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ABSTRACT

Bayesian Methods in Nutrition Epidemiology and

Regression-based Predictive Models in Healthcare. (December 2010)

Saijuan Zhang, B.S., Southeast University;

M.A., University of Oklahoma

Co–Chairs of Advisory Committee: Dr. Raymond J. Carroll
Dr. Jianhua Huang

This dissertation has mainly two parts. In the first part, we propose a bivariate

nonlinear multivariate measurement error model to understand the distribution of

dietary intake and extend it to a multivariate model to capture dietary patterns in

nutrition epidemiology. In the second part, we propose regression-based predictive

models to accurately predict surgery duration in healthcare.

Understanding the distribution of episodically consumed dietary components is

an important problem in public health. Short-term measurements of episodically con-

sumed dietary components are zero-inflated skewed distributions. So-called two-part

models have been developed for such data. However, there is much greater public

health interest in the usual intake adjusted for caloric intake. Recently a nonlin-

ear mixed effects model has been developed and fit by maximum likelihood using

nonlinear mixed effects programs. However, the fitting is slow and unstable. We

develop a Monte-Carlo-based fitting method in Chapter II. We demonstrate numer-

ically that our methods lead to increased speed of computation, converge to reason-

able solutions, and have the flexibility to be used in either a frequentist or a Bayesian

manner. Diet consists of numerous foods, nutrients and other components, each of

which have distinctive attributes. Increasingly nutritionists are interested in exploring
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them collectively to capture overall dietary patterns. We thus extend the bivariate

model described in Chapter III to multivariate level. We use survey-weighted MCMC

computations to fit the model, with uncertainty estimation coming from balanced

repeated replication. The methodology is illustrated through an application of es-

timating the population distribution of the Healthy Eating Index-2005 (HEI-2005),

a multi-component dietary quality index , among children aged 2-8 in the United

States.

The second part of this dissertation is to accurately predict surgery duration.

Prior research has identified the current procedural terminology (CPT) codes as the

most important factor when predicting surgical case durations but there has been little

reporting of a general predictive methodology using it effectively. In Chapter IV, we

propose two regression-based predictive models. However, the naively constructed

design matrix is singular. We thus devise a systematic procedure to construct a full-

ranked design matrix. Using surgical data from a central Texas hospital, we compare

the proposed models with a few benchmark methods and demonstrate that our models

lead to a remarkable reduction in prediction errors.
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CHAPTER I

INTRODUCTION

There has been great public health interest in estimating usual, i.e., long-term av-

erage, intake of episodically consumed dietary components that are not consumed

daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements

of episodically consumed dietary components have zero-inflated skewed distributions.

So-called two-part models have been developed for such data, in order to correct for

measurement error due to within-person variation and to estimate the distribution

of usual intake of the dietary component in the univariate case. However, there is

arguably much greater public health interest in the usual intake of an episodically

consumed dietary component adjusted for caloric intake, e.g., ounces of whole grains

per 1000 kilo-calories, which reflects usual dietary composition and adjusts for dif-

ferent total amounts of caloric intake. Because of this public health interest, it is

important to have models to fit such data, and it is important that the model-fitting

methods can be applied across the broad range of episodically consumed dietary com-

ponents. We have recently addressed the first issue by developing a nonlinear mixed

effects model (Kipnis et al., 2010a), and have fit it by maximum likelihood using

nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure).

Maximum likelihood fitting of such a nonlinear mixed model is generally slow because

of 3-dimensional adaptive Gaussian quadrature, and there are times when the pro-

grams either fail to converge or converge to models with a singular covariance matrix.

For these reasons we develop a Monte-Carlo computation of fitting this model, which

allows for both frequentist and Bayesian inference. There are technical challenges to

This dissertation follows the style of Biometrics.
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developing this solution because one of the covariance matrices in the model is pat-

terned, having structural zeros. Our main application is to the National Institutes

of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for

modeling the energy-adjusted usual intake of fish and whole grains. We demonstrate

numerically that our methods lead to increased speed of computation, converge to

reasonable solutions, and have the flexibility to be used in either a frequentist or a

Bayesian manner.

In the United States the preferred method of obtaining dietary intake data is the

24-hour dietary recall, yet the measure of most interest is usual or long-term average

intake, which is impossible to measure. Thus, usual dietary intake is assessed with

considerable measurement error. Also, diet represents numerous foods, nutrients and

other components, each of which have distinctive attributes. Sometimes, it is useful

to examine intake of these components separately, but increasingly nutritionists are

interested in exploring them collectively to capture overall dietary patterns. Con-

sumption of these components varies widely: some are consumed daily by almost

everyone on every day, while others are episodically consumed so that 24-hour recall

data are zero-inflated. In addition, they are often correlated with each other. Finally,

it is often preferable to analyze the amount of a dietary component relative to the

amount of energy (calories) in a diet because dietary recommendations often vary

with energy level. The quest to understand overall dietary patterns of usual intake

has to this point reached a standstill. There are no statistical methods or models

available to model such complex multivariate data with its measurement error and

zero inflation. The second project proposes the first such model, and it proposes the

first workable solution to fit such a model. After describing the model, we use survey-

weighted MCMC computations to fit the model, with uncertainty estimation coming

from balanced repeated replication. The methodology is illustrated through an ap-
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plication to estimating the population distribution of the Healthy Eating Index-2005

(HEI-2005), a multi-component dietary quality index involving ratios of interrelated

dietary components to energy, among children aged 2-8 in the United States. We

pose a number of interesting questions about the HEI-2005 and provide answers that

were not previously within the realm of possibility, and we indicate ways that our

approach can be used to answer other questions of importance to nutritional science

and public health.

Efficient utilization of existing resources is crucial for cost containment in medical

institutions. Accurately predicting surgery duration will help improve the utilization

of indispensable surgical resources such as surgeons, nurses, and operating rooms.

Prior research has identified the current procedural terminology (CPT) codes as the

most important factor when predicting surgical case durations. Yet there has been

little reporting of a general predictive methodology that can effectively extract infor-

mation from multiple CPT codes. In the third project, we propose two regression-

based predictive models, a linear regression and a log-linear regression. To perform

these regression analysis, a full-ranked design matrix based on CPT code inclusions

in the surgical cases needs to be constructed. However, some CPT codes only ap-

pear in conjunction with others, and as a result, naively constructed design matrix

is ill-conditioned (i.e. singular). We devise a systematic procedure to construct a

full-ranked design matrix by sifting out the CPT codes without any predictive power

while useful information is retained as much as possible. Our proposed models can be

applied in general situations where a surgery can have any number of CPT codes and

any combination of CPT codes. Using surgical data from a central Texas hospital,

we compare the proposed models with a few benchmark methods. The compari-

son demonstrates that using the proposed predictive models leads to a remarkable

reduction in prediction errors.
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CHAPTER II

A BIVARIATE MEASUREMENT ERROR MODEL FOR EPISODICALLY

CONSUMED DIETARY COMPONENTS

A. Introduction

This project is about the important public health problem of understanding the distri-

bution of episodically consumed dietary component intakes in terms of their energy-

adjusted amounts, and relating this to diet-disease relationships. Before commenting

in more detail, we first discuss the literature for simpler problems that are also of

interest.

In nutritional surveillance and nutritional epidemiology, there is considerable in-

terest in understanding the distribution of usual dietary intake, which is defined as

long-term daily average intake. In addition, of interest is the regression of this intake

on measured covariates, which is needed to correct diet-disease relationships for mea-

surement error in assessing diet. If the dietary component of interest is ubiquitously

consumed, as most nutrients are, the data are continuously distributed and methods

are well-established for solving both problems. See for example Nusser et al. (1997)

for surveillance and Carroll et al. (2006) for measurement error modeling.

Another class of dietary components is those which are episodically consumed,

as is true of most foods, e.g., fish, red meat, dark green vegetables, whole grains.

When consumption is measured by a short-term instrument such as a 24 hour recall,

hereafter denoted by 24hr, the episodic nature of these dietary components means

that their reported intake may either equal zero on a non-consumption day, or is

positive on a day the component is consumed. In many studies, non-consumption

days predominate for several episodically consumed foods of interest. For exam-
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ple, in our data example, for fish and whole grains, 65% and 12% reported no con-

sumption on either day, respectively. Thus, data on episodically consumed dietary

components are zero-inflated data with measurement error. Recently, Tooze et al.

(2006) for nutritional surveillance and Kipnis et al. (2009) for nutritional epidemi-

ology have reported so-called two-part methods, which are actually nonlinear mixed

effects models, for analyzing episodically consumed dietary components in the uni-

variate case. These methods are known commonly as the “NCI method” because

many of the co-authors of these papers are members of the National Cancer Institute

(NCI), and because SAS routines based upon the NLMIXED procedure are available

at http://riskfactor.cancer.gov/diet/usualintakes/, an NCI web site. Other two-part

models in different contexts are described for example in Olsen and Schafer (2001),

Tooze et al. (2002) and Li et al. (2005).

In this project, we are interested in the more complex public health problem of

understanding the usual intake of an episodically consumed dietary component ad-

justed for energy intake (caloric intake), along with the distribution of usual intake

of energy. This is critical because it addresses the issue of dietary component compo-

sition, and makes comparable diets of individuals whose usual intakes of energy are

very different. As an example, the U.S. Department of Agriculture’s Healthy Eating

Index-2005 (www.cnpp.usda.gov/HealthyEatingIndex.htm) is a measure of diet qual-

ity that assesses conformance to Federal dietary guidance. One component of that

index is the number of ounces of whole grains consumed per 1000 kilo-calories: there

are other items in the HEI-2005 that deal with episodically consumed dietary com-

ponents, and all of them are adjusted for energy intake. The data needed to compute

such variables are thus the usual intake of the dietary component consumed and the

usual amount of calories consumed, and (possibly normalized) ratios of them.

Recently, Kipnis et al. (2010a) have developed a model for an episodically con-
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sumed dietary component and energy, see Section B, this chapter. They fit this model

using nonlinear mixed effects models with likelihoods computed by adaptive Gaussian

quadrature using the SAS procedure NLMIXED. However, as described in Section B

and documented in Section D of this chapter, this form of computation can be slow,

and can have serious convergence issues. This is extremely problematic, because of

the importance of the problem and the fact that solutions will find wide use in the

nutrition community, but only if they are numerically stable.

In this project, we take an alternative Markov Chain Monte Carlo (MCMC)

approach to computation, which is faster and numerically more stable. There are

many good introductory papers reviewing MCMC, such as Casella and George (1992),

Chib et al. (1995) and Kass et al. (1998). Effectively, we exploit the well-known fact

(Lehmann and Casella, 1998, Chapter 6.8) that in fully parametric regular models

of the type we study, Bayesian posterior means of parameters are asymptotically

equivalent to their corresponding maximum likelihood estimators. To implement an

MCMC approach in our problem, there are technical issues that have to be overcome,

including the fact that one of the covariance matrices in the model of Kipnis et al.

(2010a) is patterned, with fixed ones and fixed zeros. Besides fitting the model, our

main focus in this project is to discuss how to use the parameter estimates to then

estimate the distributions of the usual intake of energy and energy-adjusted usual

intake of dietary components.

In Section B of this chapter, we describe the model of Kipnis et al. (2010a).

In Section B of this chapter, we also briefly outline some of the details of our im-

plementation, although the technical details are given in the Appendix. In Sections

C and D of this chapter, we take up the analysis of the NIH-AARP Study of Diet

and Health (http://dietandhealth.cancer.gov/) as an illustration of our model and

method. Concluding remarks are giving in Chapter V.
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B. Data and Model

1. The Data

In practice, the response data often come from repeated 24-hour recalls, hereafter

denoted “24hr”. Necessarily, due to cost and logistical reasons, the number of recalls

is limited, and is rarely greater than 2. In a 24hr, what is observed is whether a

dietary component is consumed, and if it is consumed, the reported amount. In

addition, the amount of energy reported to be consumed is also available. Thus,

for person i = 1, ..., n, and for the k = 1, ...,mi repeats of the 24hr, the data are

Ỹik = (Yi1k, ..., Yi3k)
T, where

• Yi1k = Indicator of whether the episodically consumed dietary component is

consumed.

• Yi2k = Amount of the dietary component consumed as reported by the 24hr,

which equals zero if the dietary component is not consumed.

• Yi3k = Amount of energy consumed as reported by the 24hr.

There are also generally covariates such as age category, ethnic status and in many

cases the results of reported intakes from a food frequency questionnaire. We will

generically call these covariates X.

2. A Model

Here we describe the latent variable model of Kipnis et al. (2010a). This model is also

a nonlinear mixed effects model. As stated above, there are i = 1, ..., n individuals and

k = 1, ...,mi repeats of the 24hr. Also, as stated above, the observed data have three

parts, relating to whether the episodically consumed dietary component is consumed,
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the amount if it is consumed, and the amount of energy. Also with the observed data,

we will have covariates for the individual, generically called X, see below for more

precise notation. Finally, Kipnis et al. (2010a) use what are called in nutritional

epidemiology “person-specific random effects” which are generically denoted by U , so

that individuals actually differ from one another in usual intake when they have the

same values of the covariates.

To be more precise, for the ith individual there are covariates (Xi1,Xi2,Xi3):

Xi1 are the covariates for the indicator of consumption, Xi2 are the covariates for the

consumption amount of the dietary component of interest, and Xi3 are the covariates

for the consumption of energy. Often, in practice, the covariates for each observed

data component are the same, so that Xi1 = Xi2 = Xi3. Along with the covariates,

there are corresponding person specific random effects (Ui1, Ui2, Ui3), the role of which

is to allow different people who share the same covariates to have different amounts

of usual intakes. As we will see shortly, there are also random errors that account for

day-to-day variation. Only the covariates, the person-specific random effects, and,

because of transformations, the variances of the random errors are relevant to the

definitions of usual intake, which are given below at equations (2.6)-(2.7).

Kipnis et al. (2010a) uses a latent variable approach. Let (Wi1k,Wi2k,Wi3k) be

latent variables that are assumed to follow the linear mixed effects model

Wijk = XT
ijβj + Uij + ǫijk for j = 1, 2, 3, (2.1)

where (Ui1, Ui2, Ui3) = Normal(0,Σu) are the person-specific random effects, while the

within-person random errors that account for day-to-day variation (ǫi1k, ǫi2k, ǫi3k) =

Normal(0,Σǫ). The (Ui1, Ui2, Ui3) and (ǫi1k, ǫi2k, ǫi3k) are mutually independent.
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The observed data are related to the latent variables as follows:

Yi1k = I(Wi1k > 0); (2.2)

Yi2k = Yi1kg
−1(Wi2k, λF ); (2.3)

Yi3k = g−1(Wi3k, λE), (2.4)

where I(·) is the indicator function and g−1(x, λ) is the inverse of the Box-Cox trans-

formation g(x, λ) = (xλ − 1)/λ for λ 6= 0 and = log(x) if λ = 0. We used the

same Box-Cox transformation as those used by Kipnis et al. (2009, 2010a), i.e., the

NLMIXED procedure. Under the model defined by (2.1)-(2.4), the probability to

consume follows the probit model

pr(Yi1k = 1|Xi1, Ui1, Ui2, Ui3) = Φ(XT
i1β1 + Ui1), (2.5)

where Φ(·) is the standard normal distribution function. The probit model is com-

monly used to model a relationship between a binary dependent variable and one or

more independent variables. The probit link was used in Kipnis et al. (2010a) to al-

low the day-to-day variation in whether a food is consumed to be correlated with the

amount of energy consumed, and in such a way that the day-to-day variation random

variables (ǫi1k, ǫi2k, ǫi3k) are jointly normal, thus facilitating both nonlinear mixed ef-

fects software and the MCMC. The Box-Cox transformations in (2.3)-(2.4) allow for

skewed distributions typically seen with dietary data. Of course, the notation in (2.5)

means that consumption depends on (Ui1, Ui2, Ui3) only through Ui1.

In this project, we used the Box-Cox transformation parameters used by Kipnis

et al. (2010a), so as to facilitate comparison. It is easy to extend our approach to

estimating the transformations.

Under the assumption that the 24hr is unbiased for usual (mean) intake, the usual
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intake of the dietary component and energy are given as TFi = E(Yi2k|Xi1,Xi2, Ui1, Ui2)

and TEi = E(Yi3k|Xi3, Ui3). Kipnis et al. (2009, 2010a) use a Taylor series approxi-

mation to approximate E{g−1(v + ǫ)|v) ≈ g−1(v, λ) + (1/2)var(ǫ){∂2g−1(v, λ)/∂v2}.

Using this approximation, see equation (19) of Kipnis et al. (2009), and under the

covariance matrix restriction described below in the following subsection, they show

that the usual intake TFi of the dietary component and the usual intake TEi of energy

for individual i are given as

TFi ≡ Φ(XT
i1β1 + Ui1)g∗{XT

i2β2 + Ui2, λF ,Σǫ(2, 2)}, (2.6)

TEi ≡ g∗{XT
i3β3 + Ui3, λE,Σǫ(3, 3)}, (2.7)

where the (j, k) element of Σǫ is denoted as Σǫ(j, k) and g∗(v, λ, σ2
ǫ ) = g−1(v, λ) +

(1/2)σ2
ǫ{∂2g−1(v, λ)/∂v2}. The equations (2.6) and (2.7) are relevant to the “long

term average intake”, the former one is for dietary component and the latter one is

for energy. We can combine the usual intakes of dietary component and energy in

various ways, e.g., the number of ounces of whole grains per 1000 kilo-calories, i.e.,

1000 × TFi/TEi.

Remark 1 The Taylor series approximation to computing expectations of inverses of

the Box-Cox transformation is used here because it was used by Kipnis et al. (2009,

2010a). More precise quadrature formulae can be used, and we have done so, finding

almost no numerical changes. The computational convenience of the method makes

it attractive.

3. Restriction on the Covariance Matrix

There are two restrictions necessary in the specification of Σǫ. First, following Kipnis

et al. (2009, 2010a), we set ǫi1k and ǫi2k to be independent. The intuitive way to think



11

about the independence between the first two is that whether the dietary component

is consumed or not and the amount consumed are assumed to be independent. This

actually makes sense because a dietary component being consumed cannot indicate

how much was consumed. Second, for identifiability of β1 and the distribution of

Ui1, we require that var(ǫi1k) = 1, because otherwise the marginal probability of

consumption is Φ{(Xi1
Tβ1 + Ui1)/var1/2(ǫi1k)}. Without this second restriction, β1,

var(Ui1), cov(Ui1, Ui2) and cov(Ui1, Ui3) are identified only up to scale factors. Hence

we have that

Σǫ =




1 0 s13

0 s22 s23

s13 s23 s33


 . (2.8)

The difficulty with parameterizations such as (2.8) is that (s13, s23, s22, s33) cannot be

left unconstrained, or else (2.8) need not be a covariance matrix. Define s13 = ρ13s
1/2
33

and s23 = ρ23(s22s33)
1/2. Then the determinant |Σǫ| = s22s33(1− ρ2

13 − ρ2
23). Since Σǫ

is a covariance matrix, its determinant must be non-negative, and hence we cannot

allow the correlations (ρ13, ρ23) to vary freely. There are many ways to parameterize

Σǫ in an unrestricted way that forces it to be positive semi-definite. Here we use a

polar coordinate representation, ρ13 = γ cos(θ) while ρ23 = γ sin(θ), with γ ∈ (−1, 1)

and θ ∈ (−π, π).

The zero entries in (2.8) are not required, although they are implicit in the

two part model used in the original papers involving only the episodically consumed

dietary component and not energy (Tooze et al., 2006; Kipnis et al., 2009) and they

make intuitive sense in our context. We have chosen to use this restriction for these

reasons and especially so that the marginal model for the episodically consumed

dietary component is the same as that in the literature.

Kipnis et al. (2010a) explore a sample selection model (Heckman, 1976, 1979;
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Leung and Yu, 1996; Kyriazidou, 1997; Min and Agresti, 2002) that does not have

this restriction. They found that such a sample selection model can be very unstable

in our context, with the components of Σu and Σǫ varying wildly. Although it is

possible to use MCMC computations to fit the sample selection model, given the

acceptance of the restriction in nutritional epidemiology and of the NCI method, we

focus on the covariance model (2.8).

Remark 2 It is absolutely vital to allow for Σǫ being non-diagonal. The term

s23 6= 0 simply reflects the reality that, within a person and hence conditional on

(Ui1, Ui2, Ui3), the amount of food reported consumed and the amount of energy con-

sumed are sometimes highly correlated. The reason we allow s13 6= 0 is to account for

the very real possibility that, again within a person, the very fact that one consumes

a food leads to a higher or lower reported energy (caloric) intake.

4. Model Fitting and Computation

It is possible in principle to fit model (2.1)-(2.7) using nonlinear mixed effects soft-

ware. Kipnis et al. (2010a) use the SAS procedure PROC NLMIXED. However,

we have found that such implementation is slow and not very stable, with many is-

sues of convergence. NLMIXED uses adaptive Gaussian quadrature to integrate the

likelihood over the distribution of random effects. NLMIXED can have convergence

problems, especially when there are too many, or too few, zeros. What typically

happens is that corr(Ui1, Ui2) tries to go to 1.00 or sometimes even −1.00, or that

var(Ui1) or var(Ui2) tries to go to 0.00. When one of these things happens, the model

usually converges, according to the change-in-likelihood criterion, but the Hessian is

not positive definite. Occasionally, NLMIXED fails to converge at all. In general, we

have found that when NLMIXED does not have such numerical problems, its results
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and ours are in reasonable agreement. These issues are described in more detail in

Section D of this chapter.

Hence, for both stability and speed, we have turned to Bayesian approaches for

fitting the model described by equations (2.1)-(2.8). We emphasize that the Markov

Chain Monte Carlo computation can either be thought of as a strictly Bayesian com-

putation with ordinary Bayesian inference, or as a means of developing frequentist

estimators of the crucial parameters, based on the well-known fact that in parametric

models such as ours, the Bayesian posterior mean of the parameters is a consistent and

asymptotically normally distributed frequentist estimator, see for example Lehmann

and Casella (1998, Chapter 6.8).

Our computational algorithm, described in detail in the appendix, uses Gibbs

sampling with some Metropolis-Hastings steps. We have implemented this approach

in both Matlab and R, and it is fast enough for practical use. In the NIH-AARP Diet

and Health Study described in Section C of this chapter, with a sample size of 899,

for a burn-in of 1, 000 steps followed by 10, 000 MCMC iterations, our Matlab and R

programs take approximately 2 minutes and 11.7 minutes on an Intel(R) Xeon(TM)

CPU with 3.73GHz and 7.8GB of RAM in a Linux system, respectively. For a burn-in

of 5, 000 steps followed by 15, 000 MCMC iterations, our Matlab and R programs take

approximately 3 minutes and 17.5 minutes, respectively. Both programs are available

from the first author.

We have also developed an implementation in WinBUGS with a BUGS model

called from R by using the package R2WinBUGS. Details are available from the third

author. As to be expected, the WinBUGS code is much slower than the custom

programs, taking approximately 5 hours (Pentium computer with 3.5GHz CPU and

1.99GB of RAM in a Windows system) for a burn-in of 1, 000 steps followed by

10, 000 MCMC samples. We are also currently developing a SAS macro for use by
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the nutritional community. On various test data sets, the WinBUGS, R, SAS and

Matlab code gave very similar answers. In our empirical work, we use the Matlab

code.

Remark 3 There are important data conventions that we use. These are described

in detail in the Appendix. For example, in Appendix 1, we mention that covariates

are always standardized to have sample mean zero and sample variance one. The

reason is a matter of scaling: energy intake is in terms of calories, which are typically

in the 1,000’s, so that the corresponding regression parameters, without standard-

ization, with the FFQ energy as a covariate, would necessarily be tiny, making it

hard to develop a plausible prior distribution. As described in Appendix 1, we also

standardize the responses for numerical stability and weaken dependence upon the

prior distributions, and in Appendix 2 we describe why this standardization makes

sense. We have fit our method with various different prior distributions, and there is

very little sensitivity to prior specification.

5. Simulation Study

We performed a simulation study that was based upon our empirical study given in

Section C of this chapter, in order to ascertain whether the methodology results in

reasonably unbiased estimates of (β1, β2, β3,Σu,Σǫ). To test whether our algorithm

can produce non-near-zero correlations when the true correlations are actually far

from zero, we simulated 200 data sets, each of size n = 1, 000, roughly the size of the

NIH-AARP calibration cohort in Section C of this chapter. In this simulation, we

used the same covariates for each of the three outcomes, i.e., we set Xi1 = Xi2 = Xi3.

The covariates had three components, the first equal to 1.0 for an intercept, and the

other two generated as Normal(0, 1). The parameters (β1, β2, β3) were generated as
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Uniform(0, 1) for each simulated data set. We used

Σu =




0.50 0.24 0.24

0.24 0.70 0.35

0.24 0.35 0.70


 ; Σǫ =




1.00 0.00 0.47

0.00 1.20 0.78

0.47 0.78 1.40


 .

The mean of the posterior means of (β1, β2, β3) was very nearly unbiased overall and

are not reported here. The parameters (Σu,Σǫ) are more difficult to estimate, but

the mean of their posterior means were

Σ̂u =




0.51 0.27 0.27

0.27 0.68 0.33

0.27 0.33 0.67


 ; Σ̂ǫ =




1.00 0.00 0.39

0.00 1.23 0.80

0.39 0.80 1.43


 .

Crucially, for the main purposes of estimating the distribution of usual intakes, the

posterior means were essentially unbiased for estimating Σu. As seen in the Appendix,

Σǫ also has a role in the definition of usual intake, and it too was essentially unbiased

except for a small bias of size 0.08 in estimating cov(ǫi1k, ǫi3k), a term that does not

appear in the definitions of usual intake.

Remark 4 We give here only the results of a single simulation because what we

have shown above are representative of other simulations we have done. For example,

we have simulated cases where the off-diagonal elements of Σu were zero and cases

where some of them were negative. We have also simulated cases that the diagonal

elements of Σu were smaller and somewhat larger. In none of the cases did we see

any significant bias in the estimates.

Remark 5 We have not displayed the simulation results for the Proc NLMIXED

procedure because in those cases that it converges, it is very nearly unbiased, just

like our method.
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C. Empirical Analysis: Methods

1. Introduction to the NIH-AARP Diet and Health Study at the National Cancer

Institute

The NIH-AARP Diet and Health Study, see http://dietandhealth.cancer.gov/ and

Schatzkin et al. (2001), has two components, the main study with diet assessed by

a Food Frequency Questionnaire (FFQ) and a calibration sub-study with additional

diet assessment by two 24hr. We considered a part of the main study that consists

of np = 142, 364 women, who contributed an FFQ as well as relevant demographic

characteristics. The data used were the same as in Sinha et al. (2010). The covariates

X used included an intercept, age, body mass index, the FFQ for energy intake and

the FFQ for the dietary component in question. The 24hr was not available for these

subjects. Thus, the primary sample represents data on Xi = Xi1 = Xi2 = Xi3 for

i = 1, ..., np.

In addition to the primary sample, there was a subsample of nv = 899 women in

the calibration sub-study who completed an FFQ and demographic characteristics,

so that there are Xi = Xi1 = Xi2 = Xi3 for i = 1 + np, ..., nv + np. In addition, these

women completed two 24hr. Hence we observed (Yi1k, Yi2k, Yi3k) for k = 1, 2 and for

i = 1 + np, ..., nv + np.

We illustrate our computational algorithm using data from both the two 24hr

and the FFQ for whole grains, fish and energy intake, along with covariates. Following

Kipnis et al. (2009, 2010a), the FFQ values for fish, whole grain and energy intake

were transformed using λ = 0.25, λ = 0.33 and λ = 0.00, respectively. The 24hr used

λ = 0.50, λ = 0.33 and λ = 0.33, respectively.

The MCMC output gives samples from the posterior distribution of Σu, Σǫ, B=

(β1
T,β2

T,β3
T)T and (Ui1, Ui2, Ui3), the latter only for i = 1 + np, ..., nv + np. The
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means of the samples for (B,Σu,Σǫ) can be taken as frequentist point estimates of

these quantities, and are denoted here as (β̂1, β̂2, β̂3, Σ̂u, Σ̂ǫ). We will use shorthand

notation for usual intake:

Usual dietary component intake is TFi = G1{Xi1,Xi2, β1, β2, Ui1, Ui2,Σǫ(2, 2)}.

Usual energy intake is TEi = G2{Xi3, β3, Ui3,Σǫ(3, 3)}.

For both usual dietary component intake and usual energy intake, 24hr samples are

available for i = 1 + np, ..., nv + np.

2. Frequentist Analysis

We are going to write the variable of interest as H(TFi, TEi). Thus, (a) the dietary

component is H(TFi, TEi) = TFi; (b) energy is H(TFi, TEi) = TEi; and (c) the energy

adjusted dietary component is H(TFi, TEi) = 1000 × TFi/TEi. In general then, the

usual intake variable of interest for person i can be written as

Qi = H [G1{Xi1,Xi2, β1, β2, Ui1, Ui2,Σǫ(2, 2)},G2{Xi3, β3, Ui3,Σǫ(3, 3)}] ,

for i = 1, ..., np + nv, where we have that (Ui1, Ui2, Ui3) = Normal(0,Σu). Estimation

of the distribution of Q across the population is easily accomplished by a Monte-

Carlo computation. Specifically, for a large B, where we took B = 5, 000, and for

b = 1, ..., B generate (Ubi1, Ubi2, Ubi3) = Normal(0, Σ̂u). Here B is not the number of

burn-in steps, but simply a large enough number to do numerical integration. Then

the distribution of usual intake can be estimated as the empirical distribution of the

values

Qbi = H
[
G1{Xi1,Xi2, β̂1, β̂2, Ubi1, Ubi2, Σ̂ǫ(2, 2)},G2{Xi3, β̂3, Ubi3, Σ̂ǫ(3, 3)}

]
,

taken across i = 1, ..., nv + np and b = 1, ..., B.
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Standard errors and confidence intervals for regression calibration and the distri-

bution of usual intake can be formed easily by bootstrapping. We used 400 bootstrap

samples in our numerical work.

Remark 6 For bootstrap confidence intervals, it is often recommended to use at

least 399 bootstrap samples, as we have done, see for example Davidson and MacK-

innon (1999). We have experimented with using up to 1, 000 bootstrap samples, but

this significantly increases computing time without changing the basic results in any

material way.

3. Bayesian Analysis

As described below, Bayesian inference on the distribution of usual intake depends

on estimating the distribution of the covariates. The distribution of usual intake

H(TF , TE) in a population can be described as follows. Let X = (X1,X2,X3) and

let fX(X|θ) = fX(X1,X2,X3, θ) be the distribution of X = (X1,X2,X3) in the

population, based on a parameter θ. Write U = (U1,U2,U3). Use the shorthand

notation

K(X ,B,U ,Σǫ) = H [G1{X1,X2, β1, β2,U1,U2,Σǫ(2, 2)},G2{X3, β3,U3,Σǫ(3, 3)}] .

Then the distribution of usual intake is

F (v|B,Σu, θ,Σǫ) = pr {K(X ,B,U ,Σǫ) ≤ v|B,Σu,Σǫ, θ}

=

∫
I {K(X ,B,U ,Σǫ) ≤ v} fU(U|Σu)fX(X|θ)dUdX .

We suggest approximating this using Monte-Carlo integration, as follows. Again, let

B be large where we took B = 1, 000, and for b = 1, ...B, let ub = Normal(0, I3). Let
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Σu
1/2 be the symmetric square root of Σu. Then

F (v|B,Σu, θ,Σǫ) ≈ B−1
∑B

b=1

∫
I

{
K(X ,B,Σu

1/2ub,Σǫ) ≤ v
}

fX(X|θ)dX .

The posterior distribution of F (v|B,Σu, θ,Σǫ) is then calculated from the MCMC

samples: our methods in the Appendix are easily generalized to sample from the

posterior distribution of θ.

In the NIH-AARP Diet and Health Study, with a sample size of np + nv >

140, 000, we effectively know the distribution of X . Let the values in the data be Xi

for i = 1, ..., nv + np. Then we have

F (v|B,Σu, θ,Σǫ) ≈ {(nv + np)B}−1
∑B

b=1

∑nv+np

i=1 I
{
K(Xi,B,Σu

1/2ub,Σǫ) ≤ v
}

.

The posterior distribution of F (v|B,Σu, θ,Σǫ) can then be calculated from the MCMC

samples.

D. Results

Along with illustrating the distributions of usual intakes of the dietary components

adjusted for energy, we also compared our results with NLMIXED.

1. Basic Analysis

We used a burn-in of 5,000 steps followed by 15,000 MCMC samples. We saved every

10th sample to reduce autocorrelation.

a. Frequentist Analysis

In Table 1 we present summary statistics (mean, standard deviation and selected

percentiles) of the usual intakes as well as the usual intakes adjusted for energy. The
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Table 1. Estimated distributions of the usual intake for whole grains, fish and energy

and the estimated distributions of energy-adjusted usual intake for whole

grains and fish, for women.

Whole Grains Fish Energy
Usual Intake per Usual Intake Freq, per Bayes, per Usual Intake
(Unit: cup) 1000 kcals (Unit: oz.) 1000 kcals 1000 kcals (Unit:kcal)

Mean 1.013 0.625 0.539 0.338 0.339 1631.77
s.d. 0.631 0.375 0.486 0.309 0.315 369.16
5th 0.181 0.121 0.053 0.033 0.028 1075.70
10th 0.287 0.189 0.089 0.057 0.057 1180.37
25th 0.536 0.345 0.193 0.122 0.122 1370.29
50th 0.911 0.569 0.399 0.249 0.249 1604.04
75th 1.375 0.841 0.736 0.456 0.456 1863.01
90th 1.867 1.127 1.176 0.731 0.731 2118.74
95th 2.195 1.320 1.508 0.945 0.951 2282.50

5th percentile of the distribution is labeled as 5th, etc. For energy-adjusted fish intake,

we give the results for both the frequentist (“Freq”) and the Bayesian (“Bayes”) fits.

Estimates were very similar for both Freq and Bayes fits and thus we have only

displayed results for fish. Figures 1 and 2 give density estimates for usual intake

and energy adjusted intake of fish and whole grains, respectively: a similar plot for

usual energy intake was also produced but not displayed here. The solid line is the

density estimate for usual intake in the unit of oz. for fish and cups for whole grains.

The dashed line is the density estimate for usual intake per 1000 kilo-calories. The

evident skewness of the usual intakes of fish and whole grains is expected, as are the

somewhat less skew nature of the energy adjusted intakes.

We bootstrapped the validation and primary data sets separately 400 times, see

Remark 6, reran the analysis, and formed bootstrap confidence intervals. Since the

distribution of the covariates X is essentially known because of the size of the primary

study, this bootstrap simply reflects the uncertainty in the parameter estimates as
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Figure 1. Density estimates for fish.
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Figure 2. Density estimates for whole grains.
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they propagate through to usual intakes. To give a graphical summary including

uncertainty, in Figure a we plot the actual estimated percentiles of the distribution

of adjusted fish intake against the percentile number, as well as the 95% pointwise

bootstrap confidence interval for these percentiles. Horizontal axis is the relative

percentile, e.g., the value at 50 is the median. The vertical axis is the estimated

percentile (solid line) in the unit of oz./(1000 kcal). Dashed lines are the pointwise

95% bootstrap confidence intervals.
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Figure 3. Quantile functions for usual fish intake per 1000 kilo-calories.

b. Bayesian Analysis

In Table 1 we also give the Bayesian analysis for energy-adjusted fish intake. As seen

there, the Bayesian analysis posterior means of the distribution of energy-adjusted

fish intake is nearly identical to the frequentist analysis. The same thing was found

for all the columns in Table 1.
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In addition, posterior credible interval lengths were almost equivalent to those of

the frequentist method and are not displayed here.

2. Comparison With Proc NLMIXED

We described in Section B of this chapter, some of the motivation for our computa-

tional approach. In this section, we show documentation of those claims.

Table 2. Comparison between two approaches, “NLMIXED” and “MCMC”.

Whole Grains Fish Dark Green
NLMIXED MCMC NLMIXED MCMC NLMIXED MCMC

Time in Minutes 20 3 12 3 12 4
% zeros on 24hr 32% 77% 73%

Correlations
corr(Ui1, Ui2) 0.65 0.48 -0.39 0.08 1.00 0.48

(0.17) (0.09) (0.44) (0.07) (N/A) (0.06)
corr(Ui1, Ui3) 0.20 0.18 0.28 0.26 0.27 0.24

(0.08) (0.07) (0.14) (0.07) (N/A) (0.06)
corr(Ui2, Ui3) 0.37 0.40 0.02 0.02 0.27 0.28

(0.10) (0.07) (0.16) (0.09) (N/A) (0.06)

First, in Table 2, we describe aspects of the analysis for women of whole grains,

fish and dark-green vegetables, using the AARP data set. Table 2 is a comparison

between two approaches, “NLMIXED” and “MCMC”., of the nonlinear mixed effects

model, for whole grains, fish and dark-green vegetables. Displayed are the estimates

of correlations among the components of (Ui1, Ui2, Ui3), the estimates for the MCMC

approach being posterior means. The numbers displayed in parentheses are the stan-

dard errors from the inverse of the Hessian matrix (“NLMIXED”) and from MCMC

samples (“MCMC”). Here “Dark Green” refers to Dark-Green vegetables, for which

the nonlinear mixed effects analysis converged but to a singular covariance matrix

for Σu. The phrase “Time in Minutes” refers to computation time to complete the



24

analysis. The overall % of zeros on the 24hr are also displayed. The first line in

the table is the number of minutes of computation for the nonlinear mixed effects

program and our MCMC approach. It can be seen that the MCMC approach is con-

siderably faster. While not displayed here, for Milk for men, which had only 12%

reported non-consumption on the 24hr, the nonlinear mixed effects program took 200

minutes, while ours took only 4 minutes. This illustrates our claim concerning speed

of computation.

A second aspect is that we claimed that sometimes the nonlinear mixed effects

analysis of Kipnis et al. (2010a) suffered from convergence to a singular covariance

matrix estimate for Σu. This occurred for dark-green vegetables, see Table 2, where

it was estimated that the correlation between (Ui1, Ui2), corr(Ui1, Ui2), was equal to

1.00. This seemingly ridiculous result is in marked contrast to the much more sensible

posterior mean of 0.48.

A third aspect of the comparison is that we claimed that when the method of

Kipnis et al. (2010a) converged to a reasonable answer, our results were in general

agreement with theirs. This is borne out in Table 2, where we have listed the standard

errors of the estimates using the Hessian for the nonlinear mixed effects analysis, and

using the MCMC samples for our method. The estimates are quite similar with the

exception of corr(Ui1, Ui2) for fish, which can be explained as follows. We performed a

separate bootstrap calculation for this correlation with our method and the nonlinear

mixed effects analysis, which suggested a standard error as large as the difference

between the two. The other standard errors are also different, but this may well

reflect imprecision in the former caused by using a Hessian in a nonlinear mixed

effects model instead of a bootstrap.

Remark 7 While it may seem obvious, it is useful to clarify what we mean by the
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term “convergence”. We are not meaning asymptotic rates of convergence, because

these are the standard n1/2-type one sees in parametric models. We are also not

talking about theoretical rates of numerical convergence, e.g., how fast is convergence

of the Proc NLMIXED procedure in terms of number of iterations. Instead, for us

the term convergence has the meaning that Proc NLMIXED announces that it has

converged to a solution with a nonsingular Hessian. Of course, our method, being

based on proper priors, converges in the usual MCMC sense.
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CHAPTER III

A NEW MULTIVARIATE MEASUREMENT ERROR MODEL WITH

ZERO-INFLATED DIETARY DATA

A. Introduction

This project presents statistical models and methodology to overcome a major stum-

bling block in the field of dietary assessment.

More nutritional background is provided in Section B of this chapter: a summary

of the key conceptual issues follows.

• Nutritional surveys conducted in the United States typically use 24-hour (24hr)

dietary recalls to obtain intake data, i.e., an assessment of what was consumed

in the past 24 hours.

• Because dietary recommendations are intended to be met over time, nutrition-

ists are interested in “usual” or long-term average daily intake.

• Dietary intake is thus assessed with considerable measurement error.

• Consumption patterns of dietary components vary widely; some are consumed

daily by almost everyone, while others are episodically consumed so that 24-

hour recall data are zero-inflated. Further, these components are correlated

with one another.

• Nutritionists are interested in dietary components collectively to capture pat-

terns of usual dietary intake, and thus need multivariate models for usual intake.

• These multivariate models for usual intakes, taking into account episodically

consumed foods, do not exist, nor do methods exist for fitting them.
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One way to capture dietary patterns is by scores, although our work is not

limited to scores. The Healthy Eating Index-2005 (HEI-2005), described in detail in

Section B of this chapter, is a scoring system based on a priori knowledge of dietary

recommendations, and is on a scale of 0 to 100. Ideally, it consists of the usual

intake of 6 episodically consumed and thus 24hr-zero inflated foods, 6 daily-consumed

dietary components, adjusts these for energy (caloric) intake, and gives a score to each

component. The total score is the sum of the individual component scores. Higher

scores indicate greater compliance with dietary guidelines and, therefore, a healthier

diet. Here are a few questions that nutritionists have not been able to answer, and

that our approach can address.

• What is the distribution of the HEI-2005 total score, and what % of Americans

are eating a healthier diet defined for example, by a total score exceeding 80?

• What is the correlation between the individual score on each dietary component

and the scores of all other dietary components?

• Among those whose total HEI-2005 score is > 50 or ≤ 50, what is the dis-

tribution of usual intake of whole grains, whole fruits, dark green and orange

vegetables and legumes (DOL) and calories from solid fats, alcoholic beverages

and added sugars (SoFAAS)?

• What % of Americans exceed the median score on all 12 HEI-2005 components?

In this project, to answer public health questions such as these that can have

policy implications, we build a novel multivariate measurement error model for esti-

mating the distributions of usual intakes, one that accounts for measurement error

and zero-inflation, and has a special structure associated with the zero-inflation. Pre-

vious attempts to fit even simple versions of this model, using nonlinear mixed effects
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software, failed because of the complexity and dimensionality of the model. We use

survey-weighted Monte Carlo computations to fit the model with uncertainty esti-

mation coming from balanced repeated replication. The methodology is illustrated

using the HEI-2005 to assess the diets of children aged 2-8 in the United States. This

work represents the first analysis of joint distributions of usual intakes for multiple

food groups and nutrients.

The project is outlined as follows. In Section B of this chapter we give the

background for the data we observe. In particular, we provide more information

about the HEI-2005. Section C of this chapter describes our model which is a highly

nonlinear, zero-inflated, repeated measures model with multiple latent variables. The

model also has a patterned covariance matrix with structural zeros and ones. We

derive a parameterization that allows estimated covariance matrices to be actual

covariance matrices. We also define technically what we mean by usual intake, and

illustrate the use of simulation methods used to answer the questions posed above,

as well as many others.

Section D of this chapter describes our estimation procedure. Previous attempts

using nonlinear mixed effects models to estimate the distribution of episodically con-

sumed food groups (Tooze et al., 2006; Kipnis et al., 2009) do not work here because

of the high dimensionality of the problem. We instead develop a Monte Carlo strategy

based on the idea of Gibbs sampling; although because of sampling weights, we treat

the method as a frequentist (non-Bayesian) one. This section describes some of the

basics of the methodology; the full technical details of implementation are given in

an appendix.

Section E of this chapter describes the analysis of the HEI-2005 components

using the 2001-2004 National Health and Nutrition Examination Survey (NHANES)

for children ages 2-8. Important contextual points arise because of the nature of the
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data. For example, if whole grains are consumed, then necessarily total grains are

consumed with probability one, a restriction that a naive use of our model cannot

handle. We develop a simple novel device to uncouple consumption variables that

are tightly linked in this way. Finally in this section, we provide the first answers to

the four questions we have posed. In Section F of this chapter, we discuss various

additional aspects of the problem and the data analysis. Concluding remarks and a

policy application are given in Chapter V.

There are a number of general reviews of the measurement error field (Fuller,

1987; Gustafson, 2003; Carroll et al., 2006; Buonaccorsi, 2010). Recent papers that

focus on estimating the density function of a univariate continuous random variable

subject to measurement error include Delaigle (2008), Delaigle and Hall (2008, 2010),

Delaigle and Meister (2008), Delaigle et al. (2008), Staudenmayer et al. (2008)

and Wand (1998). The field of measurement error in regression continues to expand

rapidly, with some recent contributions including Küchenhoff, et al (2006), Guolo

(2008), Liang et al. (2008), Messer and Natarajan (2008) and Natarajan (2009).

There is also a large statistical literature on measurement error as it relates to public

health nutrition: some recent papers relevant to our work include Carriquiry (1999,

2003), Ferrari et al. (2009), Fraser and Shavlik (2004), Kott et al. (2009), Nusser et

al. (1996, 1997), Prentice (1996, 2003), and Tooze et al. (2002, 2006).

B. Data and the HEI-2005 Scores

Here we give more detail about the nutrition context that motivates this work. In

surveys conducted in the United States, the preferred method of obtaining intake data

is the 24-hour dietary recall because it limits respondent burden and facilitates ac-

curate reporting; yet the measure of greatest interest is “usual” or long-term average
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daily intake. Thus dietary intake is assessed with considerable measurement error.

Also, diets are comprised of numerous foods, nutrients, and other components, each of

which may have distinctive attributes and effects on nutritional health. Sometimes, it

is useful to examine intake of these components separately, but increasingly nutrition-

ists are interested in exploring them collectively to capture patterns of dietary intake.

Consumption patterns of these components vary widely; some are consumed daily by

almost everyone while others are episodically consumed so that 24-hour recall data

are zero-inflated. In addition, these various components are often correlated with one

other. Finally, it is often preferable to analyze the amount of a dietary component

relative to the amount of energy (calories) in a diet because dietary recommenda-

tions often vary with energy level, and this approach provides a way of standardizing

dietary assessments.

One of the US Department of Agriculture’s (USDA’s) strategic objectives is “to

promote healthy diets” and it has developed an associated performance measure, the

Healthy Eating Index-2005 (http://www.cnpp.usda.gov/HealthyEatingIndex.htm, HEI-

2005). The HEI-2005 is based on the key recommendations of the 2005 Dietary Guide-

lines (http://www.health.gov/dietaryguidelines/dga2005/document/default.htm) for

Americans. The index includes ratios of interrelated dietary components to energy.

The HEI-2005 comprises 12 distinct component scores and a total summary score. See

Table 3 for a list of these components and the standards for scoring, and see Guenther

et al. (2008a) for details. Except for saturated fat and SoFAAS, density is obtained

by multiplying usual intake by 1000 and dividing by usual intake of kilo-calories. In

Table 3, for saturated fat, density is 9 × 100 usual saturated fat (grams) divided by

usual calories, i.e., the percentage of usual calories coming from usual saturated fat

intake. For SoFAAS, the density is the percentage of usual intake that comes from

usual intake of calories, i.e., the division of usual intake of SoFAAS by usual intake
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of calories. Here, “DOL” is dark green and orange vegetables and legumes. Also,

Table 3. Description of the HEI-2005 scoring system.

Component Units HEI-2005 score calculation
Total Fruit cups min (5, 5 × (density/.8))
Whole Fruit cups min (5, 5 × (density/.4))
Total Vegetables cups min (5, 5 × (density/1.1))
DOL cups min (5, 5 × (density/.4))
Total Grains ounces min (5, 5 × (density/3))
Whole Grains ounces min (5, 5 × (density/1.5))
Milk cups min (10, 10 × (density/1.3))
Meat and Beans ounces min (10, 10 × (density/2.5))
Oil grams min (10, 10 × (density/12))
Saturated Fat % of if density ≥ 15 score = 0

energy else if density ≤ 7 score = 10
else if density > 10 score = 8 − (8 × (density − 10)/5)
else, score = 10 − (2 × (density − 7)/3)

Sodium milligrams if density ≥ 2000 score=0
else if density ≤ 700 score=10
else if density ≥ 1100

score = 8 − {8 × (density − 1100)/(2000 − 1100)}
else score = 10 − {2 × (density − 700)/(1100 − 700)}

SoFAAS % of if density ≥ 50 score = 0
energy else if density ≤ 20 score=20

else score = 20 − {20 × (density − 20)/(50 − 20)}

“SoFAAS” is calories from solid fats, alcoholic beverages and added sugars. The to-

tal HEI-2005 score is the sum of the individual component scores. Intakes of each

food or nutrient, represented by one of the 12 components, are expressed as a ratio

to energy intake, assessed, and ascribed a score.

The HEI-2005 is used to evaluate the diets of Americans to assess compliance

with the 2005 Dietary Guidelines, yet use of the HEI-2005 is limited by the challenges

described above. Until recently, there have been no solutions to these challenges, so

published evaluations have been limited to analyses of mean scores for the population

and various subgroups. Freedman et al. (2010) have described a method of estimating

the population distribution of a single component of HEI-2005, and the prevalence
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of high or low scores on that component; but there has been to date no satisfactory

way to determine the prevalence of high or low total HEI-2005 scores, considering all

of its interrelated components simultaneously. In addition, answers to the complex

questions posed in the Introduction remain unavailable. This project aims to provide

a means to do these crucial evaluations.

The 12 HEI-2005 components represent 6 episodically consumed food groups (to-

tal fruit, whole fruit, total vegetables, dark green and orange vegetables and legumes

or DOL, whole grains and milk), 3 daily-consumed food groups (total grains, meat

and beans and oils), and 3 other daily-consumed dietary components (saturated fat;

sodium; and calories from solid fats, alcoholic beverages and added sugars, or So-

FAAS). The classification of food groups as “episodically” and “daily” consumed is

based on the number of individuals who report them on 24hr recalls. If there are only

a few zeros for a component, we treat that as a daily-consumed food, and replace

all zeros with 1/2 the minimum value of the non-zeros for that food. However, the

crucial statistical aspect of the data is that six of the food groups are zero-inflated.

The percentages of reported non-consumption of total fruit, whole fruit, whole grains,

total vegetables, DOL, and milk on any single day are 17%, 40%, 42%, 3%, 50% and

12%, respectively.

We are interested in the usual intake of foods for children aged 2-8. The data

available to us, described in more detail in Section E of this chapter, came from

the National Health and Nutrition Examination Survey, 2001-2004 (NHANES). The

data used here consisted of n = 2, 638 children, each of whom had a survey weight

wi for i = 1, ..., n. In addition, one or two 24hr dietary recalls were available for each

individual. Along with the dietary variables, there are covariates such as age, gender,

ethnicity, family income and dummy variables that indicate a weekday or a weekend

day, and whether the recall was the first or second reported for that individual.
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Using the 24hr recall data reported, for each of the episodically consumed food

groups, two variables are defined: (a) whether a food from that group was consumed;

and (b) the amount of the food that was reported on the 24hr recall. For the 6 daily-

consumed food groups and nutrients, only one variable indicating the consumption

amount is defined. In addition, the amount of energy that is calculated from the

24hr recall is of interest. The number of dietary variables for each 24hr recall is thus

12+6+1 = 19. The observed data are Yijk for the ith person, the jth variable and

the kth replicate, j = 1, . . . , 19 and k = 1, . . . ,mi. In the data set, at most two 24hr

recalls were observed, so that mi ≤ 2. Set Ỹik = (Yi1k, ..., Yi,19,k)
T, where

• Yi,2ℓ−1,k = Indicator of whether dietary component # ℓ is consumed, with ℓ =

1, 2, 3, 4, 5, 6.

• Yi,2ℓ,k = Amount of food # ℓ consumed. This equals zero, of course, if none of

food #ℓ is consumed, with ℓ = 1, 2, 3, 4, 5, 6.

• Yi,ℓ+6,k = Amount of non-episodically consumed food or nutrient #ℓ, with ℓ =

7, 8, 9, 10, 11, 12.

• Yi,19,k = Amount of energy consumed as reported by the 24hr recall.

C. Model and Methods

1. Basic Model Description

Our model is a generalization of work by Tooze et al. (2006) and Kipnis et al. (2009)

for a single food and Kipnis et al. (2010b) and Zhang et al. (2010) for a single food

and nutrient. Observed data will be denoted as Y , and covariates in the model will

be denoted as X. As is usual in measurement error problems, there will also be latent

variables, which will be denoted by W .
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We use a probit threshold model. Each of the 6 episodically consumed foods

will have 2 sets of latent variables, one for consumption and one for amount, while

the 6 daily-consumed foods and nutrients as well as energy will have 1 set of latent

variables, for a total of 19. The latent random variables are ǫijk and Uij, where

(Ui1, . . . , Ui,19) = Normal(0, Σu) and (ǫi1k, . . . , ǫi,19,k) = Normal(0, Σǫ) are mutually

independent. In this model, food ℓ = 1, ..., 6 being consumed on day k is equivalent

to observing the binary Yi,2ℓ−1,k, where

Yi,2ℓ−1,k = 1 ⇐⇒ Wi,2ℓ−1,k = XT
i,2ℓ−1,kβ2ℓ−1 + Ui,2ℓ−1 + ǫi,2ℓ−1,k > 0. (3.1)

If the food is consumed we model the amount reported Yi,2ℓ,k as

[gtr(Yi,2ℓ,k, λℓ)|Yi,2ℓ−1,k = 1] = Wi,2ℓ,k = XT
i,2ℓ,kβ2ℓ + Ui,2ℓ + ǫi,2ℓ,k, (3.2)

where gtr(y, λ) =
√

2{g(y, λ) − µ(λ)}/σ(λ), g(y, λ) is the usual Box-Cox transforma-

tion with transformation parameter λ, and {µ(λ), σ(λ)} are the sample mean and

standard deviation of g(y, λ), computed from the non-zero food data. This standard-

ization is simply a convenient device to improve the numerical performance of our

algorithm without affecting the conclusions of our analysis.

The reported consumption of daily consumed foods or nutrients ℓ = 7, . . . , 12 are

modeled as

gtr(Yi,ℓ+6,k, λℓ) = Wi,ℓ+6,k = XT
i,ℓ+6,kβℓ+6 + Ui,ℓ+6 + ǫi,ℓ+6,k. (3.3)

Finally, energy is modeled as

gtr(Yi,19,k, λ13) = Wi,19,k = XT
i,19,kβ19 + Ui,19 + ǫi,19,k. (3.4)

As seen in (3.2)-(3.4), different transformations (λ1, ..., λ13) are allowed to be used for

the different types of dietary components, see Appendix 23.
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In summary, there are latent variables W̃ik = (Wi1k, ...,Wi,19,k)
T, latent random

effects Ũi = (Ui1, ..., Ui,19)
T, fixed effects (β1, ..., β19), and design matrices (Xi1k,. . .,Xi,19,k).

Define ǫ̃ik = (ǫi1k, ..., ǫi,19,k)
T. The latent variable model is

Wijk = XT
ijkβj + Uij + ǫijk, (3.5)

where Ũi = Normal(0, Σu) and ǫ̃ik = Normal(0, Σǫ) are mutually independent.

2. Restriction on the Covariance Matrix

Two necessary restrictions are set on Σǫ. First, following Kipnis et al. (2009, 2010b),

ǫi,2ℓ−1,k and ǫi,2ℓ,k, (ℓ = 1, . . . , 6) are set to be independent. Second, in order to

technically identify β2ℓ−1 and the distribution of Ui,2ℓ−1 (ℓ = 1, . . . , 6), we require

that var(ǫi,2ℓ−1,k) = 1, because otherwise the marginal probability of consumption

of dietary component #ℓ would be Φ{(XT
i,2ℓ−1,kβ2ℓ−1 + Ui,2ℓ−1)/var1/2(ǫi,2ℓ−1,k)}, and

thus components of β and Σu would be identified only up to the scale var1/2(ǫi,2ℓ−1,k).

So that we can handle any number of episodically consumed dietary components

and any number of daily consumed components, suppose that there are J episodically

consumed dietary components, and K daily consumed dietary components, and in

addition there is energy. Then the restrictions defined above lead to the covariance
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matrix

Σǫ =




1 0 . . . s1,2J+1 . . . s1,2J+K+1

0 s22 . . . s2,2J+1 . . . s2,2J+K+1

s13 s23 . . . s3,2J+1 . . . s3,2J+K+1

s14 s24 . . . s4,2J+1 . . . s4,2J+K+1

...
...

. . .
... . . .

...

s1,2J+1 s2,2J+1 . . . s2J+1,2J+1 . . . s2J+1,2J+K+1

...
...

...
...

. . .
...

s1,2J+K+1 s2,2J+K+1 . . . s2J+1,2J+K+1 . . . s2J+K+1,2J+K+1




. (3.6)

The difficulty with parameterizations of (3.6) is that the cells that are not con-

strained to be 0 or 1 cannot be left unconstrained, otherwise (3.6) need not be a

covariance matrix, i.e., positive semidefinite.

We have developed an unconstrained parameterization that results in the struc-

ture (3.6). Consider an unconstrained lower triangular matrix V and define Σǫ =

V V T. This is positive semidefinite and therefore qualifies Σǫ as a proper covariance

matrix. The form of V is

V =




v11 0 . . . 0

v21 v22 . . . 0

...
...

. . .
...

v2J+K+1,1 v2J+K+1,2 . . . v2J+K+1,2J+K+1




.

To achieve the desired pattern (3.6), we derive the following four restrictions:

v11 = 1;

v21 = 0;

∑q
p=1v

2
qp = 1; q = 3, 5, . . . , 2J − 1;

∑q
p=1vqpvq+1,p = 0; q = 3, 5, . . . , 2J − 1.
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The third restriction can be ensured by the further parameterization

v31 = r1 sin(θ1);

v32 = r1 cos(θ1);

v33 =
√

1 − r2
1;

v2q+1,1 = rq sin(θ1+(q−1)2);

v2q+1,p = rq cos(θ1+(q−1)2) × . . . × cos(θp−1+(q−1)2) sin(θp+(q−1)2),

p = 2, . . . , 2q − 1;

v2q+1,2q = rq cos(θ1+(q−1)2) × . . . × cos(θq2);

v2q+1,2q+1 =
√

1 − r2
q ,

where q = 2, 3, . . . , J − 1; |rt| ≤ 1, t = 1, . . . , J − 1, and |θs| ≤ π, s = 1, . . . , (J − 1)2.

Similarly, the fourth restriction can be further expressed by setting

vq+1,q = −
q−1∑

p=1

vqpvq+1,p/vqq = −
q−1∑

p=1

vqpvq+1,p/
√

1 − r2
(q−1)/2, q = 3, 5, . . . , 2J − 1.

Note that |Σǫ| = |V |2 =
∏2J+K+1

q=1 v2
qq =

∏J
q=1 v2

2q,2q

∏2J+K+1
q=2J+1 v2

q,q

∏J−1
q=1 (1 − r2

q).

3. The Use of Sampling Weights

As described in the Appendix, we used the survey sample weights from NHANES

both in the model fitting procedure and, after having fit the model, in estimating the

distributions of usual intake.

While not displayed here, we redid the model fitting calculations without weight-

ing, because the covariates we use are major players in determining the sampling

weights, hence it is reasonable to believe that the model in Section C of this chapter

holds both in the sample and in the population. When we did this, the parameter

estimates were essentially unchanged.
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Thus, we use the sampling weights only for estimation of the population dis-

tributions. We actually did this for the purpose of handling the clustering in the

sample design. For such a complex statistical procedure as ours, we knew we could

not do theoretical standard errors, so we thought about the bootstrap, and realized

that putting together a bootstrap for the complex survey would be nearly impossible.

However, we already had developed a set of Balanced Repeated Replication (BRR)

weights (Wolter, 1995), see Section E of this chapter for details. These BRR weights

have the property that, in the frequentist survey sampling sense, they appropriately

reflect the clustering in the standard error calculations.

Of course, the use of sampling weights in the modeling provide unbiased es-

timates of the (super) population parameters of interest. In addition, the use of

sampling weights in the distribution estimation provides an estimated distribution

that is representative of the US population, not just the sample.

4. Distribution of Usual Intake and the HEI-2005 Scores

We assume here that estimates of Σu, Σǫ and βj for j = 1, ..., 19 have been constructed,

see Section D of this chapter. Here we discuss what we mean by usual intake for an

individual, how to estimate the distribution of usual intakes, how to convert usual

intakes into HEI-2005 scores, and how to assess uncertainty.

Consider the first episodically consumed dietary component, a food group, with

reporting being done on a weekend. Set Xi1,wkend and Xi2,wkend to be the versions

of Xi1k and Xi2k where the dummy variable has the indicator of the weekend and

that the recall is the first one. Following Kipnis et al. (2009), we define the usual

intake for an individual on the weekend to be the expectation of the reported intake

conditional on the person’s random effects Ũi. Let the (q, p) element of Σǫ be denoted
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as Σǫ,q,p. As in Kipnis et al. (2009) define

g∗
tr{v, λ, Σǫ,q,p} = g−1

tr (v, λ) + (1/2)Σǫ,q,p
∂2g−1

tr (v, λ)

∂v2
. (3.7)

Detailed formulas for this are given in Appendix 22. Then, following the convention

of Kipnis et al. (2009), the person’s usual intake of the first episodically consumed

dietary component on the weekend is defined as

Ti1,wkend = Φ(XT
i1,wkendβ1 + Ui1)g

∗
tr

(
XT

i2,wkendβ2 + Ui2, λ1, Σǫ,2,2

)
.

Similarly, let Xi1,wkday and Xi2,wkday be as above but the dummy variable is appropri-

ate for a weekday. Then the person’s usual intake of the first episodically consumed

food group on weekdays is defined as

Ti1,wkday = Φ(XT
i1,wkdayβ1 + Ui1)g

∗
tr

(
XT

i2,wkdayβ2 + Ui2, λ1, Σǫ,2,2

)
.

Finally, the usual intake of the first episodically consumed food for the individual is

Ti1 = (4Ti1,wkday + 3Ti1,wkend)/7,

since Fridays, Saturdays and Sundays are considered to be weekend days. Usual

intake for the other episodically consumed food groups is defined similarly.

A person’s usual intake of a daily-consumed food group/nutrient and energy on

the original scale is defined similarly. Consider, for example, energy, which is the

13th dietary component and the 19th set of terms in the model. Let Xi,19,wkend and

Xi,19,wkday be the versions of Xi,19,k where the dummy variable has the indicator of

the weekend or weekday, respectively, and that the recall is the first one. Then

Ti,13,wkend = g∗
tr

(
XT

i,19,wkendβ19 + Ui,19, λ13, Σǫ,19,19

)
;

Ti,13,wkday = g∗
tr

(
XT

i,19,wkdayβ19 + Ui,19, λ13, Σǫ,19,19

)
;



40

Ti,13 = (4Ti,13,wkday + 3Ti,13,wkend)/7.

Similar formulae are used for the other daily-consumed foods and nutrients.

Finally, the energy-adjusted usual intakes and the HEI-2005 scores are then ob-

tained as in Table 3, using the estimated usual intakes of the dietary components.

To find the joint distribution of usual intakes of the HEI-2005 scores, it is conve-

nient to use Monte-Carlo methods. Recall that wi is the sampling weight for individual

i. Let B be a large number: we set B = 5, 000. Generate b = 1, ..., B observations

Ũbi = Normal(0, Σu) and then obtain T̃bi = (Tbiℓ)
13
ℓ=1 by replacing Uij in their formulae

by Ubij. With appropriate sample weighting, the T̃bi can be used to estimate joint and

marginal distributions. Thus, for example, consider the total HEI-2005 score, which

is a deterministic function of the usual intakes, say G(T̃i). Its cumulative distribution

function is estimated as

F̂ (x) =

∑n
i=1

∑B
b=1 I{G(T̃bi) ≤ x}wi∑n

i=1

∑B
b=1 wi

. (3.8)

Frequentist standard errors of derived quantities such a mean, median and quantiles

can be estimated using the Balanced Repeated Replication (BRR) method (Wolter,

1995), see Section E of this chapter for details.

D. Comments on the Approach to Estimation

Our model (3.2)-(3.4) is a highly nonlinear, mixed effects model with many latent

variables and nonlinear restrictions on the covariance matrix Σǫ. As seen in Sec-

tion C of this chapter, we can estimate relevant distributions of usual intake in the

population if we can estimate Σu, Σǫ and βj for j = 1, ..., 19. We have found that

working within a pseudo-likelihood Bayesian paradigm is a convenient way to do this

computation. We emphasize, however, that we are doing this only to get frequentist
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parameter estimates based on the well-known asymptotic equivalence of frequentist

likelihood estimators and Bayesian posterior means, and especially the consistency of

both (Lehmann and Casella, 1998). We are specifically not doing Bayesian posterior

inference, since valid Bayesian inference in a complex survey such as NHANES is an

immensely challenging task, and because frequentist estimation and inference are the

standard in the nutrition community.

Kipnis et al. (2009) were able to get estimates of parameters separately for

each food group using the nonlinear mixed effects program NLMIXED in SAS with

sampling weights. While this gives estimates of βj for j = 1, ..., 19, it only gives

us parts of the covariance matrices Σu and Σǫ, and not all the entries. Using the

2001-2004 NHANES data, we have verified that our estimates and the subset of the

parameters that can be estimated by one food group at a time using NLMIXED

are in close agreement, and that estimates of the distributions of usual intake and

HEI-2005 component scores are also in close agreement. We expect this because of

the rather large sample size in our data set. Zhang et al. (2010) have shown that

even considering a single food group plus energy is a challenge for the NLMIXED

procedure, both in time and in convergence, and using this method for the entire

HEI-2005 constellation of dietary components is impossible.

Full technical details of the model fitting procedure are given in Appendices 12

- 21.

E. Empirical Work

1. Basic Analysis

We analyzed data from the 2001-2004 National Health and Nutrition Examination

Survey (NHANES) for children age 2-8. The study sample consisted of 2, 638 children,
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among whom 1, 103 children have two 24hr recalls and the rest have only one. We

used the dietary intake data to calculate the 12 HEI-2005 components plus energy.

In addition, besides age, gender, race and interaction terms, two covariates were

employed, along with an intercept. The first was a dummy variable indicating whether

or not the recall was for a weekend day (Friday, Saturday, or Sunday) because food

intakes are known to differ systematically on weekends and weekdays. The second

was a dummy variable indicating whether the 24hr recall was the first or second such

recall, the idea being that there may be systematic differences attributable to the

repeated administration of the instrument.

2. Contextual Information

When we ran our program based on the variables in Table 3, the results were disas-

trous. Mixing of the MCMC sampler was very poor, with long sojourns in different

regions.

The reason for this failure to converge depends on the context of the dietary

variables. For example, whole grains are a subset of total grains. Thus, if someone

consumes any whole grains, then necessarily, with probability 1.0, that person also

consumes total grains. Such a restriction cannot be handled by our model, because it

would force one of the random effects U to equal infinity. A similar thing happens for

energy. Calories coming from saturated fat are a subset of total calories as are calories

from SoFAAS, so there is a restriction that total calories must be greater than calories

from saturated fat and also greater than calories from SoFAAS. Since the latter sum

makes up a significant portion of calories, this restriction is not something that our

model can handle well.

Luckily, there is an easy and natural context-based solution. Instead of using

total grains in the model, we used grains that are not whole grains, i.e., refined grains,
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thus decoupling whole grains and total grains, and removing the restriction mentioned

above. Similarly, instead of using total fruit, we use fruit that is not whole fruits, i.e.,

fruit juices. Additionally, instead of using total vegetables, we use total vegetables

excluding dark green and orange vegetables and legumes. Finally, instead of total

energy, we use total energy minus the sum of energy from saturated fat (11% of mean

energy) and from SoFAAS (35% of mean energy). We recognize that there is overlap

of energy from saturated fat and energy from solid fat, but this has no impact on

our analysis since total energy has sources other than these two. An alternative of

course, would have been to simply use total energy minus energy from SoFAAS,

This is sufficient to estimate the distributions of interest. If, for example, in the

new data set Ti1 represents usual intake of non-whole fruits, and Ti2 is usual intake of

whole fruits, then the usual intake of total fruits is Ti1 + Ti2. Similar remarks apply

for total grains and total vegetables.

With these new variables, our model mixed well and gave reasonable looking

answers that, as mentioned in Section D of this chapter, give similar results to other

methods employed with smaller parts of the data set.

3. Estimation of the HEI-2005 Scores

In the introduction, we posed 4 questions to which answers had not been possible

previously. The first open question concerned the distribution of the HEI total score.

Along the way towards this, Table 4 presents the energy-adjusted distributions of

the dietary components used in the HEI-2005. For each dietary component, the first

line = estimate from our model, while the second line is its BRR-estimated standard

error. Total Fruit, Whole Fruit, Total Vegetables, DOL and Milk are in cups. Total

Grains, Whole Grains and Meat and Beans are in ounces. Oil and Sodium are in

grams. Saturated Fat and SoFAAS are in % of energy. Further discussion of the size
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Table 4. Estimated distributions of energy-adjusted usual intakes for children aged

2-8; NHANES, 2001-2004.
Percentile

Component Units Mean 5th 10th 25th 50th 75th 90th 95th

Total Fruit cups/(1000 kcal) 0.70 0.14 0.21 0.37 0.62 0.95 1.30 1.54
0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.07

Whole Fruit cups/(1000 kcal) 0.31 0.04 0.07 0.14 0.26 0.42 0.61 0.73
0.02 0.01 0.01 0.02 0.02 0.03 0.04 0.06

Total Vegetables cups/(1000 kcal) 0.47 0.23 0.27 0.36 0.46 0.58 0.69 0.77
0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.03

DOL cups/(1000 kcal) 0.05 0.00 0.01 0.02 0.03 0.07 0.11 0.15
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Total Grains ounces/(1000 kcal) 3.32 2.35 2.54 2.87 3.28 3.72 4.16 4.45
0.05 0.08 0.07 0.06 0.05 0.06 0.08 0.10

Whole Grains ounces/(1000 kcal) 0.27 0.05 0.07 0.13 0.23 0.36 0.52 0.64
0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.04

Milk cups/(1000 kcal) 0.97 0.28 0.38 0.60 0.90 1.26 1.64 1.90
0.02 0.03 0.03 0.02 0.02 0.03 0.05 0.07

Meat and Beans ounces/(1000 kcal) 1.84 1.06 1.21 1.48 1.80 2.16 2.51 2.73
0.04 0.09 0.08 0.06 0.04 0.04 0.05 0.07

Oil grams/(1000 kcal) 7.13 4.05 4.60 5.63 6.93 8.41 9.90 10.89
0.23 0.24 0.21 0.17 0.20 0.35 0.54 0.68

Saturated Fat % of Energy 11.71 8.56 9.20 10.33 11.64 13.01 14.32 15.13
0.15 0.25 0.20 0.15 0.15 0.22 0.32 0.38

Sodium grams/(1000 kcal) 1.49 1.16 1.23 1.34 1.48 1.63 1.77 1.86
0.01 0.02 0.02 0.01 0.01 0.02 0.03 0.03

SoFAAS % of Energy 36.93 27.19 29.28 32.87 36.90 40.96 44.61 46.77
0.48 0.93 0.81 0.63 0.48 0.49 0.64 0.75

of the BRR-estimated standard errors is given in Section F of this chapter. Table 5

presents the distributions of the HEI-2005 individual component scores and the total

score, with a graphical view given in Figure 4. In Table 5, for each component score,

the first line = estimate from our model, while the second line is its BRR-estimated

standard error. The total score is the sum of the individual scores. Further discussion

of the size of the BRR-estimated standard errors is given in Section F of this chapter

and in the supplementary material. In Figure 4, the horizontal axis is the percentile

of interest, e.g., 0.5 refers to the median, while the vertical axis gives percentile of

the HEI-2005 scores. Standard error estimates are given in Table 4.

Table 5 presents the first estimates of the distribution of HEI-2005 scores for a

vulnerable subgroup of the population, namely children aged 2-8 years. A previous

analysis of 2003-04 NHANES data, looking separately at 2-5 year olds and 6-11 year

olds, was limited to estimates of mean usual HEI-2005 scores (59.6 and 54.7, respec-

tively, see Fungwe et al., 2009). The mean scores noted here are comparable to those
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Table 5. Estimated distributions of the usual intake HEI-2005 scores.
Percentile

Component Mean 5th 10th 25th 50th 75th 90th 95th

Total Fruit 3.55 0.87 1.31 2.33 3.90 5.00 5.00 5.00
0.09 0.13 0.14 0.15 0.15 0.00 0.00 0.00

Whole Fruit 3.14 0.49 0.82 1.71 3.24 5.00 5.00 5.00
0.14 0.12 0.16 0.21 0.26 0.03 0.00 0.00

Total Vegetables 2.16 1.02 1.24 1.63 2.10 2.62 3.15 3.48
0.06 0.10 0.10 0.07 0.06 0.07 0.12 0.16

DOL 0.62 0.05 0.09 0.21 0.45 0.86 1.38 1.76
0.04 0.02 0.03 0.04 0.05 0.06 0.08 0.13

Total Grains 4.81 3.92 4.23 4.79 5.00 5.00 5.00 5.00
0.03 0.13 0.12 0.09 0.00 0.00 0.00 0.00

Whole Grains 0.90 0.16 0.24 0.43 0.75 1.21 1.74 2.13
0.04 0.04 0.05 0.05 0.05 0.05 0.10 0.14

Milk 6.77 2.15 2.96 4.62 6.91 9.67 10.00 10.00
0.12 0.23 0.22 0.18 0.17 0.25 0.00 0.00

Meat and Beans 7.22 4.23 4.83 5.91 7.21 8.64 10.00 10.00
0.16 0.34 0.30 0.23 0.17 0.15 0.11 0.00

Oil 5.92 3.37 3.83 4.69 5.77 7.01 8.25 9.07
0.18 0.20 0.18 0.14 0.17 0.29 0.45 0.57

Saturated Fat 5.16 0.00 1.09 3.18 5.38 7.48 8.53 8.96
0.21 0.35 0.51 0.35 0.24 0.23 0.13 0.16

Sodium 4.52 1.25 2.05 3.31 4.62 5.83 6.85 7.44
0.09 0.30 0.24 0.15 0.09 0.11 0.16 0.19

SoFAAS 8.73 2.15 3.60 6.02 8.73 11.42 13.81 15.21
0.32 0.50 0.42 0.33 0.32 0.42 0.54 0.62

Total Score 53.50 37.42 40.74 46.73 53.68 60.36 65.87 68.96
0.81 1.45 1.34 1.09 0.83 0.82 0.96 1.08
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Figure 4. The estimated percentiles of the HEI-2005 total score.
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and reinforce the notion that children’s diets, on average, are far from ideal. However,

this analysis provides a more complete picture of the state of US children’s diets. By

including the scores at various percentiles, we estimate that only 5% of children have

a score of 69 or greater and another 10% have scores of 41 or lower. While not in

the table, we also estimate that the 99th percentile is 74. This analysis suggests that

virtually all children in the US have suboptimal diets and that a sizeable fraction

(10%) have alarmingly low scores (41 or lower.)

We have also considered whether our multivariate model fitting procedure gives

reasonable marginal answers. To check this, we note that it is possible to use the

SAS procedure NLMIXED separately for each component to fit a model with one

episodically consumed food group or daily consumed dietary component together

with energy. The marginal distributions of each such component done separately

are quite close to what we have reported in Table 5, as is our mean, which is 53.50

compared to the mean of 53.25 based on analyzing one HEI-2005 component at a

time with the NLMIXED procedure. The only case where there is a mild discrepancy

is in the estimated variability of the energy-adjusted usual intake of oils, likely caused

by the NLMIXED procedure itself, which has an estimated variance 9 times greater

than our estimated variance.

Of course, it is the distribution of the HEI-2005 total score that cannot be esti-

mated by analysis of one component at a time.

There are other things that have not been computed previously that are simple

by-products of our analysis. For example, the correlations among energy-adjusted

usual intakes involving episodically consumed foods have not been estimated previ-

ously, but this is easy for us, see Table 6. Here TF = Total Fruits, WF = Whole

Fruits, TV = Total Vegetables, WG = Whole Grains, TG = Total Grains, SatFat

= Saturated Fat. The estimated correlation of −0.64 between energy-adjusted to-
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Table 6. Estimated correlation matrix for energy-adjusted usual intakes.

Component TF WF TV DOL TG WG Milk Meat Oil SatFat Sodium SoFAAS
TF 1 0.76 0.07 0.41 -0.10 0.33 0.16 0.08 -0.35 -0.38 -0.25 -0.64
WF 1 0.14 0.49 0.03 0.35 0.10 0.05 -0.17 -0.30 -0.20 -0.51
TV 1 0.51 -0.25 -0.23 -0.09 0.51 -0.08 0.08 0.42 -0.16
DOL 1 -0.08 0.11 0.14 0.25 -0.06 -0.23 0.01 -0.47
TG 1 0.30 -0.30 -0.13 0.44 -0.36 0.17 -0.22
WG 1 0.18 -0.18 -0.11 -0.29 -0.17 -0.46
Milk 1 -0.37 -0.21 0.21 -0.27 -0.21
Meat & Beans 1 -0.06 -0.08 0.39 -0.19
Oil 1 -0.06 0.11 0.05
SatFat 1 0.09 0.46
Sodium 1 0.04
SoFAAS 1

tal fruit and energy-adjusted SoFAAS, and the −0.47 correlation between DOL and

SoFAAS are surprisingly high.

4. Component Scores and Other Scores

As described in the introduction, an open problem has been to estimate the correlation

between the individual score on each dietary component and the scores of all other

dietary components. In their Table 3, Guenther et al. (2008b) consider this problem,

but of course they did not have a model for usual energy adjusted intakes, and instead

they used a single 24hr recall. In Table 7, we show the resulting correlations using

(a) a single 24hr recall; (b) the mean of two 24hr recalls for those who have two 24hr

recalls; and (c) our model for usual intake. The column labeled “Two 24hr” is the

naive analysis that uses the mean of the two 24hr recalls, while the column labeled

“First 24hr” is the naive analysis that uses the first 24hr recall. The column labeled

“Model” is our analysis, and the column labeled “BRR s.e.” is the estimated standard

error of our estimates. The numbers for the former differ from that of Guenther et

al. (2008b) because we are considering here a different population than do they. A

striking and not unexpected aspect of this table is that for those components with

non-trivial correlations, the correlations all increase as one moves from a single 24hr
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Table 7. Estimated correlations between each individual HEI-2005 component score

and the sum of the other HEI component scores, i.e., the difference of the

total score and each individual component.
First 24hr Two 24hr Model BRR s.e.

Total Fruit 0.38 0.44 0.62 0.05
Whole Fruit 0.31 0.37 0.59 0.10
Total Vegetables 0.09 0.11 0.10 0.11
DOL 0.18 0.24 0.41 0.07
Total Grains 0.00 0.00 0.06 0.11
Whole Grains 0.12 0.16 0.53 0.08
Milk -0.07 -0.01 0.01 0.08
Mean and Beans -0.03 -0.01 -0.03 0.15
Oil 0.08 0.05 -0.17 0.08
Saturated Fat 0.21 0.23 0.36 0.06
Sodium -0.03 0.05 0.07 0.12
SoFAAS 0.52 0.59 0.72 0.04

recall to the mean of two 24hr recalls and then finally to estimated usual intake.

Thus, for example, the correlation between the HEI-2005 score for total fruit and its

difference with the total score is 0.38 for a single 24hr recall, 0.44 for the mean of two

24hr recalls and then finally 0.62 for usual intake.

5. Distributions of Intakes for HEI Total Scores

A third open question is: among those whose total HEI-2005 score is > 50 or ≤ 50,

what is the distribution of energy-adjusted usual intake of whole grains, whole fruits,

dark green and orange vegetables and legumes (DOL) and calories from solid fats,

alcoholic beverages and added sugars (SoFAAS)? This follows naturally from our

method. Following (3.8), let G1(T̃bi) be energy adjusted usual intake and let G2(T̃bi)

be the HEI total score. Then the distributions in question for when the total HEI-2005

score is > 50 can be estimated as F̂ (x) =
∑n

i=1

∑B
b=1 wiI{G1(T̃bi) ≤ x}I{G2(T̃bi) >

50}/
∑n

i=1

∑B
b=1 wiI{G2(T̃bi) > 50}. The results are provided in Table 8, with a

graphical view in Figure 5. Units of measurement in Table 8 are given in Table 4.

Figure 5 gives the estimated percentiles of the energy-adjusted usual intakes for whole

fruits (Top left) in cups/(1000 kcal), whole grains (Top right) in ounces/(1000 kcal),
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Table 8. Estimated distributions of energy-adjusted usual intake for those whose total

HEI-2005 total scores are ≤ 50 and > 50.
Percentile

Component Mean s.d 5th 10th 25th 50th 75th 90th 95th

Whole Fruit
Total Score ≤ 50 0.15 0.12 0.02 0.03 0.07 0.12 0.21 0.30 0.38
Total Score > 50 0.39 0.22 0.11 0.15 0.23 0.35 0.51 0.68 0.80

Whole Grains
Total Score ≤ 50 0.18 0.13 0.03 0.05 0.09 0.15 0.25 0.36 0.44
Total Score > 50 0.32 0.20 0.07 0.10 0.17 0.28 0.42 0.59 0.70

DOL
Total Score ≤ 50 0.02 0.02 0.00 0.00 0.01 0.02 0.03 0.05 0.07
Total Score > 50 0.06 0.05 0.01 0.01 0.03 0.05 0.09 0.13 0.17

SoFAAS
Total Score ≤ 50 42.43 3.97 36.40 37.59 39.66 42.16 44.92 47.67 49.42
Total Score > 50 33.83 4.44 26.01 27.89 30.97 34.15 36.98 39.28 40.57

Total Score 53.50 9.58 37.42 40.74 46.73 53.68 60.36 65.87 68.96

DOL (bottom left) in cups/(1000 kcal) and calories from SoFAAS (bottom right) in

% of Energy. The solid lines are for those whose usual HEI-2005 total score is ≤ 50,

i.e., poorer diets, while the dashed lines are for those whose usual HEI-2005 total

score is > 50, i.e., better diets. The results show that those who have poorer diets

with usual HEI-2005 total score ≤ 50 are consistently eating poorer diets, i.e., less

whole fruits, less whole grains and less DOL, but higher SoFAAS.

6. Dietary Consistency

We stated in the introduction that it is interesting to understand the percentage of

children whose usual intake HEI score exceeds the median HEI score on all 12 HEI

components. Those median scores, say (κ1, ..., κ12), are estimated in Table 5. If

Gj(T̃bi) is the HEI component score for episodically consumed food j, then following

(3.8) the quantity in question can be estimated as
∑n

i=1

∑B
b=1 wi

∏6
j=1 I{Gj(T̃bi) ≥

κj}/
∑n

i=1

∑B
b=1 wi. We estimate that the percentage is 6%, woefully small. The

percentage of children whose usual intake HEI score exceeds the median HEI score on

all 12 HEI components is 0.24%. Figure 6 gives the estimated probabilities (Y-axis)
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Figure 5. The estimated percentiles of the energy-adjusted usual intakes for whole

fruits, whole grains, DOL and calories from SoFAAS.
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of exceeding the κ (X-axis) percentile on all 12 HEI components simultaneously, for

κ = 1, 2, ..., 99.
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Figure 6. Dietary consistency.

7. Uncertainty Quantification

The BRR standard errors of HEI-2005 components’ adjusted usual intakes and scores

are shown in Tables 4 and 5. The BRR weights are only used in variance calculations.

Once we have estimated some quantity, say θ̂, from the sample using sample weight,

we will need to compute the same quantity using, in succession, the 32 BRR weights.

This will give us 32 estimates θ̂1, θ̂2, . . . , θ̂32. The BRR estimate for the variance of

θ̂ is (32 × 0.49)−1
∑32

p=1(θ̂p − θ̂)2. The 32 in the denominator is for the 32 different

estimates from the 32 different sets of weights, and the 0.49 is the square of the
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perturbation factor used to construct the BRR weight sets (Wolter, 1995).

F. Further Discussion of the Analysis

1. Never Consumers

An aspect of the modeling that we have not discussed is the possibility that some

people never, ever consume an episodically consumed dietary component. Our model

does not allow for this, for general reasons and for reasons that are specific to our

data analysis.

It is in principle possible to add an additional modeling step for non-consumers,

via fixed effects probit regression, but we do not think this is a practical issue in our

case, for two reasons.

• The first is that the HEI-2005 is based on 6 episodically consumed dietary com-

ponents, namely total fruit, whole fruit, whole grains, total vegetables, DOL,

and milk, the latter of which includes cheese, yogurt and soy beverages. None

of these are “lifestyle adverse”, unlike say alcohol. While 40% of the responses

for whole fruits, for example, equal zero, the percentage of children who never

eat any whole fruits at all is likely to be minuscule.

• Even if one disputes whether there are very few individuals who never con-

sume one of the dietary components, then it necessarily follows that we have

overestimated the HEI-2005 total scores, and hence the estimates of the pro-

portion of individuals with alarmingly low HEI scores are deflated, and not

inflated. The reason is that our model suggests everyone has a positive usual

intake of the 6 episodically consumed dietary components. Since the HEI-2005

score components are nondecreasing functions of usual intake of the episodi-
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Table 9. BRR estimated standard errors of HEI-2005 component energy-adjusted

usual intakes for 250 randomly selected children with replicate 24hr.
Component se(Mean) se(Q5) se(Q10) se(Q25) se(Q50) se(Q75) se(Q90) se(Q95)
Total Fruit 0.06 0.06 0.07 0.07 0.07 0.09 0.12 0.14
Whole Fruit 0.04 0.01 0.02 0.02 0.03 0.05 0.07 0.09
Total Vegetables 0.04 0.06 0.06 0.05 0.04 0.04 0.06 0.07
DOL 0.02 0.00 0.00 0.01 0.01 0.02 0.03 0.04
Total Grains 0.17 0.14 0.14 0.15 0.17 0.20 0.25 0.29
Whole Grains 0.03 0.02 0.02 0.03 0.04 0.04 0.06 0.07
Milk 0.08 0.07 0.06 0.05 0.06 0.12 0.19 0.25
Meat and Beans 0.10 0.17 0.15 0.13 0.10 0.09 0.10 0.11
Oil 0.50 0.42 0.41 0.41 0.46 0.61 0.87 1.09
Saturated Fat 0.51 0.47 0.43 0.44 0.52 0.65 0.77 0.85
Sodium 0.03 0.05 0.04 0.03 0.03 0.04 0.07 0.09
SoFAAS 0.99 1.63 1.48 1.24 1.04 1.05 1.28 1.50

cally consumed dietary components, this would mean that we overestimate the

HEI-2005 total score.

2. Complexity of the Data and Sample Size

The complexity of the modeling may make it seem like a miracle that we have been

able to get results. Actually, because we have 1, 103 children with replicate 24hr

measurements, and the highest amount of reported zeros is < 50%, we have a great

deal of data for estimating Σǫ and for estimating Σu. To show that smaller sample

sizes result in significantly larger variability, we reran the analysis by using only a

randomly selected 250 of the children with replicate 24hr, and the BRR estimated

variances go up more than a factor of 7, on average, see Tables 9 and 10. The point

of these tables is to show that in smaller sample sizes, standard errors do increase

substantially. The phrase “se(Mean)” is the standard error estimate for the estimated

mean, and “se(Q)” is the estimated standard error of the particular quantile.

3. Comparisons When Measurement Error is Ignored

It is interesting to understand how some of the results change if the 24hr recalls were

used directly as if they were usual intake. We redo Tables 4 and 5 in two ways:
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Table 10. BRR estimated standard errors of HEI-2005 component scores for 250 ran-

domly selected children with replicate 24hr.
Component se(Mean) se(Q5) se(Q10) se(Q25) se(Q50) se(Q75) se(Q90) se(Q95)
Total Fruit 0.24 0.40 0.46 0.45 0.41 0.00 0.00 0.00
Whole Fruit 0.31 0.19 0.21 0.28 0.42 0.62 0.09 0.00
Total Vegetables 0.16 0.28 0.27 0.23 0.18 0.17 0.25 0.33
DOL 0.20 0.03 0.04 0.08 0.16 0.29 0.44 0.55
Total Grains 0.15 0.24 0.24 0.25 0.24 0.00 0.00 0.00
Whole Grains 0.11 0.06 0.08 0.10 0.12 0.14 0.19 0.24
Milk 0.35 0.54 0.50 0.42 0.49 0.83 0.09 0.01
Meat and Beans 0.38 0.67 0.62 0.51 0.40 0.35 0.06 0.01
Oil 0.38 0.35 0.34 0.34 0.38 0.51 0.72 0.68
Saturated Fat 0.72 0.88 1.17 1.03 0.84 0.70 0.48 0.31
Sodium 0.26 0.79 0.63 0.40 0.25 0.28 0.39 0.44
SoFAAS 0.66 1.00 0.86 0.70 0.69 0.82 0.99 1.09
Total Score 2.14 3.48 3.09 2.57 2.30 2.21 2.26 2.36

Table 11. Estimated distributions of a single energy-adjusted 24-hour recall for chil-

dren ages 2-8; NHANES, 2001-2004.
Percentile

Component Units Mean 5th 10th 25th 50th 75th 90th 95th

Total Fruit cups/(1000 kcal) 0.72 0.00 0.00 0.11 0.55 1.09 1.67 2.12
Whole Fruit cups/(1000 kcal) 0.31 0.00 0.00 0.00 0.06 0.48 0.90 1.26
Total Vegetables cups/(1000 kcal) 0.48 0.01 0.07 0.19 0.39 0.66 1.02 1.29
DOL cups/(1000 kcal) 0.05 0.00 0.00 0.00 0.00 0.02 0.19 0.32
Total Grains ounces/(1000 kcal) 3.31 1.35 1.73 2.38 3.19 4.10 5.13 5.64
Whole Grains ounces/(1000 kcal) 0.27 0.00 0.00 0.00 0.13 0.39 0.79 1.07
Milk cups/(1000 kcal) 0.99 0.00 0.08 0.44 0.87 1.40 1.94 2.38
Meat and Beans ounces/(1000 kcal) 1.86 0.17 0.42 0.98 1.75 2.50 3.26 3.89
Oil grams/(1000 kcal) 6.88 0.15 0.72 2.36 5.60 10.09 14.34 19.31
Saturated Fat % of energy 11.67 6.27 7.41 9.26 11.41 13.89 16.05 17.73
Sodium grams/(1000 kcal) 1.50 0.90 1.03 1.22 1.46 1.71 2.02 2.23
SoFAAS % of energy 36.72 19.41 23.99 29.95 36.75 43.60 49.87 53.22

• Using only the first 24 hour recall for everyone as a measure of their usual

intake.

• Using the mean of the two 24 hour recalls as a measure of their usual intake for

those who have two 24 hour recalls.

Because of the measurement error, the naive methods give distributions with too large

a variance. This is seen in Tables 11-14. The point of this table is to compare our

results, which correct for the measurement errors in the 24hr, with the naive results

that ignore measurement error. The total score in Tables 12 and 14 is the sum of the

individual scores.
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Table 12. Estimated distributions of the HEI-2005 scores for a single energy-adjusted

24-hour recall for children ages 2-8; NHANES, 2001-2004.
Percentile

Component Mean 5th 10th 25th 50th 75th 90th 95th

Total Fruit 2.94 0.00 0.00 0.66 3.46 5.00 5.00 5.00
Whole Fruit 2.14 0.00 0.00 0.00 0.72 5.00 5.00 5.00
Total Vegetables 2.06 0.02 0.30 0.86 1.79 2.99 4.64 5.00
DOL 0.56 0.00 0.00 0.00 0.00 0.31 2.31 3.96
Total Grains 4.39 2.25 2.88 3.96 5.00 5.00 5.00 5.00
Whole Grains 0.88 0.00 0.00 0.00 0.43 1.32 2.62 3.57
Milk 6.22 0.02 0.61 3.38 6.66 10.00 10.00 10.00
Meat and Beans 6.52 0.66 1.69 3.91 7.01 10.00 10.00 10.00
Oil 5.06 0.12 0.60 1.97 4.67 8.41 10.00 10.00
Saturated Fat 5.23 0.00 0.00 1.78 5.75 8.49 9.72 10.00
Sodium 4.65 0.00 0.00 2.56 4.78 6.92 8.35 9.00
SoFAAS 9.01 0.00 0.09 4.27 8.83 13.36 17.34 20.00
Total Score 49.66 28.30 31.66 40.20 50.01 58.93 67.28 71.72

Table 13. Estimated distributions of the energy-adjusted 2-day mean 24-hour recall

for children ages 2-8, NHANES, 2001-2004.
Percentile

Component Units Mean 5th 10th 25th 50th 75th 90th 95th

Total Fruit cups/(1000 kcal) 0.76 0.01 0.10 0.31 0.62 1.11 1.59 1.86
Whole Fruit cups/(1000 kcal) 0.34 0.00 0.00 0.02 0.24 0.53 0.87 1.09
Total Vegetables cups/(1000 kcal) 0.50 0.08 0.15 0.28 0.46 0.68 0.90 1.07
DOL cups/(1000 kcal) 0.05 0.00 0.00 0.00 0.00 0.07 0.15 0.22
Total Grains ounces/(1000 kcal) 3.17 1.68 1.95 2.51 3.10 3.79 4.44 4.81
Whole Grains ounces/(1000 kcal) 0.30 0.00 0.00 0.05 0.20 0.43 0.72 0.90
Milk cups/(1000 kcal) 0.99 0.11 0.25 0.50 0.87 1.36 1.88 2.24
Meat and Beans ounces/(1000 kcal) 1.88 0.52 0.84 1.27 1.83 2.45 3.04 3.44
Oil grams/(1000 kcal) 7.10 1.15 1.89 4.01 6.66 9.62 12.76 14.36
Saturated Fat % of energy 11.82 7.58 8.48 10.00 11.73 13.41 15.06 16.43
Sodium grams/(1000 kcal) 1.50 1.05 1.14 1.26 1.47 1.68 1.90 2.01
SoFAAS % of energy 35.32 21.80 25.20 29.87 34.63 40.73 46.52 49.65

Table 14. Estimated distributions of the HEI-2005 scores for the 2-day mean 24-hour

recall for children ages 2-8, NHANES, 2001-2004.
Percentile

Component Mean 5th 10th 25th 50th 75th 90th 95th

Total Fruit 3.37 0.03 0.60 1.92 3.89 5.00 5.00 5.00
Whole Fruit 2.73 0.00 0.00 0.27 3.06 5.00 5.00 5.00
Total Vegetables 2.24 0.37 0.68 1.28 2.08 3.10 4.08 4.88
DOL 0.60 0.00 0.00 0.00 0.03 0.88 1.92 2.72
Total Grains 4.49 2.80 3.26 4.18 5.00 5.00 5.00 5.00
Whole Grains 0.97 0.00 0.00 0.18 0.65 1.44 2.41 2.99
Milk 6.47 0.88 1.96 3.83 6.68 10.00 10.00 10.00
Meat and Beans 6.98 2.09 3.37 5.07 7.32 9.80 10.00 10.00
Oil 5.62 0.96 1.58 3.34 5.55 8.02 10.00 10.00
Saturated Fat 5.03 0.00 0.00 2.54 5.24 8.00 9.02 9.62
Sodium 4.58 0.00 0.87 2.83 4.70 6.55 7.69 8.24
SoFAAS 9.82 0.23 2.32 6.18 10.24 13.42 16.54 18.80
Total Score 52.90 32.86 35.97 44.47 53.52 61.24 68.71 72.22
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4. Sizes of Standard Errors

The standard errors of the BRR-estimated standard deviations may appear too small

relative to the percentiles themselves. To check whether this is the case, we took the

mean and standard deviation reported in Table 4, and used the method of moments to

fit a Gamma distribution as a rough approximation. We then computed model-based

95th percentiles over 1, 000 simulated data sets of size 100 and 500. We used model-

based percentiles because except for the weights, ours is a model-based estimator.

The results are displayed in Table 15. “se(Q95) Paper” is the standard error of

the 95th percentile as reported in the paper, while “se(Q95) Model” is the standard

error of the 95th model-based percentile, based on samples of effective size n = 100 and

n = 500. The main point of this table is to show that the BRR-estimated standard

errors of the 95th percentiles in our data analysis are consistent with the standard

errors that would have been obtained if the Gamma distribution were correct. They

show that the BRR-estimated standard errors of the 95th percentiles are consistent

with the standard errors that would have been obtained if the Gamma distribution

were correct, even if the effective sample size is 100. If the effective sample size is 500,

then our estimated standard deviations of the 95th percentile are far too large. The

key point is that the standard errors are not minute compared to what they should

reasonably be.

One might also notice that the standard errors of the 5th percentile can be smaller

than the standard errors of the 25th percentile. This actually makes sense, because

the data are all positive, not normally distributed, so at the left tail the 5th percentile

might actually be rather well-determined. Using the same Gamma model as above,

with a sample size of n = 100, we compared the ratio of the standard deviations of

the model-based 95th percentile to the sample standard deviation, and the ratio of
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Table 15. Comparison of standard errors when the data are Gamma distributed with

method of moments parameter estimates.
Dietary se(Q95) se(Q95) Model se(Q95) Model
Component Paper n = 100 n = 500
Total Fruit 0.07 0.13 0.06
Whole Fruit 0.06 0.06 0.03
Total Vegetables 0.03 0.12 0.05
DOL 0.01 0.05 0.02
Total Grains 0.10 0.04 0.02
Whole Grains 0.04 0.02 0.01
Milk 0.07 0.12 0.06
Meat and Beans 0.07 0.10 0.05
Oil 0.68 0.41 0.20
Saturated Fat 0.38 0.37 0.17
Sodium 0.03 0.04 0.02
SoFAAS 0.75 1.09 0.51

the standard deviations of the 5th and 25th percentiles. The point of Table 16 is to

show that, with various Gamma distributions, the standard error of the model-based

estimated 5th percentile is not necessarily larger than that of the 25th percentile.

As seen in Table 16, for most of the episodically consumed dietary components, the

standard deviation of the 5th percentile was smaller than the standard deviation of the

25th percentile, as observed with the BRR-estimated standard errors. “5 vs 25” is the

ratio of the standard error of the 5th model-based percentile to the 25th model-based

percentile, with a sample of size n = 100.

Table 16. Comparison of standard errors when the data are Gamma distributed with

method of moments parameter estimates.
Dietary
Component 5 vs 25
Total Fruit 0.80
Whole Fruit 0.71
Total Vegetables 1.21
DOL 0.72
Total Grains 1.09
Whole Grains 0.41
Milk 0.93
Meat and Beans 1.17
Oil 1.13
Saturated Fat 1.24
Sodium 1.25
SoFAAS 1.21

One might also notice in Table 5 that the expected pattern of higher standard

errors for higher percentiles does not always obtain. The reason for this has to do
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with the nature of the HEI-2005 scores, which have maximum values. Looking at

Total Fruit, for example, we see that the 75th percentile is already at the maximum

HEI-2005 component score, namely 5.0, and so there is no real variability in the

estimate of the 95th percentile, which necessarily also equals 5.0.

5. Computing and Data

Our program was written in Matlab. It is available in the Annals of Applied Statistics

online archive, and also on the last author’s web site. In addition, we have created

data that mimic the NHANES data, and put it in the online archive. Although a

much smaller amount of computing effort yields similar results, using 70, 000 MCMC

steps with a burn-in of 20, 000 takes approximately 10 hours on a Linux server.

We also estimated the Monte Carlo standard error which is defined by Flegal et

al. (2008) as σ̂g/
√

n, where n is the total of iterations, and n = ab, where a is the

number of blocks and b is the block size, and where

Ȳj = b−1

jb∑

i=(j−1)b+1

g(Xi) for j = 1, . . . , a.

The batch means estimate of σ2
g is

σ̂2
g =

b

a − 1

a∑

j=1

(Ȳj − ḡn)2.

The ratio of the Monte Carlo standard error to the estimated standard deviation of

the estimated parameters averages 3.4% for Σu and 1.7% for β.

Because of the public health importance of the problem, the National Cancer

Institute has contracted for the creation of a SAS program that performs our analysis.

It will allow any number of episodically and daily consumed dietary components. The

first draft of this program, written independently in a different programming language,
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gives almost identical results to what we have obtained, at least suggesting that our

results are not the product of a programming error.
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CHAPTER IV

REGRESSION-BASED PREDICTIVE MODELS IN HEALTHCARE

A. Introduction

The pressure of cost containment makes efficient utilization of existing resources a

top priority for medical institutions. Surgeons, nurses and operating rooms are in-

dispensable for a surgery to be performed, and are important resources for a medical

service provider. The schedule of these resources should be based upon surgical case

durations (Weiss, 1990; Olivares et al., 2008), which, however, can be highly variable.

Such variability poses a serious challenge to surgical scheduling and resource utiliza-

tion (Litvak and Long, 2000; McManus et al., 2003). Accurately predicting surgical

case duration is a pressing need in hopital management.

Surgery, by nature, involves a series of physical activities. Each surgery is char-

acterized by one or multiple current procedural terminology (CPT) codes. A CPT

code is a five-digit number that represents a set of medical, surgical or diagnostic

services. The CPT code or the combination of CPT codes that is prescribed for a

surgery dictates the core actions taken during the surgery. CPT codes are maintained

by the American Medical Association for uniformity. Naturally, CPT codes are a key

factor that determines the duration of a surgery. Having surveyed the articles in the

area of general thoracic surgery, Dexter et al. (2008) find that the precise procedure

types, which are represented by CPT codes, were the most important factor when

predicting surgical case durations. Ignoring the critical information conveyed in CPT

codes will often lead to unsatisfactory predictions of surgical case durations. For

instance, Combes et al. (2008) use data mining tools to predict the duration of surg-

eries. Their results, while shedding lights on the benefit of applying data warehousing
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models, are reportedly not satisfactory. The authors believe that their grouping of

surgeries based on diagnoses rather than procedure types is the main reason for inac-

curacy. Motivated by the need to incorporate surgery type information, we present

in this project predictive methods for surgical case durations based directly on the

CPT codes included in each surgery.

Modeling surgical case durations has been a topic of interest for operations man-

agement and medical communities. Given the role CPT codes play in a surgery, the

majority of the existing literature involve CPT codes directly or indirectly. There are

two major lines of approaches among existent work utilizing CPT related information.

One relies on linear regressions for estimating surgical case durations or identifying

the crucial factors that affect variability in surgeries. In a multi-phase study, Wright

et al. (1996) find that surgeons provide better time estimates than the scheduling

software adopted in their institution. Due to this finding, Wright et al. (1996) develop

regression models for predicting surgical case durations by including, as the explana-

tory variables (or independent variables), the surgeons’ own estimates, the estimates

from the scheduling software, and several other characteristics of a surgery. CPT

codes are not directly included as part of the explanatory variables in their regression

models. But surgeons are aware of the CPT codes prescribed for a surgery when

making their estimates. As such, CPT codes are implicitly utilized. The regression

models are shown to outperform both surgeons and the scheduling software. This

study supports the inclusion of CPT codes as the explanatory variables for predicting

surgical case durations. Strum et al. (2000a) investigate factors associated with vari-

ability in surgery durations. They select surgeries with a single CPT code that were

repeatedly performed by one or multiple surgeons. A five-factor main-effects linear

model is established for each CPT code under consideration. This study identified

surgeon as the second most important source of variability after the CPT codes.
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The other line of work studies the fitness of known distributions, notably the nor-

mal distribution and the lognormal distribution, for the purpose of predicting surgery

case durations. Strum et al. (2000b) examine a large set of real surgery data and

test how well the lognormal and normal distributions fit the data set. In their study,

only surgeries with a single CPT code are considered, and the surgeries are catego-

rized based on its CPT-anesthesia combination. Goodness-of-fit tests are conducted

for each of those CPT-anesthesia combinations. Strum et al. (2000b) conclude that

lognormal distributions fit the surgery data better than normal distributions. They

also note that the Shapiro-Wilk goodness-of-fit test can sometimes reject lognormal

distributions that seemingly fit the surgery data, and thereby suggest using normal

probability plots together with goodness-of-fit tests. The lognormal distributions

investigated by Strum et al. (2000b) have two parameters, namely the mean and

variance associated with the normal distribution after a logarithm transformation.

Their work is extended in May et al. (2000) and Spangler et al. (2004), where a third

parameter (called location parameter) is added to a lognormal distribution. Both pa-

pers compare various strategies that estimate the location parameter. Using the same

data set as the one in Strum et al. (2000b), May et al. (2000) show that the skewness

of data is an effective indicator that identifies the best estimation strategy. They also

observe that when the skewness of data is small, the two-parameter lognormal models

outperform the three-parameter lognormal models (i.e., the one with a location pa-

rameter). Spangler et al. (2004) suggest using a properly chosen order statistics for

estimating the location parameter in a lognormal distribution. Both simulated and

real surgical data (again, with single CPT codes) are used to test different estimation

strategies in Spangler et al. (2004).

Surgeries consisting of exactly two CPT codes are the focus of Strum et al.

(2003). Treating permutations of the same CPT codes as different combinations of
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CPT codes, Strum et al. (2003) perform Shapiro-Wilk goodness-of-fit tests to examine

the fitness of the lognormal and normal distributions for each combination of CPT

codes. They conclude that lognormal distributions provide a better fit. Building on

this result, Strum et al. (2003) apply logarithm transformations to normalize surgical

case durations prior to conducting hypothesis testings with linear models. Their

hypothesis tests show that permutations of CPT codes do not affect the accuracy of

predictions of surgery case durations. Their results confirm that CPT code is the

most important factor when predicting surgical case durations. Anesthesia types,

emergency status, patient ages and surgery departments are also found to be relevant

factors.

Although the importance of CPT codes in predicting surgical case durations has

been noted for at least a decade, Strum et al. (2003) present the only work in the

existing literature that uses CPT codes as explanatory variables for surgeries contain-

ing more than one CPT code. The limitation of their approach can be understood as

follows. Their method provides a prediction only for surgeries consisting of exactly

two CPT codes. When applying their method, a sufficient number of surgeries with

the same combination of CPT codes must exist in the data samples. This require-

ment limits the application of their approach even for surgeries consisting of exactly

two CPT codes. Moreover, it is difficult to extend Strum et al. (2003)’s distribution-

fitting approach to surgeries with three or more CPT codes, due to lack of historical

data. — Although there will be plenty of surgical cases with three or more CPT

codes, there are not that many cases with exactly the same combination of three or

more CPT codes.

In this project, we propose two regression models to predict surgical case du-

rations. Different from previous regression-based approaches, our models explicitly

include CPT codes as the explanatory variables. The proposed models can be applied
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in general situations where a surgery can have any number of CPT codes and any

combination of CPT codes. To the best of our knowledge, this project is the first that

develops a systematic approach to predict surgery case durations based on multiple

CPT codes.

Utilizing CPT code information is not a trivial matter because (i) many CPT

codes only appear in conjunction with others and thus do not have any predictive

power on their own; (ii) combination of CPT codes varys from surgery to surgery.

Incorporating CPT information in our regression models hinges upon constructing

a suitable design matrix of existing CPT codes, which frees us from relying on the

occurrence of the same combination of CPT codes in historical data. The main

challenge of constructing such a suitable design matrix is that naively constructed

design matrix is usually ill-conditioned (i.e. singular). We devise a construction

procedure to obtain a nonsingular, well-conditioned design matrix for our regression

models. Our procedure carefully sifts out those CPT codes without any predictive

power while retaining useful information as much as possible.

We compare our two regression-based models with three benchmark methods,

one uses a lognormal distribution for prediction and the other two involve making

predictions based on sample means. We measure the models’ performances in terms

of both mean squared errors (MSE) and mean relative absolute errors (MRAE). These

performance measures show that our proposed models make more accurate predictions

of surgical case durations than the benchmark methods although the magnitude of

improvement varies for different service departments.

The rest of the project unfolds as follows. In Section B of this chapter, we

describe the surgical data set with which we establish our prediction models and

validate our approaches. Details of our predictive models are presented in Section C

of this chapter. We compare our predictions to that of three benchmark approaches
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in Section D of this chapter. Section E of this chapter concludes the project.

B. Data Set

Our surgical data set is from a large teaching hospital in central Texas. The data

set consists of 48,714 surgical cases from 10/1/2004 to 3/31/2008. It involves 25

operating rooms (OR), 115 surgeons and 19 service departments. Variables collected

include surgery date, operating room number, surgeon’s name initial, the date and

time at which a patient was admitted into an OR (pt in), surgery preparation be-

gan (prep pos), surgery began (incision), surgery ended (closure), dressing ended

(dress end) and the patient left OR (pt out), as well as the CPT code(s), which ac-

curately describe the surgical procedures performed. Here is an example of a surgery.

The surgery was performed on a weekday in March 2008. According to the records,

the patient entered the operating room at 11:34am. Preparation for surgery started

at 11:58am. The surgeon made the first incision at 12:03pm and closed the patient up

at 13:10pm. By 13:20pm the patient was completed dressed. He/she was transported

out of the operating room at 13:28pm. Three CPT codes were performed during the

period from 12:03pm (incision) to 13:10pm (closure). They are 25607, 64415, and

76942. In our data set, a surgical case could include as many as eight CPT codes.

Among the various segments of time included in a surgery, we are most interested

in the surgical time (the duration from incision to closure). This is the time during

which surgical actions take place. The CPT codes prescribed for a surgery are carried

out during this time, and hence have a direct impact on the length of this time. The

surgical case durations we study in this project refer to such surgical times.

Remark. We recognize that other durations, for example, the total time (the

duration from pt in to pt out), can also be of interest to practitioners and researchers.
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In addition to surgical times, Strum et al. (2003) also examine total times in their

work. Although our focus is on surgical times, our proposed methodology can be

easily adapted to the modeling of total times. The adaptation, however, adds little

insight. In order to avoid repetitions, we present our methods in the context of

surgical times.

Before we establish our predictive models using the historical data, a data clean-

ing action is performed to eliminate data records that are deemed “invalid.” The

following considerations are used to identify invalid records: (i) A record should have

a starting time entry and an ending time entry to calculate a time duration. When a

data record lacks any one of the two entries, it is incomplete and thus not used. (ii)

The starting time should be earlier than the ending time. (iii) The duration should

not be unreasonably long; for instance, 36 hours would be considered anomalous for

this hospital given the nature of their operations. If these conditions are not met, a

record is invalid and removed from the data set. Tables 17 and 18 provide summary

information regarding our surgical data after data cleaning actions. From Table 17,

one observes that data cleaning only eliminates a tiny portion of the data records

(about 0.7% of the original data with a total of 48, 714 cases). One also observes that

a large portion of the surgical cases include no more than two CPT codes. However,

Strum et al. (2003)’s approach can not be readily applied here because those cases

with two CPT codes do not necessarily share two common CPT codes. In our data

set, there were 11, 771 combinations of CPT codes among 48, 373 valid cases. That

is, there were, on average, about 4.1 cases with the same combination of CPT codes.

Furthermore, even though the cases with more than two CPT codes are in minor-

ity among the total of forty-eight thousand plus cases, the absolute number of those

cases (totaling 8, 754) is remarkable. The importance of making accurate duration

predictions of these cases with at least three CPT codes should not be understated.
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Table 17. Number of valid cases with exactly k (k = 1, · · · , 8) CPT codes after data

cleaning.
Number of CPT codes

Number of valid cases
included in a surgery (k)

k = 1 29,039
k = 2 10,580
k = 3 4,065
k = 4 2,172
k = 5 1,182
k = 6 574
k = 7 366
k = 8 395
SUM 48,373

Table 18 provides departmental statistics of the surgical cases. The surgical cases

in our data set were performed by 19 service departments, each in charge of a specialty

area, for example, orthopedics, oncology, etc. Each department is represented by an

acronym (consisting of two or three letters) commonly used and readily recognizable

in medical profession; hence we skip the explanation of these acronyms. Although

CPT codes associated with surgeries performed by different service departments often

differ, we find that some CPT codes are shared across various departments. This is

not surprising since two surgical cases serving different purposes could have a common

set of surgical actions, which is represented by a common CPT code.

For each department, Table 18 lists the number of valid cases, the number of CPT

codes, and the number of CPT combinations performed by that department. Note

that a CPT combination is a set of CPT codes that appear together in a surgical case.

Permutations of the same set of CPT codes are treated as the same CPT combination

because permutations do not have any significant impact on surgical case durations

(see Strum et al., 2003). The goal of this research is to predict surgical case durations

based on the CPT codes included in a surgery. Table 18 roughly outlines the size of

the problem we are dealing with. It is also clear from Table 18 that the surgical case



68

Table 18. Number of valid cases, CPT codes and CPT combinations performed by

each service department after data cleaning.

Dept.
# of valid # of CPT # of CPT

cases performed codes performed combinations
by a dept. by a dept. performed by a dept.

NS 1,060 207 312
ORT 8,606 928 2,308
TPT 1,500 100 199
URO 5,223 489 1,108
CT 1,825 194 606

THO 721 241 502
UMC 1,390 280 338
GEN 8,386 656 1,507
ONC 4,755 579 1,493
GYN 4,726 366 906
ORA 555 181 206
PLA 3,118 736 1,486
EYE 89 54 54
VAS 1,549 309 818
PDS 2,489 397 636
ENT 1,960 363 544
OTH 65 23 20
POD 354 85 113
RAD 2 3 2

load distributions across various departments are uneven; most departments have

performed over one thousand surgeries over the three-and-half-year period, whereas

a few departments have performed fewer than one hundred cases.

C. Solution Approaches

Surgical case durations are predicted for each service department separately. The

reason is threefold. Firstly, each service department handles their own surgery sched-

ules. Secondly, the CPT codes that describe the surgical procedures, despite certain

degree of sharing, are by and large different across the service departments. Thirdly,

service departments are found to be a relevant factor that affects the prediction of

surgical case durations (see Strum et al., 2003).

The need of department-specific predictions further renders the existing lognor-

mal distribution based approach less effective. If we are to estimate the lognormal
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distribution for a given CPT combination, we hardly have enough data points in the

sample. To see this, one can simply compare the number of valid cases and the num-

ber of CPT combinations performed by each department in Table 18. The average

number of cases per CPT combination ranges from 1 to 7.54 among the 19 service

departments; apparently 7 cases per CPT combination are not enough data points

for distribution estimation.

Figure 7 shows the histograms of data for three departments (CT, UMC and

ORA), where the data deviate significantly from lognormal distributions. The unit for

the horizontal axis is in hours. In particular, the case durations in service department

CT has a bi-modal distribution, which cannot be well approximated by either the

lognormal distribution or the normal distribution.

What we propose here is a regression-based approach, which made no assumption

on normality or normality after logarithm transformation. Our models explicitly use

the CPT codes describing surgical procedures as explanatory variables. This allows

the specific knowledge regarding a surgical procedure to be incorporated. We would

like to note that in the current research we consider only the CPT codes, while

ignoring other possible covariates, since the CPT codes are recognized as the most

important factor in representing surgical case durations in the literature. Our later

numerical results indeed demonstrate enough benefit of our research undertaking. We

do acknowledge that considering both the CPT codes and other important covariates

(such as surgeons or anesthesia types) could potentially further improve the prediction

of surgical case durations. But doing so will require a different model, more data

collection, and is thus out of the scope of this project.

In the sequel, we will first present two regression models that predict the surgical

time (the duration from incision to closure). We then describe a singularity problem

encountered in applying these regression models. In the rest of Section C of this
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Figure 7. Histograms and best-fit lognormal densities of the surgical time for three

service departments.

chapter we propose systematic procedures that address the problem.

1. Regression Models

Since CPT codes describe specific surgical actions undertaken in a surgery, the surgical

time can naturally be considered as the summation of all the component surgical

actions. Suppose there are n surgical cases performed by a given service department

involving a total of m CPT codes. Denote by yi the surgical time of case i. We

introduce here an indicator variable, xij, of the inclusion of the jth CPT code in the

ith surgical procedure. In other words, when CPT code j shows up in surgical case i,
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xij = 1; otherwise xij = 0. Denote by βj the expected time of performing the surgical

action specified by CPT code j. We have the following model to describe the surgical

time:

yi =
m∑

j=1

xijβj + ei, i = 1, . . . , n

where yi is the summation of the expected times associated with all the CPT codes

involved in case i, plus ei, which is the residual error of case i that cannot be modeled

by the expected times. Residual error ei is assumed to be a zero-mean random

variable.

The above model can be expressed in a matrix form as:

Y = Xβ + e (4.1)

where Y = (y1, . . . , yn)′ is the n × 1 vector of surgical times, β = (β1, . . . , βm)′ is the

m × 1 vector of the expected times associated with m CPT codes, X = (xij) is the

n × m design matrix, representing the inclusion of CPT codes in surgical cases.

Equation (4.1) represents a typical linear regression model. Once surgeries are

performed, Y and X are known, and β is the one to be estimated from historical

data. Denote by β̂ the estimate of β, and β̂ will be used in future predictions. Since

we do not restrict the sign of our estimates, it is possible that we obtain negative

estimates of the expected times for certain CPT codes. The predicted surgical time

could still be positive because it is determined by the combination of the comprising

CPT codes. The negativity can be completely avoided by adding a non-negativity

constraint on the βj’s. We did not impose this constraint in our implementation of

the regression models because negative values rarely appear in our analysis. More

details and explanations are reported at the end of Section C of this chapter.

In order to predict the surgical time of a new case z, one needs to look at the CPT
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codes to be performed in the surgery and create a design vector xz by assigning “1” or

“0” to the corresponding xzj for j = 1 . . . m. Then, calculating the inner product of

this design vector xz = (xz1, ..., xzj , ..., xzm) with the estimates β̂ = (β̂1, . . . , β̂m)′ gives

the predicted surgical time of the new case. Precisely, let Y new
z denote the surgical

time of the new case, then the linear regression model predicts that Ŷ new
z = xzβ̂.

The above model is flexible and easy to use in predicting surgical times composed

of any number of CPT codes. Suppose one extra set of surgical actions is added to

a series of existing actions, then the surgical time will be simply increased by the

length of the corresponding actions described by the additional CPT code(s). The

model sets no restrictions on how many CPT codes a surgical procedure can include

or what CPT combinations should appear.

Next we present an alternative model, motivated by the arguments in existing

literature that surgery data are better fit by a lognormal distribution (Strum et

al., 2000a; Strum et al., 2003; May et al., 2000 and Spangler et al., 2004, among

others). These arguments help legitimize the use of logarithm transformation to

normalize surgical procedure times. In light of this, we take logarithm transformations

of surgical times before fitting them to a linear regression model. Consequently, our

second model reads as

log(Y ) = Xβ + e (4.2)

where log(Y ) ≡ (log(y1), . . . , log(yn))′, an n×1 vector, and e is a vector of zero-mean

residuals. We refer to equation (4.2) as a log-regression model. Again, Y and X are

known from historical data, and β is to be estimated. The estimate β̂ will be used

for future predictions, in a similar fashion as in the linear regression model explained

above. For a new case z with corresponding design vector xz, the prediction of the

surgical time Y new
z is given by Ŷ new

z = exp(xzβ̂).



73

Compared to the linear regression model (4.1), the log-regression model (4.2)

is less intuitive in terms of its practical interpretation. Note that a surgical case

comprises a series of procedures (each of which is represented by a CPT code). The

linear regression model implies that the surgical time is the summation of the times

associated with the component procedures, while the log-regression model suggests

that the surgical time is the product of the exponentials of the times associated with

the component procedures. The advantage of the log-regression model is that its

prediction is always positive. Our numerical results (presented in Section D of this

chapter) show that both models perform well.

A point worth noting is that we do not make distribution assumptions in (4.1)

and (4.2). By using the method of least squares to fit model (4.1), we find the best

linear predictor of the surgical time. Although model (4.2) is motivated by log-normal

distribution arguments, least squares fitting of the model can be considered as finding

the best linear prediction of the log surgical time. The logarithmic transformation is

simply used as a device for ensuring a positive prediction.

Remark. If the duration of interest is total time, namely the duration a patient

spends in an OR, the models in (4.1) and (4.2) only need to be slightly modified.

Noticing that the total time is the addition of the surgical time and the pre- and

post-surgery processing times, we can add an intercept term β0 to both models in

(4.1) and (4.2). As such, the models for the total time read:

Y = β0 · 1n + Xβ + e (4.3)

and

log(Y ) = β0 · 1n + Xβ + e (4.4)

where Y now represents the total time, log(Y ) follows the same notation as in model
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(4.2), and 1n is an n × 1 vector whose elements are all 1’s. In model (4.3), β0

represents the expected time consumed collectively by all the pre- and post-surgery

actions. Similar meaning applies to β0 in model (4.4) which is after a logarithm

transformation. The inclusion of extra durations bring in additional variability, which

is absorbed into the residual error e in the above models. After models (4.3) and (4.4)

are fit using the training data, predictions of the total time can be easily computed.

Let xz denote the design vector for a new case, the corresponding total time Y new
z

can be predicted using Ŷ new
z = β̂0 + xzβ̂ for model (4.3) and Ŷ new

z = exp(β̂0 + xzβ̂)

for model (4.4). In the interest of conciseness, we report our proposed procedures in

the context of surgical times.

2. Singularity of Design Matrix X

After establishing the regression models (4.1) and (4.2), if the design matrix X is of

full rank, we can estimate β and β0 in the linear regression models through a standard

least-squares estimation (Weisberg, 2005). Specifically, for model (4.1)

β̂ = (X ′X)−1X ′Y ; (4.5)

and for model (4.2), one needs to simply replace yi with log(yi) and Y with log(Y ).

The reason that a fully ranked X is required is because of the inversion on X ′X.

Whether the design matrix X is of full rank, however, depends on how it is

constructed. If we list all the CPT codes performed by a service department and

naively use this list to construct X, we will obtain an ill-conditioned X. As a result,

X ′X is not invertible and βi’s cannot be estimated. Consequently, the expected times

associated with the corresponding CPT codes cannot be estimated.

Consider for example three CPT codes, A, B, and C. (Note that we use capital

letters to denote CPT codes for the sake of simplicity although an actual CPT code
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is a five-digit number.) Assume that the expected times for the three CPT codes are

β1, β2, and β3, respectively. Suppose that there are only three surgical cases: the first

case uses all three CPT codes, the second case uses CPT codes B and C, and the

third case uses only CPT code A. Then, the design matrix X will be




1 1 1

0 1 1

1 0 0




which is singular.

The singularity in the above illustration is caused by the co-appearence of CPT

codes B and C. From the surgical cases performed and times measured, we will not

be able to tell the times associated with individual CPT codes B or C but only the

combined times of the two CPT codes. In general, to check whether a certain CPT

code B always appears in conjunction with another code C, we can perform a simple

test as follows: count the number of appearances of CPT codes B and C in the

surgical cases within a given service department; suppose both appear, for instance,

h times. Then, count the number of CPT codes B and C appearing together (we

call this CPT combination BC). If BC also appears h times, then it implies that

CPT codes B and C always appear together in conjunction with each other. This

appearance pattern will result in a singular design matrix. Furthermore, a CPT code

can appear in conjunction with different CPT codes in different cases. Therefore,

one needs to exercise extra care when constructing a design matrix. Recall that

we have to deal with a large number of CPT codes for each department. Next,

we propose a systematic procedure that thoroughly and efficiently sifts out CPT

codes/combinations that cause singularity, without losing information.
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3. Grouping CPT Combinations

In order to avoid singularity, CPT codes that always appear together should be treated

as a whole as if they formed a new CPT code. For instance, in the singularity example

above, instead of attempting to estimate individually the times associated with A, B,

and C, one should only try to estimate the times associated with a single CPT code

A and a CPT combination BC.

In light of this, we need to group CPT codes and combinations in our data set

appropriately. The purpose of grouping is to establish the set of single CPT codes

whose execution times can be estimated, the set of two-code CPT combinations whose

combined time can be estimated, the set of three-code CPT combinations whose

combined time can be estimated, and so on. A full-rank design matrix can then be

constructed based on the grouping results. We will explain the construction of a

design matrix in the next subsection.

Before we present our detailed grouping procedure, we introduce the concept

of code length, which is defined as the number of component CPT codes in a CPT

combination. Denote by k the code length of a CPT combination. In our data set,

the largest k is eight. In the sequel we only illustrate implementation details for k up

to eight, although the general procedure applies to any value of k. Given the fact that

our data set covers nearly 50 thousand cases over three and half years, the scenario

in which k could be greater than eight should rarely happen in reality. The grouping

procedure is as follows.

• First, construct k = 8 empty sets S1, . . . , Sk, . . . , S8, where Sk will hold the

grouping results for CPT combinations of length k.

• Repeat the following for k = 1, 2, ...8
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– Identify all the surgical cases with exactly k CPT codes. Put them in Sk.

If there are no such cases, we have finished selecting the CPT combinations

of length k, so go to the next value of k.

– For each CPT combination of length k in Sk, determine whether it is “dis-

tinctive.” We now describe how the distinctiveness of a CPT combination

is determined. A CPT combination of length k can be decomposed into a

number of CPT codes or code combinations of length 1 to length k − 1.

For instance, a CPT combination ABC of length 3 can be decomposed

into three single CPT codes of length 1, A, B, C, or a CPT combination

of length 2 plus a single code; there are three possibilities, i.e., AB and C,

or AC and B, or BC and A. For any given scheme of decomposition, if all

the decomposed component codes or code combinations can be found in

sets S1 to Sk−1, then the CPT combination of length k is not distinctive;

otherwise it is.

– Remove all the non-distinctive CPT combinations of length k from Sk.

In the above procedure, the step of determining the distinctiveness of a CPT

combination is relatively involved. For k = 1, it is straightforward since there is no

set S0, all single CPT codes automatically satisfy the distinctiveness condition. For

k = 2, . . . 8, we have to go through all possible decomposition schemes of a CPT

combination of length k. The larger the k, the more complicated a decomposition

process becomes.

Table 19 helps sort out the decomposition schemes for k = 2, ..., 8. To understand

the notation in the table, take k = 4 as an example. The entry of 4 = 3 + 1 means

that a CPT combination of length 4 can be decomposed into a CPT combination of

length 3 and one of length 1 (a single code); the next lines of 4 = 2+2, 4 = 2+1+1,
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Table 19. Decomposition schemes of a CPT combination of length k.
k=2 k=3 k=4 k = 5 k = 6 k = 7 k = 8

2 = 1+1 3 = 2+1 4=3+1 5=4+1 6=5+1 7=6+1 8=7+1

3= 1+1+1 4=2+2 5=3+2 6=4+2 7=5+2 8=6+2

4=2+1+1 5=3+1+1 6=4+1+1 7=5+1+1 8=6+1+1

4=1+1+1+1 5=2+2+1 6=3+3 7=4+3 8=5+3

5=2+1+1+1 6=3+2+1 7=4+2+1 8=5+2+1

5=1+1+1+1+1 6=3+1+1+1 7=4+1+1+1 8=5+1+1+1

6=2+2+2 7=3+3+1 8=4+4

6=2+2+1+1 7=3+2+2 8=4+3+1

6=2+1+1+1+1 7=3+2+1+1 8=4+2+2

6=1+1+1+1+1+1 7=3+1+1+1+1 8=4+2+1+1

7= 2+2+2+1 8=4+1+1+1+1

7= 2+2+1+1+1 8=3+3+2

7= 2+1+1+1+1+1 8=3+3+1+1

7= 1+1+1+1+1+1+1 8=3+2+2+1

8=3+2+1+1+1

8=3+1+1+1+1+1

8=2+2+2+2

8=2+2+2+1+1

8=2+2+1+1+1+1

8=2+1+1+1+1+1+1

8=1+1+1+1+1+1+1+1

and 4 = 1 + 1 + 1 + 1 mean that the same CPT combination can also be decomposed

into two CPT combinations of length 2, or a CPT combination of length 2 plus two

single codes, or four single codes, respectively. Collectively, those are all the possible

decomposition schemes for a CPT combination of length 4.

Recall that Strum et al. (2003) found that permutations of component CPT

codes did not significantly affect surgical case durations. For this reason, we do not

consider permutations of a CPT combination any different than the original CPT

combination. Our definition of the distinctiveness of a CPT combination is based

on the decomposition of the CPT combination, not permutations. Another note is

that the above grouping procedure can be applied to any surgical data set but in

this research we apply them to the data of individual service departments due to the

department-specific approach we undertake in predicting the surgical case durations.

As an illustration, we present Table 20, which summarizes the the number of

valid cases, the number of CPT combinations, and the number of distinctive CPT

combinations for the service department of ENT. There are a total of 1,960 valid

cases and 544 CPT combinations (including single CPT codes). Among the 544 CPT
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Table 20. Summary of CPT combinations in Department ENT.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 Total
# of cases with k codes in ENT 1297 482 111 37 19 7 3 4 1960
# of CPT combinations of length k 182 205 92 32 19 7 3 4 544
# of distinctive CPT combinations of length k 182 119 45 14 12 7 3 4 386

combinations, 386 of them are distinctive according to the aforementioned definition,

and others can be decomposed into components found in the sets of shorter code

length. For instance, there are 205 CPT combinations of length 2, but 86 of them can

be decomposed into two single CPT codes that are both present in S1. That leaves

119 (= 205 - 86) distinctive CPT combinations of length 2 in S2. Therefore, the size

of S2 becomes 119 after our grouping procedure is applied.

4. Constructing a Design Matrix

Constructing a design matrix is to assign “1” or “0” to each element xij in matrix X.

Recall that when previously introduced, the first index i is the case index, ranging

from 1 to n, and the second index j is the CPT code index, ranging from 1 to m.

After applying the grouping procedure described in Section C of this chapter, we will

estimate the expected times βj not only for single CPT codes but also for distinctive

CPT combinations of length k ≥ 2. So the value of m depends on the number of

distinctive CPT combinations (including single CPT codes) in a given data set. For

example, let’s take the data in Table 20 for illustration. If surgeries with code length

up to 8 are to be included in the regression model, then m = 386, But if only surgeries

with the single CPT codes and those with code length of 2 are to be included, then

m = 301 (= 182 + 119). Suppose that we include all the surgeries with code length

up to 8. We should, then, aggregate all the distinctive CPT combinations (sets S1

to S8) into a set S ≡
⋃8

k=1 Sk. If there are a total of m elements in S, a row vector



80

of matrix X, x = (xi1, . . . , xij, . . . , xim)′, has a one-to-one correspondence to the m

elements in S.

For convenience, we order the surgical cases based on the number of CPT codes

they have, namely that first comes the surgical cases with a single CPT code, followed

by the surgical cases with exactly two CPT codes, and then followed by the cases

with exactly three CPT codes, and so on. So eventually, surgical cases 1 to i1 has a

single CPT code, cases i1 + 1 to i2 has two CPT codes, . . ., and cases i7 + 1 to i8 has

eight CPT codes, where 1 ≤ i1 ≤ ... ≤ i8 = n.

Before the construction of design matrix X, we set all xij’s to zero. The basic idea

of constructing a design matrix is that for each i = 1, . . . , i8, take the corresponding

surgical case and match the CPT codes it has with the distinctive CPT combinations

in S. If a match is found, then the corresponding xij will be set to “1”; otherwise

xij will be left as “0”. We here assume that the set S is well maintained and timely

updated using our grouping procedure. So the finding of a match is guaranteed.

Despite the simplicity of this idea, certain complexities have to be dealt with.

For surgical cases with a single CPT code (cases 1 to i1), the procedure is just like

what the basic idea describes, except that one need not search the set of S but only

S1. For surgical cases with two CPT codes (cases i1 + 1 to i2), the two codes could

appear as a CPT combination of length 2 or they may have appeared as two single

CPT codes. What one needs to do is to search first the set of S2 in order to check

if there is a match for a CPT combination of length 2, and if not, then search S1 for

the matches of the two single CPT codes. Depending on the outcome of the search,

the appropriate xij can be set to 1. For surgical cases with k ≥ 3 CPT codes (cases

from i2 + 1 onward), one needs to search for matches in different sets from Sk to S1,

similarly as one does for surgical cases with two CPT codes. Because there are many

different ways of decomposing a CPT combination when k gets large, Table 19 is a
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good reference that can guide the search process.

In addition to searching for matches coming from all possible schemes of decom-

position, one more complexity arises for surgical cases having three or more CPT

codes. To understand this, take a surgery case with three CPT codes as an example.

Suppose that the CPT codes prescribed for the surgery are A, B and C. Also suppose

when searching the set of S3, we do not find any matches; and when searching the

set of S1, not all three of the single codes found their matches, either. Then, we need

to search S2 for possible matches of a CPT combination of length 2. Doing so could

give us multiple matches: for example, we could have AB in S2 while C in S1, this

is one match; or AC in S2 while B in S1, this is another match. If both matches

are found, the surgical case in question can be used to estimate both the expected

times of AB, C, and the expected times of AC, B, unless one has profound prior

knowledge suggesting otherwise. As a matter of fact, in order to extract the most

information from this surgical case, its duration should be taken into account when

we estimate both the expected times of AB, C, and the expected times of AC, B. To

do so properly, we should include this surgical case twice in our design matrix. One

inclusion represents the decomposition AB+C, and the other AC+B. In order to

account for duplicate use of the same data, caused by multiple inclusions of a single

surgical case, we use the weighted least-squares approach by applying weights that

are inversely proportional to the number of inclusions.

To illustrate, consider the following example. Suppose a data set contains only

eight surgical cases. The CPT codes prescribed for each case are listed in Table 21.

Apparently there are six CPT codes (A, B, C, D, E and F ) ever performed.

It is straightforward to verify that a naively constructed design matrix that assigns

“0” and “1” to each case based on their inclusion of each of the six CPT codes is

singular. Therefore, the design matrix should be constructed differently. Applying
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Table 21. CPT codes relating to the cases in the design matrix example.
Case # CPT codes performed in a case

1 A
2 C
3 AB
4 BC
5 ABC
6 ABD
7 ABCD
8 ABCDEF

the grouping procedure from Section C of this chapter, we obtain the following sets

S1 = {A,C}, S2 = {AB,BC}, S3 = {ABD}, and S6 = {ABCDEF}. Aggregating

S1, S2, S3 and S6 generates S = {A,C,AB,BC,ABD,ABCDEF}, implying that

m = 6. That is, there are six columns in the design matrix. Next we construct each

row of the design matrix by including each of the surgical cases in the data set.

For Case 1, apparently, x11 = 1 and all other entries in the first row of the design

matrix X are zeros since the CPT code that Case 1 uses matches the first element

in S. Following the same reasoning, for Case 2, x22 = 1; for Case 3, x33 = 1; and for

Case 4, x44 = 1. For Case 5, ABC can have two different decompositions, C +AB or

A + BC. Both decompositions are possible in S. Therefore we include Case 5 twice

(occupying two rows) in the design matrix: for the fifth row, x51 = 1 and x54 = 1

(corresponding to A+BC); and for the sixth row, x62 = 1 and x63 = 1 (corresponding

to C + AB). Because Case 5 is included twice, Cases 6, 7 and 8 will then correspond

to rows 7, 8 and 9 (instead of rows 6, 7 and 8) of the design matrix X, respectively.

For Case 6, x75 = 1; for Case 7, since ABCD can be decomposed into C + ABD,

x82 = 1 and x85 = 1; for Case 8, x96 = 1. Ultimately, the design matrix X, which is of

full rank, looks like the matrix presented in Figure 8. The code or code combination

on the top indicate the columns corresponding to A,C,AB,BC,ABD,ABCDEF ,

respectively, and the texts on the right side of the matrix identify the corresponding
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010010

010000

000110
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X

A C AB BC ABD

Case 3

Case 4

Case 5 (first inclusion)

Case 5 (second inclusion)

Case 6

Case 7

Case 1

Case 2

Case 8

ABCDEF

Figure 8. Design matrix of the m = 6 example.

cases. Note that there are 8 surgical cases in the example while the resulting design

matrix has 9 rows.

Below we outline a general procedure for the construction of a design matrix

assuming that the set S has already been obtained. Let m be the total number of

elements in the set S, and n the total number of surgical cases in the data set.

(1) Set the number of columns in the design matrix to m. Order the elements

in the set S from 1 to m, and use them to label the columns of the design

matrix.

(2) Order all the surgical cases from 1 to n.

(3) Set i = 1 and r = 1.

(4) Decompose the ith surgical case using the elements in the set S. Let di be

the number of possible decompositions. Order the possible decompositions

from 1 to di. Set c = 1.

(5) For j = 1, ...,m, use xrj to denote the value of the entry in the rth row and

the jth column. Set xrj = 1 if the cth decomposition of the ith case uses the
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jth element of the set S. Otherwise, xrj = 0.

(6) If c = di then set r =
∑i

t=1 dt +1 and go to Step (7). Otherwise set c = c+1,

r = r + 1 and go to Step (5).

(7) If i = n then the design matrix is completed. Otherwise set i = i + 1 and go

to Step (4).

Next we illustrate the application of our design matrix using data from the service

department ENT. We set S = (S1, S2, S3, S4), our m = 360 (=182+119+45+14),

and n = 1, 927 (=1,297+482+111+37). The corresponding design matrix X is of

dimension 1,950 × 360 rather than 1,927 × 360 because of repeated inclusions of

certain cases for the reasons explained earlier. We then proceed to estimate the β’s

associated with the 360 distinctive CPT combinations (using equation (4.5)); they

are the expected times for performing the corresponding combination of CPT codes.

Figure 9 presents the histogram for the 360 values of β̂’s. Unit for the horizontal axis

is in hours. Most of these CPT combinations have an estimated time in the range

of (0, 10) hours. The vertical line is the mean of the times of the 360 distinctive

CPT combinations, which is about 1.532 hours. Almost half of the distinctive CPT

combinations used in department ENT takes fewer than one hour to complete. We

also observe from Figure 9 that a very small portion of distinctive CPT combinations

have a negative time estimate. In fact, 4 out of these 360 (1.11%) CPT combinations

have a negative time estimate. To explain why we may have negative estimates,

consider the following example of two surgical cases: Case 1 includes CPT codes

A and B, while Case 2 only uses CPT code A. When surgeons actually perform

these surgical cases, the surgical time of Case 1 could be shorter than that of Case

2. When this happens, the estimated time of CPT code B becomes negative. This

negativity rarely happens, as evident from the ENT departmental data (data from
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other departments generate the same conclusion). Moreover, the code B is likely to

appear together with another CPT code and thus still gives a positive prediction of

the surgical time. We are confident that the rare appearance of negativity does not

cause our prediction of surgical case durations to go off the marks.

Histogram of ββ̂ from linear regression
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Figure 9. Histogram of β̂’s from the linear regression model for department ENT.

D. Prediction and Comparison

1. Construction of Training and Test Data Sets

According to the statistical literature(Witten and Frank, 2005; Mitchell, 1997), the

typical protocol for validating empirical models is to split the original data set into

a training set and a test set. Suppose the n surgical cases in the original dataset

are divided as the nt cases in the training set and the ns cases in the test set, where

n = nt +ns. The training data set is used to obtain β̂ based on equation (4.5); this is

known as model fitting. After the model is fit, i.e., all β’s are estimated, one can use
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the model to make predictions of surgical case durations on the data records in the

test set, which are never used in the model fitting process. Then, the predictions are

compared with the real measurements of surgical case durations in the test set. The

differences between the predictions and the actual surgical case durations are good

indications of how well a model works.

Suppose we would like to predict the duration for a surgical case i in the test

set. A design vector xi for the case can be generated based on the set S, which is

obtained after our grouping procedure is applied. Use the random variable Y new
i to

denote the length of the duration of interest for the case i. The predicted value is

denoted as Ŷ new
i . The difference between the predictions and the actual surgical case

durations is measured by two metrics: the mean squared errors (MSE) and the mean

relative absolute errors (MRAE). They are defined as:

MSE =
1

ns

ns∑

i=1

{yi − ˆY new
i }2 and MRAE =

1

ns

ns∑

i=1

| ˆY new
i − yi|

yi

where yi is the recorded duration of the ith surgical case in the test set and Ŷ new
i

is the predicted duration for the same case. MRAE characterizes how well a model

makes prediction.

In this research, we assign two thirds of the historical cases to the training set

and one third to the test set, i.e., nt ≈ 2
3
n and ns ≈ 1

3
n, where “≈” is used because nt

and ns need to be rounded off to the closest integer number. To avoid any systematic

bias, the assignment of a case to one of the sets is randomly decided. Moreover,

we repeat the assignment process 1,000 times, meaning that we randomly split the

original data set 1,000 times, and consequently, we obtain 1,000 pairs of training/test

sets. The performance measures MSE/MRAE, are then calculated 1,000 times using

the 1,000 pairs of training/test sets. The MSE/MRAE values reported later in this
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section are the average of the 1,000 individual MSE/MRAE values.

2. Three Benchmark Methods

We compare our predictive models with three benchmark models below.

• Lognormal Model

This model assumes that the surgical time or the total time Y follows the

lognormal distribution. It means that Y ∼ lognormal (µ, σ), or equivalently,

log(Y ) ∼ normal (µ, σ), where µ and σ are the parameters to be estimated.

One can estimate them by using the data in the training set, such as:

µ̂ =
1

nt

nt∑

i=1

log(yi); σ̂2 =
1

nt

nt∑

i=1

(log(yi) − µ̂)2

Then, the surgical time for surgical case z in the test set is predicted using

Ŷ new
z = exp(µ̂ +

σ̂2

2
)

because that is the expectation of a lognormal model with parameters µ and σ

(Casella and Berger, 2001).

When using the lognormal benchmark model, we compute an estimated surgery

length for all the surgeries in a department based on all the historical data in

the training set for the same department. Ideally, we would like to find bench-

mark predictions for each surgery of a specific CPT combination. However,

one would run into the insufficient-sample-size problem frequently when imple-

menting this ideal approach for the lognormal Model. As aforementioned, the

average number of cases per CPT combination ranges from 1 to 7.54 among the

various departments.

• Departmental Sample-mean Model
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This model takes the sample mean of the case durations within a service de-

partment in the training set, and treat it as the prediction for the cases within

the same department in the test set, namely

Ŷ new
z =

1

nt

nt∑

i=1

yi.

• Hybrid Sample-mean Model

When departmental sample means are used, the individuality of each surgery,

which is manifested by various CPT codes, is lost. Meanwhile, such individuality

often results in lack of historical data. Taking into account both concerns,

our third benchmark model calculates sample means differently for different

surgeries based on the existence of historical data. For a surgery in the test set,

if its CPT combination can be found in the training set, the mean of all the

surgeries with the same CPT combination is the predicted duration; otherwise,

the departmental sample mean serves as the predicted value.

Inclusion of the lognormal model in our comparison is easily understood since

previous research has argued for its use. Sample means are intuitive benchmarks be-

cause they are common practices when surgery schedules are determined in hospitals.

One can certainly find drawbacks in these benchmark models or their implementa-

tions. But, the lack of a better benchmark model also validates the necessity of our

work. We believe our proposed prediction models in this project set a reasonable

benchmark for future research.

3. Comparison

Three departments, “EYE”, “OTH”, and “RAD”, have too few surgical cases, which

are 88, 65, and 2, respectively, and will be omitted in this section for prediction
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Table 22. Mean squared errors of out-of-sample prediction of surgical times for several

competing methods.
Dept Mean Squared Error

Reg LogReg Lognormal Dept-mean Hybrid-mean
NS 0.828(0.003) 0.851(0.004) 1.865(0.005) 1.848(0.006) 1.086(0.004)

ORT 0.417(0.001) 0.551(0.002) 1.026(0.001) 1.024(0.001) 0.576(0.001)
TPT 0.711(0.003) 0.891(0.003) 1.704(0.005) 1.700(0.005) 0.787(0.004)
URO 0.403(0.001) 0.487(0.001) 1.272(0.002) 1.272(0.002) 0.530(0.001)
CT 0.899(0.003) 0.898(0.003) 2.769(0.004) 2.682(0.005) 1.539(0.005)

THO 0.730(0.004) 0.708(0.004) 0.913(0.004) 0.912(0.004) 0.734(0.004)
UMC 0.095(0.000) 0.186(0.001) 0.377(0.001) 0.375(0.001) 0.107(0.000)
GEN 0.532(0.001) 0.569(0.001) 1.157(0.001) 1.156(0.001) 0.571(0.001)
ONC 0.559(0.001) 0.605(0.001) 1.875(0.002) 1.872(0.002) 1.009(0.002)
GYN 0.371(0.001) 0.424(0.001) 0.885(0.001) 0.884(0.001) 0.490(0.001)
ORA 0.497(0.002) 0.552(0.003) 2.714(0.007) 2.705(0.007) 0.550(0.005)
PLA 0.707(0.003) 2.281(0.060) 2.940(0.005) 2.926(0.005) 1.414(0.004)
VAS 0.540(0.002) 0.588(0.002) 1.349(0.004) 1.348(0.004) 0.799(0.003)
PDS 0.190(0.001) 0.252(0.002) 0.418(0.001) 0.416(0.001) 0.176(0.001)
ENT 0.282(0.002) 0.493(0.003) 1.126(0.002) 1.118(0.003) 0.406(0.002)
POD 0.109(0.001) 0.131(0.001) 0.148(0.001) 0.148(0.001) 0.095(0.001)

and comparison. We apply two proposed regression-based methods and three bench-

mark methods to the remaining 16 departments. When reporting our results, we use

“Reg”, “LogReg”, “Lognormal”, “Dept-mean”, and “Hybrid-mean” to represent the

linear regression model (4.1), the log-regression model (4.2), the lognormal model,

the departmental sample-mean model, and the hybrid sample-mean model, respec-

tively. For each department, all the five models are employed to make predictions

over the test data sets coming from the 1,000 random splitting of the surgical data

(with S =
⋃4

k=1 Sk). Both MSE and MRAE are calculated. Results of the comparison

are summarized in Tables 22 and 23. Numbers shown are means and corresponding

standard derivations, based on 1000 random splits of the data into training and test

sets. The unit is in hour.

The highlighted numbers in the two tables represent the smallest MSE or MRAE

of prediction, or the best performance, in each respective department. From Tables

22 and 23, we observe the following:

• When MSE/MRAE is used as performance measure, the highlighted numbers



90

Table 23. Mean relative absolute errors of out-of-sample prediction of surgical times

for several competing methods.
Dept Mean Relative Absolute Error

Reg LogReg Lognormal Dept-mean Hybrid-mean
NS 0.440(0.001) 0.402(0.001) 1.313(0.003) 1.238(0.003) 0.608(0.001)

ORT 0.377(0.000) 0.403(0.000) 0.865(0.001) 0.844(0.001) 0.489(0.001)
TPT 0.356(0.001) 0.461(0.001) 0.995(0.002) 0.959(0.002) 0.390(0.001)
URO 0.474(0.001) 0.568(0.001) 1.277(0.001) 1.266(0.001) 0.561(0.001)
CT 0.275(0.001) 0.253(0.001) 1.221(0.003) 1.113(0.003) 0.570(0.001)

THO 0.406(0.001) 0.452(0.003) 0.680(0.004) 0.667(0.004) 0.463(0.002)
UMC 0.332(0.000) 0.523(0.001) 1.789(0.002) 1.684(0.002) 0.408(0.001)
GEN 0.387(0.000) 0.406(0.000) 0.943(0.001) 0.922(0.001) 0.461(0.000)
ONC 0.354(0.000) 0.396(0.000) 1.130(0.001) 1.091(0.001) 0.585(0.001)
GYN 0.339(0.000) 0.436(0.001) 0.962(0.001) 0.930(0.001) 0.515(0.001)
ORA 0.502(0.002) 0.477(0.002) 1.445(0.005) 1.395(0.005) 0.529(0.003)
PLA 0.401(0.001) 0.453(0.001) 1.881(0.002) 1.745(0.002) 0.802(0.003)
VAS 0.305(0.001) 0.304(0.001) 0.608(0.001) 0.602(0.002) 0.378(0.001)
PDS 0.514(0.002) 0.717(0.002) 1.592(0.003) 1.506(0.003) 0.536(0.001)
ENT 0.491(0.001) 0.831(0.002) 2.975(0.005) 2.747(0.004) 0.956(0.003)
POD 0.420(0.001) 0.466(0.002) 0.549(0.002) 0.546(0.002) 0.386(0.001)

occur in the first two columns for 14/15 out of 16 departments. This demon-

strates the superior performance of our proposed regression-based methods, as

compared to the three benchmark models.

• Between the two of our proposed methods, the linear regression model claims

the best performance more often than the log-regression model. This obser-

vation suggests that when using CPT codes as explanatory variables to make

predictions, the benefit of applying a logarithm transformation to the data is

no longer obvious.

• Our proposed regression-based methods significantly improve the two bench-

mark methods that make predictions based on departmental data. This is

consistent to the observation in the literature that CPT code information plays

an important role in predicting surgical case durations.

• The hybrid sample-mean method, which utilizes the CPT code information,

does perform better than the other two benchmark methods, which do not
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use the CPT code information. The hybrid sample-mean method cannot out-

perform our regression-based methods for most departments, because it uses the

CPT code information only when there is an exact matching CPT code com-

bination in the training set. Understandably, the hybrid sample-mean method

performs well only when there are “sufficient” number of historical cases with

the same CPT combination. In practice, it is not always easy to decide how

many are many enough, and there do exist circumstances when there is only

a handful of historical cases or there is no such case at all. Looking at the

comparison result tables, there are several departments (e.g., CT, PLA, ENT)

where the hybrid-mean predictions have MRAEs almost as twice large as those

using our regression methods. Similar large differences in MSE can also be

found. This observation suggests that the hybrid sample-mean method is not

a suitable tool for predicting surgical durations when numerous and complex

CPT code combinations are used.

• For 8 of the 16 departments, the reduction of MRAE by using the linear regres-

sion model instead of the hybrid sample-mean method (the best performer of

the three benchmark methods) is bigger than 0.10, which corresponds to a 30

minutes reduction of prediction error for a 5-hour long surgery.

• The two benchmark models, the lognormal model and the departmental sample-

mean model, have similar performances. The lognormal model does not exhibit

any noticeable edge in terms of prediction quality over the simple sample-mean

model. To some extent, this result “validates” the use of the sample-mean

model in practice. We believe that the lack of difference between these two

benchmark models is due to the fact that the surgical data within a department

do not always follow a lognormal distribution (see Section C of this chapter and
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Figure 7).
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CHAPTER V

CONCLUSIONS AND DISCUSSION

A. Application of Our Bivariate Model

The public health importance of understanding the distribution of energy-adjusted

usual intake of episodically consumed dietary components is very great, having impli-

cations for basic understanding of both dietary component composition and policy.

Being able to correct for measurement error due to within-person variation in short-

term assessment of intake, when investigating diet-disease relationships in cohort

studies, is equally important. Because of the importance of these problems, models

and fitting methods for addressing them will find wide use in the nutrition commu-

nity. Thus, it is not only vital that the models are reasonable, but that the fitting

methods be reasonably fast, that they converge, and that the answers from the fit-

ting methods usually make sense. The main point of this project has been to show

that an MCMC approach satisfies these criteria, and has the potential to be used

widely in the nutrition community. The fact that the MCMC approach can be used

in a frequentist sense is a new insight for nutritional epidemiology, which is decidedly

frequentist in orientation, although of course the MCMC model fitting can also allow

Bayesian inference.

Our methods are not limited to estimating the distributions of usual intake. In-

deed, they can also be applied to the problem of analyzing the relationship between

energy-adjusted usual intake and disease. The typical method for such analysis as

applied to studies such as the NIH-AARP Diet and Health Study is regression cal-

ibration (Carroll et al., 2006). In this methodology, the unobserved usual intake is

replaced by its regression of usual intake on covariates and the FFQ. While our main
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focus has been on distributions of usual intake, it is trivial to extend the methods in

Section C of Chapter II to regression calibration.

There is of course an enormous literature on measurement error models, both

parametric and nonparametric, for estimating distributions (e.g., Fan, 1991; Wand,

1998; Johnson et al., 2007; Staudenmeyer et al., 2008; Delaigle et al., 2008, among

many others) and in regression (Ferrari et al., 2004; Liang and Wang, 2005, among

many others). Many more references are given in Carroll et al. (2006). However,

none of these papers deal with our topic of episodically consumed and hence zero-

inflated dietary components along with continuous components that involve skewness,

a structured covariance matrix, correlations of random effects, and usual intakes on

the original data scale.

An issue of practically much less importance is that the model of Kipnis et al.

(2010b) in equation (2.6) assumes that each food is consumed by all individuals.

Kipnis et al. (2009) address this issue, by adding a fixed effect regression so as to

model never-consumers. They show that even without energy in the model, and

with only two 24hr as is standard for such data, their method was numerically very

unstable. Our method easily handles such an extension, but its practical implications

are not particularly clear when, for example, in other studies, less than 0.5% of

subjects claimed on the FFQ never to eat fish or whole grains.

B. Extension of Our Multivariate Model

1. Transformations

In Appendix 23, we describe how we estimated the transformation parameters as a

separate component-wise calculation. We have done some analyses where we simulta-

neously transform each component, and found very little difference with our results.
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However, the computing time to implement this is extremely high, because of the fact

that different transformations make data on different scales, so we have to compute

the usual intakes at each step in the MCMC, and not just at the end.

2. What Have We Learned That Is New

There are many important questions in dietary assessment that have not been able

to be answered because of a lack of multivariate models for complex, zero-inflated

data with measurement errors and a lack of ability to fit such multivariate models.

Nutrients and foods are not consumed in isolation, but rather as part of a broader

pattern of eating. There is reason to believe that these various dietary components

interact with one another in their effect on health, sometimes working synergistically

and sometimes in opposition. Nonetheless, simply characterizing various patterns of

eating has presented enormous statistical challenge. Until now, descriptive statistics

on the HEI-2005 have been limited to examination of either the total scores or only

a single energy-adjusted component at a time. This has precluded characterization

of various patterns of dietary quality as well as any subsequent analyses of how such

patterns might relate to health.

This methodology presented in the second project presents a workable solution

to these problems which has already proven valuable. In May 2010, just as we were

submitting the paper, a White House Task Force on Childhood Obesity created a

report. They had wanted to set a goal of all children having a total HEI score of

80 or more by 2030, but when they learned we estimated only 10% of the children

ages 2-8 had a score of 66 or higher, they decided to set a more realistic target. The

facility to estimate distributions of the multiple component scores simultaneously will

be important in tracking progress toward that goal.
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3. In What Other Arenas Will Our Work Have Impact

There are many other important problems where multivariate models such as ours

will be important. One such problem arises when studying the relationship between

multiple dietary components or dietary patterns and health outcomes. Tradition-

ally, for cost reasons, large cohort studies have used a food frequency questionnaire

(FFQ) to measure dietary intake, sometimes with a small calibration study including

short-term measures such as 24hr recalls. However, there is a new web-based instru-

ment called the Automated Self-administered 24-hour Dietary Recall (ASA24TM), see

http://riskfactor.cancer.gov/tools/instruments/asa24, which has been proposed to re-

place or at least supplement the FFQ and which is currently undergoing extensive

testing. The dietary data we will see then is what we have called Yijk, i.e., 24hr recall

data. In order to correct relative risk estimates for the measurement error inherent in

the ASA24TM, regression calibration (Carroll et al., 2006) will almost certainly be the

method of choice, as it is in most of nutritional epidemiology. This method attempts

to produce an estimate of the regression of usual intake on the observed intakes, and

then to use these estimates in Cox and logistic regression for the health outcome.

In order to perform this regression, a multivariate measurement error model will be

required, since the regression is on all the observed dietary intake components in the

regression model measured by the ASA24TM, and not on each individual component.

Our methodology is easily extended to address this problem.

C. Significance of Our Predictive Model

The third project presents regression-based methodologies that take multiple CPT

codes as explanatory variables when predicting surgical case durations. Our research

is motivated by the fact that CPT codes describe how a surgical case should be
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performed, and thus provide specific knowledge and information relevant to individual

surgical cases. The importance of CPT codes in predicting surgical case durations

has been noted in health care literature for years. Our research demonstrates the

benefit of utilizing the CPT codes by a prediction comparision using real data from

a large central Texas hospital. The reduction of prediction errors due to utilization

of the CPT codes will certainly boost certainty in the scheduling process and help

cut “white spaces” between surgeries (i.e., buffer time inserted between surgeries to

accommodate variability) or overruns so that more surgeries can be scheduled with

a higher start time reliability. Our proposed methodology could help a great deal

with the issues related to the operating room scheduling and resource utilization,

and consequently, will bring considerable economic benefits to the bottom line of a

hospital and lead to greater patient satisfaction.

To the best of our knowledge, our project is the first that predicts surgery case

durations based on multiple CPT codes that a surgical case performs. In our opinion,

one of the reasons that such a predictive model was not available prior to our research

is perhaps caused by the complexity involved in devising a proper design matrix. If

naively constructing a design matrix according to the appearances of CPT codes

in surgical cases, one will likely end up with an ill-conditioned matrix that is not

solvable. In our research, we develop general procedures to overcome this difficulty by

systematically grouping CPT combinations and treat not only single CPT codes but

also distinctive CPT combinations with multiple CPT codes as separate explanatory

variables. Our algorithm guarantees a fully ranked design matrix, and consequently,

the solvability of the least-squares estimation. Although the implementation details

are provided for surgical cases using up to eight CPT codes (which in itself has already

represented very complicated surgeries), our models and algorithms can be applied

to surgical cases using any number of CPT codes or any combination of CPT codes.
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One possible extension of our research is to consider other important covariates

together with CPT codes. In addition to CPT codes, which is arguably the most

important factor relevant to the prediction of surgical case durations, prior research

also identified a number of other factors influencing surgical case durations (such as

surgeon experience, anesthesia type, patient’s status). The inclusion of those factors is

methodologically straightforward — we can extend our predictive models by simply

adding the relevant covariates. Although we believe that an extended model that

incorporates both CPT codes and other relevant covariates as explanatory variables

has the potential to further reduce prediction uncertainty, testing the extended model

using real data would require a different data set than the one we have, and another

round of (possibly very lengthy) data collection efforts.
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APPENDIX A

APPENDIX OF CHAPTER II

1. Notational Convention

Standardization is important in MCMC applications both for numerical stabil-

ity and to allow fairly off-the-shelf prior distributions to make sense. Prior to anal-

ysis, we standardized the covariates to have mean 0.0 and variance 1.0. The ob-

served, transformed non-zero 24hr were standardized to have mean 0.0 and variance

2.0. More precisely, we first transformed the non-zero dietary component data as

Zi2k = g(Yi2k, λF ), and then we standardized these data as Qi2k =
√

2(Zi2k − aF )/sF .

Similarly, for energy we transformed to Zi3k = g(Yi3k, λE) and then standardized to

Qi3k =
√

2(Zi3k − aE)/sE. Of course, whether the dietary component is consumed

or not is Qi1k = Yi1k. Collected, the data are Q̃ik = (Qi1k, Qi2k, Qi3k)
T. The terms

(aF , sF , aE, sE) are not random variables but are merely constants used for standard-

ization, and we need not consider inference for them.

We will first describe the algorithm used in terms of the Qijk, and then in Ap-

pendix 11, we describe the back-transformation method that we used to obtain esti-

mation and inference for usual intake.

Remark 8 Having the total variability of the non-zero transformed responses equal

to 2.0 is extraordinarily convenient. Effectively, this means that var(Uij) + var(ǫij) ≈

2.0 for j = 1, 2. Thus, neither component of this sum is at all likely to be large.

Hence, a prior mean for the diagonal elements of Σu all equalling 1.0, while too large

in our examples, is at least within nodding distance of a reasonable answer. Having

priors for var(ǫij) for j = 1, 2 that are Uniform[0, 3] is flexible and does not allow

ridiculous answers.
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2. Prior Distributions

Because the data were standardized, following the discussion of Remark 8, we

used the following conventions.

• The priors for all βj were normal with mean zero and variance 100.

• The prior for Σu was exchangeable with diagonal entries all equal to 1.0 and

correlations 0.50. There was 5 degrees of freedom in the inverse Wishart prior,

i.e., mu = 5. Thus, the prior is IW{(mu − 3 − 1)Ωu,mu}.

• The priors for s22 and s33 were Uniform[0,3]. This range is reasonable because

of the standardization.

• The priors for (γ, θ) were uniform on their range.

We experimented with different priors for Σu, e.g., setting the correlations equal

to 0.0, setting the diagonal elements equal to 0.5, etc. The results were essentially

unchanged when these were done.

3. Generating Starting Values for the Latent Variables

While we observe Q̃ik, in the MCMC we need to generate the latent variables

W̃ik to initiate the MCMC.

• For energy, Qi3k = Wi3k, no data need to be generated.

• For the amounts, Qi2k, we just simply set Wi2k = Qi2k.

• For consumption, we generate Ũi as normally distribution with mean zero and

covariance matrix given as the prior covariance matrix for Σu. We then also

compute zik = |Xi1
Tβ1,prior +Ui1 +Zik|, where Zik = Normal(0, 1) are generated

independently. We then set Wi1k = zikQi1k − zik(1 − Qi1k).
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• We then updated W̃ik by a single application of the updates given in Appendix

9.

4. Complete Data Loglikelihood

The loglikelihood of the complete data is

∑n
i=1

∑2
k=1log{Qi1kI(Wi1k > 0) + (1 − Qi1k)I(Wi1k < 0)}

+(n/2)log(|Σu
−1|) − (1/2)

∑n
i=1Ũ

T
i Σu

−1Ũi

−(1/2)
∑3

j=1(βj − βj,prior)
TΩβ,j

−1(βj − βj,prior)

+{(mu + 3 + 1)/2}log(|Σu
−1|) − (1/2)trace(ΩuΣu

−1)

−(1/2)(2n)log{s22s33(1 − γ2)}

−(1/2)
∑n

i=1

∑2
k=1{W̃ik − (Xi1

Tβ1, ...,Xi3
Tβ3)

T − Ũi}TΣǫ
−1{•},

where {•} means that the term before f(·) is transposed and substituted.

Remark 9 In the NIH-AARP Study, only the calibration sub-study has any infor-

mation about the parameters (β1, β2, β3,Σu,Σǫ). Consequently, our methodology is

run only on the calibration sub-study.

5. Complete Conditionals for (γ, θ, s22, s33)

The complete conditionals for (γ, θ, s22, s33) do not have an explicit form, so we

use a Metropolis-Hastings within Gibbs sampler to generate them in turn. Since Σǫ

is determined by γ, θ, s22 and s33, we write it as Σǫ
−1 ≡ f(γ, θ, s22, s33). Also, current

values are γt, θt, s22,t and s33,t.

Generation of γ. For convenience, we set γ to be discrete with 41 equally-spaced

values on its range. Let γt be the current value. The candidate value y is selected
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randomly from γt and its two nearest neighbors. The candidate value y is accepted

with probability α(γt, y), α(γt, y) = min{1, g(y)/g(γt)}, where

g(y) ∝ (1 − y2)−n

× exp
[
−1

2

∑n
i=1

∑2
k=1{W̃ik − (Xi1

Tβ1, ...,Xi3
Tβ3)

T − Ũi}Tf(y, θt, s22,t, s33,t){•}
]
,

If the candidate y is accepted, then γt+1 = y. Otherwise, γt+1 = γt.

Generation of θ. This is done exactly as for γ, except now

g(y) ∝ exp
[
−1

2

∑n
i=1

∑2
k=1{W̃ik − (Xi1

Tβ1, ...,Xi3
Tβ3)

T − Ũi}Tf(γt+1, y, s22,t, s33,t){•}
]
.

If the candidate y is accepted, then θt+1 = y. Otherwise, θt+1 = θt.

Generation of s22. Suppose the current value of s22 is s22,t. A candidate value y is

generated from the Uniform distribution of length 0.4 with mean s22,t: y ∼ Uniform[

s22,t - 0.2, s22,t + 0.2]. The candidate value y is accepted with probability α(s22,t, y),

where

α(s22,t, y) = min
{
(1, g(y)I[0,3](y)/g(s22,t)

}
;

g(y) ∝ y−n exp
[
−1

2

∑n
i=1

∑2
k=1{W̃ik − (Xi1

Tβ1, ...,Xi3
Tβ3)

T − Ũi}T

×f(γt+1, θt+1, y, s33,t){•}
]

If the candidate is accepted, then s22,t+1 = y. Otherwise, s22,t+1 = s22,t.

Generation of s33. This is the same as that for s22, except now

α(s33,t, y) = min
{
1, g(y)I[0,3](y)/g(s33,t)

}
;

g(y) ∝ y−n exp
[
−1

2

∑n
i=1

∑2
k=1{W̃ik − (Xi1

Tβ1, ...,Xi3
Tβ3)

T − Ũi}T

×f(γt+1, θt+1, s22,t+1, y){•}
]
.

If the candidate is accepted, then s33,t+1 = y. Otherwise, s33,t+1 = s33,t.
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6. Complete Conditional for Σu

By “rest”, we mean all the observable data, latent variables and parameters other

than the one in question. By inspection, the complete conditional for Σu is

[Σu|rest] = IW{(mu − K − 1)Ωu +
∑n

i=1ŨiŨ
T
i , n + mu}.

7. Complete Conditionals for β

Let the elements of Σ−1
ǫ be σjℓ

ǫ . For any j, except for irrelevant constants,

log [βj|rest] = −(1/2)(βj − βj,prior)
TΩβ,j

−1(βj − βj,prior)

−(1/2)
∑n

i=1

∑2
k=1(Wijk − Xij

Tβj − Uij)
2σjj

ǫ

−∑n
i=1

∑2
k=1

∑
ℓ6=jσ

jℓ
ǫ (Wijk − Xij

Tβj − Uij)(Wiℓk − Xiℓ
Tβℓ − Uiℓ)

= C1
Tβj − (1/2)βj

TC2
−1βj

which implies [βj|rest] ∼ Normal(C2C1, C2), where

C2 = (Ωβ,j
−1 + 2

∑n
i=1σ

jj
ǫ XijXij

T)−1;

C1 = Ωβ,j
−1βj,prior +

∑n
i=1

∑2
k=1σ

jj
ǫ Xij(Wijk − Uij)

+
∑n

i=1

∑2
k=1

∑
ℓ6=jσ

jℓ
ǫ (Wiℓk − Xiℓ

Tβℓ − Uiℓ)Xij.

8. Complete Conditionals for Ũi

Except for irrelevant constants, and remembering that j = 1, ..., 3,

log
[
Ũi|rest

]
= −(1/2)ŨT

i Σ−1
u Ũi

−(1/2)
∑2

k=1{W̃ik − (Xi1
Tβ1, ...,Xi3

Tβ3)
T − Ũi}TΣǫ

−1

×{W̃ik − (Xi1
Tβ1, ...,Xi3

Tβ3)
T − Ũi}

= C1
TŨi − (1/2)ŨT

i C2
−1Ũi
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which implies
[
Ũi|rest

]
∼ Normal(C2C1, C2), where

C2 = (Σu
−1 + 2Σǫ

−1)−1;

C1 =
∑2

k=1Σǫ
−1{W̃ik − (Xi1

Tβ1, ...,Xi3
Tβ3)

T}.

9. Complete Conditionals for Wi1k

Here we do the complete conditional for Wiℓk with ℓ = 1. Except for irrelevant

constants,

log [Wiℓk|rest] = log{QiℓkI(Wiℓk > 0) + (1 − Qiℓk)I(Wiℓk < 0)}

−(1/2)(Wi1k − Xi1
Tβ1 − Ui1, ...,Wi3k − Xi3

Tβ3 − Ui3)Σǫ
−1(•)

= log{QiℓkI(Wiℓk > 0) + (1 − Qiℓk)I(Wiℓk < 0)}

−(1/2)σℓℓ
ǫ (Wiℓk − Xiℓ

Tβℓ − Uiℓ)
2

−∑
j 6=ℓσ

ℓj
ǫ (Wiℓk − Xiℓ

Tβℓ − Uiℓ)(Wijk − Xij
Tβj − Uij)

= log{QiℓkI(Wiℓk > 0) + (1 − Qiℓk)I(Wiℓk < 0)}

+C1Wiℓk − (1/2)W 2
iℓkC−1

2 ,

where

C2 = 1/(σℓℓ
ǫ )

C1 = σℓℓ
ǫ (Xiℓ

Tβℓ + Uiℓ) −
∑

j 6=ℓσ
ℓj
ǫ (Wijk − Xij

Tβj − Uij).

If we use the notation TN+(µ, σ, c) for a normal random variable with mean µ, stan-

dard deviation σ is truncated from the left at c, and TN−(µ, σ, c) is truncated from

the right at c, then it follows that with µ = C2C1 and σ = C1/2
2 ,

[Wiℓk|rest] = QiℓkTN+(µ, σ, 0) + (1 − Qiℓk)TN−(µ, σ, 0)

= µ + QiℓkTN+(0, σ,−µ) + (1 − Qiℓk)TN−(0, σ,−µ)
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= µ + QiℓkTN+(0, σ,−µ) − (1 − Qiℓk)TN+(0, σ, µ)

= µ + σ{QiℓkTN+(0, 1,−µ/σ) − (1 − Qiℓk)TN+(0, 1, µ/σ)}.

Generating TN+(0, 1, c) is easy: if c < 0, simply do rejection sampling of a Normal(0, 1)

until you get one that is > c. If c > 0, there is an adaptive rejection scheme (Robert,

1995). The “truncated normal” was used because the latent variable Wi1k is associ-

ated with Yi1k which indicates whether the dietary component is consumed or not.

If the dietary component is indeed consumed, then based on our model (2.2), Wi1k

should have a positive value. Similarly, if the dietary component is actually not con-

sumed, then Wi1k should have a negative value. In order to achieve these, we need a

truncated distribution. Besides, the conditional distribution of Wi1k proportional to

a normal distribution, thus we chose truncated normal.

10. Complete Conditionals for Wi2k When it is Not Observed

For p = 2, the variable Wipk is not observed when Qi,p−1,k = 0, or, equivalently,

when Wi,p−1,k < 0. Except for irrelevant constants,

log [Wipk|rest] = −(1/2)
∑

j

∑

ℓ

σjℓ
ǫ (Wijk − Xij

Tβj − Uij)(Wiℓk − Xiℓ
Tβℓ − Uiℓ)

= −(1/2)W 2
ipkC−1

2 + C1Wipk

where

C2 = 1/(σpp
ǫ );

C1 = σpp
ǫ (Xip

Tβp + Uip) −
∑

ℓ6=p

σpℓ
ǫ (Wiℓk − Xiℓ

Tβℓ − Uiℓ).

Therefore,

[Wipk|rest] = QipkQi,p−1,k + (1 − Qi,p−1,k)Normal(C2C1, C2).
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11. Usual Intake, Standardization and Transformation

Here we show how to go from the transformed and standardized data to usual

intakes. We first consider energy, where we used the transformation

Qi3k =
√

2{g(Yi3k, λE) − aE}/sE = gtr(Yi3k, λE, aE, sE) = Xi3
Tβ3 + Ui3 + ǫi3k.

When λE = 0, the back-transformation is

g−1
tr (z, 0, aE, sE) = exp

{
aE + sEz/

√
2
}

;

∂2g−1
tr (z, 0, aE, sE)/∂z2 =

s2
E

2
g−1
tr (z, 0).

When λE 6= 0, the back-transformation is

g−1
tr (z, λE, aE, sE) =

[
1 + λE

{
aE + sEz/

√
2
}]1/λE

; (A.1)

∂2g−1
tr (z, λE, aE, sE)/∂z2 =

s2
E

2
(1 − λE)

[
1 + λE

{
aE + sEz/

√
2
}]−2+1/λE

.(A.2)

Define

g∗
tr{v, λE, aE, sE,Σǫ(3, 3)} = g−1

tr (v, λE, aE, sE) + (1/2)Σǫ(3, 3)
∂2g−1

tr (v, λE, aE, sE)

∂v2
.

As in Kipnis et al. (2009), the usual intake of energy for person i is

TEi = E
{
g−1
tr (Xi3

Tβ3 + Ui3 + ǫi3, λE, aE, sE)|Xi3, Ui3

}

≈ g∗
tr

{
Xi3

Tβ3 + Ui3, λE, aE, sE,Σǫ(3, 3)
}

.

Similarly, a person’s usual intake of the dietary component on the original scale is

defined as

TFi = Φ(Xi1
Tβ1 + Ui1)g

∗
tr

{
Xi2

Tβ2 + Ui2, λF , aF , sF ,Σǫ(2, 2)
}

.
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APPENDIX B

APPENDIX OF CHAPTER III

In this Appendix we give the full details of the model fitting procedure.

12. Notational Convention

In our example, age was standardized to have mean 0.0 and variance 1.0, to

improve numerical stability.

As described in Appendix 12, the observed, transformed non-zero 24hr recalls

were standardized to have mean 0.0 and variance 2.0. More precisely, for ℓ =

1, 2, ..., 6, we first transformed the non-zero food group data as Zi,2ℓ,k = g(Yi,2ℓ,k, λℓ),

and then we standardized these data as Qi,2ℓ,k =
√

2{Zi,2ℓ,k − µ(λℓ)}/σ(λℓ), where

{µ(λℓ), σ(λℓ)} are the mean and standard deviation of the non-zero food intakes

Zi,2ℓ,k. Similarly, for non-episodically consumed dietary components and energy we

transformed to Zi,6+ℓ,k = g(Yi,6+ℓ,k, λℓ) for ℓ = 7, ..., 13, and then standardized to

Qi,6+ℓ,k =
√

2{Zi,6+ℓ,k−µ(λℓ)}/σ(λℓ). Of course, whether the food group is consumed

or not is Qi,2ℓ−1,k = Yi,2ℓ−1,k for ℓ = 1, ..., 6. Collected, the data are Q̃ik = (Qijk)
19
j=1.

The terms {µ(λℓ), σ(λℓ)} are not random variables but are merely constants used for

standardization, and we need not consider inference for them. Back-transformation

is discussed in Appendix 22.

13. Prior Distributions

Because the data were standardized, we used the following conventions.

• The prior for all βj were normal with mean zero and variance 100.
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• The prior for Σu was exchangeable with diagonal entries all equal to 1.0 and

correlations all equal to 0.50. There were 21 degrees of freedom in the inverse

Wishart prior, i.e., mu = 21. Thus, the prior is IW{(mu − 19 − 1)Σu,prior,mu}.

We experimented with this prior by using zero correlation, and the results were

essentially unchanged.

• The prior for rk is Uniform[-1, 1]. Set the initial value: rk = 0, k = 1, . . . , 5.

• The prior for θk is Uniform[−π, π]. Set the initial value: θk = 0, k = 1, . . . , 25.

• The priors for v22, v44, . . . , v12,12 and v13,13, . . . , v19,19 were Uniform[-3,3]. Set the

initial values: v22 = v44 = . . . = v12,12 = v13,13 = . . . = v19,19 = 1.

• For the rest of the non-diagonal vij’s which could not be determined by the

restrictions, we used Uniform[-3,3] priors. Set the initial values to be 0.

The constraints on Σǫ are nonlinear, and our parameterization enforces them

easily without having to have prior distributions for the original parameterization

that satisfy the nonlinear constraints.

The key thing that makes things work well with the other components of the

matrix V with Σǫ = V V T is that we have standardized the data as described in

Section C. With this standardization, things become much nicer. For example, the

variance of the ǫ’s for energy is
∑19

j=1 v2
19,j. However, since the sample variance for

energy is standardized to equal 2.0, we simply just need to make priors for v19,j be

uniform on a modest range to have real flexibility.

14. Generating Starting Values for the Latent Variables

While we observe Q̃ik, in the MCMC we need to generate starting values for the

latent variables W̃ik = (Wijk)
19
j=1 to initiate the MCMC.
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• For nutrients and energy, Qijk = Wijk, no data need be generated, j = 13, . . . , 19.

• For the amounts, Qi2k, Qi4k, Qi6k, Qi8k, Qi,10,k and Qi,12,k, we set Wi2k = Qi2k,

Wi4k = Qi4k, Wi6k = Qi6k, Wi8k = Qi8k, Wi,10,k = Qi,10,k and Wi,12,k = Qi,12,k.

• For consumption, we generate Ũi as normally distributed with mean zero and co-

variance matrix given as the prior covariance matrix for Σu. For ℓ = 1, . . . , 6, we

also compute zik = |XT
i,2ℓ−1,kβ2ℓ−1,prior +Ui,2ℓ−1 +Zik|, where Zik = Normal(0, 1)

are generated independently. We then set Wi,2ℓ−1,k = zikQi,2ℓ−1,k − zik(1 −

Qi,2ℓ−1,k).

• Finally, we then updated W̃ik by a single application of the updates given in

Appendix 20.

15. Complete Data Loglikelihood

Let J = 19. The complete data include the indicators of whether a food was

consumed, the W variables, and the random effect U variables. The loglikelihood of

the complete data is

∑6
ℓ=1

∑n
i=1

∑2
k=1log{Qi,2ℓ−1,kI(Wi,2ℓ−1,k > 0) + (1 − Qi,2ℓ−1,k)I(Wi,2ℓ−1,k < 0)}

+(
∑n

i=1wi/2)log(|Σ−1
u |) − (1/2)

∑n
i=1wiŨ

T
i Σ−1

u Ũi

−(1/2)
∑J

j=1(βj − βj,prior)
TΩ−1

β,j(βj − βj,prior)

+{(mu + J + 1)/2}log(|Σ−1
u |) − {(mu − J − 1)/2}trace(Σu,priorΣ

−1
u )

−(1/2)
∑n

i=1wimilog{(v2
22v

2
44v

2
66v

2
88v

2
10,10v

2
12,12v

2
13,13 . . . v2

JJ)
∏5

q=1(1 − r2
q)}

−(1/2)
∑n

i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
iJkβJ)T − Ũi}TΣ−1

ǫ

×{W̃ik − (XT
i1kβ1, ..., X

T
iJkβJ)T − Ũi}.

We used Gibbs sampling to update this complete data loglikelihood, the details for
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which are given in subsequent appendices. The weights wi are integers and are used

here in a pseudo-likelihood fashion. One can also think of this as expanding each

individual into wi individuals, each with the same observed data but different latent

variables. For computational convenience, since we are only asking for a frequentist

estimator and not doing full Bayesian inference, the latent variables in the process are

generated once for each individual. Estimates of Σu, Σǫ and βj for j = 1, ..., J were

computed as the means from the Gibbs samples. Once again, we emphasize that we

are not doing a proper Bayesian analysis, but only using MCMC techniques to obtain

a frequentist estimate, with uncertainty assessed using the frequentist BRR method.

16. Complete Conditionals for rq, θq and vpq

Except for irrelevant constants, the complete conditional for rq (q = 1, . . . , 5) is

log [rq|rest] = −(1/2)
∑n

i=1wimilog(1 − r2
q)

−(1/2)
∑n

i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ

×{W̃ik − (XT
i1kβ1, ..., X

T
i,19,kβ19)

T − Ũi}.

Except for irrelevant constants, the complete conditionals for vqq (q= 2, 4, 6, 8,

10, 12, 13, . . ., 19) are

log [vqq|rest] = −(1/2)
∑n

i=1wimilog(v2
qq)

−(1/2)
∑n

i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ

×{W̃ik − (XT
i1kβ1, ..., X

T
i,19,kβ19)

T − Ũi}.

Except for irrelevant constants, the compete conditionals for θq, (q = 1, . . . , 25)

and non-diagonal free parameters vpq are

log [x|rest] = −(1/2)
∑n

i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ
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×{W̃ik − (XT
i1kβ1, ..., X

T
i,19,kβ19)

T − Ũi}.

The full conditionals do not have an explicit form, so we use a Metropolis-Hastings

within a Gibbs sampler to generate it.

• rq (q = 1, . . . , 5)

We discretize the values of rq to the set {−0.99 + 2 × 0.99(j − 1)/(M − 1)},

where j = 1, ...,M and we choose M = 41.

Proposal: The current value is rq,t. The proposed value of rq,t+1 is selected

randomly from the current value and the two nearest neighbors of rq,t. Then

rq,t+1 is accepted with probability min{1, g(rq,t+1)/g(rq,t)}, where

g(y) ∝ (1 − y2)−(1/2)
∑n

i=1wimi

× exp
[
−(1/2)

∑n
i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ (•)

]
,

where here and in what follows, for any A, ATΣ−1
ǫ (•) = ATΣ−1

ǫ A.

• θq (q = 1, . . . , 25)

We discretize similarly as above.

Proposal: The current value is θq,t. The proposed value θq,t+1 is selected ran-

domly from the current value and the two nearest neighbors of θq,t. Then θq,t+1

is accepted with probability min{1, g(θq,t+1)/g(θq,t)}, where

g(y) ∝ exp
[
−(1/2)

∑n
i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ (•)

]
.

• vqq (q = 2, 4, 6, 8, 10, 12, 13, . . . , 19)

Proposal: The current value is vqq,t. A candidate vqq,t+1 is generated from the

Uniform distribution of length 0.4 with mean vqq,t. The candidate value vqq,t+1
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is accepted with probability min{1, g(vqq,t+1)/g(vqq,t)}, where

g(y) ∝ y−
∑n

i=1wimi

× exp
[
−(1/2)

∑n
i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ (•)

]
.

• non-diagonal free parameters vpq

Proposal: The current value is vpq,t. The candidate value vpq,t+1 is generated

from the Uniform distribution of length 0.4 with mean vpq,t. The candidate

value is accepted with probability min{1, g(vpq,t+1)/g(vpq,t)}, where

g(y) ∝ exp
[
−(1/2)

∑n
i=1wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ (•)

]
.

17. Complete Conditionals for Σu

The dimension of the covariance matrices is J = 19. By inspection, the complete

conditional for Σu is

[Σu|rest] = IW{(mu − J − 1)Σu,prior +
∑n

i=1wiŨiŨ
T
i , n + mu}

where here IW = the Inverse-Wishart distribution. The density of IW(Ω,m) for a

J × J random variable is

IW(Ω,m) = f(Q|Ω,m) ∝ |Q|−(m+J+1)/2 exp{−(1/2)trace(ΩQ−1)}.

This has expectation Ω/(m − J − 1).

18. Complete Conditionals for β

Let the elements of Σ−1
ǫ be σjℓ

ǫ . For any j, except for irrelevant constants,

log [βj|rest] = −(1/2)(βj − βj,prior)
TΩ−1

β,j(βj − βj,prior)
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−(1/2)
∑n

i=1wi

∑2
k=1(Wijk − XT

ijkβj − Uij)
2σjj

ǫ

−∑n
i=1wi

∑2
k=1

∑
ℓ6=jσ

jℓ
ǫ (Wijk − XT

ijkβj − Uij)(Wiℓk − XT
iℓkβℓ − Uiℓ)

= CT
1 βj − (1/2)βT

j C−1
2 βj,

which implies [βj|rest] = Normal(C2C1, C2), where

C2 =
(
Ω−1

β,j +
∑n

i=1wiσ
jj
ǫ

∑2
k=1XijkX

T
ijk

)−1
;

C1 = Ω−1
β,jβj,prior +

∑n
i=1wi

∑2
k=1σ

jj
ǫ Xijk(Wijk − Uij)

+
∑n

i=1wi

∑2
k=1

∑
ℓ6=jσ

jℓ
ǫ (Wiℓk − XT

iℓkβℓ − Uiℓ)Xijk.

19. Complete Conditionals for Ũi

The NHANES 2001-2004 weights are integers, representing the number of chil-

dren that each sampled child represents. Thus, as described therein, the loglikelihood

in Appendix 15 could also be rewritten equivalently by developing wi pseudo-children,

each with the same observed data values. It thus does not make sense to use the

weights to generate an individual Ũi. Instead, as described in Appendix 15, for com-

putational convenience for generating a Ũi to represent wi children, we set the weight

for that child temporarily = 1.0. Then, except for irrelevant constants,

log[Ũi|rest] = −(1/2)wiŨ
T
i Σ−1

u Ũi

−(1/2)wi

∑2
k=1{W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T − Ũi}TΣ−1
ǫ

×{W̃ik − (XT
i1kβ1, ..., X

T
i,19,kβ19)

T − Ũi}

= CT
1 Ũi − (1/2)ŨT

i C−1
2 Ũi.

Remembering that for purposes of this section we are setting wi = 1.0, this implies

that [Ũi|rest] = Normal(C2C1, C2), where

C2 = (Σ−1
u + miΣ

−1
ǫ )−1;
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C1 =
∑2

k=1Σ
−1
ǫ {W̃ik − (XT

i1kβ1, ..., X
T
i,19,kβ19)

T}.

20. Complete Conditional for Wiℓk, ℓ = 1, 3, 5, 7, 9, 11

Here we do the complete conditional for Wiℓk with ℓ = 1, 3, 5, 7, 9, 11. Except for

irrelevant constants,

log [Wiℓk|rest] = log{QiℓkI(Wiℓk > 0) + (1 − Qiℓk)I(Wiℓk < 0)}

−(1/2)wi(Wi1k − XT
i1kβ1 − Ui1, ...,Wi,19,k − XT

i,19,kβ19 − Ui,19)Σ
−1
ǫ (•)T

= log{QiℓkI(Wiℓk > 0) + (1 − Qiℓk)I(Wiℓk < 0)}

−(1/2)wiσ
ℓℓ
ǫ (Wiℓk − XT

iℓkβℓ − Uiℓ)
2

−wi

∑
j 6=ℓσ

ℓj
ǫ (Wiℓk − XT

iℓkβℓ − Uiℓ)(Wijk − XT
ijkβj − Uij)

= log{QiℓkI(Wiℓk > 0) + (1 − Qiℓk)I(Wiℓk < 0)} + C1Wiℓk − (1/2)W 2
iℓkC−1

2 ,

where, using the convention of Appendix 19,

C2 = 1/(σℓℓ
ǫ )

C1 = σℓℓ
ǫ (XT

iℓkβℓ + Uiℓ) −
∑

j 6=ℓσ
ℓj
ǫ (Wijk − XT

ijkβj − Uij).

If we use the notation TN+(µ, σ, c) for a normal random variable with mean µ and

standard deviation σ that is truncated from the left at c, and similarly use TN−(µ, σ, c)

when truncation is from the right at c, then it follows that with µ = C2C1 and σ = C1/2
2 ,

[Wiℓk|rest] = QiℓkTN+(µ, σ, 0) + (1 − Qiℓk)TN−(µ, σ, 0)

= µ + QiℓkTN+(0, σ,−µ) + (1 − Qiℓk)TN−(0, σ,−µ)

= µ + QiℓkTN+(0, σ,−µ) − (1 − Qiℓk)TN+(0, σ, µ)

= µ + σ{QiℓkTN+(0, 1,−µ/σ) − (1 − Qiℓk)TN+(0, 1, µ/σ)}.

Generating TN+(0, 1, c) is easy: if c < 0, simply do rejection sampling of a Normal(0, 1)



124

until you get one that is > c. If c > 0, there is an adaptive rejection scheme (Robert,

1995).

21. Complete Conditionals for Wi2k, Wi4k, Wi6k, Wi8k, Wi,10,k and Wi,12,k When Not

Observed

For p = 2, 4, 6, 8, 10, 12, the variable Wipk is not observed when Qi,p−1,k = 0, or,

equivalently, when Wi,p−1,k < 0. Except for irrelevant constants,

log [Wipk|rest] = −(1/2)wi

∑
j

∑
ℓσ

jℓ
ǫ (Wijk − XT

ijkβj − Uij)(Wiℓk − XT
iℓkβℓ − Uiℓ)

= −(1/2)W 2
ipkC−1

2 + C1Wipk,

where, using the convention of Appendix 19,

C2 = 1/(σpp
ǫ );

C1 = σpp
ǫ (XT

ipkβp + Uip) −
∑

ℓ6=pσ
pℓ
ǫ (Wiℓk − XT

iℓkβℓ − Uiℓ).

Therefore,

[Wipk|rest] = QipkQi,p−1,k + (1 − Qi,p−1,k)Normal(C2C1, C2).

22. Usual Intake, Standardization and Transformation

Here we present detailed formulas for functions defined in Appendix 4. When

λ = 0, the back-transformation is

g−1
tr (z, 0) = exp

{
µ(0) + σ(0)z/

√
2
}

;

∂2g−1
tr (z, 0)/∂z2 =

σ2(0)

2
g−1
tr (z, 0).

When λ 6= 0, the back-transformation is

g−1
tr (z, λ) =

[
1 + λ

{
µ(λ) + σ(λ)z/

√
2
}]1/λ

;
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∂2g−1
tr (z, λ)/∂z2 =

σ2(λ)

2
(1 − λ)

[
1 + λ

{
µ(λ) + σ(λ)z/

√
2
}]−2+1/λ

.

22. Transformation Estimation

As part of an earlier project (Freedman et al., 2009), we estimated the transfor-

mations for one food/nutrient at a time using the method of Kipnis et al. (2009), both

for the data and also for each BRR weighted data set. To facilitate comparison with

the one food/nutrient at a time analysis, in our analysis of all HEI-2005 components,

we used these transformations as well. Of course, our methods can be generalized

to allow for estimation of the transformations as well. By allowing a different trans-

formation for each BRR weighted data set, we have captured the variation due to

estimation of the transformations.
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