryant 1977).  The temporal depth of this site, along with the well documented 

paleoenvironmental record for the Lower Pecos canyonlands, provides an ideal context 

for the accurate assessment of change in subsistence across the Holocene.  The human 

populations occupying the Lower Pecos canyonlands during the Holocene engaged in a 

hunting and gathering subsistence strategy.  This common subsistence strategy allows 

for the direct comparison of diet breadth between the different occupations of the site. 

A number of prior studies of the site’s assemblage dealt directly with issues of 

subsistence.  These include the analyses of coprolites (Edwards 1990; Reinhard 1989; 

Stock 1983; Williams-Dean 1978) and macrobotanical (Dering 1979; Sobolik 1991a; 

Woltz 1998) and faunal (Lord 1984) components of the excavation, as well as studies of 

organic residues on stone tools (Shafer and Holloway 1979; Sobolik 1996a), 

experimental studies on cooking technology (Dering 1999)and a regional resource 

procurement survey (Saunders 1992) related to this archaeological site.  The coprolite 

studies, combined with the organic residue analyses and experimental processing 

studies, provide a fairly comprehensive picture of prehistoric diet and food processing 

for the Lower Pecos region.   

Another factor that makes Hinds Cave a wonderful site for examining prehistoric 

resource strategies is the excellent preservation of the assemblage.  The assemblage from 

Hinds Cave includes uncharred leaves, fibers, and dried soft plant tissue throughout the 

matrix, as well as seeds, charcoal, and wood (Dering 1979, Shafer and Bryant 1977).  
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This assemblage is much more representative of the original residues of human activity 

deposited by the site occupants than almost any other type of archaeological site, 

excluding submerged and frozen contexts (Gorham and Bryant 2001; Monsalve et al. 

2008; Poinar and Stankiewicz 1999).  These two factors: 1) complementary research into 

coprolites, organic residues, and experimental plant processing and 2) incredible organic 

preservation make the Hinds Cave assemblage a good candidate for assessing 

subsistence strategies with testable predictions generated from diet breadth models. 

Optimal Foraging Theory 

 Optimal foraging theory was developed by evolutionary ecologists interested in 

addressing a number of issues relating to animal subsistence (Macarthur and Pianka 

1966; Pianka 1974; Smith and Winterhalder 1985).  This approach consists of a set of 

models addressing time and energy allocation for food procurement, resource selection 

and habitat migration (Winterhalder and Smith 2000).  Early advocates for the 

incorporation of these models into anthropology suggested that this approach was a 

promising avenue of development in the search for general rules of economic 

organization among foraging cultures (Smith 1983).  Optimal foraging was one of the 

first successfully integrated human behavioral ecological methods in anthropology 

(Winterhalder and Smith 2000).  While there are certain limitations of this approach in 

understanding human behavior (Martin 1983), the strength of foraging theory is that it 

consists of a unified set of models and concepts that allow for debate and revision (Smith 

and Winterhalder 1985).  This strength is also an aspect of the underlying human 

behavioral ecology approach to understanding past human behavior. 
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There are some fundamental assumptions underlying the application of 

behavioral ecology, and specifically foraging theory, to studies of human behavior.  

Foraging theory makes an assumption of constrained optimization (Kaplan and Hill 

1992).  This is due to the adoption of concepts from micro-economics and evolutionary 

biology, which also assume optimization (Winterhalder 2001).  Constrained optimization 

assumes that the archaeological actors in the model are skilled hunters and gatherers 

(Winterhalder 2001), who have a fairly stable return rate from their activities.  Foraging 

theory is also reductionist in its modeling assumptions (Winterhalder and Smith 2000).  

The models developed in this approach are inherently simple, focusing on specific 

elements of the foraging strategy (Winterhalder 2001).  Many anthropologists are uneasy 

with this approach, because it runs contrary to the holistic approach considered by many 

to be the major strength of anthropology (Winterhalder 2001).  Human behavioral 

ecologists would counter that any holistic explanation of human behavior must be 

founded in the type of explanatory detail that can only be provided by isolating and 

examining the variables underlying the behavioral patterns.  Winterhalder and Smith 

(2000) suggest that human behavioral ecologists share field methods with the rest of 

anthropology, but rely on different theoretical and epistemological frameworks to 

interpret the data generated from these methods.    

Applications of Optimal Foraging Theory in Archaeology.  A number of 

archaeological, cultural, and physical anthropologists have utilized OFT in their 

research.  This section presents some of the applications of optimal foraging theory to 

archaeological data that have been conducted over the last twenty years.  This will be 



 12

followed by a brief section on some of the limitations in applying human behavioral 

ecology to archaeological data sets.   

 Zooarchaeologists have applied models derived from optimal foraging theory to 

the vertebrate and invertebrate faunal assemblages recovered from archaeological sites 

(Broughton 2002; Jones 2004; Madsen 1993; Madsen and Schmitt 1998; Nagaoka 2002; 

Speth 1991; Stiner 2002; Stiner et al. 2000).  Beyond the focus on the faunal 

assemblages of archaeological sites and the use of optimal foraging theory, there is little 

common ground in these articles.  Some are concerned with the evolution of modern 

humans and the broad-spectrum revolution (Stiner 2002; Stiner et al. 2000), while others 

focus on issues of protein selection (Speth 1991).  Some studies utilize data to evaluate 

hypotheses (Nagaoka 2002), while others utilize data to refine and test the models 

(Broughton 2002; Jones 2004).   

 Surprisingly, very few paleoethnobotanists have adopted the theoretical tenets of 

optimal foraging theory in their research (Gremillion 1996; Gremillion and Sobolik 

1996).  Even detailed paleonutritional studies of coprolites have not approached the data 

from this theoretical perspective (Sobolik 1991a).  Perhaps this is due to the limited 

inferences that can generally be derived from a macrobotanical assemblage resulting 

from depositional and preservational biases.  However, many of these same taphonomic 

biases impact the conclusions derived from faunal assemblages as well.  There has been 

some recent research on the methodological problems of testing the macrobotanical 

assemblage with optimal foraging theory (Gremillion 2002), which will be explored in 

the next section. 
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 The application of optimal foraging theory in archaeology has not been limited to 

cultural groups that practice a hunter-gatherer adaptive strategy.  There have been 

several applications of foraging models to issues of resource procurement and 

investment in agricultural and horticultural societies (Dominguez 2002; Gremillion 

1996; Keegan 1986). 

 Although the hypotheses derived from foraging models all deal specifically with 

the acquisition of food, the resultant hypotheses have been used to inform larger social 

issues that impact foraging strategies such as the sexual division of labor (Elston and 

Zeanah 2002), risk avoidance (Speth 1991), and population dynamics (Boone 2002; 

Stiner et al. 2000).  I suggest that habitat modification or disturbance is another issue that 

could be addressed through diet breadth modeling.   

Limitations of Optimal Foraging Theory in Archaeology.  A number of 

scholars have addressed the limitations of applying human behavioral ecology, 

specifically optimal foraging theory, to archaeological data sets (Gremillion 2002; 

Murray 2002; Yesner 1985).   Others have compared the application of evolutionary 

ecology to similar approaches such as Dunnell’s selectionist archaeology (Broughton 

and O' Connell 1999).  The primary limitation in applying optimal foraging theory to 

archaeological data is an aspect of the data itself.  Direct testing of diet breadth models 

requires data of individual behavioral decisions (Winterhalder and Smith 2000).  The 

archaeological record cannot generally meet this requirement, since it is an aggregation 

of material from a number of individuals involved in a host of decisions (Winterhalder 

and Smith 2000).  Post-depositional taphonomic processes complicate the situation.  
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There has been some effort to generate predictions consistent with the archaeological 

data (Grayson and Delpech 1998), as well as efforts in ethnoarchaeology to bridge the 

gap between the material record and the behaviors that create it (Bird 2000; Bird 2009; 

Kelly et al. 2005; Lupo 2006; Thomas 2002, 2007).  

 Yesner (1985) suggests that applying optimal foraging theory to the 

archaeological record simply requires appropriate selection of analytical units for 

currencies, constraints, and time frame.  While some solutions to these issues have been 

illustrated in recent research on archaeological foraging theory (Gremillion 2002), it 

should be noted that these problems are primarily methodological and do not suggest a 

theoretical incompatibility between optimal foraging and archaeology.  It can be argued 

that the Hinds Cave coprolite assemblage overcomes many of the issues in applying diet 

breadth models to an archaeological context.  Coprolites do represent a temporally 

discrete set of behaviors by an individual actor that allows a direct application of the diet 

breadth models developed in behavioral ecology.   

Every coprolite specimen reflects a discrete set of individual dietary choices.  

This direct evidence of a single individual’s behavioral decisions over a very constrained 

timeframe is unique in the archaeological record.  In prior studies, the individual nature 

of each specimen has been seen as a limitation of dietary reconstruction, since the 

precise relationship of the meals represented in a single coprolite specimen to overall 

patterns of subsistence among a human population cannot be determined (Reinhard and 

Bryant 1992).  Prior studies have addressed this by examining a large number of 

specimens from a single context.  The current study examines diet breadth and 
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seasonality with a view that each specimen is an individual context of analysis.   The 

ability to examine a temporally limited set of dietary decisions by an individual is 

exceptional in the archaeological record and a major strength of coprolite studies.  This 

links the archaeological record to decisions of individual actors, overcoming a major 

weakness in the application of optimal foraging models to archaeological settings 

(Winterhalder and Smith 2000).   

 Diet-Breadth Models.  Diet breadth models are among the most widely utilized 

optimal foraging models in ecology and anthropology (Winterhalder and Smith 2000).  

This is partly due to the fact that these were among the first fully developed models in 

behavioral ecology (Winterhalder 2001).  These models deal with a biological necessity, 

food acquisition that humans share with all other animals, perhaps another reason for the 

successful introduction of these models in anthropology.  Like all human behavioral 

ecology models, diet breadth models consist of four major components: 1) a goal 

(generally to optimize the net energy acquisition rate); 2) a currency to measure the 

relative costs and benefits; 3) constraints modeling the social and environmental 

contexts; and 4) alternative behavioral decisions (Kaplan and Hill 1992).  Constructing 

such limited models allows researchers to approach complicated situations in a very 

explicit and formalized fashion.  This makes models easier to refine as well as flexible 

enough to apply in diverse socioenvironmental circumstances.   

There are two major classes of diet breadth model, the encounter-contingent type 

(also known as prey choice) and resource patch types (Winterhalder 2001).  These 

models differ primarily in the distribution of resources in the landscape.  Prey choice 
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models suppose a random distribution of resources and, hence, a random encounter rate 

with different resources (Kaplan and Hill 1992).  Patch models suppose the presence of 

patches of resources with intervening spaces empty of resources (Winterhalder 2001).  

While both of these models are simplifications of any ecological community, they both 

can be utilized to generate hypotheses of resource acquisition that encompass testable 

predictions.  Kaplan and Hill (1992) suggest that these simple approaches can be 

elaborated in a number of ways, either to incorporate more complex models of resources 

or to account for human behavioral complexity.   In the following section, an encounter-

contingent model is proposed for the major plant staples of human populations in the 

Lower Pecos canyonlands. 

Diet-Breath and Dietary Staples of the Lower Pecos Canyonlands 

Previous research, as noted, has shown that the human populations exploiting the 

Lower Pecos region were heavily dependent on sotol caudex, lechuguilla caudex, prickly 

pear tunas and nopales as dietary staples throughout the Holocene (Bousman and Quigg 

2006; Bryant 1974a, 1977b; Dering 1979, 1999; Edwards 1990; Huebner 1991; Poinar et 

al. 2001; Shafer and Bryant 1979; Shafer 1986; Sobolik 1988a, b, c, 1991a, b, 1996a, b; 

Stock 1983; Turpin 1991; Williams-Dean 1978; Woltz 1998).  For the purposes of this 

study, a resource which is consumed on a daily basis during its seasonal availability or 

which provides the bulk of caloric intake in a menu is considered a staple resource.  This 

model ranks these resources according to their potential return rates.  Diet breadth 

modeling suggests that less productive resources would only be incorporated into a diet 

when the energetic returns from higher ranked resources dropped to the level of the 
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lower resources due to seasonal limitations or scarcity (Kaplan and Hill 1992).  This 

approach underlies the classification of survival and famine foods presented by Turner 

and Davis (1993) and Cotton (1996).  However, the approach taken by those authors is 

not explicit or quantifiable, though it is still a useful way to classify the relative 

importance of food resources (Cotton 1996; Turner and Davis 1993).  The four major 

components of the diet-breadth model will be presented, followed by a synthesis of the 

available data and expectations for diet-breadth derived from the model. 

Goal.  The goal of this model is to optimize the net energy return rate (kCal/hr of 

work) of a human population dependent on these staple resources.  This requires an 

evaluation of the net caloric return each of these major resources as well as a 

consideration of the energetic costs associated with acquiring and processing these 

resources.  This will be followed by an examination of the environmental constraints 

influencing these costs and the generation of a mathematical model from these data.  It 

should be noted that while maximizing caloric return rates was the goal of this simplified 

model, there are other reasons for consuming dietary resources.  This model can 

indirectly inform on this by observing when and how caloric return rates fail to account 

for observed dietary breadth.   

Currency.  The caloric value of lechuguilla, sotol, onions, and prickly pear 

nopales is primarily derived from fructan, a storage polysaccharide composed of long 

branched chains of fructose with a single glucose molecule (Darbyshire and Henry 1981; 

Huazano-Garcia 2009; Leach and Sobolik 2010; Lopez and Urias-Silvas 2007a, b; 

Mancilla-Margalli and Lopez 2006; Ur et al. 2008).  Fructan cannot be broken down in 
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the human digestive tract directly and requires lengthy hydrolysis to degrade the 

compounds and form smaller carbohydrate molecules (Leach and Lopez ; Lopez and 

Urias-Silvas 2007b; Wandsnider 1997).  Unaltered fructans function as soluble dietary 

fiber, or prebiotics, fermentable substrates that promote bacterial populations in the 

hindgut (Lopez and Urias-Silvas 2007b).  Short chain fatty acids are produced as a 

byproduct of this fermentation process (Leach and Lopez ; Lopez and Urias-Silvas 

2007b). Recent research suggests that this process produces significantly less caloric 

yield than direct digestion of carbohydrates (Leach 2009).  Leach (2009) argues that 

experimental earth ovens do not reach a high enough temperature to substantially 

depolymerize fructans into digestible carbohydrates, leading him to conclude that the 

previous caloric values utilized for these desert succulents are set too high (Dering 

1999).  Leach does not account for the presence of other carbohydrates in the tissue of 

these species, which typically make up between 15% and 35 % of the water-soluble 

carbohydrates and occasionally account for over half of all carbohydrates in a specimen 

(Mancilla-Margalli and Lopez 2006).  For the purposes of this diet breadth model, the 

traditional values of 4 Kcal/gram of carbohydrate will be utilized rather than the 1.5 

Kcal/gram suggested by Leach (2009).  This is due to the uncertainty of the degree of 

depolymerization achieved in rock lined earth ovens as well as the inability to account 

for the relative frequency of fructans to digestible carboyhydrates in the plant material 

consumed.  Ethnographic accounts frequently reference the sweet taste of roasted agave 

and sotol hearts (Castetter et al. 1938), suggesting that the fructans were depolymerized 

with traditional earth oven cooking methods.  This is corroborated in a study evaluating 
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the hydrolysis of fructans in Agave tequilana using traditional tequila production 

processes (Waleckx et al. 2008).  Samples from the process indicate that 98% of the 

fructans were converted into simple sugars, dominantly fructose, after 25.5 hours of 

cooking in the oven (Waleckx et al. 2008).   

Table 1 presents the caloric values of plant resources identified in previous 

coprolite studies (Edwards 1990; Stock 1983; Williams-Dean 1978).  The nutritional 

value of sotol and lechuguilla is many times that of nopales and tunas by weight (Dering 

1999; Riley 2008; Sobolik 1991a).  It should be noted that prickly pear tunas contain 

starch and oil in their abundant seeds.  As these seeds are generally recovered intact in 

the coprolite specimens, this source of calories has not been incorporated into the caloric 

value presented in Table 1.   

Table 1.  Caloric Values for Known Food Resources from the Lower Pecos Canyonlands 

 

Costs.  The desert succulents so prevalent in coprolites from the region require 

intensive cooking to depolymerize the fructan type carbohydrates into shorter chain 

digestible polysacchrides.  This hydrolysis is achieved through the use of rock as heating 
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elements in buried earth ovens (Dering 1999; Leach et al. 2005).  Dering (1999) has 

estimated the handling costs required to construct such an oven, as well as the amount of 

plant material that could be baked in a 1.5 m2 earth oven (Table 2).  While prickly pear 

nopales and wild onions can be processed in a number of ways, ethnohistoric evidence 

suggests that nopales were usually baked in an earth oven like lechuguilla and sotol (De 

Leon 1971; Krieger 2002; Thoms 2008b).  This long term roasting method would be 

necessary to extract the maximum caloric value from these fructan-based carbohydrate 

resources.  Thus, the processing costs would be similar for the lechuguilla, sotol, and 

prickly pear nopales, as all three resources require intensive hydrolysis to render 

digestible carbohydrates.   

Prickly pear tunas can be eaten with minimal processing.  Processing may be 

used to transform these sugar rich resources into storable cakes or to remove minute 

glochids (spines), but there is no need to process this resource to render it digestible.  

Because of the occurrence of all of these staple resources in dense stands near the 

canyon rims, search costs have not been calculated (Dering 1999).  I contend that 

differences in the reproductive ecology and growth habits of these three species may 

impact resource availability in the immediate vicinity of a consistently re-occupied 

habitation site such as Hinds Cave.  This is discussed further in the constraints section 

that follows.   

Constraints.  It has been suggested that the staple resources presented above fall 

into two broad categories based on growth habits and reproduction (Dean 2004).  One 

category consists of those resources that exhibit slow growth habits and only reproduce 



 21

at an advanced age.  This category of resources could be stripped from a local 

environment by a small foraging population.  Ecologists have documented the 

suppression of slowly growing species through frequent disturbance using Lotka-

Volterra computer simulations (Huston 1994).  The decline of sotol, a slow growth 

species in the local plant community, would be directly related to the intensity of 

resource procurement as hunter-gatherer populations would harvest the calorically 

valuable mature specimens before florescence (Dean 2004).   

The other category consists of those resources that exhibit fast growth habits and 

frequent flowering, such as prickly pear, or reproduce asexually, such as lechuguilla 

(Nobel 1988).  It would require a greater intensity of disturbance to remove this resource 

type from a local resource cachement area. Most agave species, including lechuguilla, 

grows in clusters of young rametes attached by rhizomes to a mother rosette (Nobel 

1988).  This vegetative reproduction can account for 95% of all offspring in an agave 

population (Nobel 1988).  Mature mother plants can be harvested with little impact on 

the surrounding rametes, which are too small and carbohydrate deficient to be utilized as 

a food or fiber resource (Castetter et al. 1938; Gentry 1982)  This situation creates a 

continuous supply of newly mature plants, since harvest patterns do not interfere with 

population reproduction (Flannery 1986a).  If Hinds Cave was occupied on a semi-

annual basis, the slow growth resources should be less available for harvest and less 

important in the diet than the renewable resources.  If there are long periods of 

abandonment between the occupations, there should be a greater availability of and 

associated dependence on slow growth resources.   
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While Dering (1999;  2005) has done an excellent job developing processing cost 

and caloric return experiments associated with sotol and lechuguilla (Table 2), the 

resultant data categorize the aforementioned staples as high-input, low-return food 

sources primarily by comparison to the returns from animal resources rather than other 

plant foods, particularly those available in the Lower Pecos canyonlands.  I argue that 

comparing plant and animal resources directly based on return rates is less productive 

than considering each class of food resource separately since they generally represent 

two distinct groups of activities, namely, hunting and gathering.  When considered from 

this vantage, very few plant foods in the Lower Pecos have a higher caloric value than 

sotol and agave (Riley 2008).  The only resources that surpass the caloric yield of these 

succulents are seasonally limited and inconsistent mast resources, such as walnuts and 

acorns, and sunflower achenes.  By contrast, desert succulents are potentially available 

year round, are not subject to much interannual variation in production and frequently 

occur in dense communities allowing for mass harvesting and processing.  There does 

appear to be some differences in caloric content associated with the inflorescence of 

these species (Bell and Castetter 1941; Castetter et al. 1938; Mancilla-Margalli and 

Lopez 2006).  This is not considered in this model due to a lack of nutritional data 

addressing this difference.  While this initial ranking based on caloric return does not 

take into account the costs associated with procuring and preparing these resources, it 

suggests that both sotol and lechuguilla would have been preferred resources, 

particularly mature specimens with large quantities of energy stored to grow their 

inflorescence.   
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A Model of Lower Pecos Diet Breadth 

The following model uses the data from Dering (1999) with some additions and 

modifications.  Dering’s (1999) earth oven experiments varied in the amount of plant 

material initially cooked.  Lechuguilla ovens contained 30 hearts and sotol ovens 25, due 

to size differences.  Surprisingly, lechuguilla yields more calories than a sotol plant of 

comparable size, probably due to the thicker leafbase and caudex of the lechuguilla plant 

(Dering 1999).  The edible yield (kg) for an oven loaded with lechuguilla is higher than 

an oven loaded with same weight of sotol, while the amount of inedible plant refuse is 

higher for the oven containing sotol (Dering 1999).  It should be noted that this is not 

entirely secure, as some sotol ovens returned higher yields than some lechuguilla ovens 

(Dering 1999).  For the purposes of this model, only the upper yields have been 

generated for each resource.  There is no experimental data available for the edible yield 

of roasted nopales or onions.  Because neither of these resources would produce a large 

amount of vegetal refuse, the higher cooked return values of lechuguilla have been used 

for both.  The returns for two mixed resource earth ovens are also presented, one half 

sotol and half lechuguilla and the other composed of equal parts of all four resources.  

The returns from these six earth ovens are also compared to the returns generated by 

collecting tunas.  For the purposes of this study, it is assumed that the same amount of 

edible material generated by each oven could be collected in one hour for tunas.   
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Table 2.  Diet Breadth Ranking of Staple Plant Resources of the Lower Pecos Canyonlands 

 

This simplified model of the previously identified staple resources of the Lower 

Pecos canyonlands provides some important insight into the dietary decisions of hunter-

gatherers in the region.  Despite having a relatively low caloric return by unit weight, 

prickly pear tunas have the highest caloric return rates of any resource considered in this 

model.  This is due, primarily, to the low processing costs associated with this easily 

digestible resource.  Tunas should be the dominant component of the diet when they are 

seasonally available.  Both agave and sotol provide a decent return on the time and 

energy spent constructing an earth oven, but neither provides the surplus of calories 

necessary to store resources for future consumption.  The return rates for onions and 

nopales suggest they should only be incorporated into the diet when most other resources 

are not available in abundance due to seasonality or localized overharvesting.  This 

model will be used to assess the diet breadth of a number of coprolite studies from 

across the Holocene (Bryant 1969, 1974b; Edwards 1990; Fry 1975; Riskind 1970; 

Sobolik 1988b; Sobolik 1991a; Stock 1983; Williams-Dean 1978). 
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CHAPTER III 

SUBSISTENCE AND COPROLITES IN ARCHAEOLOGY 

 

The reconstruction of prehistoric subsistence has been a major goal of 

archaeology (Boone 2002; Broughton and O' Connell 1999; Bryant 1974c; Sobolik 

1988a; Sobolik 1991a, b, c, 1996b; Sutton et al. 2010; Winterhalder and Smith 1992).  

This includes research in fields as diverse as tool form and function, stable isotope 

analysis of bones and teeth, iconographic evidence, and the analysis of botanical and 

zoological remains from archaeological deposits (Reinhard and Bryant 1992).  While 

these approaches to reconstructing subsistence all have merit, none are direct evidence of 

the specific resources incorporated into past human diet.  Coprolites are a direct line of 

evidence for diet (Sutton 1998; Sutton et al. 2010).  This chapter presents a brief 

historical review of archaeological coprolite research, followed by an examination of the 

data sets potentially available from coprolite specimen. This section is organized into 

three broad categories of analysis: macroscopic, microscopic, and biochemical.   

A Brief History of Coprolite Research 

The study of fecal material has a long history in such diverse disciplines as 

medicine, biology, paleontology, and archaeology (Fry 1985; Sutton et al. 2010).  The 

word “coprolite” was coined by Buckland in 1829 as a term for mineralized dinosaur 

feces (Buckland 1829).  The definition has been expanded to include desiccated feces or 

intestinal contents in addition to actual “poop stones.”  A small number of studies were 

conducted throughout the first half of the twentieth century, but there was no 
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standardized method for sample preparation and analysis (Eames 1930; Laudermilk 

1938a, b; Wakefield and Dellinger 1936). 

  This all changed with the pioneering work of Eric O. Callen, the first 

archaeological coprolite specialist (Callen 1963, 1965, 1967, 1973; Callen and Cameron 

1960; Callen and Martin 1969).  Callen’s primary contribution was adopting a 

rehydration technique for dried zoological specimens (Van Cleave and Ross 1947)  and 

herbarium specimens (Benninghoff 1947) that required soaking the specimen in a 

solution of trisodium phosphate until disaggregation of the components occurred (Callen 

and Cameron 1960).  Prior to the establishment of this technique, researchers attempted 

to separate constituents in a number of ways, including screening the dry specimen, 

breaking it open with a hammer, and teasing the coprolite apart by hand (Bryant and 

Dean 2006).  The advent of a viable rehydration technique allowed researchers to 

recover a much broader range of data with which to evaluate past human diet, nutrition, 

health, and ecology.    

Following the development of this rehydration technique, Callen and others 

began a systematic study of the pollen, plant and animal macrofossils, and 

parasitological remains recovered from these unique human (Bryant 1969, 1974b, c, 

1975; Callen 1963; Callen and Martin 1969; Colyer 1965; Dickson et al. 2003; Fry 1970; 

Fry and Moore 1969; Heizer 1967; Martin and Sharrock 1964; Moore 1969; Riskind 

1970; Robbins 1971; Watson and Yarnell 1966; Yarnell 1969).  While the recovery of 

macrofossils, pollen, and parasitological data has been the main focus of coprolite 

studies, recent research has also extended into areas of biochemical analysis including 
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DNA studies (Gilbert et al. 2008; Gilbert et al. 2009; Goldberg 2009; Hofreiter et al. 

2000; Iniguez 2006; Leles 2008; Loreille et al. 2001; Luciani et al. 2006; Poinar et al. 

2009; Poinar et al. 2003; Poinar et al. 1998; Poinar et al. 2001; Rasmussen et al. 2009; 

Reinhard et al. 2008; Rollo et al. 2002; Stokstad 2000; Sutton et al. 1996), protein 

residue (Chin et al. 2003; Lambert 2000; Marlar 2000; Newman et al. 1993; Reinhard 

2006; Toker et al. 2005), sterol analysis (Gremillion and Sobolik 1996; Lin and Connor 

2001; Lin et al. 1978; Toker et al. 2005), and the determination of organic compounds 

through IR spectroscopy and various chromatographic techniques (Wales and Evans 

1988).   

These interdependent data sets have been used to address research questions 

including subsistence strategy (Bryant 1974b, c; Clary ; Cummings 1994; Euler 1982; 

Faulkner 1991; Gremillion 1996; Heizer 1967; Holden 1991; Horrocks et al. 2004; 

Leach and Sobolik 2010; Minnis 1989; Poinar et al. 2001; Sobolik 1991a; Sutton et al. 

2010), medicinal plant usage (Chaves and Reinhard 2006; Dean 1993; Kelso and 

Solomon 2006; Reinhard et al. 1991; Sobolik 1988a; Sobolik and Gerick 1992), 

community health (Andrews 1979; Confalonieri et al. 1991; De Candanedo Guerra Rde 

2003; Dittmar and Steyn 2004; Evans et al. 1996; Fry and Moore 1969; Goncalves et al. 

2002; Guerra et al. 2001; Guerra et al. 2003; Jouy-Avantin et al. 1999; Le Bailly et al. 

2003; Leles 2008; Loreille et al. 2001; Mart et al. 2010; Ortega and Bonavia 2003; 

Reinhard 1987; Reinhard 1992; Reinhard and Bryant 1992; Westoni 2009), and 

seasonality of site occupation (Riley 2008; Yll et al. 2006). 
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Deconstructing Coprolites 

  Coprolites are biochemically complex specimens that contain residues derived 

from multiple sources.  Fry (1985) lists six major components: 1) undigested dietary 

compounds; 2) intestinal secretions of the individual; 3) minerals and other substances 

excreted into the digestive tract; 4) hindgut bacteria and their metabolic derivatives; 5) 

cellular components, including parasites and pathological evidence; 6) enteroliths, 

gallstones, pancreatic calculi, and fecal spherulites (Canti 1997, 1998, 1999; Sutton et al. 

2010).  While each of these major classes can inform on past human nutrition and health, 

the majority of coprolite studies have focused on the identification of food residues and 

parasites.  Because coprolites are the result of the digestive process, the remaining 

residues of dietary items do not necessarily reflect the entire breadth of the meals 

consumed (Reinhard and Bryant 1992; Williams-Dean 1978).   

 Dietary reconstruction based on coprolite specimens makes five basic 

assumptions about the nature of the components recovered (Sutton et al. 2010).  First, 

the materials in the specimen were intentionally consumed by the individual who 

deposited the sample.  Second, these materials can be identified.  Third, the identified 

materials were consumed for the purpose of subsistence and represent at least part of the 

overall dietary choices made by the individual prior to deposition.  Fourth, the materials 

identified in a specimen were consumed in the day or two prior to elimination.  Thus, 

specimens may represent more than one meal, but are relatively precise windows into 

the suite of dietary decisions made by the individual.  Fifth, each coprolite is the result of 

a unique elimination of one individual.   
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Macroscopic Analysis.  The most abundant components of many coprolite 

specimens are macroscopic plant remains such as seeds, nut shell, epidermal cells and 

other plant fragments (Callen and Martin 1969; Reinhard and Bryant 1992) as well as 

animal components including bone, shell, feathers, hair, and scales (Reinhard et al. 2007; 

Sobolik 1993; Sutton et al. 2010).  These remains include both undigested and 

indigestible tissues (Sutton et al. 2010).  These components can inform on diet, but may 

not accurately reflect the relative importance of different food items (Holden 1994; 

Reinhard and Bryant 1992).  This is particularly true of easily digestible plant and 

animal components, such as the soft tissue of fruits, geophytes (underground storage 

organs), skeletal muscle and other tissue from animals, or plant foods that are heavily 

processed before consumption, such as milled seed resources (Sutton et al. 2010).  This 

is also impacted by the selective discard of harder components of a resource, including 

shell, bone, fiber, and seeds.  This is seen throughout the Lower Pecos canyonlands, 

where fiber quids derived primarily from sotol and lechuguilla were encountered in 

abundance at many sites (Irving 1966).  While many coprolite studies identify botanical 

components such as seeds, fruit fragments and nutshells, most neglect what are often the 

dominant components of many specimens, plant epidermal and sclerid (fiber) cells (Bell 

and King 1944; Catling and Grayson 1998; Sobolik 1991a; Sobolik 1992).  This creates 

a significant gap in the ability to reconstruct vegetal components of the meals 

represented in the coprolites, as many staple plant resources, including geophytes, 

cladodes and caudices, are underrepresented while reproductive structures such as fruits, 

nuts and seed resources are elevated above their actual contribution to the diet.   
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This is a particularly important issue in the Lower Pecos canyonlands, where 

previous studies have shown that the bulk of the diet was composed of fibrous vegetal 

resources (Bryant 1974b; Edwards 1990; Fry 1975; Leach and Sobolik 2010; Sobolik 

1991a; Stock 1983; Williams-Dean 1978).  Many of these staple resources can only be 

confirmed by reference to microscopic features of the macroscopic remains in coprolites 

or ancient DNA (aDNA).  Fiber ultimates and epidermal sheets require special reference 

collections and expertise to properly identify (Bell and King 1944; Catling and Grayson 

1998; Sobolik 1992).  Combining the thorough analysis of plant macrofossils with 

microscopic plant remains such as phytoliths, as well as biochemical and DNA evidence, 

can furnish a more complete picture of the botanical component of past human diet and 

nutrition. 

Common vertebrate remains encountered in many coprolites include small bones 

and bone fragments, hair, feathers, scales, and eggshell (Backwell et al. 2009; Reinhard 

et al. 2007; Reinhard and Bryant 1992; Sobolik 1993).  While this is a broad range of 

potential data, large animals are frequently underrepresented in the record because the 

bone and other durable components were removed prior to the consumption of the edible 

portions such as meat and organs (Reinhard et al. 2007; Sobolik 1993).  Combining the 

study of these macroscopic remains with protein residue and DNA studies of the 

coprolite specimens as well as traditional zooarchaeological studies from the same site 

can provide a more complete picture of the animal component of the diet.    

 Evidence of insect and other invertebrate consumption is another macroscopic 

component frequently encountered in coprolite specimens (Bryant and Dean 2006; 
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Callen 1963; Johnson et al. 2008; Reinhard and Bryant 1992; Sutton et al. 2010).  The 

evidence generally consists of the remains of the chitinous exoskeletons of insects and 

the calcium carbonate shell fragments of gastropods.  It is important to note that 

unidentified chitin fragments recovered from specimens may represent the remains of 

coprophagous insects rather than dietary consumption (Reinhard and Bryant 1992).   

Microscopic Analysis.  Analysis of the microscopic fraction of specimens is an 

important part of coprolite studies.  Most of this work has focused on the identification 

of pollen grains, which can inform on diet, seasonality of deposition, and medical 

practices (Carrion et al. 2005; Carrion et al. 2001; Dean 1993, 2006; Horrocks et al. 

2003; Horrocks et al. 2004; Horrocks et al. 2002; Kelso and Solomon 2006; Reinhard et 

al. 2006; Reinhard et al. 1991; Riskind 1970; Sobolik 1988a).  The second most common 

microscopic component identified in coprolite studies are ova and other evidence of 

parasites (Confalonieri et al. 1991; Dittmar and Steyn 2004; Evans et al. 1996; Fry and 

Moore 1969; Fugassa et al. 2006; Horrocks et al. 2004; Jouy-Avantin et al. 1999; Ortega 

and Bonavia 2003; Shin et al. 2009; Toker et al. 2005).  To date, little attention has been 

focused on the identification of phytoliths and starch granules from coprolites, although 

there are some exceptions (Danielson and Reinhard 1998; Horrocks et al. 2003; 

Horrocks et al. 2004; Horrocks et al. 2002; Reinhard 2006; Reinhard and Danielson 

2005).  Analysis of these microscopic components provides corollary lines of evidence 

to interpretations based on the macroscopic and aDNAcomponents.  

Since the first studies of coprolite pollen by Paul Martin in the 1960s (Fry 1985; 

Martin et al. 1961; Martin and Sharrock 1964), pollen analysis has become a routine part 
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of both human and animal coprolite studies (Bryant 1974a, c, 1975; Bryant and 

Holloway 1985; Carrion et al. 2005; Carrion et al. 2001; Chaves and Reinhard 2006; 

Horrocks et al. 2003; Horrocks et al. 2004; Horrocks et al. 2002; Horrocks et al. 2008; 

Irwin et al. 2004; Kelso and Solomon 2006; Reinhard et al. 2006; Riskind 1970; 

Williams-Dean 1978), because it is preserved remarkably well in fecal matter (Reinhard 

and Bryant 1992).  The pollen spectrum of a coprolite is often the primary data set used 

to assess seasonality of consumption (Gremillion and Sobolik 1996; Reinhard and 

Bryant 1992; Williams-Dean 1978).  While these types of data are not without fault, the 

congruence of the pollen spectrum with other indicators such as seasonally limited fruit 

or juvenile faunal remains provide some of the strongest evidence of seasonality of site 

usage.  It is also an important, if biased, source of evidence used for past environmental 

reconstruction (Carrion et al. 2001).  Pollen recovered from coprolite specimens can 

inform on aspects of dietary intake not evident in the macroscopic plant remains (Dean 

1993; Fry 1985; Holloway 1983; Sobolik 1988a).  This is perhaps most useful in 

identifying potential medicinal ingestion of plants (Holloway 1983; Reinhard et al. 1991; 

Shafer et al. 1989; Sobolik and Gerick 1992).   

Pollen data recovered from coprolites have limitations in inferring dietary intake.  

Experimental studies demonstrate that pollen types can appear in fecal samples days or 

even weeks after the recorded ingestion of that type (Dean 2006; Kelso and Solomon 

2006; Williams-Dean 1978).  There is also an ongoing debate about the importance of 

concentration values in a coprolite specimen to better establish the purposeful ingestion 
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of pollen (Dean 1993, 2006; Reinhard et al. 2006; Reinhard et al. 1991).  This is 

explored further in the results of the present study.   

Pollen can inform on multiple aspects of past diet and environment, due to its 

varied dispersal and ingestion (Fry 1985).  Some pollen is anemophilous (airborne) and 

would be primarily ingested through aspiration, from water sources, or as an 

atmospheric contamination of food (Fry 1985).  These pollen types would inform on 

seasonality of deposition as well as changes in vegetative communities and, potentially, 

climate through correlation with pollen samples recovered from dated stratigraphic 

sequences (Fry 1985; Reinhard and Bryant 1992).  Other pollen types are zoophilous 

(animalt-borne) and are usually directly correlated with ingestion of flowers as food or 

drink (Bryant and Dean 2006; Chaves and Reinhard 2006; Dean 1993, 2006; Fry 1985; 

Kelso and Solomon 2006; Reinhard et al. 2006; Reinhard et al. 1991; Sobolik 1988a).  

While some scholars (Fry 1985) suggest that pollen could enter the digestive tract from 

grains adhering to various foodstuffs, studies of pollen dispersal have shown that pollen 

rarely accumulates on or near the fruit and other digestible components of major food 

resources such as nopales, though there are some exceptions (Chenopodium sp.) (Adams 

1988a; Adams 1988b; Bohrer and Adams 1977).  Little pollen would be expected to 

accumulate on the sotol and lechuguilla staples of the Lower Pecos, since harvesting 

these resources negates the development of the inflorescence.   

 Evidence of parasitism is one issue frequently addressed with microscopic 

analysis of coprolites (Confalonieri et al. 1991; Dittmar and Steyn 2004; Evans et al. 

1996; Faulkner 1991; Fry 1985; Guerra et al. 2003; Holiday et al. 2003; Jouy-Avantin et 
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al. 1999; Reinhard et al. 1985).  It generally consists of the ova and larvae of both 

ectoparasites and endoparasites (Reinhard 1992).  It should be noted that interpretations 

of these remains must be made with caution, as many parasite ova are difficult to 

classify or are not exclusive to humans (Fry 1985).  Evidence of parasitic infestation can 

provide an excellent means by which to evaluate changes in community health with the 

development of agriculture or increasing population density (Fry 1985; Reinhard 1989; 

Reinhard 1992; Reinhard et al. 1985).   

Reinhard (1988) utilized the combined macrobotanical, faunal and 

parasitological data from coprolite specimens from across the Southwest to evaluate the 

maize dependency hypothesis, which suggests that high levels of anemia should be 

observed (through skeletal markers such as porotic hyperostosis (El-Najjar et al. 1975; 

Karl and Fink 1994; Walker et al. 2009; Wright 1998)) in populations with a singular 

dependence on maize.  There was no observed relationship between high levels of maize 

consumption and skeletal markers of anemia (Reinhard 1989).  In this analysis, Reinhard 

(1988) observed a strong correlation between the presence of helminth remains, mostly 

pinworm (Enterobius vermicularis), in coprolites and porotic hyperostosis lesions on 

skeletons from the same sites.  While this does not infer a causal relationship, it does 

suggest that the same sanitation factors that promote the growth of pinworm would also 

lead to microparasite infections that cause anemia (Reinhard 1989).    

Other microfossils have also been recovered from coprolite specimens, including 

bacteria, fungal spores, diatoms, and phytoliths (Horrocks et al. 2003; Horrocks et al. 

2002; Reinhard and Bryant 1992).  Phytoliths are the most frequently studied of these 
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microfossils (Danielson and Reinhard 1998; Fox 1994; Horrocks et al. 2003; Horrocks et 

al. 2004; Horrocks et al. 2002; Reinhard and Danielson 2005; Williams-Dean and Bryant 

1975).  These silica and calcium structures are found in a wide variety of plants, 

particularly from areas where water sources are rich in dissolved silica and calcium 

carbonate (Ball 1992; Piperno 2006).  While not all phytoliths are diagnostic, the 

proportions of different shapes of phytoliths can inform on the ingestion of certain plant 

resources (Ball 1992; Piperno 2006).  In addition, a number of cacti and other succulent 

genera and species do have distinctive phytolith morphologies (Danielson and Reinhard 

1998; Jones and Bryant 1992).  Phytolith data from dental calculus has also had 

important inferences for dietary reconstruction, particularly when combined with 

concurrent studies of dental microwear (Boyadjian et al. 2007; Buchet 2001; Danielson 

1993; Danielson and Reinhard 1998; Fox 1994; Gugel et al. 2001; Hardy et al. 2009; 

Henry and Piperno 2008; Lalueza Fox et al. 1996; Mainland 2003; Middleton 1994; 

Philippe 2010; Reinhard and Danielson 2005; Rovner 2001; Sanson et al. 2007).  

Digestion and Starch Recovery from Coprolites.  To my knowledge, there is 

only one published study of starch recovered from coprolite specimens (Horrocks et al. 

2004).  This line of evidence, if recovered, would strengthen and expand the dietary 

reconstruction based on the macroscopic and other microscopic evidence from 

specimens.  Starch granules are often interpreted as direct evidence of past diet, since the 

starch itself is the nutrient being consumed.  Starch is fundamentally different from other 

microbotanical components such as pollen and phytoliths, which are not always direct 

evidence of food consumption.  However, a recent study suggests that natural starch rain 
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may be a more common environmental contaminant than has been previously realized in 

archaeological starch research (Laurence 2010).  While this remains unresolved, it is 

clear that starch frequently enters the atmosphere through pollen grain rupture associated 

with precipitation and other weather patterns (Currie et al. 2000; D'amato et al. 2007; 

Erpenbeck et al. 2005; Garcia 2010; Kuang et al. 2005; Pacini 2006; Schappi 1999; 

Schappi et al. 1999; Wang et al. 2004; Zona 2001).     

The role of starch in human nutrition is one possible reason few researchers have 

investigated coprolites for starch.  Starch is a highly digestible carbohydrate in the 

human gastrointestinal system, and it would not necessarily be expected to escape 

digestion in an identifiable manner (Asp et al. 1996; Autio 2001; Dreher et al. 1984; 

Englyst et al. 1992; Faisant 1995; Franco et al. 1992; Samuel 2006).  While it was once 

assumed that all starch was fully hydrolysed and absorbed in the small intestine portion 

of the human gastrointestinal tract, research has shown that there is a great deal of 

variability in the digestibility of starch, influenced by the molecular structure of the 

starch itself, the complex interaction of starch with other cellular components of the food 

resource as well as the rest of the meal, and the processing techniques involved in meal 

preparation (Englyst et al. 1992).   

Nutritionists divide starch into three categories based upon the potential 

digestibility of the granule (Englyst et al. 1992).  These categories are: 1) rapidly 

digestible starch (RDS); 2) slowly digestible starch (SDS); and 3) resistant starch (RS).  

Rapidly digestible starch includes most freshly cooked starchy foodstuffs and is readily 

digested in the small intestine (Englyst et al. 1992).  This nutritional class of starch 
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should not be recovered in coprolite specimens since normally it would be entirely 

digested before reaching the colon.  Slowly digestible starches include most raw cereal 

grains and are generally slowly but completely hydrolysed and absorbed in the small 

intestine.  These granules would generally not be present in a coprolite specimen except 

under circumstances of rapid passage through the gastrointestinal tract.  Resistant starch 

includes all starch granules which are not expected to be fully digested in the small 

intestine, leaving a potential starch residue that may be fermented in the colon, or 

possibly incorporated into fecal material (Englyst et al. 1992). 

This category of resistant starch, can further be divided into three sub-categories 

based upon the intrinsic factors of starch that reduce digestibility (Asp et al. 1996;  

Englyst et al. 1992).  The first factor leading to the resistance of some starches to the 

human digestive system is the physical makeup of the food.  Some starch grains are 

physically inaccessible due to the presence of cellulose or other indigestible material co-

occurring in the starchy food (Englyst et al. 1992).  This includes starch grains that are 

embedded in cells or structures such as seeds.  This also occurs when starch is densely 

packed, limiting the exposure of some interior granules to pancreatic amylase, retarding 

digestion (Asp et al. 1996).  The second factor impacting the resistance of starch to 

digestibility is the structure of the starch grain itself.  Storage of starch is accomplished 

in plants through the formation of a granule, a partially crystalline intercellular body 

(Banks and Greenwood 1975).  The crystal structure of the amylopectin component of 

the granule occurs in one of three patterns distinguishable by x-ray diffraction patterns, 

which tend to correlate with botanical sources (Czaja 1978).  The A-type diffraction 
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occurs predominately in starches from cereals, granules from tubers generally show the 

B-type pattern, and the C-type pattern is a combination of the A and B type crystalline 

arrangements (Banks and Greenwood 1975; Copeland et al. 2009; Evers 1979; Moss 

1976; Thomas and Atwell 1999).  Both the B and C type patterns tend to be resistant to 

digestion, although this varies with the plant source itself (Asp et al. 1996).  This is 

particularly true of B and C type starches that are consumed raw, such as bananas, or 

when the starch has been incompletely gelatinized through processing (Englyst et al. 

1992).  The third factor affecting starch resistance to digestibility is retrograded starch.  

This occurs when a starch that has been gelatinized and dispersed then cools, reforming 

into a partially crystalline structure (Englyst et al. 1992).  This process of retrogradation 

generally occurs with the linear amylase structures rather than the branched amylopectin 

fraction of starch (Englyst et al. 1992; Franco et al. 1992).  Retrograded starch exhibits 

B-type diffraction patterns, which may explain the resistance to digestibility observed in 

these granules.  Other intrinsic factors, such as the size of the starch granule, have been 

suggested to affect differences in starch digestibility (Franco et al. 1992).   

The differential digestibility of starch based on its intrinsic physical qualities is 

further complicated by a number of extrinsic factors associated with eating that will alter 

the susceptibility of starch to hydrolysis in the small intestine.  These include such 

factors as the extent of chewing practiced by an individual or culture, the transit time of 

food through the gastrointestinal tract, the amount of starch present, the concentration of 

the necessary enzyme amylase in the gut, and the presence of other food components in 

the meal that might reduce starch hydroloysis (Franco et al. 1992).  This is particularly 
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true of compounds like dietary fiber, which impact starch digestion both chemically and 

physically (Dreher et al. 1984).  The digestibility of starch is also affected by different 

processing techniques (Autio 2001; Babot 2003; Baker and Hobson 1952; Henry et al. 

2009).  Starch that is gelatinized in the presence of heat and water is initially easier to 

digest before it retrogrades as discussed above (Dreher et al. 1984).  Storage techniques 

such as drying and freezing, which are both traditionally used among potato cultivators 

in the Andes (Johns 1988, 1996), can significantly decrease starch granule digestibility 

(Dreher et al. 1984; Szymonska 2000). 

Biochemical Analysis of Coprolites 

The dietary data derived from the macroscopic and microscopic residues of 

coprolites is unparalleled in the archaeological record.  Concordant lines of evidence 

inform on the dietary decisions underlying the several meals represented in the 

specimen.  This extreme detail into the decisions of an individual actor in the past is 

furthered by a range of molecular techniques that have been applied to these 

biochemically complex specimens.  

Wakefield and Dellinger’s (1936) elemental analysis of specimens recovered in 

the Ozark Mountains was the first attempt to evaluate the chemical composition of 

coprolites.  However, only in the last several decades have coprolite researchers begun 

applying the full range of analytical techniques that could be useful in reconstructing 

aspects of past dietary health.  Reinhard and Bryant (1992) reported on a series of 

studies from the 1970’s and 1980’s that established the difficulty of evaluating the 

chemical composition of coprolites, due to the complex nature and molecular alteration 
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in the post-depositional environment.  Further work discovered that the Maillard reaction 

is an important post-depositional process that degrades complex organic molecules 

(Evershed et al. 1997).  Nevertheless, some research has shown that plant components 

can be detected with a modified gas chromatography procedure (Moore et al. 1984).  

Other early research established the presence of steroids and amino acids, but failed to 

detect bilirubin, hydrolyzed fat, or blood (Reinhard and Bryant 1992).  During the last 

fifteen years, new research has focused on attempts to recover and interpret various 

chemical constituents of coprolites in terms of dietary choices (Sutton et al. 2010).   

 The Chemical Makeup of Coprolites.  Coprolites have a complex chemical 

composition (Wales and Evans 1988).  They contain a range of organic and inorganic 

substances, as well as compounds in varying stages of digestive breakdown.  There are 

three main categories of organic chemical compounds found in coprolites (Wales and 

Evans 1988).  The first type are nitrogenous substances, primarily proteins and amino 

acids.  The second group, lipids, can be further classed into simple lipids (such as fats, 

oils, and waxes), complex lipids (phospholipids and glycolipids), and derived lipids 

(including cholesterol, steroids, and vitamins).  Carbohydrates, such as sugars, starch, 

fructans, and cellulose, make up the third class of compounds.  Wales (1988) followed 

procedures already successfully employed in the analysis of organic residues from 

pottery in his preliminary study.  The study utilized infra-red spectroscopy (IR) but 

could not reach any conclusions for three major reasons (Wales and Evans 1988).  One, 

the chemical composition of the specimens was incredibly complex despite the 

presumably limited diet.  Two, a suitable reference collection of plant materials for the 
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region of origin has not been analyzed, although preliminary results suggested that the 

chemical spectra of different species are quite distinctive.  Third, post-depositional 

chemical degradation and contamination had not been explored in any systematic 

fashion.  Nonetheless, the study was able to show the presence of some triglycerides and 

free fatty acids, suggesting that future research should focus on cuticular waxes and seed 

oils.  Wales (1988) anticipated that this research would help to identify archaeologically 

“invisible” food resources, particularly underground storage organs that are staples in 

many regions of the world (Hillman et al. 1993).   

More recently, IR has been employed to study the chemical composition of 

mineralized human feces (Allen et al. 2002; Marshall et al. 2008; Shearer 1988; Sutton 

et al. 2010).  One study detected apatite consistent with bone in all the coprolites 

analyzed (Allen et al. 2002).  Other possible techniques for characterizing chemical 

compounds include gas chromatography (GC), Fourier Transform Infrared Spectroscopy 

(FTIR), and gas chromatography- mass spectrometry (GC/MS), which also has the 

ability to monitor the isotope ratios of individual compounds (Degano and Colombini 

2009; Evershed 1993; Gilbert et al. 2008; Gill et al. 2009; Poinar et al. 2009; Rasmussen 

et al. 2009).  GC/MS has the potential for wide application in paleodietary and coprolite 

studies, as it allows for the characterization of individual components visible in the 

specimen and a more precise isotope analysis of composite artifacts such as coprolites 

(Evershed 1993).   

Protein Residue Analysis.  Protein residue analysis has received considerable 

attention in the archaeological community as a method for determining stone tool use 
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(Leach 1998; Leach and Mauldin 1996; Lombard 2004; Newman et al. 1993; Shillito 

2009).  Only rarely has this technique been applied to non-lithic archaeological 

materials.  Some preliminary work has been performed on some coprolite specimens as 

well as site soils with promising results (Newman et al. 1993).  This technique could 

render the dietary contribution of meat visible in coprolite analysis, allowing for a better 

understanding of past human diet.   

Protein residue analysis utilizes an immunological technique, cross-over 

electrophoresis (CIEP), to evaluate the antigen-antibody reaction in a substance 

(Newman et al. 1993).  This reaction is extremely sensitive and specific, allowing for the 

characterization of very small amounts of protein (Newman et al. 1993).  This technique 

has been primarily employed in medico-legal settings for characterizing bloodstains, but 

it can be applied to any research involving protein detection.  It has been demonstrated 

that antigens can survive harsh conditions in a post-depositional context and retain their 

antigenicity and biological activity, making this technique potentially useful in 

archaeological contexts (Newman et al. 1993).   

Immunosorbent Assay. This is a technique that is frequently applied to modern 

fecal specimens (Gonclaves et al. 2004; Neill 1995).  The technique is fairly simple, and 

can be used to detect a number of antigen proteins, depending on the research goal 

(Goncalves et al. 2002).  It has been used primarily to detect evidence of parasitic 

infection (Goncalves et al. 2002; Gonclaves et al. 2004).  This is particularly important 

since differential preservation of identifiable parasitic remains, along with the lack of 

distinguishing features for many parasite larvae and ova, limits the conclusions based 
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upon visual identification (Fry 1985; Reinhard 1989).  This technique has also been used 

to confirm the consumption of human flesh associated with evidence of human butchery 

at Cowboy Wash, Colorado (Koon et al. 2010; Lambert 2000; Lambert et al. 2000; 

Reinhard 2006). 

Preparation methods for immunoassay follow standard coprolite procedures 

(Goncalves et al. 2002).  A sub-sample is examined microscopically for parasite 

remains.  A commercially available immunoassay kit is used following the 

manufacturers instructions.  The results are assessed with a visual inspection of color 

change and verified by measuring the absorbance of each sample at 450 nm with a 

spectrophotometer (Gonclaves et al. 2004).  This technique seems to provide a relatively 

straightforward corollary line of evidence for assessing aspects of parasitic infection and 

community health. 

DNA Analysis.  Ancient DNA analysis has become a controversial topic due to 

the potential for contamination throughout the deposition, recovery, and analysis of the 

specimen (Bryant and Dean 2006; Gilbert et al. 2008; Gilbert et al. 2009; Goldberg 

2009; Hofreiter et al. 2000; Kemp et al. 2006; Lindahl 1997; Luciani et al. 2006; Poinar 

et al. 2009; Poinar et al. 2003; Poinar et al. 1998; Poinar and Stankiewicz 1999; 

Rasmussen et al. 2009; Reinhard et al. 2008; Stokstad 2000; Sutton et al. 1996; Yang 

and Watt 2004).  This review focuses on the analysis of non-human DNA from 

coprolites, which have less potential for contamination during recovery and analysis 

(Hofreiter et al. 2000; Leles 2008; Loreille et al. 2001; Poinar et al. 1998; Poinar et al. 

2001; Reinhard et al. 2008).  DNA recovered from parasites has been commonly 
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explored, but will not be considered further here (Iniguez 2006; Leles 2008; Loreille et 

al. 2001).   

Many of the studies of ancient DNA have focused on mtDNA (mitochondrial) 

since preservation of nuclear DNA seems to require a more rigorous set of preservation 

requirements (Lindahl 1997).  DNA preservation should never be assumed (Poinar and 

Stankiewicz 1999).  Rather, it should be assessed by verifying the preservation of other 

molecular structures, particularly proteins (Poinar and Stankiewicz 1999).  Flash 

pyrolysis with gas chromatography (GC) or mass spectrometry (MS) has been suggested 

as a quick and effective method for evaluating the potential for DNA and other molecule 

preservation (Poinar et al. 1998).  mtDNA from coprolites can provide direct evidence of 

past movement of human populations and other questions of paleodemography through 

the evaluation of the common haplotype groups among Native American populations 

(Leblanc et al. 2007) (Gilbert et al. 2008; Luciani et al. 2006; Poinar et al. 2001).  

Much of the work on coprolite DNA has focused on nuclear and chloroplast 

DNA, since non-human mtDNA has limited capacity to inform on dietary intake 

(Iniguez 2006; Leles 2008; Loreille et al. 2001; Luciani et al. 2006; Poinar et al. 2003; 

Poinar and Stankiewicz 1999).  There are some exceptions to this, such as the 

identification of turkey domestication in the American Southwest through mtDNA 

markers (Speller et al. 2010).  Since many nuclear DNA fragments cannot be identified 

below the family level, paleovegetation/ faunal studies and corollary evidence from 

macroremains and micro remains can improve the resolution of the resulting 

interpretations (Hofreiter et al. 2000; Reinhard et al. 2008).  Nonetheless, aDNA studies 
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of coprolites may reveal the consumption of food resources undetected with the 

traditional methods of analysis and identification (Poinar et al. 2001; Reinhard et al. 

2008). 

Steroid Analysis.  Prior to the advent of aDNA research, steroid analysis was the 

most commonly employed chemical technique in coprolite studies (Bull et al. 2003; 

Goodfellow et al. 1977; Lin and Connor 2001; Rhode 2003; Sobolik et al. 1996).  

Steroids are a class of lipid that perform a variety of biochemical functions within plants 

and animals.  The analysis of these compounds can be utilized to address a number of 

research questions.  Since humans produce species-specific sterols in their feces, the 

analysis of these compounds can inform on the presence of human fecal material in 

water (Goodfellow et al. 1977), soil (Bull et al. 2003), or verify a coprolite as human in 

origin.  Hormonal steroids in coprolites have also been used to determine the sexual 

status of primates (Rhode 2003).  Sex is assessed by measuring the relative abundance of 

testosterone to estrogen (Rhode 2003).  Fecal steroids have also been applied in the 

analysis of endocrine function and hormone metabolism research in modern human 

samples (Sobolik et al. 1996).  Determining sex has been the primary focus of fecal 

steroid studies in human coprolite research (Rhode 2003; Sobolik et al. 1996).  There 

may also be some potential for distinguishing between the follicular phase and the luteal 

phase in coprolites deposited by women (Sobolik et al. 1996).    

Stable Isotope Analysis.  While stable isotope studies are routinely conducted on 

preserved skeletal material from archaeological sites, there are no published studies of 

stable isotope data derived from human coprolites.  Staple isotopes could potentially 
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inform on the differential use of plant resources with differing photosynthetic pathways 

(δ13C ) as well as the role and source of animal protein (δ15N).  There is an abundance of 

literature on fecal studies of African herbivores that incorporate stable isotope data 

(Codron et al. 2006; Codron et al. 2007a; Codron et al. 2007b; Codron et al. 2008; 

Deniro and Epstein 1978; Smith et al. 2002; Sponheimer et al. 2003a; Sponheimer et al. 

2003b).  These studies are considered in the following section of the relationship 

between the δ13C value of diet and fecal remnants of that diet.  δ15N is not considered in 

any detail here.   

There is not a one-to-one relationship between the δ13C value of diet and the δ13C 

values of the resultant animal tissue (Deniro and Epstein 1978).  Many studies have 

evaluated the relationship between diet and the most studied tissue types, namely bone 

collagen, bone apatite, and dental enamel (See Smith et al. (2002) for an example), but 

fewer studies have included soft tissue that is unlikely to be recovered archaeologically.  

Experimental studies have shown that the relationship between dietary δ13C values and 

the δ13C values of various tissues are constant, if not directly one-to-one (Ambrose and 

Norr 1993; Deniro and Epstein 1978; Tieszen and Fagre 1993).  This relationship is not 

uni-directional for all tissue types, with some organs exhibiting increased discrimination 

and others exhibiting decreased discrimination (Deniro and Epstein 1978).  This 

complex relationship suggests that any dietary reconstruction based on less commonly 

recovered tissues in the record should be formulated on prior experimental work 

(Codron et al. 2006; Codron et al. 2007a; Codron et al. 2007b; Codron et al. 2008; Smith 

et al. 2002; Sponheimer et al. 2003a; Sponheimer et al. 2003b).   
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This relationship between dietary δ13C values and the resulting δ13C values of 

feces is even more complex, since fecal material represents a combination of indigestible 

dietary residue, the bacterial flora of the gastrointestinal tract, and cells of multiple tissue 

types of the animal under consideration (Sutton et al. 2010).  Thus, different diets could 

contribute different amounts of each of these categories to the fecal specimen, with this 

complex relationship creating a less secure link between dietary δ13C values and fecal 

δ13C values.  As other researchers have pointed out, the coarse, undigested component of 

the diet may be over-represented in the feces relative to diet (Codron et al. 2005; 

Sponheimer et al. 2003b).  However, one major advantage of fecal δ13C values is that 

they can be used to ask questions about changes in diet over much shorter time periods 

than the record found in bone and teerh, which represent a dietary average over a longer 

timespan (Sponheimer et al. 2003b).   

There have been a number of studies linking dietary δ13C values and fecal δ13C 

values, mostly focused on wild animals (Codron et al. 2005; Codron et al. 2006; Codron 

et al. 2007a; Codron et al. 2007b; Codron et al. 2007c; Deniro and Epstein 1978; Hwang 

et al. 2007; Sponheimer et al. 2003a).  Most species studied exhibit a slight fractionation 

between diet and feces (Δδ13C between –0.3 and –1.3 ‰) (Sponheimer et al. 2003b).  In 

this study, fractionation appears to vary slightly with differences in dietary δ13C values.  

On average, herbivores fed a C3 plant diet (alfalfa) had a Δδ13C of –0.6‰ while those 

same species fed a C4 plant diet (coastal Bermuda grass) had a Δδ13C of –1.0‰ 

(Sponheimer et al. 2003b).  Digestive anatomy does not seem to play an important role 

in differences in fractionation, although hindgut fermentors were limited to two samples 
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(Sponheimer et al. 2003b).  Other researchers have argued that the data from 

Sponheimer et al. (2003) cannot be extrapolated to all herbivores, since the majority of 

the animals studied were medium to large bodied, and metabolic associations with body 

size were not taken into account (Hwang et al. 2007).  Hwang et al. (2007) studied a 

number of small rodents (all hindgut fermentors) and concluded that the Δδ13C values 

were much larger (-2.7 to –5.9‰).  This may be due to higher mass-specific metabolic 

rates of smaller animals, but it seems equally likely to be influenced by research design.  

Unlike previous studies based on the consumption of complete plants (C3 or C4), this 

study used a commercially prepared food that contained a combination of C3 and C4 

plants, probably with differing degrees of digestibility.  This suggests that the larger 

fractionation may be due to the more complete digestion of the C4 component and a 

resulting increase in the proportion of C3 plant material in the undigested food residue 

represented by the fecal material (Sponheimer et al. 2003b).    

It also seems likely that humans should also show a very slight fractionation 

between diet and feces.  Relative to herbivores, humans have a generalized digestive 

physiology that exhibits significantly shorter passage times.  The inclusion of hindgut 

fermenting herbivores in the study suggests that the results are broadly applicable to 

other hindgut fermentors including humans.  Previous studies of baboons (Codron et al. 

2008) have successfully applied a Δδ13C of –0.9‰, derived from the previously 

mentioned herbivore studies, to dietary reconstruction.  Baboons are ecological 

generalists who exploit a wide variety of resources (Codron et al. 2008).  While they 

may not be direct analogs for reconstructing human paleodiet, this study does indicate 
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that the fractionation values developed for herbivores can be applied to broader classes 

of mammals, including humans.  However, as previous studies have suggested, the δ13C 

of fecal remains may be biased towards the undigestible residue of the diet, such as 

dietary fiber, and may not reflect the δ13C compostion of the entire diet, especially meat 

and other readily digestible components.  This bias is not limited to stable carbon 

isotopes and is true of all coprolite constituents (Reinhard and Bryant 1992; Sutton et al. 

2010).  This should not be a limiting factor in research designed to evaluate the dietary 

contributions of items with similar composition, such as the staple food resources 

previously identified for the Lower Pecos canyonlands.  Sponheimer et al. (2003) 

suggest that differential digestibility is unlikely to bias field studies, since most wild 

foods have high levels of fiber and other indigestible components such as lignin. 

AMS C-14 Radiocarbon Dating of Coprolites 

 Coprolite specimens can be directly dated using Accelerator Mass Spectrometry 

(AMS) radiocarbon methods (Dean 2004; Gilbert et al. 2008; Hofreiter et al. 2000; 

Luciani et al. 2006; Poinar et al. 2003; Poinar et al. 1998; Poinar et al. 2001).  This is 

particularly important in the Lower Pecos canyonlands, where many sites still contain 

coprolite specimens that have been disturbed and impacted by artifact collectors, looting 

and animal grazing.  This previously neglected data set can be temporally associated 

using AMS radiocarbon dating.  While coprolites do provide enough carbon to be dated 

directly using traditional radiocarbon methods (Williams-Dean 1978), there is the 

potential of external contamination and admixture of components within the specimen.  

AMS dating allows for the direct sub-sampling of either visible components or the 
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general residue in the specimen without destroying a large portion of the specimen.  To 

date, seven specimens recovered from the Hinds Cave excavation have been directly 

dated using AMS radiocarbon methods.   

Summary 

 Coprolites are among the most biologically complex evidence of past human 

activity recovered in the archaeological record.  One specimen can yield multiple lines 

of congruent evidence on an individual’s dietary choices, as well as information on 

seasonality of site occupation, overall health, parasite load, potential sex through sterol 

analysis, and even individual identity through mtDNA.  This wealth of information 

focused on the actions of one individual over a day or two requires different frames of 

analysis than the archaeological palimpsest that results from the actions of multiple 

individuals over years and decades.   
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CHAPTER IV 

THE LOWER PECOS CANYONLANDS 

 

Located on the eastern periphery of the Chihuahuan desert (Figure 2), the Lower 

Pecos canyonlands have a long history of archaeological investigation, due primarily to 

the remarkable preservation conditions on its numerous rockshelters and its distinctive 

rock art styles.  This chapter first presents an environmental overview and geographic 

delineation of the region.  It includes a reconstruction of past environment during the 

Holocene based on pollen and other paleoenvironmental data.  The overview of 

archaeological research is presented in three temporal phases.  The first phase consists of 

the initial excavations and rock art research during the 1930s.  The second phase 

coincides with the damming of the Rio Grande and the creation of the Amistad 

Reservoir (now the Amistad National Recreation Area).  This phase primarily consists of 

studies through the Texas Archaeological Salvage Project.  The third phase entails 

primarily academic excavations and laboratory analysis of existing museum collections 

done after the completion of the Amistad Reservoir.   The chapter concludes with a 

chronological reconstruction of human occupation in the region derived from the eighty 

years of archaeological research.   
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Figure 2.  Map of the Lower Pecos Canyonlands 
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Defining the Lower Pecos Canyonlands 

The Lower Pecos canyonlands were originally recognized as a unique 

archaeological research area based on the several styles of rockart that occur in 

rockshelters and other protected settings of the region (Jackson 1938; Kirkland 1939).  

The distribution of the most distinctive of these styles, the Pecos River style, has been 

the basis for the geographic boundaries assigned to the region (Turpin 2004).  These 

boundaries are reinforced by the similarity among material culture recovered from the 

rockshelters of the region, partly a result of the incredible preservation of organic 

remains noted above (Turpin 2004).  This region encompasses the southwestern edge of 

the Edwards Plateau, the eastern edge of the Stockton Plateau, and the northern edge of 

Coahuila, Mexico (Saunders 1992).  This region is bisected by the middle Rio Grande 

basin, as well as the tributary Pecos and Devils Rivers (Dering 2002).  The topography 

of the region is hilly and dissected by numerous canyons associated with the rivers and 

seasonal tributaries (Dering 2002).  Elevation in the Lower Pecos canyonlands varies 

from 265 m above sea level along the Rio Grande to 620 m above sea level in the North 

Central portion of the county (Dering 1979).  

While the northern limits of the region are fairly well-defined, extending 

approximately 75 km up the Devils and Pecos Rivers, the southern half (located in the 

modern nation-state of Mexico) has been poorly explored (Turpin 2004).  There are few 

permanent water sources south of the Rio Grande and north of the Serrañias del Burro 

mountains, suggesting that human populations utilizing this landscape would have 

engaged in different mobility strategies than those closer to the incised riverine systems 



 54

in the northern half (Turpin 2004).  Rock art and material culture studies from the 

southern part of the region do suggest that the inhabitants as far south as the Sierra del 

Carmen mountains shared both adaptive strategies and beliefs with their more 

intensively studies northern neighbors in the region (Turpin 1997; Turpin and Eling 

2002).  

Geology.  The exposed bedrock in the Lower Pecos region is Cretaceous in age 

and is predominately bedded limestone (Maslowski 1978).  Outcrops of Boquillas and 

Eagle Ford (Upper Cretaceous) and Salmon Peak (Lower Cretaceous) are common 

(Dering 2002).  These outcrops provide a plentiful source for the rock heating elements 

used in earthen ovens.  Gravels of Miocene-Pliocene age (Uvalde gravels) are an 

important geological surface feature found throughout the southern portion of Val Verde 

County (Dering 2002).  These gravels are frequently associated with prehistoric lithic 

quarry sites (Dering 2002) 

 The soils in the Lower Pecos region are dominated by outcrops of limestone 

bedrock and associated weathered material (Golden et al. 1982).  The soil surrounding 

the archaeological site of Hinds Cave as well as most of the uplands in the southern 

portion of the county are characterized as the Langtry-rock-outcrop complex, a very 

shallow, rocky soil with 45-70 percent exposed bedrock (Dering 2002).  All of the soils 

in the area can be characterized as either Calcids (Aridsol) or Ustolls (Molisol) (Staff 

1999, 2010).  

These shallow, rocky soils provide a favorable habitat for lechugilla, sotol,, 

yucca (Yucca sp.), and prickly-pear cactus.  The archaeological evidence suggests that 
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these plant resources were the primary components of the local subsistence strategy 

(Bryant 1974b; Danielson and Reinhard 1998; Shafer 1986).  The region is subject to 

flash flooding during rainstorms due to the karst topography and associated shallow soils 

(Kochel et al. 1982; Patton and Dibble 1982). 

 Modern Climate.  The climate of the Lower Pecos can be characterized as a dry 

midlatitude grassland in the Köppen climate classification system (BSh) (Peel and 

Mcmahon 2007).  This climate classification holds for the immediate vicinity of Hinds 

Cave and the Lower Pecos, but quickly grades into Dry Midlatitude Steppe (BSk) and 

Dry Tropical Desert (BW) to the west and Moist Continental Deciduous Forest (Cfa) to 

the east, again suggesting the ecotonal nature of the region (Peel and Mcmahon 2007). 

 The mean annual temperature for the Laughlin Airforce Base near Del Rio, TX is 

21◦C (69.8◦F).  The warmest month, July, has an average temperature of 30.3◦C (86.5◦F).  

The coldest month, January, has an average temperature of 10.3◦C (50.5◦F) (Rivas-

Martínez 2010)    Rainfall data recorded at the Laughlin Airforce Base yielded a mean 

annual rainfall of 548.6 mm (21.6 in).  The highest average monthly rainfall occurs in 

September (76.2 mm [3 in]) and the lowest average monthly rainfall occurs in January 

(19.1 mm[0.75 in]) (Swanson and Fipps 2007). 

Characterizing the Vegetation.  The Pecos River is considered an important 

ecotonal boundary between the wetter climates of Central and Eastern Texas and the 

semi-arid regions to the west known as the Trans-Pecos (Dering 1979).  The Lower 

Pecos region is bounded by the mesquite-chaparral zone of the Tamaulipan biotic 

province to the southeast, the oak-cedar zone of the Balconian biotic province  to the 
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northeast, and the sotol-lechuguilla zone of the Chihuahuan biotic province to the west 

(Figures 2 and 3) (Blair 1950; Dering 2002).  Following the Bailey eco-region system, 

the Lower Pecos is in the Chihuahuan Desert province (321), although the northern 

portion extends into the Southwest Plateau and Plains Dry Steppe province (315)  

According to the Omernik eco-region classification, the Lower Pecos includes parts of 

the Chihuahuan Basins and Playas (24A), the Semi-arid Edwards Bajada (31B), and the 

Semi-arid Edwards Plateau (30B).  In the Kuchler potential natural vegetation types, the 

region in mostly made up of the Southwest Shrub-Steppe, although it extends into the 

Texas Savannah.  In the Major Land and Resource Area classification, the region is 

incorporated into the Edwards Plateau (MLRA 81)).  In the Nature Conservancy 

Vegetation Classification, the region is classified as an extremely xeromorphic 

deciduous subdesert shrubland with succulents (III.C.3.N.a).   As this brief statement 

indicates, the area is considered an ecotonal boundary regardless of which modern 

vegetation classification system is utilized. The mosaic of habitats in the Lower Pecos 

provided a remarkably diverse environment for the prehistoric hunter-gatherers (Dering 

1979).  The diversity of habitats allowed the human populations in the area to engage in 

an extremely broad-based subsistence strategy, with many seasonally available resources 

supplementing the cactus and succulent staples (Dering 1999).   
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Figure 3.  Map of Physiographic Biotic Provinces (Blair 1950).  Taken from Texas Parks and 
Wildlife 
 

The abrupt topography of this canyon country also influences the ecological 

diversity of the Lower Pecos region (Flyr 1966).  The major impact of this topography is 

the creation of closely situated microenvironments with a range of exploitable resources.  

The plant communities of these microenvironments have been divided into four major 

types, each associated with a particular topographic context.  Flyr (1966) suggested the 
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following division: 1) Vega Terrace Vegetation occurs on the sandy soils of the river 

terraces and the bottom of the many canyons in the region;  2) Cliff-Canyon Vegetation 

occurs in the upper areas of canyon walls, such as the location of Hinds Cave;  3) 

Upland Vegetation (flats) occurs on the plateaus and flat uplands that separate the 

canyons; and  4) Upland Vegetation (hills) occurs on the rolling hills further back from 

the canyon lands.  Each of these microhabitats would have provided a different set of 

available food resources for the human populations in the area (Table 3).  Table 3 

provides a list of available food resources mentioned by Flyr (1966) and Williams-Dean 

(1978) for each of the four microhabitats encountered in the canyonlands.   

The Vega Terrace Vegetation is the richest plant community in terms of 

productivity, but it is also characterized by very low diversity of species due to the 

frequent disturbances caused by flooding in these incised riverene environments (Flyr 

1966).  A number of seasonally-available resources such as mesquite (Prosopis 

glandulosa Torr.), Texas persimmon (Diospyros texana Scheele), several acacias 

including catclaw (Acacia greggii Gray) and guajillo (Acacia berlandieri Benth.), and 

walnut (Juglans microcarpa Berl.) are important components of this community 

(Williams-Dean 1978).  This community is characterized as weedy due to the frequent 

disturbances of runoff and flooding (Flyr 1966).  The Cliff-Canyon community is 

dominated by dense yucca, sotol, and lechugilla stands along the upper slopes, providing 

important patches of high resource density (Flyr 1966).  Both upland communities have 

fairly sparse growth and were probably not very important for plant harvesting, although 

the staples of sotol, lechugilla, and prickly pear cactus all occur (Flyr 1966).  It is 
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important to recall that the modern vegetational community has been heavily impacted 

by invasive species and modern range management practices in the region (Bray 1901, 

1905; Havard 1885; Williams-Dean 1978).   

Table 3.  Occurence of Edible Plant Species by Lower Pecos Microhabitat.  Derived from Flyr 
(1966) and Williams-Dean (1978) 
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Paleoenvironmental Overview for the Lower Pecos Canyonlands 

The similarities in human exploitation of the Lower Pecos canyonlands across 

the Holocene has been attributed to the fairly stable ecological conditions in the region 

(Bryant and Holloway 1985; Turpin 1991a).   This section references the nomenclature 

of Bryant (1966d) (Table 2) but limits the paleoenvironmental reconstruction to the 

broader framework utilized in Bryant and Holloway (1985) for reasons examined below.  

While later studies do not continue this nomenclature, it was utilized here due to its 

temporal association with the cultural chronology presented at the end of this chapter 

(Table 2) (Prewitt 1983; Turpin 2004).   

Bryant (1966d) utilized pollen data from Bonfire Shelter, Devils Mouth Site and 

Eagle Cave to develop his initial paleoenvironmental model, which he has continued to 

refine (Bryant 1966d, 1969, 1977b; Bryant and Holloway 1985; Bryant and Riskind 

1980).  This review of the paleoenvironmental sequence incorporates all of the primary 

pollen data available for the Lower Pecos canyonlands, regardless of shortcomings 

(Bryant 1966b, c, d, 1967, 1969, 1977c; Bryant and Holloway 1985; Bryant and Larson 

1968; Bryant and Riskind 1980; Bryant and Shafer 1977; Dering 1979; Hevly 1966; 

Johnson 1963; Mcandrews and Larson 1966).    
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Table 4. Lower Pecos Canyonlands Cultural and Environmental Chronology 

 

It should be noted that the pollen data from the Lower Pecos canyonlands has 

some major limitations that preclude any fine grained paleoenvironmental reconstruction 

based on these records.  All of these pollen profiles were recovered from repeatedly 

occupied archaeological sites and are significantly influenced by human activities.  Most 

of the records contain high levels of zoophilous pollen types that reflect the human-

derived nature of these pollen assemblages.  Any paleoenvironmental reconstruction of 

the region is also hindered by the mosaic of microhabitats observed by Flyr (1966).  The 
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very nature of this mosaic limits the extrapolation of pollen data from a single site to the 

entire canyonlands.  Finally, much of this work was done in the infancy of 

archaeological palynology.  Many of the researchers were graduate students engaged in 

their first palynological study and this may be reflected in the overall quality of the 

work.  Nevertheless, the multitude of studies for the region do provide a relatively robust 

framework for reconstructing the paleoenvironment of the canyonlands across the 

Holocene.  This reconstruction is further corroborated with reference to several non-

anthropogenic records from the surrounding area (Hall 2005; Hall 2010; Van Devender 

and Spaulding 1979).  

Macrobotanical assemblages (Alexander 1974; Dering 1979; Irving 1966; 

Sobolik 1988b; Sobolik 1991a) from rockshelters in the region will not be considered in 

this section, as they represent purposeful accumulations of vegetation by humans and 

other actors.  The macrobotanical data from Hinds Cave (Dering 1979; Sobolik 1991a) 

will be incorporated into the cultural chronology section. The anthropogenic 

accumulation of this vegetal debris closely correlates with the subsistence strategies and 

material acquisition choices of the human populations occupying the rockshelters and 

provides a rough picture of changes in the relative importance of different resources 

across the Holocene.  This will be considered further in conjunction with the coprolite 

data in the results.    

During the post-glacial period (10,000 years B.P. to present) there has been a 

shift from a mosaic of woodlands, parklands and scrub grasslands to an environment 

dominated by scrub grasslands (Bryant and Holloway 1985).  The increasing xerification 
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of the Lower Pecos landscape continued during the Holocene with only one brief period 

around 2,500 years B.P., when pollen records suggest a cooler and more mesic 

environment (Bryant and Holloway 1985).  More recent paleoenvironmental 

reconstructions based on snail shell stable isotope data suggest that the mid-Holocene 

may have been characterized by relatively moist conditions followed by a drying trend 

peaking around 3500 cal yr BP (Goodfriend and Ellis 2000).  Altogether, the 

paleoenvironmental reconstructions suggest a relatively stable environment for the 

Lower Pecos canyonlands across the Holocene (Bryant 1967, 1969, 1977b, c; Bryant and 

Holloway 1985; Bryant and Larson 1968; Bryant and Riskind 1980; Dering 1979; 

Goodfriend and Ellis 2000; Hevly 1966; Johnson 1963; Mcandrews and Larson 1966; 

Meyer 1973).  In the following section, the general trends in vegetational change 

interpreted by Byrant and Holloway (1985) are presented within the framework 

proposed by Bryant (1966d).  

Sabinal Stage (Prior to 10,000 B.P.).  The only pollen record from the Lower 

Pecos canyonlands that spans the Early Holocene comes from the Bonfire Shelter study 

(Figure 4) (Hevly 1966).  Bonfire Shelter is located in a side canyon off the Rio Grande, 

just west of the mouth of the Pecos River (Figure 2) (Dibble 1965; Dibble and Dessamae 

1968).  These strata are older than 10,000 B.P., but do not have any directly associated 

radiocarbon dates.  The pollen counts from this stage are characterized by high levels of 

pine (Pinus sp.) and grass (Poaceae) pollen.  The stratigraphically younger samples from 

this stage show an increased percentage of pine and decreases in grass and herbaceous 

pollen types.  It is unlikely that the area was covered with conifer forest, but was instead  
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Figure 4.  Pollen Diagram from Bonfire Shelter (Hevly 1966)
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a mosaic of woodlands, pinyon parklands and scrub grasslands during this time(Bryant 

and Holloway 1985).   

Sonora Interval (Prior to 10,000 B.P.).  This climatic interval is represented in 

the pollen record from two sites in the Lower Pecos, Bonfire Shelter and Eagle Cave 

(Figures 4 and 5) (Hevly 1966; Mcandrews and Larson 1966).  Much like the preceding 

Sabinal stage, the Sonora interval is poorly dated.  Based on radiocarbon dates 

associated with the Bone Bed 2 deposits in Bonfire Shelter, this interval ended just prior 

to 10,000 B.P. but the transition between the prior Sabinal stage and this interval is not 

dated (Bryant 1966d; Hevly 1966).  Bryant and Holloway (1985) have assigned this 

transition to approximately 14,000 B.P. based on the presence of rock spalls created by 

ice wedging, which indicates the Wisconsin Full-Glacial Period.   

The pollen spectra suggest that many of the woodlands and parklands in the 

region were being replaced by expanded scrub grasslands and riparian woodlands during 

the Sonora Interval interval (Bryant and Holloway 1985).  This trend was gradual and 

continued into the next two intervals as well.  The landscape was still a mosaic of 

different communites, but the scrub grasslands were continuing to expand and replace 

the woodlands and parklands more common during the Sabinal Stage.   

These vegetational changes reflect a climate with less available moisture than the 

preceding stage.  This is most likely due to the northward retreat of the continental 

glaciers and associated changes in wind patterns (Bryant and Holloway 1985).  This is 

also reflected in the desiccation of the pluvial lakes across West Texas and the Lower 

Pecos (Kochel et al. 1982).  
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Figure 5.  Pollen Diagram from Eagle Cave (McAndrews and Larson 1966)
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Medina Stage (10,000 B.P.- 9000 B.P.).  Three sites have pollen data from this 

period: Bonfire Shelter,  Devils Mouth Site (Bryant 1966b) and Eagle Cave (Figures 4-

6).  All of these sites show an increase in arboreal pollen types and declines in grass, but 

there is a fair amount of variation between the three sites as well.  The easternmost site is 

the Devils Mouth site, located on the west bank of the Devils River near its confluence 

with the Rio Grande (Figure 2), was a large open-air site on an alluvial terrace with 

deeply stratified cultural components (Figure 4).  At Bonfire Shelter, the pollen spectra 

from this stage is characterized by decreasing levels of pine with a corresponding 

increase in pecan, ephedra and low-spine asteraceae pollen types (Figure 4).  Eagle 

Cave, located in close proximity to Bonfire, exhibits a continued decline in pine pollen 

types across the Medina Stage (Figure 5).  The pollen spectra from this stage also exhibit 

an increase in ephedra, hackberry, and asteraceae pollen types across this stage.   

The pollen spectra suggest a scrub grassland habitat with riparian woodlands.  

This is a continuation of the trend observed in the preceding Sonora Interval.  These 

three data sets suggest that the strong east-west influence seen in the modern plant 

communities of the Lower Pecos canyonlands were already established by the early 

Holocene (Figures 2-4).  Later reconstructions corroborate the view that the Medina 

Stage was a period of scrub grassland expansion (Bryant and Holloway 1985). 
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Figure 6.  Pollen Diagram from the Devils Mouth Site (Bryant 1966)
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Stockton Stage (10,000 B.P. – 5000 B.P.).  This long climatic stage is 

represented in the pollen spectra of four sites in the Lower Pecos canyonlands.  Pollen 

data are available from Bonfire Shelter, the Devils Mouth Site, Eagle Cave, and two 

different excavation areas in Hinds Cave (Bryant 1977c; Dering 1979).  The spectra 

from the Devils Mouth Site show a continued decline in pine pollen and most other 

arboreal pollen types (Figure 6).  The exception to this trend is oak (Quercus sp.), which 

exhibits a distinct peak during this stage.  Grass, cheno-am and asteraceae pollen types 

are common in strata from this stage.   

Hinds cave is located on a side canyon on the eastern bank of the Pecos River 

(Figure 2).  The pollen data from Dering (1979) show a sharp decline in both pine and 

oak pollen during this stage (Figure 7).  Grass is recovered at relatively low levels until 

the last one thousand years of this stage, but high levels of asteraceae pollen types are 

common throughout the strata associated with this stage.  Agave (Agave sp.) pollen is 

first noted in strata dating to 8000 B.P. and rises sharply, peaking between 7000 B.P. and 

5500 B.P.  The presence of quantities of this zoophilous pollen type is certainly the 

result of human activity, but it does indicate that the Chihuahuan desert vegetation that 

characterizes the modern environment was present at this point in the Holocene.  The 

pollen study conducted by Bryant (1977) on Hinds Cave samples show a similar pattern 

to the study by Dering (1979) (Figure 8).  Overall the dominant pollen from this study 

are grass and asteraceae pollen types (Bryant 1977c).  There is evidence of both agave 

and sotol (Dasylirion sp.) in the lower samples from this study. 



 

       

                                                                                                                                     
                                                                                                                                      
 
 

70

 

Figure 7.  Pollen Diagram from Hinds Cave (Dering 1979)  
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Figure 8.  Pollen Diagram from Hinds Cave, Area D (Bryant 1977) 
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The spectra from Bonfire Shelter show a high level of ephedra pollen during this 

stage, as well as other types indicative of scrublands such as asteraceae pollen types 

(Figure 4).  Pine levels in these strata are the lowest encountered in the Bonfire Shelter 

pollen profile.  The spectra from Eagle Cave show a similar elevation of ephedra pollen 

from this stage, which is also associated with higher levels of cheno-am pollen (Figure 

5).  Sotol first appears in this pollen profile at the beginning of this stage and exhibits a 

significant increase over time, being one of the prominent types in the youngest sample 

in the profile.  Clearly, human habitation of these sites markedly influenced the pollen 

spectra recovered during excavation.  While this limits any paleoenvironmental 

interpretation for the region based on this data, it does indicate that these desert 

succulents that dominant the historically documented  vegetation of the canyonlands 

were present in the region and being exploited by human populations across the Stockton 

Stage.   

Overall, these five pollen profiles suggest that the xerification of the Lower 

Pecos canyonlands observed in the earlier periods continues across the Stockton Stage.  

Increases in ephedra and other desert shrubs, along with the low levels of grass and 

arboreal pollen types, indicate the development of a scrubland-desert type vegetation.  

This suggests that the environment was similar to the sotol-lechuguilla zone of the 

Chihuahuan biotic province currently found. 

Similar to the data from the Medina Stage, the pollen profile from the Devils 

Mouth site shows some significant differences from the other records from sites near the 

Pecos River (Figure 6).  The Devils Mouth site record does not exhibit the same high 
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frequency of desert shrubs and instead suggests an open oak woodland that a scrubland 

or desert environment throughout much of the region.  Located much further east than 

the other sites included in this review, the spectra from the Devils Mouth site reflect a 

more mesic environment that the other sites, which are all securely within the 

Chihuahuan biotic province (Figure 2) (Blair 1950). 

Ozona Erosional (5000 B.P.).  This climatic period is only represented in two 

pollen records from the region, Bonfire Shelter and Hinds Cave.  This period is referred 

to as the Ozona Erosional Period because many of the sites excavated during the Texas 

Archaeological Salvage Project exhibited disconformities in their stratigraphic profile 

for this period (Bryant 1966d; Bryant and Holloway 1985).  The pollen record from 

Dering (1979) for this period contains high levels of grass and high-spine asteraceae 

pollen types (Figure 7).   Agave, creosote bush, and sotol pollen types are present in the 

sample from this period.  This supports the reconstruction of the continued expansion of 

the Chihuahuan biotic community into the region from the south and west.   

The pollen data from Bonfire Shelter for this period suggest a similar trend of 

increasing xerification of the landscape (Figure 4).  Desert shrub species are common in 

the samples from this period, along with small amounts of pollen from riparian species 

such as walnut and pecan.  Overall, the Ozona Erosional is characterized as a desert 

scrubland with reduced ground cover.  The region appears to be increasingly dry and 

prone to episodes of flooding and erosion during the Ozona Erosional (Bryant 1966d; 

Bryant and Holloway 1985; Kochel et al. 1982; Patton and Dibble 1982). 
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Sanderson Stage (5000 B.P. – 3000 B.P.).  The Sanderson stage of Bryant’s 

(1966) climatic reconstruction is represented in pollen spectra from four sites in the 

region.  These include Arenosa Shelter (Bryant 1967), Bonfire Shelter, the Devils Mouth 

Site and Hinds Cave.  These will be presented in the same east to west format used for 

previous climatic stages.   

The Devils Mouth site pollen data from this climatic stage show similar trends as 

the preceding strata associated with the Stockton stage (Figure 6).  Asteraceae pollen 

types are the dominant component of the assemblage.  Cheno-am and ephedra pollen 

remain a visible component of the spectra, but at low levels 

Arenosa Shelter is a limestone overhang located on the Pecos River near the 

confluence with the Rio Grande (Figure 2) (Dibble 1967; Jurgens 2005).  This location 

of this site exposed it to flooding episodes observed in the recent historic period (Dibble 

1967; Jurgens 2005).  The stratigraphic contexts assigned to the Stockton climatic stage 

exhibit high levels of pine, grass and asteraceae pollen types (Figure 9).  Cheno-am, 

opuntia, and ephedra pollen types are also present in relatively high levels.   

Only one of the pollen profiles from Hinds Cave has data assigned to this stage 

(Dering 1979).  This data set shows a decrease in grass, high-spine asteraceae, and sotol 

across this climatic stage (Figure 7).  Agave, oak, mesquite, ephedra, low-spine 

asteraceae and cheno-am pollen types all exhibit an increase in prevalence across this 

same stage.   
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Figure 9.  Pollen Diagram from Arenosa Shelter (Bryant 1967)
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The data from Bonfire Shelter show an increase in pine and other arboreal pollen 

during the Stockton climatic stage (Figure 4).  Ephedra, grass, and asteraceae pollen 

types all decline relative to the previous stage.   

Overall, the Stockton Stage is a continuation of the xeric trend started in the 

Sanderson Stage.  The pollen record reflects a plant community composed of many 

desert shrub species and weeds.  Grass pollen continues to decline in the record at many 

of the sites in the region.  The pollen record from this stage marks the first appearance of 

opuntia and ephedra in the spectra from the Devils Mouth site.  This suggests that the 

sotol-lechuguilla zone of the Chihuahuan biotic province continues to extend to the east 

as xeric conditions prevail in the region.   

Frio Interval (3000 B.P.).  This short interval has pollen records from two sites 

in the region, Bonfire Shelter and the Devils Mouth Site.  The pollen spectra from both 

sites exhibit an increase in grass during this interval, as well as an upward trend in 

asteraceae pollen types.  There is an increase in arboreal pollen types, particularly pine.  

Overall, these spectra suggest an increase in available moisture during this interval.  

Grasslands and oak motts would have interfingered with the desert scrublands more 

common in early stages (Bryant and Holloway 1985).  This is further corroborated by 

the presence of Bison in the canyonlands during the Frio Interval (Dibble 1965, 1970; 

Dibble and Dessamae 1968).   

Juno Stage (3000 B.P. – Present).  The Juno climatic stage represents a return to 

the xeric conditions prior to the more mesic Frio Interval.  Pollen spectra are available 
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from three sites in the region: Arenosa Shelter, Bonfire Shelter, and the Devils Mouth 

Site.  The spectrum from the Devils Mouth site exhibit spikes in grass and ephedra 

pollen during this stage (Figure 6).  Opuntia sp. pollen follows an upward trend to a 

maximum in the youngest stratum of the profile.  The Arenosa Shelter profile shows an 

overall increase in arboreal pollen types compared to the discontinuous older strata from 

the Sanderson climatic stage (Figure 9).  This is consistent with the continous pollen 

records from the other two sites presented here.  These arboreal pollen types include 

juniper and mesquite.  Pollen from grass and asteraceae types remain a substantial 

component of the spectra. The spectra from Bonfire Shelter exhibit a similar increase in 

arboreal pollen (Figure 4).   Grass and asteraceae pollen types continue to constitute the 

bulk of each spectrum.  The pollen spectra available from this stage indicate a region of 

xeric scrubland  and riparian woodlands, much like the modern environment observed by 

Flyr (1966) and Williams-Dean (1978).   

Prior Research in the Lower Pecos Canyonlands 

The first excavations in the region were conducted in the 1930’s by the 

University of Texas (Pearce 1933) and followed shortly thereafter by excavations led by 

the Witte Museum (Davenport 1938; Martin 1933) and the Smithsonian Institution 

(Setzler 1932, 1933, 1934).  These excavations were primarily aimed at the recovery of 

museum quality artifacts, as was most archaeological research in this time period (Shafer 

and Bryant 1977).  The majority of these studies focused on the excavation of artifacts 

from large rockshelter contexts along the major drainages in the region (Davenport 1938, 

1941; Martin 1933; Pearce 1933; Setzler 1932, 1933, 1934).  These sites tended to have 
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highly visible accumulations of past human habitation as well as incredible preservation 

of perishable artifacts such as sandals and baskets as well as ecofacts (Davenport 1938; 

Martin 1933; Pearce 1933; Setzler 1932, 1933, 1934).  Despite this, very few examples 

of perishable remains outside of textiles were collected during this period.  This period 

also saw the first scientific recovery of human remains from the region (Setzler 1934).  

Very little was published on these excavations, although later researchers used these 

museum collections as the basis of descriptions of the regions material culture (Schuetz 

1956, 1961, 1963).  These reports are generally descriptive in nature, without much 

attempt to reconstruct prehistoric lifeways (Davenport 1938; Martin 1933; Pearce 1933).  

There are few controls on artifact provenience or stratigraphic association from these 

early excavations, which were generally concerned with the recovery of complete or rare 

artifacts.  This can be very frustrating for current researchers working with these 

museum collections.  Pevny et al. (2010) conducted a joint usewear and microscopic 

residue study on flake tools that the Witte Museum recovered from Shumla Cave and 

Eagle Cave that exposed some of these limitations.  There was no way to link specific 

tools with the site stratigraphy or a generalized chronology of the region.  This lack of 

modern excavation method and recording, along with the limited collection agendas, of 

these early explorations of the canyonlands limit the potential of these collections.   

This period also saw the first professional interest in the rock art of the region, 

primarily by Forrest Kirkland (Jackson 1938; Kirkland 1939).  Much of this rock art was 

preserved by the limestone overhang of the numerous rockshelters of the region, 

frequently in very large and complex panels.  This distinctive art quickly became the 
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hallmark of the region and one of the defining characteristics of the Lower Pecos as an 

archaeological region.  Much like the archaeology from this period, the rock art research 

was primarily descriptive in nature, with Kirkland faithfully recording many of the larger 

panels in the region (Kirkland 1939; Kirkland and Newcomb 1967).  These early 

researchers recognized that there were at least three different styles of rock art in the 

region, but it remained unclear if these were temporal or cultural differences (Boyd 

1998; Gebhard 1960; Grieder 1966; Jackson 1938; Kirkland 1939; Kirkland and 

Newcomb 1967).   

In addition to the formal excavations and rock art research from this period, there 

was a good deal of looting from these highly visible sites in very rural settings (Shafer 

and Bryant 1977).  It is unclear how much damage was caused by this looting activity, 

but nearly every major rockshelter site recorded by the Texas Archaeological Salvage 

Project and later projects had some evidence of looting (Shafer and Bryant 1977).  This 

activity created an even more confusing depositional pattern for later archaeologists, as 

most looting resulted in the reworking and admixture of stratigraphically distinct 

deposits as the looters attempted to recover human remains and rare textile artifacts 

(Turpin 2004).  This looting remains unabated to this day in the region (Dering 2002).   

The first attempts to generate a cultural chronology for the region occurred after 

World War II (Taylor 1949a, b).  These attempts were admittedly tentative, but they 

represent the first research in the region to approach the archaeological record with 

explicit questions of human occupation of the Lower Pecos.  Despite this effort to 

establish a cultural chronology for the area in the 1940’s and 50’s (Lehmer 1960; 
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Schuetz 1956, 1961, 1963; Taylor 1949a, b), the decades after the initial explorations in 

the 1930’s saw very little active research in the region.  The most intensive 

archaeological investigation of the region occurred from 1958-1969 (Alexander 1970, 

1974; Anderson 1974; Bryant 1966a, b, c, d, 1967, 1969; Bryant and Larson 1968; 

Collins 1969; Dibble 1965, 1970; Dibble and Dessamae 1968; Epstein 1963; Flyr 1966; 

Gebhard 1960; Graham and Davis 1958; Greer 1966, 1968; Hevly 1966; Irving 1966; 

Johnson 1963, 1964, 1967; Mcandrews and Larson 1966; Nunley et al. 1965; Parsons 

1965; Prewitt 1966, 1970; Riskind 1970; Ross 1965; Shafer 1969, 1970; Sorrow 1967, 

1968; Story and Bryant 1966; Taylor and Rul 1961; Word and Douglas 1970) .  This 

research was conducted as a salvage operation prior to the construction of the Amistad 

Reservoir.  In addition to a large amount of survey and test excavation (Collins 1969; 

Dibble 1967; Graham and Davis 1958; Nunley et al. 1965; Shafer 1969, 1970; Taylor 

and Rul 1961), this salvage project conducted a number of major excavations on both 

rockshelter sites (Alexander 1970, 1974; Dibble 1965; Dibble and Prewitt 1967; Epstein 

1963; Johnson 1963; Parsons 1965; Ross 1965), as well as open air sites (Greer 1966, 

1968; Johnson 1964; Sorrow 1967, 1968).  Although there was excellent preservation of 

botanical material in the majority of the rockshelter sites selected for excavation, none of 

the research designs included a systematic collection and analysis of these materials 

(Shafer and Bryant 1977).  Rather the focus was on building chronologies from the 

projectile point types and other artifacts recovered in the excavations. 

As the salvage work progressed, the focus changed from developing cultural 

chronologies to paleoecological studies (Bryant 1966a, b, c, d, 1967; Bryant and Larson 
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1968; Flyr 1966; Hevly 1966; Irving 1966; Johnson 1963; Mcandrews 1966; Mcandrews 

and Larson 1966; Riskind 1970; Story and Bryant 1966).  This was due in part to a 

general shift in archaeological research questions across the U.S., associated with the 

“new” archaeology (Dering 1979) as well as the incredible preservation of the region.  

Beginning around 1965, researchers in the Amistad Reservoir salvage project realized 

the preservation of biological components of the archaeological record in the area 

created a unique opportunity to address questions of subsistence and human-

environmental relationships (Story and Bryant 1966).  Unfortunately, this research was 

severely limited by the collection strategies applied during excavation (Dering and 

Shafer 1976).  Very few excavators from the salvage project recovered and collected the 

ecofacts required to properly address questions of human ecology.  Although coprolites 

were encountered in the majority of rockshelter excavations, they were collected for 

analysis in only two cases, Conejo Shelter (Alexander 1974; Bryant 1969) and Parida 

Cave (Alexander 1970; Riskind 1970).  In many cases, the coprolites encountered in the 

screens during excavation were “frisbeed” out over the canyon during lunch breaks as a 

form of entertainment for the crew (Bryant and Dean 2006).  Most of these major 

rockshelter sites were flooded after the completion of the dam, resulting in the 

permanent loss of the largest collection of coprolite data in North America and possibly 

the world.   

The primary result of this focus on paleoecology was the generation of a number 

of pollen analyses from both open air and rockshelter habitation sites (Bryant 1966b, c, 

d, 1967; Bryant and Larson 1968; Hevly 1966; Johnson 1963; Mcandrews 1966; 
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Mcandrews and Larson 1966; Story and Bryant 1966).  This paleoecological focus also 

resulted in the study of the macrobotanical remains from seven of the excavated sites 

from the salvage project (Alexander 1974; Irving 1966).   

Work in this region ceased after the completion of the Amistad Reservoir, and 

did not resume until both the Hinds Cave and Baker Cave projects began in 1974 

(Brown 1991; Hester 1978; Shafer and Bryant 1977; Shafer et al. 1975).  Both of these 

excavations were designed to take advantage of the ecofact preservation in these dry 

rockshelters and produced an incredible amount of excavated material.  While the Hinds 

Cave excavation generated a great deal of new research, including studies of the 

macrobotanical (Dering 1979), coprolite (Edwards 1990; Stock 1983; Williams-Dean 

1978) and faunal components (Lord 1984), the results of the Baker Cave project were 

less thoroughly examined (Hester 1978).  The Hinds Cave excavation also resulted in the 

publication of one of the first studies of microscopic residue from lithic tools (Shafer and 

Holloway 1979) as well as a volume on the textile artifacts recovered during excavation 

(Andrews and Adovasio 1980).  The excavated materials from Hinds Cave continue to 

generate new scholarly inquiries into past human lifeways in the Lower Pecos (Dean 

2004, 2006; Goodfriend and Ellis 2000; Poinar et al. 2001; Reinhard et al. 2007; 

Reinhard et al. 2008; Riley 2008; Saunders 1986; Sobolik 1996b).  The systematic 

recovery of a wide-range of material culture in these excavations, as well as a increased 

focus on the ecology of human habitation of the Lower Pecos, allowed researchers to 

more thoroughly investigate past human lifeways in the region than prior excavations.  A 

new generation of scholars had research interests in the region, although much of the 
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research focuses on the analysis of previously excavated materials (Brunnemann 1988; 

Danielson and Reinhard 1998; Mailloux 2003; Mcgregor 1992; Sobolik 1996a; 

Williams-Dean 1978) and the documentation and interpretation of rock art in the region 

(Boyd 2003; Boyd and Dering 1996; Chippindale and Taçon 2000; Greco 1984; Mock 

1987; Turpin 1990a; Turpin 1992; Turpin and Eling 2002).  This continues today, as the 

region has received renewed attention from both rock art specialists and archaeologists 

(Bousman and Quigg 2006; Boyd 1998; Boyd and Dering 1996; Boyd 2006; Steelman et 

al. 2004; Turpin 1991a, b, 1997, 2004; Turpin et al. 2002). 

Human Habitation and Cultural Chronology of the Lower Pecos Canyonlands  

Despite the considerable biotic diversity of the region, most cultural 

reconstructions suggest a remarkably similar use of the region by human cultures across 

the Holocene (Bement 1989; Collins 1974; Hester et al. 1989; Prewitt 1983; Shafer 

1986; Story and Bryant 1966; Turpin 1991a, 2004).  The populations occupying this area 

practiced a conservative foraging adaptation to the semi-arid environment (Sobolik 

1996b).  This adaptation consisted of small, nomadic social groups with a broad-based 

subsistence economy (Sobolik 1996b).  The lack of storage features associated with 

archaeological sites in the region suggests a primary dependence on seasonally available 

foodstuffs with no long-term storage of dietary staples (Williams-Dean 1978). The 

dietary staples of these populations were desert succulents and cactus (Williams-Dean 

1978).  This dependence on plants from xeric environments extends back to at least 

8,500 years B.P. (Dering 1979; Stock 1983).   
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The large amount of archaeological research in this geographically constrained 

area has yielded a very robust collection of radiocarbon dates (Turpin 1991b, 2004).  

This abundance of data has been used to generate a regional chronology of human 

habitation (Turpin 2004).  While there have been multiple nomenclatures proposed for 

the different time periods of this chronology (Bement 1989; Collins 1974; Hester 1989; 

Prewitt 1983; Shafer 1986; Story and Bryant 1966; Turpin 1991b, 2004), the overall 

picture of cultural occupation of the region is well agreed upon.  Following Turpin 

(1991:2004), this study uses the nomenclature first proposed in Prewitt (1983).  All dates 

are presented as uncalibrated radiocarbon years before present (B.P.). 

Paleoindian Period 

 Aurora Subperiod (pre-12,000 B.P.).  There is very limited evidence of human 

occupation in the Lower Pecos canyonlands from this early subperiod (Table 4).  There 

are only two sites with dates from this subperiod.  Cueva Quebrada is a small rockshelter 

that contains faunal remains exhibiting evidence of burning (Lundelius 1984).  The 

oldest bone bed from Bonfire Shelter also dates to this period and has been interpreted as 

representing butchered megafauna, but the lack of artifacts from the context makes this 

claim tenuous (Bement 1986; Bement 2007; Byerly et al. 2007; Byerly et al. 2005; 

Dibble and Dessamae 1968).  These butchered animal remains are primarily Pleistocene 

megafauna and are associated with specialized big-game hunters, as are most early 

Paleoindian sites (Turpin 2004).   

 Bonfire Subperiod (10,700 to 9800 B.P.).  This subperiod is named for Bone 

Bed 2 of Bonfire Shelter (Table 4).  This large collection of bison (Bison bison antiquus) 
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bone associated with Plainview and Folsom dart points has been interpreted as the result 

of a series of bison jumps and subsequent butchery by human populations occupying the 

canyonlands.  This is the oldest known example of a animal jump as well as the 

southernmost.  This has recently been thrown into doubt through a re-examination of the 

site using GIS, which suggests that the accumulation pattern is more consistent with 

secondary processing of high-utility portions of bison initially killed elsewhere (Bement 

2007; Byerly et al. 2007; Byerly et al. 2005).  Regardless of the method of accumulation, 

this bone bed and associated lithic artifacts indicate that the Lower Pecos canyonlands 

were utilized by Paleoindian big game hunters.  The paleoenvironmental records suggest 

that this rare occurrence of bison in the Lower Pecos faunal record is associated with a 

mesic period (Medina stage in Bryant 1966d) in the region’s climate (Bryant 1966d; 

Patton and Dibble 1982). 

 Oriente Subperiod (9400 to 8800 B.P.).  This subperiod is the equivalent of the 

Late Paleoindian period, particularly with reference to the lithic technology utilized by 

the region’s inhabitants (Table 4) (Turpin 2004).  However, Lower Pecos archaeological 

sites from this time period exhibit a blend of Late Paleoindian and Early Archaic traits 

that was first observed by Johnson (1964) at the deeply stratified Devil’s Mouth Site.  

These traits suggest a broad based economy that was not focused on big game hunting 

(Johnson 1964).  This view was corroborated further by excavations at Baker Cave, 

which recovered a great diversity of subsistence resources associated with a hearth 

feature, and suggest the sites inhabitants had a much broader diet breadth than is 

typically postulated for Late Paleoindian populations (Hester 1983).  Further, there are a 
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wide variety of fiber artifacts recovered from this period, suggesting that the human 

populations in the region were utilizing local plant resources to a degree unseen in most 

Late Paleoindian archaeological contexts (Andrews and Adovasio 1980; Turpin 2004).  

While this may be an artifact of the uncommon preservation of perishables in this region, 

it is telling that this broadening of diet breadth visible in the archaeological record 

coincides with the onset of the drying trend identified by Bryant (1966d) as the Stockton 

stage. 

Early Archaic Period 

 Viejo Subperiod (8900 to 5500 B.P.).  This broadly defined subperiod 

encompasses the entire Early Archaic Period and provides archaeological evidence for 

the florescence of many of the cultural traits that have come to define the Lower Pecos 

canyonlands (Table 4).  Associated with the increasing xerification of the landscape 

(Bryant 1966d, 1977b, c; Bryant and Holloway 1985; Bryant and Riskind 1980) during 

the drying trend noted above, rockshelters become more intensively occupied during this 

subperiod and even exhibit the delineation of shelter space into activities areas (Lord 

1984; Shafer 1986).  The earliest coprolites analyzed from the region date from this 

period (Stock 1983; Williams-Dean 1978) and, along with other evidence of plant use 

including macrobotanical remains and earth oven cooking features (Figures 10 and 11) 

(Dering 1979; Sobolik 1991), show a human population engaged in a subsistence pattern 

and material culture focused on Chihuahuan desert plant resources such as lechuguilla 

and sotol.   
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Figure 10.  Stems and Bulbs from Hinds Cave, Area A (Dering 1979) 
 

 

Figure 11.  Stems and Bulbs from Hinds Cave, Area B (Sobolik 1991) 
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The oldest human skeletal remains from the region are also from this period 

(Turpin 1988).  The Seminole Sink ossuary has multiple individuals who date directly to 

the Early Archaic (Bousman and Quigg 2006).  The ossuary contains both male and 

female individuals of a variety of ages, which suggests an egalitarian society with little 

differentiation of social status (Turpin et al. 1986).  These skeletons exhibit temporary 

nutritional stress that may be seasonal in nature, but have no evidence of prolonged 

malnourishment (Alvarez 2005a, b; Marks et al. 1988; Sobolik 1991a).  This suggests 

that Early Archaic human populations in the region had adapted remarkably well to a 

very arid landscape through expanded diet breadth.  These Early Archaic human 

populations incorporated labor intensive staple resources with a relatively low caloric 

return, such as lecheguilla and sotol (Dering 1979; Stock 1983).  This is further 

corroborated by a high frequency of tooth loss and dental pathology on these same 

individuals, suggestive of a diet high in sugars and other carbohydrates (Hartnady 1988; 

Marks et al. 1988; Turpin et al. 1986).   The dietary data derived from these skeletal 

remains will be discussed in greater detail in the dietary reconstruction section of the 

interpretation chapter.    

Finally, excavated contexts from this period contain the earliest known artwork 

in the Lower Pecos canyonlands.  Painted pebbles have been recovered from at least one 

Early Archaic context (Turpin and Middleton 1998).  Other painted pebbles and unfired 

clay figurines have been recovered from unknown archaic contexts that may include this 

subperiod (Chandler et al. 1994; Mock 1987; Parsons 1986; Shafer 1975).  Both portable 

art forms are considered hallmarks of the Lower Pecos canyonlands (Chandler et al. 
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1994; Mock 1987; Parsons 1986).  Researchers have suggested that this long subperiod 

provided the watershed for the development of a Lower Pecos cultural adaptation 

distinct from surrounding regions that peaks in the next two subperiods (Turpin 2004). 

Middle Archaic Period 

 Eagle Nest Subperiod (5500 to 4100 B.P.).  This period is primarily defined by 

the presence of a distinctly beveled projectile point style known as Pandale (Turpin 

2004).  This is the earliest projectile point style that has a regional distribution that 

coincides with the geographic boundaries of the Lower Pecos canyonlands (Turpin 

2004).  Other researchers have suggested that the development of the Pandale projectile 

point coincides with an increased dependence on the labor intensive processing of sotol, 

lecheguilla, and yucca for subsistence (Brown 1991).  The increased dependence on 

these intensive resources has been seen as an economy of scale response to the 

increasing aridity of the region observed by Bryant (1966d).   

This same subperiod shows an increase in flooding (Patton and Dibble 1982), as 

the xeric conditions of the region intensified.  This hot and dry period, labeled the Ozona 

Erosional, is reflected as disconformities in the stratigraphy of open air sites in the 

region, such as Devil’s Mouth Site and Arenosa Shelter (Dibble 1967; Johnson 1964).  

Human populations in the region responded with a least-risk strategy that saw them 

invest large amounts of energy in food production and may have also resulted in the 

expansion of diet breadth, increased mobility, and changes in community structure to 

accommodate the decreased availability of food resources on the landscape (Brown 

1991; Dering 1999).  It is important to note that the macrobotanical studies of Dering 
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(1979) indicate that lechuguilla was already important resource in the preceding Viejo 

subperiod, although there is a marked increase during the Middle Archaic (Figure 10).  

The oldest evidence for peyote use in the Americas also comes from this period, a trend 

which will be elaborated on in the following section (Bar 2007; Terry et al. 2006). 

San Felipe Subperiod (4100 to 3200 B.P.). This period marks the development 

of the earliest rock art style in the region, the Pecos River style (Boyd 1998; Kirkland 

1939; Kirkland and Newcomb 1967; Turpin 1982).  This subperiod is associated with 

regionally circumscribed projectile point styles such as Langtry, Val Verde and Arenosa, 

further suggesting that the development of a regionally distinct cultural adaptation was 

well underway (Turpin and Eling 2002).  The primary focus of archaeological research 

in this period had primarily been on the large, polychromatic rock art panels (Boyd 

1998).  Most of these panels are centered around large anthropomorphic figures.  These 

figures were first recognized by Newcomb as portrayals of shamen engaged in ritual 

behavior (Kirkland and Newcomb 1967).  Boyd has convincingly argued that these 

panels have parallels with the Huichol peyote ceremonies recorded ethnographically 

(Boyd 1998).  This is further corroborated with the macrobotanical evidence from the 

rockshelters (Boyd and Dering 1996).   

The desertification of the region may have led to a shift in settlement and 

mobility patterns, as populations focused around the reliable water in the major 

drainages (Turpin 2004).  Upland sites from this period are more prevalent as well, 

which may indicate the reorganization of mobility towards a more logistically oriented 

mobility pattern, with task-oriented workgroups exploiting the increased density of 
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desert succulents on the uplands and returning them to home bases tethered to the 

canyon systems (Saunders 1986; Saunders 1992).  Researchers have suggested that this 

reorganization of populations into more densely packed communities along the rivers 

with sparse uplands may have driven the development of new social institutions, 

including the ritual acts reflected in the Pecos River style rock art (Turpin 1990b).  

These hypotheses are suppositional and have yet to be fully modeled or tested for the 

region.  Tests of return rates by Dering (1999) have suggested that the dependence on 

labor intensive, low yield plant resouces, which extends back into the Early Archaic, 

created constraints on population density and mobility that would have rendered the 

logistically oriented mobility strategy proposed above an improbable strategy at any 

time.   

Late Archaic Period 

 Cibola Subperiod (3150 to 2300 B.P.).  This period is associated with a major 

mesic shift in the region, first noted in Bryant (1966d) as the Frio Interval, and 

characterized by a shift away from a desert environment towards a grassland.  This is 

further supported by the renewed presence of Bison in the region, which are absent from 

the faunal record between the Paleoindian period and the Late Archaic (Dibble 1970; 

Dibble and Dessamae 1968; Turpin 2004).  The clearest evidence of this is the youngest 

bone bed of Bonfire Shelter, which consists of eight hundred bison as well as dart points 

generally considered as Central Texas types (Dibble and Dessamae 1968).  There is also 

a proposed shift in settlement patterns, as projectile points from this period are less 

common in rockshelter deposits and much more frequently encountered at open air sites 
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such as Devil’s Mouth (Turpin 2004).  These patterns suggest a reorganization of 

subsistence during this subperiod, away from low yield desert succulents and towards 

the large herds of bison now available in the region (Dibble 1965, 1970; Dibble and 

Dessamae 1968; Turpin 2004).  Turpin (1990: 2004) has also correlated the rock art style 

known as Red Linear with this subperiod.  This is due to the presence of bison and atlatls 

among the motifs of this style.  This period has been seen as a time of great cultural 

change in the region, as new resource distributions and human migration forced the 

extant human populations to adjust (Turpin 2004). 

 Flanders Subperiod (2300 B.P. to ?).  As the grasslands that characterized the 

region in the previous subperiod retreated, Turpin (2004) suggests that new human 

populations familiar with desert resources would have entered the region from other 

parts of what is now northern Mexico.  This argument is based on a combination of 

paleoecological and lithic data.  The dominant point style of this subperiod is the Shumla 

dart point, which has many similarities with points from earlier contexts in the modern 

Mexican states of  Coahuila and Nuevo Leon (Turpin 2004).  This is associated with a 

xeric interval identified by Bryant (1966d) as the Juno Interval, which would have led to 

an increase in the distribution of the desert succulent resource so prevalent in the Early 

and Middle Archaic.  Very few sites with components from this period have been 

excavated to date, which limits any further interpretation of human lifeways during this 

shift back to more desertic conditions.     

Blue Hills Subperiod (2300 to 1300 B.P.).  This subperiod is characterized by a 

material culture that is shared with a much broader expanse of modern day Texas than 
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the previous Middle and Late Archaic subperiods.  While the previous periods have 

projectile point styles that are either regionally circumscribed or have similarities with 

styles recovered in Northern Mexico.  The dominant points of this period, Ensor and 

Frio, are found throughout much of Texas (Prewitt 1995).  This subperiod also sees an 

increase in upland sites with these point types and unifacial tools considered to be plant 

processing tools (Marmaduke 1978; Turpin 1990a).  This has been interpreted as an 

increased reliance on the desert staples previously mentioned as the environment became 

more arid during this period (Turpin 2004).  The macrobotanical data from Hinds Cave 

(Figures 10 and 11) do support an interpretation of increased reliance on sotol during 

this period (Dering 1979; Sobolik 1991a).  However, there is little evidence that the suite 

of desert resources (lechuguilla, prickly pear, and sotol) was more important to the 

subsistence economy than it had been during the Middle and Early Archaic (Figures 10 

and 11) (Dering 1979; Sobolik 1991a).  In many ways, this subperiod is seen as a return 

to the broad based desert foraging economy of the Middle and Early Archaic with 

associated increases in mobility and more intensive reliance on different environmental 

niches for seasonal subsistence requirements (Turpin 2004).   

Late Prehistoric Period 

 Flecha Subperiod (1320 to 450 B.P.).  This subperiod, characterized by the 

introduction of the bow and arrow to the region, is poorly understood due to the lack of 

well-stratified contexts (Turpin 2004).  This is partly due to the frequent disturbance of 

upper levels of rockshelter deposits by grazing and looting activities.  While many of the 

same staple resources were utilized during this period, there seems to be a shift in the 
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locus of these activities away from rockshelters and to open sites closer to stands of the 

resources and firewood (Brown 1991).  The first examples of both the Red Monochrome 

and Bold Line Geometrics style occur during this period as well (Boyd 1998; Turpin 

1982).  Researchers suggest that these styles appear as fully developed art styles, which 

could be the result of new human populations migrating into the region during this 

period (Turpin 1982, 1990b; Turpin and Eling 2002).  Most of the more common Red 

Monochrome style pictographs occur in isolated, high overhangs with little cultural 

debris, avoiding many of the larger rockshelters with large panels of Pecos River style 

art (Kirkland and Newcomb 1967; Turpin 2004). 

 Infierno Phase (Estimated 450 to 250 B.P.).  This phase is uncommonly 

encountered in the Lower Pecos, with less than two dozen sites reported (Turpin 2004).  

These sites are generally located on high points overlooking water sources and are 

characterized by circles of stones interpreted as tipi rings and a very simple and 

distinctive toolkit including ceramics (Bement and Turpin 1987; Turpin 2004; Turpin 

and Robinson 1998).  Only one of these sites has been excavated (Turpin and Bement 

1989).  Artifacts recovered include plainware ceramics but no material suitable for 

radiocarbon dating (Turpin and Bement 1989).   

Historic Period (350 B.P. to Present) 

Very little is known archaeologically about the historic period in the Lower 

Pecos canyonlands.  There are a number of rock art sites that incorporate European 

elements such as horses and crosses (Boyd 1998; Kirkland and Newcomb 1967; Turpin 

1982) or have affinities to Plains Indian art styles (Turpin and Bement 1989), but the 
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material record is scarce.  Beyond a handful of metal arrowpoints, only one site has been 

reported to have historical components (Kirkland 1942).  This lack of evidence is due 

partly to the frequent disturbance of the upper levels of rockshelter deposits, but is also 

due to shifts in mobility patterns both necessitated by the changing social landscape and 

facilitated by the Colonial era incorporation of horse husbandry in the region (Turpin 

2004).  Much more is known about this period from the ethnohistoric record of northern 

Mexico presented in Chapter V.   

The cultural chronology presented above provides a brief overview of the 

changes in material culture observed in the Lower Pecos canyonlands across the 

Holocene.  Despite the stylistic variation in rock art, sandals, projectile points and other 

manufactured items observed in the archaeological record, the human populations 

occupying the canyonlands focused on a similar exploitation of xeric plant resources 

throughout the Archaic (Dering 1979).   The relatively stable vegetative community 

observed in the paleoenvironmental reconstruction suggests that the major staples of 

lechuguilla, sotol, and prickly pear would always have occurred in abundance.  The 

following chapter describes some ecological characteristics of these major staple 

resources relevant to their harvest and consumption as a food resource.  This is followed 

by a review of subsistence patterns recorded by early European observers of native 

cultures in the northern Chihuahuan Desert.  Most of this information is from a much 

broader region than the canyonlands, demonstrating the widespread importance of these 

staple resources.  
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CHAPTER V 

ECOLOGY AND ETHNOHISTORY OF THE STAPLE PLANT RESOURCES OF 

THE LOWER PECOS CANYONLANDS 

 

This chapter presents a review of the relevant ecological and ethnohistoric data 

for the staple plant resources previously identified in the Lower Pecos canyonlands.  

These versatile plants provided for many of the material needs of human cultures across 

much of Northern Mexico and the US southwest (Bell and Castetter 1941; Castetter et al. 

1938; Colunga Garcia Marin 1996; Gentry 1982; Martinez et al. 1995) and are still 

important resources today (Mayorga-Hernandez 2004; Mcdaniel 1985; Mclaughlin and 

Schuck 1991; Nobel 1986; Pando-Moreno 2004, 2008; Quero 1987; Ur et al. 2008; 

Waleckx et al. 2008).  This review focuses solely on the use of these plants as food 

resources.  Prickly pear (Opuntia sp.), sotol (Dasylirion sp.), and lechuguilla (Agave 

lechuguilla) have been identified as important dietary constituents across the greater 

Southwest in both the ethnographic (Bean and Saubel 1972; Bell and Castetter 1941; 

Castetter 1935; Castetter et al. 1938; Felger 1970) and archaeological literature 

(Danielson and Reinhard 1998; Dering 1999; Fish et al. 1985; Leach and Sobolik 2010; 

Phippen 1999; Venner 1982).  Archaeological research in the Lower Pecos canyonlands 

has demonstrated that these three plant resources were important food resources for 

human populations during most of the Holocene (Bousman and Quigg 2006; Bryant 

1974b; Sobolik 1991a; Williams-Dean 1978).  After an introduction to the ecology and 

biology of each of these staple resources, this chapter presents an overview of 
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photosynthetic pathways and the role it plays in the differential fractionation of stable 

carbon isotope values.  This demonstrates a potential line of evidence to evaluate the 

presence of these different plant resources in the diet of the Lower Pecos canyonlands 

that will be revisited in the results of the current study.  This is followed by a brief 

statement on the types of carbohydrates utilized by these plants for energy storage and 

the processing costs associated with rendering these resources digestible.  Finally, early 

European explorer and settler accounts of the use of these foodstuffs, including aspects 

of seasonality and intensity of use, are presented.   

Environmental Background 

           Agave.  Agave was a vital resource across much of pre-Columbian Mesoamerica 

and the northern deserts of modern-day Mexico (Flannery 1986b); (Gentry 1982).  This 

relationship has been described as a symbiosis.  Members of this genus were cultivated 

prehistorically in both the Mesoamerican Highlands and the deserts of the greater 

Southwest.  It is possible that this genus represents the earliest domesticate of the New 

World (Gentry 1982; Sauer 1965) although lack of differentiation between wild and 

domesticated specimens hinders proper evaluation.  Regardless, this genus was of early 

importance to human populations occupying this arid landscape during the Holocene 

(Callen 1965, 1973) and occupies an important role in the cosmology of Mesoamerica, 

as reflected in several codices (Gonclaves De Lima 1956).  This section will review the 

Agave genus generally, with applicable references to the species, Agave lechuguilla, 

common in the Lower Pecos canyonlands.   
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Agave plants are perennials that require several years to bloom.  These plants 

exhibit a thick, abbreviated shoot or caudex surrounded by a rosette of generally fleshy 

leaves.  This thick stem and associated leaf bases store a great deal of water and nutrients 

in the fibrous, meristematic tissue.  The imbricated spiral nature of the leaf arrangement 

serves several purposes, among which is the redirection of rain water to the center of the 

plant, giving the fibrous root structure underneath the caudex access to the often limited 

and unpredictable precipitation.  The rosette growth habit of this genus also serves a 

defensive function to keep most animals away from the soft and easily palatable 

florescence and caudex.   The leaves themselves are thickened and generally succulent, 

storing the nutrients used by the plant to grow the inflorescence in specialized spongy 

parenchymous tissue.  Leaf succulence is also a xerophtytic adaptation, losing turgidity 

and form with severe drought.  Most of the species in this genus are monocarpic, 

flowering only once at the end of their life history.  The flowers are synoecious, 

exhibiting both male and female components within the same flower.  The large showy 

inflorescence can produce both seeds as well as bulbils, a type of vegetative 

reproduction.   Many species in this genus also exhibit vegetative reproduction through 

rhizomatous suckers extending outward from the base of the caudex (Gentry 1982). 

Lechuguilla is a small plant variety of agave, with the largest range of any known 

species in the genus (Gentry 1982).  It is generally considered a type species for the 

Chihuahuan desert and its distribution is used to mark the boundaries of the desert 

(Muldavin 2002).  This species is widely reproduced by suckering and often occurs in 

dense patches as a result (Gentry 1982).  The rosettes tend to be open, with leaves 
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numbering from twenty to fifty.  These leaves, like most agave species, are incredibly 

long lived, persisting for as many as fifteen years (Gentry 1982).  A latitudinal study of 

this species suggests that the specimens in the south grow larger than their northerly 

counterparts (Silva-Montellano and Eguiarte 2003).   

The inflorescence of this species is a spike-like panicle that grows as much as 20 

cm daily.  This causes a major shift in the distribution of biomass within the specimen, 

from 85% in the leaves and 15% as the basal mass to 40% in the inflorescence and 50% 

in the leaves.  This necessitates the depolymerization of complex carbohydrates into 

smaller, easily transported sugars.  Most specimens were observed flowering in May and 

June, suggesting that human use of this resource would optimally take place in the early 

Spring before mature individuals develop an inflorescence.   

The mature lechuguilla plant dies after flowering, replaced by one of its many 

clonal pups. Reproduction for this species is predominately through these clonal pups, as 

seedlings are rarely observed.  Lechuguilla exhibits a shallow, fibrous root system that 

can be rapidly expanded during precipitation abundance.  Only 4% of the plant’s dry 

biomass is underground, again highlighting both the plant’s preference for shallow soils 

as well as the importance of the caudex and leaf bases for water and nutrient storage.   

This species is well-adapted and partial to limestone soils and tends to be limited 

to areas with rocky and shallow, well-drained soils on broken and sloped terrain (Gentry 

1982).  It can also occur as a dominant component of the vegetative community on 

sediments with abundant caliche deposits, common on mountain slopes and bajadas of 

the Southwest.  Bray (1905) observed the co-dominance of lechuguilla in the Lower 



  

    

100
                                                                                                                                         
                                                                       

Pecos canyonlands.  The densest stands occur on sharply sloping rocky hillsides or near 

the top of canyon walls, while sotol is the most abundant plant form on the broad divides 

between canyons (Bray 1905).   

This species occurs in great abundance, with dense stands numbering up to 

30,000 rosettes per hectare (Martinez 1936).  Other studies have shown that lechuguilla 

has much higher environmental productivity than other plant species in the Chihuahuan 

desert, measured as biomass accumulation over time, (Nobel 1986).  This suggests that 

lechuguilla use could be intensified without impacting the reproductive population of a 

local region.  This is further corroborated by the use of this plant as a fiber source by 

over half a million rural workers in Mexico (Pando-Moreno 2004, 2008; Quero 1987).  

Despite this heavy commercial use, lechuguilla remains the dominant plant across much 

of the Chihuahuan desert (Gentry 1982).  Interestingly, modern studies have 

demonstrated that the central bud of the lechuguilla can be removed from a specimen 

without killing the plant.  The removal of the folded leaved and upper caudex stimulates 

clonal growth from rhizomes as well as the redevelopment of the specimen’s central 

bud.  Plants treated by this removal exhibited an increase in bio-mass accumulation, with 

no discernable difference between treated and untreated specimens after six months.   

Dasylirion.  Sotol (Dasylirion sp.) was not nearly as important to pre-Columbian 

human populations as the genus agave due, in part, to a much more restricted geographic 

range for this genus (Bogler 1994).  Largely confined to the northern Chihuahuan desert, 

sotol was an important food and fiber resource wherever it occurred in abundance (Bell 

and Castetter 1941; Leach and Sobolik 2010; Mancilla-Margalli and Lopez 2006; Thoms 
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2008a).  While the use of these species today is generally confined to the production of 

alcoholic beverages and as cattle fodder, it remains an important wild-harvested resource 

in the state of Chihuahua (De La Garza et al. 2010; Garza-Toledo et al. 2008; Olhagaray 

Rivera et al. 2004; Tunnell and Madrid 1988).   

The genus Dasylirion contains as many as twenty species distributed throughout 

Northern Mexico and the American Southwest.  All of these plants have dense rosettes 

of fibrous leaves surrounding a bulb-like caudex or crown (Bogler 1994).  The root 

structure of sotol is fibrous and ephemeral, easily broken to dislodge the caudex in 

harvest (Bogler 1994).  Only one species (Dasylirion simplex) exhibits the type of 

rhizomatous vegetative reproduction so common among the agave (Bogler 1994).  This 

particular sotol is quite small in size and very limited in distribution (Bogler 1994).  This 

size of the caudex increases with the age of the plant, sometimes resulting in a woody, 

arborescent habit (Bogler 1994).  While these larger specimens frequently exhibit a 

corky periderm beneath the rosette of leaves, the younger, more tender parts of the  

caudex remains edible when cooked properly (Bogler 1994).   

Unlike the Agave genus, sotol species are polycarpic, flowering multiple times 

over the life history of an individual plant (Bogler 1994). Flowering among sotol 

populations is highly variable, and seems to be associated with precipitation patterns, 

although the exact relationship is not clear (Bogler 1994; Fay 2009; Patrick et al. 2009; 

Robertson et al. 2009).  There may be a six year cyclic pattern to flowering, but this is 

only speculative (Bogler 1994).  Blooming is highly variable, sometimes occurring for 

nearly every plant in a population and sometimes for a small proportion of the total 
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population (Bogler 1994).  The genus is dioecious, suggesting that the entire population 

should flower in unison to maximize reproductive potential (Bogler 1994).  For the 

species common in the Lower Pecos canyonlands, Dasylirion texanum and Dasylirion 

wheeleri, blooming peaks from May to July and continues sporadically until the end of 

August (Bogler 1994).  The peak season for humans to harvest these plants for roasting 

would be in the Spring, in order to maximize caloric return (Bogler 1994; Dering 1999; 

Mancilla-Margalli and Lopez 2006).    

While the distribution of this plant is generally limited to rocky hillsides and  

canyon walls, it can occur in immense populations in these areas (Mata-Gonzalez et al. 

2002).  Much like Agave lechuguilla, this plant is a dominant part of the open plant 

community type known as “izotal”, which is limited to the aforementioned gravelly, 

well-drained sites (Bogler 1994).  The earliest botanical accounts of the sotol country, 

which includes the Lower Pecos canyonlands,  remark on the restriction of the sotol-

lechuguilla community to the shallow, rocky soils along the upper canyon walls and 

uplands, with the finer-grained sediments of the larger floodplains maintaining a 

grassland community with few, if any, succulent species  (Bray 1905, 1906).  Dasylirion 

species are extreme xerophytes due, in part, to the ability to store large amounts of 

nutrients and water in their caudex and leaf bases (Bogler 1994).  Other xerophytic 

features include expendable and easily re-grown roots, fibrous and sclerified leaves, and 

the development of cuticular wax (Bogler 1994).  While there are undoubtedly 

physiological mechanisms to help conserve water, plants of this genus are C3 plants and 

do not exhibit CAM photosynthesis (Bogler 1994; Sternberg et al. 1984).  The lifespan 
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of Dasylirion is not known, but greenhouse cultivation suggests a minimum estimate of 

150 years (Bogler 1994).   

The rich package of nutrients and water contained in the caudex has been a 

source of food for animals other than humans (Bogler 1994).  There are reports of bears 

tearing apart sotol plants to eat the sweet caudex, particularly before the development of 

the inflorescence.  Horses will willingly eat the leaves of sotol, and goat and cattle will 

also graze the mature plants, if not as willingly.  However, juvenile plants are much 

more palatable and are frequently pulled up and eaten by deer as well as cattle and goats.   

In addition to the use of sotol as forage, it has frequently been chopped up and used as 

fodder for domesticated animals (Mondragon-Jacobo and Perez-Gonzalez 2002).  Early 

reports suggest that intensive grazing (or harvesting by humans) of  sotol could cause a 

significant decline in the local populations of sotol (Bell and Castetter 1941; Bray 1905). 

Opuntia.  While prickly pear (Opuntia sp.) is a part of plant communities across 

most of the contiguous United States, the greatest diversity and density of these cacti is 

in the Chihuahuan Desert Region (Powell and Weedin 2004).  The genus Opuntia is 

generally considered as one of the more primitive forms of cactus and is the most 

widespread, growing across almost the whole contiguous United States (Weniger 1984).  

Within this genus are two major subgenus designations, the cholla (Cylindropuntia) and 

the prickly pear (Platyopuntia).  This paper considers only the role of the prickly pear 

types as a food resource, as the ethnohistoric (Krieger 2002; Thoms 2008b), 

ethnographic (Castetter 1935) and archaeological (Dering 1979, 1999; Williams-Dean 

1978) literature indicate it was a major food resource across much of the Chihuahuan 
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Desert and surrounding regions.  There are at least 52 species or distinguishable varieties 

of prickly pear found across Texas (Weniger 1984).  Due to the difficulty of 

identification beyond the subgenus level in both the archaeological and ethnohistoric 

record, no attempt was made to distinguish among prickly pear species or varieties.   

Experimental evidence has confirmed that almost 98% of cactus utilize CAM 

photosynthesis (Nobel 1988; Powell and Weedin 2004).  This, along with the shallow 

root system, thick stems of water storing parenchyma, and thick cuticular lining 

exhibited by most cactus, indicates an adaptation to arid environments with poor or 

shallow soils (Nobel 1988; Powell and Weedin 2004; Weniger 1984).  All of these 

characteristics suggest that prickly pear should be a major part of any vegetative 

community with shallow soils, limited precipitation, high annual temperatures and 

limited grass cover (Bowers 2005; Cui 1994; Mata-Gonzalez et al. 2002; Nobel 2002).  

This is clearly indicated in the relationship between grass density, grazing, and cactus 

density observed in both the Trans-Pecos region of the Chihuahuan Desert and the 

Tamulipan Biotic Province of South Texas (Lundgren et al. 1981; Powell and Weedin 

2004).   

Prickly pear cactus reproduce both sexually and vegetatively (Nobel 1988; 

Powell and Weedin 2004).  Most species produce large, showy flowers that attract a 

great number of pollinators on an annual basis (Powell and Weedin 2004).  Each 

individual plant produces many hundreds of seeds every year (Powell and Weedin 

2004).  Vegetative propagation requires nothing more than part of a pad with a meristem 

to be removed and dropped to the ground (Powell and Weedin 2004).  Prickly pear 
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cactus is considered a major problem for the range livestock industry in Texas 

(Lundgren et al. 1981).  Over 25.5 million acres of rangeland in Texas was considered 

“infested” with prickly pear in 1980.  This accounts for over a quarter of all rangeland in 

the state.  Over 40% of this “infested” acreage occurs in the Edwards Plateau (10.2 

million acres), while 17% occurs in the Tamulipan Plains (4.35 million acres) (Figure 3).  

This data suggests that prickly pear would have been an easily accessible and readily 

renewable food resource for human populations.  The short reproductive cycle of a 

prickly pear individual, combined with vegetative reproduction, would make this plant 

an ideal resource to utilize under conditions of environmental or demographic stress 

since any established community would be virtually impossible to overharvest.   

Photosynthesis and Stable Isotopes 

Stable carbon isotopes studies of animal tissue have been shown to successfully 

reflect the isotopic composition of diet (Deniro and Epstein 1978; Schwartz and 

Schoeninger 1991; Smith et al. 2002; Sponheimer et al. 2003b).  Underlying this dietary 

application of stable carbon isotopes are the differences in the fractionation of 

atmospheric CO2 by plants utilizing different photosynthetic pathways (Van Der Merwe 

1982).  Atmospheric carbon dioxide contains approximately 1.1% of the heavier isotope 

13C (O'leary 1988).  This carbon isotope is discriminated against during photosynthesis 

due to the small differences in mass between this heavier isotope and the dominant 

(98.9%) form of carbon, 12C (Van Der Merwe 1982).  These differences in mass cause 

13C to form stronger chemical bonds and diffuse at a slower rate (O'leary 1988).  The 
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amount of discrimination against 13C in plants is influenced by a number of factors, but 

is principally controlled by the photosynthetic pathway utilized by a plant.   

This requires a brief review of the three major types of photosynthesis, and the 

underlying diffusional and chemical processes that result in differential fractionation 

between the pathways.  The evolutionary importance of these pathways (decreasing 

evapotranspiration, influence on CO2 utilization) will not be discussed in detail.  Prior to 

industrial human activity , the δ13C value of atmospheric CO2 was –8‰ (O'leary 1988).  

Early studies of plant δ13C values found that most plants fell between –25‰ and –35‰ 

(O'leary 1988).  This value did not show any species or environmental relationships.  

These early studies occurred before the discovery of the C4 photosynthetic pathway in 

the 1960s and therefore did not take this into account.  Later studies showed that C3 

plants had an average δ13C of –28‰ and that C4 plants had an average δ13C of –14‰ 

(O'leary 1988).  The δ13C values of these two pathways have little overlap.   

C3 (Calvin Cycle) photosynthesis fixes CO2 through the action of the enzyme 

ribulose biphosphate carboxylase (RuBisCo) (O'leary 1988).  Atmospheric CO2 is 

transported through the stomata into an internal gas space.  The CO2 in this gas space 

dissolves into cell sap and diffuses to the chloroplast.  The RuBisCo controlled 

carboxylation of ribulose biphosphate occurs in the chloroplast.  This step, unlike the 

previous diffusionary processes, is irreversible, and is the major determinant in 

fractionation of 13C (O'leary 1988).  O’Leary (1988) presents a table of the Δδ13C effect 

of each step in both C3 and C4 photosynthetic pathways.  These data are used to infer 

the principle limiting step in both pathways.  For plants utilizing C3 photosynthesis, 
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diffusion (Δδ13C 4.4 ‰) seems to play a minor role in fractionation, while the RuBisCo 

catalyzed reaction (Δδ13C 29.0 ‰) is the principle process responsible for the large 

fractionation of atmospheric CO2 observed in C3 photosynthesis (Griffiths 1992; O'leary 

1988).   

The C4 (Hatch-Slack) photosynthetic pathway involves the sequential operation 

of two carboxylase reactions.  Initially, CO2 is fixed through the carboxylation of 

phosphoenolpyruvate (PEP) in the mesophyll (O'leary 1988). This product is then 

converted to malate or aspartate, transported to the bundle sheath cells (Krantz anatomy 

-a feature found only in C4 plants) and cleaved to yield CO2 (Van Der Merwe 1982).  

The resultant CO2 molecules are taken up by RuBisCo in a manner similar to C3 plants.  

Although the RuBisCo chemical process does occur in C4 photosynthesis, it does not 

influence the fractionation of the overall pathway because it is preceded by a prior 

irreversible step (O'leary 1988).  

 O’Leary (1988) suggests that the two potential limiting processes for 

fractionation are stomatal diffusion and the carboxylation of PEP.  However, the average 

observed values for most C4 plants (~14‰) are more negative than the range of values 

predicted by the model (O'leary 1988).  There is some indication that this difference is 

due to the loss of CO2 from the bundle sheath cells during uptake by RuBisCo.  This is 

supported by evidence that δ13C values of C4 plants vary with bundle sheath 

permeability, with more negative values observed for plants with greater permeability 

(O'leary 1988). 
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Many xeric adapted plants absorb CO2 with a third type of photosynthesis known 

as Crassulacean acid metabolism (CAM) (Osmond et al. 1973).  This photosynthetic 

method is actually a temporal coupling of the processes observed in the two major 

photosynthetic pathways (Griffiths 1992).  CAM is a unique ecological adaptation that 

probably evolved as a survival mechanism in extreme habitats (Griffiths 1992).  During 

the night, CAM plants open their stomates and produce high levels of malic acid through 

the carboxylation of PEP, followed by a process involving malate dehydrogenase (Phase 

I) (Griffiths 1992).  This step is very similar to the initial carboxylation process seen in 

C4 plants.  This malic acid is stored overnight until the stomates close the next morning.  

At that point, the malic acid is decarboxylated (Phase II) and the resultant CO2 is taken 

up by RuBisCo in a process similar to that of the bundle sheath cells in C4 (Phase III) 

(Griffiths 1992).  Many CAM plants also engage directly in C3 photosynthesis using 

RuBisCo during the late afternoon, when water loss from open stomates is lower (Phase 

IV) (Griffiths 1992).   

Most CAM plants yield a δ13C value similar to C4 plants (as low as -11‰ when 

CO2 is only absorbed at night) (Griffiths 1992).  This is due to the dominance of 

nighttime carboxylation most CAM plants exhibit under their natural environmental 

conditions.  CAM plants can be experimentally manipulated to engage primarily in 

daytime (C3) photosynthesis which is reflected in their δ13C value (-26‰) (Griffiths 

1992).  However, the majority of biomass derived from constitutive CAM plants will 

have a similar isotopic signature to C4 plants (Griffiths 1992).   
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Any dietary reconstruction based on stable carbon isotope values of animal tissue 

must account not only for the proportions of plant foods utilizing C3, CAM, and C4 

photosynthetic pathways, but also the fractionation factor between the diet and the 

resultant tissue (Deniro and Epstein 1978; Hwang et al. 2007; Smith et al. 2002; 

Sponheimer et al. 2003b).  This tissue fractionation was discussed in greater detail in the 

Chapter III.  As noted above, both lechuguilla and prickly pear utilize CAM 

photosynthesis, while sotol is characterized as a C3 plant (Sternberg et al. 1984).  

Sternberg et al. (1984) present staple carbon isotope values for samples of all three plant 

resources.  These samples were collected in the Lower Pecos canyonlands, near the 

mouth of the Pecos River.  The lechuguilla sample exhibits a δ13C value of -11.0 ‰, 

while the four specimens of prickly pear range have δ13C values that range from -11.5‰ 

to -13.8‰.  This is consistent with the expected values for a plant resource utilizing 

either CAM or C-4 photosynthesis.  The sotol sample collected for the study had a δ13C 

value of -22.2‰ (Sternberg et al. 1984).  This provides another congruent line of 

evidence to evaluate the relative importance of these three staple resources in the Hinds 

Cave coprolite collection, as well as the skeletal remains from the Lower Pecos 

canyonlands.   

Carbohydrate Storage and Food Value 

All three of these plant resources (lechuguilla, sotol, and prickly pear) store the 

majority of their caloric content as carbohydrates (Lopez and Urias-Silvas 2007b; 

Mancilla-Margalli and Lopez 2006).  Plants sequester energy in one of three primary 

reserve carbohydrates: starch, sucrose and fructans.  While earlier studies assumed that 
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starch was the main storage polysaccharide in these resources (Gentry 1982), more 

recent work has demonstrated that all of these species use fructans as their primary 

reserve carbohydrate (Lopez and Urias-Silvas 2007b).  In addition, another resource 

commonly consumed in the Lower Pecos, Allium sp. also stores most of its energy as 

fructans (Darbyshire and Henry 1981).  Fructans, which occur in approximately 15% of 

vascular plant species, are water soluble fructose polymers with a single glucose moiety.  

Fructans can be linear or branched (Wang et al., 1999).  Vijn and Smeekens (1999) 

classified fructans in five major groups based on degree of polymerization (DP) and 

branching patterns: (i) linear inulin, reported in some Asteraceae, (ii) levan, which is 

found in some grasses, (iii) graminans, mixed fructans containing type i and ii linkages, 

also found in some grasses, (iv) inulin neoserie, characterized in onion and asparagus, 

and (v) levan neoserie, which has been reported in oat.   

Fructans are usually present in plants as a heterogeneous mixture with different 

DP and branched structure. The type of fructans found in plants are species specific and 

highly influenced by the environmental conditions and developmental stage of the plant 

(Sims 2003; Sims et al. 2001).  There is some evidence to suggest that fructans provide 

an added benefit of drought tolerance to plant species, but this remains poorly 

understood despite empirical observation.  The fructans in agave and sotol have been 

classed as branched neo-fructans termed agavins (class iv) and gramanins (class iii) 

based on the degree of polymerization and linkage-type abundance.  These fructans are 

synthesized and stored in the caudex or stem of these plants, whose primary function is 

nutrient storage.  The fructan structure in opuntia has not been classified to date, but it 
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has been suggested to contain neo-type fructans (class iv and v) similar to agave and 

sotol.  The only direct study of the carbohydrate content of sotol indicates that this 

species has much higher concentrations of mono- and di- saccharides such as glucose 

(27%) and fructose (38%) than fructans.  The low level of fructans in Dasylirion is most 

likely due to the presence of the floral organ on the specimen examined, as the energy 

stored in the fructans was depolymerized to meet the high energy demand of this 

developmental process.  Thus, depolymerization and mobilization of fructans have been 

observed to cover energy-demanding activities such as regrowth (Amiard et al. 2003),  

sprouting (Machado De Carvalho and Dietrich 1993), and inflorescence development 

(Bieleski 1993).  The inflorescence emergence in Dasylirion plants might have caused a 

drop in the fructan content and associated increase in sugars to supply the energy 

required for this event (Mancilla-Margalli and Lopez 2006).  This has implications for 

the harvesting strategies of hunter-gatherers dependent on sotol and lechuguilla (Dering 

1999).  Harvesting an individual at the onset of this ontogenetic event would result in a 

food resource with higher levels of readily digestible sugars and less need for the 

hydrolysis processing described below.  Ethnohistoric and ethnographic literature 

corroborate the preference native groups displayed for harvesting sotol and agave 

resources at this time in their life history (Castetter et al. 1938; De Leon 1971).   

The human digestive system does not contain the enzymes necessary to degrade 

fructans (Vijn and Smeekens, 1999).   In the large intestine , these undigestable 

carbohydrates  serve as a substrate for colonic bacteria and are for this reason considered 

as prebiotics (Gibson et al., 1995; Wang and Gibson, 1993). A prebiotic is a non-
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digestible food ingredient that positively affects the host by selectively stimulating the 

growth, and/or the activity of one or a limited number of bacteria types in the colon 

(Gibson and Roberfroid, 1995). The fructan component of agave and sotol have higher 

prebiotic activity than commercially available sources of inulin, while the fructans from 

opuntia was similar to commercial inulin.  This suggests that diets high in these plant 

resources would result in very healthy and robust populations of colonic bacteria.   

The fermentation of fructans in the colon generates short chain fatty acids 

(SCFAs) such as lactic acid, and gases including H2, CO2 and CH4 as a product of an 

anaerobic metabolism (Roberfroid, 1993). Their fermentation is an important process, 

since it favors the maintenance and development of the bacterial flora as well as colonic 

epithelial cells (García Peris et al., 2002).  This contributes greatly to fecal mass, as the 

healthy bacterial population deposits cellular components to the fecal material through 

population turnover.  The SCFAs produced by this fermentation are absorbed by 

intestinal cells to produce energy, allowing humans to receive some caloric benefit from 

these prebiotic dietary fibers.   This has been calculated as a return of 1.5 Kcal/g of 

ingested material (Leach 2009).  While this is significantly lower than the return rate for 

fully digestible carbohydrates, the return nonetheless provides an additional source of 

energy.   

Nonetheless, most traditional preparations of these resources expose the material 

to long periods of hydrolysis (Wandsnider 1997).  This processing step breaks the 

indigestible fructans into smaller carbohydrate fractions, especially sugars, that can be 

digested by the human gastrointestinal tract.  While Leach (2009) makes the point that it 
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is unclear how much of the fructan fraction gets reduced, it is clear from both historical 

accounts remarking on the sweetness of agave and sotol as well as the use of these 

resources as the sugar source in alchohol production that a sizeable amount of the 

fructan is converted into digestible carbohydrates using traditional earth ovens (Dering 

1999).  This is corroborated in a study evaluating the hydrolysis of fructans in Agave 

tequilana using traditional tequila production processes (Waleckx et al. 2008).  Samples 

from the process indicate that 98% of the fructans were converted into simple sugars, 

dominantly fructose, after 25.5 hours of cooking in the traditional wood-fired brick oven 

(Waleckx et al. 2008).   

Seasonality of Resource Use and Ethnohistoric Accounts 

This section is a gathering of ethnohistorical source material documenting the use 

of lechuguilla, prickly pear and sotol as foods in Texas and the surrounding region.  

Other relevant wild plant resources mentioned in the sources are also included.  In order 

to save time and space, the researcher has summarized much of the seasonality data in 

Table 5  The taxa presented are based on those recovered in three previous coprolite 

studies from Hinds Cave (Edwards 1990; Stock 1983; Williams-Dean 1978) and the 

seasonality data is derived from a variety of ethnohistorical and ethnographic sources 

(Bean and Saubel 1972; Bell and Castetter 1941; Castetter 1935; Castetter et al. 1938; 

De Leon 1971; Griffen 1969; Krieger 2002; Taylor 1972; Thoms 2008b).  This is 

followed by a brief recount of the seasonal subsistence patterns noted in the earliest 

reports of native lifeways in the general region.  Most of the available literature is based 

on early Spanish reports of the nomadic hunter-gatherers of the modern states of Nuevo 
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Leon and Coahuila, Mexico as well as south Texas.  Although a number of secondary 

sources were consulted (Beals 1973;  Campbell 1979, 1983;  Griffen 1969;  Hester 1989;  

Kenmotsu and Wade 2002;  Maslowski 1978;  Newcomb 1961;  and Taylor 1972), most 

of the data about the region presented in these sources is based upon Don Alonso de 

Leon’s First Discourse (De Leon 1971) or the account of Cabeza de Vaca (Krieger 

2002).   

This review of ethnohistoric accounts from the region follows a broadly 

chronological approach, presenting details about seasonality and intensity of use for each 

resource. This review will be followed by a brief overview of the more recent 

ethnographic literature on the use of each of the three previously identified staples across 

the Greater Southwest.  Finally, the Lipan Apache, geographic Coahuiltecans, and the 

Jumano will be used as case studies of the subsistence strategies of a major ethnic 

grouping from each of the three biotic provinces bordering the Lower Pecos canyonlands 

(Foster 2008b; La Vere 2004).    
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Table 5.  Seasonality of Plant Use based on Ethnographic Sources 
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  Cabeza de Vaca.  The account of Cabeza de Vaca provides the earliest record of 

Native lifeways across parts of South Texas (Krieger 2002; Thoms 2008b).  For the sake 

of brevity, the reports of coastal lifeways near Galveston Bay will be ignored, as the 

environment there is very different from the Lower Pecos canyonlands.  Upon moving to 

stay with bands in the area surrounding the lower reaches of the modern-day San 

Antonio and Guadalupe Rivers, Cabeza de Vaca provides an account of pecans as an 

important fall staple (Krieger 2002; Thoms 2008b).  Along with an unidentified “little 

grain”, these nuts formed the majority of the diet for several months during years of 

good yield.  Preperations methods are not recorded.  During the winter, these inland 

groups, including the Mariames and Yguazes, subsisted almost entirely on geophytes 

from several unidentified species (Krieger 2002).  This is the earliest European account 

of earth oven cookery in North America (Thoms 2008b).  From the description of the 

several day cooking necessary to render them edible, it is clear that it must be a fructan-

based storage organ.  However, there is no mention of rock elements in the construction 

of these ovens.   

 The use of the prickly pear nopales and green tunas as a food is mentioned by 

Cabeza de Vaca in the year following his trek across the Tamulipan plain and the winter 

spent with the Avavares (Krieger 2002).  Cabeza de Vaca references the cooking of 

green fruit and pads in earth-ovens, recording that the pads are left to steam overnight in 

the earth oven.  Again, there is no mention of a rock heating element, which may change 

the energetic costs of building such an oven.  It is made clear in the account that this is 

not a highly desirable resource.  Nopales were a marginal food resource designed to 
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satiate until the tunas were ripe.  This corresponds with the low caloric return rate of this 

resource.    However, for the Avavares, a group who lived entirely in the Tamulipan 

plains province, nopales and green tunas were the major staple recorded by Cabeza de 

Vaca (Krieger 2002).  The account stresses that these people, and other groups in South 

Texas were highly dependent on the pads of prickly pear for sustenance during much of 

the year.   

The late summer and fall was a time of abundance, with ripe prickly pear tunas 

serving as a major staple (Krieger 2002; Thoms 2008b).  This seasonal abundance of 

tunas provided a caloric surplus that encouraged bands to congregate at large tuna 

grounds in the Tamulipan Plains province.  Prickly pear fruits or tunas were a productive 

resource across the plains province and were the focal point of the largest inter-ethnic 

gatherings observed by de Vaca in Texas (Krieger 2002).   Large thickets of prickly pear 

drew native groups from the Coastal Prairie onto the South Texas Plains for a period of 

abundant food, celebration, and trade.  According to Cabeza de Vaca, this resource was 

the major dietary staple of these groups for three months in late summer/early fall 

(Krieger 2002; Thoms 2008b).  While staying with the Mariames and Yguases, Cabeza 

de Vaca and his companions planned to use the upcoming tuna season as an opportunity 

to move on with other Native groups in an attempt to reach the Spanish-occupied areas 

of central Mexico.  It appears that tunas were an important seasonal resource for all of 

the Native groups that occupied the Tamulipan Plains province, as Cabeza de Vaca 

mentions them as the major food resource among the Native groups (Avavares, 

Cutalches [Cutalchiches], Malicones, Coayos, Susolas, Arbadaos) encountered from the 
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time of their fleeing from the Mariames and Yguases in September until reaching groups 

near the Rio Grande that consumed mesquite (Prosopis sp.) flour (Krieger 2002).  The 

tuna continued to be noted as an important dietary constituent among these groups near 

the river, as well as other groups further west that had access to maize (Krieger 2002).  

This indicates that tunas were a seasonally important resource in the basin and range 

province along the southwestern margin of the Tamulipan plain, and was probably an 

important resource wherever it occurred in abundance.   

The ripe tuna was important both as a fresh and dried fruit, as well as a source of 

water in the dry interior of the Tamulipan Plains (Krieger 2002).  Cabeza de Vaca 

recounts that many of the groups mentioned above were sharing dried or ground tunas 

with them after the season of tuna availability (Krieger 2002).  This practice suggests 

that many Native groups engaged in at least short-term storage of a seasonally available 

resource.   

While this very brief review does not account for the marked environmental 

variation of the Tamulipan Plains Biotic Province, it is clear that groups living around 

the margins of this area (which includes the Lower Pecos canyonlands) were highly 

mobile and willing to move great distances for a productive and dense resource stand 

such as prickly pear tunas.  Cabeza de Vaca and his companions clearly travelled 

through parts of the northern Chihuahuan desert, but there is no mention of any 

resources resembling agave or sotol in the account.   

De Leon the Elder.  De Leon, the elder, also provided an early account of native 

lifeways based on decades of observation.  An early settler of the modern-day state of 
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Nuevo Leon, Alonso de Leon recounted many ethnographic details of native populations 

living near the western margin of the Tamulipan Plains Biotic province from 1580 to 

1649 (De Leon 1971).  The Native groups of Nuevo Leon and Tamaulipas living near 

the early Spanish settlements in the interior mountain ranges depended primarily on 

gathered plant resources for the majority of their diet, particularly in times of seasonal 

stress (Taylor 1972).  De Leon claimed that the natives subsisted on three major staples 

throughout the year (De Leon 1971).  In the winter, the major food utilized was the 

caudex and basal leaves of lechuguilla.  During the spring and much of the summer, 

prickly pear was the foundation of the diet, both as green and ripe tunas.  Mesquite beans 

were an important staple during the late summer and fall, first as an edible raw “green 

bean” and then as a source of ground meal and dry bean once the pods dry.  These 

Native populations also ate unnamed seasonally available fruit and geophyte food 

resources.  

De Leon briefly recounted the cooking or “barbequing” of lechuguilla hearts over 

the course of two days and three nights.  While there is no explicit mention of an earth 

oven, the length of time mentioned in the account suggests that the native groups 

described were using rocks as heating elements.  Regardless of cooking method, the 

account clearly indicated that barbequed lechuguilla is the bulk of the diet across most of 

the cold season (De Leon 1971). 

As the prickly-pear blossoms in the spring, first the flowers (buds?) and then the 

young tunas (fruit) were gathered and pit roasted (barbequed) (De Leon 1971).  De Leon 

claimed that there are great quantities of prickly pears in the region, allowing the natives 
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to utilize the barbecued young tunas as the primary food supply without impacting the 

later tuna harvest (De Leon 1971).  When the tunas ripened, the local populations 

subsisted almost entirely on these fruits (both fresh and dried) (De Leon 1971).  There is 

no indication in this account of the use of the pads as a food resource.  It is possible that 

de Leon did not distinguish green buds from the succulent young pads of the many 

prickly pear species.   

Later Spanish and French Accounts.  While no other sources provide the level 

of detail presented in the two previous accounts, there are some passing mentions of 

prickly pear, sotol and lechuguilla in later accounts that suggest they continued to be 

important dietary resources for Native populations in South Texas and neighboring 

regions (Foster 1998; Wade 2003).  In January of 1674, Friar Larrios reported the staples 

of the native groups meeting with him at Mission San Ildefonso in Modern-day 

Coahuilla as subsisting on mescal, prickly pear tunas, acorns, small nuts, fish, deer, and 

buffalo (Wade 2003).  Mescal may reference any agave species whose caudex was 

roasted for food (Castetter et al. 1938; Gentry 1982).  Another account of this same 

expedition in 1674 mentions mescal as the staple food at the establishment of the 

Mission Santa Rosa de Santa Maria along the Rio Sabinas (Wade 2003).  During the 

ceremony establishing the mission, Captain Elizondo asked the natives to share food 

with the friars, who were subsisting solely on mescal (Wade 2003).   

Reports from later in the spring of 1674 referenced mescal as the primary food 

resource.  Friars at these two mission sites reported that they and the congregated natives 

had only mescal and unidentified geophytes for food (Wade 2003).  The location of this 
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site about 50 miles south and west of modern-day Eagle Pass, TX suggests that it was 

probably lechuguilla.  This is corroborated by reports from the military commander, 

Captain Barbarigo.  In his report from that same spring, Captain Barbarigo recorded that 

the friars subsisted on the roots of lechuguilla, “tule”, and sotol once the stored maize 

and other resources had been exhausted (Wade 2003).  “Tule” may refer to a species in 

the bulrush genus Scirpus or another such aquatic resource such as cattails (Typha sp.).  

There is no mention of the method of preparation of these resources.  The small nut in 

the accounts may be little walnut (Juglans microcarpa), which is common in the 

archaeological record of the Lower Pecos canyonlands, but this is purely speculative.  

The gathered natives at this mission establishment numbered upward of 600 individuals 

from at least nine separately identified bands (Wade 2003).  The account also mentions 

that many other people affiliated with these bands were engaged in logistic forays for 

bison and other resources (Wade 2003).  These statements hint at a very flexible social 

organization characterized by dispersal and congregation around seasonal resources.   

Wade (2003) mentions the importance of prickly pear tunas in the dispersal of 

Native groups from the mission Santa Rosa during the harvest season, which began in 

June in this region.   The friars had congregated over three thousand natives at the 

mission, who were subsisting on the large tuna grounds that abounded in the immediate 

vicinity of the mission (Wade 2003).  The friars realized that the native populations 

would have to disperse once the tuna supply was exhausted and were desperate for 

supplies to keep the congregation together at the mission (Wade 2003).  This account 
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extends the recorded seasonal use of tunas as a staple to the western margins of the 

Tamulipan plains. 

Friar Larrios also presents an interesting account of band mobility during this 

period.  The friar suggests that native bands had to move on an approximate bi-weekly 

schedule, as the large numbers of individuals in each band would quickly strip the 

available foodstuffs from the immediate vicinity of the band’s homebase (Wade 2003).   

Wade (2003) suggests that the external pressures of the encomienda system as well as 

inter-ethnic conflict may have forced human populations in the region to consolidate into 

larger ethnic entities for defense.  There is also evidence that many of these groups 

defended specific territory, including the harvesting of resources (Wade 2003).   

Griffen (1969) presents an overview of native lifeways recorded in Early Spanish 

accounts from the Bolsón de Mapimí of Central Northern Mexico.  This closed drainage 

system is located to the west and south of the Lower Pecos canyonlands, in the modern-

states of Chihuahua, Coahuila, Durango, and Zacatecas.  The majority of these accounts 

are from the Parras and La Laguna districts, which were bettered watered and became 

the center of Spanish colonial life in the region (Griffen 1969).  The Spanish accounts 

from the late 16th and 17th centuries record a number of wild plant resources utilized as 

staple foods.  For most of the groups in the region, mescal, tunas and mesquite were 

recorded as the major wild plant resources (Griffen 1969).   

There are several reports of other terms for agave, including maguey and noas, as 

well as specific mention of lechuguilla use by natives in the area of modern-day Parras, 

Coahuila (Griffen 1969). The term “maguey” today references any of the large, thick 
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leaved Agave species (Gonclaves De Lima 1956; Parsons and Darling 2000; Parsons and 

Parsons 1990).  However, the use of the term on the Spanish colonial records suggest 

that it is generally used as sub-grouping of  mescal (Griffen 1969).  Noas is another type 

of mescal, that is less fibrous than those species classed as maguey (Griffen 1969).  

Nopales are mentioned as a food resource for two groups in the region as well.  At least 

two different aquatic resources were used by native groups in the region, “espadaña” 

(probably Typha sp.) and “tule”, described in more detail below.  Flour made from the 

roots of these resources, as well as mesquite, tunas, and mescal were all used to make 

solid loaves.  Griffen (1969) also reports bread made from a small seed he tentatively 

identifies as Phalaris canariensis, which grows in such abundance that it resembles a 

wheat field.  The accounts also indicate that native groups made wine out of the staples 

of mescal, tunas and mesquite (Griffen 1969).  The above accounts are centered on the 

relatively well-watered La Laguna district and may not be reflective of the region as a 

whole.  Accounts recorded as early as 1598 characterize the diet of groups located in 

regions with minimal water as composed wholly of lechuguilla, mesquite, maguey, and 

tunas (Griffen 1969).  This is re-emphasized in later accounts as well, indicating that 

some groups were entirely dependent on lechuguilla and wild maguey for the bulk of the 

caloric needs (Griffen 1969).   

Foster (1998) includes a report from Henri Joutel of the LaSalle expedition 

indicating the difficulty an inexperienced Frenchman had in utilizing the nutritious but 

well protected tuna of the prickly pear (Joutel 1714).  Unaware of the many small 

glochids located on the skin of the tuna, one of the soldiers ate enough unskinned tunas 
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to close his trachea through inflammatory response (Foster 1998).  While this account is 

not very informative in terms of native use, it does indicate a continued use of this 

resource in the 17th century.  

There are two references to the Lipan Apaches incorporating prickly pear into 

their seasonal round.  In 1761, the Lipan captain El Cabezón requested a military escort 

from Presidio de las Amarillas on the San Saba River during the prickly pear season 

(Wade 2003).  In the following year, the captain of the Presidio agreed to establish a 

mission for another Lipan captain, El Turnio.  El Turnio made it clear that his group 

would abandon the mission during the prickly pear season (Wade 2003).  The accounts 

of this mission from 1762 suggest that groups of Lipanes interrupted bison hunting to 

participate in the tuna harvest.  Reports from the friars at the mission indicate that much 

of the mission population left in June to hunt bison, in August to gather tunas, and again 

in the fall to hunt bison again (Wade 2003).  These two accounts recorded during the 

founding of the San Saba mission in 1756 (Wade 2003), along with the group name 

“Come Nopales”, which is Spanish for the “nopale eaters”, suggest that the prickly pear 

was an important seasonal resource for the Lipan Apache.  The name “Come Nopales” 

suggests that the use of the pads as food was also encountered in the region, since only 

the pads of the prickly pear are referred to as nopales (Powell and Weedin 2004).  This 

account has a dual importance in the current study.  First, it indicates that the pattern of 

prickly pear dependence described for the Tamulipan plains by earlier accounts may also 

be an important component of the subsistence strategy of Native groups in the Edwards 

Plateau.  Second, it suggests that the productivity of this resource was great enough that 
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displaced groups migrating from areas with a low density of this prickly pear, such as 

the Southern High Plains, would adopt this subsistence strategy in areas with a sufficient 

density of prickly pear.  It appears that the drier areas of the Edwards Plateau have a 

high enough resource density to facilitate this shift to a seasonal dependence on prickly 

pear tunas by the Lipan and other Apache bands.   

Ethnographic Data from the Greater Southwest 

Agave sp.  Agaves are widely used as a food resource by native groups across the 

majority of arid North America (Basehart 1974; Beals 1973; Bean and Saubel 1972; 

Castetter et al. 1938; Gentry 1982; Parsons and Darling 2000; Parsons and Parsons 

1990).  Despite this, there are no modern ethnographic records of agave being used as a 

food resource.  Castetter and Bell (1938) make the assertion that Lipan Apaches utilized 

lechuguilla as a food resource, but it is unclear whether this is based on ethnographic or 

archaeological data.  While still important across much of Northern Mexico as fiber for 

the ixtle cottage industry, a regionally important source of coarse fibers for brushes and 

other material items (Mayorga-Hernandez 2004; Pando-Moreno 2004, 2008; Quero 

1987), the use of lechuguilla for food seems to have disappeared or been greatly reduced 

before the advent of detailed ethnobotanical studies in the Southwest.   

Agave species are one of the most common wild plant foods in the literature, 

with Castetter and Bell reporting the utilization of this resource for at least ten tribes, 

including agriculturalists, in the Greater Southwest (Castetter 1935; Castetter et al. 1938) 

and Beals reporting at least twenty native groups from central Mexico north into 

modern-day Colorado (Beals 1973).  This resource was once of such importance that it 
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was a major trade item between the Apache and the Hopi and other agricultural groups 

(Castetter 1935).  Castetter and Bell (1938) present data from observations of several 

different native groups which give a good deal of data on the seasonality, harvest 

selection, and processing of agave.  Preferred harvest occurred in the late spring and 

early summer, as individual plants were beginning to send up an inflorescence (Castetter 

et al. 1938).  This is particularly true for accounts of native groups that have been re-

settled and no longer depend on wild harvesting for most of their subsistence (Castetter 

et al. 1938).  These accounts indicate that native harvesters preferred to harvest plants 

with a budding inflorescence, even going so far as to assign gender and taste differences 

among the plants based on this trait (Castetter et al. 1938).  All of these accounts indicate 

that the agave caudex and inflorescence were roasted in earth ovens with rock heating 

elements (Castetter et al. 1938).  Some of the accounts describe the cut leaves were also 

being cooked and eaten, although this seems unlikely for the small leaved Agave 

lechuguilla species (Castetter et al. 1938).  The size of these ovens ranged up to 12 feet 

in diameter and 4 feet deep, and contained an abundance of large flat rocks (Castetter et 

al. 1938).  The caudex is cooked with these heated rocks for 1-2 days in a sealed 

environment.  Once the caudices are sufficiently roasted to be rendered both palatable 

and digestible, they are either eaten immediately or pounded into pulp and dried for 

future storage (Castetter et al. 1938).  Mid-19th century Anglo-American accounts cited 

by Castetter and Bell (1938) indicate that this resource was the major staple of many 

bands, including Apache and Southern Comanche,  across most of the cold season and 

occasionally as a year round staple (Castetter et al. 1938).  Ethnographic summaries for 
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the Mescalero suggest that agave was such a prized food because it is available in great 

quantity and does not exhibit seasonal variation in availability (Basehart 1974).  While 

spring harvest was considered ideal and fall harvest a close second, mescal could be 

gathered at anytime of the year if other food resources were not available (Basehart 

1974). 

These accounts all indicate the significant role of agave as a source of 

carbohydrates across much of the Southwest.  Native groups would make logistical 

forays to regions with dense agave growth in order to harvest this resource for both 

feasting and storage (Castetter 1935).  This gives credence to the idea that this resource 

could be harvested with greater efficiency with an economy of scale.  This has not been 

considered in the development of the diet-breadth models presented in Chapter II.  While 

Castetter and Bell (1938) acknowledge agave as a major staple, they caution that reports 

of it may be exaggerated due to the high visibility of both the foodstuffs as well as the 

earth oven processing method.  They include a list of other resources that may have been 

as important, such as mesquite pods, sotol caudex, pinyon nuts, and tunas (Castetter et 

al. 1938).  This view is not supported by either the archaeological (Dering 1979, 1999; 

Evans 1992; Fish et al. 1985; Leach and Sobolik 2010; Minnis 1976; Phippen 1999; 

Thoms 2008a) or ethnohistoric (De Leon 1971; Griffen 1969; Taylor 1972; Wade 2003) 

evidence, which both confirm that agave resources were the major dietary staple across 

the Northern Chihuahuan Desert.   

Sotol.  While sotol is poorly represented in the early Spanish accounts of 

Northern Mexico, the ethnographic literature stresses a much greater dependence on the 
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caudex of these plant species, especially among native hunter-gatherer groups located on 

the periphery of the Chihuahuan desert (Basehart 1974; Bell and Castetter 1941; 

Castetter 1935; Dennis 1977).  Much like agave, sotol had a preferred harvest season 

during the spring, but was harvested year round if necessary (Basehart 1974; Bell and 

Castetter 1941).  This was particularly true during periods of severe drought.  Basehart 

(1974) considers these desert succulent resources as “hard food,” meaning foods with a 

high energetic investment in processing.  While mescal was the preferred resource for 

the Mescalero, sotol was frequently cooked both with it or instead of it (Basehart 1974; 

Bell and Castetter 1941).  This preference was reported as being due to the smaller size 

of sotol relative to mescal.  This is not the case when comparing lechuguilla and sotol.  

Castetter and Bell (1935) report that only the youngest and most tender parts of each 

sotol specimen was prepared for consumption, since much of the older stem is woody 

and unpalatable.  The harvesting, processing and consumption of this resource parallels 

that of agave.  One interesting note recorded for this resource is the occasional use of its 

inflorescence as a source of honey (Basehart 1974), which corroborates recent studies 

indicating a high level of sugar available from this species during the development of the 

inflorescence (Arrizon et al. 2010). 

 Prickly Pear.  The tunas of these species were an important food resource across 

most of modern-day Mexico and the Greater Southwest.  This remains true today, with 

cultivated varieties grown across the globe for human consumption (Albuquerque and 

Santos 2006; Felker 2002; Kabas et al. 2006; Mondragon-Jacobo and Perez-Gonzalez 

2002; Nobel 2002; Rodriguez 2005; Touil et al. 2010).  While consumption of nopales 
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remains an important dietary component across Mexico, this use of the resource is not as 

common or as important calorically, as the tunas.   

 Throughout the Southwest, native groups, including agriculturalists, gathered 

tunas for use as both a fresh fruit and dried preserve.  Castetter and Bell (1935) also 

report groups grinding the dried fruit, including the large and abundant seeds, into flour 

with maize, which is eaten as a gruel.  These large and sweet fruits do not appear to have 

been a staple for the agricultural groups studied by Castetter and Bell (1935), but rather, 

a seasonal supplement and sweet treat.  The Mescalero did not make logistical forays to 

acquire this resource (Basehart 1974).  This is due to the inconsistent production of tunas 

at any one locality, as well as the minimal processing required for this resource 

(Basehart 1974).  This is contrasted with the importance of this species in Mexico, where 

varieties with larger fruit are an important commercial crop.  Regardless of the degree of 

importance, it is certain that most or all native groups living in the greater Southwest 

utilized the fruits of prickly pear (Beals 1973).   

 Nopales were much less important as a food resource across the southwest than 

tunas (Basehart 1974).  Accounts indicate that nopales were primarily used during the 

winter or as a starvation resource by native groups (Castetter 1935).  It appears likely 

this resource had lost its importance to native groups in the recent past (Basehart 1974).  

The pads, and occasionally unripe tunas, were generally roasted directly in coals and 

used to supplement cornmeal or other resources (Castetter 1935).   

 The relatively minor role of both tunas and nopales reported in the ethnographic 

literature of the Southwest is in sharp contrast with the importance of both of these 



  

    

130
                                                                                                                                         
                                                                       

resources recorded in the earliest Spanish accounts of the Tamulipan plain.  This may be 

due to differences in prickly pear density or species differences between the regions or a 

change in lifeways over the centuries separating the accounts.  Both sets of documents 

make it clear that tunas were an easily processed and highly desirable resource during its 

seasonal availability.  Nopales were generally regarded as a food resource for times of 

scarcity.    

Ethnohistoric Subsistence Patterns 

Coahuiltecans.  There is ample evidence that prickly pear tunas were an 

important component of the seasonal round across Tamaulipas, Nuevo Leon and the 

South Texas Plain (Duaine 1971;  Krieger 2002;  Salinas 1990).  This fruit was one of 

the major staples of this population, along with lechuguilla, sotol, mesquite, and 

geophytes (De Leon 1971; Krieger 2002; Thoms 2008b; Wade 2003).  The innumerable 

cultures that subsited in this area consisted of small, highly mobile hunter-gatherer bands 

who congregated seasonally around productive patches of prickly pear (Duaine 1971;  

Krieger 2002).  Population density was probably higher along the Rio Grande Delta and 

other productive localized environments (Salinas 1990), but this area overall had a low 

population density, with each band exploiting a large geographic area and sharing 

productive resource patches such as the tuna fields (Duaine 1971;  Krieger 2002).  

Hunting seems to have been an important source of protein, but there is no reference to 

bison this far south in the 16th century.  Cabeza de Vaca describes a deer drive where 

many deer were driven into a bay and drowned (Krieger 2002), but there is also 
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indication that these populations were not picky about the source of their protein, eating 

everything from grubs and lizards to deer (Duaine 1971;  Krieger 2002).   

Lipanes.   The Lipan Apache were one of the Athabascan speaking groups who 

pushed down into Texas and the Southwest from the Great Plains during the 16th and 

17th centuries (Opler 2001).  While they ranged over much of Texas and northern 

Mexico in the ensuing centuries, many of the encounters with the Lipanes occurred in 

the Edwards Plateau north of San Antonio (Wade 2003).  The Lipanes may have been 

the Querechos,  bison hunters encountered by Coronado in the Panhandle of Texas.  

There is no doubt that bison were a major focal point of the Lipan subsistence strategy 

(Opler 2001l; Wade 2003).  Other important food resources include lechuguilla and sotol 

crowns, geophytes, small seed resources, tunas, and nuts (Opler 2001).  The Lipanes 

were also noted as green corn farmers when settled along streams with good bottomland 

(Opler 2001).  Regardless of the importance of plant foods, it appears that much of the 

seasonal movements of the Lipan was dictated by bison herds (Opler 2001).  Like the 

geographic Coahuiltecans, the Lipan Apaches lived in dispersed highly mobile bands 

which congregated in times of abundance (Opler 2001).  The importance of the prickly 

pear to the Lipanes in the Edwards Plateau can be seen in the aforementioned 18th 

century accounts from Wade (2003). 

Jumanos.   The Jumanos provide an interesting contrast to the first two ethnic 

groups presented.  While it is still unclear if the term, derived from the Spanish word for 

“Human”, refers to an ethnic identity or a physical description, recent work by 

Hickerson (1994) suggests that this term does refer to a recognizable cultural entity.  The 
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Jumano were important as intermediaries between the Southwest farming tradition along 

the Rio Grande and further west and the Caddo of the Piney Woods of East Texas 

(Kelley 1955).  This role later expanded to include the Spanish in Coahuila in their 

network of exchange (Kelley 1955).  The Jumano consisted of two sub-divisions who 

engaged in complementary subsistence strategies.  The groups along the Rio Grande and 

the Rio Concho occupied permanent farming communities of some size (Hickerson 

1994).  These groups were full time farmers utilizing the entire suite of Mesoamerican 

domesticates (Hickerson 1994).  The Plains Jumano consisted of highly mobile bison 

hunters who lived along the rivers in an impermanent fashion, frequently leaving to gain 

access to bison herds.  It remains unclear if this division was a recognized ethnic split or 

simply a system of labor specialization.  Maize and bison formed the staples of both 

groups, although wild plant resources and other animals were also important (Hickerson 

1994).  The population density of the La Junta area was quite high, with most of the 

bottomlands used for farming (Hickerson 1994:  36).  It appears that this area served as a 

base for congregation and exchange for both the farming and bison hunting Jumanos.  

While there are some references to wild plant foods such as mescal and mesquite 

(Hickerson 1994:  37, 40, 43, 133), most references to food in the accounts compiled by 

Hickerson (1994) indicate that bison and cultivated crops were the dietary mainstays of 

the Jumano.  There were only two references two prickly pear or cactus in Hickerson 

(1994).  The first reference is taken from Cabeza de Vaca and mistakenly places his 

interactions with the Mariames in the Edwards Plateau (Hickerson 1994:  8).  The 

second mention of prickly pear is made by Hickerson herself (1994:  221) in her 
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summary of the place of the Jumano among the prehistoric and historic Native 

landscape.  While the fresh tunas were undoubtedly consumed by the Jumano and 

related groups, there does not seem to be a primary seasonal dependence on this resource 

similar to the Lipanes and Coahuiltecans.  Perhaps this is related to the lower densities of 

prickly pear in the western Trans-Pecos (Lundgren et al. 1981). 

Ethnographic Expectations and the Archaeological Record 

 Reconstructing the importance of specific food resources in the archaeological 

record is a daunting task.  In order to examine the importance of subsistence resources in 

the past, it is necessary to establish what lines of evidence could be expected for each of 

the different resources mentioned above.  For lechuguilla, sotol, and nopales, the use of 

this resources should result in the accumulation of a burnt rock midden from spent 

heating stones (Black et al. 1997; Collins 2004; Hall et al. 1986; Mallouf 1985; Thoms 

and Mandel 2006).  These resources require long intensive cooking to render the 

fructans into simple sugars digestible by humans.  Unfortunately, many other plant 

resources, including geophytes, also utilize the same cooking technology.  The presence 

of burned rock middens is not enough.  The midden fill must have some botanical 

evidence.  Even statements about this seemingly direct evidence must be limited, since 

prickly pear was frequently used as a packing material in earth ovens and not as a food 

resource (Dering 1991).  Evidence for the use of fresh and dried tunas is even more 

limited, since this processing leaves little recognizable traces in the archaeological 

record.   
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The best and most direct evidence for consumption comes from coprolites.  The 

dry rockshelters in the Lower Pecos and the Trans-Pecos preserved thousands of these 

specimens although many have been lost to looting, development and inadequate 

sampling during excavation.  These specimens provide a wealth of knowledge about 

prickly pear processing, allowing researchers to ask questions about the importance of 

pounding or grinding the tuna seeds as a source of oil and starch, or various methods of 

heat processing reflected in the seeds, fiber and epidermal cells recoverable from these 

specimens.  To date, this has not been addressed through coprolite research.  Other lines 

of evidence include the recovery of genus specific phytoliths from the dental calculus 

and microwear patterns in teeth (Danielson and Reinhard 1998).  A final line of evidence 

is staple carbon isotope data from both skeletal remains and directly from coprolites.  

This technique can only inform on the importance of broad photosynthetic classes of 

plant foods such as CAM, but this could be quite useful in coprolite studies, in 

conjunction with the congruent lines of evidence presented above.   

Prickly pear, lechuguilla and sotol were important food resources in the 

ethnographic data available for the macroregion considered in this chapter.  Both the 

environmental and ethnohistoric data gathered suggest that these resources should be 

seasonally dominant staples of human populations in the Lower Pecos canyonlands.  

Human populations preferentially exploited prickly pear tunas when seasonally 

available.  Sotol and lechuguilla were important resources during the cool season, 

despite the high processing costs.  Nopales were consumed during seasons of scarcity 

and as a stop-gap while waiting for the more productive tuna resources to ripen. 
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CHAPTER VI 

THE HINDS CAVE EXCAVATION 

 

The Hinds Cave (41VV456) excavation by Shafer and Bryant of Texas A&M 

University resulted in the largest collection of coprolites from a single hunter-gatherer 

site in North America (Dean 2006).  Several thousand coprolites were recovered from a 

variety of contexts during the two field seasons spent excavating the site (Shafer and 

Bryant 1977).  Recent work re-accessioning the coprolites in the collections of Texas 

A&M University has corroborated this number and resulted in an estimate of 2300 to 

2400 coprolite specimens that have not been analyzed to date.   Despite the long history 

of excavation in the Lower Pecos canyonlands, few sites in the region have had 

systematic research programs designed to recover perishable artifacts such as coprolites 

and macrobotanical remains (Shafer and Bryant 1977).  In many sites excavated during 

the Texas Archaeological Salvage Project, thousands of coprolites were noted during 

excavation but not collected, except in rare cases near the end of the salvage project 

(Alexander 1970, 1974; Bryant 1974c; Bryant and Dean 2006).   

Hinds Cave was the first site in the Lower Pecos region to be excavated with a 

research design that included the systematic collection of biological components of the 

archaeological record (Shafer and Bryant 1977).  The primary focus of the excavation 

was five-fold: 1) to collect a well-controlled sample of human coprolites from the site;  

2) to collect a well-controlled sample of plant macrofossils;  3) to determine the depth of 

cultural deposits at the site;  4) to conduct a preliminary environmental resource study of 
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the area around the site;  and 5) to collect a well-controlled sample of material culture 

elements of the site (Shafer and Bryant 1977).  This study was initiated in 1974 with a 

limited survey of the site, both to assess its potential for a large-scale excavation and to 

assess the disturbance of the site by modern relic hunters (Shafer et al. 1975).  This 

survey resulted in the formulation of the research plan above, which was carried out 

during the summers of 1975 and 1976 (Shafer and Bryant 1977).  There was some 

continuing fieldwork in 1977 and early 1978 to finish the open excavations (trench A-C) 

and clarify stratigraphy, but the bulk of excavation and material culture collection ended 

with the 1976 field season (Saunders 1986; Shafer 1986). 

 Hinds Cave is a large limestone solution cave in the west wall of Still Canyon, 

approximately one-half kilometer above the confluence with the Pecos River (Shafer and 

Bryant 1977).  This east-facing overhang is located very high on the canyon wall and is 

difficult to access.  Hinds Cave is located in the sotol-lechuguilla zone of the 

Chihuahuan biotic province within close proximity of the ecotonal boundary between 

this province and the the oak-cedar zone of the Balconian biotic province to the east 

(Figures 2 and 3) (Blair 1950; Dering 1979).   

The protected area of the site measures about 37 meters North-South and is about 

23 meters in depth (Shafer and Bryant 1977).  The fill in the cave, almost entirely the 

result of human activity, is 3 meters deep in some parts of the cave and contains an 

abundance of perishable organic material including plant and animal remains as well as 

artifacts such as matting and sandals (Shafer and Bryant 1977).  While there was 

evidence of extensive disturbance of the upper layers of the site by relic hunters, this was 
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easily observed and did not impact the excavation of contextual samples (Shafer and 

Bryant 1977).  During these field seasons a number of excavation areas within the larger 

site were selected to address the specific research goals presented above (Shafer and 

Bryant 1977).  Based on the exploratory survey of the site in 1974, the excavation 

strategy was focused on two major areas (A and B) and several smaller areas (C, D, E, F, 

and G) (Figure 12).   

Before excavation, both vertical and horizontal controls were established for the 

site.  The main site datum was established along the backwall of the rockshelter and 

given an arbitrary elevation of 100 meters.  All other vertical measurements were tied 

back to this main datum.  Rather than establish a Cartesian grid coordinate system for 

horizontal control, the excavation areas were placed independent of each other.  This 

allowed the researchers to orient each area relative to the patches of undisturbed cultural 

deposits at the site.  Excavation units were excavated according to the natural 

stratigraphy of the deposit when exposed profiles made it possible or in arbitrary levels 

of 10 or 20 cm when the archaeologists did not have good profiles for stratigraphic 

control.  One excavation unit, designated as a block, was excavated by natural 

stratigraphy in both areas A and B.  Excavated matrix was treated in one of two ways:  If 

plant macrofossils were being collected, the sample was screened through a doubled set 

of screens of ¼” and 1/16”; In all other cases, the matrix sample was screened through a 

¼” screen only.  In those cases where the double screen system was used, all material 

from both screens was bagged after the removal of visible artifacts and brought to Texas 

A&M University for curation and analysis.  Otherwise, the material on the screen was 
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scanned for faunal and artifactual content, which was collected for futher analysis.  Bulk 

matrix samples were also collected from most lenses excavated in the Block B 

excavation unit and from every other lens encountered in the Block A excavation unit  

(Shafer and Bryant 1977). 

 

Figure 12.  Site Map of Hinds Cave (41vv456).  Modified from Shafer and Bryant (1977) 



  

    

139
                                                                                                                                         
                                                                       

Excavation Units 

The first major area, designated as Area A, was selected as the primary focus of 

the plant macrofossil sampling strategy.  This area was selected for the plant macrofossil 

recovery due to the well-stratified nature of the matrix in this area of the cave as well as 

its relation to what was considered the primary living area of the rockshelter (Figure 12).  

The archaeologists located this area to take advantage of profiles exposed from previous 

uncontrolled excavations into the matrix.  Two narrow trenches (units A1 and A2) were 

excavated to expose all four profiles of a 1.6x1.8 m2 block, known as block A.  This 

block was then divided into two units A-W and A-E and excavated following the 

stratigraphic lenses exposed and mapped in the wall profiles.  During the 1976 field 

season a trench, designated as the A-C trench, was excavated to connect Areas A and C.  

This trench consisted of three 1.5x 1.5 m2 units (AC1, AC2, AC3).  Area A was the 

primary unit used to develop the analysis units (Stratigraphic zones) utilized in most of 

the Hinds Cave analyses to date (Shafer and Bryant 1977). 

Area B was selected as the primary excavation unit for coprolite recovery.  

Located along the southwest wall of the rockshelter, archaeologists noticed numerous 

coprolites in both backdirt piles from previous looting activity as well as in situ in 

exposed profiles during the initial survey of the site (Figure 12).  Following a similar 

procedure to that used in block A, the initial excavation units were narrow trenches 

designed to expose the stratigraphy of a larger excavation block.  These trenches, 

designated as units B1-B6, were approximately a meter deep and exposed a well 

stratified deposit containing discrete lenses of coprolites.  This block B consisted of a 
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1.5x1.5 m2 unit with exposed profiles on three sides.  In the 1976 season, this block was 

divided into two units, BN and BS (north and south respectively) during the field season 

due to the logistics of excavation.  In addition, three more units, designated as B7-9, 

were excavated to expose the profile of block B before further excavation (Shafer and 

Bryant 1977). 

The other excavation units were much smaller than areas A and B and were 

primarily focused on exposing more of the site’s stratigraphy (Figure 12).  Area C was a 

small excavation unit (1x1.5 m2) placed near the center of the rockshelter.  This unit was 

placed in a disturbed area of the site, where over a meter of fill had been removed by 

looters.  The placement of this unit was based on the observation of in situ coprolite 

deposits in the floor of the looter’s pit.  In the 1976 field season, this unit was expanded 

to 2 m wide and several additional units were laid out and excavated.  These include a 

addendum to C known as Unit CW to the west of unit C as well as 2 quadrants (CS1 and 

CS3) of a larger excavation block designated as C South.  Finally a deep looter pit 

located along the east wall of CS3 was designated as unit ACC and excavated into a 

2.7x1 m2 unit to help evaluate the stratigraphy of the area.  Area D was initially a test pit 

in the bottom of a looter’s hole adjacent to Area A.  This area consisted of two adjacent 

1x1 m2 units designated as D1 and D2.  This area revealed that the cultural deposits in 

that area of the rockshelter extended much deeper than previously realized.  This unit 

also uncovered several lenses of coprolites that date from the Early Archaic.  Area E was 

a test pit measuring 1.25x1.5 m2.  This unit was excavated to explore the depth of 

cultural deposits near Area B.  This unit also revealed that cultural deposits in this 
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portion of the rockshelter were deeper than previously realized.  This unit, and the 

subsequent B-E trench that linked the two areas, revealed several more latrine areas and 

associated coprolites (Shafer and Bryant 1977). 

During the 1976 field season, two more units were opened in addition to 

continued excavation in areas A, B and C.  The first of these, area F, was located near 

the north end of the rockshelter.  This area was selected for excavation based on the 

presence of a fiber lens over 30 cm thick exposed by previous excavation by looters.  

Three small units [F1 (1x0.5 m2), F2 (1x1 m2), and F3 (1x1 m2)] were placed in an L 

pattern near the rear shelter wall.  This area yielded very few artifacts and consisted 

primarily of quids and cut leaf bases from the desert plant resources utilized by the 

human populations of the Lower Pecos Canyonlands.  This fiber deposit consisted of 

distinctive lenses and indicates a pattern of re-use of this area of the site for plant 

processing and consumption over multiple occupations.  This is further corroborated by 

the presence of a large burnt rock feature in the immediate vicinity.  This final area, Area 

G, was placed in a small alcove near the southern end of the rockshelter.  This area was 

evaluated for the extent of disturbance as well as to determine if the alcove was a 

specialized activity area within the larger rockshelter.  Four small units (G1-G4) were 

laid out in a T shape in the alcove and excavated in arbitrary levels, since the 

stratigraphy of the area was not clear.  Three of the units were 1x1 m2 with the fourth 

slightly larger at 1x1.4 m2.  While a good sample of stone tools and faunal material, 

including an incomplete infant burial, was recovered in this alcove, the deposits were 

clearly of mixed age (Shafer and Bryant 1977). 
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Research on Hinds Cave Collections 

While there is as yet no synthesis of the Hinds Cave excavation by Texas A&M 

University, more has been published about this excavation than any other in the Lower 

Pecos canyonlands.  The initial series of published material includes the preliminary site 

reports (Bryant 1977a; Shafer and Bryant 1977; Shafer et al. 1975; Shafer and Speck 

1974) as well as contemporaneous laboratory studies on textiles (Andrews and Adovasio 

1980), faunal remains (Lord 1984), botanical components (Bryant 1977c; Dering 1979), 

organic residues on lithic tools (Shafer and Holloway 1979), radiocarbon dates (Valastro 

et al. 1979),and coprolites (Williams-Dean 1978).  Publications based on the material 

recovered in this excavation have continued to the present day.  Much of the  research 

has focused on the abundant coprolites collected from this site, including studies of 

ancient DNA (Poinar et al. 2001; Reinhard et al. 2008), phytoliths (Reinhard and 

Danielson 2005), and faunal components (Reinhard et al. 2007; Sobolik 1996b), as well 

as continued examination of new samples (Edwards 1990; Stock 1983) and the re-

examination of previous studies (Dean 2004, 2006; Riley 2008).  These coprolite studies 

will be presented in more detail below.   

Further work has been done on other aspects of the site, including a regional 

survey (Saunders 1986; Saunders 1992), climate change (Goodfriend and Ellis 2000), 

experimental studies of earth oven cooking (Dering 1999), radiocarbon dating of an 

infant burial (Steelman et al. 2004), more macrobotanical analyses (Sobolik 1991b; 

Woltz 1998), and further lithic residue analysis (Sobolik 1996a).  No other site in the 

Lower Pecos canyonlands has a comparable amount of research, making Hinds Cave the 
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most completely examined habitation site in the region.  This intensive research focus on 

Hinds Cave has yielded more radiocarbon assays than any other site in the region (Table 

6) (Dean 2004; Steelman et al. 2004; Valastro et al. 1979).  The chronological 

relationship of Hinds Cave Analysis Units is presented in Tables 7 and 8.  These tables 

also includes the diagnostic artifacts recovered in the Hinds Cave excavation as well as 

relevant radiocarbon dates associated with coprolite studies from the site.   

 Previous Coprolite Studies from Hinds Cave 

 Four previous studies have been conducted on coprolites recovered from Hinds 

Cave (Edwards 1990; Reinhard 1989; Stock 1983; Williams-Dean 1978).  The coprolites 

analyzed in these studies span much of the Archaic occupation of the Lower Pecos 

(Turpin 1991b). Each of these studies has added to our knowledge of diet and nutritional 

health of the hunter-gatherer groups that populated the canyonlands.  There appears to 

have been a remarkably stable human exploitation of the landscape over this period 

(Edwards 1990; Stock 1983; Williams-Dean 1978).  Due to the lack of primary 

macrobotanical data available for individual specimens in Reinhard (1989), this study 

will not be included in this review. 
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Table 6.  Radiocarbon Dates from Hinds Cave (41VV456). Calibrated with OxCal4.0 using IntCal04 Curve 
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Table 7.  The Hinds Cave Excavation and Chronology of Coprolite Studies Part 1 
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Table 8.  The Hinds Cave Excavation and Chronology of Coprolite Studies Part 2 
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   Stock (1983) focused upon the macrofossil constituents of 55 coprolites 

recovered from two areas within Hinds Cave.  Twenty-nine coprolites from Area D, Unit 

D-2, levels 7 (n=21), 8(n=7) and 13(n=1) were analyzed (Table 6 and Figure 13a).  

These specimens were chosen since they represent the earliest dated coprolites recovered 

from any site in Texas (8778 B.P.-9460 B.P. and 9032 B.P.-9464 B.P. [Calibrated 

95.4%]) (Tables 6-8) (Stock 1983; Valastro et al. 1979).  This corresponds with the 

beginning of the long Viejo subperiod in Turpin’s (2004) cultural chronology as well as 

the increasingly xeric Stockton Stage (Table 4) (Bryant 1966).  Twenty-six coprolites 

were analyzed from several lenses in Area C, Analysis Unit 7 since it produced a large 

number of coprolites and was well dated to the Early Archaic (7436 B.P.-7790 B.P. 8020 

B.P.-8514 B.P., 8045 B.P.-8508 B.P. Calibrated 95.4%) (Tables 6-8 and Figure 13b) 

(Stock 1983; Valastro et al. 1979).  The primary goal of this research was a 

reconstruction of diet and its implications for adequate nutrition and health (Stock 1983).  

The coprolites analyzed in this study were deposited in an environment characterized by 

scrub grasslands with remnant woodlands and parklands (Bryant and Holloway 1985).  

As mentioned above, only the plant macrofossil data is available from this analysis.   
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Figure 13.  Profiles of Areas C and D, Hinds Cave (Stock 1983).  A) Area C-South, Unit 3; B) Area 
C-C West, South Wall Profile; C) Area C-West, North Wall Profile; D) Unit D1, South Wall Profile; 
E) Unit D2, South Wall Profile 
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Figure 13. Continued 
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While Stock (1983) did report on phytoliths for these samples, the data was only 

presented in gross summary fashion for the two contexts, with no data provided for 

individual specimens.   

Williams-Dean (1978) analyzed 100 coprolites from lens 13 (a latrine feature) in 

Area B (Figure 14 and Table 6).  The matrix of Area B consisted of layers of coprolites 

separated by layers of ash, burnt rock, and fibrous organic debris (Shafer and Bryant 

1977; Williams-Dean 1978).  Lens 13 was chosen for analysis because it was the oldest 

and largest coprolite layer recovered during excavation of Area B during the 1975 

excavation season (Williams-Dean 1978).  Preliminary radiocarbon dates bracket the 

lens between 6409 B.P.-6727 B.P. and 6495 B.P.-6896 B.P (Calibrated 95.4%) (Tables 

6-8) (Valastro et al. 1979) although more recent, refined dates have thrown this into 

question (Dean 2004; Poinar et al. 2001).   
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Figure 14.  North Wall Profile of Area B, 1975 excavation (modified from Stock, 1983) 
 

The two initial dates were reported by Lord (1984) as being from charcoal 

associated with the lens, but this has been contested by Dean, who distinctly recalls that 

these dates were derived directly from coprolites (Black 2005).  Two different 

researchers have recently published six more radiocarbon dates derived from coprolites 

associated with lens 13 (Dean 2004; Poinar et al. 2001).  These recent dates may indicate 

that the lens 13 latrine deposit was re-used in at least two occupations separated by 

thousands of years (Dean 2004).  Conversely, this discrepancy in dates from a single 

context may be the result of mis-identification of specimen provenience (Black 2005).  

The three dates that are definitively from lens 13 were taken from small samples of 

coprolites analyzed by Williams-Dean (1978) in her dissertation.  These three specimens 
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yielded radiocarbon dates of 6563 B.P.-6980 B.P., 6468 B.P.-7149 B.P., and 6960 B.P.-

7417 B.P. (Calibrated 95.4%) (Table 6) (Dean 2004).  Two of these dates correspond 

nicely to the initial radiocarbon dates presented above, and the third is slightly older than 

the other dates from the deposit.  It should be noted that lens 13, initially encountered 

during the 1975 excavation, was excavated with four different sub-lens designations (A-

D) during the 1976 field season (Shafer et al. 1976)  While this sublens provenience 

information was not given for the specimens in Williams-Dean (1978), the two coprolite 

fragments with the more recent dates presented in Dean (2004) are designated as coming 

from sublens 13A.  The older date comes from a specimen with no sublens designation.  

The three coprolites analyzed for aDNA in Poinar et al. (2001) are given the provenience 

of block B, lens 13, but all three dates are significantly more recent than the dates 

presented above.  These specimens yielded radiocarbon dates of 2004 B.P.-2328 B.P., 

2010 B.P.-2695 B.P., and 2210 B.P.-2705 B.P. (Calibrated 95.4%) (Table 6) (Poinar et 

al. 2001).  The huge discrepancy between these dates, as well as vagary possible with 

two decades between excavation and analysis, suggest that Black’s (2005) assertion that 

the provenience for these specimens is incorrect is the most probable explanation.  I 

suggest that the specimens used by Poinar et al. (2001) may be from Area B, Unit B-1, 

lens 3 since bags tagged as B-1-3 could easily be misconstrued as being from block B, 

lens 13.  The dates associated with lens 3 in block B line up nicely with the dates from 

Poinar et al. (2001) (Table 6).   

The primary objective of Williams-Dean’s (1978) study was to determine the 

nature and adequacy of the diet of the prehistoric inhabitants of Hinds Cave.  Previous 
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researchers have suggested that human populations in the later Viejo subperiod would 

have focused increasingly on xeric associated plant communities as the environment 

continued to become drier and more xeric during the Stockton Stage (Bryant 1966d, 

1977c; Bryant and Holloway 1985; Dering 1979; Johnson 1963; Lord 1984; Williams-

Dean 1978).   The data available from this analysis include faunal, macrobotanical and 

palynological data sets (Williams-Dean 1978), as well as stable isotope data available 

from the three specimens discussed in Dean (2004).  For this current study, the 

macrobotanical, palynological and isotopic data will be presented and incorporated into 

the analysis of diet breadth, seasonality and habitat exploitation.   

Edwards (1990) analyzed 40 coprolites from were supposedly from the upper 

two layers of the latrine Area B (Figure 14).  While the author presents these coprolites 

as coming from Late Archaic contexts, the reality of the situation is much more 

complicated.  The majority of these specimens do come from a Late Archaic context 

(Unit B4, Lens I (n=32) and II (n=1) (Edwards 1990).  However, the remaining seven 

specimens in the study were recovered from unit B9, lenses I and II (Edwards 1990).  

This unit was excavated during the 1976 season and was one of the units used to expose 

the profile of Block B (Shafer et al. 1976).  This unit was located much deeper in the 

excavation and has depths below datum (135-163 cm below datum in the southwest 

corner) that roughly correspond with lens 13 from the 1976 excavation (Shafer et al. 

1976).  While Edwards reports that the coprolites in this study date from 4050 to 2550 

BP (Edwards 1990), this is assuredly not the case.  Edwards (1990) did not report the 

radiocarbon data behind her dates, but the available radiocarbon data suggest that she is 
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referring to radiocarbon samples TX-2746 (2127 B.P.-24550 B.P [Calibrated 95.4%]), 

TX-2748 (3731 B.P.-4283 B.P [Calibrated 95.4%]), and TX-2749 (4853 B.P.-5286 B.P 

[Calibrated 95.4%]) (Table 6) (Lord 1984; Valastro et al. 1979).  All of these dates are 

from lenses below the strata sampled in unit B-4 in Edwards study and significantly 

above the specimens collected from unit B-9 (Valastro et al. 1979).  The youngest date is 

from the lens directly below the two sampled by Edwards (1990) in Unit B-4, which 

indicates that the majority of specimens in this study were deposited during the Juno 

Stage in Bryant’s (1966) climatic reconstruction and are associated with either the 

Flanders or Blue Hills subperiods in Turpin’s (2004) cultural chronology.  The Juno 

Stage is characterized by increasingly xeric conditions following the brief mesic 

interlude known as the Frio Interval (Bryant 1966d; Bryant and Holloway 1985(Bryant 

and Holloway 1985; Goodfriend and Ellis).  Both the Flanders and Blue Hills subperiods 

exhibit an increased reliance on the desert succulent resources so common in this region 

(Turpin 2004).  The remaining seven specimens are from approximately the same time 

period as the samples examined by Williams-Dean (1978).  This study included both 

macrobotanical and palynological analyses of the coprolite specimens, although the 

palynological data is missing for one sample from the B-4 unit and four from the B-9 

unit. 

Reinhard included twenty-five coprolites from Hinds Cave in his dissertation 

(Reinhard 1989).  These specimens were recovered from the trenches used to isolate 

block B in area B.  Seventeen of these specimens were recovered from the trench 
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designated as Unit B-6.  The remaining eight specimens are from area B, but the unit 

designation is not clear.  All of these specimens are from the Late Archaic.   

Previous Reconstructions.  All three studies suggested a warm season 

occupation of Hinds Cave (Edwards 1990; Stock 1983; Williams-Dean 1978).  This 

conclusion is based upon pollen and macrobotanical data.  These studies indicate a very 

broad-based foraging and hunting subsistence strategy (Edwards 1990; Stock 1983; 

Williams-Dean 1978).  Despite the broad temporal scale covered by these three studies, 

there seems to be a consistent pattern of resource exploitation throughout the samples, 

indicating long term stability in the human exploitation of this environment (Edwards 

1990).  Throughout the studies, the majority of coprolites indicate a diet high in tunas 

(Opuntia sp. fruit), nopales, sotol, and agave supplemented by small animals and 

seasonally available plant resources (Stock 1983).  While this may indicate cultural 

stability, Williams-Dean (1978) suggests that it is more accurately a reflection of the 

restricted availability of edible plants in the Lower Pecos.   

Excavation Context of the Coprolite Specimens Analyzed in the Current Study 

 Thirty coprolites from three different contexts were examined in this analysis.  

These samples were taken from a set of three lenses excavated during the 1976 field 

season.  These particular lenses were chosen for analysis for two reasons: first, these 

coprolites are the oldest specimens sampled from area B, which had high concentrations 

of coprolites throughout its matrix and has been interpreted as a re-used latrine feature 

throughout the Holocene (Shafer and Bryant 1977).  This is based on the associated 

radiocarbon dates and stratigraphic context of the lenses.  The dates associated with 
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these specimens also fills in the temporal gap between Stock’s (1983) specimens from 

Areas C and D and the study conducted by Williams-Dean (1978) on the largest lens in 

area B, lens 13;  second, these smaller lenses could be the latrine residue of individual 

site occupations.  Sampling from three contiguous lenses may tease out patterns of 

seasonal site occupation and harvesting impact on the local habitat that the previous 

studies have not uncovered.  While two of the other studies did examine specimens from 

more than one excavation context (Edwards 1990; Stock 1983), the authors did not 

consider questions of changing subsistence between the different temporal contexts.   

 The first ten of the thirty coprolite specimens come from B-Block South, lens 

10b (1976 excavation).  This lens has an associated radiocarbon date on charcoal (7622 

B.P.-7950 B.P. Calibrated 95.4%) (Table 6) that places it in the middle of both the xeric 

Stockton Stage of Bryant’s (1966) climatic reconstruction as well as the Viejo subperiod 

of Turpin’s (2004) cultural chronology (Valastro et al. 1979).  The top of this lens 

ranged from 85-104 cm below datum and ended 102-118 cm below datum.  This 

stratigraphic unit sloped significantly to the south-southeast.  This lens consisted of a 

light tan compacted matrix, which is common throughout area B and is thought to be the 

result of repeated soaking of cave dust with urine (Shafer et al. 1976).  This matrix of 

this lens contained abundant fiber, chaff, limestone, and unburnt bone.  The western 

portion of the unit, which abuts the rear wall of the rockshelter, contained many 

coprolites and appeared to the excavators as a definite latrine with an estimated one 

hundred coprolites.  More recent accessioning of this collection has placed the number 

of coprolites collected from this lens at 77 individually bagged specimens.  The 
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excavators indicate that the latrine feature may have had micro-layers, but they were not 

able to discern them while excavating.  Subsequently, the feature was treated as a single 

lens (10b).  Field notes from the excavation make it clear that coprolites were visible 

continuing into the next lens, but a distinct color change was encountered and the lens 

was closed.  The underlying lens (11) also had coprolites along the rear wall of the 

rockshelter.  Recent accessioning work of the Hinds Cave coprolite collection revealed 

that 44 coprolites were collected from this context.  Excavation of unit B-Block South 

was terminated following lens 11, which ended at depths of 121-130 cm below datum 

(Shafer et al. 1976). 

 The second ten specimens come from B-Block North, lens 8 (1976 excavation).  

Fieldnotes from the excavation describe the context as a highly concentrated coprolite 

lens that does not extend across the entire unit, but is focused along the rear wall of the 

rockshelter.  Beginning elevations range from 64-82 cm below datum.  Ending 

elevations range from 78-91 cm below datum.  Much like lens 10b in B-Block South, 

this stratigraphic unit slopes to the south-southeast.  One hundred and ten coprolites 

were collected from this context.  This lens was separated from the following 

stratigraphic unit  by the remains of a badly degraded flooring composed of prickly pear 

nopales, most of which had feces adhering to them (Shafer et al. 1976). 

 The final ten specimens included in this study were recovered from B-Block 

North, lens 8b (1976 Excavation).  This lens was separated from lens 8 by the previously 

mentioned floor of nopales.  Beginning elevations range from 78-91 cm below datum.  

Final elevations for this lens were not recorded in the excavation field notes.  This lens 
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did not have the same density of coprolites as the superseding lens, but 36 coprolites 

from this context were collected during excavation.  Lens 8b had an increased amount of 

cave dust compared to the preceding stratigraphic units and further excavation of the unit 

showed this to be the lowest coprolite deposit in the unit.  The following lens (9) was 

composed primarily of limestone cave dust and spalls, with a small amount of charcoal 

noted as well.  Two coprolites were collected from this context.  Beginning elevations 

for this lens are not reported in the excavation field notes.  Final elevations for this lens 

range from 96-118 cm below datum.  Like the prior lenses from both B-Block North and 

B-Block South, the lens slopes significantly to the south-southeast.  Excavation was 

discontinued, except for a small section of the unit floor along the north wall, which was 

excavated to bedrock, encountered between 110-138 cm below datum.   

The close stratigraphic association of all three excavation contexts used in this 

study with the single radiocarbon date from the lower levels of excavation area B justify 

assigning all of the specimens from these lenses to the Stockton Stage of Bryant’s (1966) 

climatic reconstruction and the Viejo subperiod of Turpin’s (2004) cultural chronology.  

The date is from charcoal recovered from lens 10b of B-Block South.  The beginning 

elevations from the northern portion of this unit (87-91 cm below datum) align with the 

recorded elevations (90-91 cm below datum) of the southern portion of the prickly pear 

floor that separates lens 8 and 8b in the adjacent unit (B-Block North) (Shafer et al. 

1976).  Thus, all three of the lenses considered here are in direct stratigraphic association 

with the radiocarbon date (Valastro et al. 1979).  It is possible that lens 10b of B-Block 
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South and lens 8b of B-Block North are the same lens, but they have been considered as 

two different contexts for the purposes of this study.   

 The coprolite studies from Hinds Cave inform on the exploitation of the Lower 

Pecos canyonlands by hunter-gatherer populations across the Holocene.  This robust 

dataset provides direct evidence of individual dietary choices as well as diet-breadth.  

The previous reconstructions referenced above all suggest that the human populations 

occupying the canyonlands were highly dependent on a limited suite of xeric resources 

for the bulk of their caloric intake.  However, none of the prior studies approached the 

reconstruction of diet at the scale of individual coprolite specimens and, by extension, 

individual actors in the archaeological record.  The current study rectifies that by 

considered each specimen as a discrete record of diet-breadth and seasonal exploitation 

of available resources.  The following chapter reviews the development of several 

reference collections required to undertake this study as well as the general laboratory 

methods utilized in this analysis.   
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 CHAPTER VII 

MATERIALS AND METHODS 

 

This chapter provides an overview of the components recovered from the thirty 

coprolite specimens included in this study and the methods used to accurately identify 

them.  The first section reviews the development of reference collections for several of 

the major constituents recovered in many of the specimens.  The development of these 

reference collections was a necessary step in fully evaluating the dietary components 

recovered as well as the ultimate goal of this study, assessing diet-breadth and 

seasonality of deposition.  This is followed by a pilot study comparing sub-sampling 

methods previously used on coprolite specimens.  Researchers have used very different 

sub-sampling methods in coprolite analyses.  This pilot study compares the congruent 

botanical data of several small sub-samples from three specimens to assess the similarity 

between recovered constituents from each of the sub-samples.  The following section 

reports on the laboratory procedures used to extract and isolate the various components 

of each specimen, as well as the methods used to properly identify the taxa represented 

in each component.  A brief overview of the data sets available from the other coprolite 

studies in the Lower Pecos canyonlands and the methods of quantification utilized by 

these researchers follows.   The chapter concludes with an explanation of the statistical 

methods employed to evaluate these data for diet-breadth and seasonality of deposition.   
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Reference Collections 

 Previous studies have identified the major plant staples of the human populations 

inhabiting the Lower Pecos canyonlands as lechuguilla caudex, sotol caudex, prickly 

pear nopales, prickly pear tunas and wild onion bulbs (Bousman and Quigg 2006; Brown 

1991; Danielson and Reinhard 1998; Dering 1999; Huebner 1991; Riley 2008; Sobolik 

1988b; Sobolik 1991a, 1996a).  The differential use of these resources can be addressed 

with several co-varying lines of evidence within a single coprolite specimen.  This 

congruent approach to evaluating the diet-breath of the meals represented in a coprolite 

requires the development of the necessary reference collections of microscopic 

components of these resources.  To that end, I generated phytolith, fiber, and epidermal 

cell reference collections from botanical source material focused on assessing the 

importance of these resources in the meals reflected in the coprolites examined.  In 

addition, a small reference collection of starch from potential or known food resources in 

the region was also developed.  Each of these will be discussed in detail in the following 

section.   

 Fiber References.  Fiber bundles and individual fiber cells, or ultimates, 

constitute the bulk of macrofossil material in many of the coprolites from the Lower 

Pecos canyonlands (Bryant 1969, 1974b; Edwards 1990; Fry 1975; Riskind 1970; 

Sobolik 1991a; Stock 1983; Williams-Dean 1978).  Despite the dominance of this 

component, there have been few attempts to identify the botanical source of these 

structures.  This is especially important for the current study, as most of the staple 

resources evaluated in the diet-breadth model have high fiber content.  The botanical 
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identification of the fiber ultimates would contribute greatly to an understanding of 

resource consumption and dietary combinations in the meals represented in the coprolite 

specimens.  This is particularly true when fiber analysis is combined with epidermal cell 

identification, as different resources contain very different proportions of these two plant 

cell types.  Epidermal cell counts would skew the importance of nopales and onion 

relative to lechuguilla and sotol.  This is due to the anatomical composition of the 

consumed parts of these plant resources.  The caudex of lechuguilla and sotol consists 

primarily of fiber and parenchyma.  While there is some epidermal tissue associated with 

the leaf bases and inflorescence of these resources, much of the epidermal tissue of these 

plants is removed prior to cooking (Woltz 1998).  The bulb of wild onions contains a 

great deal of epidermal tissue, as do the nopales of a prickly pear.  Utilizing both lines of 

evidence allows for a better evaluation of the relative importance of each of these 

resources.   

 Fiber ultimates from samples of each of the staple resources were quantified 

using a microscope (Table 9).  Individual cells were measured for length, cell wall 

thinkness, lumen thickness.  Distinguishing characteristics derived from the fiber 

literature, such as cell ends and cross markings, were also noted.  This reference data 

were compared to existing publications available on fiber analysis, generally, and several 

of these taxa specifically (Arruda and Melo-De-Pinna 2010; Bell and King 1944; Catling 

and Grayson 1998; Mayorga-Hernandez 2004; Mclaughlin and Schuck 1991; Olivotto 

1996; Pando-Moreno 2008).  While there is overlap in the dimensions recorded for 

lechuguilla and sotol, visual inspection under the microscope microscope clearly 
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distinguishes between the two botanical sources.  Sotol fibers are significantly more 

gracile in appearance, with thinner cell walls (Figures 15 and 16).  Both prickly pear and 

onion fibers are extremely short in comparison to most species examined in the literature 

(Figures 17-19).  In many ways, these cells appear more similar to schlerids than true 

fiber ultimates.  Overall, the fiber ultimates from these four taxa are readily 

distinguishable from one another (Figures 15-19).   

Table 9.  Fiber Ultimate Measurements (based on 50 individual cells) 

 

 

 
Figure 15.  Fiber Ultimte from Agave lechuguilla  
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Figure 16.  Fiber Ultimate from Dasylirion wheeleri  
 
 

 
Figure 17.  Fiber ultimates from Opuntia sp.  
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Figure 18.  Vascular bundle from Opuntia sp.  
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Figure 19.  Fiber Ultimate from Allium sp.  
 

Epidermal Tissue.  Besides fiber, epidermal tissue makes up the bulk of most 

coprolite samples examined from the Lower Pecos canyonlands (Bryant 1969, 1974b; 

Edwards 1990; Fry 1975; Riskind 1970; Sobolik 1991a; Stock 1983; Williams-Dean 

1978).  While this has been investigated in some of the prior studies (Sobolik 1991a; 

Williams-Dean 1978), the overall importance of these data have been neglected.  

Epidermal cell shape and arrangement were used as distinguishing characteristics to 

classify the abundant sheets of plant epidermis present in each sample.  Multiple samples 

were taken from each component identified in the macrobotanical sorting stage of 

analysis.  Identification was made with reference to the literature (Sobolik 1992; 

Stoddard 1965) as well as the development of epidermal reference collections for the 
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major resources known for the Lower Pecos canyonlands (Figures 20-23).  In addition to 

the four primary taxa in this study, epidermal references were made for several other 

taxa that may have been important seasonal resources, such as amaranth (Amaranthus 

cruentus) fruit, mesquite (Prosopis glandulosa) seedpods, panic grass (Panicum 

obtusum) seeds, crow poison (Nothoscordum bivalve) bulbs, giant rain lily (Cooperia 

pedunculata) bulbs, wild grape (Vitis sp.) fruits, and dog-tooth violet (Erythronium 

mesochoreum) bulbs.  This epidermal reference material is not presented here for the 

sake of brevity.   

 

Figure 20.  Epidermal cells from Dasylirion wheeleri  
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Figure 21.  Epidermal cells from Agave lechuguilla  
 
 

 

Figure 22.  Epidermal Cells from Opuntia sp.  
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Figure 23.  Epidermal cells from wild Allium sp.  

Phytoliths.  Phytoliths can make up as much as 40% of the volume of a coprolite 

sample (Danielson 1993; Stock 1983).  While most studies focus on silica phytoliths, the 

major resources of the Lower Pecos canyonlands contain abundant crystals of calcium 

oxalate (Danielson 1993; Danielson and Reinhard 1998; Ginestra 2009; Jones and 

Bryant 1992; Monje 2002; Olivotto 1996; Reinhard and Danielson 2005).  Phytolith 

evidence has also been recovered in dental calculus (Buchet 2001; Fox 1994; Hardy et 

al. 2009; Henry and Piperno 2008; Lalueza Fox et al. 1996; Middleton 1994; Philippe 

2010), and may be a major cause of dental wear observed among skeletal populations in 

the region (Danielson 1993; Danielson and Reinhard 1998; Reinhard and Danielson 

2005).  These crystal morphotypes, while not specific enough to distinguish resources to 
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specific taxa, provide a third line of evidence to evaluate use of the staple resources 

considered in this study, along with fiber and epidermal tissue.   

Calcium oxalate crystals occur in three major types in botanical tissue from the 

region (Figures 24-27).  It should be noted that other species not considered here also 

produce the same morphotypes of calcium oxalate crystals, though rarely in the 

abundance encountered in the three resources considered here.   Opuntia sp. are 

characterized by the abundance of druse crystals throughout the vegetative structure of 

the plant (Figure 24).  While there are distinct taxonomic differences in druse 

morphology observable under SEM (scanning electron microscopy) (Jones and Bryant 

1992), this current study considers these as one class, regardless of size or shape of 

crystalline development.  

 Both lechuguilla and sotol produce two different but related morphotypes, 

raphide and styluses (Figures 25 and 26).  Raphides occur both individually and in 

bundles throughout the vegetative structure of the plant.  The stylus morphotype is also 

encountered throughout the vegetative tissue of both of these plant resources.  

Preliminary SEM studies of the phytolith component of lechuguilla and sotol have not 

produced any readily discernable unique characteristics to distinguish between the two 

taxa (Riley 2006).  In the current study, both raphide and stylus morphotypes are 

considered to represent a joint class of lechuguilla and sotol.  Wild onion resources did 

not yield any phytoliths in the creation of the reference collection for this study.  

Mesquite yielded a family specific phytolith morphotype (Danielson 1993) that was also 

encountered in a coprolite specimen (Figure 28).  A minimum count of 200 phytoliths 
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was made for each coprolite specimen.  No attempt was made to calculate a 

concentration value for phytoliths, although this may be a useful tool for further study.    

 

Figure 24.  Druse phytoliths from Opuntia sp. 
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Figure 25.  Raphide and Stylus Phytoliths from Agave lechuguilla leaf  
 

 
Figure 26.  Stylus Phytoliths from Agave lechuguilla caudex 
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Figure 27.  Stylus Phytoliths from Dasylirion wheeleri leaf base 
 

 

Figure 28.  Phytoliths from Prosopis glandulosa seedpod 
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Starch Reference Collection.  Archaeological starch research has seen little 

application to hunter-gatherer sites in North America (Messner 2008; Zarrillo and 

Kooyman 2006).  This is partly due to the need for a reference collection of major 

potential food resources for each region.  The development of this collection is hindered 

by the rare recovery of geophytes and small seeds from the archaeological record, as 

well as the imprecision of the observations available in the the ethnohistoric record 

(Thoms 2008b).  These limitations are ameliorated in the Lower Pecos canyonlands by 

the recovery of many plant resources in the rockshelters across the region, as well as the 

extensive coprolite data available.  This section presents an overview of the starch 

reference collection developed over the course of this research following a brief review 

of the microscopic methods useful in starch grain analysis.    

Despite the long history of microbotanical analyses of coprolites in archaeology, 

very few of these studies have attempted to recover starch granules.  Exceptions include 

work by Horrocks on coprolites (Horrocks 2004, Horrocks et al. 2004) and latrine fill 

(Horrocks and Best 2004) from New Zealand.  Other researchers have noted the 

presence of starch in coprolite samples (Reinhard Personal Communication), but have 

not formally analyzed or published on this component of the microbotanical record.  

While starch is not used as a storage carbohydrate in the previously identified plant 

staples of the Lower Pecos canyonlands, this technique could yield valuable insight into 

the use of secondary plant resources or, possibly, unidentified staples. 

The identification of starch granules recovered from archaeological contexts has 

become one of the more important components of recent paleoethnobotanical studies 



  

    

175

 
over the last decade (see Torrence and Barton (2006 ) for an recent overview).  While 

this is a relatively new subfield in archaeology, starch microscopy has long had a place 

in food science (Flint 1994) and botany (Cortella and Pochettino 1994).  Starch was first 

observed and identified microscopically in 1719 by Antonie van Leeuwenhoek (Thomas 

and Atwell 1999).  Since then, many researchers have shown that starch granules can be 

microscopically associated with botanical source material based on distinguishing 

morphological characteristics, the most important being shape and size (Badenhuizen 

1965; Cortella and Pochettino 1994; Czaja 1978; Evers 1979; Moss 1976; Reichert 

1913).  This section provides an overview of some of the techniques used in the light 

microscopy of starch.  Many of the diagnostic features of starch used by 

paleoethnobotanists, such as differences in the lamellae and hilum location, have been 

observed and described under brightfield light.  Transmitted brightfield light can be used 

to observe starch granules but it can be very difficult to observe the features necessary to 

distinguish individual differences between starch grains (Barton and Fullagar 2006).  

Additionally, because starch grains generally exhibit very low contrast in most mounting 

media, it can be very difficult to observe granules from an unknown specimen with other 

microscopic components.  For these reasons, much of the initial microscopy used to 

identify the presence of starch in an archaeological sample relies on polarized light 

microscopy. 

All undamaged starch grains have a high degree of molecular orientation (Evers 

1979).  This structured organization of the granule results in a characteristic 

birefringence pattern when starch is viewed in cross-polarized light (Thomas and Atwell 



  

    

176

 
1999).  This uniaxial birefringent pattern is known variously as an extinction cross or a 

maltese cross (Barton and Fullagar 2006; Weaver 2003).  Birefringence is a complex 

optical property of many ordered compounds.  Light entering the specimen is split into 

two components which are plane polarized perpendicular to each other.  The refractive 

index of a birefringent specimen varies with the direction of passage, causing one of the 

components to be retarded relative to the other component.  This optical path difference 

creates either constructive or destructive interference when the two component waves 

recombine after leaving the specimen.  When the resultant recombined light passes 

through a second polarizing filter (the analyzer) set at a right angle to the original 

polarizing filter, any light that has not passed through a birefringent compound will be 

prevented from passing the analyzer.  This microscopic method is very useful for the 

initial investigation of unknown samples since starch grains are readily visible and 

relatively distinct from other birefringent biological compounds (Canti 1997, 1998, 

1999; Haslam 2006; Loy 2006).  Many of the samples examined from the Lower Pecos 

in this study and prior work contain a great number of thickened rings of cellulose that 

appear to be derived from prickly pear vasculature (Figure 18). 

While the extinction cross does provide some distinguishing features and is 

useful for the initial indication of starch ubiquity, many of the attributes used to 

differentiate between starch types are obscured in polarized light microscopy.  This 

method may also not detect damaged or gelatinized starch grains, which lose 

birefringence as the molecular order of native starch is disrupted (Evers 1979).  Starch 
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grains with very high amylopectin content may also not exhibit birefringent optical 

properties (Evers 1979). 

Under traditional food preparation methods, starch grain structure can be 

modified by mechanical damage from grinding and milling techniques or gelatinized 

through wet cooking methods (Babot 2003).  Freezing, dehydration, roasting, and 

charring can also cause damage to starch granules that alters diagnostic features 

necessary for the identification of native starch granules (Babot 2003).  Starch grains 

recovered in coprolites or latrines may also exhibit enzymatic damage from partial 

digestion (Autio 2001; Evers 1979).  Mechanical damage can result in four different 

types of modification; 1) radial cracking associated with the hilum,  2) chipping and 

splitting along the margins of the granule, 3) abrasions and 4) a partial loss of granule 

structure resulting in a “ghost” granule (Williams 1968).  Starch grains that have been 

damaged by milling or gelatinization will absorb any of the cholozal series of dyes, the 

most commonly used ones being Congo Red and Trypan Blue (Evers 1979; Flint 1994; 

Lamb 2005).  Due to greater water absorption, damaged starch grains take up these dyes 

while native starches will appear unstained (Banks and Greenwood 1975).  Baker and 

Hobson (1952) report a combined staining procedure using Safranin O and Niagra Blue 

4B that could differentiate between the undamaged and damaged regions of the granule.  

This appears to be particularly useful with granules subjected to enzymic hydrolysis 

(Baker and Hobson 1952).  Congo Red is preferred due to its ease of application and the 

reversibility of the method (Evers 1979).  This is due to the relatively weak hydrogen 
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bonds between the chromophore and the hydroxyl groups of the starch molecules (Evers 

1979).   

Recently, Torrence et al. (2004) have applied digital image analysis and 

multivariate statistics to discriminate between starch granules from 29 taxa in one area of 

Papau New Guinea.  The authors suggest that this approach is based on the implicit 

assumption of morphological distinctiveness underlying previous starch granule keys.  

This method used digital images to capture 18 variables related to starch grain 

morphology.  While the authors suggest that discriminant analysis were successful in 

determining taxonomic affiliation for granules, none of the success rates exceeded 75% 

and were as low as 47% (Torrence et al. 2004).  This is probably unacceptable for 

archaeological specimens, which yield small amounts of starch and would not have the 

statistical power to minimize identification errors during interpretation.   

A potential method for distinguishing between unknown starch granules could 

develop out of the field of geometric morphometrics.  This intriguing method has been 

successfully used in wildlife zoology (Clabaut et al. 2007; Foster 2008a; Navia et al. 

2006), botany (Niklas et al. 1999; Shipunov and Bateman 2005), and paleoanthropology 

(Bookstein 2008; Gomez-Robles et al. 2007), but has not been applied to the 

identification of archaeological starch.  This method uses the distribution of tightly 

defined landmarks to develop quantifiable, rigorous descriptions of shape (Elewa 2004; 

Mclellan and Endler 1998; Zelditch et al. 2004).     

The current study utilized cross-polarized light microscopy for the initial 

identification of starch granules in the coprolite specimens.  Granules identified as starch 
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were further examined under brightfield light to detect features important for botanical 

source identification.  No attempt was made to selectively stain damaged starch granules 

using the methods described above, although this is obviously an important next step in a 

study of coprolites, as granules could be damaged by both processing and digestion.  

This was not explored further in the present study, due to the lack of evidence for major 

food resources that utilize starch as a storage carbohydrate and limited recovery of 

undamaged starch in the current study.  

 

Figure 29.  Cross-Polarized Light Micrographs of Starch Granules from Grass Seeds (A-
Achnatherum hymenoides, B-Andropogon gerardii, C- Setaria lutescens, D- Panicum sonorum, E-
Sporobolus asper) 
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Figure 30.  Micrographs of Starch from seeds and meristem (A- Brightfield Micrograph of 
Amaranthus sp., B- Cross-Polarized Light Micrograph of Carex Comosa, C- Brightfield 
Micrograph of Opuntia sp., D- Cross-Polarized Light Micrograph of Prosopis glandulosa, E- 
Brightfield Micrograph of Yucca bacata caudex, F- ¼ λ Retarded Cross-Polarized Light 
Micrograph of Yucca bacata leaf meristem) 
 

The strength of starch analysis of coprolites from the Lower Pecos canyonlands 

is that it may reveal previously unknown plant food resources.  It may also provide a line 

of evidence to re-evaluate the importance of known food resources, such as mesquite or 

acorns, that may leave little visible record in coprolite specimens.  Figures 29-31 present 

micrographs of starch granules from some of the plant resources investigated in this 
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study.  Table 10 presents metric data for starch granules recovered from some of the 

known resources utilized in the region as well as some potential resources that have not 

been directly identified in the Lower Pecos canyonlands but are documented 

ethnographically in the broader region (Ebeling 1986; Havard 1895; Moerman 1998).   

The staple plant resources of the Lower Pecos canyonlands were investigated for 

the occurrence of starch granules.  Unfortunately, most of the major resources have little 

to no starch, using fructans as their primary storage carbohydrate (Darbyshire and Henry 

1981; Lopez and Urias-Silvas 2007b; Mancilla-Margalli and Lopez 2006).  The only 

starch noted during the microscopic examination of various component of these taxa 

were in the seeds of prickly pear tunas, which contain abundant small starch granules 

(Figure 30).  Yucca sp. also has small starch granules throughout much of its vegetative 

structure (Figure 30).  Interestingly, the caudex of this taxa contains very little starch, 

despite being the primary storage organ for the plant.  The starch in yucca is primarily 

observed embedded in the meristematic tissue of the leaves of this genus (Figure 30).   

Table 10. Measurements of Starch Granules from Modern Botanical References 
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Figure 31.  Micrographs of Starch Granules from Geophytes (A- Brightfield Micrograph of 
Callirhoe involucrata, B- Brightfield Micrograph of Cooperia drummondi, C- Brightfield Micrograph 
of Claytonia virginica, D- Cross-Polarized Light Micrograph of Erythronium sp., E- ¼ λ Retarded 
Cross-Polarized Light Micrograph of Liatrus mucronata, F- Brightfield Micrograph of 
Nothoscordum bivalve, G- Brightfield Micrograph of Smilax sp.) 
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Sub-Sampling Coprolites 

There is an unresolved debate among coprolite researchers on the proper amount 

of specimen to sub-sample (Callen and Cameron 1960; Dean 2006; Reinhard 1989; 

Reinhard and Bryant 1992; Sutton and Reinhard 1995).  In the earliest modern studies of 

Callen and Cameron (1960), the normal procedure was to process the entire specimen 

for analysis.  This approach was superseded by sub-sampling half of a coprolite along its 

axis of orientation, when observable, or the longest axis (Bryant 1969; Fry 1970; Heizer 

1967; Riskind 1970; Williams-Dean 1978).  This has continued to be the method 

employed by most researchers, as it leaves half of the specimen for future research while 

still providing an adequate representation of the overall specimen.   

Some researchers have advocated sub-sampling on a much more discrete level, 

usually with very small, one to five gram sub-samples being removed from a specimen 

(Jones 1988; Reinhard 1989).  This approach is useful in that the same specimen can be 

freshly sub-sampled for each type of analysis utilized in the study.  However, there are 

concerns about the extrapolation of the material recovered in a single gram from a large 

specimen, some of which weigh well over 100 grams, to the dietary material distributed 

throughout the material as a whole (Dean 2006).  Studies have demonstrated that pollen 

samples taken along the axis of colonic orientation of a coprolite are not similar and 

represent different mixtures of pollen types (Dean 2006).  To date, there has been no 

attempt to systematically evaluate the different sub-sampling strategies utilized for 

coprolite research.  
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In developing this dissertation research, I have conducted a pilot study evaluating 

the relationship between different sub-samples of the same specimen.  Three specimens 

from lens 10b had three sub-samples taken for examination (Table 11).  Two samples 

(a,b)  were from the specimen and a third (c) from the loose material bagged with the 

specimen.  Each sub-sample was treated following standard methods outlined above and 

examined for macrofossil components, phytoliths, epidermal fragments, and starch 

content (Table 12).  Overall, the sub-samples from each specimen give a generally 

similar image of dietary consumption.  The staple resources consumed by each 

individual are apparent across all three sub-samples but none of the sub-samples 

represent the entire dietary menu contained in the specimen.  This is corroborated by the 

pollen data presented in Dean (2006).  This study suggests that sampling half of a 

specimen along its longest axis remains the best compromise between accurately 

assessing the diet reflected in a coprolite and preserving part of the unaltered specimen 

for future research methods.   
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Table 11.  Measurements of Coprolite Specimens used in Sub-Sampling Study 

 

 
Table 12.  Data from Sub-Sampling Study 
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Laboratory Procedures and Analysis 

Ten specimens were selected from the coprolite assemblages of the three lenses 

described in Chapter V.  The overall goal was to select specimens that reflected the 

diversity of shape and size present in the total assemblage for each lens.  The selected 

specimens were documented following recent recommendations for standardized 

coprolite analysis (Table 13) (Jouy-Avantin et al. 2003).  Digital photographs were taken 

of each specimen, along with measurements and dry weight.  Following this, each 

specimen was brushed to remove loose dust and obvious external adherents and sub-

sampled.  The dry weights of the resulting loose fraction as well as the sub-sampled 

portion of each specimen were recorded.  The coprolites were divided along the longest 

axis.  Many of these specimens were flattened patties, with no obvious axis of 

orientation.  The specimens were cut with a razor, although frequently the specimen 

would crumble or break along internal points of weakness during this process.  This 

method of sub-sampling leaves half of the specimen for future analyses while providing 

a representative sample of the overall dietary information in each specimen.  Sub-

sampling methods in coprolite studies are discussed further in the following section.  

Following Callen and Cameron (1960), the specimens were placed in a 0.5% Tri-sodium 

phosphate (w/v) solution for a minimum of 48 hours.  Specimens were examined after 

48 hours, gently stirred, and allowed to sit longer if rehydration was not complete.  The 

solution was examined for color and odor.  All specimens examined turned the solution 

an opaque brown to black, a reaction of the solution to the bile acids in the coprolites 

(Fry 1985; Sutton et al. 2010).  Most of the specimens exhibited a slight scatological 
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odor during re-hydration.  This was not particularly pungent but it was noticeable.  This 

is expected based on the dominance of plant derived components in all of the specimens 

(Fry 1985; Moore et al. 1984).   

Each specimen was screened through a 350 μm geologic sieve and washed with a 

solution of 50% ethanol to break the surface tension of water and disperse trapped 

microfossils in the fiber matrix.  This sieve size was chosen to ensure that all seeds 

would be recovered in the coarse fraction and larger phytoliths and pollen grains would 

pass into the fine fraction (Pearsall 2000).  The coarse fraction on the sieve was rinsed 

with water and stored for analysis of the macrofossils considered in this study.  The fine 

fraction collected under the sieve was allowed to settle for at least 6 hours before 

siphoning off the supernatant.   The resulting material was collected and sub-sampled for 

phytolith, starch, and pollen analysis (Figure 32).   
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Table 13.  Measurements of Coprolite Specimens 
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Figure 32.  Flowchart of Coprolite Processing 
 

Macrofossils.  The material collected for macrofossil identification was not dried 

out following the rehydration technique.  Repeated wetting and drying has deleterious 

effects on many cellular components (Gorham and Bryant 2001; Holloway 1981).  The 

coarse fraction, suspended in a 5% ethanol solution, was transferred to a large, shallow 

tray and examined under an illuminated lab-bench magnifier, as well as a Wild 

Heerbruug dissecting microscope at 6-25x magnification when necessary.  This initial 
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examination separated the different components of each specimen for identification.  

Components, such as plant epidermal tissue and fiber bundles, that required high 

magnification for proper identification were mounted on slides in a 50/50 glycerol and 

water mounting medium, covered with a cover slip and sealed.   

Identification of seeds was aided by the seed reference collection at Texas A&M 

University’s Paleoethnobotany Laboratory and seed identification manuals (Knight 

1978; Martin and Barkley 1973; Young and Young 1992).  Bone and scales were 

cursorily examined but not identified.  Epidermal and fiber cells were examined further 

using a Nikon Optiphot metallurgical microscope using the 4x (NA 0.1), 10x (NA 0.25), 

and 20x (NA 0.4) objectives.   These components were identified with a reference 

collection developed for the study, described above, and referral to published sources 

(Bell and King 1944; Bock et al. 1988; Catling and Grayson 1998; Danielson 1993; 

Hather 1991; Mclaughlin and Schuck 1991; Olivotto 1996; Pando-Moreno 2008; 

Sobolik 1992; Stoddard 1965).      

Quantification of the macrofossil components of each specimen was done 

through direct measurement of volume.  This was converted to percentage-volume to 

conform with prior quantification methods used in coprolite studies in the Lower Pecos 

canyonlands (Bryant 1974b; Edwards 1990; Sobolik 1988b; Sobolik 1991a; Stock 1983; 

Williams-Dean 1978).  This has been converted into an ordinal scale taken from Sobolik 

(1991a) to minimize inter-researcher error in estimation (Table 14).   
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Table 14.  Ordinal Scale for Percent-Volume Measurements (based on Sobolik 1991) 

 

 Phytoliths, Pollen, and Starch.  The fine fraction collected under the sieve was 

gently vortexed, split into two equal samples (A and B) by volume, and placed in 50ml 

nalgene testtubes (Figure 32).  Subsample A from each specimen was processed for 

phytoliths and starch.  This processing followed a modification of the procedure by Coil 

et al. (2003).  The samples were placed in a solution of 5% Calgon (Sodium 

hexametaphosphate) overnight in order to deflocculate the sample and disperse any 

aggregated components.  The samples were then centrifuged for 3 minutes at 2500 rpm 

and decanted until the supernatant was clear.  The sample was then centrifuged for 10 

minutes, decanted, and inverted to dry.  A zinc bromide solution with a specific gravity 

of 1.7 was added to the sample, which was then gently stirred (Coil et al. 2003).  Many 

archaelogical starch researchers use a heavy density solution with a specific gravity of 

1.7 because all known starch are suspended at this density (Torrence and Barton 2006 ).  

Most of the samples in this study caused a slight reaction with the HCl used to suspend 

the zinc bromide, probably due to the presence of microscopic shell, bone, and limestone 
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(CaCO3) fragments in each sample.  The sides of the tube were washed with 95% 

ethanol and water was added to the sample, being careful not to break the surface tension 

of the zinc bromide solution.  The sample was then centrifuged at low speeds (under 

1000 rpm) for 5 minutes, followed by high speed (2500 rpm) for another five minutes.  

The resultant band of material suspended at the interface of the zinc bromide and water 

was removed and place in a second test tube.  This procedure was repeated until no 

visible accumulation of material occurred at the interface.  The resulting heavy and light 

fractions were washed in water three to five times and stored in dram vials.  The light 

fraction was microscopically examined for the presence of starch granules using the 40x 

(NA 0.65) objective of a Nikon Optiphot metallurgical microscope.  The heavy fraction 

from this procedure was microscopically examined for phytoliths with the 20x (NA 0.4) 

and 40x (NA 0.65) objectives of a  Nikon Optiphot metallurgical microscope.   A 

minimum of 200 phytoliths per sample were counted.  Additionally, the light fraction 

was scanned for unique phytolith shapes.   

Sub-sample B was vortexed thoroughly and split in half by volume into sub-

samples B1 and B2.  Sub-sample B1 of each specimen was placed in a beaker with 2 

Lycopodium tablets (18,583 +/- 764 spores/tablet) and HCl to cover.  After the reaction 

was no longer discernable, more HCl was added to ensure complete dissolution.  This 

was diluted with water and allowed to settle for a minimum of 3 hours.  Most of the 

supernatant was siphoned off from the samples, which were transferred to 50 ml nalgene 

test tubes.  These were centrifuged,decanted, and diluted with distilled water twice to 

ensure that all HCl had been washed out.  The samples were then placed in a 5% KOH 
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solution for 5-10 minutes, depending on the sample.  Any remnant KOH was removed 

by centrifuging and decanting each sample three times.   The sample was then 

centrifuged for 10 minutes, decanted, and inverted to dry.  A zinc bromide solution with 

a specific gravity of 2.0 was added to the sample, which was then gently stirred.  This 

relatively heavy specific gravity was chosen to ensure that all the pollen grains in the 

sample were captured in the light fraction.  The sides of the tube were washed with 95% 

ethanol and water was added to the sample, being careful not to break the surface tension 

of the zinc bromide solution.  The sample was then centrifuged at low speeds (under 

1000 rpm) for 5 minutes, followed by high speed (2500 rpm) for another five minutes.  

The resultant band of material suspended at the interface of the zinc bromide and water 

was removed and place in a second test tube.  This procedure was repeated until no 

visible accumulation of material occurred at the interface.  The resulting heavy and light 

fractions were washed in water three to five times and stained with safranin O.  The 

samples were then dehydrated with 95% ethanol, centrifuged and decanted into in dram 

vials with glycerol.  The resulting sample was microscopically examined using the 20x 

(NA 0.46) and 40x (NA 0.70) objectives of an Olympus BH-2 compound microscope.   

Initial identification of pollen grains (Kapp et al. 2007; Mcandrews 1966) were 

confirmed with the pollen reference collections in the Palynology Laboratory at Texas 

A&M University.  Two hundred grain pollen counts were attempted for each sample, but 

were not achieved due to very low concentration values.  Prior studies of pollen from 

coprolites had concentration values ranging from as high as seven million pollen 

grains/gram (Dean 1993; Kelso and Solomon 2006; Reinhard et al. 2006; Reinhard et al. 
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1991; Sobolik 1988a).  These extremely high pollen concentration values require that a 

multitude of marker spores be added to ensure a relatively equitable abundance of pollen 

and marker spores during the counting process (Faegri and Iversen 1989; Moore et al. 

1991).  Anticipating this situation, I purposefully reduced the amount of material 

sampled for pollen analysis from each specimen.  However, this novel method resulted 

in the opposite situation, where the marker spores were much more abundant than pollen 

grains.  The overabundance of marker spores to pollen grains in many of these samples 

precludes any statistically valid attempt to characterize the pollen spectrum (Faegri and 

Iversen 1989; Moore et al. 1991). This is discussed in more detail in the results presented 

in the following chapter.    

Data from Previous Coprolite Studies 

All of the samples in three previous studies of Hinds Cave quantified 

macrofossils using a visual-estimation of percentage-volume (Edwards 1990; Stock 

1983; Williams-Dean 1978).  This was converted into the ordinal scale taken from 

Sobolik (1991a) to minimize inter-researcher error in estimation and assure 

comparatibility to the data from Sobolik (Table 14).  The data from Conejo shelter is 

presented in a slightly different ordinal scale based on a visual-estimation of percentage-

volume.  The data from Frightful Cave is presented as percentage-weight and the Parida 

Cave studies presents the data only as ubiquity.  Despite the differences in quantification 

used among the studies, all of them were included in the current analysis to generate the 

most robust coprolite record of paleodiet possible for the Lower Pecos canyonlands.  All 

of the coprolite datasets included in this study are presented in appendices C and D.   
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Statistical Analysis  

Each coprolite represents a combination of dietary items that can generally be 

considered to represent a meal (Fry, 1985) or perhaps several meals (Sutton and 

Reinhard, 1995), both relatively focused windows into an individual’s dietary decisions. 

This provides a framework for analysis, but it also requires that each specimen be 

considered as a discrete unit in order to observe the relationship between dietary 

constituents recovered together. This is complicated by the large number of dietary items 

generally recovered in coprolite studies, which results in a cumbersome matrix with 

many empty cells. Patterning within this large data set is hard to explore without the use 

of statistics, which are limited, in turn, by the nature of coprolite quantification as well 

as comparability between studies (Jouy-Avantin et al. 2003). 

This study uses cluster analysis as an exploratory statistical technique to look for 

patterning in the macrobotanical components of the coprolite studies from the Lower 

Pecos canyonlands. This technique allows each coprolite to be considered as an 

individual entity while expressing the similarity between each specimen as a distance 

measure. This allows research questions to be framed around the analysis of each 

coprolite rather than by a limited comparison of individual constituents between 

specimens.  Other studies of coprolites have successfully used cluster analysis to explore 

questions of seasonality and menu (dietary combinations) (Sutton 1993, 1998; Sutton 

and Reinhard 1995). This technique is particularly useful for exploring data derived from 

coprolite analyses, because cluster analysis has no assumptions of normally distributed 

data. The macrobotanical data from the Lower Pecos coprolite studies were analyzed 
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using a hierarchical cluster analysis, available in SPSS-PC 11.5 (Statistical Package for 

the Social Sciences). Hierarchical cluster analysis attempts to minimize within-group 

variance while maximizing between group variance. Individual specimens were 

clustered using Ward’s method as the clustering technique and Squared Euclidean 

distance for the distance measure. The macrobotanical data from each coprolite study 

were analyzed individually for clustering. The data were not combined for a single 

analysis due to the lack of consistency between the categories used in the previous 

studies (Edwards 1990; Stock 1983; Williams-Dean 1978).  Fiber, which forms the bulk 

of the volume for each specimen, was not considered for any of the prior studies due to 

lack of identification, but was incorporated into the statistical analysis of the current 

study.  The number of clusters from each study was determined with reference to a scree 

plot of the agglomeration coefficients as well as the dendrogram produced in SPSS-PC. 

These clusters were then assessed with Canonical Discriminant Analysis in SPSS-PC 

11.5, commonly used for a similar purpose in Instrumental Neutron Activation Analysis 

data sets (Baxter, 1994; Glascock, 1992; Johnson et al. 2007). This approach serves three 

purposes; (1) it evaluates the assigned group membership of each specimen; (2) it 

identifies the important variables in defining clusters; and (3) it provides a visual 

representation of cluster association.  Overall, this statistical approach yields patterns of 

similar dietary exploitation between coprolites while maintaining the relationship 

between various components in individual specimens.  These patterns of resource 

combination inform on diet-breadth as well as seasonality of deposition.    
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CHAPTER VIII 

RESULTS 

 

 Studies of coprolites from the Lower Pecos Canyonlands have created a wide 

assortment of data, analyzing aDNA (Poinar et al. 2001), staple isotope (Dean 2004), 

phytolith (Danielson 1993), parasites (Reinhard 1989), macrofossil (Bryant 1974b; 

Edwards 1990; Fry 1975; Reinhard 1989; Riskind 1970; Sobolik 1991a; Stock 1983; 

Williams-Dean 1978) and pollen (Bryant 1974b, 1975; Edwards 1990; Riskind 1970; 

Sobolik 1991a; Williams-Dean 1978) components of individual specimens.  The present 

analysis focuses primarily on the macrofossil, fiber, and phytolith components of the 

specimens under examination.  This approach is necessary to address the diet-breadth 

model developed in the current study.  The other components outlined in the preceding 

chapter are considered here, but are not directly related to the primary research focus of 

diet-breadth of the current study.  The data from the study will also be used to assess 

questions of seasonality of site use through resource availability and micro-habitat 

exploitation.   

Following the presentation of the primary data in this study, the cluster analysis 

and discriminant analysis results of the macrofossil data from the other Hinds Cave 

coprolite studies are presented in chronological order.  The data from these studies are 

available in Appendix A.  The results of these data are used to address some aspects of 

diet-breadth, but this is limited by the lack of phytolith, epidermal, and fiber cell 

identification in all of these studies.  These three components constitute the major items 



  

    

198 
 

 
recovered in most coprolites analyzed from the Lower Pecos canyonlands and are 

correlated indicators of staple resource exploitation.    

A short review of the specialized aDNA and staple isotope data available for a 

small sub-set of specimens follows the presentation of the comparable data sets available 

for all four Hinds Cave studies.  These techniques have not been applied to enough 

samples to yield any but the most tentative of conclusions.  These data are primarily 

presented to corroborate the conclusions based on the other lines of evidence and suggest 

some future avenues of research for coprolite studies in the Lower Pecos canyonlands.   

Four other coprolite studies are spread across and beyond the Lower Pecos 

canyonlands (Figure 2).  These sites are used to assess spatial variation in diet across the 

canyonlands.  Conejo Shelter and Parida Cave are located near the mouth of the Pecos 

River, in an environment very similar to the setting of Hinds Cave, just upstream on Still 

Canyon.  Baker Cave is located east of the Devils River in a more mesic environment, 

currently characterized as the Balconian oak-cedar zone.  Frightful Cave is located 

nearly 200 miles to the south of Hinds Cave, in the well-watered Cuatro Cienegas basin 

in the center of the modern state of Coahuila, Mexico.  This site provides an external 

point of comparison in evaluating the Lower Pecos canyonlands as a distinct cultural 

area.  The data sets from these studies are available in Appendix B.   

Finally, the available skeletal stable carbon isotope data from the Lower Pecos 

canyonlands is presented.  These data provide a long-term, gross view of individual 

dietary patterns that contrasts with the more refined and temporally limited data 

available from the coprolites.  A dietary reconstruction relying on both coprolites and 
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skeletal stable isotopes presents a much more robust and nuanced understanding of past 

human lifeways than either data set individually.   

Data from the Current Study 

            The categorized macrofossil data of the thirty specimens included in my current

study are presented in Tables 15-17.  These data include plant, animal, and inorganic 

components recovered from each specimen. These data are divided into three tables for 

ease of presentation.  Fiber is the dominant component in almost every specimen (Table 

15).  Epidermal tissues of all four of the staple resources discussed throughout this 

research were identified and range in importance from trace to dominant component of 

individual specimens (Table 15).  Epidermal tissues from a grass and at least one 

unidentified plant resource were also recovered.  Seeds were not very common in the 

specimens examined here (Table 16).  While prickly pear seeds were recovered in 

eighteen of the thirty specimens, they only occurred above trace levels in seven of the 

specimens (Table 16).  The only other identified seed in the study was hackberry (Celtis 

sp.), which occurred in trace amounts in two specimens.  The faunal and other animal 

remains recovered from these specimens were mostly left unidentified (Table 17).  Bone 

occurred in twenty-three of the thirty specimens, primarily in trace amounts.  Most of 

this bone came from small animals, such as fish, lizards, and rodents.  This statement is 

based on the diminutive size of most of the recovered faunal material.  Some of the 

faunal elements were readily identified and have been reported as such.  Several 

specimens contain fish skeletal components and two specimens contain evidence of 

lagomorph (rabbit) consumption.  Only one specimen contains evidence of larger game 
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(Table 17).  The data presented in Tables 15-17 were analyzed using the cluster analysis 

methods described in the previous chapter.   

 

Table 15.  Fiber and Epidermal Cell Data from Current Study 
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Table 16.  Seed and Flower Data from Current Study 
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Table 17. Animal and Inorganic Data from the Current Study 
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 The thirty specimens from the current study were divided into three clusters based 

upon a scree plot of the agglomeration coefficients and the visual inspection of the 

dendogram (Figure 33).  The mean values of each component are presented by cluster in 

Table 18.  All three clusters exhibit high levels of fiber.  Cluster 1 (n=15) is 

characterized by high amounts of lechuguilla epidermal tissue and the presence of onion 

epidermal tissue.  While sotol epidermal tissue is noted among specimens included in 

this cluster, it is at a relatively low level.  There is very little recovery of prickly pear 

seeds or epidermal tissue in this cluster.  Bone in this cluster is considerably below the 

overall mean for all specimens.  However, the specimen with the deer bone is included 

in this cluster.   

 Cluster 2 (n=7) exhibits the highest levels of epidermal tissue from both sotol and 

prickly pear.  Lechuguilla and onion epidermal tissue are both present at relatively low 

levels.  Prickly pear seeds are present at levels well below the mean for all specimens 

and proportionally identical to cluster 1.  The one specimen with broken prickly pear 

seeds is included in this cluster.   
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Table 18. Mean Values of All Components by Cluster 
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Figure 33.  Dendogram of Data based on Ward's Method.  All Components from the Current Study 
 

 Cluster 3 (n=8) is associated with high levels of prickly pear seeds and 

moderate amounts of prickly pear epidermal tissue.  Unknown epidermal tissue is also 
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highest in this cluster.  Lechuguilla and sotol epidermal tissue are noted at values well 

below the mean for all specimens.  Bone recovery is highest among this cluster, which 

also contains both specimens with evidence of lagomorph consumption.  While both 

charcoal and grit are present at low levels across many specimens, it is interesting to 

note that none of the specimens grouped into cluster 3 contained either of these 

specimens.  This may reflect the lack of cooking or processing for the meals reflected in 

the coprolites in this cluster.   

          Figure 34 provides a visual display of the clusters along the first two factors 

generated with canonical discriminant analysis (CDA_.  Tables 19 and 20 show the

standardized canonical function coefficients and the structure matrix respectively.  The 

first function explains 72.1% of the variance among the samples and the second function

explains the remaining 27.9%.  Tables 19 and 20 indicate that the first function dominantly

expresses differences among the prickly pear seed, sotol epidermal tissue, and faunal  

components of the coprolite specimens.  The second function reflects differences in the

amounts of lechuguilla and prickly pear epidermal tissue, among other variables.  The faunal 

component of the specimens is a major driver of function 1.  These data may obscure 

relationships between the botanical variables that are at the heart of this study.  For this 

reason, the analysis was re-run with the faunal variables excluded.      
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Figure 34.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  All Components 
from the Current Study 
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Table 19.  Discriminant Function Coefficients of Cluster Analysis of all Components 

 
 
Table 20.  Structure Matrix of Cluster Analysis of all Components 
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 The thirty specimens from the current study were again divided into three clusters 

based upon a scree plot of the agglomeration coefficients and the visual inspection of the 

dendogram (Figure 35).  The mean values of each component are presented by cluster in 

Table 21.  Much like the prior analysis including the faunal component of the specimens, 

Cluster 1 (n=16) is characterized by high levels of lechuguilla epidermal tissue.  The 

levels of sotol epidermal tissue are slightly higher than the mean across all specimens.  

All specimens from the study with onion epidermal tissue are included in this cluster.  

All other dietary components in this cluster are present at levels well below the mean 

across all specimens.  All specimens containing charcoal are included in this cluster.   

 Cluster 2 (n=4) is again defined by significant levels of sotol and prickly pear 

epidermal tissue.  Lechuguilla epidermal tissue is well below the mean for all specimens.  

Prickly pear seeds are present at a higher level than cluster 1, but well below the mean 

for all specimens.  Cluster 3 (n=10) exhibits high levels of prickly pear seeds as the 

dominant dietary component other than fiber.  Prickly pear epidermal tissue occurs at 

roughly the same level as the mean across all specimens in the study.  Unknown 

epidermal tissue appears at twice the amount as the mean across all specimens.  All other 

dietary components are present at levels below the mean for all specimens in the study.   

 Figure 36 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 22 and 23 show the standardized canonical function  
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coefficients and the structure matrix respectively.  The first function explains 78.8% of 

the variance among the samples and the second function explains the remaining 21.2%.  

Tables 22 and 23 indicate that the first function is positively correlated with lechuguilla 

epidermal tissue, onion epidermal tissue, and charcoal.  It is negatively correlated with 

prickly pear seeds.  The second function reflects differences in the amounts of sotol and 

prickly pear epidermal tissue, among other variables.   

 The results of this second analysis excluding the faunal components accord nicely 

with the first analysis, which incorporated the faunal data.  Cluster 1 is characterized by 

lechuguilla, sotol and onion consumption, with other dietary components being 

relatively uncommon or in very trace amounts.  Cluster 2 suggests a diet of sotol and 

nopales with small amounts of lechuguilla.  Cluster 3 shows high levels of prickly pear 

seeds, reflecting the dominance of tunas in the consumption pattern reflected in these 

specimens.  



  211  

    

 

Figure 35.  Dendogram of Data based on Ward's Method.  Botanical Components from the Current 
Study 
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Table 21.  Mean Values of Botanical Components by Cluster 

 

 
Figure 36. Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Botanical 
Components from the Current Study 
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Table 22. Discriminant Function Coefficients of Cluster Analysis of Botanical Components 

 
 
Table 23.  Structure Matrix of Cluster Analysis of Botanical Components 

 
 
 Comparing the Macrofossil Data with Phytoliths and Fiber Ultimates.  In order 

to evaluate the diet-breath of the botanical resources recovered in these specimens, a 

combined cluster analysis of the epidermal tissue, fiber ultimates, and phytoliths was 

conducted.  These multiple lines of congruent evidence all reflect the consumption of the 

four staple resources identified for the region.  These interdependent data sets allow for a 
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more rigorous examination of the importance of these different resources.  Percentage 

data are used in this analysis to assure comparability among these data sets (Tables 24 

and 25).  Directly comparing the counts of fiber ultimates and phytoliths with the 

categorical scale used for the macrofossils would skew the analysis due to the large 

difference between the numerical values of these data sets.   

 The combined data set was evaluated with CDA against the three clusters 

generated using the macrofossil data without the faunal components (Figure 35).  The 

mean values of each component are presented by cluster in Table 26.  Cluster 1 (n=16) 

shows very high levels of lechuguilla epidermal tissue, lechuguilla fiber ultimates, and 

raphide-type phytoliths.  Sotol epidermal tissue is also greater than the mean for all 

samples.  All specimens with onion epidermal tissue and onion fiber ultimates are in this 

cluster.  Prickly pear seeds are not abundant in specimens in this cluster.  
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Table 24.  Percentage-Volume Data of Epidermal Tissue and Seeds from Staple Resources 
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Table 25.  Percentage Values of Fiber Ultimates and Phytoliths from Staple Resources 
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 Cluster 2 (n=4) is dominated by prickly pear epidermal tissue, sotol fiber ultimates, 

and druse-type phytoliths.  Sotol epidermal tissue and prickly pear fiber ultimate values 

are above the mean for all specimens combined.  Prickly pear seeds are encounted only 

in trace amounts in the specimens in this cluster.  Cluster 3 (n=10) is characterized by 

high levels of prickly pear seeds.  Other components encountered in this cluster at above 

average values for all combined specimens include prickly pear fiber ultimates, sotol 

fiber ultimates, unknown epidermal tissue and unknown fiber ultimates.  Interestingly, 

the cluster mean values for the three major types of phytoliths encountered in this study 

are nearly identical to the mean values for all combined specimens.  It should be noted 

that the much smaller raphide-type phytolith is the dominant type encountered across all 

specimens.   

 Figure 37 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 27 and 28 show the standardized canonical function 

coefficients and the structure matrix respectively.  The first function explains 51.3% of 

the variance among the samples and the second function explains the remaining 48.6%.  

Tables 27 and 28 indicate that the first function is driven primarily by differences in the 

botanical source of the epidermal tissue and fiber ultimates recovered in each specimen.  

The second function is negatively correlated with both prickly pear seeds and druse-type 

phytoliths and positively correlated with raphide-type phytoliths.   

 This analysis indicates that three distinctive menus or dietary combinations occur 

in the specimens under examination.  The first cluster reflects a diet dominated by 

lechuguilla with onion bulbs and sotol as secondary resources.  The second cluster 
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indicates a dietary combination of prickly pear nopales with secondary consumption of 

sotol.  The third cluster suggests a diet composed almost entirely of prickly pear tunas 

and an unidentified resource.  While all three sets of data analyzed in this section help 

clarify the roles of these different resources, the most important indicators of dietary 

consumption were the macrofossils, specifically the epidermal tissue identifications.  

The microscopic fiber ultimates and phytoliths present a more muddled picture.  Perhaps 

this is due to the mixing and trapping of microscopic components in the dietary tract 

observed by Williams-Dean (1978) in her actualistic study of pollen passage.  Slower 

passage of microscopic components may result in a longer term record of diet than the 

meal or meals reflected in the macrofossils.    

Table 26.  Mean Values of Staple Resource Indicators by Cluster 
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.   

Figure 37.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Staple Resource 
Indicators from the Current Study 
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Table 27. Discriminant Function Coefficients of Cluster Analysis of Staple Resource Indicators 

 
 
Table 28.  Structure Matrix of Cluster Analysis of Staple Resource Indicators 

 
 

 Starch.  While all thirty coprolite specimens in this study were analyzed for starch, 

only six specimens yielded starch granules and none in great quantity (Table 29).  None 

of the major staples of the Lower Pecos canyonlands use starch as a storage 
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carbohydrate, so this was not unexpected.  The starch granules recovered in this study 

were not identified to botanical source, due to the limited reference collection of known 

starchy resources in the region.  Two of the coprolites contain aggregated, small, 

spherical starch granules similar to amyloplast cells observed in grass seed reference 

samples (Fig 16e).  These starch granules have no damage or evidence of processing, 

which suggests that they may not represent intentionally ingested starch as a food 

resource.  Instead, they may reflect the stomach contents of ingested small game, as 

Williams-Dean (1978) suggests for the grass seeds recovered in her study.  The 

remaining four specimens contain larger, solitary starch granules that are likely derived 

from geophytes, although this remains tentative.  This may indicate that there are 

secondary starchy resources incorporated into the regional subsistence strategy that have 

not been identified to date.  Perhaps the most important result of this starch study is 

simply the recovery of starch from coprolite specimens.  It is clear that some starch 

granules survive the digestive process in recognizable form.  This suggests that starch 

research may prove a useful tool on coprolite specimens from other regions, where 

populations were more dependent on starchy resources as a component of their diet.  The 

relatively abundant coprolites from the agricultural Southwest and the Great Basin 

region would be ideal collections to further explore this novel technique. 

Table 29.  Starch Granules Recovered from Coprolite Specimens 
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 Pollen.  Upon initial examination of the processed pollen samples from these 

specimens, it was clear that the Lycopodium sp. marker spores were much more 

abundant than the fossil pollen grains in the samples.  In every case, the over-abundance 

of the marker spores relative to the fossil pollen invalidated the statistical analysis of the 

samples (Moore et al. 1991).  Despite the inherent inaccuracy, concentration values were 

calculated for each specimen (Table 30).  Previous research has confirmed that pollen 

concentration values are very important for interpreting the pollen spectra of coprolite 

specimens, as they can distinguish between accumulated ambient pollen from air and 

water and purposefully ingested pollen representing dietary or medicinal consumption 

(Dean 1993; Kelso and Solomon 2006; Reinhard et al. 2006; Reinhard et al. 1991; 

Sobolik 1988a).  The calculated concentration values of the thirty specimens in this 

study were markedly lower than expected based on prior pollen counts of coprolites 

from the Lower Pecos canyonlands (Edwards 1990; Sobolik 1991a).  The concentration 

values from these specimens were well below the acceptable threshold for 

archaeological soil specimens, rendering any further analysis of these data untenable.  

While this could be due to the greater age of the current specimens than the coprolites 

examined for pollen in previous studies, or the damp conditions noted during the 

excavation of these specimens along the back wall of the rockshelter, it is more likely 

due to the processing method utilized in this study.  Previous studies had added the 

marker spores during the initial rehydration step of the coprolite processing (Edwards 

1990; Sobolik 1991a).  In the current study, the marker spores were added much later in 

the processing (Figure 32) in order to minimize the number of tablets needed to generate 
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statistically accurate results.  The anticipated high levels of fossil pollen were not present 

in the thirty specimens, resulting in the over-abundance of marker spores and the limited 

applicability of the pollen data in the current study.  While pollen may not directly 

inform on the issue of diet-breadth so central to this current study, it may nevertheless 

add more detail to our understanding of seasonality and, possibly, medical plant use.  For 

these reasons, a second pollen study will be performed at a later date, using a fragment 

of each reserved half-specimen.   

Table 30.  Pollen Concentration Values for Coprolite Specimens 
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Prior Studies from Hinds Cave 

Stock.  The macrobotanical data derived from fifty-five coprolite specimens by 

Stock (1983) were divided into three clusters based upon a scree plot of the 

agglomeration coefficients and the visual inspection of the dendogram (Figure 38).   

Table 31 presents the average value of each constituent in each cluster.  .  Cluster 1 

(n=33) contains most of the specimens from this study.  There is a great diversity of 

dietary constituents recognized in these specimens, but none of them appear to be a 

dominant component of all the specimens.  The most abundant component is 

unidentified epidermal tissue.  Cluster 2 (n=10) shows very high levels of tuna seeds, 

both whole and broken.  There is a high diversity of seasonally available nuts and fruits 

in these specimens as well.  There is no evidence of prickly pear cactus epidermal cells, 

but a relatively high level of unidentified epidermal tissue.  Cluster 3 (n=12) has a much 

higher value for prickly pear cactus (Opuntia sp.) epidermal cells.  This suggests a 

greater dependence on nopales in the meals represented by these specimens.  Onion 

(Allium sp.) bulbs are also prevelant in these specimens.  There is relatively little 

evidence for seed and fruit consumption in these specimens.   

Figure 39 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 32 and 33 show the standardized canonical function 

coefficients and the structure matrix respectively.  Table 32 confirms that prickly pear 

cactus epidermal cells have a strong negative correlation for function 1 and a strong  
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positive correlation for function 2.  Prickly pear tuna seeds (both broken and whole) 

show a strong positive correlation with function 1.  Interestingly, seeds from the 

Paniceae tribe of the Poaceae family, which do not appear to be an important driver of 

the clustering results, have a very strong negative correlation with function 1.  This is 

reinforced by the structure matrix in Table 33. 

The lack of epidermal identification in this study precludes any strong statement 

on consumption patterns.  The third cluster reflects a diet focused on the exploitation of 

nopales and the second cluster, that of tunas, but the majority of the specimens in the 

study fall into the first cluster.  The dominant component used to group these specimens 

is unidentified epidermal tissue.  This epidermal tissue may be derived from sotol, 

lechuguilla, or an unknown resource.  Further statements of diet-breadth for these 

specimens are therefore restricted to the clearly differentiated use of prickly pear 

resources indicated in clusters 2 and 3.   
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Figure 38. .  Dendogram of Stock’s (1983) Data based on Ward's Method 
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Table 31.  Mean Values of Stock’s (1983) Data by Cluster 

 
Figure 39.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Data from Stock 
(1983) 
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Table 32.  Discriminant Function Coefficients of Cluster Analysis of Stock (1983) 
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Table 33.  Structure Matrix of Cluster Analysis of Stock (1983) 
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Williams-Dean.  The specimens analyzed by Williams-Dean (1978) were 

divided into three clusters based upon a scree plot of the agglomeration coefficients of 

her macrobotanical data and visual inspection of the dendogram (Figure 40).   Table 34 

presents the average value of each constituent in each cluster.  Cluster 1 (n=31) has a 

much higher average value for prickly pear cactus epidermal cells than the total 

assemblage.  There is also a higher average value for onion bulb fragments.  Cluster 2 

(N=50) has a high diversity of constituents represented at low average levels.  Walnut 

(Juglans sp.) and Opuntia leptocaulis seeds have higher averages than the total 

assemblage.  Both bone fragments and lechuguilla epidermal cells are more abundant in 

this cluster than the total assemblage of coprolites.  There is relatively little evidence of 

prickly pear tuna seeds or epidermal tissue other than lechuguilla in these samples. 

Cluster 3 (n=19) has a very high level of tuna seeds.  Many of the tuna seeds in cluster 3 

were broken or crushed, which may indicate processing for short-term storage, a practice 

observed in the ethnohistoric record (De Leon 1971; Foster 2008b; Krieger 2002; Thoms 

2008b; Wade 2003).  Alternatively, the increased fragmentation could reflect greater 

mastication than seen in the other coprolite specimens from this study or possibly a case 

of “second harvest” of undigested dietary components from fecal matter during times of 

famine (Heizer 1967).  This practice, recorded in the ethnohistoric literature from 

Northern Mexico (Griffen 1969), seems unlikely, as it would suggest a pattern of 

repeated famine unsupported by the bioarchaeological data from the region (Hester et al. 

1989; Mailloux 2003). 
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Figure 40. Dendogram of Williams-Dean’s (1978) Data based on Ward's Method
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Figure 40.  Continued
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Figure 41 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 35 and 36 show the standardized canonical function 

coefficients and the structure matrix respectively.  As seen in Table 35, function 1 has a 

positive correlation with tuna seeds (broken, big, and little), mesquite (Prosopis sp.) 

seeds, and sand bur (Cenchrus sp.) seeds, and a negative correlation with persimmon 

(Diospyros sp.) seeds, amaranth (Amaranthus sp.) seeds, grape (Vitis sp.) seeds, onion 

bulb fragments, and prickly pear cactus epidermal cells.  Function 2 has a positive 

correlation with prickly pear cactus epidermal cells and sandbur seeds.  This is 

reinforced by the structure matrix in table 36. 

The first cluster (n=31) reflects a diet focused on nopales and onion bulbs.  Other 

constituents such as persimmon (Diospyros sp.) and hackberry (Celtis sp.) were 

encountered in trace amounts in several of the specimens.  The second cluster (n=50) has 

very low levels of identified plant resources.  The largest deviation from the mean for all 

specimens is exhibited by lechuguilla epidermal tissue, though it still occurs at very low 

levels.  Levels of walnut shell and cholla seed are also slightly elevated.  Prickly pear 

seeds and epidermal tissue are present at extremely low levels in these specimens, 

suggesting that this cluster is defined by lack of prickly pear resources.  It seems likely, 

based on the high fiber content and elevated lechuguilla epidermal tissue, that this 

cluster reflects a diet focused on roaster lechuguilla hearts supplemented by other 

resources.  Cluster 3 (n=19) contains specimens with high levels of prickly pear seeds, 

indicating a diet focused on the consumption of tunas as the staple resource.   
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Table 34.  Mean Values of Williams-Dean’s (1978) Data by Cluster   

 

 

Figure 411.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Data from 
Williams-Dean (1978) 
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Table 35.  Discriminant Function Coefficients of Cluster Analysis of Williams-Dean (1978) 
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Table 36.  Structure Matrix of Cluster Analysis of Williams-Dean (1978) 
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Edwards.  The specimens from Edwards (1990) were divided into three clusters 

based upon a scree plot of the agglomeration coefficients and the visual inspection of the 

dendogram (Figure 42).   Table 37 presents the average value of each constituent in each 

cluster.  Cluster 1 (n=24) has a much higher average value for burned bone than the total 

assemblage.  No plant resources seem to be an important common constituent of the 

specimens in this cluster.  There are low average values for both tuna seeds and 

unidentified epidermal tissue.  The specimens in cluster 2 (N=7) are dominated by tuna 

seeds.  While there are a number of other dietary constituents represented in these 

samples, they are present at relatively low levels other than tuna and persimmon seeds.  

Most of the coprolites that contained taxa unique to one specimen are included in this 

cluster.  Cluster 3 (N=8) has high average levels of unidentified epidermal tissue, which 

includes prickly pear cactus in this study.  This cluster also contains the only specimens 

with onion fragments in the assemblage.  There are very low levels of tuna and 

persimmon seeds.  There is no strong evidence of fruit or seed resources in these 

samples.   

Figure 43 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 38 and 39 show the standardized canonical function 

coefficients and the structure matrix respectively.  As seen in Table 38, function 1 has a  
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positive correlation with tuna seeds, hair, and persimmon seeds, and a negative 

correlation with unidentified epidermal cells and unburnt bone.  Function 2 has a 

positive correlation with unidentified epidermal cells, onion, and unidentified stems, as 

well as a negative correlation with unburnt bone.  This is reinforced by the structure 

matrix in Table 39. 

This study suffers from the same issues as that of Stock (1983).  The lack of any 

epidermal identification in this study limits assessment of diet-breadth for these 

specimens.  The only clear indicator of staple resource consumption in this study is the 

presence of prickly pear seeds in the second cluster.  The data from this study are still 

valuable in assessing seasonality of defecation and micro-habitat exploitation.  However, 

without identification of either fiber ultimates or epidermal tissue, the two major 

components in almost every specimen, any statements on diet-breadth of the specimens 

examined in this study are purely speculative.   
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Figure 422.  Dendogram of Edwards' (1990) Data based on Ward's Method 
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Table 37.  Mean Values of Edwards' (1990) Data by Cluster 

 
 

 
Figure 433.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Data from 
Edwards (1990) 
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Table 38.  Discriminant Function Coefficients of Cluster Analysis of Edwards (1990) 
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Table 39.  Structure Matrix of Cluster Analysis of Edwards (1990) 
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 Staple Isotope Data.  The macrofossil data from Williams-Dean (1978) are 

corroborated by stable carbon isotope values associated with recent radiocarbon dating 

of three of the coprolite specimens (Table 40) (Dean 2004).  As outlined in Chapter VI, 

stable carbon isotope data from coprolites should reflect the photosynthetic pathways of 

the major botanical components in the diet (Codron et al. 2007a; Codron et al. 2007b; 

Deniro and Epstein 1978; Sponheimer et al. 2003b; Sternberg et al. 1984).  While these 

data are available for too few specimens for any detailed analysis, it is interesting to note 

that there is some variation among the three samples.  Coprolite specimen 7, with 

membership in cluster 3, exhibits very high levels of prickly pear seed, and relatively 

large amounts of lechuguilla epidermal tissue compared to other specimens in Williams-

Dean’s (1978) study.  The reported δ13C value of -12.5‰ supports the dietary 

dependence on plant resources exhibiting CAM photosynthetic pathways, such as 

prickly pear and lechuguilla (Sternberg et al. 1984).   The dietary pattern represented in 

this cluster is that of staple dependence on prickly pear tunas.   

Coprolite specimen 8, grouped in cluster 1, yielded very high levels of prickly 

pear epidermal tissue and onion bulbs.  The reported δ13C value of -17.2‰ suggests a 

mix of C3 and CAM/C4 resources.  This is corroborated by the macrofossil data, which 

reflect a diet focused on both nopales (CAM) and onion (C3) resources.  The third 

sample, coprolite specimen 12, a member of cluster 2, presents an interesting situation.  

There are not very high levels of any identified resource in this specimen.  Onion bulbs 

and agave epidermal tissue are both reported, but the bulk of this specimen is composed 

of unidentified fiber.  The reported δ13C value of -13.1‰ suggests a diet dominated by 
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CAM/C4 resources with, possibly, a small amount of C3 resources also consumed.  It 

seems likely that this specimen reflects a diet dominated by lechuguilla hearts, which 

would have an abundance of fiber and, potentially, little adhering epidermal tissue, 

depending on processing (Woltz 1998).  Onion bulbs were also present in low quantities.  

Overall, this cluster exhibits a high diversity of constituents, but at very low levels.  The 

high levels of fiber and proportionally greater levels of agave epidermal tissue suggest 

that this cluster reflects a diet focused on the exploitation of lechuguilla as the primary 

plant resource with different supplemental resources incorporated when available.   

Staple carbon isotopes could prove a useful tool in corroborating the dietary 

patterns derived from the other lines of evidence considered in this study.  While the 

gross patterning of plant resources based on photosynthetic pathway may not reveal 

individual taxa, it can inform on the general nature of the diet.  This may be particularly 

useful for samples where the bulk of the specimen, generally fiber, has not been 

identified to a botanical source and other components only occur in very low levels, as is 

the case with the specimens in cluster 2.  This approach also allows for a direct 

comparison between the staple carbon isotope data for skeletal populations in the region 

(Bousman and Quigg 2006; Huebner 1991) and the staple carbon isotope data derived 

from coprolites.   
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Table 40.  Stable Carbon Isotope Data of Coprolites from Dean (2004) 

 

 aDNA Studies.  Poinar et al. (2001) have published aDNA data from three 

coprolite specimens recovered in the Hinds Cave excavation (Table 41).  While the 

context of these specimens is somewhat contentious, the data present an interesting view 

of the potential for combining aDNA studies with more commonly employed techniques 

in coprolite analysis.  While Poinar et al. (2001) also report on the recovery of mtDNA 

from both humans and animals in these specimens, this review focuses solely on the 

chloroplast DNA reported from plant taxa for clarity and comparison with the other data 

sets from Hinds Cave coprolites.  While there is some correlation between the molecular 

and macrofossil data of these specimens, the level of taxonomic identification for the 

aDNA data is at the family level, which limits inferences on families that contain more 

than one potential dietary component in the Lower Pecos canyonlands.  Unfortunately, 

the macrofossil data from these specimens is presented as a simple ubiquity for each 

taxa, with no indication of what part of the plant was recovered.  This limits comparison 

of these specimens with the data from the other studies of Hinds Cave coprolites. 
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 The aDNA data could indicate a much more diverse diet than that reflected in the 

macrofossil data (Table 41).  Five additional families not recovered in the macrofossils 

were present in the aDNA amplifications.  However, it is possible that some of these 

identifications may be the result of DNA amplification of pollen or gut contents of small 

animals consumed in the diet, rather than direct dietary consumption (Reinhard et al. 

2008).  In addition, Reinhard et al. (2008) argue that some of the aDNA sequences 

identified by Poinar et al. (2001) are best explained as evidence of medicinal use of plant 

resources rather than dietary consumption.  It is interesting to note that all three 

specimens contained macrofossil evidence of onions, lechuguilla and yucca, but had 

highly variable aDNA identifications, ranging from zero to ten out of a possible eleven 

cloned sequences.  Clearly there is great potential for aDNA studies of coprolite 

specimens, both as a source of human mtDNA as well as aDNA from dietary and 

medicinal components in the coprolite.  However, the limited handful of specimens with 

aDNA from Hinds Cave and the lack of understanding of the relationship of the aDNA 

results to dietary consumption preclude further interpretation.   
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Table 41.  Chloroplastic aDNA data of Coprolites from Poinar et al. (2001) 
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Other Coprolite Studies from the Lower Pecos Canyonlands 

 Parida Cave. This small study of coprolites (n=11) from Parida Cave was 

primarily focused on the analysis of pollen grains in the specimens (Riskind 1970).  The 

macrofossil data was recorded only as an ubiquity measure.  Nonetheless, the data 

comprise the first published results of macrofossil data from coprolites in the Lower 

Pecos canyonlands.  The lack of quantification limits interpretation, but some patterns of 

resource exploitation are evident in these data.  The specimens were divided into three 

clusters based upon a scree plot of the agglomeration coefficients and the visual 

inspection of the dendogram (Figure 44).   Table 42 presents the average value of each 

constituent in each cluster.  Cluster 1 (n=3) consists of all specimens in the study that 

contained agave fiber.  Each specimen in this cluster also contained onion bulbs and 

unidentified grass seeds.   

 The specimens in cluster 2 (n=3) are differentiated from the other coprolites in 

the study by the presence of an unidentified stem.  These specimens in this cluster also 

contain unidentified grass seeds.  Cluster 3 (n=5) serves as a catchall for the remaining 

coprolites in the study.  This is clear from the dendogram (Figure 44) as well.  Most of 

the dietary components unique to this cluster only occur in one of the five specimens.  

Prickly pear vascular bundles occur in every specimen in this study.  Prickly pear seeds 

occur in over half (6 of the 11) of the specimens, but do not play a role in defining the 

clusters. 
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 Figure 45 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 43 and 44 show the standardized canonical function 

coefficients and the structure matrix respectively.    Onion bulbs are the primary driver 

of the first function.  The second function is positively correlated with the presence of 

sand and negatively correlated with mammal bone.   

 Overall, this study indicates that human populations occupying Parida Cave 

during the Late Archaic continued to depend on lechuguilla, onion, and prickly pear as 

important dietary resources.  This study also documents grass seed as a possible dietary 

resource.  Further statements on this collection are limited by both the small number of 

samples and the method of quantification utilized by Riskind (1970).  

 

 

Figure 444.  Dendogram of Riskind’s (1970) Data based on Ward’s Method 
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Table 42.  Mean Values of Riskind's (1970) Data by Cluster 

 
 

 
Figure 455.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Data from 
Riskind (1970) 
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Table 43.  Discriminant Function Coefficients of Cluster Analysis of Riskind (1970) 

 
 
Table 44.  Structure Matrix of Cluster Analysis of Riskind (1970) 

 
 
 Conejo Shelter.  The data from Bryant (1974) were divided into four clusters 

based upon a scree plot of the agglomeration coefficients and the visual inspection of the 

dendogram (Figure 46).   The data from this study were presented using a slightly 

different ordinal scale of visual estimation of percentage-volume (Table 45).   
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Figure 466.  Dendogram of Bryant's (1974) Data based on Ward's Method 
 
 Table 46 presents the mean value of each constituent by cluster.  Cluster 1 (n=22) 

is characterized by elevated levels of onion bulbs and prickly pear fiber.  This cluster 

also contains a specimen with identified Setaria sp. seed.  The specimens in this cluster 

exhibit low levels of prickly pear seeds  and below average levels of agave/sotol/yucca 

fiber, treated here as a single category.  Cluster 2 (n=11) contains specimens that exhibit  
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Table 45.  Ordinal Scale for Percent-Volume Measurements of Bryant (1974) 

 

high levels of prickly pear seeds and fiber.  Some specimens in this cluster also contain 

Chenopodium sp. seeds.  Cluster 3 (n=7) consists of coprolite specimens with large 

amounts of agave/sotol/yucca fiber.  Aquatic monocot fibers are also a distinguishing 

characteristic of this cluster.  There are below average values for prickly pear fiber and 

onion bulbs in this cluster.  Specimens from Cluster 4 (n=3) contain only two resources.  

Prickly pear fiber occurs, but at the lowest levels seen in all the specimens from this 

study.  The only other identified component in these specimens is an unidentified bark.  

Table 46.  Mean Values of Bryant’s (1974) Data by Cluster 
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Figure 477.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Data from 
Bryant (1974) 
 
 Figure 47 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 47 and 48 show the standardized canonical function 

coefficients and the structure matrix respectively.  Function 1 is negatively correlated 

with prickly pear seeds and positively correlated with onion bulbs.  Function 2 is 

positively correlated with all three classes of fiber identified in this study and negatively 

correlated with the unidentified bark resource.  Function 3 distinguishes between these 

fiber types, with prickly pear fiber positively correlated and agave/sotol/yucca fiber and 

aquatic monocot fiber negatively correlated. 

 Three of the four clusters from the Late Archaic coprolite analysis of this 

centrally located rockshelter can be directly correlated with the menus or dietary 

combinations noted in the Hinds Cave studies.  The first cluster reflects a diet of nopales 

and onion bulbs.  The second cluster indicates a diet dominated by tunas and 

supplemented by small amounts of other seasonal resources, such as Chenopodium sp. 
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seeds.  The third cluster is characterized by the fibrous remains of desert succulents and 

an aquatic geophyte.  These are resources that would require extensive cooking in earth-

ovens to render the carbohydrates digestible.   This study also indicates aspects of the 

regional diet that are not prevalent at Hinds Cave, specifically the use of small seeds as 

food resources.  

  
Table 47.  Discriminant Function Coefficients of Cluster Analysis of Bryant (1974) 

 

Table 48.  Structure Matrix of Cluster Analysis of Bryant (1974) 
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 Baker Cave.  The data from Sobolik (1991) were divided into four clusters based 

upon a scree plot of the agglomeration coefficients and the visual inspection of the 

dendogram (Figure 48).   Table 49 presents the average value of each constituent in each 

cluster.  Cluster 1 (n=7) is dominated by prickly pear fiber (epidermal tissue).  The only 

other resource that occurs at a level above the mean for all specimens combined is acorn 

shell. Cluster 2 (n=18) is defined primarily by high levels of epidermal tissue from an 

unknown resource and the presence of walnut shell.  Cluster 3 (n=3) consists of coprolite 

specimens with large amounts of prickly pear seed. Specimens from Cluster 4 (n=10) 

exhibit elevated levels of onion epidermal tissue as well as high levels of charcoal.  Sotol 

epidermal tissue is also elevated above the mean value for all specimens in the study.   

Table 49.  Mean Values of Sobolik’s (1991) Data by Cluster 
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Figure 488.  Dendogram of Sobolik's (1991) Data based on Ward's Method 
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 Figure 49 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 50 and 51 show the standardized canonical function 

coefficients and the structure matrix respectively.  Function 1 is negatively correlated 

with prickly pear seeds.  Function 2 is positively correlated with charcoal and negatively 

correlated with prickly pear epidermal tissue.  Function 3 further distinguishes between  

epidermal tissue, as prickly pear and onion epidermal tissue are positively correlated and  

the unknown fiber type is negatively correlated. 

 
Figure 49.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Data from 
Sobolik (1991) 
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Table 50.  Discriminant Function Coefficients of Cluster Analysis of Sobolik (1991) 

 
 
Table 51.  Structure Matrix of Cluster Analysis of Sobolik (1991) 
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 These coprolite specimens from Late Archaic populations along the eastern edge 

of the Lower Pecos canyonlands record some of the same dietary practices observed in 

the specimens recovered along the Pecos River drainage.  However, there are some 

important differences for this site, located in the more mesic oak-cedar zone of the 

Balconian biotic province (Blair 1950).  The first cluster exhibits a dependence on 

nopales as a staple resource, with lesser amounts of sotol and lechuguilla also observed.  

The dependence on just epidermal identification, rather than a combination of epidermal 

and fiber identification, may skew the interpretation of the diet due to differences in 

resource processing (Woltz 1998).  The second cluster deviates from the dietary patterns 

observed in the more westerly sites, exhibiting a marked dependence on an unidentified 

resource represented by epidermal tissue and walnut shell.  This resource combination 

suggests that the diet represented in this cluster is geared towards the available resources 

of the Edwards Plateau rather than the canyonlands per se.  Its possible that the 

unidentified epidermal tissue is from a geophyte.  This is corroborated by the relatively  

high level of charcoal in these samples, suggesting a baked resource.  The third cluster, 

which only contains three specimens, contains specimens with high levels of prickly 

pear seeds, indicating a diet dependent on tunas as the primary resource.  The fourth 

cluster reflects a diet high in baked onion, suggested by the high levels of onion 

epidermal tissue and charcoal.  This cluster also exhibits higher than average levels of 

sotol epidermal tissue, suggesting that this was a complementary resource in these meals 

as well.  Again, the differences in the amount of epidermal tissue expected from onions 

versus sotol limit quantifying the exact relationship between these two resources.  
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Overall, the human population occupying Baker Cave in the Late Archaic practiced a 

subsistence strategy similar in many ways to sites from the rest of the Lower Pecos 

canyonlands.  This strategy also incorporated more mesic resources, such as walnut, that 

would not have been as available further to the west.   

 Frightful Cave.  The data from the coprolites recovered from this site, located far 

to the south of the Lower Pecos canyonlands in the Quatro Cienegas basin in Coahuilla, 

were divided into four clusters based upon a scree plot of the agglomeration coefficients 

and the visual inspection of the dendogram (Figure 50).   Table 52 presents the average 

value of each constituent in each cluster.  Unlike the other sites, which were all 

quantified by visual estimation of percent-volume converted into an ordinal scale, the 

data from this site were quantified by percent-weight.  The results of this cluster analysis 

are presented using the percent-weight data from the original study.  Cluster 1 (n=11) 

exhibits a dominance of prickly pear seed.  Cluster 2 (n=9) is primarily grouped based  

on higher levels of prickly pear epidermal tissue, onion seed pods, and an unknown fiber 

type.  Very few prickly pear seeds were recovered in specimens in this cluster.  Cluster 3 

(n=5) is dominated by an unknown epidermal tissue type.  Prickly pear seeds are nearly 

non-existent in these five specimens.  Cluster 4 (n=7) is defined by a diversity of seed 

resources, including milkweed (Asclepius sp.), hackberry (Celtis sp.), cholla (Opuntia 

imbricata), indian rice grass (Oryzopsis sp.), texas pistachio (Pistacia texana), and 

mesquite (Prosopis juliflora).  The specimens in this cluster also contain high levels of 

cactus epidermal tissue associated with the cholla seeds.   
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Figure 50.  Dendogram of Fry’s (1975) Data based on Ward's Method 
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Table 52.  Mean Values of Fry’s (1975) Data by Cluster 

 

 Figure 51 provides a visual display of the clusters along the first two factors 

generated with CDA.  Tables 53 and 54 show the standardized canonical function 

coefficients and the structure matrix respectively.  Function 1 is negatively correlated 

with unknown epidermal tissue, grit, and eggshell.  Function 2 is positively correlated 

with unknown fiber and unknown epidermal tissue and negatively correlated with 

prickly pear seeds and charcoal.  Function 3 is positively correlated with prickly pear 

seeds and cactus epidermal tissue and negatively correlated with charcoal.   
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 This study from the Quatro Cienegas basin shares some similarities with the 

dietary patterns observed in specimens from the Lower Pecos, but is also markedly 

different in many aspects.  The first cluster is comprised of specimens that exhibit a 

staple dependence on tunas, with limited amounts of other subsistence resources.  The 

second cluster reflects a diet focused on nopales and an unknown fibrous resource that  

may be sotol or an agave species.  The third cluster exhibits a dominance of an unknown 

epidermal tissue type.  Again, this may be sotol or an agave species, since neither is 

identified in Fry’s (1975) report, but this is purely speculative.  The fourth cluster 

exhibts the most differences from the studies in the Lower Pecos canyonlands.  This 

cluster is defined by a diverse diet of seasonally available fruit and small seed resources.  

Overall, this study indicates that at least some of the subsistence patterns observed in the 

Lower Pecos canyonlands extend across the greater Chihuahuan desert.  However, there 

are several suites of resources such as the seasonally available small seeds that do not 

appear to be very important in the canyonlands.  The possible explanations for this will 

be explored further in the following section.  
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Figure 491.  Placement of Clusters along Canonical Discriminant Functions 1 and 2.  Data from Fry 
(1975) 
 
Table 53.  Discriminant Function Coefficients of Cluster Analysis of Fry (1975) 
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Table 54.  Structure Matrix of Cluster Analysis of Fry (1975) 

 

Skeletal Stable Carbon Isotopes from the Lower Pecos Canyonlands 

 A total of 31 human burials from the Lower Pecos canyonlands and surrounding 

region have staple carbon isotope data from bone collagen samples (Table 55) (Bement 

1994; Bousman and Quigg 2006; Huebner 1991; Skinner 1978).  These data present 

some long term dietary signals that complement the dietary reconstruction based on the 

coprolite evidence available from the canyonlands.  These data are not directly 
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comparable, as the δ13C values are a composite record of long-term diet, influenced by 

the δ13C values of both plant and animal resources.  This can be clarified with reference 

to the δ15N values from the same specimens, but this is not available for all of the 

specimens presented here.   This limits dietary inference, since differences can be due to 

changes in both the source and abundance of animal food resources in addition to plant 

foodstuffs.   

Table 55.  Stable Carbon Isotope Data from Regional Skeletal Data 
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 The most complete temporal record of burials comes from Bering Sinkhole, a 

vertical shaft sinkhole located to the east of the canyonlands securely in the Oak-Cedar 

zone of the Balconian Biotic Province (Blair 1950).  A total of sixteen separate burials 

from across the Archaic were recovered from this site (Table 55).  The remaining fifteen 

specimens come from rockshelter or vertical shaft sinkholes from the sotol-lechuguilla 

zone of the Chihuahuan Biotic Province.  Three of these sites are from the Lower Pecos 

canyonlands.  Eight Early Archaic specimens were recovered from the Seminole Sink 

burial site.  The other specimens all date from the Late Archaic contexts (Table 55).  The 

results will be presented in chronological order.   

 The Early Archaic samples (n=8) from Seminole Sink exhibit δ13C values that 

range between a diet dominated by CAM/C4 plant resources and a diet focused primarily 

on C3 resources.  This set of samples exhibits the largest range δ13C  (-11.4 ‰ to -

18.4‰, mean -14.6‰) observed for any of the contexts presented here and suggest that 

the burials at the site include at least two populations with differing subsistence 

strategies incorporating both CAM/C4 and C3 resources in different amounts (Bousman 

and Quigg 2006).  The Early Archaic data (n=5) from the more mesic Bering Sinkhole 

have a similar mean δ13C value (-14.7‰) to the samples from Seminole, but are much 

less variable (-13.7‰ to -15.2‰), clustering tightly around a value indicating a diet 

mixed equally between resources utilizing C3 and CAM/C4 photosynthesis.    

 There are no Middle Archaic data from the Lower Pecos canyonlands or 

elsewhere in the surrounding Chihuahuan Desert.  The Middle Archaic data (n=4) from 

the Bering Sinkhole site have a mean δ13C value of -16.0‰ with a range from -15.2‰ to 
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-16.6‰.  These data indicate that the human population utilizing this vertical shaft for 

interment during the Middle Archaic incorporated more C3 resources into their 

subsistence strategy than the prior Early Archaic populations.  Overall, the diet was 

mixed, incorporating both C4/CAM and C3 plant resources in some abundance.  This 

may indicate a long-term mobility pattern that incorporated a larger region than the 

Lower Pecos canyonlands and extended into the Edwards Plateau or other regions with a 

greater abundance of plant resources exhibiting C3 photosynthesis.  It is unclear if this 

pattern holds for the Lower Pecos canyonlands, but it seems unlikely based on the data 

available from the Early and Late Archaic.   

 The Late Archaic samples (n=7) from the Chihuahuan Desert Biotic Province 

have a mean δ13C value of -13.5‰ and range from -12.3‰ to -15.7‰.  These data 

suggest a population with a well-mixed diet with a primary focus on CAM/C4 plant 

resources.  The Late Archaic data (n=7) from the Bering Sinkhole site exhibit the most 

depleted δ13C values of any context presented in this current review (mean -16.6‰, 

range -15.8‰ to -17.5‰)  These two sets of Late Archaic data indicate that the hunter-

gatherers in the Lower Pecos canyonlands were more dependent on CAM/C4 resources 

than those groups located further to the east in the Edwards Plateau.   

 While these data present an image of dietary consumption that is not fully 

consistent with the patterns recorded in the coprolite data, the overall importance of 

CAM plant resources among the Archaic human populations in the canyonlands is 

corroborated.  There, skeletal isotope date suggest more dietary variation among Early 

Archaic populations in the canyonlands than is recorded in the available coprolite data.  
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The range of δ13C values from Seminole Sink are inconsistent with the distribution 

expected by a population with a homogenous diet (Bousman and Quigg 2006).  Both of 

these populations exhibit some dependence on CAM/C4 plant resources.  The overall 

picture of diet across the Archaic from the two groups of data suggest that populations 

on the Edwards Plateau increasingly relied on C3 plant resources in their diet, while the 

Lower Pecos hunter-gatherer populations were principally dependent on CAM/C4 plant 

resources.  This corroborates the more precise, but temporally limited, data available 

from coprolites, which suggest at least seasonal dependence on CAM resources such as 

prickly pear tunas and lechuguilla hearts.  C3 plants were also a part of the dietary 

pattern, demonstrated by both the common occurrence of sotol and onion in many of the 

specimens as well as the more mesic resources recovered in the Late Archaic coprolite 

study from Baker Cave (Sobolik 1991a).  Overall, the long-term dietary trends recorded 

in the skeletal δ13C values from the Lower Pecos canyonlands accord well with the 

coprolite data.  These populations consumed a wide-variety of plant and animal 

resources, but were dependent on xeric CAM plant resources for the bulk of their caloric 

needs. 

 All of the available dietary data from the Lower Pecos canyonlands show a 

similar dependence on desert succulent resources throughout the Archaic.  Diet-breadth 

is highly variable across the seasons, as should be expected among forager populations.  

A cool season dependence on baked resources such as lechuguilla and sotol extends back 

to the earliest coprolite records available in the canyonlands.  The following chapter 

evaluates the coprolite specimens with reference to diet-breadth and seasonality.   
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CHAPTER IX 

SUMMARY 

 

 The data from the current study expands prior dietary reconstructions for the 

Lower Pecos canyonlands.  This discussion focuses on seasonality and diet-breadth 

interpretations of the clusters generated in the previous chapter.  Overall, the data 

generated and synthesized herein suggest that a diet-breadth model using caloric return 

as the currency does not fully explain the seasonal dependence on low-ranked resources 

such as nopales and onion bulbs.  The coprolite data, ranging in time from the Early 

Archaic to the Late Archaic, corroborate the strong dependence on the seasonal staples 

of lechuguilla, nopales, and tunas observed in the ethnohistoric literature.  The temporal 

endurance of this subsistence strategy suggests that there may be some components of 

this dietary pattern which could inform on many of the diet-related health issues 

observed among modern Native-American and other populations (Johnston 2007; 

Nabhan 2002; Olson 1999; Richards and Patterson 2006; Taylor 2005; Teufel 1996; 

Watts et al. 2007; Wiedman 2005).  This is discussed below, followed by a brief 

summary of research directions that may strengthen future coprolite studies. 

Diet and Seasonality in the Lower Pecos Canyonlands 

The data from the coprolite studies presented above is used to assess the diet-

breadth model developed in this current study.  As mentioned before, the limited 

identification of both the fiber and epidermal tissue components for most of these 

specimens does preclude a full identification and interpretation of the staple resources 
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consumed in the meals represented in the coprolite.  This section initially presents the 

diet-breadth interpretation of the thirty specimens included in the current study followed 

by some additional interpretation of the available data from the other studies (Bryant 

1974b; Edwards 1990; Fry 1975; Riskind 1970; Sobolik 1991a; Stock 1983; Williams-

Dean 1978). 

The three clusters of specimens from the current study correlate nicely with 

dietary predictions based on the ethnohistoric record (Table 56) (De Leon 1971; Krieger 

2002; Thoms 2008b).  The first cluster (n=16) indicates a diet focused on the desert 

succulent resources of lechuguilla and sotol, with smaller amounts of onion bulbs also 

consumed.  These specimens fit the expectations of a winter/early spring diet  focused on 

the highest caloric return resources available in the canyonlands during that season.  The 

inclusion of calorically limited onions may indicate that diet breadth for these spring and 

winter meals is fairly broad.  However, there is little indication of small animal resources 

in these specimens compared with the other clusters.  This cluster also includes the only 

direct evidence of large animal consumption from the current study.  Overall, this cluster 

represents meals with a mixed diet-breadth, incorporating both low and high ranked 

resources available in the cold season.   
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Table 56.  Diet-Breadth and Seasonal Interpretations of Coprolite Clusters from Hinds Cave Data 

 

The second cluster (n=4) from the current study represents the digested residue 

of meals composed almost entirely of nopales and sotol hearts, with the nopales making 

up the bulk of the plant-based diet.  These specimens represent a seasonal dietary 

strategy focused on low-ranked nopales somewhat supplemented by the relatively high-

ranked sotol hearts.   This cluster accords nicely with the seasonal expectations of a 

spring diet from the ethnohistorical record (De Leon 1971; Krieger 2002).  The third 

cluster (n=10) consists of coprolite specimens that reflect a diet dominated by prickly 
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pear tunas.  Other than less predictable and abundant mast resources such walnuts, tunas 

are the highest ranked resource in the diet-breadth model.  Both the ethnohistoric record 

and the model predict that hunter-gatherer populations in the canyonlands would depend 

on these resources as a major staple during the summer.  This is exactly what is seen in 

this cluster, which contains very little evidence of other plant resources.  The diet 

reflected in these specimens is focused on highly-ranked tunas to the exclusion of other 

plant resources.  Prickly pear cactus was an invaluable food resource across the Archaic.  

The tunas and seeds were a mid-summer staple and the nopales provided a reliable 

resource in times of seasonal scarcity. 

Prickly pear cactus seeds and epidermal tissue were also important clustering 

variables in the other coprolite assemblages from Hinds Cave considered in this present 

study.  Most specimens with high levels of tuna seeds [Stock Cluster 2 (n=10), Williams 

Dean Cluster 3 (n=19), and Edwards Cluster 2 (n=7)] have relatively low levels of other 

constituents, which reinforces the ethnohistoric record of the seasonal dominance of 

cactus tuna as a mid-summer resource (De Leon 1971; Krieger 2002; Taylor 1972; Wade 

2003).  This also supports the diet-breadth model, which predicts that hunter-gatherer 

populations in the Lower Pecos canyonlands would restrict their diet-breadth to just 

tunas when they were available for harvest.   

The clusters with high levels of prickly pear cactus epidermal tissue [Stock 

Cluster 3 (n=12), Williams Dean Cluster 1 (n=31), and Edwards Cluster 3 (n=8)] also 

have a low diversity of other constituents.  Each of these clusters also has higher levels 

of onion bulb fragments than the other clusters.  This supports the view of Edwards 
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(1990) that cold season coprolites will contain a low diversity of dietary constituents and 

a heavy dependence on a handful of seasonally available staples such as nopales or 

onions (Table 56).   

The remaining clusters [Stock Cluster 1 (n=33), Williams Dean Cluster 2 (n=50), 

and Edwards Cluster 1 (n=24)] are more difficult to evaluate, due to the limited 

identification of primary dietary components noted above.  Cluster membership seems to 

be due to the absence of high levels of prickly pear cactus seeds and epidermal tissue.  

The specimens in these three clusters (which account for the majority of specimens in 

each study) reflect a high diversity and low abundance of dietary resources.  I maintain 

that this is due to the lack of detailed identification of the major dietary constituents of 

fiber and epidermal tissue.  It seems likely that some of these specimens reflect a dietary 

dependence on lechugulla and sotol hearts, while others may indicate a broad-based diet 

on seasonally available fruit and seed resources, similar to the clustering exhibited by the 

specimens from Baker, Frightful, and Parida Caves (Table 57).   
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Table 57.  Diet-Breadth and Seasonal Interpretations of Coprolite Clusters from Other Sites 

 

Coprolite studies from the other sites discussed here exhibit some interesting 

parallels as well as differences in the revealed dietary patterns.  Three of the sites 

(Conejo Shelter, Baker Cave and Frightful Cave) contain clusters of specimens that 



  277  

    

 

exhibit a dependence on tunas [Bryant 2 (n=11), Sobolik 3 (n=3), and Fry 1 (n=11)] 

(Table 57).  This demonstrates that tunas were a preferred resource across their 

distribution, when available.  The same three sites, distributed across the ecotonal 

boundaries in the Lower Pecos as well as far to the south, also contain coprolites which 

reflect a diet focused on nopales and supplemented with other resources such as onion 

bulbs or acorns [Bryant 1 (n=22), Sobolik 1 (n=7), and Fry 2 (n=9)] (Table 57).  

Interestingly, all three sites in the Lower Pecos canyonlands (Parida Cave, Conejo 

Shelter, and Baker Cave) contain coprolites focused on the caudices of desert succulents 

[Riskind 1 (n=3), Bryant 3 (n=7), and Sobolik 4 (n=10)], while the study from Frightful 

Cave, located much further to the south, does not.  The analyses reviewed above all 

record a similar record of subsistence as the studies from Hinds Cave.  This dietary 

pattern includes a monolithic dependence on tunas during the summer, intensive 

exploitation of lechuguilla and sotol hearts during the cool season, and a focus on 

nopales in the spring or during other times of resource scarcity.   

The remaining clusters reflect some additional details of the subsistence patterns 

of hunter-gatherers in the canyonlands that have not been recorded for Hinds Cave.  

Three coprolite clusters [Riskind 2 (n=3), Riskind 3 (n=5) and Fry 4 (n=7)] exhibit a 

diverse and varied dependence on seed resources.  This dietary pattern may reflect a 

seasonal pattern of exploitation of these resources in the late summer/early fall.  An 

alternative explanation for some of these resources, which generally exhibit very little 

evidence of grinding or crushing had been proposed by Williams-Dean (1978), who 
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argues that the small grass seeds noted in some of the specimens in her study may not be 

dietary items, but rather the gut contents of consumed rodents and other small game.   

The remaining three clusters [Bryant 4 (n=3), Sobolik 2 (n=18), and Fry 3 (n=5)] 

are primarily defined by the presence of unknown resources.  This indicates that there 

continue to be unidentified elements in the subsistence strategy practiced by the hunter-

gatherer populations occupying the Lower Pecos canyonlands during the Holocene.  

Possible resources that remain to be explored include geophytes other than onionsand 

aquatic resources.   

Overall, the combined coprolite data presented here provide a robust set of data 

to explore the subsistence strategies employed by the Holocene hunter-gatherer 

populations in the Lower Pecos Canyonlands.  There are a total of 224 coprolite 

specimens from Hinds Cave, ranging from the Early Archaic to the Late Archaic, and 

another 124 coprolite specimens from the other sites.  While differing levels of 

identification and expertise limit direct comparison between these data sets, there are 

general observations that reinforce the more detailed analysis presented above.  Of the 

224 specimens analyzed by various researchers from Hinds Cave, sixty-six (29.5%) 

contain the digested residue of a meal including baked sotol or lechuguilla caudex (Table 

58).  Another forty-seven (20.3%) contain evidence of nopale consumption.  Forty-three 

of these specimens also contain onion bulbs, suggesting that these two resources were 

frequently consumed together as a meal.  Forty-six (19.8%) of the specimens from Hinds 

Cave are the residue of meals focused on tunas as a staple resource.  The remaining 

sixty-five specimens (29.0%) from Hinds Cave are not classifiable due to a lack of 
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identification of the primary components recovered from the specimens.  It seems likely 

that many of these remaining specimens reflect the consumption of either desert 

succulent resources or nopales, but the lack of epidermal and fiber identification from 

these studies (Edwards 1990; Stock 1983) precludes any secure statement of dietary 

reconstruction.   

The comparative data from the other sites considered here exhibit a similar 

pattern of dietary dependence (Table 58).  Overall, the data indicate that the plant 

resource components of many of the meals represented by these coprolite specimens 

were dominated by one or two staple plant resources.  While this is frequently 

supplemented with trace amounts of secondary resources such as hackberry fruits and 

other small fruits and seeds, the data indicate a stable exploitation of the four major 

resources considered in this study that spans the Holocene.  This fits well with the 

ethnohistoric observations of Cabeza de Vaca and De Leon the elder, both of whom 

indicate that the seasonal diet of the native groups observed was almost monolithic in 

composition (De Leon 1971; Krieger 2002; Thoms 2008b).  While this may be partly 

due to the outsider perspective and clear disdain accorded native lifeways by de Leon 

(1971), the coprolite data corroborates the overall pattern of heavy dependence on a few 

staple resources across the annual cycle.     
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Table 58.  Dominant Dietary Resources in Coprolite Specimens 

 

Both the ethnohistoric record and the coprolite data demonstrate that nopales and 

onions are much more important resources than would be predicted with the diet-breadth 

model.  This suggests that the human populations in the canyonlands depended on these 

low-ranked resources on at least a seasonal basis.  This may reflect a seasonal scarcity of 

food resources, since the clusters exhibiting high amounts of prickly pear cactus 

epidermal tissue indicate a late winter/early spring occupation of the site and generally 

have little evidence of combined meals with higher-ranked resources.  Alternatively, a 

diet-breadth model based on a currency of gross caloric return may not fully explain the 

dietary choices made by human populations occupying the Lower Pecos canyonlands.  It 

is possible that onion bulbs and nopales were incorporated into the diet for reasons other 

than gross caloric intake.  Nopales have been an important food resource across the 

Holocene among the human populations occupying the Lower Pecos canyonlands.   

As previous studies (Bryant 1974b; Dering 1979; Edwards 1990; Sobolik 1991a; 

Stock 1983; Williams-Dean 1978) have concluded, the human exploitation of the Lower 

Pecos environment appears to have followed a similar pattern across much of the 

Holocene.  In the studies presented here, which span most of the Archaic, prickly pear 

cactus was an important seasonal resource, both during the summer when tunas were 
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available and during the cool season, when the abundant nopales of these cacti would 

have been a low calorie but bulky food source.   This study also indicates that Hinds 

Cave has been used as a habitation across the seasons during the Archaic.  This 

researcher suggests that the mobility of populations in the Lower Pecos was more 

random and opportunistic than predicted in the model developed by Shafer (1986), 

responding to both long term and seasonal fluctuation in resource availability.   

The availability of resources from multiple microhabitats near the riverine 

settings throughout most of this arid region may have an important role in reducing 

large-scale mobility.  Human populations utilizing a broad-spectrum subsistence strategy 

could reduce their mobility costs while maintaining access to many important seasonal 

resources and, perhaps the most important staple of all, water (Taylor 1964).  Most of 

the clusters contained plant resources from both the local Cliff/Canyon microhabitat 

around Hinds Cave as well as from the Vega/Terrace microhabitat located in the canyon 

bottoms (Table 56).  This supports the tethered nomadism model of Taylor (1964) and 

suggests that much of the plant-based economy of human populations in the Lower 

Pecos was focused along the incised river systems of the region with limited use of the 

uplands for logistically-oriented hunting forays (Lord 1984; Saunders 1986).   

 The data presented in this study show that the human populations living along the 

northern fringe of the Chihuahuan Desert were dependent on fructan-based plant 

resources for the majority of their carbohydrate intake.  The temporal depth and spatial 

breadth of this strategy across most of arid North America has some important dietary 

implications for modern populations exhibiting genetic continuation with the pre-
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Columbian inhabitants of the region.  Many populations living near the Mexican-United 

States border, especially Native Americans and Mexicans with indigenous heritage, have 

extremely high levels of diet-induced health issues, such as obesity and diabetes (Archer 

et al. 2002; Fogg 2010; Wiedman 2005).  This is due, at least partly, to a major change 

in the carbohydrate composition of the diet of these populations over the last half-

millennium of cultural change (Johnston 2007; Richards and Patterson 2006; Taylor 

2005, 2006; Teufel 1996).  Soluble dietary fibers generally, and specifically fructans, 

have been shown to have a positive, ameliorating effect on lipid and glucose metabolism 

(Beylot 2005; Daubioul et al. 2002; Daubioul 2005; Delzenne and Daubioul 2000; 

Roberfroid 1999; Williams and Jackson 2002).  Studies have shown that the fructan 

components of both Agave sp. and Dasylirion sp. have similar effects on metabolic 

function as the commercially available fructans derived from chicory root (Cichorium 

intybus (LINN.)) (Ur et al. 2008).  These data suggest that attempts to address the high 

prevalence of obesity and diabetes among indigenous populations in the Chihuahuan 

Desert with diet should focus on the promotion of neglected, tradititional food resources, 

both as whole foods as well as sources of fructans for the food industry (Huazano-Garcia 

2009; Lopez and Urias-Silvas 2007b).  In addition to the metabolic regulation benefits 

mentioned above, fructans have a positive impact on colon cancer (Langlands et al. 

2004; Leach 2007; Pool-Zobel and Sauer 2007; Taper and Roberfroid 2002) and general 

colonic health (Heizer et al. 2009) as a prebiotic soluble fiber.  The incredible temporal 

depth of fructan consumption by human populations in the Chihuahuan desert has 
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already been noted by some researchers (Leach 2007; Leach and Sobolik 2010) and, it is 

hoped, may inform on the community health strategies applied in the borderlands today.   

Future Research Directions 

This study demonstrates the importance of exploring each of the congruent lines 

of evidence for dietary consumption available in a coprolite specimen.   However, there 

are several limitations of the current study that could be resolved with future research.  

While coprolites are direct indicators of diet, the limited understanding of the 

quantifiable relationship between the consumed food resources and the undigested 

residue in the coprolite prevent a direct reconstruction of the diet and, more specifically, 

nutrition represented by a specimen.  One method to address this limitation is the attempt 

to directly quantify the indigestible components of the major plant resources such as 

fiber and phytoliths, both in the coprolites as well as the plant resources directly.  To this 

end, a concentration value calculated by adding a known quantity of marker spores to a 

known weight of each coprolite and plant reference could provide a method for directly 

quantifying the abundance of these resources in the diet.  This method, derived from 

palynology, provides a direct measure of the amount of a resource represented in the 

specimen.  It also negates the issues of differential digestion by only comparing the 

indigestible components of previously identified plant resources.  A further analysis of 

this would require the development of several actualistic studies of diet and the resultant 

feces, similar to the work done on the passage of pollen through the human digestive 

system by Williams-Dean (1978).  This would provide a direct analogy for 

reconstructing diet from undigested and indigestible fecal residues.  In addition, this 
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approach would generate a better understanding of the differential rate of passage for 

various components such as fiber ultimates and phytoliths.    

This focus on congruent lines of evidence related to staple resource exploitation 

could also be strengthened through the increased application of staple carbon isotope and 

aDNA methods to the abundant coprolite record of the Lower Pecos canyonlands.  Both 

of these techniques have strengths that complement the microscopic data sets as well as 

weakness that are offset by those same congruent data sets.  Staple carbon isotopes 

provide a broad indication of dietary consumption based on differences in the 

photosynthetic pathways of resources.  While this reveals a very gross generalization of 

diet, it is directly quantifiable and can be used to strengthen the more refined, but less 

quantifiable, data derived from traditional paleoethnobotanical studies of coprolites.  

aDNA analysis focused on chloroplast DNA from plant resources suffers from a limited 

understanding of the sources of DNA recovered in coprolites (Reinhard et al. 2008), but 

could provide an additional source of dietary information and help identify some of the 

unknown components observed with microscopy.  Additionally, mtDNA analysis could 

clarify the role of larger animal resources in the diet, which are underrepresented among 

the faunal elements recovered from coprolite specimens (Reinhard et al. 2007; Sobolik 

1993).  Overall, the importance and reliability of these novel methods in coprolite 

analysis cannot be assessed until they have been applied to more specimens with 

paleoethnobotanical and faunal results. 

Direct radiocarbon dating of individual coprolites may provide a new method to 

evaluate intensity of occupation at sites such as Hinds Cave.  Rather than rely on 
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stratigraphy and associated radiocarbon dates, each specimen could be assigned a date of 

deposition.  This would help clarify the depositional nature of the discrete lenses 

observed during excavation.  Further, specimens from unknown or unsecure contexts, 

such as looters back dirt, could be assigned a temporal provenience.  This would be of 

great benefit at sites across the Lower Pecos canyonlands, where the upper deposits are 

frequently impacted by looting, grazing and other modern anthropogenic activities, 

forcing previous researchers to ignore the coprolite component of the Late Prehistoric 

and Historic periods that may be present at these sites.   

While the starch analysis of specimens in the current study did not add to our 

understanding of diet in the Lower Pecos canyonlands, it did demonstrate that starch can 

be recovered from coprolite specimens, despite its digestibility in the human gut.  The 

primary limiting factor of this study was the limited use of starchy resources in meals 

represented in the coprolite specimens.  The overall dietary reconstruction suggests that 

the technique will not be very useful for specimens from the canyonlands.  While there 

are a handful of specimens that indicate the consumption of small seed resources, the 

overall dietary pattern as well as lack of groundstone metates in the archaeological 

record suggest that small, starch-rich seeds were rarely consumed and were never a 

staple resource.  This technique may be applied better to coprolite specimens from 

regions with known dependence on small seeds, such as the Great Basin (Fry 1970; 

Rhode 2003; Rhode et al. 2006), or domesticates, such as the Puebloan Southwest (Clary 

1986; Fry and Hall 1975; Minnis 1989; Reinhard 1989; Sutton and Reinhard 1995), with 

better and more informative results.   
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Conclusion 

Evaluating coprolites as the direct record of individual dietary choices over a 

short temporal window provides an excellent framework to assess the diet-breadth, 

seasonality of deposition and menus observed in past human subsistence patterns.  The 

combined coprolite data available for the Lower Pecos canyonlands record a long term 

dietary pattern of seasonal dependence on a handful of staple resources, throughout the 

Archaic.  There are three major seasonal menus reflected in the coprolite data.  The first 

menu consists of nopales, and was principally, although not exclusively, consumed in 

the late spring.  This menu is primarily consumed when other resources were not readily 

available and may be considered a dependable but undesirable meal.  The second menu 

consists of pit-baked lechuguilla and sotol, common throughout the cool season.  This 

menu entails high processing costs, but would provide a reliable caloric return.  The 

third menu exhibits a monolithic reliance on tunas during the summer.  The ease of 

harvest and consumption is reflected in the seasonal dominance of this resource, which 

was assuredly a highly desirable meal.  These patterns of dietary consumption, which 

extend back eight thousand years, are corroborated by the written accounts of early 

European observers in the broader region.  This long temporal depth is a reflection of 

how successful this subsistence pattern was at extracting a living foraging in a marginal, 

arid environment. 
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APPENDIX A  

COPROLITE DATA FROM PRIOR HINDS CAVE STUDIES 

 
 
Macrofossil Data of Coprolite Specimens from Edwards (1990) – Part 1 

sample screen dirt rocks chitin charcoal bone 
Bone - 
burned feather 

1 3 2 0 1 0.1 2 0 0 
2 2 2 0 0.1 0 2 0 0 
3 3 2 0 1 0.1 1 0 0 
4 3 6 0 1 0 0 0 0 
5 4 2 0 2 0 2 0 1 
6 3 1 0 0 1 1 0 0 
7 2 2 0 0 0.1 1 0 0 
8 3 2 0 1 0 3 0 0 
9 3 2 0 1 1 1 0 0 
10 2 2 0 2 1 2 0 0 
11 2 1 0 1 0 1 0 0 
12 4 2 0 1 1 1 0 0 
13 5 2 1 1 1 1 0 0 
14 3 1 0.1 0 0.1 0 0 0 
15 3 2 0 2 1 2 0 0 
16 4 2 0 0 0 1 0 0 
17 3 2 0.1 0 2 0 0 0 
18 5 3 1 1 1 1 0 0 
19 5 2 0 1 0.1 0 0 0 
20 3 1 1 1 1 1 0 0 
21 7 1 1 1 0 0 0 0 
22 2 2 0 2 0 2 0 0 
23 2 2 0 1 1 1 0 0 
24 3 2 0 1 0 2 0 0 
25 2 1 0 1 0 0 0 0 
26 6 2 1 0 1 0 0 0 
27 5 3 0 1 0.1 1 0 0 
28 2 1 0 1 0 0 0 0 
29 2 0 0 0.1 0 0 0 0 
30 3 2 0 2 0 2 0 0 
31 2 1 0 0 0 0.1 0 0 
32 4 1 0 1 0 2 0 0 
33 3 2 0 0 0 0 0 0 
34 3 3 0 1 0 1 0 0 
35 2 1 0 0 1 1 0 0 
36 7 2 0 0 0 0 1 0 
37 7 0 0 1 0 0 2 0 
38 8 0 0 0 0 0 0 0 
39 7 1 1 0 1 0.1 0 0 
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Macrofossil Data of Coprolite Specimens from Edwards (1990) – Part 2 

sample fiber allium epidermis hair flake shell quid stems spine
opuntia 
sd. celtis sd.

1 4 0 1 0 0 0 0 0 0 2 0 
2 5 0 1 1 0 0 0 0 0 0 0 
3 2 0 2 0 0 0 0 0 0 4 0 
4 1 0 0 0 0 0 0 0 0 0 0 
5 2 0 3 0 0 0 0 0 0 0 0 
6 5 0 1 0 0 2 0 0 0 1 0 
7 5 0 1 0 0 1 0 0 1 2 0 
8 3 0 0 0 1 0 0 0 0 2 1 
9 4 0 2 0 0 0 0 0 0.1 1 0 
10 4 0 2 2 0 0 0 0 0 3 0 
11 7 0 0 0 0 0 0 0 0 2 0 
12 3 2 2 0 0 1 0 0 0 0 0 
13 3 0 1 0 0 1 0 0 0 1 1 
14 4 0 0 0 0 0 3 0 0 0 0 
15 3 0 2 0 0 1 0 2 1 0 0 
16 4 0 3 0 0 0 0 0 0 1 0 
17 2 0 0 0 0 0 0 0 0 5 0 
18 0 0 1 0 0 0.1 0 0 0 1 1 
19 3 0 2 0 0 0.1 0 0 0 0 0 
20 2 0 2 0 0 0 0 0 0 5 0 
21 2 0 0 0 1 1 0 0 0 0 0 
22 6 0 0 0 0 0 0 0 0 0 0 
23 4 0 1 2 0 0 0 0 0 3 0 
24 4 0 0 0 0 0 0 0 1 2 0 
25 5 0 1 0 0 0 0 0 0 3 0 
26 1 0 0 0 0.1 1 0 0 0 1 0 
27 2 0 1 0 0 2 0 0 0 1 0 
28 0 0 1 0 0 0 0 0 0 6 0 
29 1 0 1 0 0 0 0 0 0 7 0 
30 3 0 2 0 0 0 0 0 0 2 0 
31 6 0 2 0 0 0 0 0 0 0 0 
32 4 0 0 0 0 1 0 0 0 0 0 
33 4 0 4 0 0 0 0 0 0 0 0 
34 3 0 0 0 0 0 0 0 0 2 0 
35 4 0 4 0 0 0 0 0 0 1 0 
36 0 0 0 0 0 0 0 0 0 0 0 
37 0 0 0 0 1 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Edwards (1990) – Part 3 
sample diospyros misc cassia fabaceae poaceae polygonum cyperaceae asteraceae 
1 0 0 0 0 0 0 0 0 
2 0 0 2 0 0 0 0 0 
3 2 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 
8 1 1 0 1 0 0 0 0 
9 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 
11 0 0 1 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 
16 1 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 
20 1 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 
23 0 0 1 1 0 0 0 0 
24 0 0 0 1 0 0 0 0 
25 0 0 1 0 0 0 0 0 
26 0 0 0 0 0 0 0 0 
27 0 0 0 0 1 0 0 0 
28 0 0 0 0 0 1 2 1 
29 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 0 
36 0 1 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 0 
39 0 0.1 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 1 

sample bone 
bone 
burned 

hair 
rodent feather hair  fur scale skin 

1a       0.1 0 0.1 0.1 0.1 0 0 0 
3a       0.1 0.1 0.1 0 0 0 0 0 
4a       0.1 0.1 0.1 0 0 0 0 0 
9a       1 0 0.1 0 0 0 0 0 
10a      0.1 0 0.1 0 0.1 0 0 0 
11a      2 0 0 0.1 0 0 0 0 
16a      0.1 0.1 0 0 0 0 0 0 
20a      0.1 0 0.1 0 0.1 0 0 0 
21a      0.1 0 0.1 0 0 0 0 0 
22a      0.1 0 0.1 0 0 0 0 0 
26a      2 0 0 0 0 0 0 0 
27b      0.1 0 0.1 0 0 0 1 0 
29b      2 0 0 0 0 0 0 0 
30b      0 0 0 0 0 0 0 0 
32b      2 0 0 0 0 0 0 0 
34b      2 0 0.1 0 0 0 0 0 
37b      0.1 0 0 0 0.1 0 0 0 
38b      0 0 0 0 0 0 0 0 
39b      0.1 0 0 0.1 0 0 0 0 
40b      1 0.1 0 0 0 0 0 0 
41b      0.1 0 0 0 0 0 0 0 
42b      0.1 0.1 0 0 0 0 0 0 
44b      0.1 0.1 0 0 0.1 0 0 0 
46b      0 0.1 0 0.1 0 0 0 0 
49b      0.1 0 0.1 0 0.1 0 0 0 
51b      0 0 0 0 0.1 0 0.1 0 
2a       1 0 0.1 0 0 0 0 0.1 
5a       1 0 0.1 0 0.1 0 0 0 
7a       0.1 0 0.1 0.1 0.1 0 0 0 
8a       2 0.1 0 0.1 0.1 0 0 0 
12a      1 0 0.1 0 0 0 0 0 
13a      2 0.1 0 0.1 0.1 0 0 0 
15a      2 0 0.1 0 0.1 0 0 0 
17a      0.1 0.1 0 0 0.1 0 0 0 
19a      1 0 0.1 0 0 0 0 0 
23a      0.1 0 0.1 0 0.1 0 0 0 
24a      2 0 0.1 0 0 0 0 0 
31b      2 0 0.1 0 0.1 0 1 0 
33b      2 0 0.1 0 0 0 0 0 
35b      2 0.1 0.1 0 0.1 0 0 0 
43b      0.1 0.1 0 0 0 0 0 0 
50b      2 0.1 0.1 0 0 0 0 0 
52b      1 0 0 0 0.1 0 0 0 
6a       0 0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 2 

sample fiber glochids spine 
opuntia 
epidermis 

mixed 
epidermis allium tissue 

spine 
other 

1a       6 0.1 0 0 2 0.1 0 0 
3a       7 0.1 0 0 1 0 0 0 
4a       6 1 1 0 0 0 0 0 
9a       6 0.1 0 0 0 1 0 0 
10a      6 0.1 0 0 2 1 0 0 
11a      7 0.1 0 0 1 1 0 0 
16a      7 1 0.1 1 0 1 0 0 
20a      8 0.1 0 0 2 0 0 0 
21a      7 0.1 0 0 2 1 0 0 
22a      7 0.1 0 0 2 0.1 0 0 
26a      7 0.1 0 0 0 0 0 0 
27b      7 0 0 0 1 0 0 0.1 
29b      7 0 0 0 0 0 0 0 
30b      8 0 0.1 1 0 0.1 0 0 
32b      7 0 0 0 0 0 0 0.1 
34b      7 0.1 0.1 0 0.1 0 0 0 
37b      8 0.1 0 0 1 0 0 0 
38b      8 0 0 0 0 0 0 0 
39b      8 0 0 0 0 0 0 0 
40b      7 0 0 0 2 0 0 0 
41b      8 0 0.1 0 0 0 0 0 
42b      7 0.1 0 0 1 2 0 0.1 
44b      7 0.1 0 0 1 1 0 0 
46b      7 0.1 0.1 0 0 2 0 0 
49b      7 0 0 0 2 0.1 0 0 
51b      8 0.1 0 1 0 0 0 0 
2a       6 0.1 0 0 1 1 0 0 
5a       6 1 0 0 1 2 0 0 
7a       4 0.1 0.1 0 1 0.1 0 0.1 
8a       6 0.1 0 0 2 1 0 0 
12a      4 0.1 0 0 0 0 0 0 
13a      6 0 0 0 0.1 0.1 0 0 
15a      6 0.1 0.1 0 0 0 0 0 
17a      5 0.1 0 0 2 1 0 0 
19a      7 1 0 0 1 0 0 0 
23a      4 0.1 0 0 2 1 0 0 
24a      5 0.1 0 0 1 0 0 0 
31b      5 0.1 0 2 0 3 0 0 
33b      6 0 0 2 0 2 0 0 
35b      6 0.1 1 0 0 1 0 0.1 
43b      4 0 0.1 0 2 0.1 0 0 
50b      5 0.1 0 0 2 3 0 0 
52b      6 0.1 0 0 1 2 0 0 
6a       0 0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 3 

sample 
opuntia 
seed  

opuntia 
seed 
broken 

opuntia 
leptocaulis echinocerus coryphanthus juglans 

dasylirion 
seed 

1a       0 0 0 0 0.1 2 0 
3a       0 1 0.1 0 0 0 0 
4a       0 0.1 1 0 0 0 0 
9a       0 0.1 0 0 0.1 0 0 
10a      0 0 0 0 1 0 0 
11a      0.1 0.1 0 0 0 0 0 
16a      0 1 0 0 1 0 0 
20a      0 1 0 0 0 0 0 
21a      0 0.1 0 0 0.1 0 0 
22a      0 0 0 0 0.1 0 0 
26a      0 0.1 0 0 0 0 0 
27b      0 0 0 0 0 0 0 
29b      0.1 0 0 0 0 0 0 
30b      0 0 0 0 0 0 0 
32b      0 0 1 0 0 0 0 
34b      0 0 1 0 0 0 0 
37b      0 0 0 0 0 0 0 
38b      0 0 0 0 0 0 0 
39b      1 0.1 0.1 0 0 0 0 
40b      0 0 0 0 0 0 0 
41b      0 0 1 0 0 0 0 
42b      0 0 0 0 0.1 0 0 
44b      0 1 0.1 0 0.1 0 0 
46b      0 0 0 0 0 0 0 
49b      0 0 2 0 0 0 0 
51b      0 0 0 0 0 0 0 
2a       0.1 3 0 0 0 0 0 
5a       0 2 0 0 0 1 0 
7a       2 4 0 0 0 0 0 
8a       1 2 0 0 0 0 0 
12a      1 4 1 0 0.1 1 0 
13a      0.1 2 0 0 0 0 0 
15a      1 2 0 0 0.1 0 0 
17a      1 1 0.1 0.1 0 0.1 0 
19a      1 2 0 0 0 0 0 
23a      1 3 2 0 0 0 0 
24a      2 3 0 0 0 0 0 
31b      0.1 1 1 0 0 0 0 
33b      0 0 0 0 0 0 0 
35b      1 2 0 0 1 0 0 
43b      2 4 0 0 0 0 0 
50b      0 0.1 0 0 0 0 0 
52b      0 1 0 0 0 0 0 
6a       0 0 0 0 0 0 0 

 



  350  

    

 

 
Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 4 

sample 
yucca 
seed diospyros celtis prosopis carex chenopod paniceae sporobolus 

1a       0 0 0 0 0 0 0 0 
3a       0 1 0 0 0 0 0 0 
4a       0 1 0 0 0 0 0 0 
9a       0 1 0 0 0 0 0 0.1 
10a      0 1 0 0 0 0 0 0 
11a      0 0 0 0 0 0 0 0 
16a      0 0 0 0 0 0 0 0 
20a      0 0 0 0 0 0.1 0 1 
21a      0 0 0 0 0 0 0 0 
22a      0 0 0 0 0 0 0 0 
26a      0 0 0 0 0 0 0 0 
27b      0 0 0 0 0 0 0 0 
29b      0 0 0 0 0 0 0 0 
30b      0 0 0 0 0 0 0 0 
32b      0 0 0 0 0 0 0 0 
34b      0 0 0 0 0 0 0 0 
37b      0 0 0 0 0 0 0 0 
38b      0 0 0 0 0 0 0 0 
39b      0 0 0 0 0 0 0 0 
40b      0 0 0 0 0 0 0 0 
41b      0 0 0 0 0 0 0 0 
42b      0 0 0 0 0 0 0 0 
44b      0 0 0 0 0 0 0 0 
46b      0 0 0 0 0 0 0 0 
49b      0 0 0 0 0 0 0 0 
51b      0 0 0 0 0 0 0 0 
2a       0 0 0 0 0 0 0 0.1 
5a       0 0 0 0 0 0 0 0.1 
7a       0 0 0 0 0 0 0 0.1 
8a       0 1 0 0 0 0 0 0 
12a      0 1 0 0.1 0 0 0.1 0.1 
13a      0 1 0 0 0 0 0 0 
15a      0 0 0 0 0 0 0 0.1 
17a      0 0 0 0 0 0 1 0.1 
19a      0 0 0 0 0 0 0 1 
23a      0 0 0 0 0 0 0 0 
24a      0 0 0 0 0 0 0 0 
31b      0 0.1 0 0 0 0 0 0.1 
33b      0 0 0 0 0 0 0 0 
35b      0 0 0 0 0 0 0 0 
43b      0 0.1 0 0 0 0 0.1 0 
50b      0 0.1 0 0 0 0 0 0.1 
52b      0 0 0 0 0 0 0 0.1 
6a       0 0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 5 

sample 
poacea
e 

cenchru
s 

viti
s 

achen
e 

solanacea
e 

monoco
t 

unidentifie
d d 

unidentifie
d  e 

1a       0 0 0 0 0 0 0 0 
3a       0 0 0 0 0 0 0 0 
4a       0 0 0 0 0 0 0 0 
9a       0 0 0 0 0 0 0 0 
10a      0 0 0 0 0 0 0 0 
11a      0 0 0 0 0 0 0 0 
16a      0 1 0 0 0 0 0 0 
20a      0.1 0 0 0 0 0 0 0 
21a      0 0 0 0 0 0 0 0 
22a      0 0 0 0 0 0 0 0 
26a      0 0 0 0 0 0 0 0 
27b      0 0 0 0 0 0 0 0 
29b      0 0 0 0 0 0 0 0 
30b      0 0 0 0 0 0 0 0 
32b      0 0 0 0 0 0 0 0 
34b      0 0 0 0 0 0 0 0 
37b      0 0 0 0 0 0 0 0 
38b      0 0 0 0 0 0 0 0 
39b      0 0 0 0 0 0 0 0 
40b      0 0 0 0 0 0 0 0 
41b      0 0 0 0 0 0 0 0 
42b      0 0 0 0 0 0 0 0 
44b      0 0 0 0 0 0 0.1 0 
46b      0 0 0 0 0 0 0 0 
49b      0 0 0 0 0 0 0 0 
51b      0 0 0 0 0 0 0 0 
2a       0 0 0 0 0 0 0 0 
5a       0 0 0 0 0 0 0 0 
7a       0.1 0 0 0 0 0 0 0 
8a       0.1 0 0 0 0 0 0 0 
12a      0.1 0 0 0 0 0 0.1 0.1 
13a      0 0 0 0 0 0 0 0 
15a      0 0 0 0 0 0 0 0 
17a      0.1 0 0 0 0 0 0 0 
19a      0.1 0 0 0 0 0 0 0 
23a      0 0 0 0 0 0 0 0 
24a      0 0 0 0 0 0 0 0 
31b      0.1 0 0 0 0 0 0 0 
33b      0.1 0 0 0 0 0 0 0 
35b      0.1 0 0 0 0 0 0 0 
43b      0 0 0 0 0 0 0 0 
50b      0 0 0 0 0 0 0 0 
52b      0 0 0 0 0 0 0 0 
6a       0 0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 6 

sample 
unidentifie
d f 

unidentifie
d g 

unidentifie
d h 

 
unidentifie
d i 

Brassicacea
e 

epidermi
s noto 

anobida
e 

1a       0 0 0 0 0 0 0.1 
3a       0 0 0 0 0 0 0 
4a       0 0 0 0 0 1 0 
9a       0 0 0 0 0 2 0 
10a      0 0 0 0 0 0 0 
11a      0 0 0 0 0 0 0 
16a      0 0 0 0 0 0 0 
20a      0 0 0 0 0 0 0 
21a      0 0 0 0 0 0 0.1 
22a      0 0 0 0 0 0 0 
26a      0 0 0 0 0 0 0 
27b      0 0 0 0 0 0 0 
29b      0 0 0 0 0 0 0 
30b      0 0 0 0 0 0 0 
32b      0 0 0 0 0 0 0 
34b      0 0 0 0 0 0 0 
37b      0 0 0 0 0 0 0 
38b      0 0 0 0 0 0 0 
39b      0.1 0 0 0.1 0 0 0 
40b      0 0 0 0 0 0 0 
41b      0 0 0 0 0 0 0 
42b      0 0 0 0 0 0 0 
44b      0 0 0 0 0 0 0 
46b      0 0 0 0 0 0 0 
49b      0 0 0 0 0 0 0 
51b      0 0 0 0 0 0 0 
2a       0 0 0 0 0 0 0 
5a       0 0 0 0 0 0 0 
7a       0 0 0 0 0 0 0 
8a       0 0 0 0 0 0 0 
12a      0 0 0 0 0 0 0 
13a      0 0 0.1 0 0 0 0 
15a      0 0 0 0 0 0 0 
17a      0 0 0 0 0 0 0 
19a      0 0 0 0 0 0 0 
23a      0 0 0 0 0 0 0 
24a      0 0 0 0 0 0 0 
31b      0 0 0 0 0 1 0 
33b      0 0 0 0 0 0.1 0 
35b      0 0 0 0 0 0 0 
43b      0 0 0 0 0 1 0 
50b      0 0 0 0 0 0 0 
52b      0 0 0 0 0 0 0 
6a       0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 7 

sample crystals bark charcoal 
leaf 
dicot resin snail mussel 

1a       1 0 1 0 0 0 0 
3a       0 0 1 0 0 0 0 
4a       0 0 1 0 0 0 0 
9a       0 0 1 0 0 0 0 
10a      1 1 1 0 0 2 0 
11a      1 0 1 0 0 0 0 
16a      0 0 1 0 0 0 0 
20a      0 0 1 0 0 0 0.1 
21a      0 0 1 0 0 0 0 
22a      0 0 1 0 0 0 0 
26a      0 0 0.1 0.1 0.1 0 0 
27b      0 0 1 0 0 0 0 
29b      0 0 0.1 0 0 0 0 
30b      1 0 0.1 0 0 0 0 
32b      0.1 0 0.1 0 0 0 0 
34b      0 0 0.1 0 0 0 0 
37b      0.1 0 0.1 0 0.1 0 0 
38b      0.1 0 1 0 0 0 0 
39b      0 0 0.1 0.1 0 0 0 
40b      0 0 1 0 0.1 0 0 
41b      1 0 1 0 0 0 0 
42b      0 0 0.1 0 0.1 0 0 
44b      0 0 1 0 0 0 0 
46b      0 0 0.1 0 0 0 0 
49b      0 0 0.1 0.1 0 0 0 
51b      0 0 0.1 0 0 0 0 
2a       0 0 1 0 0 0 0 
5a       0 0 1 0 0 0 0 
7a       0 0 1 0 0 0 0 
8a       0 0 1 0 0.1 0 0 
12a      0 0 1 0 0 0 0 
13a      0 0 1 0 0 0 0 
15a      0 0 0.1 0 0 0 0 
17a      0 0 2 0 0 0 0 
19a      0 0 1 0 0 0 0 
23a      0 0 1 0 0 0 0 
24a      0 0 1 0 0 0 0 
31b      0 0 1 0 0 0 0 
33b      0 0 0.1 0 0 0 0 
35b      0 0 1 0 0 0 0 
43b      0 0 0.1 0 0 0 0 
50b      0 0 0.1 0 0 0 0 
52b      1 0 0.1 0 0 0 0 
6a       0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 8 

sample parasite helminth diptera ptinidae insect inorganic flakes 
1a       0 0 0 0 0 0.1 0 
3a       0 0 0 0.1 0 0.1 0 
4a       1 0 0 0.1 0 0.1 0 
9a       0 0 0 0 0 0.1 0 
10a      0 0 0 0.1 0 0.1 0 
11a      0 0 0 0.1 0 0.1 0 
16a      0 0 0 1 0 0.1 0 
20a      0 0 0 1 0 0.1 0.1 
21a      0 0 0 0 0 1 0 
22a      0 0 0 0.1 0 0.1 0 
26a      0 0 0 0 0 0.1 0 
27b      0 0 0 0 0 1 0 
29b      0 0 0 0 0 0.1 0 
30b      0 0 0 0 0 0.1 0 
32b      0 0 0 0 0 0.1 0 
34b      0 0 0 0 0 0.1 0 
37b      0 0 0 0.1 0 0.1 0 
38b      0 0 0 0 0 0.1 0 
39b      0 0 0 0 0.1 0.1 0 
40b      0 0 0 0 0 1 0 
41b      0 0 0 0.1 0 1 0 
42b      0 0 0 0.1 0 0.1 0 
44b      0 0 0 0 0 0.1 0 
46b      0 0 0 0 0 0.1 0 
49b      0 0 0 0 0.1 0.1 0 
51b      0 0 0 0 0 0.1 0 
2a       0 0 0 0.1 0 0.1 0 
5a       1 0 0 0 0 0.1 0.1 
7a       0 0 0 0.1 0 0.1 0 
8a       0 0 0 0.1 0 1 0.1 
12a      0 0 0 0 0.1 0.1 0 
13a      0 0 0 0.1 0 0.1 0.1 
15a      0 0 0 0.1 0.1 0.1 0 
17a      0 0 0 0 0.1 2 1 
19a      0 0 0 0 0 1 0 
23a      0 0 0 0 0.1 1 0 
24a      0 0 0 0.1 0 1 0 
31b      0 0 0 0.1 0 0.1 0 
33b      0 0 0 0 0 2 0.1 
35b      0 0 0 0.1 0 0.1 0 
43b      0 0 0 0.1 0 0.1 0 
50b      0 0 0 0 0 0.1 0 
52b      0 0 0 0 0 0.1 0 
6a       0 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 9 

sample bone 
bone 
burned 

hair 
rodent feather hair  fur scale skin 

18a      2 0.1 0.1 0.1 0 0 0 0 
25a      1 0 1 0 0.1 0 0 0 
14a      1 0.1 0 0 0.1 0 0 0 
28b      0.1 0.1 0.1 0 0 0 0.1 0 
36b      0.1 0 0 0 0 0 0 0 
45b      0 0 0.1 0 0 0 0 0 
47b      2 0 0.1 0 0 0 0 0 
48b      0 0 0 0 0.1 0 0 0 
53b      0.1 0 0 0 0 0 0 0 
54b      0.1 0 0 0 0.1 0 0 0 
55b      0.1 0 0.1 0 0 0 0 0 

 
Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 10 

sample fiber glochids spine 
opuntia 
epidermis 

mixed 
epidermis allium tissue 

18a      3 0.1 0 0 0 0 0 
25a      3 0.1 0 0 2 0 0 
14a      7 0.1 0 2 2 1 0 
28b      7 0.1 1 2 0 0 0 
36b      5 0.1 1 4 0 2 0 
45b      4 0.1 0.1 4 0 0 0 
47b      7 0 0 2 0 0 0 
48b      7 0 0 3 0 0 0 
53b      7 0.1 0 2 0 0.1 0 
54b      7 0 0 2 0 1 0 
55b      7 0.1 0 2 0 1 0 

 
Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 11 

sample 
spine 
other 

opuntia 
seed  

opuntia 
seed 
broken 

opuntia 
leptocaulis echinocerus coryphanthus juglans 

18a      0 0 0.1 0 0 0.1 0 
25a      0 0 0.1 0 0 0 0 
14a      0 0 0.1 0 0 0 0 
28b      0 0 0 1 0 0 0 
36b      0 0 0.1 0 0 0 0 
45b      0 0 2 0 0 0 0 
47b      0 0 0 0 0 0 0 
48b      0 0 0 0.1 0 0 0 
53b      0 0 0 1 0 0 0 
54b      0.1 0 0 1 0 0.1 0 
55b      0 0 0.1 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 12 

sample 
dasylirion 
seed 

yucca 
seed diospyros celtis prosopis carex chenopod paniceae 

18a      0 0 0 0 0 0 0 0 
25a      0 0 0 0 0 0 0 0 
14a      0 0 0.1 0 0 0 0 0 
28b      0 0 0 0 0 0 0 0 
36b      0 0 0 0 0 0 0 0 
45b      0 0 0 0 0 0 0 0 
47b      0 0 0 0 0 0 0 0 
48b      0 0 0 0 0 0 0 0 
53b      0 0 0 0 0 0 0 0 
54b      0 0 0 0 0 0 0 0 
55b      0 0 0 0 0 0 0 0 

 
Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 13 

sample sporobolus poaceae cenchrus vitis achene solanaceae monocot 
unidentified 
d 

18a      0.1 0 0 0 0 0 0 0 
25a      0 0 0 0 0 0 0 0 
14a      0 0 0 0 0 0 0 0 
28b      0 0 0 0 0 0 0 0 
36b      0 0 0 0 0 0 0 0 
45b      0 0 0 0 0 0 0 0 
47b      0 0 0 0 0 0 0 0 
48b      0 0 0 0 0 0 0 0 
53b      0 0 0 0 0 0 0 0 
54b      0 0 0 0 0 0 0 0 
55b      0 0 0 0 0 0 0 0 

 
Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 14 

sample 
unidentified  
e 

unidentified 
f 

unidentified 
g 

unidentified 
h 

 
unidentified 
i Brassicaceae 

18a      0 0 0.1 0 0 0 
25a      0 0 0 0 0 0 
14a      0 0 0 0 0 0 
28b      0 0 0 0 0 0 
36b      0 0 0 0 0 0 
45b      0 0 0 0 0 0 
47b      0 0 0 0 0 0 
48b      0 0 0 0 0 0 
53b      0 0 0 0 0 0 
54b      0 0 0 0 0 0 
55b      0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 15 

sample 
epidermis 
noto anobidae crystals bark charcoal 

leaf 
dicot resin 

18a      0 0 0 0 2 0 0 
25a      0 0 0 0 1 0 0 
14a      0 0 0 0 1 0 0 
28b      0 0 0 0 0.1 0 0 
36b      0 0 0 0 1 0 0.1 
45b      0 0 0 0 0.1 0 0 
47b      0 0 0 0 0.1 0 0 
48b      0 0 0 0 0.1 0 0 
53b      0 0 0 0 0.1 0 0 
54b      0 0 0 0 0.1 0 0 
55b      0 0 0 0 0.1 0 0 

 
Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 16 

sample snail mussel parasite helminth diptera ptinidae 
18a      0 0 0 0 0 0 
25a      0 0 0 0 0 0 
14a      0 0 0 0 0 0.1 
28b      0 0 0 0 0 0 
36b      0 0 0 0 0 0 
45b      0 0 0 0 0 0 
47b      0 0 0 0 0 0 
48b      0 0 0 0 0 0 
53b      0 0 0 0 0 0 
54b      0 0 0 0 0 0 
55b      0 0 0 0 0 0 

 
Macrofossil Data of Coprolite Specimens from Stock (1983) – Part 17 

sample insect inorganic flakes 
18a      0.1 4 0.1 
25a      0 0.1 0 
14a      0 0 0 
28b      0 0.1 0 
36b      0 0 0 
45b      0.1 0.1 0 
47b      0.1 0 0 
48b      0 0 0 
53b      0 0.1 0 
54b      0 0.1 0 
55b      0 0.1 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 1 

Sample Bone Fur 
Opuntia 
big 

Opuntia 
little 

Opuntia 
leptocaulis 

Opuntia 
broken Juglans Diospyros 

2 1 1 0 0 0 0 0 0 
3 3 0 0 0 0 0 0 0 
4 1 1 0 0 0 0 0 0 
5 2 1 0 2 2 2 0 0 
6 2 1 0 0 0 0 0 0 
7 0.1 0 0 0.1 0.1 3 0 0 
8 0.1 1 0 0 0 0.1 0 0.1 
9 2 1 0 0 0 0.1 0 0 

10 0.1 1 1 1 0 2 1 0.1 
11 2 1 0 0 0 0.1 0 0 
12 2 1 0 0 0.1 0.1 0.1 0 
13 2 1 0.1 0.1 0 2 0 0 
14 0.1 0 0 0 0.1 1 0 0 
15 2 1 0 0.1 0 1 0.1 0 
16 2 0 0 0 0 0.1 0 0.1 
17 2 0 0 0 0.1 0.1 0 0 
18 2 0 0 0 0 0.1 0 0 
19 3 1 0 0 3 0.1 0 0 
20 2 1 0 0 2 0 0 0.1 
21 2 1 0 0 0.1 0 2 0 
22 0.1 1 0 0.1 0 0.1 0 0 
23 2 1 0 2 0 3 0 0 
24 2 1 0 0 0.1 0.1 0 0 
25 0 0 0 0 0 0.1 0 0 
26 0.1 0 1 1 0 2 0 0 
27 2 1 0 0.1 0.1 0.1 0 0 
28 2 1 0 0.1 0.1 0.1 0 0 
29 0.1 0 0 0 0 0.1 0 0 
30 2 0 0 0 0 0 0 0 
31 0.1 1 0 0.1 1 1 0 0 
32 2 1 0 0 0 0.1 2 0 
33 1 1 0 0 0 0 0 0 
34 0.1 1 0.1 0.1 0 3 0 0 
35 1 1 2 2 0 2 0 0 
36 0.1 0 0 0 0 0.1 2 0.1 
37 3 1 0 0 2 0.1 0 0.1 
38 1 1 0 0.1 0.1 1 0 0 
39 0.1 1 0 0 2 0.1 0 0 
40 1 1 0 0 1 0 0 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 2 

Sample Celtis Carex Chenopodium Amaranth Cenchrus Panicum Poaceae 
2 1 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0.1 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0.1 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0.1 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 3 

Sample Achene Vitis 
Dasylirion 
seed Sporobolus Yucca Prosopis 

2 0 0 0 0 0 0 
3 0 0 0 0.1 0 0 
4 0 0 0 0.1 0 0 
5 0 0 0 0 0 0 
6 0 0 0 0 0 0 
7 0 0 0 0 0 0.1 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

10 0 0 0 0.1 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0.1 0 0.1 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 0.1 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 
19 0 0 0 0.1 0 0 
20 0 0 0 0.1 0 0 
21 0 0 0 0 0 0 
22 0 0 0 0 0 0 
23 0 0 0 0 0 0 
24 0 0 0 0.1 0 0 
25 0 0 0 0.1 0 0 
26 0 0 0 0 0 0 
27 0 0 0 0 0 0 
28 0 0 0 0.1 0 0 
29 0 0 0 0 0 0 
30 0 0 0 0 0 0 
31 0 0 0 0 0 0 
32 0 0 0 0 0 0 
33 0 0 0 0 0 0 
34 0 0 0 0.1 0 0 
35 0 0 0 0 0 0 
36 0 0 0 0.1 0 0 
37 0 0 0 0 0 0 
38 0 0 0 0 0 0 
39 0 0 0 0.1 0 0 
40 0 0 0 0.1 0 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 4 
Sample Tissue Allium Fiber Opuntia 

epidermis 
Agave 
epidermis 

Dasylirion 
epidermis 

2 1 0 6 3 0 0 
3 1 0 7 0 0 0 
4 1 0.1 8 0 0.1 0 
5 1 1 6 0.1 0.1 0 
6 1 0 7 0 0 0 
7 1 1 6 1 1 0 
8 1 2 6 3 0.1 0.1 
9 0 0 6 3 0.1 0 

10 1 0.1 6 1 0.1 0 
11 0 0.1 7 2 0 0 
12 1 1 7 0 0.1 0 
13 1 2 7 2 0.1 0 
14 1 1 7 2 1 0 
15 1 0 7 1 0.1 0 
16 1 0 7 0 0.1 0 
17 1 0 7 2 0 0 
18 1 0 7 0.1 0 0 
19 1 0 5 0 0 0 
20 0 0 7 0 0 0 
21 0 0 6 0.1 0 0 
22 0 0 8 0.1 0.1 0 
23 0 0 5 0 0 0 
24 1 0.1 7 0.1 0.1 0.1 
25 0 0 6 3 0 0 
26 1 0 7 0 0.1 0 
27 0 0 7 2 0 0 
28 1 0 7 0 0 0.1 
29 1 0 5 5 0 0 
30 0 0 7 0 0 0 
31 1 0 7 1 1 0 
32 1 0 7 0.1 0 0 
33 1 0 8 0 0 0 
34 0 0 6 2 0 0 
35 0 0 5 3 0 0 
36 1 0 7 0.1 0.1 0 
37 0 0 6 0 0 0 
38 0 0.1 5 4 0.1 0 
39 0 2 6 2 0 0 
40 1 1 8 0 0.1 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 5 

Sample Bone Fur 
Opuntia 
big 

Opuntia 
little 

Opuntia 
leptocaulis

Opuntia 
broken Juglans Diospyros 

41 3 1 0 0.1 0 2 0 0 
42 0 0 0 0 0 0 0 0 
43 1 1 0 0 0 0.1 3 0 
44 2 1 0.1 0.1 0 1 0 0 
45 2 1 0 0 0 0.1 0 0 
46 2 1 0.1 1 0 2 0 0 
47 0.1 1 0 0 0.1 0.1 0 0 
48 0.1 1 0 0 0.1 0 0 0 
49 0 0 0 0 0 0.1 0 0 
50 0.1 1 0 0 0.1 0.1 0.1 0 
51 0.1 0 0 0.1 0 0 0 0 
52 1 1 0 0 0.1 0 0 0 
53 2 1 0.1 2 0 7 0 0 
54 7 1 0 0 0 0 0.1 0 
55 0.1 1 0 0 2 0 0 0 
56 2 1 0 0 0 0.1 0 0 
57 2 1 0 0 0 0.1 0 0 
58 3 1 0.1 1 0.1 1 0 0.1 
59 3 0 0 0 0 0 0 0 
60 0.1 1 0 0 1 0 0 2 
61 3 1 0 0 0 0 0 0 
62 0.1 1 0 0.1 0.1 0.1 0 0 
63 2 1 0 0.1 0 0 1 0 
64 2 1 0 0.1 0 0.1 0 0 
65 2 1 0 0.1 0 1 0 0 
66 2 1 0 0 0 0.1 0 0 
67 0.1 1 0 2 0.1 2 0 0 
68 1 1 0 0.1 1 1 2 0 
69 1 1 0 1 1 1 0 0 
70 1 1 0 1 0.1 2 0.1 0 
71 0.1 0 0 0 0 0.1 0 0 
72 2 1 0 0 0 0 0 0 
73 0.1 0 0 0.1 0 2 0 0 
74 2 1 0 0 0.1 0.1 0 0 
75 1 1 0.1 1 0.1 3 0.1 0 
76 2 1 0 1 0 6 1 2 
77 2 1 0 0.1 0.1 0.1 0.1 0 
78 1 1 0 0.1 0 1 0 1 
79 0.1 0 0 0 0.1 0 1 0 
80 0.1 1 0 0.1 0.1 0.1 0 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 6 
Sample Celtis Carex Chenopodium Amaranth Cenchrus Panicum Poaceae 

41 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0
44 0 1 0 0.1 1 0 0
45 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0
47 0.1 0 0 0 0 0 0
48 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0
50 0 0 0.1 0 0 0 0
51 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0
53 0.1 0 0 0 0 0 0
54 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0
59 0 0 0 0 0 0 0
60 0 0 0.1 0 0 0 0
61 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0
64 0 0.1 0 0 0 0 0
65 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0.1
67 0 2 0 0 1 0 0
68 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0
71 0 0.1 0 0 0 0.1 0
72 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0
75 0 0 0 0 0 0.1 0
76 0 0 0 0 0 0.1 0
77 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0
79 0.1 0 0 0 0 0 0
80 0 0 0 0 0 0 0
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 7 
Sample Achene Vitis Dasylirion 

seed 
Sporobolus Yucca Prosopis 

41 0 0 0 0.1 0 0.1 
42 0 0 0 0 0 0 
43 0 0 0 0 0 0 
44 0 0 0 0.1 0 0 
45 0 0 0 0 0 0 
46 0 0 0 0 0 0 
47 0 0 0 0.1 0 0 
48 0 0 0 0 0 0 
49 0 0 0 0 0 0 
50 0 0 0 0.1 0 0 
51 0 0 0 0 0.1 0 
52 0 0 0 0.1 0 0 
53 0 0.1 0 0.1 0 0.1 
54 0 0 0 0 0 0 
55 0 0 0 0 0 0 
56 0 0 0 0.1 0 0 
57 0 0 0 0.1 0 0 
58 0 0 0 0.1 0 0 
59 0 0 0 0.1 0 0 
60 0 0 0 0.1 0 0 
61 0 0 0 0 0 0 
62 0.1 0 0 0 0 0 
63 0 0 0 0 0 0 
64 0 0 0 0 0 0 
65 0 0 0 0 0 0 
66 0 0 0 0.1 0 0 
67 0 0 0 0.1 0 0 
68 0 0 0 0.1 0 0 
69 0 0 0 0 0 0 
70 0 0 0 0 0 0.1 
71 0 0 0 0.1 0 0 
72 0 0 0 0 0 0 
73 0 0 0 0 0 0 
74 0 0 0 0 0 0 
75 0 0 0 0.1 0 0.1 
76 0 0 0 0.1 0 0.1 
77 0 0 0 0 0 0 
78 0 0 0 0 0 0 
79 0 0 0 0.1 0 0 
80 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 8 

Sample Tissue Allium Fiber 
Opuntia 
epidermis 

Agave 
epidermis 

Dasylirion 
epidermis 

41 1 0 6 0 0 0 
42 0 0 7 2 0.1 0 
43 1 1 6 0.1 1 0 
44 1 0 7 0.1 0 0 
45 1 2 7 0.1 0.1 0 
46 1 0 5 3 0.1 0 
47 1 0 8 0.1 0.1 0 
48 0 0.1 7 2 0.1 0.1 
49 1 0 7 2 0 0 
50 1 2 6 2 0 0 
51 1 0 7 3 0.1 0 
52 0 0 8 0 0 0 
53 0 0 2 0 0.1 0.1 
54 0 0 3 0.1 0.1 0 
55 1 0 8 0 0 0 
56 1 1 7 2 0.1 0 
57 1 0.1 5 4 0.1 0 
58 1 0 5 0 0 0 
59 0 0 6 2 0 0 
60 1 0.1 7 1 0.1 0 
61 0 0 6 2 0 0 
62 0 1 5 4 0.1 0 
63 0 0 7 0 0 0.1 
64 1 0 7 0 0 0 
65 1 1 7 0.1 0 0 
66 1 1 7 0 1 0 
67 0 0 6 0 0.1 0 
68 1 0.1 7 1 0.1 0 
69 1 0 7 0.1 0.1 0 
70 1 1 7 0.1 0.1 0 
71 1 0 8 2 0.1 0 
72 0 0 7 0 0 0 
73 1 2 7 2 0.1 0 
74 0 2 7 0.1 0.1 0 
75 1 0.1 6 1 0.1 0 
76 0 0 2 0.1 0.1 0 
77 0 0.1 6 3 0 0 
78 1 0.1 7 2 0 0.1 
79 0 0 8 0 0 0 
80 1 1 8 1 0 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 9 
Sample Bone Fur Opuntia 

big 
Opuntia 
little 

Opuntia 
leptocaulis 

Opuntia 
broken 

Juglans Diospyros 

81 1 1 0 1 0 2 0 0.1 
82 1 1 0.1 0.1 0 0.1 0.1 0 
83 0.1 0 0.1 0 0.1 0 0.1 0 
84 1 1 0.1 0.1 0.1 1 0 0 
85 2 1 1 2 1 2 0 0 
86 0.1 1 0 0 2 0.1 0 0 
87 2 1 0 0 0 0.1 0.1 0 
88 2 1 0.1 0.1 0 2 0 0 
89 0.1 1 0.1 0 3 0 0 0 
90 3 1 0 1 0.1 3 0.1 0 
91 2 1 0 1 1 0.1 0 0 
92 1 1 0 0 2 0 2 0 
93 2 1 0 1 0.1 0.1 1 0 
94 0.1 1 0 0 0.1 0.1 0.1 0.1 
95 2 1 0 0.1 0 1 0 0 
96 2 1 0.1 0 2 0 0 0 
97 2 1 0 0.1 0 3 0 0 
98 0.1 0 0 0 0 0.1 0 0 
99 2 1 0.1 0.1 0.1 2 0 0 

100 0.1 0 0 0 0 0 0 0.1 
102 1 1 0.1 0.1 2 0.1 0 2 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 10 

Sample Celtis Carex Chenopodium Amaranth Cenchrus Panicum Poaceae 
81 0 0 0 0 0 0 0 
82 0 0 0 0 0 0.1 0 
83 0 0 0 0 0 0 0 
84 0 1 0 0 0 0 0 
85 0 0 0 0 0 0 0 
86 0 0 0 0 0 0 0 
87 0 0 0 0 0 0 0 
88 0 1 0 0 0 0 0 
89 0 0 0 0 0 0 0 
90 0 0 0 0 0 0 0 
91 0 0 0 0 0 0 0 
92 0 0 0 0 0 0 0 
93 0 0 0 0 0 0 0 
94 0 0 0 0 0 0 0 
95 0 0 0 0 0 0 0 
96 0 0 0 0 0 0 0 
97 0 0 0 0 0 0.1 0 
98 0 0.1 0.1 0 0 0 0 
99 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 
102 0 0 0 0 0 0.1 0 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 11 
Sample Achene Vitis Dasylirion 

seed 
Sporobolus Yucca Prosopis 

81 0 0 0 0 0 0.1 
82 0 0.1 0 0.1 0 0.1 
83 0 0 0 0.1 0 0 
84 0 0 0 0.1 0 0 
85 0 0 0 0 0 0 
86 0 0 0 0 0 0 
87 0 0 0 0 0 0.1 
88 0 0 0 0 0 0 
89 0 0 0 0 0 0 
90 0 0 0 0.1 0 0 
91 0 0 0 0.1 0 0 
92 0 0 0 0.1 0 0 
93 0 0 0.1 0 0 0.1 
94 0 0 0 0 0 0 
95 0 0 0 0.1 0 0 
96 0 0 0 0 0 0 
97 0 0 0 0.1 0 0 
98 0 0 0 0.1 0 0 
99 0 0 0 0 0 0.1 

100 0 0 0 0 0 0 
102 0 0 0.1 0.1 0 0.1 
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Macrofossil Data of Coprolite Specimens from Williams-Dean (1978) – Part 12 
Sample Tissue Allium Fiber Opuntia 

epidermis 
Agave 
epidermis 

Dasylirion 
epidermis 

81 1 0 7 1 0 0.1 
82 0 0 8 0 0.1 0 
83 0 0 8 1 0 0 
84 1 0 7 1 1 0 
85 0 0 5 0.1 0.1 0 
86 0 0.1 7 0.1 0 0 
87 0 2 7 1 1 0 
88 1 0.1 7 1 0.1 0 
89 1 0.1 5 2 0 0 
90 0 0 5 0 0 0 
91 0 2 7 2 0 0 
92 0 0 7 0.1 0 0 
93 1 1 7 0 1 0 
94 1 0.1 7 3 0.1 0 
95 1 0 7 0.1 0 0 
96 0 0 7 0.1 0.1 0 
97 0 0 6 0.1 0.1 0 
98 1 2 7 0.1 0 0 
99 0 0 7 0 0.1 0 

100 1 0 8 0 0 0 
102 1 0.1 6 2 0.1 0 
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APPENDIX B 

COPROLITE DATA FROM OTHER SITES 

 

Macrofossil Data of Coprolite Specimens from  
Conejo Shelter (Bryant 1974) – Part 1 
Sample Opuntia 

Fiber 
Opuntia 
Seeds 

Allium 
Bulbs 

Chenopodium 
Seed 

Setaria 
Seed 

Bark Grasshoppers 

16 5 0 0 0 0 0 0 
20 3 3 0 0 0 0 0 
15 4 0 2 0 1 4 0 

4 5 2 1 0 0 0 0 
34 5 0 2 0 0 0 0 

5 3 0 1 0 1 0 0 
38 5 1 2 0 0 0 0 
36 2 1 5 0 0 0 0 
31 5 2 0 0 0 0 0 
44 4 0 2 0 0 0 0 
25 4 0 2 1 0 0 0 
41 3 0 2 0 0 3 2 

9 3 2 0 3 0 0 2 
18 4 3 0 0 0 0 0 
23 3 0 3 0 0 0 0 
26 2 0 5 0 0 0 0 
17 5 0 2 0 0 0 0 
27 3 0 4 0 0 0 0 
11 4 2 0 0 0 0 3 
40 5 0 2 0 0 0 0 

6 4 2 2 0 0 2 0 
28 5 0 2 0 0 0 0 
39 5 0 1 0 0 0 0 
30 3 0 0 0 0 0 0 

3 3 2 2 0 0 0 0 
32 4 0 3 0 0 0 0 
37 2 0 0 0 0 0 0 
42 6 0 1 0 0 0 0 

8 4 3 2 0 0 0 0 
22 5 2 0 0 0 0 0 
29 6 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from  
Conejo Shelter (Bryant 1974) – Part 2 
Sample Mammal 

Bones 
Reptile 
Bones 

Fish 
Bones 

Anthers Grubs Aquatic 
Monocot 
Fiber 

Agave, 
Sotol, 
Yucca 
Fiber 

Unk. 
Fiber 

16 0 0 1 0 0 0 2 0 
20 0 0 0 0 0 0 0 3 
15 0 1 0 0 0 0 1 0 

4 0 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 1 0 
38 0 0 0 0 0 0 2 0 
36 1 0 0 0 0 0 1 0 
31 0 0 0 0 0 0 0 0 
44 0 0 1 0 2 0 0 0 
25 1 0 0 0 0 0 1 0 
41 1 0 0 0 0 0 2 0 

9 0 0 0 0 0 0 0 0 
18 1 0 0 0 0 0 2 0 
23 0 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 1 0 
17 1 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 0 
11 0 1 0 0 0 0 1 0 
40 1 0 0 0 0 0 1 0 

6 0 1 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 0 
39 0 1 0 2 0 0 0 2 
30 0 0 1 0 0 0 4 0 

3 0 0 0 0 0 0 3 0 
32 1 0 1 0 0 0 0 0 
37 0 0 0 0 0 0 0 5 
42 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 1 0 
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Macrofossil Data of Coprolite Specimens from  
Conejo Shelter (Bryant 1974) – Part 3 

Sample 
Opuntia 
Fiber 

Opuntia 
Seeds 

Allium 
Bulbs 

Chenopodium 
Seed 

Setaria 
Seed Bark Grasshoppers 

19 3 2 1 0 0 0 0 
21 5 2 2 0 0 0 0 
43 4 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
10 0 0 0 0 0 3 0 
24 3 2 0 0 0 0 0 
14 4 3 0 0 0 0 0 

7 4 3 0 0 0 0 0 
33 2 0 0 0 0 0 0 

2 4 0 0 0 0 0 0 
12 0 0 0 0 0 0 2 
35 2 0 1 0 0 0 0 

 
Macrofossil Data of Coprolite Specimens from  
Conejo Shelter (Bryant 1974) – Part 4 
Sample Mammal 

Bones 
Reptile 
Bones 

Fish 
Bones 

Anthers Grubs Aquatic 
Monocot 
Fiber 

Agave, 
Sotol, 
Yucca 
Fiber 

Unk. 
Fiber 

19 1 0 0 0 0 0 3 0 
21 0 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 2 0 
13 0 0 0 0 0 0 0 6 
10 0 0 0 0 0 0 0 4 
24 0 0 0 0 0 3 2 0 
14 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1 0 
33 1 0 0 0 0 4 2 0 

2 0 1 0 0 0 2 2 2 
12 1 0 0 0 0 0 4 0 
35 0 0 0 0 0 0 5 0 
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Macrofossil Data of Coprolite Specimens from Frightful Cave (Fry 1975) – Part 1 
Sample 
Number 

Ancistrocactus 
sp. seed 

Allium sp. 
seed pod 

Acacia 
sp. seed 

Amaranthus 
sp. seed 

Asclepius 
sp. seed 

Bouteloua 
sp. seed 

Celtis 
pallidus 
seed 

1 0 0 0.8 0 0 0 0.95
2 0.03 0 0 0 0 0 0
3 0.33 2.1 0 0 0 0 3.37
4 0 0 0 0.15 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
24 0 0 0 0 0.02 0 0
25 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0
31 0 0 0 0 0 0.07 0
34 0 0 0 0 0 0 0
35 0 0 0 0 40.86 0 21.22
38 0 0 0 0 0 0 0
40 0 0 0 0 0 0 1.17
41 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0.18
44 0 0 0 0.01 0 0 0
47 0 0 0 0.14 0 0 0
48 0 0 0 0.17 0 0 3.32
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Macrofossil Data of Coprolite Specimens from Frightful Cave (Fry 1975) – Part 2 
Sample 
Number 

Chenopodi
aceae seed 

Cactaceae 
seed 

Capsicum 
frutescens 
seed 

Diospyros 
texana seed

Asteraceae 
seed 

Helianthus 
sp. seed 

Fabaceae 
seed 

1 0 0 0 36.79 0 0 0
2 0.001 0.05 0 6.87 0 0 0
3 0 0 0 0 0.1 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0.92
13 0 0.03 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0.14 0
21 0 0 0 0 0 0 0
24 0 0.02 0 0 0 0 3.09
25 0 0 0 0 0.35 0.07 0
27 0.02 0 0 0 8.95 4.27 0
28 0 0 0 0 0 0 0
29 0 0.06 0.3 0 0 0.52 0.7
30 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0
34 0 0 0 33.92 0 0 0
35 0 0 0 0 0 0.11 0
38 0 0 0 0 0 0 0
40 0 0 0 0 0 0 9.08
41 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0
44 0 0 0 9.46 0 0 0
47 0 0 0 0 0 0 0
48 0 1.4 0 0 0.61 0.31 0
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Macrofossil Data of Coprolite Specimens from Frightful Cave (Fry 1975) – Part 3 
Sample 
Number 

Opuntia 
imbricata  
seed 

Opuntia 
lindheimeri 
seed 

Opuntia 
sp. seed 

Oryzopis 
sp. seed 

Poaceae 
seed 

Panicum 
sp. seed 

Pistacia 
texana seed

1 0 35.18 0 0 0.03 0 2.54
2 0 47.24 0 0 0 0 4.38
3 0 1.3 0 0 0.04 0 0
4 0 56.8 0 0 0 0 0
5 0 0.36 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 23.9 0 0 0 0 0
8 0 0.26 0 0 0 0 0.07
9 0 0.14 0 0 0 0 0

10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0.43
12 0 2.73 0 0 0 0 0
13 0 63.25 0 0 0 0 0
14 0 46.56 0 0 0 0 0
15 0 58.94 0 0 0 0 0
21 0 0.14 0 0 0 0 4.14
24 0 11.8 0 0 0 0.08 0
25 0 6.45 0 0.59 0 0 3.3
27 0.02 71.26 0 0 0 0 0
28 0 33.75 0 0 0 0 36.7
29 0.4 0 0 21.17 0.85 0 1.19
30 0 44.96 0 0 0 0 0
31 0 0 0 0 0 0 0
34 0 38.12 0 0 0 0 0
35 0 7.29 0 0 0 0 0
38 0 0 0 0 0 0 0
40 0 63.53 0 0 0 0 12.93
41 0.36 0 0 0 0 0 0
42 0 61.5 0.03 0 0 0 0.28
44 0.36 78.11 0 0 0 0 0
47 0 0 0 0 0.07 0 0
48 55.45 10.49 0 0 0 0 1.63
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Macrofossil Data of Coprolite Specimens from Frightful Cave (Fry 1975) – Part 4 
Sample 
Number 

Polygonum 
sp. seed 

Prosopis 
juliflora 
seed 

Rhus sp. 
seed 

unknown 
seed 

Rosaceae 
stem 

Cactaceae 
epidermal 

Cactaceae 
spines 

1 0 0 0 0.99 0 0.77 0
2 0 0 0 0.99 0 4.47 0
3 0 10.3 0 0 0 24.1 0.02
4 0 0.57 0 0.07 0 12.42 0.001
5 0 0 0 0 0 41.52 0
6 0 0 0 0.41 0 0 0.05
7 0 0 0 0.38 0 3.96 0.22
8 0 0 1.1 0.13 0 1.63 0.04
9 0 0 0 0 0.53 8.9 0

10 0 0 0 0 0 0 0
11 0 0 0 0 0 12.54 0
12 0 0 0 0.93 0 2.4 0.01
13 0 3.1 0 0 0 6.87 0
14 0 0 0 3.06 0 17.7 0
15 0 1.13 0 2.64 0 0 0
21 0 0 0 0 0 12.51 0.2
24 0 0 0 1.25 0 6.13 0
25 0 58.53 0 0.01 0 0 0
27 0 0 0 0 0 1.7 0.02
28 0 0 0 0 0 25.53 0
29 0 50.8 0 0.22 0 8.06 0.09
30 0 0 0 0.64 0 40.53 0
31 0 0 0 0 0 5.77 0.08
34 0 0 0 1.99 0 0.12 0
35 0 0 0 3.27 0 23.56 0
38 0 0 0 0 0 13.7 5.55
40 0 0 0 0.29 0 1.14 0
41 0 0 0 61.41 0 34.06 0.07
42 0 0 0 6.07 0 1.45 0
44 0 0 0 0.05 0 4.98 0
47 1.96 0 0 25.21 0 0.93 0.77
48 0 0 0 0.08 0 9.84 0.03
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Macrofossil Data of Coprolite Specimens from Frightful Cave (Fry 1975) – Part 5 
Sample 
Number 

Cactaceae 
crystals 

unknown 
crystals 

unknown 
epidermal 

unknown 
fiber 

unknown 
stem 

Charcoal unknown 
hair 

1 0 0 19.29 0.57 0.11 0.02 0.001
2 0 0 24.47 1.02 0.27 0.01 0.02
3 0 0 15.45 25.97 6.23 0.003 0.44
4 0.001 0 26.09 3.75 0.13 0.01 0.001
5 0.22 3.05 49.45 8.05 0 0.06 0.05
6 0 0 3.43 35.6 1.19 6.75 0.11
7 2.36 0.11 1 56.58 0 0.22 0.11
8 0 1.11 77.71 10.19 0.18 0.72 0.1
9 0.18 0 42.5 44.02 0.71 0.21 0.21

10 0 0 92.88 4.57 0.35 0.53 0.53
11 0 0 71.92 11.98 0.11 0.75 0.11
12 0.04 0 3.6 76.76 0.49 1 1.04
13 0 0 13.06 0.85 12.06 0.14 0.02
14 0.13 0 22.63 7.75 0.77 0.77 0.33
15 0 0 28.8 0.8 0.21 0 3.13
21 0 0 7.06 56.96 0 0.14 0.7
24 0 0 21.57 55.05 0.07 0.06 0.04
25 0 0 0.43 12.18 1.83 0.54 6.58
27 0 0 10.59 3.06 0 0.04 0.04
28 0.17 0 2.25 0.6 0.32 0 0.07
29 0 0 4.28 9.24 0.37 0.28 1
30 0 0 0 11.26 0.32 0.29 0.13
31 0 0 91.56 0.49 0.73 0.37 0.06
34 0 0 22.93 0.1 0 0 0.14
35 0 0 0.54 2.83 0 0.19 0.13
38 2.03 0 17.22 50.8 4.78 0.34 5.21
40 0 0 11.64 0.16 0 0.01 0.02
41 0.33 0 0.21 3.19 0.03 0.1 0.1
42 0 0 29.52 0.19 0 0 0.05
44 0 0 4.35 0.09 0 0.01 0.02
47 1.06 0 60.04 4.33 1.45 0.09 0.22
48 0 0 14.28 1.42 0.42 0.01 0.03

 
 



  378  

    

 

 
 
 
 
 
 
 

Macrofossil Data of Coprolite Specimens from Frightful Cave (Fry 1975) – Part 6 
Sample 
Number 

human 
hair 

Unidentifie
d bone 

Bird 
feather 

Rodent 
bone 

Lizard 
bone 

Egg shell 

1 0 0 0 0 0 0 
2 0 0 0 0 2.88 0 
3 0 7.13 0 0 0 0 
4 0 0.01 0 0 0 0 
5 0 0 0 0 0 0 
6 0 22.21 0 0 0 0 
7 0 10.23 0 0 0 0 
8 0 0.1 0 0 0 0 
9 0 2.54 0 0 0 0 

10 0 0 0 0 0 0.44 
11 0 0 0 0 0 0 
12 0 0.31 0 10.73 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 4.11 0 0 0 0 
21 0 16.4 0.4 0 0 0 
24 0 0 0 0 0 0 
25 0 8.3 0.001 0 0 0 
27 0 0 0 0 0 0 
28 0 0.02 0 0 0 0 
29 0.03 0 0.02 0 0 0 
30 0 0.54 0 0 0 0 
31 0 0.55 0 0 0 0 
34 0 0 0 0 0 0 
35 0 0 0 0 0 0 
38 0 0 0 0 0 0 
40 0 0 0 0 0 0 
41 0 0 0 0 0 0 
42 0 0.65 0 0 0 0 
44 0 0 0 0 0 0 
47 0 3.56 0 0 0 0 
48 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Frightful Cave (Fry 1975) – Part 7 
Sample 
Number 

Reptile 
scales 

plant resin insect grasshoppe
r 

grit 

1 0 0 2.25 0 0
2 0 0 7.3 0 0
3 0 0.41 1.8 0 0.004
4 0 0 0.02 0 0
5 0 0 0.84 0 0.02
6 23.13 0 6.6 0 0.54
7 0 0 0.17 0 0.17
8 0 0 6.56 0 0.11
9 0 0 0.07 0 0

10 0 0 0.17 0 0.53
11 0 0 2.2 0 0
12 0 0 0.05 0 0.27
13 0 0 0.08 0 0
14 0 0 0.3 0 0
15 0 0 0.1 0 0
21 0 0 0 0 1.41
24 0 0 0.81 0 0
25 0 0 0.08 0 0.74
27 0 0 0 0 0.03
28 0 0 0 0 0
29 0 0 1.32 0 0
30 0 0 0.54 0 0.9
31 0 0 0.55 0 0
34 0 0 0 2.78 0
35 0 0 0 0 0
38 0 0 0.19 0 0.19
40 0 0 0 0 0.02
41 0 0 0.07 0 0.08
42 0 0 0 0 0.1
44 0 0 2.49 0 0
47 0 0 0.04 0 0.14
48 0 0 0.56 0 0
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Macrofossil Data of Coprolite Specimens from Parida Cave (Riskind 1970) – Part 1 
Sample Opuntia 

Seeds 
Opuntia 
Vascular 
Bundles 

Opuntia 
Spines 

Bark Agave 
Fiber 

Charcoal Allium 
Bulbs 

Pebbles 

A 1 1 0 0 1 0 1 1 
B 0 1 0 0 1 0 1 1 
C 0 1 0 0 0 0 0 1 
E 1 1 0 0 1 0 1 0 
F 0 1 0 0 0 1 1 0 
G 1 1 0 0 0 1 0 0 
I 1 1 0 0 0 0 0 0 
J 1 1 1 0 0 1 0 0 
K 0 1 0 0 0 0 0 0 
L 0 1 0 0 0 1 0 1 
M 1 1 0 1 0 1 0 0 
 
Macrofossil Data of Coprolite Specimens from Parida Cave (Riskind 1970) – Part 2 
Sample Clay 

Lumps 
Prosopis 
Seed 
coats 

Chitin Grass 
Seed 

Chert 
flakes 

Stem Sand Hair Mammal 
Bone 

A 0 1 1 1 0 0 0 1 1 
B 0 0 1 1 0 0 0 0 1 
C 0 0 1 1 0 1 1 0 0 
E 0 0 0 1 0 0 0 0 0 
F 0 0 0 1 0 1 0 0 1 
G 0 0 0 1 0 1 0 0 1 
I 0 0 0 0 0 0 0 0 0 
J 0 0 0 0 0 0 0 0 1 
K 0 0 0 0 0 0 0 0 0 
L 0 0 0 0 0 0 0 0 0 
M 1 1 0 0 1 0 0 0 1 
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Macrofossil Data of Coprolite Specimens from Baker Cave (Sobolik 1988) – Part 1 
Sample Fiber-

Unknown 
Fiber-
Allium 

Fiber-
Opuntia

Fiber- 
Yucca

Fiber - 
Agave 

Fiber - 
Dasylirion 

Seed-
Opuntia 

Seed- 
Juniperus 

Seed-
Prosopis 

1 0 0 7 0 0 0 0 0 0
2 5 0 0 0 0 0 0 0 0
3 3 0 1 0 0 1 0 0 0
4 1 0 2 0 0 0.1 0 0 0
5 1 0 7 1 0 1 1 0 0
6 4 0 1 0 1 0 0 0 0
7 2 0 0 0 0 0 8 1 0
8 1 0 1 0 1 0 7 1 0
9 2 0 0 2 0 0 0 0 0

10 1 0 0 0 0 0 0 0 0
11 7 0 1 0 0 0 0.1 0 0
12 1 0 4 0 0 0 0 0 0

12b 0.1 0 6 0 0 0 0 0 0
13 4 0 1 0 0 0 0 0 0
14 3 0 3 2 0 0 0 0 2
15 2 0 6 0 0 0 0 0 0
16 4 0 0 0 0 0 0 0 0
17 4 0 0 0 0 0 4 0 0
18 3 2 0 0 0 3 0 0 0
19 6 0.1 2 0 0 0 0 0 0
20 1 0 3 0 1 0 0 0 0
21 7 1 0 0 0 0 0 0 0
22 0 2 7 0 1 0 0 0 0
23 1 3 0 0 0 0 0 0 0
24 3 0 0 0 0 2 0 0 0
25 0 7 0 0 0 1 0 0 0
26 4 1 0 0 0 0 0 0 0
27 0 4 0 0 0 0 0 0 0
28 0.1 3 2 0 0 0 0 0 0
29 4 0 0 0 0 0 0 0 0
30 2 0 7 0 0 0 0 0 0
31 5 0 1 0 0 1 0 0 0
32 4 3 0 0 0 0 0 0 0
33 4 3 0 0 0 0 0 0 0
34 7 0 0 0 0 1 0 0 0
35 5 0 3 0 0 0 0 0 0
36 5 0 0 1 1 0 0.1 0 0
37 7 0 0 0 0 1 0 0 0
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Macrofossil Data of Coprolite Specimens from Baker Cave (Sobolik 1988) – Part 2 
Sample Seed-

Chenopodium 
Seed-
Mamillaria 

Seed- 
Brassicaceae 

Seed-
Celtis 

Shell-
Quercus 

Shell-
Juglans 

1 0 0 0 0 1 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 2 
5 0 0 0.1 0 0 0 
6 0 1 0 0 0 0 
7 0 0 0 0 0 0 
8 0 0 0 0 0 0 
9 0 0 0.1 0 0 0 

10 0 0 0 0 0 1 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 

12b 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0.1 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 1 0 0 0 0 
18 2 1 0 1 0 0 
19 0 0 0 0 0 0 
20 0 0 0 0 0 0 
21 0 0 0 0 0 0 
22 0 0 0 0 0 0 
23 0 0 0 0 0 0 
24 0 0 0 0 0 0 
25 0 0 0 0 0 0 
26 0 0 0 0 0 0 
27 0 0 0 0 0 0 
28 0 0 0 0 0 0 
29 0 0 0 0 0 0 
30 0 0 0 0 0 0 
31 0 0 0 0 0 0 
32 0 0 0 0 0 0 
33 0 0 0 0 0 0 
34 0 0 0 0 0 0 
35 0 0 0 0 0 0 
36 0 0 0 0 0 0 
37 0 0 0 0 0 0 
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Macrofossil Data of Coprolite Specimens from Baker Cave (Sobolik 1988) – Part 3 
Sample Unknown 

Seed 
Charcoal CaOX 

Crystals 
Spines Thread 

balls 
White 
Substance

1 0 0.1 0.1 0 0 0
2 0 0.1 0.1 0 0 0
3 0 0.1 0.1 0 0.1 0
4 0 0.1 2 0 0 0
5 0 0.1 0.1 0 0 0
6 0 0.1 1 0.1 0.1 1
7 0 0.1 0 0.1 0 0
8 0 0.1 0.1 0 0 0
9 0 0 0 0 0.1 0

10 0 0 1 0 0 0
11 0 1 1 0 0 0
12 0 0 0.1 0 0 0

12b 0.1 0 1 0 0 0
13 0 0.1 0.1 0 0 0
14 0 3 0.1 0.1 0 0
15 0 0.1 0.1 0 0 0
16 0 5 0.1 0 0 0
17 0 0.1 0.1 0 0 0
18 0 2 0 0 0.1 0
19 0.1 0 0 0 0 0
20 0 4 0.1 0 0 0
21 0 0.1 0.1 0 0 0
22 0 0 0.1 0 0 0
23 0 2 0.1 0.1 0 0
24 0 0.1 0 0.1 0 0
25 0 0.1 0.1 0 0 0
26 0 0.1 0.1 0 0 0
27 0 0.1 0.1 0 0 0
28 0 4 0.1 0 0 0
29 0 0.1 0.1 0 0 0
30 0 0.1 1 0 0 0
31 0 2 0 0 0 0
32 0 3 0.1 0 0 0
33 0 0.1 0.1 0 0 0
34 0 2 0.1 0 0 0
35 0 1 0 0 0 0
36 0 0.1 0 0 0 0
37 0 2 0 0 0 0
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