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ABSTRACT 

 

Analytical Study on Adhesively Bonded Joints Using Peeling Test and Symmetric 

Composite Models Based on Bernoulli-Euler and Timoshenko Beam Theories for Elastic 

and Viscoelastic Materials. (December 2010) 

Ying-Yu Su, B.S., National Chung Hsing University, Taichung, Taiwan 

Chair of Advisory Committee: Dr. Xin-Lin Gao 

 

Adhesively bonded joints have been investigated for several decades. In most 

analytical studies, the Bernoulli-Euler beam theory is employed to describe the 

behaviour of adherends. In the current work, three analytical models are developed for 

adhesively bonded joints using the Timoshenko beam theory for elastic material and a 

Bernoulli-Euler beam model for viscoelastic materials.  

One model is for the peeling test of an adhesively bonded joint, which is 

described using a Timoshenko beam on an elastic foundation. The adherend is 

considered as a Timoshenko beam, while the adhesive is taken to be a linearly elastic 

foundation. Three cases are considered: (1) only the normal stress is acting (mode I); (2) 

only the transverse shear stress is present (mode II); and (3) the normal and shear 

stresses co-exist (mode III) in the adhesive. The governing equations are derived in 

terms of the displacement and rotational angle of the adherend in each case. Analytical 

solutions are obtained for the displacements, rotational angle, and stresses. Numerical 
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results are presented to show the trends of the displacements and rotational angle 

changing with geometrical and loading conditions. 

In the second model, the peeling test of an adhesively bonded joint is represented 

using a viscoelastic Bernoulli-Euler beam on an elastic foundation. The adherend is 

considered as a viscoelastic Bernoulli-Euler beam, while the adhesive is taken to be a 

linearly elastic foundation. Two cases under different stress history are considered: (1) 

only the normal stress is acting (mode I); and (2) only the transverse shear stress is 

present (mode II). The governing equations are derived in terms of the displacements. 

Analytical solutions are obtained for the displacements. The numerical results show that 

the deflection increases as time and temperature increase.  

The third model is developed using a symmetric composite adhesively bonded 

joint. The constitutive and kinematic relations of the adherends are derived based on the 

Timoshenko beam theory, and the governing equations are obtained for the normal and 

shear stresses in the adhesive layer. The numerical results are presented to reveal the 

normal and shear stresses in the adhesive. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

The use of adhesive joining in civil, aerospace and mechanical constructions has 

increased considerably in the last decade due to its advantages over traditional joining 

techniques such as mechanical fastening. The advantages include improved strength to 

weight ratios, increased overlap, increased service life, reduced cost and complexity, 

avoidance of additional stresses introduced by fastenings, higher efficiency, enhanced 

electrical insulation capabilities, and accommodation of thermal expansion mismatch.  

The most common configuration of adhesively bonded joints is single-lap joints as 

shown in Fig. 1.1. It appears that the first single-lap adhesive joint design was proposed 

in Volkersen [1] by assuming that the adhesive deforms only in shear, while the 

adherend deforms only in tension. An improved design was later suggested in Goland 

and Reissner [2] by treating the adhesive layer as uniformly distributed tension and shear 

springs in the transverse direction. Since then, various types of adhesively bonded joints 

have been investigated. For instance, Hart-Smith [3] and Oplinger [4] developed a beam 

theory-based method to a single-lap joint.  

 

 

 

This thesis follows the style of International Journal of Adhesion & Adhesives. 
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Fig. 1.1 Schematic of a single-lap joint: (a) with rigid adherends; (b) with elastic adherends [5]. 

 

 

Two-dimensional 2-D elasticity was employed by Tsai and Morton [6] in their 

nonlinear finite element analysis of single-lap adhesive joints. Some studies of adhesive 

joint problems incorporate 2-D elasticity theories into variational methods. For example, 

the minimum strain energy method was applied by Adams and Peppiatt [7, 8], and the 

principle of complementary energy was employed in Allman [9] and Chen and Cheng 

[10]. The analysis of a single lap joint was further developed by accounting for the 

nonlinear [11] and elasto-plastic [12] responses of adherends. Recently, Mortensen and 

Thomsen [13] presented a unified approach for the analysis and design of adhesively 

bonded joints, Luo and Tong [14] proposed a higher-order displacement theory for stress 

analysis of a thick adhesive. Zou et al. [15] analyzed the adhesive stresses in adhesively 
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bonded symmetric composite and metallic joints based on the classical laminate theory 

and an adhesive interface constitutive model. 

 

 
Fig. 1.2 Schematic of a peeling test [16]. 

 

 

Various methods have been developed to determine the mechanical properties of 

adhesives. One method is the peeling test schematically shown in Fig.1.2, in which h a 

peeling is applied to separate the adherend from the substrate. Kaelble [17, 18] showed 

that bending moment is a crucial factor in determining fracture of an adhesive loaded in 

tension. Crocombe and Adams [19] used a large displacement finite element method to 

predict the peel strength. The trapezoidal cohesive zone model has been employed to 

examine normal and shear stresses in the fracture of adhesively bonded joints. Some 

analytical solutions for peeling based on the trapezoidal traction law were presented in 

Yamada [20], Williams and Hadavinia [21], Georgiou et al. [22] and Plaut and Ritchie 

[23].   
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In analyzing adhesively bonded joints, an adherends is usually modelled as a 

simple beam using various beam theories based on linear elasticity. However, 

viscoelastic beam models have hardly been employed to study adhesively bonded joints.  

In deriving analytical solutions for adhesively bonded joint problems, the 

common approach is to construct a free body diagram at first. Constitutive relations 

depend on kinematic assumptions of a beam theory and material properties of adherends. 

Governing equations are reached by combing equilibrium equations and constitutive 

relations. Then, analytical solutions are derived for displacements, rotational angles and 

stresses in adhesively bonded joints. 

 

1.2 Motivation 

Adhesively bonded joints have been widely used because of their advantages 

over traditional joining methods. Despite significant advances in joining technology, the 

safety of joints in structures is still an issue, as about 70% of structure failures are 

initiated from joints [24]. Many studies on adhesively bonded joints have been 

performed using finite element methods or experimental approaches, each of which 

applies only to a given set of parameters and geometry. The cost in computing time and 

experiments can be significant. Therefore, analytical solutions that can be applied to 

adhesively bonded joints with various geometrical and loading conditions are desirable. 

This motivated the work presented here, which consists of two parts.  

In most studies, an adherend is modeled as a Bernoulli-Euler beam based on 

classical elasticity. The Timoshenko beam theory takes into account shear deformation 
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and rotational inertia effects, making it suitable for describing the behavior of short 

beams. This has motivated the use of the Timoshenko beam theory in the first part of the 

current thesis work to derive analytical solutions for displacements and rotational angles 

in adhesively bonded joints under a peeling force and to obtain analytical solutions for 

adhesive stresses in symmetric composite adhesively bonded joints.  

On the other hand, viscoelastic materials have been increasingly used in adhesive 

joints. However, no work has been reported using the Bernoulli-Euler beam theory or 

Timoshenko beam theory for viscoelastic materials to analytically study adhesively 

bonded joints. Therefore, in the second part of this thesis work, an adhesively bonded 

joint under peeling is analytically studied by treating the adherend as a viscoelastic 

Bernoulli-Euler beam. 

    

1.3 Organization 

The rest of this thesis is organized as follows: 

The peeling test of an adhesively bonded joint is analytically studied in Chapter 

II by using the model of a Timoshenko beam on an elastic foundation. The adherend is 

considered as a Timoshenko beam, while the adhesive is taken to be a linearly elastic 

foundation. Three cases are considered: (1) only the normal stress is acting (mode I); (2) 

only the transverse shear stress is present (mode II); and (3) the normal and shear 

stresses co-exist (mode III) in the adhesive. The governing equations are derived in 

terms of the displacement and rotational angle of the adherend in each case. Analytical 

solutions are obtained for the displacements, rotational angle, and stresses. Numerical 
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results are presented to show the trends of the displacements and rotational angle 

changing with geometrical and loading conditions. 

In Chapter III, the peeling test of an adhesively bonded joint is studied by using 

the model of a viscoelastic Bernoulli-Euler beam on an elastic foundation. The adherend 

is considered as a viscoelastic Bernoulli-Euler beam, while the adhesive is taken to be a 

linearly elastic foundation. Two cases under different stress history are considered: (1) 

only the normal stress is acting (mode I); and (2) only the transverse shear stress is 

present (mode II). The governing equations are derived in terms of the displacements. 

Analytical solutions are obtained for the displacements. The numerical results show that 

the deflection increases as time and temperature increase.  

In Chapter IV, an analytical solution for a symmetric composite adhesively 

bonded joint is derived by considering the adherend as a Timoshenko beam. To extend 

the classical laminate theory, the constitutive and kinematic relations of the adherends 

are derived based on the Timoshenko beam theory and the governing equations are 

obtained for the normal and shear stresses in the adhesive layer. The analytically 

numerical results are presented to reveal the normal and shear stresses in the adhesive. 
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CHAPTER II 

PEELING TEST OF AN ADHESIVELY BONDED JOINT BASED ON THE 

TIMOSHENKO BEAM THEORY 

 

2.1 Introduction 

The objective of this chapter is to develop a model for peeling of adhesively 

bonded joints using the Timoshenko beam theory. The adherend is considered as a 

Timoshenko beam, extending the work of Plaut and Ritchie [23] based on the Bernoulli-

Euler beam theory. The Timoshenko beam theory takes into account shear deformation 

and rotational inertia, making it suitable for describing short beams, unlike the 

Bernoulli-Euler beam theory. The equilibrium equations are the same as those in Plaut 

and Ritchie [23] due to the same geometry and loading conditions, but the geometrical 

and constitutive equations are different.  

A brief review of peeling tests on adhesively bonded joints is presented in 

Subsection 2.2. The basic formulation is described in Subsection 2.3, where the 

displacements are obtained by using the Timoshenko beam theory. In Subsection 2.4 and 

2.5, the trapezoidal traction law used in Yang et al. [26-28], Thouless and Yang [29], 

and Wei and Hutchinson [30] is applied for the case with a negligible shear stress in the 

adhesive (mode I) and for the case with a negligible normal stress in the adhesive (mode 

II). In Subsection 2.6, the case with the same traction zone is applied to both a normal 

stress and a shear stress, in which the normal stress as a function of the vertical 

displacement has two linear distributions (with a positive slope and a negative slope, 
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respectively) and the shear stress as a function of the tangential displacement has two 

linear distributions (with a positive slope and a negative slope, respectively) as was done 

in Plaut and Ritchie [23]. The numerical results are quantitatively shown and discussed 

in Subsection 2.7. 

 

2.2 Peeling tests on adhesively bonded joints – a review 

The peeling test is a mechanical test, in which a thin flexible strip, called 

adherend, bonded to a substrate by an adhesive layer is pulled from the substrate by a 

peeling force. This test has been widely used for joint design purposes. The mechanics 

of the peeling test has been studied for decades. Chang [25] derived analytical solutions 

for the peeling force under different types of peeling of adhesive joints, with the peeling 

force applied perpendicularly. The adhesive stress distribution changing with the angle 

of peeling has been investigated by Kaelble [18]. Crocombe and Adams [19] used a 

large displacement finite-element technique to predict the peel strength.     

Most studies on adhesive joints used fracture mechanics to predict failure [31-

33]. Several analytical solutions for peeling with the trapezoidal traction law were 

presented in Yamada [20], Williams and Hadavinia [21], Georgiou [22] and Plaut and 

Ritchie [23]. The traction-separation relationship was assumed to be piecewise linear, 

with an initially positive slope (elastic behavior), followed by constant slope (perfectly 

plastic behavior), and finally a negative slope (damage behavior) (Williams and 

Hadavinia [21]). 
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2.3 Formulation based on the Timoshenko beam theory 

Consider the peeling test model shown in Fig. 2.1, where a tape is peeled from a 

rigid substrate. This configuration was also used by Plaut and Ritchie [23] in their study 

based on the Bernoulli-Euler beam theory. The tape that is adhered to the substrate is 

considered as a fixed end-free end, linearly elastic and uniform Timoshenko beam. In 

Fig. 2.1, L is the original length of the adhesive and adherend. In the shaded region 

(      ), the adhesive is assumed to be linearly elastic, and in the dotted region 

(from     to the peel front) the adhesion is governed by constant or linearly 

decreasing traction laws. In Fig. 2.1,    denotes the resultant bending moment,    and 

   represent, respectively, the horizontal component and vertical component of the 

resultant force,   ,    and      stands for the vertical displacement of the centreline of 

the tape and is positive if upward. The applied forces are such that        The slope of 

the deformed centreline of the tape is assumed to be small.  

The equilibrium of moments and forces shown in the free-body diagram in Fig. 

2.2 leads to 

  

  
  

  

  
   

 

 
                                              (2.1)                                                                                                                         

  

  
                                                                       (2.2)                                                                                                                                                     

  

  
                                                                       (2.3)                                                                                                                                                             

where        and        are, respectively, the shear stress and normal stress on the 

interface between the tape and the substrate, and       are, respectively, the normal 

force, shear force, and bending surface acting on the x- cross section of the tape. 
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Fig. 2.1 Schematic of a tape peeling test.  
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Fig. 2.2 Free-body diagram of the tape differential element with length dx. 
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The constitutive equations based on the classical Timoshenko beam theory can 

be described by (Ma, Gao and Reddy [34]) 

       
  

  
              

  

  
            (   

  

  
)         (2.4a-c)                                                                                

where                are, respectively the tape thickness, backing width, cross-

sectional area (with       ), Young’s modulus and second moment of cross-sectional 

area (with        
 

  
  
  ). Also,    is the initial adhesive thickness, and       are 

the Young’s modulus and shear modulus of the adhesive.  

 

2.4 Loading Mode I  

In this subsection it is assumed that the horizontal forces are negligible so that 

    ,     and    . From Eqs. (2.1) and (2.3), it then follows that 

                                                             (2.5)                                                                                                                                                 

                                                                (2.6)                                                                                                                                                                      

noting that Eq. (2.2) is identically satisfied. 

Substituting Eqs. (2.4a-c) into Eqs. (2.5) and (2.6), gives 

     
                                                       (2.7)                                                                                                                                                    

                                                      (2.8)                                                                                                                     

In this case,   is denoted by         and   , respectively, for     (linear elastic 

adhesive),      r  (perfectly plastic adhesive), and        (damage region), as 

shown in Fig. 2.3(a). The values of the vertical displacement    at       r and q are 
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denoted by c, e and d, respectively. The normal stress S as a function of   is depicted in 

Fig. 2.3(b) and is given by  

     
 

 
  ,                                                   (2.9a)           

     
 

 
 ,                                               (2.9b)                                                                                                                                           

     
 

 
             ,        ,                      (2.9c)     

where the substrate stiffness is defined by          [23]. 

 

0 r q

c
e d

v1

v2

v3

M0

Fy

x

v

v

S(v)

kc

c e d0  
(a)                                                               (b) 

Fig. 2.3 Loading in Mode I: (a) vertical displacement of the tape; (b) normal stress as a function of the 
vertical displacement [23]. 

 

 

2.4.1 Solution in the first region: 𝒙  𝟎 

Using Eq. (2.9a) in Eqs. (2.7) and (2.8) yields 

      
 

    
                                                     (2.10)                                                                                                                                                   

              
                                          (2.11)                                                                                                         

Differentiating Eq. (2.11) twice and substituting Eq. (2.10) into the resulting equation 

will lead to  
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                                               (2.12a)                                                                                                                        

where 

                
    

    
                                  (2.12b) 

The general solution of Eq. (2.12a) can be obtained as  

         
       

        
       

                      (2.13a)                                                                                   

where       are four constants, and  

   √   √  
       

   
    √   √  

       

   
.                     (2.13b) 

If   
          or   

   
     

    
, then       are real, and       given in Eq. 

(2.13a) is an exponential function. 

Substituting Eqs. (2.13a) into (2.10) gives the rotation angle as  

       
    

    
  

    
    

    
  

     
    

    
  

    
    

    
  

     
 

 
   

        ,   

(2.14)   

where       are three additional constants. 

                                                                               

2.4.2 Solution in the second region: 𝟎  𝒙  𝒓 

Inserting Eq. (2.9b) into Eqs. (2.7) and (2.8) gives 

  
     

  

    
                                                  (2.15)                                                                                                                                                  

       
        

                                           (2.16)                                                                                                                            

Differentiating Eq. (2.16) twice and then substituting Eq. (2.15) into the resulting 

equation yields  
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                                                         (2.17)   

The general solution of Eq.(2.17) is  

       
  

      
   

  

 
   

  

 
                               (2.18)      

where        are constants.                                                                          

From Eq. (2.15), it follows that 

       
  

     
   

   

 
                                    (2.19)  

where         are additional constants.                                                                                  

 

2.4.3 Solution in the third region: r  x  q  

Substituting Eq. (2.9c) into Eqs. (2.7) and (2.8) results in  

  
     

        

         
                                                  (2.20)                                                                                                                                     

       
        

   
        

     
                                     (2.21)                                                                                            

Differentiating Eq. (2.21) twice and substituting Eq. (2.20) into the resulting equation 

gives 

    
         

                                               (2.22a)                                                                                                              

where 

           
  

     
     

      

         
     

       

         
            (2.22b) 

Then, the general solution is  

             s       s          s       s                 (2.23a)    

where         are constants, and     
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  √   √  
       

   
          √   √  

       

   
                      (2.23b)                                                                           

Substituting Eq. (2.23a) into Eq. (2.20) leads to 

   x   
  

         
(
   

  s     
   

    s    
   

  
s     

   

  
  s   )     (2.24)                                         

 

2.5 Loading Mode II  

In this loading mode, only the applied horizontal force    and the associated 

shear stress   are considered, and                 are all taken to be zero. The 

equilibrium equations given in Eqs. (2.1)-(2.3) then become      

     
 

 
                                                   (2.25a)                                                                                                                   

                                                              (2.25b)      

and the constitutive equations listed in Eqs. (2.4a-c) now read  

       
  

  
                                                  (2.26a)   

  

  
                                                            (2.26b)  

  
  

  
                                                          (2.26c)                                                                                                                                                  

where      denotes the horizontal displacement of a point on the centroidal axis and is 

positive in the x direction. 

As shown in Fig. 2.4(a), the values of      at x=0, r and q are denoted by     

and   respectively, and the subscripts 1, 2, and 3 stands for quantities in the elastic, 

plastic, and damage regions, respectively. As shown in Fig. 2.4(b), the shear stress   is a 

function of the horizontal displacement and is given by  
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        ;                                        (2.27a)              

        
 

  
                                            (2.27b)                                                                                                               

      
         

       
         .                           (2.27c)    
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(a)                                                                 (b) 

Fig. 2.4 Loading in Mode II: (a) horizontal displacement; (b) shear stress as a function of the horizontal 
displacement [23]. 
 

 

2.5.1 Solution in the first region: 𝒙  𝟎 

Substituting Eq. (2.27a) into Eq. (2.25b) gives 

  
     

  

  
.                                                      (2.28)                                                                                                                                              

Note that Eq. (2.26a) can also be rewritten as  

  

  
 

 

     
.                                                     (2.29)     

Differentiating Eq. (2.28) and substituting Eq. (2.29) into the resulting equation 

will yield 
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                                                  (2.30a)                                                                                                                                       

where  

  
  

  

      
                                                (2.30b) 

The general solution of Eq. (2.30a) is  

          
        

                                   (2.31a)   

where     and     are two constants.   

Using Eq. (2.31a) in Eq. (2.29) and integrating the resulting equation will give 

      
 

     
(
   

  
     

   

  
     )                         (2.31b) 

where     is an additional constant. 

Substituting Eq. (2.25b) into Eq. (2.25a) yields 

    
 

 
   

   .                                              (2.32) 

Inserting Eq. (2.31a) into Eq. (2.32) leads to 

       
 

 
  [        

       
     ]                     (2.33)                                               

where     is an additional constant.  

 

2.5.2 Solution in the second region: 𝟎  𝒙  𝒓 

Using Eq. (2.27b) in Eq. (2.25b) yields 

  
     

 

  
                                                  (2.34)                                                                                                                                            

which can be integrated to obtain  

         
 

  
     ,                                    (2.35a)     
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where     is a constant. 

Using Eq. (2.35a) in Eq. (2.29) and integrating the resulting equation will give 

      
  

    

 

   
   

   

    
                              (2.35b) 

where     is a constant. 

Substituting Eq. (2.35a) into Eq. (2.32) leads to 

       
 

 
  *       

 

  
      +                    (2.35c)     

where     is an additional constant. 

                                       

2.5.3 Solution in the third region: 𝒓  𝒙  𝒒  

The substitution of Eq. (2.27c) into Eq. (2.25b) leads to 

  
  

     

       
 

      

       
                                       (2.36)                                                                                                                                   

Differentiating Eq. (2.36) and substituting Eq. (2.29) into the resulting equation 

will give  

  
                                                     (2.37a)                                                                                                                                    

where 

   
 

   
           

  

      
.                                  (2.37b) 

The solution of Eq. (2.37a) is given by 

                             .                    (2.38a)  

where     and     are two constants. 

Substituting Eq. (2.38a) into Eq. (2.29) and integrating the resulting equation will 

yield 
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*
   

  
         

   

  
        +     ,               (2.38b) 

where     is another constants. 

From Eqs. (2.32) and (2.38a), it follows that 

       
 

 
  [                            ]     ,        (2.38c) 

where     is an additional constant. 

                                                                                               

2.6 Loading Mode III (mixed-mode)  

In this case, both the normal and shear stresses are present. From Eqs. (2.1) -

(2.3), it follows that 

       
 

 
   

         .                                 (2.39)   

For small deformations with     , Eq. (2.39) reduces to  

       
 

 
   

    .                                        (2.40) 

The following traction laws (see Fig. 2.5) are considered: 

     
 

 
  ,           

  

  
,      ;                                  (2.41a)                                                                                                    

     
          

        
,         

           

         
,   if      .              (2.41b)    

 

2.6.1 Solution in the first region: 𝒙  𝟎 

Substituting Eqs. (2.4a-c) and (2.41a) into Eqs. (2.2), (2.3) and (2.40) will give 

      
        

 

 
    

    ,                                        (2.42)                                                                                                                              

   
      

  
  

    ,                                                  (2.43)                                                                                                                   
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                                                 (2.44)      

Eqs. (2.42)-(2.44) can be rewritten as  

  
        

               ,                              (2.45)                                                                                           

     
       ,                                            (2.46) 

  
    

       ,                                          (2.47)                                                                                                                                             

where  

    
 

    
       

 

    
          

  

   
     

     
      

  
          (2.48a-d)                                                                                                                                                  
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Fig. 2.5 Loading in Mode III: (a) vertical displacement; (b) normal stress as a function of the vertical 
displacement; (c) horizontal displacement; (d) shear stress as a function of the horizontal displacement.                                                                                          
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The general solutions of Eqs. (2.45)-(2.47) can be obtained as  

          
        

                                                                                          (2.49) 

          
        

         
         

     
   

  
      

    
(    

    

    
    )                                                                                                                     (2.50)                                                                            

      

      
          

           
           

     
   

  
      

    
(      

    

      
    )    *

   

  
     

   

  
      

   

  
      

   

  
      

   

  
      

    

 

  
     

        
     +                                                          

(2.51) 

where         are constants, and  

   
 

√   
     

 

 
√      √  

                
 

 
√      √  

                 

(2.52) 

with   
        or   

   
     

    
 assumed.  

 

2.6.2 Solution in the second region: 𝟎  𝒙  𝒓 

Substituting Eqs. (2.4a-c) and (2.41b) into Eqs. (2.2) (2.3) and (2.40) leads to  

      
    

          

       
 

 

 
    

                                 (2.53)                                                                                                                      

   
      

  

       

  
  

                                                (2.54)                                                                                                           
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                                    (2.55)                                                                                                                                                       

Eqs. (2.53)-(2.55) can be rewritten as  

  
         

                    ,                         (2.56)                                                                                           

     
       ,                                                 (2.57) 

  
    

            ,                                       (2.58)                                                                                                                                   

where 

    
   

           
         

   
           

         
  

   
     

  

       
     

    
     

           
             

      

  

       

  
          

     

           
                                                            

(2.59a-f) 

The general solutions of Eqs. (2.56)-(2.58) give  

                                                                                                         (2.60)                                 

      

    
        

                                
   

  
       

     
[            

           ]                                                                                                            (2.61)                                                                                                                                                  

            
          

                                 

   

  
       

     
[                            ]     ,

   

  
     

   

  
      

   

  
          

   

  
         

   

  
       

     
*
   

  
         

   

  
        +     -  

                                                                             

 (2.62)                                                                                                                                                                                                                    

where         are constants, and  
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√   

     
 

 
√       √   

              

    
 

 
√       √   

                                           (2.63a-c) 

Furthermore,           , then the kinematic relations given in Eqs. (2.4a-c) 

for a Timoshenko beam reduce to those for a Bernoulli-Euler beam [34]. With      

     , the governing equation for the loading mode I given in Eq. (2.7) becomes 

     
                                                            (2.64)                                                                                                                                   

and then for the loading mode III give in Eq. (2.39) 

     
        

 

 
   

                                           (2.65)                                                                                                                                                                                                                     

Eqs. (2.64) and (2.65) are those for the corresponding cases obtained in Plaut and 

Ritchie [23] based on the Bernoulli-Euler beam theory. This recovery verifies and 

supports the current formulation, which is more general.  

 

2.7 Numerical results and discussion 

To illustrate the analytical model developed in the preceding subsection, some 

sample cases have been studied quantitatively, with the numerical results shown 

graphically. The geometrical parameters are taken to be: L = 10 mm,     0.25 mm, 

       ,       . The adherend material is aluminium, and the adhesive is an 

epoxy. The properties of these two materials are                        

        [15].  
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2.7.1 Loading Mode I 

In this case, the horizontal forces are not considered, and the solution is obtained 

in Eqs. (2.13a), (2.14), (2.18), (2.19), (2.23a) and (2.24). The boundary conditions 

needed to determine the 18 constants,        involved in the solution  are identified as 

(see Figs. 2.1 and 2.3) 

          
                                    t         

            t         

            t       , 

          t                                                 (2.66) 

Continuity of                  at     and     , 

   
  

    
  at       

         
  

    
  at     . 

For the case with                                        

                                    , the displacement and rotational 

angle are plotted in Figs. 2.6 and 2.7. From Fig. 2.6, it is seen that the vertical 

displacement is upward and increases monotonically with x in the cohesive zone in the 

current model which is predicted by the Timoshenko beam theory. It is also seen that the 

big difference between the current model and the Bernoulli-Euler beam theory based-

model of Plaut and Ritchie [23] occurs approximately between      and     in the 

first region. The reason for the difference is the boundary conditions used. The current 

model considers the tape as a fixed end-free end beam which is suitable for short beams, 
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but the tape is assumed to be semi-infinite in the model of Plaut and Ritchie [23]. As 

shown in Fig. 2.7, the rotational angle has little minus value near the fixed-end edge and 

then increases smoothly and then starts to decrease near the peeling front. The normal 

stress predicted by the current model is plotted in Fig. 2.8, which is compared to that 

predicted by the model of Plaut and Ritchie [23]. The difference revealed in Fig. 2.8 is 

similar to that shown in Fig. 2.6.  

 

 
Fig. 2.6 Vertical displacement   under mode I loading. 
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Fig. 2.7 Rotational angle   under mode I loading. 

 
 
 

 
Fig. 2.8 Normal stress under mode I loading. 
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To compare the experimental results of Christensen [57] with the predictions by 

the current model, the geometrical parameters are taken to be: L = 2 mm,     0.5 mm, 

       ,       . The adherend material is a steel (Tesa tape 4651), and the 

adhesive is a mixture of low- and high-molecular-weight polyisobutylenes. The elastic 

and shear moduli of these two materials on the adherend (with subscript b) and the 

adhesive (with subscript a) are, respectively,                           

        . The normal stresses in the adhesive predicted by the current model and those 

provided in Christensen [57] are displayed in Fig. 2.9. It is seen that the normal stress 

predicted by the current model exhibits a trend similar to that shown by the experimental 

data of Christensen [57] with both increasing monotonically with x. However, the slopes 

of the two curves are different. The reason for this discrepancy is that the peeling rate 

considered in the experimental study of Christensen [57] is non-zero, whereas the 

current model is peeling rate independent. 
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Fig. 2.9 Comparison of the normal stresses under mode I loading. 

 

 

2.7.2 Loading Mode II 

In this case, the solution are derived in Eqs. (2.31a,b), (2.33), (2.35a-c) and 

(2.38a-c). The 11 constants         involved in the solution can be determined from the 

following boundary conditions (see Fig. 2.1 and 2.4): 

      at      , 

         at    , 

         at    , 

      at    ,                                           (2.67) 
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  at     . 

For   = 1.25 mm,   = 1.75 mm,   = 0.225 mm,   = 0.595 mm,    = √    N the 

horizontal displacement      is plotted in Fig. 2.10. The curve increases smoothly and is 

the same as that obtained in Plaut and Ritchie [23] using Bernoulli-Euler beam theory, as 

expected. 

 

 
Fig. 2.10 Horizontal displacement under mode II loading. 

 

 

2.7.3 Lading Mode III  

In this case, the solution is given in Eqs. (2.49)-(2.51), and (2.60)-(2.62). The 14 

constants         involved in the solution are determined from the following boundary 

conditions (see Fig. 2.1 and 2.5): 
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        t        , 

           at    , 

Continuity of      ,     at     , 

Continuity of   and      at     ,                                   (2.68) 

   
  

      
       

  

    
               

  

    
   at     . 

For                                                 the vertical 

displacement and rotational angle are illustrated in Figs. 2.11 and 2.12. It is observed 

from Fig. 2.11 that the vertical displacement increases significantly when      and 

then decreases near the peeling front. On the other hand, the rotational angle increases 

slowly with x and then decreases dramatically near the peeling front. 

 

 
Fig. 2.11 Vertical displacement under mode III loading. 

 



31 

 

 

 
Fig. 2.12 Rotational angle under mode III loading. 
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CHAPTER III 

PEELING TEST OF AN ADHESIVELY BONDED JOINT BASED ON A 

VISCOELASTIC BERNOULLI-EULER BEAM MODEL 

 

3.1 Introduction 

In this chapter, the adherend is modeled as a viscoelastic Bernoulli-Euler beam 

that is bonded to an elastic foundation. A configuration similar to that of Plaut and 

Ritchie [23] is considered. In Subsection 3.2, a brief introduction of viscoelastic 

behavior of materials is provided. A literature review of viscoelastic Bernoulli-Euler 

beam models is included in Subsection 3.3. The formulation is presented Subsection 3.4, 

where two cases are considered. The first is the case with a negligible shear stress in the 

adhesive (Mode I), while the second is the case with negligible normal stress in the 

adhesive (Mode II). The non-vanishing shear or normal stress in the adhesive in each 

case is assumed to have a step-stress history. The constitutive relations for the 

viscoelastic beam are derived by using the Boltzmann superposition integral in 

viscoelasticity and are then combined with the equilibrium equations to obtain governing 

equations. The Laplace transform method is used to solve the governing equations. 

Numerical results and discussion for the response of the viscoelastic beam under 

different temperatures are presented in Subsection 3.5.  
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3.2 Viscoelastic behavior of materials 

Viscoelastic behavior of materials has been studied for a long time. The 

mathematical aspects of the subject have been well discussed in Christensen [35], 

Renady et al. [36] and Gurtin and Strengberg [37]. Linear viscoelasticity has been well 

elaborated in Bland [38] and Flugge [39], with an emphasis on mechanical models 

involving springs and dashpots. Golden and Graham [40] described various methods for 

solving boundary value problems in linear viscoelasticity. 

 Beam theories for viscoelastic materials can be developed by using the 

correspondence principle. The correspondence principle was proposed in 1950s (e.g., 

Alfrey [41], Read [42] and Lee [43]). Although a number of models have been published 

for viscoelastic beams having regular geometry and simple loading conditions, very few 

studies have been conducted to understand mechanical behavior of adhesive bonded 

joints using viscoelasticity due to the complexity, involved in the formulation. This 

motivated the work presented in the current chapter.      

 

3.3 Bernoulli-Euler beam models for viscoelastic materials 

  Extending models for elastic beams to viscoelastic beams is challenging. 

Gurgoze [44] considered the dynamic stability of lateral vibrations of a simply supported 

viscoelastic beam and used Galerkin’s method to obtain the governing partial differential 

equations. Olunloyo et al. [45] investigated the vibration damping in structures with 

layered viscoelastic beam-plates and formulated a boundary value problem using contact 

mechanics. Mofid et al. [46] provided two approaches, an analytical method based on 
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Laplace transforms and a discrete element method, for determining the dynamic 

behavior of viscoelastic beams with various boundary conditions. Nonlinear viscoelastic 

beams have also been studied. Argyris et al. [47] investigated chaotic vibrations of a 

nonlinear viscoelastic beam. Beldica and Hilton [48] analyzed the bending and 

piezoelectric control of a nonlinear viscoelastic beam. 

 

3.4 Formulation  

In this chapter, the configurations and free body diagrams are the same as those 

used in Chapter II, as shown in Figs. 2.1 and 2.2, but the origin of the coordinate system 

has been shifted to the left, as shown in Fig. 3.1. The difference is that the adherend is 

treated as a viscoelastic Bernoulli-Euler beam here. The shear or normal stress in the 

adhesive layer is assumed to have a step history.  

 

 

 

Fig. 3.1 Schematic of a tape peeling test. 
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3.4.1 Loading Mode I  

In this mode, it is assumed that the horizontal forces are negligible such that   , 

  and   can all be set equal to zero. The equilibrium equations given in Eqs. (2.1)-(2.3) 

then become 

  

  
                                                           (3.1)                                                                                                                                                      

  

  
                                                               (3.2)      

By using the Boltzmann superposition integral (e.g., Lakes [49]), the relation 

between the moment and deflection for a viscoelastic beam can be expressed as  

         ∫
          

         
 

  ,                                  (3.3) 

where          are, respectively, the vertical displacement, relaxation modulus and 

moment of inertia (with      
     ) of the adherend.  

Combining Eqs. (3.1) and (3.2) gives 

   

                                                             (3.4) 

Consider a time-dependent normal stress S of the following form: 

  
 

 
                                                            (3.5) 

where H(t) is the Heaviside function. It then follows from Eqs. (3.4) and (3.5) that 

  ∫
          

         
 

                                               (3.6) 

Consider the beam deflection of the separation-of-variable form (e.g., [28, 51]): 

                                                             (3.7) 

Using Eq. (3.7) in Eq. (3.6) then gives 
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∫             
 
  

   ,                                   (3.8) 

where    is a constant. 

From Eq. (3.8), it follows that 

      

     
 

  
                                                    (3.9) 

The solution of Eq. (3.9) is 

      
 

  

 

  
   

  
 

 
  ̅ 

  
 

 
  ̅ 

    ̅     ̅̅ ̅                (3.10)   

where       are constants.  

Eq. (3.8) also says that 

  ∫             
 

                                        (3.11) 

Taking the Laplace transform on Eq. (3.11) gives 

                                                           (3.12) 

It can be shown that (e.g., [49]) 

          
 

  
                                                  (3.13) 

where      is the compliance in the transformed space. 

Using Eq. (3.13) in Eq. (3.12) yields              

  
 

     
     

 

 
                                               (3.14) 

which gives 

     
 

  
                                                        (3.15) 

Applying the Laplace transform then yields 

     
 

  
                                                        (3.16) 
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where      is the creep compliance in the time domain. 

Substituting Eqs. (3.10) and (3.16) into Eq. (3.7) results in 

            
  

  

 

  
   

 

 
   

  
 

 
   

                          (3.17)                 

where       are constants to be determined from boundary conditions. 

For the peeling model with one end fixed and the other end free, the boundary 

conditions are  

               
       

  
                                                                                                  

        

        
   

       
       

        

        
  

       
               (3.18a-d) 

Using Eqs. (3.17) in Eqs. (3.18a-d) then yields 

   
 

  
(      )       

 

  
(       

 

 
   )                     (3.18e-h) 

 

3.4.2 Loading Mode II  

In this case,           and S are negligibly small such that they can all be 

set equal to be zero. Consider        
  

  
       caused by the applied horizontal force 

  . Similar to that in Chapter 2, the equilibrium equations now reduce to  

 
  

  
 

 

 
                                                   (3.19a) 

  

  
                                                             (3.19b) 

By using the Boltzmann Superposition integral (e.g., [49]), the constitutive 

relation for the extensional deformation can be shown to be  

          ∫
         

  
      

 

  .                               (3.20) 



38 

 

 

Consider the axial force        of the seperation-of-variable form: 

                                                           (3.21)    

Substituting Eq. (3.21) and        
  

  
       into Eq. (3.19b) gives  

              
  

  
                                          (3.22) 

From Eq. (3.22),       and       can be given as 

         
  

  
      ̅                                       (3.23) 

      
 

  
                                                         (3.24) 

where    and   ̅ are two constants.  

Then, it follows from Eqs. (3.21), (3.23) and (3.24) that 

       ( 
  

  
      )    .                              (3.25) 

where    is a constant (with    
  ̅̅ ̅

  
). 

Similarly, consider the horizontal displacement of the form: 

                                                             (3.26) 

Using Eqs. (3.25) and (3.26) in Eq. (3.20) yields 

( 
  

  
      )        

      

  
∫              

 

 
                 (3.27) 

From Eq. (3.27), it is seen that       is governed by 

  ( 
  

  
      )     

      

  
                                      (3.28) 

which can be solved to obtain 

      
 

   
(
 

 
   

  

  
   

    ̅    ̅)                            (3.29) 



39 

 

 

where   ,   ̅  and   ̅ are constants.  

Also, it follows from Eq. (3.27) that  

       ∫              
 

 
                                  (3.30) 

Taking the Laplace transform on Eq. (3.30) gives 

      
 

  
                                                 (3.31) 

which can be inverted to obtain 

      
 

  
                                                 (3.32) 

From Eqs. (3.26), (3.29) and (3.32), it then follows that 

       (
 

 

  

    
   

        )                              (3.33) 

where     and    are two constants which can be determined from the following 

boundary conditions: 

                 
       

  
     

  

        
                        (3.34a,b) 

as 

   
 

  
(
  

 
 

     

  
)                                        (3.34c,d)    

 

3.5 Numerical results and discussion 

The three-parameter Kolrausch-Williams-Watts (KWW) model to compute the 

compliance      of the adherend (e.g., [50, 51]) will be used here. This model gives  

         
 

 
                                                   (3.35) 
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where   ,   and   are the initial compliance, retardation time and shape parameter, 

respectively. The values of these parameters are adopted from [50] and are listed in 

Table 3.1. 

 

Table3.1 Parameter values in the KWW model [50]. 

T(⁰C) D⁰(1/GPa) τ(sec.) β 

200 0.133 1.56E+5 0.423 

215 0.127 7.69E+4 0.315 

230 0.118 2.83E+3 0.231 

                                    

            

3.5.1 Loading Mode I  

The constants       involved in Eq. (3.17) are computed using Eqs. (3.18e-h). 

For the case with                                             

                 mm, the vertical displacement        at the free end x = L 

is plotted in Fig. 3.2. Clearly,        monotonically increases with time and is larger at a 

higher temperature. Also, it is seen that at     ,        goes up rapidly, but at the other 

two lower temperatures it increases slowly.  
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Fig. 3.2 Vertical displacement at the free end        changing with time at different temperatures. 

 
 
 
 
 
 

3.5.2 Loading Mode II  

In this case, Eqs. (3.33) and (3.34c,d) will be used to compute horizontal 

displacement,       . The parameters values are taken to be             

                                                        The 

horizontal displacement at the free end,        is plotted in Fig. 3.3. It is seen that 

       increases monotonically with time t and enlarges as temperature arises. This is 

similar to what is observed from Fig. 3.2 for        because both solutions are 

proportional to     , as seen from Eqs. (3.17) and (3.33)   
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Fig. 3.3 Horizontal displacement at the free end        changing with time at different temperatures. 
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CHAPTER IV 

SYMMETRIC COMPOSITE ADHESIVELY BONDED JOINTS BASED ON THE 

TIMOSHENKO BEAM THEORY 

 

4.1 Introduction 

In this chapter, the Timoshenko beam theory is applied to model the adherend in 

the adhesive bonded joint, as was done in Chapter 2. However, the joint geometry and 

load distribution are different from those involved in the models developed in Chapter 2 

and 3. The adherend is considered as a symmetric laminate. The adhesive layer is 

assumed to be homogeneous, isotropic and linearly elastic. To extend the existing 

models based on the classical laminate theory, the Timoshenko beam theory is employed 

in the formation here. The analytical solutions are obtained for both the adherends and 

adhesive layer. These solutions are applicable to various symmetric joint configurations. 

For given geometry and loading conditions of the joint, sample results are obtained by 

applying the newly derived solutions directly to quantitatively illustrate the stress 

distributions in the adherends and adhesive.   

 

4.2 Symmetric composite adhesively bonded joints  

Analytical solutions for adhesively bonded composite joints have been derived 

by employing the classical laminate theory [13, 15, 52]. There are many types of 

adhesive bonded joints, such as single-lap joint, single-strap joints, and stiffened joints. 

In Zou et al. [15], an analytical solution for a symmetric composite adhesively bonded 
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joint was provided by using the classical laminate theory and applied to various joint 

configurations. Also, a unified approach was presented by Mortensen and Thomsen [13] 

for different structural bonded joints involving elastic and viscoelastic adhesives. 

Analytical studies on nonlinear analysis of composite single-lap adhesive joints were 

conducted by Luo and Tong [11]. In addition, some authors [53, 54, 55, 56] have used 

the finite element method to analyze adhesive stresses in composite joints.   

 

4.3 Analytical solution based on the Timoshenko beam theory 

To extend the work of Zou et al. [15] based on the classical laminate theory and 

the Bernoulli-Euler beam model, the Timoshenko beam theory is employed in this study. 

The model is a symmetric composite joint subjected to in-plane and out-of plane loads as 

shown in Fig. 4.1. The solution is derived by following a procedure similar to that used 

in Zou et al. [15]. 

 

4.3.1 Kinematic and constitutive relations  

The displacement field based on the classical Timoshenko beam theory is given 

by [64]  

                                                       (4.1)                                                                             

where      ,      are respectively, the x- and z- components of the displacement 

vector of the point         on the centroidal axis of the beam, and   is the angle of 

rotation (about the y-axis) of the cross-section with respect to the vertical direction. 
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Fig. 4.1 Symmetric composite joint under (a) axial tension forces and (b) bending moments. 
 

 

The strain tensor is  

  
 

 
[        ]                                                  (4.2) 

From Eqs.(4.1) and (4.2), it follows that 

                  

    
 

 
(      )                                            (4.3a-f) 

                   

The resultant normal force    transverse shear force   , and bending moment   

are 

  ∫       
                                                   (4.4) 

  ∫       
                                                   (4.5) 
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  ∫        
                                                 (4.6) 

where A is the beam cross-sectional area. 

According to Hooke’s law, the stress-strain relations of each adherend can be 

expressed in terms of its stiffness coefficient     as 

{  }  [   ]{  }                                                (4.7a) 

For the current beam model with                   (see Eqs. (4.3c-f)) 

and      , Eq.(4.7a) gives  

           ,                                                   (4.7b) 

            .                                                 (4.7c) 

Substituting Eqs. (4.7b,c) and (4.3a,b) into Eqs. (4.4)-(4.6) results in 

                 ,                                       (4.8a) 

               ,                                       (4.8b) 

                                                       (4.8c)                                                                                           

where  

     ∫      
   

    
          ∫       

   

    
       

     ∫    
   

    
             ∫     

   
   

    
                            (4.9) 

where b and    are, respectively, the adherend’s width and thickness,   is the shear 

modulus, and     and     are stiffness constants for an isotropic material in a plane stress 

state given by           

    
  

    
              

 

 
  

  

     
.                                (4.10) 
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4.3.2 Adhesive stresses 

Assume that the adhesive layer is homogeneous, isotropic and linearly elastic. 

Also, it is taken to be perfectly bonded to the two adherends. 

The normal strain in the adhesive is  

   
     

  
                                                      (4.11) 

and the shear strain in the adhesive is  

   
     

  
 

    
  
 
       

  
 
  

  
                                    (4.12) 

where   ,    are, respectively, the vertical displacements at the bottom and top surfaces 

of the adhesive, and   ,    are, respectively, the horizontal displacements at the bottom 

and top surfaces of the adhesive. These are obtained from the corresponding values of 

the bottom and top adherends using the perfect bonding conditions.   

Then, the constitutive equations in the adhesive can be obtained from Eqs. (4.11) 

and (4.12) and Hook’s law as  

   
  

  
                                                  (4.13) 

   
  

  
(    

  

 
       

  

 
  )                              (4.14)  

where    and    are, respectively, the Young’s modulus and shear modulus of the 

adhesive layer, and       are the normal and shear stress components in the adhesive 

layer. 
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Fig. 4.2 FBDs of differential elements of the adhesively bonded composite laminate.  

 

 

4.3.3 Governing equations 

From the FBDs shown in Fig. 4.2, the equilibrium equations can be obtained 

from force and moment balance as 

                              
     

 
                  (4.15a-c) 

                            
     

 
                    (4.15d-e) 

where b is the width of the adherend. 

From Eqs. (4.8a-c), it follows that 

                                                           (4.16) 

              ,                                          (4.17) 

          .                                               (4.18a) 

where 

    
   

             
 ,      

    

             
 , 
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                    (4.18b)  

Using Eqs. (4.15a-e), (4.16) and (4.17) in Eq. (4.14) leads to 
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                                              (4.22) 

where 

    
   

  
*   
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+                                                                                                            (4.23a) 
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   +                                                                 (4.23b) 

Similarly, it follows from Eqs. (4.15a-e), (4.17), (4.18a) and (4.13) that 
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where 

    
   

  
(   

   
    

  
) ,      
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) , 

   
   

  
(   

   
    

   
)                                       (4.29a-c) 

When the adherends are made of symmetric and equal-thickness laminates 

      and thus            Also, when each adherend is made of the same 

material,    
   

    
   

, and hence       and        Therefore, the governing 

equations can be obtained from Eqs. (4.22) and (4.28), with    
   

    
   

    
   

    
   

 

       and         

{

    

   
      

  
       

    

      
    

                
                             (4.30a,b) 

where 

        

The general solution for Eqs. (4.30a,b) can be stated as  
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                                                      (4.31) 

      
       

        
       

                      (4.32) 

where       are seven constants, and  

   
 

 
√      √  

                
 

 
√      √  

             (4.33a,b) 

For the shear stresses in the adhesive, Eq. (4.31) is the same as that of Zou et al. 

[15]. However, the general solution for the normal stress in the adhesive given by Eq. 

(4.32) is different from that proposed by Zou et al. [15] due to the additional term   
    

    

involved here in Eq. (4.30b), where    contains the shear modulus,  , as seen from Eqs. 

(4.29a), (4.18b) and (4.9).          

 

4.3.4 Boundary conditions  

The boundary conditions are  

∫                       
 

  
                                                                                (4.34a) 

∫                       
 

  
                                                                              (4.34b) 

∫                                              
 

  

     

 
        

                                                                                                                              (4.34c) 

Also, it follows from Eqs. (5.19),(5.20), (5.25) and (5.26) 
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)      +                                                                (4.34d) 
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 (4.34e) 

    

                 
  

  
*(   

   
          

   
          

   
          

   
      )+   

(4.34f) 

    

          
   

  
              

  

  
*(    

   
          

   
       )+               

(4.34g) 

These seven boundary conditions will be used to determine the seven constants 

      involved in the solutions obtained in Eqs. (4.31) and (4.32). This is done 

numerically next. 

 

4.4 Numerical results and discussion 

In this subsection, two cases are investigated with each adherend being a cross-

ply symmetric laminate (i.e.,[         ] ) of a glass fiber reinforced polymer (GFRP) 

matrix composite. The two identical laminates are jointed (bonded) by an expoxy 

adhesive. The material properties of the adherend and the adhesive are summarized in 

Table 4.1.  

The thickness of the adherends,   , and the thickness of adhesive layer,    are 

fixed at 5 mm and 0.25 mm, respectively. The bonded composite joint has an overlap 

length of 2l = 50 mm and a width b = 1 mm. (see Fig. 4.1) 
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Table 4.1 Mechanical properties of the materials used [15]. 

Property/material GFRP Adhesive 

Young’s modulus (GPa)       

       

2.5 

Poisson’s ratio          

         

0.25 

Shear modulus (GPa) 4.5 1.0 

 

 

4.4.1 Adhesively bonded composite laminate under uniaxial tension 

In this case (see Fig. 4.1(a)), the adhesively bonded composite laminate is 

subjected to the tensile load  ̅ = 100 N only. Then the constants       involved in Eqs. 

(4.31) and (4.32) are determined from Eqs. (4.34a)-(4.34g) with the following 

conditions: 

                                                      

        ̅               ̅.                                        (4.35a) 

Then, the shear stress can be obtained as  

     
       ̅

            
                                            (4.35b) 

which is identical to the expression using Bernoulli-Euler beam theory-based model of 

Zou et al. [15]. 

The normal stress in the adhesive vanishes in this case due to the specific 

loading. The shear stress in the adhesive predicted by the current model is shown in Fig. 
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4.3, where it is also compared to that predicted by the Bernoulli-Euler beam theory-

based model of Zou et al. [15]. It is seen that two models match extremely well, as 

expected. This is because the solution for the shear stress in the adhesive is the same, as 

mentioned earlier.  

 

 
Fig. 4.3 Shear stress in the adhesive of the composite joint subjected to uniaxial tension. 

 

 

4.4.2 Adhesively bonded composite laminate under pure bending moment 

In this case, only a pair of bending moments  ̅             is applied (see 

Fig. 4.1(b)). The constants       involved in Eqs. (4.31) and (4.32) are determined from 

Eqs. (4.34a-g) with the following conditions: 
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        ̅               ̅.                                (4.36a) 

Therefore, the shear stress can be expressed as  

     
        ̅

             
                                           (4.36b) 

where                   
   

    
   

. 

Also, the shear stress derived in this case is the same as that is obtained by Zou et 

al. [15]. 

The shear and normal stresses in the adhesive predicted by the current 

Timoshenko beam theory-based model, respectively, displayed in Fig. 4.4 and Fig. 4.5, 

where they are also compared to those predicted by the Bernoulli-Euler beam theory-

based model of Zou et al. [15]. From Fig. 4.4, it is seen that the shear stress results 

predicted by the two models are in a good agreement, as expected. However, a large 

difference exists between the two sets of predicted values for the normal stress near its 

two ends in the adhesive as shown in Fig. 4.5, which results from the transverse shear 

effect, as can be seen from Eq. (4.30b). 
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Fig. 4.4 Shear stress in the adhesive of the composite joint subjected to pure bending. 

 
 
 
 

 
Fig. 4.5 Normal stress in the adhesive of the composite joint subjected to pure bending. 
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CHAPTER V 

SUMMARY  

 

Two analytical solutions for the peeling test of adhesively bonded joints are 

derived in this thesis work using the classical Timoshenko beam theory for elastic 

materials and a Bernoulli-Euler beam model for viscoelastic materials, respectively. In 

addition, an analytical solution for a symmetric composite adhesively bonded joint is 

obtained by employing the Timoshenko beam theory.  

In Chapter II, the peeling test of an adhesively bonded joint is represented using 

the model of a Timoshenko beam on an elastic foundation. Three cases are considered: 

(1) only the normal stress is acting (mode I); (2) only the transverse shear stress is 

present (mode II); and (3) the normal and shear stresses co-exist (mode III) in the 

adhesive. In mode I and mode III, the numerical results show that the vertical 

displacement increases smoothly for     and displays kinks near the peeling front. 

Furthermore, a comparison of the normal stress and vertical displacement under mode I 

loading shows a difference between the current model and a Bernoulli-Euler beam 

theory based-model in the first region due to different boundary conditions. Another 

comparison of the current model with the experimental results of Christensen is also 

made, which shows similar trends for the normal stress. The horizontal displacement 

under mode II loading is seen to be the same as that based on the Bernoulli-Euler beam 

theory, as expected.  
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In Chapter III, the peeling test is studied by regarding the adherend as a 

viscoelastic Bernoulli-Euler beam. The constitutive relations for viscoelastic beam are 

derived by using the Boltzmann superposition integral in viscoelasticity and are 

combined with equilibrium equations to obtain the governing equations. In the numerical 

analysis, the Kolraush-Williams-Watts (KWW) model is used to compute the 

compliance. The numerical results show that the vertical displacement increases as time 

and temperature increase, as expected.  

In Chapter IV, the Timoshenko beam theory is employed to analytically study a 

symmetric composite adhesively bonded joint. The analytical solution derived here gives 

the shear stress in the adhesive which is the same as that obtained using the classical 

laminate theory. However, the normal stress in the adhesive is different due to the 

consideration of the transverse shear effect in the current model. This is also 

quantitatively illustrated in the numerical results. 
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