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ABSTRACT 

 

Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well 

Spacing in Unconventional Gas Reservoir. 

(December 2010) 

Rubiel Raul Ortiz Prada, B.S., Universidad Industrial de Santander, Colombia  

Chair of Advisory Committee: Dr. Duane A. McVay 

 

Optimizing well spacing in unconventional gas reservoirs is difficult due to 

complex heterogeneity, large variability and uncertainty in reservoir properties, and lack 

of data that increase the production uncertainty. Previous methods are either suboptimal 

because they do not consider subsurface uncertainty (e.g., statistical moving-window 

methods) or they are too time-consuming and expensive for many operators (e.g., 

integrated reservoir characterization and simulation studies).  

This research has focused on developing and extending a new technology for 

determining optimal well spacing in tight gas reservoirs that maximize profitability. To 

achieve the research objectives, an integrated multi-well reservoir and decision model 

that fully incorporates uncertainty was developed. The reservoir model is based on 

reservoir simulation technology coupled with geostatistical and Monte Carlo methods to 

predict production performance in unconventional gas reservoirs as a function of well 

spacing and different development scenarios. The variability in discounted cumulative 

production was used for direct integration of the reservoir model with a Bayesian 
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decision model (developed by other members of the research team) that determines the 

optimal well spacing and hence the optimal development strategy. The integrated model 

includes two development stages with a varying Stage-1 time span. The integrated tools 

were applied to an illustrative example in Deep Basin (Gething D) tight gas sands in 

Alberta, Canada, to determine optimal development strategies.  

The results showed that a Stage-1 length of 1 year starting at 160-acre spacing 

with no further downspacing is the optimal development policy. It also showed that 

extending the duration of Stage 1 beyond one year does not represent an economic 

benefit. These results are specific to the Berland River (Gething) area and should not be 

generalized to other unconventional gas reservoirs. However, the proposed technology 

provides insight into both the value of information and the ability to incorporate learning 

in a dynamic development strategy. The new technology is expected to help operators 

determine the combination of primary and secondary development policies early in the 

reservoir life that profitably maximize production and minimize the number of 

uneconomical wells. I anticipate that this methodology will be applicable to other tight 

and shale gas reservoirs. 
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1. INTRODUCTION 

 

 The rapid growth in the world energy demand and the high depletion rates of 

existing oil and gas reserves as compared to their discoveries are a major causes of gap 

between supply and demand (Zahid et al. 2007). To overcome this gap and create a 

sustainable future energy supply, the oil industry has increased interest and investments 

in the exploration, production and development of unconventional resources. While this 

resource is large, developing it in an economic and environmentally sensitive manner is 

challenging.  

Over the last few years, however, new technologies and expertise have greatly 

enhanced the accessibility of unconventional resources — so much so that this long-

neglected resource is now suddenly emerging as one of the most promising complements 

to our energy future. Unconventional gas, long ignored as a possible contributor to the 

world‘s energy equation, suddenly looks like the next big play, mainly due to its long-

term potential and its environmental cleanliness. In the United States, unconventional 

gas now accounts for more than half of total gas production, or some 300 billion cubic 

meters (bcm) in 2008 (Fig. 1), clearly showing the dependence on unconventional gas 

has increased with tight gas sands, gas shales and coalbed methane being the primary 

contributors. Elsewhere, the potential of unconventional gas formations is just beginning 

to be explored, with assessments under way in Europe, South America, India and China,  

____________ 
This thesis follows the style of SPE Journal. 
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indicating unconventional gas could soon become a major component in the global 

energy mix.  

Unconventional gas, although plentiful, is hard to reach, locked in massive 

sedimentary formations; its production is not an easy task. The characterization and 

exploitation of these reservoirs present significant technical and engineering challenges 

and their productivity depends upon reservoir properties as well as completion and 

stimulation practices. Identifying the critical factors to enable economic development is 

a challenging task.  

 

 
 

 
 

Fig. 1 — Unconventional gas production in the United States now accounts for more 
than half of total gas production. 

 
 

 
Among all unconventional gas resources in North America, tight gas sands 

represent the major fraction, suggesting it is an important source for future reserves 

growth and production. Tight gas sands are often characterized by complex geological 

and petrophysical properties as well as heterogeneities at all scales, factors that increase 
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the production uncertainty.  The low porosity and permeability associated with 

producing formations, the presence of clay minerals in pores and pore throats, and the 

reservoir heterogeneity in both vertical and lateral directions all contribute to the 

complexity of these reservoirs. Moreover, completion and stimulation efficiency are also 

highly uncertain. Because of the large number of uncertain variables, a deterministic 

approach is often incapable of capturing the impact of dependencies between parameters 

that are present in tight gas plays; therefore, stochastic reservoir models are often 

employed to quantify the uncertainty involved.   

Functioning within this risky domain, operators must make sound judgments and 

development decisions such as determining the optimal well spacing. When making such 

decisions, operators must balance the need to conserve capital and protect the 

environment by avoiding over drilling, and maximize profitability by achieving the 

optimal well spacing early in the reservoir‘s life.   

Unfortunately, development of unconventional tight gas fields, such as the 

Carthage Field (Panola County, Texas), follows a ―series‖ approach where the initial 

development activity is followed by long periods of production performance evaluation 

and surveillance separated by periods of additional drilling and downspacing . Under 

these conditions, the optimum field spacing may not be achieved until late in the field 

life (McKinney et al. 2002). This type of suboptimal development can significantly 

reduce the value of the unconventional asset with potential losses of 50% in the asset 

value, which shows the importance of identifying the optimal well spacing early in the 

life of an unconventional gas reservoir. 
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Traditionally, determination of the optimal well spacing has been carried out 

through integrated reservoir studies or statistical comparison of the well performance for 

wells drilled at different spacing. In cases where sufficient data is available from several 

infill programs implemented over 10 to 40 years, the risk associated with over-drilling is 

quite low. Unfortunately, for emerging tight gas sands, lack of historical infill programs 

has resulted in no sufficient data to implement statistical comparison methods for 

evaluating optimal well spacing, and developing these fields over a 40-year time span is 

not desirable. 

 In summary, accelerating the development of unconventional gas reservoir is 

critical to meet the growing energy demand. Effective exploitation of these reservoirs 

can be achieved by developing at sufficiently dense well spacing early in the reservoir 

life, maximizing ultimate recovery, avoiding over drilling, minimizing capital 

expenditures and maximizing profits. However, the significant uncertainty associated 

with unconventional reservoirs makes rapid development risky and, without an effective 

way to manage this uncertainty, operators may under-invest in the development of these 

reservoirs and/or develop them too slowly.  
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2. BACKGROUND AND LITERATURE REVIEW 

 

The problem of determining optimal well spacing in tight gas fields has been 

followed with much interest in the industry and various authors have proposed 

techniques to address the challenges associated with geologic complexity of these 

reservoirs, large numbers of wells, and limited reservoir information.  

Optimizing the development of low-permeability gas reservoirs is most 

accurately done by conducting a full-scale reservoir evaluation involving geological, 

geophysical, petrophysical, and reservoir engineering analyses and interpretations. This 

includes developing a geological model of the field, , pore-scale characterization of the 

rock and fluid system, defining the rock in their basis of porosity-permeability 

relationships and capillary pressure characteristics, definition of the petrophysical model,  

building and calibrating an accurate reservoir simulation model of the study area, and 

using it to predict future well performance and optimize the reservoir development 

(Newsham and Rushing 2001; Rushing and Newsham 2001). Even though the reliability 

and accuracy of this approach is quite high, this method cannot always be justified given 

its time-consuming and expensive nature.  Furthermore, including uncertainty in the 

predictions increase the costs and time required.  

As an alternative approach to conducting integrated reservoir studies, various 

authors have used statistical moving-window techniques to provide rapid and cost-

effective assessment of optimal well spacing in large, tight-gas basins with large data 

sets (Hudson et al. 2000; McCain et al. 1993; Voneiff and Cipolla 1996). These 
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techniques carry out statistical analyses of historical production using performance 

indicators, such as the best 12 consecutive months of production, maximum production 

rate or the monthly production rate at the time a specific cumulative production was 

reached, over the reservoir life. These indicators can be used as proxies for reservoir 

properties, production response, and reservoir pressure. Comparing performance 

indicators of old wells to new wells within areal windows, statistical conclusions are 

drawn concerning interference between existing wells, areas of depletion and undrained 

acreage. Based on these statistical analyses, the locations and number of infill wells can 

be estimated.  

Guan et al. (Guan and Du 2004; Guan et al. 2002)  further advanced the moving-

window technology. The method consists of a multitude of local analyses, each in an 

areal window centered on an existing well. A model-based linear 4D regression equation 

is applied within each window. Once the regression equation coefficients are determined 

for each window, performance can be estimated for infill wells by substituting the 

appropriate values for candidate infill well conditions.  

The technique employed by Guan et al. is based in the following assumptions.  

First, it assumes that reservoir properties do no vary considerable within any moving 

window throughout the study. Second, it assumes that completions and production 

technologies applied to each well are identical, regardless when the well was drilled and 

completed. If performance of new wells is worse than earlier wells, it will not be clear 

whether it is due to depletion or variation in rock properties. Last, to accurately compute 

drainage area and recovery per acre, the method also requires at least a few wells in each 
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part of the study area and that they have sufficient production history to experience  

boundary-dominated flow, which may take several years for a tight gas well, limiting the 

applicability of moving-windows for tight gas fields.  

The major advantages of the moving-window technology are its speed and its 

reliance on only well locations and production data, which makes it a practical screening 

tool for large infill development projects consisting of thousands of wells. However, the 

estimation errors for infill well performance can be quite significant and well 

interference effects become complicated as reservoir heterogeneity increases (Guan et al. 

2002). Regardless of these assumptions and limitations, the moving-window technique 

has been applied to the Ozona (Canyon) gas sands (Voneiff and Cipolla 1996), the Milk 

River formation in Canada (Hudson et al. 2000), the Cotton Valley in East Texas 

(Hudson et al. 2000; McCain et al. 1993), the Mesaverde formation in the San Juan 

Basin (Hudson et al. 2001) and the Morrow formation in the Permian Basin (Hudson et 

al. 2001) to quantify infill potential. 

To improve upon moving-window methods, some authors have suggested 

combining reservoir simulation with automated methods for assessment of infill 

potential in tight gas basins. Reservoir simulation inversion techniques combine the 

greater accuracy of simulation-based methods with the short analysis times and low 

costs associated with statistical methods, to yield a method intermediate in both.  

Gao and McVay (2004) introduced simulation-based regression and automated 

prediction methods for selecting infill candidates in gas-well fields. In this technique, 

well production response is calculated from the reservoir description data by using a 
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reservoir simulator that serves as the forward model. To estimate the permeability field, 

historical production data is inverted based on internally calculated sensitivity 

coefficients. Once the permeability field is estimated, it is used in conjunction with the 

forward model to help determine the expected performance of potential infill wells using 

automated prediction methods. The authors demonstrate that this simulation-based 

regression procedure results in more accurate predictions of infill performance than 

moving-window statistical methods. Since the model proposed by Gao and McVay 

(2004) regresses on permeability only while maintaining other properties fixed at their 

initial values, errors in the pore-volume distribution may result in large errors in infill 

predictions. 

Cheng et al. (Cheng et al. 2008; Cheng et al. 2006)  advanced the simulation-

based regression approach proposed by Gao and McVay (2004) by implementing a 

sequential inversion of both reservoir permeability and pore volume distributions. 

Adding pore volume to the regression enhanced the quality of the history match, 

improved the resolution of reservoir characterization, and provided more reliable 

prediction of future performance and assessment of infill drilling potential. The 

simulation-based nature of the method requires all the data for initializing a reservoir 

simulator. Since the method aims at providing rapid and approximate estimation of infill 

potential, instead of conducting a detailed reservoir characterization study, average 

properties of any available data are used for initial applications. While the results of this 

approach are only approximate, they still provide a very fast way to evaluate infill 

performance in unconventional gas reservoirs. However, these methods are deterministic 
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and do not quantify the uncertainty inherent in reservoir properties and, thus, in the 

predictions of future performance.  

 Teufel et al. (2004) developed an approximate tool called the infill well locator 

calculator (IWLC) to assist operators in drilling infill wells in low-permeability 

reservoirs. The tool was used to evaluate infill potential in the San Juan Basin 

Mesaverde Group. While the tool is resourceful, it only provides a qualitative evaluation 

of infill performance since it ignores important aspects such as heterogeneity within the 

test area, and it provides only a deterministic assessment since it does not quantitatively 

consider the large uncertainty inherent in the assessment.  

Turkarslan et al. (2010) implemented a probabilistic reservoir model that 

incorporates uncertainty in key reservoir parameters (porosity, permeability, net pay, 

initial pressure and reservoir size) to predict production performance in unconventional 

gas reservoirs. The reservoir model was integrated with a Bayesian decision model to 

provide the basis for determining optimal well spacing. The quantification of uncertainty 

in key reservoir parameters was a major extension over previous methods. In this work, 

input reservoir and well parameters are treated as random variables and the predictions 

of future performance are in the form of distributions rather than deterministic values. 

The reservoir model included pore volume and completion efficiency, parameters 

missing from previous implementations of moving-window methods. 

In Turkarslan‘s et al. work, a single-well, one-layer, single-phase probabilistic 

reservoir model was built for modeling the Deep Basin (Gething D) reservoir.  The 

reservoir grid was formulated for the analysis of a hydraulically fractured gas well 



 10 

located centrally in a rectangular drainage area. The reservoir model incorporated the 

evaluation of two development stages, a primary development stage and a secondary 

downspacing stage. All possible two-stage downspacing combinations between 640, 

320, 160 and 80 acres were analyzed to study the effect of downspacing and provide the 

basis for determining the optimal development program for the asset under evaluation. 

The reservoir model was built assuming the drilling of up to 8 wells in a section; 

however, for simplicity only 4 wells were modeled.   

Simulation results quantify best-month production, stage-end average pressure, 

discounted stage production and 20-year discounted cumulative production for each 

well. These production profiles were incorporated into a flexible decision model, which 

allowed calculation of the expected net present value for each scenario and selection of 

the optimal development strategy. To facilitate the integration of the reservoir and 

decision models, discounted stage cumulative production values were used in the 

decision model. Although a single-well approach was adopted in the model, the 

heterogeneity was modeled by attributing different reservoir properties to each well 

(individually sampled from the same statistical distributions) and correlation coefficients 

of reservoir properties from a geostatistical study were used to account for spatial 

dependence of these properties between wells.  

The decision model used in Turkarslan‘s et al. work uses decision tree-analysis. 

These trees are solved starting at the end (right) and ―rolling-back.‖ Thus, the optimal 

Stage 1 spacing decision cannot be made without first determining the optimal Stage 2 

spacing, given every possible Stage 1 outcome. To simplify this procedure, the 
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production uncertainties were discretized using discrete probability mass functions 

containing five branches. This five-point approximation improves the accuracy and 

better illustrates the impact that learning between stages has on making decisions.  

Even though the proposed model by Turkarslan incorporates uncertainty in 

reservoir properties not considered in previous works, the use of a single-well model and 

the extrapolation of the production performance of one well to obtain the performance of 

multiple wells in a section could produce significant errors in production predictions.  

For example, in a reservoir section up to 8 wells might be drilled and they could be 

represented by one well in the model. If the combination of sampled reservoir properties 

lead to a high production performance, over prediction on the performance of the section 

could result when the single-well results are used to represent all the wells in the section, 

thus misleading the production values to be used in the decision model. Due to this, it 

presents some limitations such as overestimation of the uncertainty that could provide 

errors in the prediction of production performance, its inability to capture the pressure 

interference and dependencies between wells, and the reservoir is reduced to a single 

layer with homogeneous properties. With these limitations, errors in predictions could 

lead to suboptimal decisions. 

All these methodologies except the one proposed by Turkarslan et al. are 

deterministic, clearly they produce only one representation of the reservoir and do not 

include the quantification of uncertainty in future performance predictions that is 

inherent in the assessment of unconventional reservoirs and also do not quantify the risk 

involved in development decisions. Finally, the probabilistic reservoir model developed 
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by Turkarslan et al. (2010) was a single-well model where the reservoir is reduced to a 

single homogenous layer and potential errors in production predictions can be observed.  

Based on these observations, it is clear that there is still a need to better quantify 

for the heterogeneity and uncertainty in reservoir properties by exploring the 

development of a multi-well probabilistic reservoir model using more detailed 

geostatistical characterization to represent the reservoir properties rather than using a 

constant property value. The reservoir model will be combined with a flexible decision 

model to evaluate multiple development scenarios and their potential economic 

outcomes that will allow the assessment of optimal well spacing under significance 

subsurface uncertainty.  
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3. OBJECTIVE 

 

This research has been conducted by a group consisting of Texas A&M 

University, the University of Texas, and with Unconventional Gas Resources (UGR). 

The overall objective of this project is to develop technology to help operators determine 

the optimal well spacing for unconventional gas reservoirs. More specifically, it is to 

develop an integrated reservoir and decision model for determining the optimal well 

spacing early in the reservoir life in highly uncertain and risky unconventional gas 

reservoirs, with the goal of maximizing profitability.  

My specific objectives include the development of a multi-well, single-phase 

probabilistic reservoir model to assess the uncertainty in key reservoir parameters and 

allow prediction of production performance as a function of well spacing for an 

unconventional gas reservoir.  They also include using geostatistical characterization to 

model uncertainty in reservoir property distributions for a section of the reservoir to be 

used in the model, and integrating this reservoir model with a Bayesian decision model 

developed simultaneously by the Department of Industrial Engineering at Austin that 

will provide the basis for determining optimal well spacing. Finally, the objectives 

include applying the integrated model to Unconventional Gas Resources‘ tight gas asset 

in the Berland River area, Alberta, Canada, to determine the optimal well spacing and 

hence the optimal development strategy for this particular reservoir.  
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4. METHODOLOGY 

 

The reservoir model is based on reservoir simulation techniques coupled with 

stochastic methods, i.e., Monte Carlo and geostatistical procedures to evaluate 

uncertainty in key reservoir parameters such as porosity, permeability, net pay and initial 

pressure. I implemented a stochastic reservoir model to predict future production 

performance. The quantification of uncertainty is done using 1,000 maps of reservoir 

properties obtained through geostatistical characterization of the area. The reservoir 

model was built for modeling UGR‘s tight gas asset in the Berland River Area, Alberta, 

Canada, and more specifically the Gething D formation.  

I used a stochastic modeling tool, @RISK from the Palisade Corporation, 

coupled with CMG‘s (Computer Modeling Group) full- featured adaptive implicit-

explicit black oil simulator, IMEX,  and a VBA (Microsoft Visual Basic® for 

Applications) code generated in Excel® to perform thousands of simulations 

automatically. Future production performance was forecasted in the form of a 

distribution and was used as input to the decision model. 

Following is a description of the methodology I used: 

1. First, I built a probabilistic, multi-well reservoir simulation model for a section 

(640 acres) of the Gething D reservoir. The single-phase gas model includes up 

to 8 wells in the section and the grid is formulated to accommodate hydraulically 

fractured wells. The steps used to create the reservoir model are as follow: 

 A VBA code was generated in Excel® coupling CMG‘s IMEX simulator 
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with @RISK to perform thousands of simulations automatically. 

 An IMEX example input file template is created in Excel® by the VBA 

code. 

  Information regarding well locations, horizon depths, and structural 

maps, from an integrated reservoir study of the area provided by UGR 

was used to populate the simulation grid with reservoir properties. 

 The integrated reservoir study built in PETREL (PETREL is a 

Schlumberger Windows based software for 3D visualization, 3D mapping 

and 3D reservoir modeling and simulation) for the area using well logs 

and other information was used to construct 1,000 geostatistical maps of 

reservoir properties (porosity, permeability and net-to gross ratio NTG) 

for the evaluation of uncertainty.  

 The reservoir model was used to predict production performance of the 

area. Forecasted production profiles, stage gas production, average 

pressure, discounted cumulative gas productions and decline curve 

parameters for each well were determined.  

2. I validated the multi-well reservoir model by comparing simulated 2-year 

production results to the actual first two years of production of the Berland River 

area and the production forecasts obtained with a single-well reservoir model 

previously used to evaluate the area (Turkarslan et al. 2010) . 

3. The new reservoir model was evaluated with all possible 2-stage downspacing 

combinations that can be generated between 640, 320, 160 and 80 acres. The 
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proposed development scenario and decision context consisted of two stages with 

a varying Stage-1 time span. The reservoir model was run with Stage-1 durations 

of 1-, 3- and 5-year and Stage-1 plus Stage-2 duration combine a total of 20 

years. I used the reservoir model results to determine the effect of downspacing 

and later coupled the results with a flexible decision model to determine the 

optimal infill drilling program. 

4. I fitted the production profiles with decline curves to facilitate the integration of 

the reservoir model with the decision model. The decline curve model was 

calibrated against the reservoir simulation results and could be directly integrated 

into the decision model if required. The decline model used a hyperbolic decline 

for initial production (accounting for the long transient decline period in 

unconventional reservoirs) and terminates in an exponential decline to avoid 

unrealistically high reserves estimations that would be obtained if a hyperbolic 

decline is used alone. Although we experimented with use of the decline curve 

model for integration of reservoir modeling results into the decision model, 

ultimately we decided not to use it.  

5. A decision model developed simultaneously with this research by the 

Department of Industrial Engineering at the University of Texas at Austin was 

used. The forecasted probabilistic production from the reservoir model was used 

as input in the decision model with all possible combinations of stages and well 

spacing. The decision model uses decision tree analysis to assess the uncertainty 

in production performance from the reservoir model and determine the optimal 
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well spacing. 

6. Applying these integrated tools and working with the operating company, 

specific development decisions (optimal development policies) in the UGR‘s 

Deep Basin (Gething) tight gas sands in the Berland River area, Alberta were 

modeled. 
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5. BERLAND RIVER FIELD 

 

5.1. Geological Background 

 

The Deep Basin of western Alberta and northeastern British Columbia 

encompasses one of the North America‘s largest gas fields with recoverable reserves  

ranging between 50 to 150 Tcf (Masters 1979). However, development of these big 

fields continues to be a major challenge for the industry. Most of the gas in this basin is 

found in low-porosity, low-permeability reservoir rocks, which combined with recent 

economics makes commercial development of many of the gas zones extremely difficult 

(Smith et al. 1984). Fig. 2 shows the approximate location of the Berland River area, 

located on the edge of the Deep Basin of Western Alberta. As it happens with most tight 

gas fields, its successful exploitation depends on the ability to identify areas of good 

porosity and associated permeability. In western Alberta, higher permeability is 

normally associated with coarse-grained sandstones and chert pebble conglomerates. 

The Berland River area for this study includes approximately 236 million square meters 

(58,240 acres, 91 sections), which includes about 120 wells, involving about 46 wells 

operated by Unconventional Gas Resources (UGR).  

A review of the literature of the area allowed us a better understanding of the 

regional structural and stratigraphic characteristics of the Gething sands. 

Stratigraphically, the Gething sands are overlain by the Bluesky formation and underlain 

by the Cadomin sands (Fig. 3). Geologically, the Cadomin formation was deposited in 
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Barremian time, the Gething sands and carbonaceous strata were deposited in Aptian 

time, and the Bluesky was deposited in Albian time.  

 
 
 

 
 

Fig. 2 ― Location map showing the position of the study (Berland River) area relative 
to the Deep Basin of Alberta (Smith et al. 1984). 

 
 

 
During the early Cretaceous, the Cordillera of Western North America was 

continuous from Mexico to Alaska. Periodic uplifts within the Cordillera resulted in the 

shedding of clastics into the Pacific Ocean (westward) and the North American interior 

(eastward). The physiography of the interior during this time varied between a low-

relief, near-sea- level plain to a shallow epicratonic sea in which sedimentation kept pace 

with basin subsidence. At this time, the relationship between land and sea in the interior  
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 Fig. 3 ― a)  Stratigraphic correlation chart of Lower Cretaceous indicating the 

formation under study (Hietala and Connolly 1984) b) Stratigraphic column of the 
Lower Cretaceous in the Deep Basin are. (Smith et al. 1984). 

  
 
 

is defined by evaluation of the environments of deposition. A strong Cordilleran uplift 

during Barremian time  caused more shedding of clastics, represented by the alluvial fan 

and braid-plain conglomerates of the Cadomin Formation that were deposited in a belt 

flanking the eastern of the Cordillera.  In Aptian time, the developing trough continued 

to deepen resulting in the accumulation of the fluvial and delta plain sediments of the 
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Gething Formation. An advance of the Boreal Sea into northeastern British Columbia 

and northern Alberta during Aptian time is represented by the coastal and shallow 

marine sandstones of the Bluesky member.  

Tectonic elements affecting the Lower Cretaceous deposition within the Alberta 

basin were minimal. Apart from the Cordilleran uplift, the only tectonic feature that 

affected the depositional environment was the Peace River Arch (Fig. 4) located to the 

north of the study area. However, it had limited effect on the Lower Cretaceous with 

only a gentle thickening of the strata along the arch axis.  

The various depositional environments for the study area are: 

1- Cadomin  -  Alluvial fan and plain environment 

2- Gething    -  Fluvial deposits and flood plain 

3- Bluesky    -  Shore face sand and shales 

Since the formation of interest in this study is the Gething formation, below is a 

more detailed description of this formation. 

 

5.2. Gething Formation 

 

Sediments of the Gething formation consist primarily of inter-bedded fine- to 

medium-grained sandstones, siltstones, mudstones and coaly formations. The sequence 

is terrestrial and is described as a low-relief interior drainage plain on the eastern flank 

of the Lower Cretaceous Cordillera. Sandstones are fining upward or thin-bedded. 

Trough and planar cross-bedded, ripple-bedded and parallel- laminated sandstones are 
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common. Plant material including fossil leaves, stems, logs, stumps, and other 

carbonaceous debris are also common. Coal beds occur throughout the Gething 

formation and dinosaur foot prints have been discovered in Peace River canyon (Fig. 5). 

 

 
 

 
  

Fig. 4 — Structure map of the study area at the Lower Cretaceous showing the 
configuration of the Deep Basin and the adjacent Peace River Arch (Smith et al. 1984). 
 

 
 

The sandstones of the Spirit River system are primarily restricted to the lower 

Gething, this is illustrated in Fig. 5 that shows the type logs of the various facies of the 

Gething formation, being D the lower section. During the late Gething the drainage 

pattern changed significantly. The Fox Creek Escarpment was buried by Gething 

sediments and the drainage plain expanded eastward. Since there was no constraint, the 
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river system meandered across a considerably larger drainage plain. The physiography 

of this larger drainage system was a low-lying swampy plain with numerous shallow 

lakes. There were braided streams to the west and meandering streams to the east. No 

evidence of marine sedimentation was observed in the study area although the coastline 

was not far away. 

During early Aptian time, rivers flowed northeast from the Cordillera then 

northwest along a main river channel (Spirit River Channel). Fig. 6, an isopach of net 

Gething sandstone, displays the drainage pattern. Belts of active tributary channels 

clearly show a northeast drainage pattern. The Spirit River Channel system has narrowed 

from Cadomin time but is still a major trunk system.  

In conclusion, Gething sediments represent channel and overbank deposition 

across a wide, low-relief plain located on the eastern flank of the Cordilleran uplift. 

Rivers flowed east from the Cordillera across the plain to join a major north-flowing 

trunk system, the Spirit River Channel. Sediments include fining-upward fluvial channel 

sandstones, siltstones, shales and coal. Reservoir rock is restricted primarily to channel 

sandstones.. The Gething formation in the Berland River area exhibits average porosity 

of 6% and permeability ranges from 0.001 to 2.3 md, reflecting the ―tight‖ nature of this 

formation. 
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Fig. 5 — Type logs of the various facies of the Gething Formation (Smith et al. 1984). 
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Fig. 6 — Net sand isopach map and paleography map of the Gething formation (Smith et 
al. 1984). 
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6. RESERVOIR MODEL 

 

6.1. Multi-Well Reservoir Model Specifications 

 

Monte Carlo (MC), or stochastic, simulation has been used to explore the impact 

of uncertainty on oil and gas project performance worldwide.  It is also widely used to 

propagate uncertainty in input parameters through a reservoir performance model 

(Oudinot et al. 2005; Schepers et al. 2009; Turkarslan 2010; Turkarslan et al. 2010; 

White et al. 2000). The uncertainty is addressed by generating a large number of 

simulations, sampling distributions for geologic, engineering and other important 

parameters. The MC simulation employees a mathematical model that introduces 

randomness between limits to determine a probabilistic outcome. Typically this result is  

in the form of a distribution, the shape of which provides insights into what is likely to 

occur if the modeled course of action is pursued (Oudinot et al. 2005). 

 Thus, stochastic modeling is helpful in dealing with reservoir heterogeneity 

(Acosta and Mata 2005). Sampling for uncertainty assessment requires a sufficiently 

large number of model runs with randomly sampled inputs. Stochastic analysis could 

need thousands of simulations runs, especially if there are many uncertain variables 

present and an accurate performance response is required (Kalla and White 2005). 

Geostatistical algorithms are normally used to obtain possible realizations of a reservoir 

parameter honoring its geological spatial behavior and considering the rock intrinsic 

heterogeneity. Coupling a Monte Carlo simulation procedure with geostatistical 
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characterization of reservoir parameters can be found in literature mostly for 

conventional reservoirs, (Schepers et al. 2009; White et al. 2000). However, only 

recently geostatistical characterization coupled with MC procedure has been applied for 

reservoir simulation of unconventional plays (Gonzalez et al. 2006; Schepers et al. 2009; 

Turkarslan et al. 2010). 

I implemented in this research a probabilistic, multi-well reservoir model based 

on reservoir simulation techniques coupled with stochastic methods and geostatistical 

characterization. Two major extensions over a previous probabilistic single-well model 

developed by (Turkarslan et al. 2010) are: (1) key reservoir parameters are incorporated 

in the form of areal reservoir property maps obtained through geostatistical procedures 

and (2) it incorporates multiple wells in the model rather than using just one well.   

The reservoir model simulates one section of the reservoir (640 acres). A data 

input file for CMG‘s IMEX simulator is created by the VBA code. Key reservoir 

parameters (porosity, permeability and NTG) are included as geostatistical maps and 

initial pressure is defined by a @RISK distribution function. The single-section multi-

well reservoir model includes up to 8 wells in the section. The wells are numbered 

consistent with the order in which they would be drilled if spacing was progressively 

reduced from 640-ac spacing to 320-ac, 160-ac, and then 80-ac spacing. The reservoir 

model is formulated for the analysis of hydraulic fractured gas wells.  

Fig. 7 shows a map of net-to-gross ratio in the Gething D formation, the 

simulation grid, and the locations of the wells in the section. The simulation study 

included all possible combinations of two-stage downspacing between 640, 320, 160 and 
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80 different acres (Table 1) for Stage-1 durations. The proposed development scenario 

consisted of two stages with varying time spans. Stage-1 was evaluated at time durations 

of 1, 3 and 5 years. Stage-2 was evaluated for time duration of 19, 17 and 15 years 

respectively. The total simulated time between both stages was 20 years. Forecasted 

production profiles, stage gas production, average pressure, discounted cumulative gas 

productions and decline curve parameters for each well are determined.  

 
 

 

 
 

Fig. 7 — Top section of a net-to-gross ratio map showing the location of the individual 

wells to be simulated.  
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Table 1 ― Downspacing combinations evaluated in the single-section, multi-well 
reservoir model 

 
            Stage-2      
Stage-1 640 320 160 80 

640 X - - - 
320 X X - - 
160 X X X - 

80 X X X X 

 

 

 
 

6.2. Reservoir Simulation Grid 

 

One of the steps in building the reservoir model was to determine the simulation 

grid. An integrated reservoir study of the area provided by  UGR was used as basis for 

this reservoir model. The study used around 120 wells within the area to build the 

structural model.  The other wells are located mostly one location outside UGR‘s leases.  

Fig. 8 shows the distribution of wells completed in the area, 46 wells are 

operated by UGR.  The integrated study was done in PETREL. On the study, a structural 

map was constructed for the area by correlating sands tops through a grid of cross-

sections, connecting every well with log curves. From the cross-sections, structure maps 

were made for the Cadomin, Gething and Bluesky formations. Fig. 9 shows one of the 

structure maps built, in this case for the Gething D formation interval. The structure 

maps were used for the framework of the 3-D static model developed in their study.  

The simulation grid was selected for a section (640 acres) of the modeled area in 

the integrated study. The section was selected to include an area where the main 

perforated interval was the Gething D formation, the main producer sand from the area. 

The Gething D formation in the integrated study was subdivided vertically into three 
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layers to capture the vertical layering seen on the logs (Fig. 10), and replicate the high 

degree of vertical and lateral heterogeneity seen in the distribution of gas through the 

reservoir. Fig. 9 shows the North-South section presented in Fig. 10. The final grid 

selected for the model was a 32x32x3 grid with a total of 3072 cells. The model includes 

a hydraulic fracture in each well, along the x-axis. To accurately model gas flow in the 

hydraulically fractured wells, the hydraulic fracture is explicitly modeled by refined 

grids along the fracture and around the well bore.  

 
 
 

 
 

Fig. 8 — Top view of the simulated area by Schlumberger showing the wells used in 

their study. The regions enclosed in light purple represent the UGR asset.  
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6.3. Reservoir Properties Maps 

 

Geostatistics is generally applied to obtain more realistic reservoir 

characterization, which honors geological spatial behavior and considers rock 

heterogeneity. The use of multiple geological scenarios and realizations has been 

discussed in the context of brown fields‘ development (Acosta and Mata 2005; Manceau 

et al. 2001; Mishra et al. 2002; Twartz et al. 1998). In these studies, multiple geological 

scenarios or multiple realizations within one geological scenario were generated to 

identify P10, P50, and P90 geological models to be used in history matching and forward 

predictions.  

 
 

 

 
 

Fig. 9 — An example of structure map, top of Gething D Formation for the study area in 
UGR‘s integrated reservoir study, meters sstvd (subsea true vertical depth). N – S yellow 

dashed line indicates a section in the North to South direction shown on Fig. 10.  
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Fig. 10 —  Example North-South section indicated by the N-S dashed yellow line on map shown on Fig. 9 for UGR‘s Berland 
River area showing the vertical layering of Gething D formation interval. The three vertical layers of Gething D formation are 

indicated by red color lines. 
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The procedure developed in this research includes the use of geostatistical 

characterization to generate multiple possible representations of the primary reservoir 

parameters to populate the reservoir model. To evaluate the uncertainty in the reservoir 

model, 1,000 maps of key reservoir parameters, including net-to-gross ratio (NTG), gas 

porosity (gas) and gas permeability (kgas), were obtained. The wells with available log 

data that can be used for interpretation from the UGR‘s integrated field study of the 

Berland River area were used as input to generate the maps.  

The property modeling workflow used for the integrated field study of Berland 

River Area was done in PETREL. It includes data analysis which is a process of quality 

controlling the data, exploring the data to identify key geological features and prepare 

the input for petrophysical modeling, it also includes data transformation, correlation 

between properties and variograms, followed by vertical up-scaling and finally 

horizontal population of the main properties (NTG, gas, kgas) to describe rock quality. In 

total, log data from 109 wells that have been in production at some time during the field 

life were used.  

Basic reservoir parameters were upscaled.  As the simulation grid cells often are 

much larger than the sample density for well logs, well log data must be scaled up before 

they can be entered into the grid. When scaling up the well logs, PETREL will first find 

the 3D grid cells that the wells penetrate. For each grid cell, all log values that fall within 

the cell will be averaged according to the selected algorithm to produce one log value for 

that cell. For discrete well logs (e.g. facies or zone logs), the average method ―Most of‖ 

is recommended.  For this method, the upscaled value will then correspond to the value 
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that is most represented in the log for that particular cell. The result of the scale up well 

logs process is placed as a property model icon in the Properties folder for the 3D grid. It 

only holds values for the 3D grid cells the wells have penetrated. All other cells have an 

undefined value. Property modeling is then used to assign values to all the other grid 

cells, based on the scaled up well logs and optional trend data.  

Normalized Gamma Ray logs were used to generate volume of shale logs (Vsh 

logs) that were used to obtain net-to-gross ratio logs (NTG=1-Vsh), since Vsh logs can 

be upscaled and populated as a continuous property; normalized density and neutron 

logs were used as porosity inputs; and the permeability model is based on a porosity-

permeability relationship conditioned to core data from the field and validated by 

pressure build-up. I used the upscaled logs already available in the integrated field study 

to generate the reservoir property maps using PETREL‘s property modeling process.  

Using the available upscaled logs at the wells location I first constructed 

variogram maps of the main properties to evaluate the direction of anisotropy and 

determine in which direction there is enough stable data to construct empirical 

variograms to be used for the property modeling. The variogram map is obtained by 

calculating variograms in all possible azimuths and plotting them in a Cartesian plane. 

This gives the appearance of a contour map, where the contour maps are lines 

connecting points of equal variance. If the data have any anisotropy, it will be reflected 

in this variogram map in the form of elliptical contours. The direction of the elliptical 

closure will indicate the anisotropy direction. Once the anisotropy is identified, then the 

variograms are obtained. PETREL‘s data analysis module was used to obtain the 
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variogram maps and then the empirical variograms for the main properties in the major 

and minor directions of anisotropy. The major direction defines the direction in which 

the sample points have the strongest correlation (the main angle is specified as the 

clockwise angle from the north for the main search directions), the minimum direction is 

perpendicular to the major direction. Fig. 11 is the variogram map for gas porosity; from 

this map we observed the major direction of anisotropy for gas porosity to be 68 degrees. 

Similarly, Fig. 12 and Fig. 13 show the variogram maps for NTG and permeability. The 

major directions of anisotropy are 297 degrees for NTG and 264 degrees for 

permeability. The empirical variograms were fitted by variogram models to obtain the 

theoretical variograms. Table 2 shows the type of variograms models used and the 

variogram parameters. Fig. 14 to Fig. 16 show the fitted variograms for each property in 

both the major and minor directions. 

 
 
 

Table 2 — Theoretical Variogram parameters 
 

Property 
Variogram 

 Model 

Angle of 
Major 

Direction  

Range Major 

Direction (m) 

Range Minor 

Direction (m) 
Sill Nugget 

Gas Porosity Exponential 68 3910 2015 1.054 0.034 
NTG Gaussian 247 2570 2470 0.952 0.116 
Permeability  Spherical 264 2520 2430 0.997 0.050 
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Fig. 11 ― Variogram map for gas porosity. The white line shows the major direction of 

anisotropy. 
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Fig. 12 — Variogram map for net-to-gross ratio. The white line shows the major 
direction of anisotropy. 
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Fig. 13 ― Variogram map for permeability. The white line shows the major direction of 
anisotropy. 
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Fig. 14 — An exponential variogram model for gas porosity. a) is the variogram in the 
major direction of anisotropy and b) is the variogram in the minor direction.  
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Fig. 15 ― A Gaussian variogram model for NTG. a) is the variogram in the major 

direction of anisotropy and b) is the variogram in the minor direction. 
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Fig. 16 — A spherical variogram model for permeability. a) is the variogram in the 
major direction of anisotropy and b) is the variogram in the minor direction.  
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I used a Sequential Gaussian Simulation (SGS) a lgorithm from PETREL‘s 

petrophysical modeling process which is a stochastic method of interpolation based on 

kriging, which honors the well data, input distributions, variograms and trends, to 

generate the 1,000 property maps. Upscaled logs, variograms and input distributions 

were used during the petrophysical modeling. All cells in the simulation grid were given 

values. The upscaled parameters are fixed at the wellbore of existing wells and are 

honored by the algorithm; the model then was populated with the three pertinent 

parameters away from wellbores. Ordinary kriging was used as part of the SGS process 

to generate 1,000 reservoir properties maps. Facies were defined, one to represent sands 

and one to represent the flood plain deposits. Logs of these facies were generated for the 

available wells and the facies modeling was done in conjunction with property modeling. 

Fig. 17 shows an example of a facies log for one of the wells in the area.  

For permeability, a co-kriging option was used to steer the simulation using the 

spatial distribution of a second variable together with a correlation coefficient to 

calculate the contribution of the secondary variable at each point. The pore volume 

normalized by the arithmetic mean was used as the secondary variable and a correlation 

coefficient of 0.68 determined by PETREL was used. The correlation coefficient was 

estimated based on the upscaled log values and it is given for the normal score 

transformed data of both primary and secondary variables. The correlation coefficient is 

obtained from a cross-plot of the two variables in the normal score space and basically 

summarizes the relationship between the two variables.  
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Fig. 18 to Fig. 20 show one of the individual realizations of the porosity, net-to-

gross ratio and permeability maps of the Gething D formation for the entire Berland 

River Area obtained through the geostatistical procedure described above. Gas porosity 

ranges from 0 to 0.1, net-to-gross ratio ranges from 0 to 1, and gas permeability ranges 

from 0.001 to 2.3 md. These property maps show the heterogeneous nature of the 

reservoir. The gray area on these figures represents the section from where the 1,000 

property maps were obtained for the multi-well reservoir model for this project.  

An example of one realization of reservoir properties map for the selected section 

of the Berland River Area is presented in Fig. 21. Fig. 22 also shows one realization of 

the property NTG on a 3-D display of the simulation grid. Note the high degree of 

heterogeneity seen through the model both laterally and vertically in the study area. The 

high degree of heterogeneity both vertically and laterally displayed on Figs. 21and 22 

highlights the need for using a multi-well model to simulate the tight gas reservoir.  

After the reservoir simulation using the 1,000 realizations of properties maps was 

initiated, some issues were found with the maps that needed correction before the 

simulation could be continued. The most significant was related to adjustment required 

to the NTG value for certain cells that need to change its value from 0% to 0.5% to avoid 

undesired stops in the simulation. 
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Fig. 17 ― An example of a log including facies for a well of the area under study. The 
facies log is presented on Track 4. Sand facies are represented by the dark yellow color 

and flood plain deposits by the brown color.  
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Fig. 18 — A realization of porosity for the Gething D formation obtained through 

geostatistical procedures. The boxes in light purple represent UGR‘s lease areas. The 
shadowed gray box represents the section selected to extract the property maps to be 

used in the multi-well reservoir model for this project. 
 
 

 
 

 
 

Fig. 19 ― A realization of net-to-gross for the Gething D formation obtained through 

geostatistical procedures. The boxes in light purple represent UGR‘s lease areas. The 
shadowed gray box represents the section selected to extract the property maps to be 
used in the multi-well reservoir model for this project. 
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Fig. 20 — A realization of permeability for the Gething D formation obtained through 

geostatistical procedures. The boxes in light purple represent UGR‘s lease areas. The 
shadowed gray box represents the section selected to extract the property maps to be 

used in the multi-well reservoir model for this project. 
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Fig. 21 ― An example realization of reservoir property maps for the section of the 

Gething D interval, Berland River Area, showing the properties in individual layers.  
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Fig. 22 — Simulation grid of the study area showing a top (a) and bottom (b) view of 
the three-dimensional cube of net-to-gross ratio (NTG). 
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6.4. Other Parameters 

 

Other input parameters in the Berland River reservoir model are presented in 

Table 3. The model includes a hydraulic fracture with half length of 200 ft and with an 

approximate fracture width of 0.04 ft. The dimensionless fracture conductivity (FcD) 

used in the model is 1.3. A formation depth distribution was used to model the initial 

pressure for the multi-well model by multiplying a constant pressure gradient by the 

formation depth, (Table 4). The histogram and corresponding probability distribution 

function of formation depth are shown in Fig. 23. 

 

 
 

Table 3 ― Input parameters of Berland River reservoir model 

 
Parameter Units Value 

Pressure Gradient psi/ft 0.28 

Reservoir Temperature °C 90 
Gas Gravity - 0.71 
Water Saturation % 30 
Fracture Length ft 200 

Fracture w idth ft 0.04 
Dimensionless Fracture Conductivity - 1.3 

 

 
 

Table 4 — Formation depth distribution and uncertainty parameters used in modeling 

the Berland River Gething D reservoir 
 

Parameter Units 
Distribution 

Type 
Minimum Maximum Mean 

Standard 
Deviation 

Shift 

Formation 
Depth 

m Normal 2,600 3,100 2,780 91 - 
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Fig. 23 ― Histogram and probability distribution function of depth used for modeling 

the initial pressure of the Berland River Field. 
 

 
 

The hydraulic fracture permeability is computed using the following equation: 

  ………………………………….................................... (1) 

where fk  is the fracture permeability, k is the formation permeability, fL is the 

fracture length,  and w  is the fracture width. Because using an FcD of 1.3 could result in 

extremely high fracture conductivities for the higher permeability wells, fwk was 

limited to a maximum value of 150 md-ft, which means that the fracture permeability, 

fk , cannot be larger than 3750 md. 
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6.5. Validation of Reservoir Model 

 

Validation of the probabilistic reservoir model was conducted against the 

distribution of actual production data from the wells operated by UGR. The information 

provided by UGR and the base map of the Berland River area (Fig. 8) suggest that the 

study area is developed predominately on 640 and 320-acre spacing; therefore, up to two 

wells are already in production in almost each section of the field.  Because of this, the 

simulation results from Wells 1 and 2 were selected for the validation of the reservoir 

model. One thousand iterations of the multi-well reservoir model were run for stage 

duration of 2 years for both Stage 1 and Stage 2 to obtain the cumulative production for 

wells on 640- and 320-acre spacing (Wells 1 and 2).  Since 24-month production is 

being compared, for Stage 1 the production results for Well 1 at 640-acre spacing and 

Wells 1 and 2 at 320-acre spacing were used, and for Stage 2 only the production results 

of Well 2 at 320-acre spacing after downspace from 640 was included since it is only the 

new well in production in Stage 2. The results were used to compare the production 

response from the multi-well model to actual production from the Berland River Area. 

The results were also compared to the single-well model results developed by Turkarslan 

(2010).  

 The new reservoir model yielded a distribution of production that matches the 

actual distribution of Gething production and the single-well reservoir model production 

results quite well (Fig. 24 a)).  Since around 10% of the maps had problems with wells 

in zones of very low pay, the lowest 10% of production values were removed from the 
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Stage-1 production results for 640- and 320-acre spacing for Wells 1 & 2 and the 

Cumulative distribution functions (CDF) was constructed again (Fig. 24 b)). A better 

comparison between actual data, single-well model results and multi-well model results 

is obtained in this case. 

Similarly, comparison was done for best-month production on individual wells 

(Wells 1 & 2). The multi-well model produced a distribution that matches much better 

the actual production results from the Berland River area than the single-well model 

(Fig. 25 a). Similarly, 10% of the lowest production values were removed and the 

cumulative distribution plot was constructed again and a better comparison between the 

multi-well reservoir results and the actual production data is observed (Fig. 25 b).

 

6.6. Multi-well Reservoir Results 

 

Once the model was validated against actual reservoir performance and the 

single-well reservoir model, the multi-well reservoir model was used to forecast 

production for different combinations of well spacing and Stage-1 and Stage-2 durations. 

The first-month production, stage production, and stage production discounted to time 0 

for both Stage 1 and Stage 2 were obtained. Even though Stage 2 could start 1 to 5 years 

after Stage 1, the production of Stage 2 was also discounted to time zero to allow 

calculation of economic value at the time the decision is being made. CDF of first-month 

production, stage production, total production (Stage 1 plus Stage 2), and individual we ll 

production were obtained.  



53 

 

 

Fig. 24 — a) The multi-well reservoir model yielded a distribution of production that 

matches the actual distribution of Gething production and single-well reservoir model 
results quite well, b) revised production distribution for multi-well reservoir model 

where the lowest 10% of production values was removed from Stage-1 results. A better 
match with the actual distribution of Gething production and single-well reservoir model 
is observed.  
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Fig. 25 ― a) The multi-well reservoir model yielded a distribution of best-month gas 
production that matches the actual distribution of Gething production. b) Lowest 10% of 

production values removed from Stage 1. A better match with the actual distribution of 
Gething production is observed. 
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Fig. 26 a) shows the CDF of gas production for Stage 1 of 5 years and initial 

spacing of 640 acres. The average stage production is 1,279.39 MMscf with a maximum 

production of 4,321.4 MMscf and a minimum of 0.649 MMscf. The large variability in 

gas production indicates significant uncertainty is being modeled with the 1,000 

reservoir properties maps used in the reservoir model. Fig. 26 b) shows the CDF of total 

gas production for the section for Stage 1 of 640-acre plus Stage 2 of 640, 320, 160 and 

80-acre spacing. In this figure we observe how the combined stages production gradually 

increases as the spacing decreases (i.e., as more wells are added to the section). For 

example, the average total gas production for Stage 1 and Stage 2 of 640-acre spacing, 

(i.e., no wells are added after Stage 1) is 2,339.25 MMscf with a maximum production 

of 7,258 MMscf and a minimum production of 2.739 MMscf, while the average total gas 

production for Stage 1 of 640-acre spacing and Stage 2 of 80-acre spacing (i.e., 7 infill 

wells are added to the section) is 3,934.38 MMscf with a maximum production of 

8,449.69 MMscf and a minimum of 1,046.91 MMscf. Similar CDF plots were obtained 

for Stage 1 duration of 5 years and initial spacing of 320, 160 and 80 acres (Fig. 27 to 

Fig. 29).  Fig. 30 a) shows the CDF for first-month gas production for Stage 1 duration 

of 5 years for initial spacing of 640 acres. In this case only results for Well 1 are 

presented since only one well is simulated in this case. Similarly, Fig. 30 b)  shows the 

CDF for first-month gas production for Stage 1 duration of 5 years when the initial 

spacing is 320-acre; in this case Wells 1 and 2 results are presented. Fig. 30 c) is a 

similar CDF plot when the initial spacing is 160-acre (Wells 1 to 4) and Fig. 30 d) 

shows a similar CDF plot when the initial spacing is 80-acre (in which case the results 
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for Wells 1 to 8 are presented). A significant variation in the distribution of first-month 

gas production between wells is observed, which is consistent with the heterogeneity 

observed in the reservoir property maps.  

Similarly, Fig. 31 to Fig. 35 show the CDF plots for gas production for Stage-1 

duration of 3 years, and Fig. 36 to Fig. 40 show CDF plots for gas production for Stage-

1 duration of 1 year. Table 5 shows an example of Monte Carlo results from the 

simulator for best month production,  gas production  and discounted gas production by 

section for Stage 1 and  the combined Stage 1 plus Stage 2 gas production and 

discounted gas production for a Stage-1 duration of 3 years, initial spacing of 320-acre 

and different downspacing combinations. Table 6 shows an example of Monte Carlo 

results from the simulator for first-month gas production, stage gas production and stage 

discounted gas production for each well simulated in the section for Stage1 and Stage 2 

for a Stage-1 duration of 160 acres and duration of 3 years and Stage 2 of 160 acre.  

Fig. 41 a) shows the CDF plot for gas production by well in the section for Stage 

1 duration of 3 years and initial spacing of 80 acres (Wells 1 to 8). Fig. 41 b) shows the 

CDF plot for gas production by well for Stage 2 of 80 acres after Stage-1 duration of 3 

years and initial spacing of 80 acres. The significant variation in individual-well 

production distributions results from the heterogeneity inherent in the reservoir property 

maps. 

The results of the combined Monte Carlo and reservoir simulation modeling 

provided production forecast distributions under different development scenarios 

accounting for the uncertainty in reservoir properties. Distributions for discounted stage 
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cumulative production were incorporated into the decision model as the basis to obtain 

an economic evaluation of each development scenario. More specifically, the expected 

net present value was determined and these results provided the basis for the selection of 

the optimal development strategy. By including the simulated relationship between 

Stage-1 and Stage-2 production response, the decision model can assess the value of 

learning from the initial development spacing to determine the optimal overall 

development strategy. This evaluation is described in Section 8.  

 
 
 

 

 
 

Fig. 26 — Cumulative distribution functions for multi-well reservoir model results for 

gas production for a) Stage 1 of 5 years and initial spacing of 640 acres and b) combined 
Stage 1 of 640-acre spacing and Stage 2 of 640, 320, 160 and 80-acre spacing.   
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Fig. 27 ― Cumulative distribution functions for multi-well reservoir model results for 
gas production for a) Stage 1 of 5 years and initial spacing of 320 acres and b) combined 
Stage 1 of 320 acres spacing and Stage 2 of 320, 160 and 80 acres spacing.   

 
 

 
 

 
 
Fig. 28 — Cumulative distribution functions for multi-well reservoir model results for 

gas production for a) Stage 1 of 5 years and initial spacing of 160 acres and b) combined 
Stage 1 of 320 acres spacing and Stage 2 of 160 and 80 acres spacing.   
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Fig. 29 ― Cumulative distribution functions for multi-well reservoir model results for 

gas production for a) Stage 1 of 5 years and initial spacing of 80 acres and b)  combined 
Stage 1 of 320 acres spacing and Stage 2 of 80 acres spacing.   

 
 
 

 
 

Fig. 30 — Cumulative distribution functions for multi-well reservoir model results for  

first month gas production for Stage 1duration of 5 years and initial spacing of a) 640 
acres, b) 320 acres, c) 160 acres and d) 80 acres.  
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Fig. 31 — Cumulative distribution functions for multi-well reservoir model results for 
gas production for a) Stage 1 of 3 years and initial spacing of 640 acres and b) combined 
Stage 1 of 640 acres spacing and Stage 2 of 640, 320, 160 and 80 acres spacing. 

 
 

 
 

 
 
Fig. 32 ― Cumulative distribution functions for multi-well reservoir model results for 

gas production for a) Stage 1 of 3 years and initial spacing of 320 acres and b) combined 
Stage 1 of 320 acres spacing and Stage 2 of 320, 160 and 80 acres spacing. 
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Fig. 33 — Cumulative distribution functions for multi-well reservoir model results for 
gas production for a) Stage 1 of 3 years and initial spacing of 160 acres and b) combined 
Stage 1 of 160 acres spacing and Stage 2 of 160 and 80 acres spacing. 

 
 

 

 
 
Fig. 34 ― Cumulative distribution functions for multi-well reservoir model results for 
gas production for a) Stage 1 of 3 years and initial spacing of 80 acres and b) combined 

Stage 1 of 80 acres spacing and Stage 2 of 80 acres spacing. 
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Fig. 35 — Cumulative distribution functions for multi-well reservoir model results for  
first month gas production for Stage 1duration of 3 years and initial spacing of a) 640 
acres, b) 320 acres, c) 160 acres and d) 80 acres.  

 
 

 

 
 
Fig. 36 ― Cumulative distribution functions for multi-well reservoir model results for 
gas production for a) Stage 1 of 1 year and initial spacing of 640 acres and b) combined 

Stage 1 of 640 acres spacing and Stage 2 of 640, 320, 160 and 80 acres spacing. 
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Fig. 37 — Cumulative distribution functions for multi-well reservoir model results for 
gas production for a) Stage 1 of 1 year and initial spacing of 320 acres and b) combined 

Stage 1 of 320 acres spacing and Stage 2 of 320, 160 and 80 acres spacing. 
 

 
 
 

 

 
 
Fig. 38 ― Cumulative Distribution functions for multi-well reservoir model results for 

gas production for a) Stage 1 of 1 year and initial spacing of 160 acres and b) combined 
Stage 1 of 160 acres spacing and Stage 2 of 160 and 80 acres spacing. 
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Fig. 39 — Cumulative Distribution functions for multi-well reservoir model results for 
gas production for a) Stage 1 of 1 year and initial spacing of 80 acres and b) combined 

Stage 1 of 80 acres spacing and Stage 2 of 80 acres spacing. 
 

 
 
 

 
 
Fig. 40 ― Cumulative Distribution functions for multi-well reservoir model results for  

First Month gas production for Stage 1duration of 1 year and initial spacing of a) 640 
acres, b) 320 acres, c) 160 acres and d) 80 acres. 
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Table 5 ― Example of results from the simulator for the Total Stage Gas Production, 
Total Discounted Production and Total First Month Production by a section for Stage-1 

and Stage-2 for the Stage-1 of 320 acres and duration of 3 years and Stage-2 of 320, 160 
and 80 acres 

 

 
 

 
 
 

 
 
Fig. 41 — Example of Cumulative distribution functions for multi-well reservoir model 

results for a) Gas Production by well for Stage 1 duration of 3 years and initial spacing 
of 80-acre and b) Gas production by well for Stage 2 of 80-acre spacing after Stage-1 of 
3 years and 80-acre initial spacing.  
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Table 6 —  Example of results from the simulator for First-Month Gas Production, Stage Gas Production and Discounted 

Stage Gas Production for each well for Stage 1 and Stage 2 for a Stage 1 of 160 acres and duration of 3 years and Stage 2 of 
160 acres 
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6.7.  Recovery Efficiency  

 

Recovery efficiency was calculated for one of the reservoir property maps that 

provide a production performance close to the P50 of production distribution (medium 

production value). The results are shown in Fig. 42 and Fig. 43 where cumulative 

production and recovery efficiency as functions of time for Stage-1 durations of 1 year 

and 5 years, respectively, when the initial spacing is 640 acres are shown. The overall 

recovery efficiency when no downspacing in Stage 2 is around 48%, when downspacing 

to 320-acre is around 58%, when downspacing to 160acre is around 72% and when 

downspacing to 80-acre is around 85%.  It is observed in both cases that similar recovery 

efficiencies are reached after 20 years of production; however, for Stage-1 duration of 1 

year, when additional wells are added, recovery is accelerated earlier in the reservoir 

life, which leads to a higher net present value (NPV), than for the 5-year Stage 1.  

    

6.8. Comparison of Multi-Well Reservoir Model and Single-Well Model  

 

The results from the multi-well model described herein were compared to the 

single-well model developed by Turkarslan (2010) for the same field Fig. 44 to Fig. 47 

show a comparison of cumulative distribution for total gas production for Stage-1 

duration of 3 years at different initial spacing between the two models. A narrower 

uncertainty range for the multi-well reservoir model is observed when compared to the 

single-well model. 
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Fig. 42 — Cumulative production and recovery efficiency versus time for Stage-1 
duration of 1 year and initial spacing of 640 acres.  

 
 

 

 
 
Fig. 43 — Cumulative production and recovery efficiency versus time for Stage-1 
duration of 5 years and initial spacing of 640 acres. 
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With the single-well model, since the results of one well are extrapolated to 

obtain the performance of multiple wells in a section, this feature could produce errors in 

the production distributions. For example, in a reservoir section up to 8 wells might be 

drilled and represented by one well. If the combination of sampled reservoir properties 

leads to a very high value in the production performance, this could result in over-

prediction of the performance of the section when the single-well production is 

multiplied by 8. Fig. 48 shows production by well in the multi-well model and the 

single-well model. In this figure, which shows production for Stage 2 of 160-acre 

spacing after Stage 1 of 160-acre spacing, 4 wells in the multi-well model are 

represented by the color lines and the well for the single-well model is represented by 

the black line. For this particular case, the single-well model presents a production 

distribution that is very similar to the production distribution for the well with highest 

production in the multi-well model.  When the production of the well in the single-well 

model is multiplied by 4 to obtain the section production, the production for the section 

could be much higher than the combination of 4 wells from the multi-well model (Fig. 

46 b)). Over many Monte Carlo samples, this will tend to assign too much probability to 

the extreme values and widen the distributions for the single-well model.  

I consider the multi-well modeling to be more realistic, since each well‘s 

performance is simulated in the model and aspects such as pressure interference and 

heterogeneities are better reproduced. Geostatistical maps are used to model 

heterogeneity in the multi-well reservoir model, which better models the uncertainty in 

reservoir properties. The single-well model overestimates the uncertainly because the 
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reservoir representation for individual wells is reduced to a single layer with 

homogeneous properties.   

 In summary, the production results obtained using the single-well reservoir 

model proposed by Turkarslan et al. (2010) could provide errors in the production 

predictions leading to suboptimal decisions. The multi-well reservoir model and the use 

of properties reservoir maps obtained through geostatistica l characterization can provide 

a better basis for the decision model.  
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Fig. 44 ― Comparison of cumulative distributions for total section gas production 

between multi-well and single-well models a) Stage 1 of 3 years and initial spacing of 
640 acres and b) Stage 1 of 640-acre spacing plus Stage 2 of 640, 320, 160 and 80-acre 

spacing. 
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Fig. 45 — Comparison of cumulative distribution for total section gas production 

between multi-well and single-well models a) Stage 1 of 3 years and initial spacing of 
320 acres and b) Stage 1 of 320-acre spacing plus Stage 2 of 320, 160 and 80-acre 

spacing. 
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Fig. 46 ― Comparison of cumulative distribution for total section gas production 

between multi-well and single-well models a) Stage 1 of 3 years and initial spacing of 
160 acres and b) Stage 1 of 160-acre spacing plus Stage 2 of 160 and 80-acre spacing. 

 
 
 

 
 

Fig. 47 — Comparison of cumulative distribution for total section gas production 
between multi-well and single-well models a) Stage 1 of 3 years and initial spacing of 80 
acres and b) Stage 1 of 80-acre spacing plus Stage 2 of 80-acre spacing. 
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Fig. 48 ― Comparison of gas production for individual wells between the multi-well 
and single-well models for an example Monte Carlo iteration. This illustrates how 

extrapolating the production of the single-well model can over-predict the section 
production much of the time compared to the multi-well model. 
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7. DECLINE CURVE MODEL 

 

During this research, I studied the option to use decline curve analysis (DCA) as 

a means to integrate the reservoir and the decision model, since DCA can be used to 

predict production performance. The production profiles from the reservoir simulation 

can be fit with a decline curve. Then, the decline parameters obtained can be 

incorporated and used in the decision model to predict the expected net present value for 

the different development scenarios and the results can be used as a mean to decide on 

the optimal development strategy. Ultimately, the use of DCA parameters to integrate 

the reservoir and decision model was not used in this project. Nonetheless, I present in 

this section the proposed methodology and results for a decline model that was 

developed during the project to represent the Gething formation.  

   

7.1. Overview 

 

Decline curve analysis is one of the most common reservoir engineering tools 

used to forecast production performance. Among its advantages over others techniques 

are that it requires minimal data and is simple to use. It is widely used in the industry 

(Kupchenko et al. 2008).  Due to its nature, it can be used as a method of production 

forecasting for tight gas reservoirs without the need of a more complex technique. 

However, care must be taken when using this method in unconventional reservoirs 

because inaccurate forecasts may be predicted (Cheng et al. 2008 a); Cheng  et al. 2008 
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b); Kupchenko et al. 2008; Mattar 2008). Since DCA can predict production 

performance, it might be possible to use it for determining the optimal well spacing.  

The production performance from tight gas reservoirs can often be described by a 

steep initial decline rate and a long period of transient flow, which then transitions into 

conventional boundary-dominated flow (BDF) model after a certain time. Conventional 

decline curve analysis applies to cases where the transient flow has finished and the well 

is producing at constant bottom hole pressure and stabilized flow conditions.   

Accordingly, it is very important that DCA is applied only after boundary-dominated 

flow is reached. Since DCA assumes boundary-dominated flow, if decline analysis is 

done using the transient production data (thus violating DCA assumptions), errors in 

production forecasts and reserves estimates will result since the effective drainage area 

of the well increases during transient flow (Kupchenko et al. 2008).  Since transient flow 

can last a long time in unconventional reservoirs (months or years), a method to predict 

the production performance over both the transient and BDF regimes is required.  

 

7.2. Decline Curve Model 

 

Arps (1945) introduced the empirical exponential and hyperbolic rate decline 

relations, which are still widely used relations for production forecasting of gas and oil 

wells. The general hyperbolic form of the Arps decline equation is given by: 

  …………………………………………......................... (2) 
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This equation is used to predict the gas flow rate q as a function of time t. The 

hyperbolic decline exponent b, initial production rate qi, and initial decline rate Di can be 

determined by matching the production performance. When b approaches 0, the decline 

becomes exponential and is given by: 

   ……………………………………………………………. (3) 

where D is the constant exponential decline rate.  

In this research I used the model proposed by Fattah, (Fattah 2006) where a 

hyperbolic decline is used for early production (accounting for the long transient period 

in unconventional reservoirs) and an exponential decline is used for later, boundary-

dominated production.  The 20-year production profiles of the simulated wells were 

matched to a DCA model with early hyperbolic decline terminating in an exponential 

decline at time to as boundary-dominated flow is reached (Eqs. 4-5). An example fit of 

this DCA model to simulated production is shown in Fig. 49. 

Hyperbolic decline segment 

  …………………………………………….. (4) 

Exponential Decline segment 

  ………………....................... (5) 

A VBA code utilizing the Solver add- in of Excel was written to perform decline 

curve analysis on the simulated production data and was incorporated into the reservoir 

model VBA code. For each simulation run, the four best fit decline parameters, qi, Di, b, 

and to,  have been determined. 
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Fig. 49 — Decline curve analysis performed on simulated production. The figure 
represents a typical gas production rate vs. time. The figure shows to, the transition point 

from hyperbolic to exponential decline.  
 

 
 

The production data during Stage 1 was acquired on a monthly basis and 

matched with the model. Since most of the production from Stage 1 was still in transient 

flow, the match of Stage 1 produced mainly hyperbolic declines. For Stage 2, which 

varies from 15 to 19 years depending on the length of Stage 1 (1 to 5 years), the early 

production (1 year) was acquired on a monthly basis to help the Solver algorithm obtain 

a better match, while the rest of the performance history was acquired on a yearly basis 

and matched using the combined hyperbolic-exponential decline model. The value 
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obtained for t0 was used to compute the minimum decline during exponential decline D 

using the equation below. 

  ……………………………………………………. (6) 

Decline parameters of Stage 1 (qi, Di, , b) and Stage 2 (qi, Di, b, t0) were 

determined along with their statistics (mean, standard deviation and pair-wise 

correlation) to serve as inputs to the decision model. The cumulative distribution 

functions of decline parameters were obtained. Table 7 shows an example of calculated 

decline parameters for Stage 1 and Stage 2 for the case of Stage 1 duration of 3 years. 

The table specifically shows the results for Well 1 at Stage 1 spacing of 640 acres (3 

year decline parameters) and results for Well 2 at Stage 2 spacing of 320 acres (17 years 

declines parameters).  
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Table 7 ― Example of Decline Parameters for Stage 1 and Stage 2 of the case for Stage 

1 duration of 3 years. The results for Well 1 during Stage 1 at initial spacing of 640 acres 
and the results for Well 2 during Stage 2 at spacing of 320 acres are shown 

 

Run 
# 

Stage 1, Well 1, 640 acres Stage 2, Well 2, 320 acres 

3 Year Decline Parameters Stage 2 (17  Years) Decline Parameters 

          
Qi Di b Residuals Qi Di b Residuals to Dmin 

MMscf/year 1/year 

  

MMscf/year 1/year 

  

year 1/year 

1 740.21 1.25 2.71 0.03 209.69 2.00 1.46 0.08 5.04 0.13 

2 937.32 1.30 2.58 0.02 246.94 2.28 1.29 0.03 6.19 0.12 

3 796.02 2.46 2.88 0.02 300.14 1.79 1.43 0.02 7.12 0.09 

4 2457.90 3052.65 4.26 0.01 105.40 4.51 2.28 0.00 7.20 0.06 

5 313.17 2.19 6.70 0.02 1027.91 12.77 1.48 0.02 6.22 0.11 

6 475.09 1.73 2.78 0.03 352.16 5.93 0.72 0.12 16.5 0.08 

7 460.83 7090.59 5.36 0.01 511.85 4.07 0.93 0.10 16.5 0.06 

8 244.46 1.24 3.30 0.02 400.83 4.51 1.15 0.03 9.06 0.09 

9 120.54 3.53 2.24 0.02 811.04 19.52 1.71 0.00 16.4 0.04 

10 1217.50 39.80 3.89 0.01 482.12 3.52 1.25 0.03 6.07 0.13 

11 2639.34 27813.7 4.05 0.05 486.10 2.51 1.15 0.04 8.36 0.10 

12 1.98 87.98 56.91 0.00 651.01 17.63 2.75 0.03 4.42 0.08 

13 281.82 1.11 4.71 0.01 642.64 14.91 1.87 0.05 4.19 0.13 

14 2.29 30.61 139.7 0.00 546.68 14.51 1.86 0.01 10.0 0.05 

15 407.15 5.41 4.31 0.04 132.68 2.70 0.95 0.08 16.5 0.06 

16 875.89 1.64 1.82 0.04 164.03 2.84 0.50 0.11 9.96 0.19 

17 879.91 14.22 4.16 0.03 303.23 2.57 1.69 0.08 4.28 0.13 

18 197.25 15177.9 9.58 0.06 2151.16 31134. 3.23 0.06 5.52 0.06 

19 455.85 16801.1 5.77 0.07 290.19 5.77 1.59 0.02 6.50 0.10 

20 722.84 1.56 3.42 0.03 99.52 1.51 1.99 0.04 4.18 0.11 
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8. INTEGRATED RESERVOIR AND DECISION MODEL 

 

8.1. Overview 

 

Decision Analysis (DA), in the form of decision tree analysis has been used in 

the past for brown-field development (Guyaguler and Horne 2001; King et al. 2005) and 

assessing uncertainty in well placement optimization. Wongnapapisan et al. (2004) also 

described the use of decision tree analysis to optimize field performance for a wide 

range of reservoir management decisions; however, the integration of geological 

uncertainties into this decision analysis was not discussed. Turkarslan et al. (2010) used 

DA coupled with a reservoir model assessing uncertainty in key reservoir parameters to 

determine the optimal well spacing in a tight gas reservoir. The decision tree is used to 

evaluate all possible combination of outcomes with associated probabilities 

(Wongnapapisan et al. 2004). In decision tree analysis, three branch descriptions (high, 

mean and low) are often used as substitutes for an entire continuous distribution.  

 

8.2. Decision Model 

 

A practical and flexible decision model was developed and validated 

simultaneously with this research by researchers in the Department of Industrial 

Engineering at University of Texas at Austin. The decision model developed evaluates 

the dependence between two-stage development scenarios with the goal to determine the 
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optimal development policy (primary and secondary development plans) in an 

unconventional gas reservoir in the face of significant subsurface uncertainty. The 

procedure takes economic considerations into account and quantifies the associated 

revenues and costs with the objective of maximizing the profitability and selecting the 

optimal development policy.  

The sequential development decision requires capturing the dependence between 

stages and using the primary stage production results to make decisions for the next 

stage. The decision model employs decision trees to determine the optimal development 

program (Bickel and Smith 2006). Fig. 50 shows a schematic decision tree illustrating 

the decision context. The operator first chooses the primary spacing and then observes 

the uncertain production results after some fixed amount of time, such as one, three or 

five years. Then, based on these results, the operator makes the downspacing decision 

for Stage 2 and production results for the second stage are observed. The ultimate 

objective of this sequential plan is to maximize the expected net present value.  

Fig. 51 shows an excerpt of the decision tree used in the Berland River area, 

which demonstrates the structure of the sequential development program. This part of 

the tree shows initial development at 160-acre spacing, and then at a later date, as 

influenced by the primary production results, the downspacing decision between 160-

acre and 80-acre spacing for Stage 2 is made.   

The influence diagram for the decision of the development plan for the Berland 

River area is presented in Fig. 52. The Net Present Value (NPV) is the variable to be 

maximized. In other words, the decision model selects the optimal development policy 
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with the objective of maximizing profitability. The optimal policy consists of primary 

and secondary well spacing which are decision variables. Discounted cumulative 

production distributions are the uncertain variables used in the calculation of the 

expected NPV. 

 

 
 

 
 

Fig. 50 — Schematic decision tree for an unconventional reservoir development plan.  
 

 
 

The primary production results will provide information to the operator that 

he/she will be able to use to make a more informed downspacing decision. The value of 

a primary development plan is then the value of the primary production plus the value of 

the information it provides that can be used to develop the optimal secondary spacing. 

Distribution functions for discounted cumulative production by stage obtained from the 

reservoir modeling are the input to the decision model. The discounted cumulative 

production distribution for each stage and downspacing scenario is summarized by its 

mean, standard deviation and correlation coefficients.    
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Fig. 51 ― An excerpt of the decision tree for the Berland River (Turkarslan 2010). 
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Fig. 52 — Influence Diagram for proposed decision model.  
 

 
 

To model the dependence between primary and secondary development plans, 

joint probability distributions of the discounted cumulative production based on the 

statistical parameters are constructed. These distributions are then used to calculate the 

expected net present values that form the basis of the decision. The conditional 

distribution of production between stages is defined by the following equation:   

 ………………………………………………. (7)  

where  is the expected discounted cumulative production at Stage 2 given the 

discounted cumulative production of Stage 1 (a),  is the correlation coefficient 

between stages,  is the ratio between standard deviation at each Stage,  

 is the expected value for discounted cumulative production for Stage 2, and  

is the expected value for discounted cumulative production for Stage 1.  

The production uncertainties are discretized by using three branch descriptions, 

P90, P50 and P10. Specifically, these percentiles are weighted to approximate the expected 

value using the Swanson‘s Mean of Extended-Swanson-Megill (ESM) (Hurst et al. 
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2000; Megill 1984), which weight these branches by 0.25, 0.5 and 0.25 respectively. 

This method is commonly applied directly to the percentiles of log-normal distributions 

The P90, P50, and P10 percentiles are computed, which represent the high, medium and 

low production values that are associated with probabilities of 25%, 50% and 25%, 

respectively (Table 8). These percentiles along with the statistical parameters are used in 

Equation 7 to determine the conditional means of Stage 2 given Stage 1 and ultimately 

allow the estimation of the combined net present value of Stages 1 and 2.  

 
 
 

Table 8 — Weight factors and fractiles used in the decision model 
 

Discretization 

Weights fractiles 

0.25 0.90 

0.50 0.50 

0.25 0.10 

 
 
 

8.3. Integration of Reservoir with the Decision Model 

 

A key feature of the decision model is its integration with the reservoir model 

(Fig. 53). The forecasted production profiles of the reservoir model were used as input to 

the decision model and then the decision model calculated the expected net present value 

for each scenario that allows the selection of the optimal development strategy. In this 

research the discounted cumulative production at a discount rate of 10% for two separate 

stages were used to facilitate the integration of the reservoir and decision models.  
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Fig. 53 — Integration of reservoir and decision model. The results from the reservoir 
simulation are used to obtain the distributions of discounted (at 10%) cumulative 
production. The means, standard deviations and correlation coefficients of the 

discounted cumulative production distribution are calculated and used as input for the 
decision model. The decision model processes these values along with economical 

considerations (NPV) and yields the optimal development strategy.  
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 The reservoir model was run with Stage-1 durations of 1, 3 and 5 years to 

understand the trade-off between Stage 1 duration and well spacing. The package of 

wells drilled during Stage 1 is referred as Original Wells and the package of wells drilled 

during Stage 2 are referred as the Infill Wells. The wells in each stage will be drilled at 

640, 320, 160 and 80-acre spacing. The production results were evaluated during both 

stages for each set of wells. Since gas production is commonly represented by a 

lognormal distribution, the natural logarithm of discounted cumulative production for the 

two packages of wells previously defined was computed. Means, standard deviations and 

correlation coefficients were obtained considering all possible downspacing 

combinations. The statistical parameters described before for Stage-1 lengths of 1, 3 and 

5 years are presented in Table 9 to Table 11. For ease in understanding of these tables, 

the values presented are transformed back from the natural logarithm; however, during 

the application of the integrated model, the natural- log transformed values were used. 

The tables show the outputs from the reservoir model that were used in the decision 

model. 

The correlations coefficients between Stages 1 and 2 for stage length of 1 year 

(Table 9) are 0.96 for the Original Wells and 0.47 for the Infill Wells when going from 

640 to 80-acre spacing. Because a correlation is observed, we can use the Original Wells 

production during Stage 1 to forecast the mean production of Infill Wells during Stage 2 

and the accompanying uncertainty, assuming that the uncertainty between stages is 

jointly log-normally distributed. The statistical parameters for the natural log of the 

discounted production of each set of wells for each stage are used in Equation 7 (in this 
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case, the variable a is the natural logarithm of discounted cumulative production of 

Stage 1) as the basis for the decision tree analysis, enabling the determination of the 

optimal development policy for the field.  

In Tables 9-11 we observe that correlation coefficients between Stage 1 and 

Stage 2 Original Wells are much higher than correlation coefficients between Stage 1 

and Stage 2 Infill Wells. This shows that Original Wells‘ production in Stage 1 tells us 

more about how these wells will perform in Stage 2 than how the Infill Wells will 

perform. This is expected as Infill Wells are a new set of wells. We also observe that 

correlation coefficients for Original Wells increase as spacing is decreased; this might 

have directly relation with the reservoir area being drain by each well as the spacing is 

decreased. It is also observed that correlation coefficients for Infill Wells decrease as the 

Stage-1 duration is increased, indicating that our ability to learn about the production of 

the Infill Wells decreases as the initial stage duration increases, particularly for a Stage-1 

duration of 5 years where the correlation coefficients are close to zero. One explanation 

of this could be related to the onset of depletion effects for longer Stage-1 durations. 

Permeabilities in the Gething formation are relatively high for a tight gas reservoir, 

which can explain why boundary-dominated flow could be reached within a couple of 

years in many cases.  
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Table 9 ― Statistical parameters for discounted stage production (MMscf) for Original 

and Infill wells for a Stage-1 length of 1 year 

 

1-Year Pilot Phase 

Discounted Cumulative Production (MMscf) 

  

Original 

Wells 
 

Original Wells 
 

Infill Wells 

  Stage 1 
 

Stage 2 
 

Stage 2 

spacing 640 
 

640 320 160 80 
 

640 320 160 80 

mean 354.40 
 

1066.92 965.32 716.15 324.43 
 

- 465.32 1347.16 2406.80 

standard 
deviation 

247.16 
 

646.95 594.55 442.41 208.00 
 

- 243.59 524.36 690.66 

correlation 1.00 

 

0.95 0.95 0.95 0.96 

 

- -0.02 0.22 0.47 

  

           
spacing 320 

 
640 320 160 80 

 
640 320 160 80 

mean 551.00 
 

- 1301.37 914.42 467.37 
 

- - 1001.40 2108.51 

standard 
deviation 

288.66 
 

- 609.89 454.48 220.78 
 

- - 453.78 647.47 

correlation 1.00 

 

- 0.93 0.95 0.96 

 

- - 0.26 0.49 

  
           

spacing 160 
 

640 320 160 80 
 

640 320 160 80 

mean 1029.50 
 

- - 1549.87 835.17 
 

- - - 1335.54 

standard 
deviation 

442.57 
 

- - 573.66 305.38 
 

- - - 427.41 

correlation 1.00 

 

- - 0.91 0.94 

 

- - - 0.49 

  
       

- - - 
 

spacing 80 
 

640 320 160 80 
 

640 320 160 80 

mean 2019.42 
 

- - - 1336.83 
 

- - - - 

standard 
deviation 

706.89 
 

- - - 391.36 
 

- - - - 

correlation 1.00 

 

- - - 0.89 

 

- - - - 
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Table 10 ― Statistical parameters for discounted stage production (MMscf) for Original 

and Infill wells for a Stage-1 length of 3 years 

 

3-Year Pilot Phase 

Discounted Cumulative Production (MMscf) 

 

Original 
Wells 

 

Original Wells 

 

Infill Wells 

 

Stage 1 

 

Stage 2 

 

Stage 2 

spacing 640 
 

640 320 160 80 
 

640 320 160 80 

mean 770.24 
 

666.55 598.28 444.86 204.68 
 

-- 335.74 972.39 719.64 

standard 
deviation 

526.06 
 

386.58 349.55 258.70 124.55 
 

-- 181.85 381.02 481.91 

correlation 1.00 

 

0.94 0.94 0.95 0.96 

 

-- -0.15 0.06 0.24 

  

           
spacing 320 

 

640 320 1160 80 

 

640 320 160 80 

mean 1,098.77 

 

-- 757.06 536.98 277.64 

 

-- -- 666.72 1,413.62 

standard 

deviation 
577.56 

 
-- 329.77 247.10 123.57 

 
-- -- 310.22 430.58 

correlation 1.00 
 

-- 0.91 0.93 0.95 
 

-- -- 0.14 0.28 

  
           

spacing 160 
 

640 320 1160 80 
 

640 320 160 80 

mean 1,825.55 
 

-- -- 757.85 410.27 
 

-- -- -- 763.37 

standard 
deviation 769.30 

 
-- -- 256.37 139.49 

 
-- -- -- 247.97 

correlation 1.00 
 

-- -- 0.85 0.90 
 

-- -- -- 0.21 

  
           

spacing 80 
 

640 320 160 80 
 

640 320 160 80 

mean 2,916.96 
 

-- -- - 443.41 
 

-- -- -- - 

standard 
deviation 975.39 

 
-- -- - 124.76 

 
-- -- -- - 

correlation 1.00 

 

-- -- - 0.74 

 

-- -- -- - 
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Table 11 — Statistical parameters for discounted stage production (MMscf) for Original 
and Infill wells for a Stage-1 length of 5 years 

 

5-Year Pilot Phase 

Discounted Cumulative Production (MMscf) 

  

Original 

Wells 
 

Original Wells 
 

Infill Wells 

  Stage 1 
 

Stage 2 
 

Stage 2 

spacing 640 
 

640 320 160 80 
 

640 320 160 80 

mean 1,008.50 
 

429.58 386.65 290.74 136.61 
 

-- 243.98 713.42 1,261.43 

standard 

deviation 
675.3 

 
239.8 217.1 161.7 79.8 

 
-- 139.9 293.4 371.6 

correlation 1.00 
 

0.92 0.93 0.94 0.95 
 

-- -0.27 -0.09 0.03 

            
spacing 320 

 

640 320 160 80 

 

640 320 160 80 

mean 1,388.18 
 

-- 465.27 335.65 177.66 
 

-- -- 461.31 988.26 

standard 
deviation 

717.34 
 

-- 190.52 144.24 74.09 
 

-- -- 227.42 320.51 

correlation 1.00 

 

-- 0.87 0.91 0.93 

 

-- -- 0.04 0.09 

            
spacing 160 

 
640 320 160 80 

 
640 320 160 80 

mean 2,161.83 
 

-- -- 419.78 232.78 
 

-- -- -- 478.90 

standard 
deviation 890.82 

 

-- -- 134.16 74.56 

 

-- -- -- 174.41 

correlation 1.00 
 

-- -- 0.77 0.85 
 

-- -- -- -0.01 

        
- 

   
spacing 80 

 

640 320 160 80 

 

640 320 160 80 

mean 3,161.04 
 

-- -- - 198.01 
 

-- -- -- - 

standard 
deviation 1,038.40 

 
-- -- - 57.40 

 
-- -- -- - 

correlation 1.00 
 

-- -- - 0.60 
 

-- -- -- - 
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8.4. Optimal Well Spacing Determination 

 

Applying the integrated tools described above, I modeled specific development 

decisions for the Gething formation in the Berland River Area. The decision model 

determines the spacing development policy that maximizes net present value (NPV) and 

selects the one with the highest output as our objective is to maximize the expected 

NPV. I used the economic assumptions presented in Table 12 and the weights and 

percentiles presented in Table 8. The economics are computed on a section basis. For 

simplicity, the calculations to obtain the NPV for each stage are not presented here and 

only the optimal policy results for the three Stage-1 durations evaluated in this study are 

presented Table 13 to Table 15. Based on these results, the decision model calculates 

the expected NPV for each scenario.  

 
 
 

Table 12 ― Economic Assumptions for Decision Model 
 

Gas Price 
 

$/Mcf 
 

5.50 

Marginal Cost 
 

$/Mcf 
 

1.00 

Field Cost 
 

MM $/yr/well 
 

0.05 

Drilling Cost MM $/w ell 
 

1.00 

Discount Rate -   0.10 

No Royalty 
    

 

 
On Tables 13 to 15  the initial spacing and then based on the decision tree 

analysis the recommended downspacing for Stage-2 are determined. The results for 

Stage-1 length of 1 year (Table 13) shows that if we start with a 640-acre spacing and 
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the initial production is high (P90), the downspace alternative that maximizes the NPV is 

to continue on 640-acre spacing; in this case no additional wells will be drilled in Stage 

2. The total NPV of this scenario, including Stage 1, is $15.88 MM. If we observe low 

production (P10), the optimal Stage-2 decision is to downspace to 160 acres, in which 

case the NPV is $2.21 MM. We also downspace to 160 acres if P50 production is 

observed; for this case the NPV is $4.45 MM. Weighting each of these production 

scenarios with their probability of occurrence, we obtain an expected NPV for an initial 

640-acre spacing of $6.67 MM. Similar analyses were done for initial spacing of 320, 

160 and 80 acres and their estimated NPVs are $6.04 MM, $7.10 MM and $6.25 MM, 

respectively. Thus, the optimal Stage-1 spacing is 160 acres, in which no further 

downspacing is required. This example demonstrates the value when a dynamic strategy 

is used. A dynamic strategy takes advantage of the information gained during the initial 

stage to develop the optimal downspacing program. 

Table 14 and Table 15 present the results for 3-year and 5-year Stage-1 lengths, 

respectively. The best initial spacing for the 3-year Stage-1 length is 160 acres and its 

estimated NPV is $6.63 MM. For 5-year Stage-1 length, the optimum is to start with 

640-acre spacing and not downspace, in which case the expected NPV is $6.39MM. We 

observe from these results that extending the duration of Stage 1 beyond 1 year does not 

represent an economic benefit, which is consistent with and results from the decreasing 

correlation coefficients between Stage 2 and Stage 1 performance with increased Stage 1 

duration previously discussed. The optimal development policy is a 1-year Stage 1 of 
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160 acres followed by no downspacing. These results are specific to the reservoir model 

and economic assumptions used in this work and cannot be generalized.  

Table 16 to Table 18 show the results if a better economic environment (higher 

price gas) is present. The gas price was assumed to be $9.0/Mcf. The results show the 

optimal development strategy is to start Stage 1 with a spacing of 80 acres, which will 

yield the highest estimated NPV ($17.87MM) for the project for all Stage-1 lengths. 

Once again the optimal length for Stage 1 is 1 year and no further downspacing is 

required (duly noting that downspacing below 80 acres was not investigated). The 

change in the optimal policy when the gas price is higher shows that the optimal 

development policy of a field might change depending on the economic environment. In 

fact, there is uncertainty involved in the economic parameters; however, they are not 

considered part of this study as my main focus was the modeling of subsurface 

uncertainty. 

A close evaluation of the evaluation of the high price environment helps to 

demonstrate the value of an optimal dynamic strategy, which takes advantage of 

information gained during the first stage. For example, if the operator had to commit to 

640-acre spacing from the beginning of the development plan and could not downspace, 

we calculate (not shown) that the ENPV would be $12.2 MM, or over $3.5 MM less. 

This $3.5 MM difference is the value of the information that is gained via the staged 

strategy. Thus, we see the value that can be gained through better use of information and 

better decision making.  
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In this section, a decision model was presented and was used to determine the 

optimal strategies for development of a tight gas reservoir. The decision model presented 

here provides recommendations to operators on the determination of the optimal 

development policy.  

 

 
 

Table 13 — Optimal development strategy results for Stage-1 length of 1 year. 

Monetary values are per section 
 

Stage 1 
 

Stage 2 
 

Stage 1 Stage 2 Total Estimated 

NPV, Optimal 
Policy, $MM 

Spacing, 

acres 
Probability 

Observed 

DCP  

Optimal 

Spacin
g acres 

 

E[NPV], 

$MM 

NPV, 

$MM 

NPV, 

$MM 

640 0.25 P90 
 

640 
 

0.94 14.64 15.58 
 

6.67 
 

 
0.50 P50 

 
160 

 
0.94 3.51 4.45 

   

 
0.25 P10 

 
160 

 
0.94 1.27 2.21 

   

           

 

320 0.25 P90 
 

320 
 

0.39 10.31 10.70 
 

6.04 
 

 
0.50 P50 

 
320 

 
0.39 4.97 5.36 

   

 
0.25 P10 

 
320 

 
0.39 2.37 2.76 

   

            

160 0.25 P90 
 

160 
 

0.43 10.55 10.98 
 

7.10  

 
0.50 P50 

 
160 

 
0.43 6.24 6.67 

   

 
0.25 P10 

 
160 

 
0.43 3.66 4.09 

   

            
80 0.25 P90 

 
80 

 
0.68 7.89 8.57 

 
6.25 

 

 
0.50 P50 

 
80 

 
0.68 5.38 6.06 

   

 
0.25 P10 

 
80 

 
0.68 3.63 4.31 
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Table 14 — Optimal development strategy results for Stage-1 length of 3 years. 

Monetary values are per section 

 

Stage 1 
 

Stage 2 
 

Stage 1 Stage 2 Total Estimated 
NPV, Optimal 
Policy, $MM 

Spacing, 
acres 

Probability 
Observed 
DCP  

Optimal 

Spacin
g, acres 

 

E[NPV], 
$MM 

NPV, 
$MM 

NPV, 
$MM 

640 0.25 P90 
 

640 
 

3.19 8.74 11.94 
 

6.46 
 

 
0.50 P50 

 
640 

 
3.19 1.98 5.17 

   

 
0.25 P10 

 
320 

 
3.19 0.38 3.57 

   

           
 

320 0.25 P90 
 

320 
 

2.75 5.62 8.37 
 

5.85 
 

 

0.50 P50 

 

320 

 

2.75 2.75 5.50 

   

 
0.25 P10 

 
320 

 
2.75 1.28 4.03 

   

            
160 0.25 P90 

 
160 

 
3.79 4.47 8.26 

 
6.63  

 

0.50 P50 

 

160 

 

3.79 2.68 6.47 

   

 
0.25 P10 

 
160 

 
3.79 1.54 5.33 

   

            
80 0.25 P90 

 
80 

 
4.28 1.56 5.85 

 
5.24 

 

 
0.50 P50 

 
80 

 
4.28 0.92 5.20 

   

 
0.25 P10 

 
80 

 
4.28 0.44 4.72 
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Table 15 ― Optimal development strategy results for Stage-1 length of 5 year. 

Monetary values are per section 

 

Stage 1 
 

Stage 2 
 

Stage 1 Stage 2 Total Estimated 
NPV, 
Optimal 

Policy, $MM 

Spacin
g 

acres 

Probabilit
y 

Observe
d DCP  

Optimal 
Spacin
g, 

acres 
 

E[NPV], 
$MM 

NPV, 
$MM 

NPV, 
$MM 

640 0.25 P90 
 

640 
 

4.42 5.27 9.69 
 

6.39 
 

 
0.50 P50 

 
640 

 
4.42 1.21 5.63 

   

 
0.25 P10 

 
640 

 
4.42 0.17 4.59 

   

           
 

320 0.25 P90 
 

320 
 

4.00 3.05 7.06 
 

5.67 
 

 
0.50 P50 

 
320 

 
4.00 1.50 5.50 

   

 
0.25 P10 

 
320 

 
4.00 0.65 4.65 

   

            
160 0.25 P90 

 
160 

 
5.20 1.85 7.04 

 
6.28  

 
0.50 P50 

 
160 

 
5.20 1.02 6.22 

   

 
0.25 P10 

 
160 

 
5.20 0.45 5.65 

   

            
80 0.25 P90 

 
80 

 
5.18 (0.43) 4.75 

 
4.53 

 

 
0.50 P50 

 
80 

 
5.18 (0.66) 4.52 

   

 

0.25 P10 

 

80 

 

5.18 (0.85) 4.33 

    

 
 
 

 
 

 
 
 

 
 

 
 
 

 



99 
 

 

 
 

 
 

 
Table 16 — Optimal development strategy results for Stage-1 length of 1 year with 

higher gas price ($9.0/Mcf). Monetary values are per section 

 

Stage 1 
 

Stage 2 
 

Stage 1 Stage 2 Total Estimated NPV, 
Optimal Policy, 

$MM 
Spacing 
acres 

Probability 
Observed 

DCP  

Optimal 

Spacing, 
acres 

 

E[NPV], 
$MM 

NPV, 
$MM 

NPV, 
$MM 

640 0.25 P90 
 

640 
 

2.48 26.07 28.55 
 

15.79 
 

 
0.50 P50 

 
80 

 
2.48 10.40 12.88 

   

 
0.25 P10 

 
80 

 
2.48 6.35 8.83 

   

           

 

320 0.25 P90 

 

160 

 

2.31 19.15 21.46 

 

14.15 

 

 

0.50 P50 

 

80 

 

2.31 10.89 13.20 

   

 

0.25 P10 

 

80 

 

2.31 6.44 8.75 

   

            

160 0.25 P90 
 

160 
 

4.01 18.90 22.91 
 

16.01  

 
0.50 P50 

 
160 

 
4.01 11.23 15.24 

   

 
0.25 P10 

 
160 

 
4.01 6.64 10.65 

   

            
80 0.25 P90 

 
80 

 
7.69 14.31 22.00 

 
17.87 

 

 
0.50 P50 

 
80 

 
7.69 9.84 17.53 

   

 
0.25 P10 

 
80 

 
7.69 6.73 14.43 
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Table 17 — Optimal development strategy results for Stage-1 length of 3 years with 
higher gas price ($9.0/Mcf). Monetary values are per section 

 

Stage 1 
 

Stage 2 
 

Stage 1 Stage 2 Total Estimated 
NPV Optimal 
Policy, $MM 

Spacing 
acres 

Probability 
Observed 
DCP  

Optimal 
Spacing
, acres 

 

E[NPV], 
$MM 

NPV, $MM NPV, $MM 

640 0.25 P90 
 

640 
 

         
6.53         15.64          22.17  

 

      
14.07    

  0.50 P50 

 

160 

 

         
6.53           5.56          12.08  

  

  

  0.25 P10 
 

160 
 

         
6.53           3.43            9.96  

  
  

  
          

  

320 0.25 P90 

 

160 

 

         
6.59         10.20          16.79  

 

      
12.64    

  0.50 P50 
 

160 
 

         
6.59           5.49          12.08  

  
  

  0.25 P10 

 

160 

 

         
6.59           3.00            9.59  

  

  

  

          

  

160 0.25 P90 
 

160 
 

       
10.14           8.33          18.47  

 

      
15.58  

  

  0.50 P50 

 

160 

 

       
10.14           5.16          15.30  

  

  

  0.25 P10 
 

160 
 

       
10.14           3.13          13.27  

  
  

  
          

  

80 0.25 P90 

 

80 

 

       
14.41           3.56          17.97  

 

      
16.89    

  0.50 P50 
 

80 
 

       
14.41           2.41          16.82  

  
  

  0.25 P10   80   
       
14.41           1.55          15.96        
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Table 18 ― Optimal development strategy results for Stage-1 length of 5 years with 
higher gas price ($9.0/Mcf). Monetary values are per section 

 

Stage 1 
 

Stage 2 
 

Stage 1 Stage 2 Total Estimated NPV, 

Optimal Policy, 
$MM Spacing 

acres 
Probability 

Observed 
DCP  

Optimal 
Spacing, 

acres 

 

E[NPV], 
$MM 

NPV, $MM 
NPV, 
$MM 

640 0.25 P90 
 

640 
 

8.73 9.52 18.25 
 

13.02   

 
0.50 P50 

 
160 

 
8.73 2.95 11.69 

  
  

 

0.25 P10 

 

160 

 

8.73 1.70 10.43 

  

  

           

  

320 0.25 P90 
 

320 
 

8.85 5.72 14.58 
 

12.12   

 

0.50 P50 

 

320 

 

8.85 2.95 11.81 

  

  

 
0.25 P10 

 
320 

 
8.85 1.44 10.30 

  
  

           
  

160 0.25 P90 

 

160 

 

12.72 3.87 16.59 

 

15.23 
  

 
0.50 P50 

 
160 

 
12.72 2.40 15.12 

  
  

 
0.25 P10 

 
160 

 
12.72 1.40 14.11 

  
  

           

  

80 
0.25 P90 

 
80 

 
16.16 0.42 16.58 

 
16.19 

  

 

0.50 P50 
 

80 
 

16.16 0.00 16.16 
    

 
0.25 P10 

 
80 

 
16.16 (0.32) 15.84 

  
  

 
 

 
 
 

 
 

 
 
 



102 
 

 

8.5. Economic Considerations (Present Value Ratio) 

 

The results of the decision model for optimal development policy were evaluated 

using a performance indicator tool known as present value ratio (PVR), to consider 

situations in which capital is constrained. For this research, the evaluation was done 

calculating the PVR from the optimal Stage 2 spacing for production level determined 

from the NPV model. By definition, PVR is the ratio of the net present value (NPV) to 

the present value (PV) of capital investment. The PVR is represented by the following 

equation: 

  …………………………………………. (8) 

The PVR shows net PV dollars generated per the PV of every capital investment 

(i.e. the capital investment is already recovered and the value of the PVR is the net gain 

over every dollar invested). PVR provides a measure of profitability per dollar invested. 

This is particular important consideration when faced with the selection of investments 

for a list containing more opportunities than the available funds can cover. In other 

words it can be used to evaluate the efficiency of an investment or to compare the 

efficiencies of a number of different investments when capital constraints are present. 

That is, if an investment does not have a positive PVR, or if there are other opportunities 

with a higher PVR, then the investment should be not be undertaken (Mian 2002).  

Table 19 presents the results for the PVR evaluation for the optimal development 

policy previously determined for each Stage-1 length of 1 year for the low gas price 

environment ($5.50/Mcf). We observe in Table 19 that, even though the decision model 
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based on maximizing profitability NPV recommends using an optimal Stage-1 spacing of 

160 acres followed by no Stage-2 downspacing (Table 13), the PVR evaluation shows 

that the optimum policy is Stage-1 spacing of 320 acres with no Stage-2 downspacing. 

Even though starting at initial spacing of 160 acres will result in an extra $1.06 MM of 

NPV, this action involves the investment of an additional $2MM which results in a 

lower PVR for this option (1.78 compared to 3.02 when 320 acres spacing is used), 

making the Stage-1 spacing of 320 acres with no Stage-2 downspacing the optimum 

policy specially if budget for the development plan is constrained. Other considerations 

as operational risk, such drilling schedules, expected drilling problems; safety risk will 

also need to be considered to determine which will be the best option.  

Table 20 presents the results of PVR evaluation for Stage-1 length of 3 years and 

low gas price. Based on NPV, the best initial spacing for the 3-year Stage-1 length is 160 

acres (Table 14) and its estimated NPV is $6.63 MM; however, the PVR for 160 acres is 

1.66, which is much lower than the PVR of 5.25 for an initial spacing of 640 acres. The 

640-acre initial spacing has an estimated NPV of $6.46 MM, which is only $0.17 MM 

lower than the NPV for the 160-acre initial spacing, with an investment of $2.77 MM 

less. It appears that choosing 640 acres as the initial spacing would be a better decision, 

particularly if capital is constrained. Table 21 presents the results for a Stage-1 length of 

5 years and low gas price. Based on NPV, the best initial spacing is 640 acres with a 

NPV of $6.39 MM (Table 15). This optimal development policy also results in the best 

PVR, 6.39, which makes this the clear best policy.  
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The PVR evaluation presented here shows that other factors need to be taken into 

consideration when making decisions on optimal development strategies. Besides 

maximizing profits (NPV), other economic aspects need to be accounted for as they can 

illustrate additional benefits. NPV evaluation itself does not give any indication of the 

size of the initial investment and could cause problems when choosing among several 

alternative investment of different size. This is the case when the NPV of two 

investments may be equal or close, but the amount of investment required by the two 

alternatives may vary widely. 

PVR can be used in capital allocation as it provides a better picture of the 

investment ranking criteria. This is especially important when capital constrains exits. 

Capital additions should be analyzed in terms of their probable effect on return of 

investment. A capital decision should not be taken unless its analysis indicates that t will 

yield a return equal, or greater than the long-term company objective for return of 

investment. In the case of several investment options with constrained capital, only those 

investments that will maximize its worth should be considered. The selection of the 

projects from the investment opportunities being considered should be those that will 

yield the maximum return possible with the limited resources (capital). Finally, 

operational aspects such as drilling schedule, safety risk, drilling risk and economic 

uncertainties among others will also need to be included. 
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Table 19 — PVR evaluation for the optimal development strategy results for Stage-1 

length of 1 year. Monetary values are per section 
 

Stage 1 
 

Stage 2 
 

Estimated NPV 
Optimal Policy, 

$MM 

Estimated PV 
of Capital 

Investment, 
$MM 

PVR Spacing, 
acres 

Probability 
Observed 

DCP  

Optimal 

Spacing, 
acres 

 
640 0.25 P90 

 
640 

  
6.67 

 
3.05 2.19 

 
0.50 P50 

 
160 

      

 
0.25 P10 

 
160 

      

        

 

  
320 0.25 P90 

 
320 

  
6.04 

 
2.00 3.02 

 
0.50 P50 

 
320 

      

 
0.25 P10 

 
320 

      

           

160 0.25 P90 
 

160 
  

7.10  4.00 1.78 

 
0.50 P50 

 
160 

      

 
0.25 P10 

 
160 

      

           
80 0.25 P90 

 
80 

  
6.25 

 
8.00 0.78 

 
0.50 P50 

 
80 

      
 

0.25 P10 
 

80 
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Table 20 ― PVR evaluation for the optimal development strategy results for Stage-1 

length of 3 years. Monetary values are per section 
 

Stage 1 
 

Stage 2 
 

Estimated NPV 
Optimal Policy, 

$MM 

Estimated PV 
of Capital 

Investment, 

$MM 

PVR Spacing, 
acres 

Probability 
Observed 

DCP  

Optimal 
Spacing, 

acre 
 

640 0.25 P90 
 

640 
  

6.46 
 

1.23 5.25 

 
0.50 P50 

 
640 

      

 
0.25 P10 

 
320 

      

           
320 0.25 P90 

 
320 

  
5.85 

 
2.00 2.93 

 
0.50 P50 

 
320 

      

 
0.25 P10 

 
320 

      

           
160 0.25 P90 

 
160 

  
6.63 

 
4.00 1.66 

 
0.50 P50 

 
160 

      

 
0.25 P10 

 
160 

      

           
80 0.25 P90 

 
80 

  
5.24 

 
8.00 0.66 

 
0.50 P50 

 
80 

      
 

0.25 P10 
 

80 
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Table 21 — PVR evaluation for the optimal development strategy results for Stage-1 
length of 5 years. Monetary values are per section 

 

Stage 1 

 

Stage 2 

 
Estimated NPV 
Optimal Policy, 

$MM 

Estimated PV 
of Capital 

Investment, 
$MM 

PVR Spacing, 
acres 

Probability 
Observed 

DCP  

Optimal 
Spacing, 

acres 
 

640 0.25 P90 
 

640 
  

6.39 
 

1.00 6.39 

 
0.50 P50 

 
640 

      

 
0.25 P10 

 
640 

      

           
320 0.25 P90 

 
320 

  
5.67 

 
2.00 2.84 

 
0.50 P50 

 
320 

      

 
0.25 P10 

 
320 

      

           
160 0.25 P90 

 
160 

  
6.28 

 
4.00 1.57 

 
0.50 P50 

 
160 

      

 
0.25 P10 

 
160 

      

           
80 0.25 P90 

 
80 

  
4.53 

 
8.00 0.57 

 
0.50 P50 

 
80 

      
 

0.25 P10 
 

80 
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9. CONCLUSIONS AND RECOMMENDATIONS 

 

9.1. Conclusions 

 

In this work, I developed a probabilistic multi-well reservoir model that 

incorporates uncertainty in key reservoir parameters and allows the prediction of 

production profiles as a function of well spacing and different development scenarios for 

a tight gas reservoir. The discounted production profiles obtained from the simulation 

results were used to integrate the reservoir model with a Bayesian decision model that, 

through evaluation of expected net present value, determines the well spacing that 

maximizes profitability. Besides its ability to model production uncertainty and spatial 

dependencies between wells, the reservoir model is distinguished from existing 

technologies and a previous probabilistic single-well model developed for the same area 

by incorporation of multiple wells in a section and the use of detailed geostatistical 

characterization to represent reservoir properties in the form of areal maps rather than 

using a constant property value obtained from a distribution.  

The integrated reservoir and decision model were applied to UGR‘s Deep Basin 

tight gas asset in the Berland River area, Alberta, Canada, to determine the optimal well 

spacing in the area. I modeled an illustrative decision context that included two 

development decisions, the primary spacing and the secondary spacing based on primary 

development production results. The results were evaluated for different Stage 1 

durations to assess the trade-off between stage duration and well spacing. 
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The decision model was evaluated under two different price environments. In the 

current low price environment, the optimal development strategy for Stage-1 lengths of 1 

and 3 years is 160 acres with no further downspacing. When the stage length is increased 

to 5 years, the optimum is to start with 640-acre spacing with no further downspacing. 

When a high environment price is used, the recommendation is to start with a spacing of 

80 acres and not downspace for all Stage-1 lengths. The results showed that in both 

cases, extending the duration of Stage 1 beyond 1 year does not represent an economic 

benefit. This is thought to be related to the onset of depletion effects in Stage 1 that 

could be related to relatively high values of permeability in the Gething formation for a 

tight gas reservoir. The results of this research are specific to the reservoir area modeled 

and other assumptions made. Generalizing these results to other tight gas reservoir is not 

recommended.  

We have shown that in sequential development plans, the primary production 

results provide information that can be use to make more informed decisions. For the 

particular case in this work, it was shown that for the high price environment, if the 

operator has to commit to 640-acre spacing and cannot downspace, the ENPV would be 

over $3.5MM less that if a dynamic strategy was used. This $3.5 MM difference is the 

value of the information that is gained via the staged strategy. The value of a primary 

development plan is then the value of the primary production plus the value of the 

information it provides that can be used to decide on the optimal downspacing program. 

Thus, we see that value can be gained through better use of information and better 

decision making. I anticipate that use of integrated reservoir and decision modeling tools 
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and the dynamic development strategies they generate will help operators to quickly 

achieve the optimal well spacing much earlier in the lives of unconventional reservoirs. 

The use of geostatistical maps to model the heterogeneity in the multi-well 

reservoir model provides a more realistic modeling of the uncertainty in reservoir 

properties and hence a better handling of the uncertainty in production performance. 

Since each well‘s performance is simulated in the model, aspects such as pressure 

interference and dependencies between reservoir properties are better reproduced. The 

single-well reservoir model previously developed for the same area reduces the reservoir 

to a single layer with homogeneous properties and it was shown that it overestimates the 

uncertainty and could provide errors in the production, leading to suboptimal decisions.    

  

9.2. Recommendations for Future Work 

 

The reservoir model was developed specifically for the Gething D formation in 

the Berland River Area in Alberta, Canada. Even though the results demonstrate an 

approximation of real production performance for a tight gas asset, it would be helpful to 

develop similar models for other unconventional gas assets, including shale gas, to 

validate the approach presented in this study with more real field examples.  

The reservoir model was developed for the evaluation of one section only from 

the reservoir. An extension of this study could be to evaluate simultaneously the 

performance of multiple sections to provide the basis for an assessment of optimal 

number, length and locations of pilot downspacings.    
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The uncertainties in economics and marketing were not incorporated in this 

study.  A more realistic evaluation that will lead to more informed decisions regarding 

the optimal development policy for the field could be explored by incorporating the 

uncertainty in the economic parameters.  
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NOMENCLATURE 

 

Bcf   Billion Cubic Feet 

bcm   Billion Cubic Meters 

BDF   Boundary Dominated Flow 

CDF   Cumulative Distribution Function 

CMG   Computer Modeling Group  

DA   Decision Analysis 

DCA   Decline Curve Analysis 

ENPV   Estimated Net Present Value 

IMEX   CMG‘s g Adaptive Implicit-Explicit Black-Oil Simulator  

MC   Monte Carlo Simulation  

Mcf   Thousand of Cubic Feet 

MM   Million 

MMscf   Million Cubic Feet 

NPV   Net Present Value 

NTG   Net to Gross Ratio 

PETREL  Schlumberger‗s Windows Based Software for 3D Visualization, 

   3D Mapping and 3D Reservoir Modeling and Simulation   

PV   Present Value 

PVR   Present Value Ratio 

P90   90th Percentile 
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P50   50th Percentile 

P10   10th Percentile 

SGS   Sequential Gaussian Simulation 

sstvd    Subsea True Vertical Depth 

UGR   Unconventional Gas Resources 

Vsh   Volume of Shale 

VBA   Visual Basic Application for MS Excel  

@RISK  Stochastic Modeling Tool from the Palisade Corporation 

gas   Gas Porosity 

kgas   Gas Permeability 

fk    Fracture Conductivity 

k    Formation Permeability 

fL    Fracture Length 

w    Fracture Width 

FcD   Dimensionless Fracture Conductivity 

qi    Initial Production Rate 

q    Gas Flow Rate as a Function of Time t 

t   Time 

to    Transition Point in Time Hyperbolic to Exponential Decline 

b   Hyperbolic Decline Exponent 

Di    Initial Decline Rate 

D   Exponential Decline Rate 
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 Expected Discounted Cumulative Production at Stage-2 Giving 

the Discounted Cumulative Production of Stage-1,  

   Correlation Coefficient Between Stages 

    Ratio Between Standard Deviation at Each Stage, 

   Expected Value for Discounted Cumulative Production for  

Stage-2  

   Expected Value for Discounted Cumulative Production for  

Stage-1 
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