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ABSTRACT

Multivariate Skew-t Distributions in Econometrics and

Environmetrics. (December 2010)

Yulia V. Marchenko, Diploma, Belarussian State University, Minsk, Belarus;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Marc G. Genton

This dissertation is composed of three articles describing novel approaches for

analysis and modeling using multivariate skew-normal and skew-t distributions in

econometrics and environmetrics.

In the first article we introduce the Heckman selection-t model. Sample selec-

tion arises often as a result of the partial observability of the outcome of interest in

a study. In the presence of sample selection, the observed data do not represent a

random sample from the population, even after controlling for explanatory variables.

Heckman introduced a sample-selection model to analyze such data and proposed a

full maximum likelihood estimation method under the assumption of normality. The

method was criticized in the literature because of its sensitivity to the normality as-

sumption. In practice, data, such as income or expenditure data, often violate the

normality assumption because of heavier tails. We first establish a new link between

sample-selection models and recently studied families of extended skew-elliptical dis-

tributions. This then allows us to introduce a selection-t model, which models the

error distribution using a Student’s t distribution. We study its properties and in-

vestigate the finite-sample performance of the maximum likelihood estimators for

this model. We compare the performance of the selection-t model to the Heckman

selection model and apply it to analyze ambulatory expenditures.



iv

In the second article we introduce a family of multivariate log-skew-elliptical dis-

tributions, extending the list of multivariate distributions with positive support. We

investigate their probabilistic properties such as stochastic representations, marginal

and conditional distributions, and existence of moments, as well as inferential prop-

erties. We demonstrate, for example, that as for the log-t distribution, the positive

moments of the log-skew-t distribution do not exist. Our emphasis is on two special

cases, the log-skew-normal and log-skew-t distributions, which we use to analyze U.S.

precipitation data.

Many commonly used statistical methods assume that data are normally dis-

tributed. This assumption is often violated in practice which prompted the develop-

ment of more flexible distributions. In the third article we describe two such mul-

tivariate distributions, the skew-normal and the skew-t, and present commands for

fitting univariate and multivariate skew-normal and skew-t regressions in the statis-

tical software package Stata.
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CHAPTER I

INTRODUCTION

A. Overview of Skewed Distributions

In the past decade, there has been much growth in application and in research in

the area of skewed distributions, a class of flexible parametric distributions accom-

modating departures from symmetry. This class originates from a perturbation of

symmetric density functions in a multiplicative fashion which introduces skewness.

Besides the flexibility in modeling skewed data, often arising in practice, the increas-

ing popularity of skewed distributions can be attributed to a number of reasons.

First, skewed distributions are simple extensions of their symmetric counterparts and

include the latter as special cases. Second, skewed distributions retain a number of

formal properties of standard symmetric distributions. Third, skewed distributions

have tractable multivariate versions. Fourth, many of the skewed distributions arise

as a result of some selection mechanism.

Although the idea of skewed distributions existed for a long time in the liter-

ature, it was formally introduced in Azzalini (1985). The (standard) skew-normal

distribution, SN(α), is the simplest representative of the class of skewed distributions

and has the density

fSN(z;α) = 2φ(z) Φ(αz), z ∈ R, (1.1)

where the shape parameter α ∈ R regulates the skewness of the distribution, and φ(·)

and Φ(·) denote the density and the cumulative distribution function, respectively, of

the standard normal distribution. When α = 0 the density (1.1) becomes the density

This dissertation follows the style of American Statistical Association.
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of the standard normal distribution, when α > 0 the density (1.1) is skewed to the

right, and when α < 0 the density (1.1) is skewed to the left.

An alternative representation of the skew-normal distribution arises from a se-

lection mechanism (Arellano-Valle et al. 2006). Suppose that a random vector (U, V )

follows a standard bivariate normal distribution with correlation δ:






U

V






∼ N2

















0

0






,







1 δ

δ 1

















,

then Z
d
= (V |U > 0) has the density

fSN(z; δ) = 2φ(z) Φ

(

δ√
1 − δ2

z

)

, z ∈ R, (1.2)

where δ ∈ (−1, 1). This representation is one of the stochastic representations of a

skew-normal random variate and is referred to as the conditioning method. The pa-

rameterization (1.2) also corresponds to the so-called “δ-parameterization” of the

skew-normal distribution whereas (1.1) corresponds to the “α-parameterization”.

There is one-to-one correspondence between the two parameterizations with α =

δ/
√

1 − δ2 and δ = α/
√

1 + α2.

The location-scale version of the skew-normal distribution SN(ξ, ω2, α) is defined

in a standard fashion: if Z ∼ SN(α), then Y = ξ+ωZ ∼ SN(ξ, ω2, α) and its density

is

fSN(y; ξ, ω, α) =
2

ω
φ(z)Φ(αz), y ∈ R, (1.3)

where z = (y − ξ)/ω. Unlike the normal distribution, ξ and ω2 do not correspond to

the mean µ and variance σ2 of the skew-normal random variate unless α = 0. The

mean and variance are functions of ξ, ω, and α.

There is yet another parameterization associated with the skew-normal distri-
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bution that is appealing from estimation and interpretation standpoints. The most

common method of estimation of the parameters in (1.3) is maximum likelihood. It

has been shown by Azzalini (1985), among others, that the profile log-likelihood for α

(or δ) has a stationary point at α = 0 (or δ = 0). This unfortunate property leads to

a singular Fisher information matrix at α = 0 and, thus, creates difficulty for testing

the important hypothesis of normality Ho: α = 0 or, equivalently, Ho: δ = 0 within the

likelihood framework. Also, the sampling distributions of estimated parameters are

far from being symmetric and sometimes are even bimodal for moderate sample size.

To alleviate this, Azzalini (1985) proposed the centered parameterization. Instead of

maximizing the log-likelihood based on direct parameters (ξ, ω, α), the log-likelihood

is reformulated and is maximized using centered parameters (µ, σ, γ), where γ is the

skewness index. The estimates of the direct parameters can then be obtained from

the estimates of centered parameters using the one-to-one correspondence between

the two parameterizations.

As we mentioned earlier, the skew-normal distribution is the simplest member

of a class of skewed distributions. Generally, any symmetric (univariate or multi-

variate) density f(·), a base density, can be used instead of φ(·) and any univariate

differentiable distribution function G{w(z)}, a skewing function, with a density sym-

metric about 0 can be used instead of Φ(αz) in (1.1), where w(z) is a real-valued

function such that w(−z) = −w(z) for all z. More generally, if one employs the

selection approach, then for continuous random vectors V ∈ R
d and U ∈ R

p, the

distribution with density fZ(z) = fV(z)P (U ∈ C|V = z)/P (U ∈ C) underlying the

selection mechanism Z
d
= (V|U ∈ C), where C is a measurable subset of Rp such that

0 < P (U ∈ C) < 1, belongs to a class of skewed distributions.

In fact, the multivariate version of (1.1), SNd(0, Ω̄,α), arises when φ(·) is replaced

with a multivariate standard normal density φd(·) with the correlation matrix Ω̄ and
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the function αz is replaced by a linear function α⊤z, where the shape is now regulated

by a vector α = (α1, . . . , αd)
⊤ ∈ R

d:

fSNd
(z; Ω̄,α) = 2φd(z; Ω̄) Φ(α⊤z), z ∈ R

d.

The location-scale version can be defined in a similar manner as for the univariate

case by considering a random vector Y = ξ + ωZ, where Z ∼ SNd(0, Ω̄,α), ξ ∈ R
d

is the location vector, and Ω = {(ωij)}d
i,j=1 ∈ R

d×d is the scale matrix, such that

Ω̄ = ω−1Ωω−1, where ω = diag{√ω11, . . . ,
√
ωdd}. The multivariate skew-normal

density is:

fSNd
(y; ξ,Ω,α) = 2φd(y; ξ,Ω) Φ(α⊤z), y ∈ R

d, (1.4)

where φd(y; ξ,Ω) is the density of a d-dimensional normal distribution with mean ξ

and covariance Ω, and z = ω−1(y − ξ).

Another popular representative of the family of skewed distributions is the skew-t

distribution, introduced by Azzalini and Capitanio (2003), for which the symmetric

base distribution is a heavy-tailed, Student’s t distribution:

fST(z;α, ν) = 2 t(z; ν)T

{

(

ν + 1

ν + z2

)1/2

αz; ν + 1

}

, z ∈ R, (1.5)

where t(·; ν) and T (·; ν) denote the density and the cumulative distribution func-

tion, respectively, of the standard Student’s t distribution with ν degrees of freedom.

The skew-normal distribution is a special case of the skew-t distribution (1.5) when

ν = ∞. When α = 0, the density (1.5) reduces to the Student’s t density and to the

normal density when in addition ν = ∞. The popularity of the skew-t distribution

is attributed to its flexibility in capturing two common departures from normality

arising in practice — asymmetry and heavy tails. Similar to the skew-normal distri-

bution, the conditioning method can be used to formulate the skew-t distribution in
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the δ-parameterization. The centered parameterization of the skew-t distribution is

still under development. The location-scale and multivariate versions of the skew-t

distribution can be defined analogously to the skew-normal distribution. For ex-

ample, the density of a multivariate skew-t distribution with location ξ ∈ R
d, scale

matrix Ω ∈ R
d×d, the vector of shape parameters α ∈ R

d, and the degrees-of-freedom

parameter ν > 0, STd(ξ,Ω,α, ν), is

fSTd
(y; ξ,Ω,α, ν) = 2 td(y; ξ,Ω, ν)T

{

(

ν + d

ν +Qy

)1/2

α⊤z; ν + d

}

, y ∈ R
d, (1.6)

where z = ω−1(y − ξ), Qy = (y − ξ)⊤Ω−1(y − ξ), and td(·) is the density of a d-

dimensional Student’s t distribution with location ξ, scale matrix Ω and degrees of

freedom ν.

Besides the extra flexibility in modeling the tail behavior, the skew-t distribution

has another advantage over a more simple skew-normal model. The singularity of

the Fisher information matrix at α = 0 (or δ = 0) is not observed for the skew-t

model unless ν = ∞. This as well as its robustness properties make it an appealing

alternative to the skew-normal or normal distribution.

The distributions discussed above have a number of appealing properties such as

the distribution of the quadratic forms does not depend on the shape parameter α, the

closure under affine transformations and marginalization. One useful property they

are lacking is the closure under conditioning. This issue is circumvented by considering

the extended versions of the skewed distributions described above introducing an

extra, shift parameter τ ∈ R. Specifically, the multivariate extended skew-normal

density (Capitanio et al. 2003) is

fESNd
(y; ξ,Ω,α, τ) = φd(y; ξ,Ω)

Φ(α⊤z + τ)

Φ(τ/
√

1 + α⊤Ω̄α)
, y ∈ R

d. (1.7)
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The multivariate extended skew-t density (Arellano-Valle and Genton 2010a) is

fESTd
(y; ξ,Ω,α, τ, ν) = td(y; ξ,Ω, ν)

T

{

(

ν+d
ν+Qy

)1/2

(α⊤z + τ); ν + d

}

T (τ/
√

1 + α⊤Ω̄α; ν)
, y ∈ R

d.(1.8)

Densities (1.4) and (1.6) are special cases of (1.7) and (1.8), respectively, when τ = 0.

The extended versions of the skew-normal and skew-t distributions are closed under

conditioning and also can model lighter tails than the normal distribution. In fact,

the conditional distribution of the skew-normal and skew-t random vectors are of

the form (1.7) and (1.8), respectively. The extended skewed distributions also arise

naturally in the sample-selection setting, as we discuss in more detail in Chapter II.

The normal and Student’s t distributions are special cases of a more general

family of elliptically-contoured distributions, distributions with contours of constant

density representing ellipsoids. We will also consider in Chapters II and III a more

general family of skew-elliptical distributions which arises from (1.1), when the base

symmetric (multivariate) density and the skewing function are the density and the

cumulative distribution function, respectively, of an elliptically-contoured distribu-

tion.

B. Motivation

Below I briefly describe the proposed novel approaches for analysis and modeling using

multivariate skew-normal and skew-t distributions in econometrics and environmetrics

as well as motivation for each topic.

Heckman selection-t model. This work was prompted by the link between se-

lection mechanisms such as (1.2) and the family of skewed distributions. More specif-

ically, there is a link between the classical Heckman sample-selection model, one of

the most popular models in econometrics, and the extended skew-normal distribution
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describing the continuous part of the selection model. The maximum likelihood esti-

mation method, originally proposed by Heckman under the assumption of normality

(Heckman 1974), despite its efficiency, was criticized for sensitivity to the violation

of normality and also for collinearity problems arising in certain cases. Taking into

account the robustness properties of the skew-t distribution, it is natural to consider

the extended skew-t distribution for modeling the continuous part of the selection

model. Using the link between selections and skewed distributions, we demonstrate

that the extended skew-t model arises when the Student’s t distribution is assumed for

the error distribution. Using this fact, we introduce a more robust sample-selection

model, the selection-t model, and study its properties.

Multivariate log-skew-elliptical distributions with applications to pre-

cipitation data. The log-normal distribution is often used to analyze data with

nonnegative support such as precipitation data, for example. When heavy tails are

likely, as is the case for various financial data, the log-t distribution is considered for

the analysis. Both of these distributions, however, assume a symmetric distribution

for the data in the log scale which is not always plausible in practice. The assumption

of symmetry can be relaxed by considering log-skew-normal and log-skew-t distribu-

tions. Azzalini et al. (2003) successfully applied the univariate log-skew-normal and

log-skew-t distributions for the analysis of family income data. Their encouraging

findings prompted us to introduce and investigate formal properties of a more gen-

eral family of multivariate log-skew-elliptical distributions and to extend the areas of

application to environmetrics by using these distributions to analyze U.S. precipita-

tion data (Marchenko and Genton 2010b).

A suite of commands for fitting the skew-normal and skew-t models.

A large number of research articles appeared in the literature demonstrating the use

of skewed distributions in various applications, but the use of these distributions by
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practitioners is still limited. Two common reasons for low popularity of some method-

ologies in practice are the lack of awareness by practitioners of new methods and the

absence of user-friendly software implementing the methods to perform the analysis.

Currently, a number of methods for fitting the skew-normal and skew-t distributions

are available in the package sn, developed by Azzalini, with a free software package,

R (Azzalini 2006). We develop a suite of commands to perform analysis using skewed

distributions in a commercial software package, Stata (StataCorp 2009), as a free

user-written add-on and distribute it via publication in the peer-reviewed Stata Jour-

nal. This work was motivated by the desire to raise awareness of these distributions

among the large Stata community as well as to satisfy the requests from a number of

current Stata users. This suite of commands also offers some features which are not

yet available in other software.
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CHAPTER II

A HECKMAN SELECTION-T MODEL

Sample selection arises frequently in applications in many fields including economics,

biostatistics, finance, sociology, and political science, to name a few. Sample selection

is a special case of a more general concept known in the econometrics literature

as limited dependent variables — variables observed over a limited range of their

support.

Let Y ⋆ ∈ R be our outcome of interest. Suppose that we observe Y = Y ⋆

only when some unobserved random variable U⋆ ∈ R belongs to a subset C ⊂ R

of its support, such that 0 < P (U⋆ ∈ C) < 1. That is, Y is subject to hidden

truncation (or simply truncation when U⋆ = Y ⋆). Model parameters underlying Y ⋆

are then estimated from the observed Y using the conditional density f(Y |U⋆ ∈ C).

In practice, truncation arises when the collected sample represents only a subset of

a full population, for example, a sample of individuals with incomes below or above

some threshold. Sometimes the collected sample does represent a full population

but because of some hidden truncation U⋆ ∈ R the outcome of interest Y ⋆ is not

observed for all of the participants. In this case, Y ⋆ is subject to incidental truncation

or sample selection (e.g., Greene 2008). The problem of sample-selection or, more

specifically, sample-selection bias, arises when Y ⋆ and U⋆ are correlated and, thus,

must be modeled jointly. That is, inference based on only observed Y would not be

valid. This problem is also known as data missing not at random (MNAR, Rubin

1976). For example, in a study of incomes, people with high (or low) income may be

less likely to report it than people with average income. In the presence of sample

selection we observe an indicator U = I(U⋆ ∈ C) and other explanatory variables

for all of a sample and the outcome Y = Y ⋆ for part of the sample. Thus, the
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sample-selection model is comprised of the continuous component f(Y |U = 1) and

the discrete component P (U).

The classical sample-selection model was introduced by Heckman (1974) in the

mid 1970s when he proposed a parametric approach to the estimation under the

assumption of bivariate normality between Y ⋆ and U⋆. The main criticism of the

proposed method was the sensitivity of the parameter estimates to the assumption of

normality, often violated in practice, which led to his developing a more robust esti-

mation procedure in the late 1970s, known as Heckman’s two-step estimator (Heck-

man 1979). Both estimation methods were found to be sensitive to high correlation

between variables of the outcome and selection equations, as is often encountered

in practice (see, for example, Puhani 2000 and references therein). Various other

robust-to-normality methods have been proposed over the years for the analysis of a

sample-selection model, including a number of semiparametric (e.g., Ahn and Powell

1993, Newey 1999) and nonparametric (e.g., Das et al. 2003) methods, relaxing the

distributional assumption in general. See, for example, Vella (1998), Li and Racine

(2007, p. 315) for a general overview of methods for selection models.

In this chapter, we develop and study the properties of yet another estimation

approach. Our approach maintains the original parametric framework of the model

but considers a bivariate Student’s t distribution as the underlying joint distribution

of (Y ⋆, U⋆) and estimates the parameters via maximum likelihood. Among various

departures from normality occurring in practice, one of the most common is when

the distribution of the data has heavier tails than the normal distribution, such as

the distribution of (log) incomes in the population. This makes it natural to consider

a Student’s t distribution as an underlying joint distribution for the selection model.

The robustness properties of the Student’s t distribution (Lange et al. 1989, Azzalini

and Genton 2008, DiCiccio and Monti 2009) also make it an attractive parametric
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alternative to the normal distribution. For example, this distribution has been used

recently to relax the assumption of normality in various statistical models such as cen-

sored regression (Muñoz-Gajardo et al. 2010), treatment models (Chib and Hamilton

2000), and switching regression (Scruggs 2007), to name a few. The selection bias test

based on the selection-normal model can be affected by heavy tails, as we demonstrate

in our simulation, and our method addresses this issue. Our motivation for consider-

ing the Student’s t distribution is also prompted by the existence of a link between the

continuous part of the selection model and an extended skew-t distribution, studied

extensively in the recent literature (Arellano-Valle and Genton 2010a).

The chapter is organized as follows. Section A describes the classical sample-

selection model and introduces the selection-t model. The finite-sample performance

of the selection-t model is evaluated numerically and compared to that of the classical

selection-normal model in Section B. A numerical application of the selection-t model

is presented in Section C. The chapter concludes with a discussion in Section D. The

relevant analytical results are given in the Appendix A.

A. Heckman Selection Models

In this section we first describe the classical sample-selection model and its two com-

monly used estimation methods, maximum likelihood and two step. Next, we com-

ment on the link between sample-selection models and a family of skew-elliptical

distributions. Finally, we formulate the sample selection-t model and study its prop-

erties.
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1. Classical Heckman sample-selection model

Suppose that the regression model of primary interest is

y⋆
i = x⊤

i β + ǫi, i = 1, . . . , N. (2.1)

However, due to a certain selection mechanism,

u⋆
i = w⊤

i γ + ηi, i = 1, . . . , N, (2.2)

we observe only N1 out of N observations y⋆
i for which u⋆

i > 0:

ui = I(u⋆
i > 0),

yi = y⋆
i ui. (2.3)

Latent variables y⋆
i ∈ R and u⋆

i ∈ R are associated with primary and selection re-

gressions, respectively; yi is the observed counterpart of y⋆
i and ui is an indicator

of whether the primary dependent variable is observed. The vectors β ∈ R
p and

γ ∈ R
q are unknown parameters; the vectors xi ∈ R

p and wi ∈ R
q are observed

characteristics; and ǫi and ηi are error terms from a bivariate normal distribution:







ǫi

ηi






∼ N2

















0

0






,







σ2 ρσ

ρσ 1

















. (2.4)

The selection-normal model (2.1)-(2.3) is known as “type 2 tobit model” in the econo-

metrics literature (Amemiya 1985, p. 385) and is sometimes also referred to as the

“Heckman model”.

Because we only observe the sign of u⋆
i in (2.3), its variance is nonidentifiable

and, w.l.g., is set to 1 in (2.4). The parameter ρ ∈ (−1, 1) governs the “selection bias”

which arises when ρ 6= 0 and the standard ordinary least squares (OLS) regression

is used to estimate β in (2.1). The zero threshold in (2.3) is arbitrary; any other
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constant threshold c 6= 0 would be absorbed by the intercept in (2.2).

As we mentioned in the introduction, the density of the sample-selection model

is comprised of a continuous component corresponding to the conditional density

f(y|U = 1) and a discrete component P (U). The discrete component is described

by the probit model P (U = u) =
{

Φ(w⊤γ)
}u {

Φ(−w⊤γ)
}1−u

, where Φ(·) is the

standard normal cumulative distribution function. The conditional density is

f(y|U = 1) =
1

σ
φ

(

y − x⊤β

σ

) Φ

{

ρ√
1−ρ2

(

y−x⊤β

σ

)

+ w⊤γ√
1−ρ2

}

Φ(w⊤γ)
, (2.5)

where φ(·) denotes the standard normal density.

Then, the (partial) log-likelihood function for this model based on a single pair

of observations (y, u) can be written as

l(β,γ, ρ, σ; y, u) = u ln f(y|U = 1) + u lnΦ(w⊤γ) + (1 − u) lnΦ(−w⊤γ)

= u

[

ln Φ

{

w⊤γ + ρ(y − x⊤β)/σ
√

1 − ρ2

}

− 1

2

(

y − x⊤β

σ

)2

− ln(
√

2πσ)

]

+(1 − u) lnΦ(−w⊤γ). (2.6)

The term partial likelihood reflects the fact that only observed values y contribute

to the likelihood. Heckman (1974) showed that the maximum likelihood estimators

(MLEs) obtained from the maximization of (2.6) have the same properties as the

conditional MLEs, although (2.6) does not correspond to a true conditional density.

When the distributional assumption of bivariate normality is correct, MLEs are fully

efficient.

A method more robust to the normality assumption was proposed by Heckman

(1979) and is known as the two-step estimation. The motivation for the two-step

estimator is based on the fact that the conditional expectation of the observed data
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is

E(Y |U⋆ > 0,x,w) = x⊤β + ρσλ(w⊤γ), (2.7)

where λ(·) = φ(·)/Φ(·) denotes the inverse Mills ratio. The inconsistency of the

classical OLS estimator from regression of y on x is explained by the existence of an

extra term ρσλ(w⊤γ) when ρ 6= 0 involved in the regression function (2.7), which is

omitted from the regression. The two-step method is designed to correct the OLS

regression for the omitted term and consists of two stages. At the first stage, the

probit model P (U |w) is fit to the data and the ML estimates of γ are obtained.

At the second stage, β and βλ = ρσ are estimated by least squares regression of

y on x and λ̂, where λ̂ = φ(w⊤γ̂)/Φ(w⊤γ̂). The consistent estimates of ρ and

σ can be obtained from β̂λ, least squares residual variance and average predicted

probabilities from the probit model (e.g., Greene 2008, p. 886). The advantage of

the two-step method over ML is that no distributional assumption is required for

the error terms for the consistency of the estimator. However, this method suffers

from possible collinearity problems when w includes some of the covariates from the

primary regression because of the linearity of the inverse Mills ratio λ(·) in the wide

range of its support. In fact, both methods tend to perform poorly in the presence

of high correlation between error terms and high collinearity among regressors in the

primary and selection equations.

The sensitivity of the two methods to the collinearity among regressors in the

primary and selection equations has been shown to be even more of an issue in practi-

cal applications than the misspecified error distribution (Puhani 2000). When w = x,

which is not an unusual assumption in many practical settings, the identifiability of

the parameters relies heavily on the functional form of the distribution. In partic-

ular, for the selection-normal model the identification of the regression parameters
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is achieved through the nonlinearity of the inverse Mills ratio. The problem arises

because of the linearity of the inverse Mills ratio λ(·) in the wide range of its support

(see Subsection 3 of Section A of this chapter). To alleviate this problem the econo-

metrics literature suggests to impose an exclusion restriction according to which at

least one extra variable which is a good predictor of u⋆
i is included in the selection

equation and does not appear in the primary regression. In practice, however, it can

be difficult to find such variables because strong predictors of the selection equation

are usually also strong predictors of the primary equation and thus should be included

in the primary regression as well.

2. Link to extended skew-elliptical distributions

The continuous component of the sample-selection density, the conditional density

(2.5), corresponds to the extended skew-normal distribution, studied in more detail

recently by Arellano-Valle and Genton (2010a),

fESN(y;µ, σ2, α, τ) =
1

σ
φ

(

y − µ

σ

)

Φ
(

α y−µ
σ

+ τ
)

Φ(τ/
√

1 + α2)
, y ∈ R, (2.8)

with parameterization µ = x⊤β ∈ R, α = ρ/
√

1 − ρ2 ∈ R and τ = w⊤γ/
√

1 − ρ2 ∈

R. The parameterization of the mean µ is simply the conventional parameteriza-

tion used in the regression setting. The parameterization of the shape parameter α

corresponds to the so-called “δ-parameterization” (δ = ρ in this case) arising from

the stochastic representation of a skew-normal random variable (Azzalini 2005), also

discussed below. The key distinction here is the parameterization of the shift param-

eter τ . In the sample-selection setting, similar to the mean µ, τ is parameterized as

a linear function of the predictors w from the selection equation. Thus, the model

includes a q× 1 vector of unknown coefficients γ rather than a single shift parameter

τ .
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Azzalini (1985) and Copas and Li (1997), among others, noted that the distribu-

tion of Y ⋆|U⋆ > 0, arising from hidden truncation when Y ⋆ and U⋆ are jointly normal

and the marginal distribution of U⋆ is standard normal, belongs to the family of

skew-normal distributions (Azzalini 1985, 2005, Genton 2004), which is a special case

of (2.8) with τ = 0. In fact, the selection mechanism Y ⋆|U⋆ > 0 corresponds to one

of the stochastic representations of a skew-normal random variate, when the location

of U⋆ is zero, and an extended skew-normal random variate, when the location of U⋆

is different from zero. Based on this link, it would be natural to use the skew-normal

distribution to model data arising from hidden truncation under the assumption of

the underlying bivariate normal distribution. For example, we can fit the skew-normal

model, available in statistical packages R (Azzalini 2006) and Stata (Marchenko and

Genton 2010a), to the observed data to account for asymmetry in the distribution

often induced by hidden truncation. Even in the sample-selection setting, if we fit

the extended skew-normal model (2.8) with regression parameterization of τ and µ

to the observed data only we will obtain consistent (albeit inefficient) results, unlike

the OLS regression.

We can also use this link to help study the properties of the sample-selection

model. From (2.6), the log-likelihood for the selection-normal model consists of two

components. The first component is the log-likelihood of the extended skew-normal

model for the observed data and the second component is the probit log-likelihood

describing the selection process. It is known that both the profile log-likelihood for

α (or ρ in the “δ-parameterization”) of the skew-normal and extended skew-normal

models has a stationary point at α = 0 (or ρ = 0) which leads to the singularity of the

Fisher information and observed information matrices at that point. The singularity

is caused by the chosen parameterization as opposed to the unidentifiability of the

model parameters in general. The sample-selection model uses a similar parameteriza-
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tion. Also, in the sample-selection framework, the hypothesis H0: ρ = 0 is important

for testing the existence of the sample-selection bias. Thus, the stationarity of the

likelihood at ρ = 0 would create difficulty in testing this hypothesis within the like-

lihood framework. As it turns out, the selection-normal model does not exhibit this

property. The stationarity issue for the extended skew-normal model arises because

the scores of the parameters are linearly dependent at α = 0 (or ρ = 0) (Arellano-

Valle and Genton 2010a). The scores for β, σ, and ρ for the selection-normal model

are linearly related. However, the score for γ is not zero, unlike the score for τ for

the extended skew-normal model, and is not linearly dependent with any of the other

scores. Hence, the observed information is not singular at ρ = 0. See Appendix A3

for details.

More generally, Arellano-Valle et al. (2006) unified all of the distributions arising

from selection mechanisms Y⋆|U⋆ ∈ C, where Y⋆ ∈ R
d1 , U⋆ ∈ R

d2 , and C is a mea-

surable subset in R
d2 such that 0 < P (U⋆ ∈ C) < 1, in a broad class of selection distri-

butions. For example, if (Y ⋆, U⋆) follow a bivariate elliptically contoured distribution

(e.g., Fang et al. 1990), then Y ⋆|U⋆ > 0 has an extended skew-elliptical distribution

(Arellano-Valle and Azzalini 2006, Arellano-Valle and Genton 2010b). Specifically, let

EC2(ξ,Ω, g
(2)) denote a family of bivariate elliptically contoured distributions (with

existing density) with a generator function g(2)(·) defining a spherical bivariate den-

sity, a location column vector ξ ∈ R
2, and a positive definite scale matrix Ω ∈ R

2×2.

If X ∼ EC2(ξ,Ω, g
(2)), then its density is f2(x; ξ,Ω, g(2)) = |Ω|−1/2g(2)(Qx), where

Qx = (x − ξ)⊤Ω−1(x − ξ) and x ∈ R
2 (Fang et al. 1990, p. 46). If







Y ⋆

U⋆






∼ EC2











ξ =







µ

µu






,Ω =







σ2 ρσ

ρσ 1






, g(2)











, (2.9)

then Y ⋆|U⋆ > 0 ∼ ESE(µ, σ2, α, τ, gz), an extended skew-elliptical distribution with
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the location parameter µ, the scale parameter σ2, the shape parameter α = ρ/
√

1 − ρ2,

and the shift parameter τ = µu/
√

1 − ρ2. The corresponding extended skew-elliptical

density is

fESE(y;µ, σ2, α, τ, gz) =
1

σ
f
(

z; g(1)
) F (αz + τ ; gz)

F (τ/
√

1 + α2; g(1))
, y ∈ R, (2.10)

where z = (y − µ)/σ, gz(v) = g(2)(v + z2)/g(1)(v), f(·; g(1)) and F (·; g(1)) are the

density and cumulative distribution function, respectively, of a univariate standard

elliptical distribution with a generator function g(1)(·), and F (·; gz) is the cumulative

distribution function of a univariate standard elliptical distribution with a generator

function gz(·). The extended skew-normal density (2.8) is a special case of (2.10) with

the normal generator function g(2)(v) = 1
2π
e−v/2. When µu = 0, (2.10) reduces to the

family of skew-elliptical distributions studied by Branco and Dey (2001).

We can use this more general link to build more flexible parametric sample-

selection models relaxing the classical assumption of underlying normality as we

demonstrate in the next subsection using the Student’s t distribution. If we con-

sider an underlying bivariate elliptically-contoured distribution (2.9), the continuous

component of the resulting sample-selection model will correspond to the extended

skew-elliptical distribution (2.10). Following (2.6), the likelihood function will in-

clude the likelihood for the extended skew-elliptical model and the likelihood for the

corresponding binary elliptical model. In the spirit of the selection-normal model,

we can investigate the properties of such flexible sample-selection models using some

properties established for extended skew-elliptical distributions.

3. Selection-t model

Using the link between sample-selection models and extended skew-elliptical distri-

butions, discussed in the previous subsection, we relax the assumption of bivariate
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normality and consider the case when the underlying error distribution is a bivariate

Student’s t distribution. That is, a selection-t model is defined by (2.1)-(2.3) with

bivariate Student’s t error distribution:






ǫi

ηi






∼ t2

















0

0






,







σ2 ρσ

ρσ 1






, ν











, (2.11)

where t2(y; µ,Ω, ν) = 1
2π
|Ω|−1/2

{

1 + (y−µ)⊤Ω−1(y−µ)
ν

}−(ν+2)/2

is the density of a bi-

variate Student’s t distribution. In this case ρ = 0 does not imply independence of

the primary and selection equations as for the selection-normal model, unless ν = ∞.

When errors are nonnormally distributed, Lee (1982, 1983) proposed a general

estimation method transforming the error components to bivariate normality and

applied it to the case when error distribution is bivariate t. We focus on the full

maximum likelihood estimation of the selection-t model (2.1)-(2.3), (2.11), which is

fully efficient under the bivariate-t assumption.

The bivariate Student’s t distribution from (2.11) corresponds to the bivari-

ate elliptical distribution (2.9) with the generator function g(2)(v) = 1
2π
ν(ν+2)/2(1 +

v)−(ν+2)/2. Then, from (2.10), the distribution of Y ⋆|U⋆ > 0 is extended skew-t with

density

fEST(y;µ, σ2, α, τ, ν) =
1

σ
t(z; ν)

T
{

(αz + τ)
(

ν+1
ν+z2

)1/2
; ν + 1

}

T (τ/
√

1 + α2; ν)
, y ∈ R, (2.12)

where z = (y − µ)/σ, and t(·; ν) and T (·; ν) are the density and the cumulative

distribution function of a univariate Student’s t distribution with ν degrees of free-

dom. Thus, the density f(y|U = 1), corresponding to the continuous component

of the selection-t model, is described by (2.12) with parameterization µ = x⊤β,

α = ρ/
√

1 − ρ2, and τ = w⊤γ/
√

1 − ρ2. The extended skew-t distribution was



20

studied in detail in Arellano-Valle and Genton (2010a).

For the selection-t model, the conditional expectation of the observed data is

E(Y |U⋆ > 0,x,w) = x⊤β + ρσλν(w
⊤γ), ν > 1, (2.13)

where λν(v) = ν+v2

ν−1
t(v;ν)
T (v;ν)

(Lee 1983, Arellano-Valle and Genton 2010a). We can see

that, similar to the selection-normal model, the conventional OLS regression of y on x

will produce inconsistent results when ρ 6= 0. We can visualize the impact of using the

selection-normal model to model the regression function (2.13) by plotting functions

λ(·) from (2.7) and λν(·) in Figure 1.

0
2

4
6

7.
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Figure 1. Plot of λν(·) for different values of ν with λ∞(·) = λ(·), corresponding to the

normal case.
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From Figure 1 we can see that for negative values of the selection linear predictor

w⊤γ, the conditional expectation will be underestimated under the selection-normal

model for moderate values of the degrees of freedom ν. The difference diminishes as

the degrees of freedom increase.

Marginal effects of the predictors on y in the observed sample are often of interest

in practice. Suppose that wk = xk, then the conditional marginal effect of xk on y

under the selection-t model is

∂E(Y |U⋆ > 0,x,w)

∂xk

= βk + ρσγkλ
′
ν(w

⊤γ), ν > 1,

where λ′ν(v) = ∂λν(v)
∂v

= −λν(v)
{

v ν+1
ν+v2 + λν(v)

}

. Figure 2 depicts functions λ′(·) and

λ′ν(·) for several degrees of freedom. From the graph, the conditional marginal effect

of xk on y will be overestimated by the selection-normal model for negative values of

w⊤γ and moderate degrees of freedom ν.

Similar to the selection-normal model, the log-likelihood function of the selection-

t model can be decomposed into the log-likelihood of the extended skew-t distribution

and the log-likelihood for the binary t model. From (2.12), the log-likelihood for the

selection-t model based on a single pair of observations (y, u) is

l(β,γ, ρ, σ, ν; y, u) = u ln f(y|U = 1) + u lnT (w⊤γ; ν) + (1 − u) lnT (−w⊤γ; ν)

= u ln t(z; ν) − u lnσ + u lnT

{

(

ν + 1

ν + z2

)1/2
ρz + w⊤γ
√

1 − ρ2
; ν + 1

}

+(1 − u) lnT (−w⊤γ; ν), (2.14)

where z = (y − x⊤β)/σ. There are no closed-form expressions for the MLEs of the

parameters in (2.14). Thus, the MLEs are obtained numerically using the Newton-

Raphson algorithm. The scores and the Hessian matrix corresponding to (2.14) are

given in Appendix A1 and Appendix A2, respectively.
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Figure 2. Plot of λ′ν(·) for different values of ν with λ′∞(·) = λ′(·), corresponding to

the normal case.

B. Monte Carlo Simulations

1. Finite-sample properties of the MLEs

To study finite-sample properties of the MLEs for the selection-t model, we consider

several simulation scenarios. The primary regression is y⋆
i = 0.5 + 1.5xi + ǫi, where

xi
iid∼ N(0, 1) and i = 1, . . . , N = 1000. We consider two types of selection regressions:

u⋆
i = 1+xi +1.5wi + ηi, with exclusion restriction wi

iid∼ N(0, 1), and u⋆
i = 1+xi + ηi,

without the exclusion restriction. The covariates xi and wi are independent and
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are also independent from the error terms ǫi and ηi. The error terms (ǫi, ηi) are

generated from a bivariate Student’s t distribution with ν = 5 degrees of freedom and

with the scale matrix Ω =







σ2 ρσ

ρσ 1






, where σ = 1. We consider several values of

correlation ρ ∈ {0, 0.2, 0.5, 0.7}. We observe only values yi for which u⋆
i > 0, that is

yi = uiy
⋆
i , where ui = I(u⋆

i > 0). In the considered scenarios, the degree of censoring

corresponds to about 30% in the absence of the exclusion restriction and about 40%

in the presence of the exclusion restriction.

We compare the performance of the selection-t model (SLt) to the selection-

normal model (SLN) and the Heckman’s two-step method (TS) when errors come

from a bivariate Student’s t distribution. Simulation results based on R = 1000

replications are presented in the Tables 1 and 2. The results are presented in the

estimation metric with the support (−∞,∞), where atanh ρ is the inverse hyperbolic

tangent of ρ, atanh ρ = ln{(1 + ρ)/(1 − ρ)}/2.

Our simulations demonstrate good performance of the selection-t ML estimators

(SLt) in a finite sample under the correct specification of the model and error dis-

tribution. Biases and mean squared errors of the parameter estimates are close to

zero and standard error estimates obtained using the inverse of the negative Hessian

matrix, presented in the Appendix A2, adequately reflect variability in the parameter

estimates.

Compared to other methods, SLt leads to smaller biases, in general, and smaller

mean squared errors of the parameter estimates. In the presence of the exclusion

restriction (Table 1), the results for the primary regression coefficients are comparable

across the three methods, with SLt being slightly more efficient. In the absence of

the exclusion restriction (Table 2), the SLN and TS methods demonstrate some bias

in the estimates of the primary regression coefficients as the correlation between
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Table 1. Simulation results in the presence of the exclusion restriction. Standard error

estimates of atanh ρ and ln(σ) are not available for the TS method so the

mean squared errors are not reported.

Bias MSE SE diff.

SLt SLN TS SLt SLN TS SLt

ρ = 0
β1 0.0024 0.0014 0.0012 0.0050 0.0063 0.0064 0.0001
β0 0.0005 0.0025 0.0028 0.0073 0.0098 0.0104 0.0006
γ2 0.0067 -0.1752 -0.1753 0.0179 0.0404 0.0404 0.0021
γ1 0.0104 -0.2619 -0.2623 0.0305 0.0834 0.0836 0.0050
γ0 0.0046 -0.1737 -0.1738 0.0161 0.0385 0.0385 0.0008

atanh ρ 0.0035 0.0021 0.0014 0.0298 0.0293 – 0.0000
ln(σ) -0.0014 0.2366 0.2369 0.0041 0.0591 – 0.0005
ln(ν) 0.0306 – – 0.0819 – – 0.0051

ρ = 0.2
β1 0.0004 -0.0007 0.0012 0.0052 0.0065 0.0065 0.0016
β0 -0.0039 -0.0004 -0.0046 0.0073 0.0098 0.0103 0.0002
γ2 0.0059 -0.1737 -0.1739 0.0178 0.0397 0.0398 0.0023
γ1 0.0033 -0.2651 -0.2655 0.0282 0.0837 0.0839 0.0022
γ0 0.0044 -0.1726 -0.1726 0.0159 0.0379 0.0379 0.0000

atanh ρ 0.0083 -0.0059 0.0051 0.0300 0.0315 – 0.0022
ln(σ) 0.0023 0.2367 0.2372 0.0040 0.0592 – 0.0005
ln(ν) 0.0394 – – 0.0809 – – 0.0018

ρ = 0.5
β1 0.0009 0.0041 0.0048 0.0047 0.0062 0.0062 0.0003
β0 0.0024 0.0023 0.0008 0.0065 0.0091 0.0105 0.0023
γ2 0.0038 -0.1777 -0.1766 0.0171 0.0411 0.0409 0.0016
γ1 0.0079 -0.2684 -0.2646 0.0288 0.0869 0.0848 0.0025
γ0 0.0048 -0.1747 -0.1731 0.0152 0.0384 0.0380 0.0029

atanh ρ 0.0049 -0.0057 0.0020 0.0332 0.0417 – 0.0076
ln(σ) -0.0015 0.2361 0.2366 0.0042 0.0590 – 0.0000
ln(ν) 0.0285 – – 0.0857 – – 0.0122

ρ = 0.7
β1 -0.0010 0.0075 0.0040 0.0045 0.0058 0.0061 0.0007
β0 -0.0009 -0.0090 -0.0014 0.0053 0.0071 0.0097 0.0001
γ2 0.0032 -0.1831 -0.1763 0.0158 0.0423 0.0402 0.0009
γ1 0.0004 -0.2832 -0.2686 0.0274 0.0941 0.0860 0.0037
γ0 -0.0005 -0.1829 -0.1767 0.0157 0.0414 0.0395 0.0024

atanh ρ 0.0125 0.0214 0.0074 0.0354 0.0450 – 0.0043
ln(σ) 0.0021 0.2378 0.2367 0.0044 0.0601 – 0.0010
ln(ν) 0.0351 – – 0.0840 – – 0.0032
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Table 2. Simulation results in the absence of the exclusion restriction. Standard error

estimates of atanh ρ and ln(σ) are not available for the TS method so the

mean squared errors are not reported.

Bias MSE SE diff.

SLt SLN TS SLt SLN TS SLt

ρ = 0
β1 0.0013 -0.0009 -0.0029 0.0141 0.0253 0.0467 0.0023
β0 -0.0005 0.0046 0.0082 0.0228 0.0434 0.0906 0.0032
γ1 0.0021 -0.1573 -0.1565 0.0149 0.0326 0.0323 0.0049
γ0 -0.0001 -0.1430 -0.1419 0.0113 0.0262 0.0258 0.0011

atanh ρ 0.0009 -0.0089 -0.0109 0.1074 0.1720 – 0.0078
ln(σ) 0.0049 0.2408 0.2532 0.0041 0.0615 – 0.0002
ln(ν) 0.0197 – – 0.0796 – – 0.0022

ρ = 0.2
β1 -0.0041 -0.0056 0.0072 0.0136 0.0264 0.0451 0.0033
β0 0.0074 0.0134 -0.0055 0.0209 0.0448 0.0856 0.0031
γ1 0.0088 -0.1521 -0.1498 0.0142 0.0310 0.0301 0.0002
γ0 0.0051 -0.1392 -0.1371 0.0112 0.0254 0.0247 0.0003

atanh ρ -0.0108 -0.0213 0.0350 0.1026 0.1805 – 0.0096
ln(σ) 0.0045 0.2390 0.2496 0.0042 0.0614 – 0.0004
ln(ν) 0.0289 – – 0.0817 – – 0.0042

ρ = 0.5
β1 -0.0075 0.0178 0.0131 0.0102 0.0210 0.0376 0.0045
β0 0.0074 -0.0137 -0.0094 0.0139 0.0325 0.0701 0.0058
γ1 0.0023 -0.1626 -0.1525 0.0143 0.0345 0.0312 0.0038
γ0 0.0058 -0.1417 -0.1342 0.0116 0.0262 0.0240 0.0027

atanh ρ -0.0103 0.0466 0.0900 0.0809 0.1686 – 0.0149
ln(σ) 0.0027 0.2400 0.2431 0.0051 0.0631 – 0.0030
ln(ν) 0.0480 – – 0.0910 – – 0.0153

ρ = 0.7
β1 -0.0026 0.0342 0.0038 0.0065 0.0133 0.0335 0.0025
β0 0.0044 -0.0243 0.0141 0.0077 0.0174 0.0613 0.0017
γ1 0.0008 -0.1693 -0.1485 0.0126 0.0363 0.0297 0.0032
γ0 -0.0012 -0.1543 -0.1378 0.0112 0.0299 0.0250 0.0013

atanh ρ -0.0078 0.0800 0.0586 0.0577 0.1213 – 0.0043
ln(σ) 0.0003 0.2376 0.2279 0.0052 0.0615 – 0.0015
ln(ν) 0.0520 – – 0.0924 – – 0.0118
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errors increases, whereas the SLt estimates maintain low biases and mean squared

errors. In both cases, the estimates of the selection regression coefficients and the

scale parameter ln(σ) are severely biased under SLN and TS.

We also repeated the above simulation scenarios (not shown here) for ν = 3,

ν = 100, and ν = ∞, corresponding to the Normally distributed errors. Our findings

for ν = 3 were similar to the above with biases of the primary regression coefficients for

SLN and TS being even more prominent in the absence of the exclusion restriction. As

the degrees of freedom increases, the Student’s t distribution approaches the normal

distribution and, as expected, the results from the selection-t model were similar to

those from the selection-normal model with the latter being slightly more efficient.

2. Test of selection bias when the error distribution is bivariate t

In this subsection we investigate the performance of three tests, commonly used for

testing the presence of sample-selection bias in the OLS regression, when the error

distribution is bivariate t. The tests under consideration are the selection-normal

Wald test of H0: ρ = 0 (or, equivalently, of H0: atanhρ = 0), SLN, the likelihood ratio

test of independent equations under the selection-normal model (LRT), and the Wald

test of H0: βλ = ρσ = 0 under the two-step estimation (TS). We also compare the

performance of these tests to the selection-t Wald test of H0: ρ = 0 (SLT) obtained

under the correct, selection-t, model specification.

The data are simulated as described in the previous subsection. We consider

the scenario in the presence of an exclusion restriction with varying sample sizes

(N = 500, 1000), varying degrees of freedom (ν = 3, 5, 100), and varying values of

ρ. The simulation results are based on R = 5000 replications. We considered two

nominal levels α = 0.01 and α = 0.05 and obtained similar findings. We present

results for the nominal level α = 0.01.
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Under the null hypothesis, in the case of uncorrelated errors (ρ = 0), only the

selection-t Wald test maintains correct nominal levels for small degrees of freedom;

see Table 3. The other tests are known to be sensitive to the normality assumption

and, thus, they often attribute nonnormality of errors to the presence of selection

bias (ρ 6= 0) which leads to an inflated type I error. As degrees of freedom increase

to 100, the significance levels of all tests are similar and close to the nominal level.

As such, we compare powers of all tests only for ν = 100 (Table 4) and report powers

of the SLt test for other degrees of freedom (Table 5). The powers of all tests are

similar for ν = 100 and increase with sample size N and correlation ρ. The SLN test

has slightly higher powers than the SLt test which is expected with large degrees of

freedom. The TS test has lowest powers among the considered tests. From Table 5,

the powers of the SLt test tend to be slightly higher for ν = 3 than for ν = 5.

Table 3. Empirical significance levels (as %) of the tests of selection bias for the nom-

inal significance level α = 0.01. Standard errors ranged between .13 (SLt)

and .33 (SLN).

N = 500 N = 1000

ν SLt SLN TS LRT SLt SLN TS LRT

3 1.1 5.8 4.7 4.5 1 4.8 4.4 3.9

5 1.2 2.5 2.8 2 0.9 2 2.3 1.8

100 1.2 1.3 1.3 1.2 1 1 1.1 1
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Table 4. Powers (as %) of the tests of selection bias for ν = 100 for the nominal

significance level α = 0.01. Standard errors ranged between .21 and .7.

N = 500 N = 1000

ρ SLt SLN TS LRT SLt SLN TS LRT

.1 2.4 2.5 2.4 2.4 4.6 4.7 4.8 4.7

.2 8.7 8.9 8.5 8.8 19.3 19.8 19.6 19.5

.3 22.9 23.4 22.5 23.2 51.2 52.0 51.1 51.8

.4 45.3 46.3 43.5 46.0 81.2 81.5 80.0 81.4

.5 72.2 72.9 68.4 72.7 95.2 95.2 94.4 95.2

.6 89.4 89.4 86.0 89.4 97.0 97.0 96.8 97.0

.7 95.1 95.2 93.9 95.1 97.5 97.5 97.5 97.5

Table 5. Powers (as %) of the SLt test of ρ = 0 for ν = 3 and ν = 5 for the nominal

significance level α = 0.01. Standard errors ranged between .04 and .7.

N = 500 N = 1000

ρ ν = 3 ν = 5 ν = 3 ν = 5

.1 2.5 2.6 4.9 4.2

.2 8.7 7.8 19.6 18.1

.3 22.3 21.8 50.6 48.4

.4 47.0 45.1 83.1 80.8

.5 73.4 73.0 97.5 96.7

.6 91.4 91.4 99.9 99.8

.7 97.3 96.8 99.8 99.9
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C. Numerical Application to Ambulatory Expenditures

We consider the data on ambulatory expenditures from the 2001 Medical Expenditure

Panel Survey analyzed by Cameron and Trivedi (2010). The data consist of 3,328

observations, of which 526 (15.8%) correspond to zero values of expenditures. The

dataset includes several explanatory variables such as age, gender, education status,

and others. The distribution of expenditures is highly skewed so the analysis is

performed using the log scale. Because the decision to spend is likely to be related

to the spending amount, it is natural to consider a sample-selection model for the

analysis. Cameron and Trivedi (2010, p. 561), among other models, use the classical

Heckman sample-selection model to analyze these data; see Appendix A4 for the

results from Stata’s heckman command (StataCorp 2009). The primary regression

includes such factors as age, gender, ethnicity, education status, insurance status, and

the number of chronic diseases. The selection equation also includes income imposing

the exclusion restriction on the model, although the use of income for this purpose is

debatable. All of the considered factors are strong predictors of the decision to spend.

All factors other than the insurance status are also strong predictors of the spending

amount. The reported Wald test (p = 0.380) of no sample selection, H0: ρ = 0 or,

more precisely, H0 : atanhρ = 0, does not provide sufficient evidence to reject this

hypothesis, implying that spending amount is unrelated to the decision to spend and

can be analyzed separately using standard OLS regression. This conclusion seems

implausible.

As noted by Cameron and Trivedi, the assumption of underlying normality is

suspect for these data. Thus, we use the proposed selection-t model to analyze these

data; see the results from Stata’s user-written command heckt in Appendix A4. (This

command is available from the authors on request.)
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We obtain results similar to those from the selection-normal model regarding

the coefficients in the primary and selection equations. There is a significant change,

however, in the inference about the existence of sample-selection bias. The Wald test

provides sufficient evidence (p = 0.009) to reject the null hypothesis of no sample-

selection bias at a 1% significance level, in agreement with our intuition. The estimate

of ρ reported by the selection-normal model is −0.131 whereas the selection-t model

reports an estimate of −0.322, which is also more in agreement with the two-step

estimate of ρ, −0.359. Our simulations showed that the estimate of ρ from the

selection-normal model can be biased when data come from a Student’s t distribution

which is likely what we observe in this example. The estimated degrees of freedom

are 13 with the 95% confidence interval of (8, 20), indicating some deviation from

normality.

D. Conclusion

We introduced the sample selection-t model which extends the conventional sample-

selection model of Heckman (1974) to have a bivariate Student’s t error distribution.

This model provides a greater flexibility for modeling heavier-tailed data than the

selection-normal model by introducing only one extra parameter, the degrees of free-

dom, controlling the tails of the distribution. We considered maximum likelihood

estimation of the parameters. Monte Carlo simulations demonstrated good perfor-

mance of the MLEs in finite samples. Monte Carlo simulations also showed that the

selection-t model performs better than the selection-normal model for heavier-tailed

data and is also more robust to collinearity between the primary and selection regres-

sors for moderate degrees of freedom. The robustness to the collinearity is appealing

because there is no need to impose exclusion restrictions which are often difficult to
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formulate in practice. Our simulations demonstrated high sensitivity (inflated type I

error) of the selection bias test based on the selection-normal model to the presence

of heavy tails, whereas the selection bias test based on the selection-t maintained

nominal coverage. We also provided some insight into the power of this test.

Although the considered parametric selection-t model is not as flexible in mod-

eling various shapes of the distribution compared with semiparametric and nonpara-

metric methods, it is useful to model heavy-tailed data which occur rather often in

practice. Its advantages include a gain of efficiency within a class of heavy-tailed

Student’s t distributions; an ability to identify an intercept, which, as was noted by

Heckman, is an important parameter of interest in many economic applications; and

also the relative simplicity and speed efficiency of the implementation.

In this paper we used a bivariate Student’s t distribution to allow for heavier

tails in the error distribution. It is straightforward to extend the presented results

to some other parametric distributions. For example, one can use another version

of a bivariate t distribution where a separate degrees-of-freedom parameter is con-

sidered for each dimension. From a practical standpoint, it would be even more

appealing to consider some flexible parametric distributions accommodating the two

most common deviations from normality — the heavier tails and the asymmetry

of the distribution. A bivariate skew-normal distribution (Azzalini and Dalla Valle

1996, Azzalini and Capitanio 1999, Azzalini 2005) and a bivariate skew-t distribution

(Azzalini and Capitanio 2003) are two appealing candidates. Keeping in mind the

link described in Subsection 2 of Section A of this chapter, we can justify the use of

the skewed distributions to model errors as a natural way of modeling some hidden

truncation already present in the population from which the data were sampled. For

example, Little and Rubin (2002, p. 324) give an example of such a population.
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CHAPTER III

MULTIVARIATE LOG-SKEW-ELLIPTICAL DISTRIBUTIONS WITH

APPLICATIONS TO PRECIPITATION DATA∗

In recent years, there has been a growing interest for more flexible parametric families

of non-normal distributions with additional parameters allowing to regulate skewness

and tails. This is especially important with environmental data which are often

skewed and heavy tailed. The simplest representative of such families, as defined by

Azzalini (1985), is the so-called skew-normal distribution. It extends the conventional

normal model by introducing an additional parameter controlling the asymmetry of

the distribution, the shape parameter. Azzalini and Dalla Valle (1996) proposed

a multivariate analog of the univariate skew-normal distribution. Branco and Dey

(2001) and Azzalini and Capitanio (2003) introduced the univariate and multivariate

skew-t distributions, which extend the respective skew-normal distributions by al-

lowing to control the tails of the distribution with the additional degrees-of-freedom

parameter. A more detailed description of these and other skewed models may be

found in the book edited by Genton (2004) and in the review by Azzalini (2005).

The support of the univariate skew-normal, skew-t, and, more generally, skew-

elliptical distributions is the real line. For data that cannot be negative, such as

income or precipitation, distributions with positive support, such as gamma, expo-

nential, and log-normal, are often used for modeling purpose. The problem of mod-

eling is exacerbated in the multivariate setting, where tractable distributions besides

the multivariate log-normal are lacking. We expand the list of such distributions by

∗Reprinted with permission from “Multivariate log-skew-elliptical distributions with
applications to precipitation data” by Y. V. Marchenko and M. G. Genton, 2010,
Environmetrics, 21, 318–340. Copyright [2010] by John Wiley & Sons.
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introducing a family of multivariate log-skew-elliptical distributions.

Azzalini et al. (2003) introduced the univariate log-skew-normal and log-skew-t

distributions, although without formal investigation of their properties and charac-

teristics, and use them to model family income data. We extend their definition more

generally to the class of multivariate log-skew-elliptical distributions. We also exam-

ine probabilistic properties of the multivariate log-skew-elliptical distributions, such

as stochastic representations, marginal and conditional distributions, and existence

of moments.

In climatology, various distributions have been used to model the distribution

of precipitation data; among them there are the exponential, gamma (e.g., Wilks

2006, p. 98), and log-normal (e.g., Crow and Shimizu 1988). There is no definitive

physical justification to what distribution has to be used to model precipitation. The

distribution of precipitation data is often skewed and sometimes has heavy tails. For

example, Wilson and Toumi (2005) study univariate heavy precipitation and point out

that its distribution exhibits a heavy-tailed behavior. These characteristics motivate

us to consider the log-skew-normal and log-skew-t distributions to model precipitation

data. One appealing feature of these distributions is that their extension to the mul-

tivariate case is straightforward. Moreover, model parameters can be estimated using

readily available estimation methods developed for the multivariate skew-normal and

the multivariate skew-t distributions (Azzalini and Capitanio 1999, 2003). We define

these and, more generally, the multivariate skew-elliptical distributions next.

Let ECd(ξ,Ω, g
(d)) denote a family of d-dimensional elliptically contoured distri-

butions (with existing probability density function) with a generator function g(d)(u),

u ≥ 0, defining a spherical d-dimensional density, a location column vector ξ ∈ R
d,

and a d × d positive definite dispersion matrix Ω. If X ∼ ECd(ξ,Ω, g
(d)), then its

density is fd(x; ξ,Ω, g(d)) = |Ω|−1/2g(d)(Qξ,Ω
x ), where Qξ,Ω

x = (x − ξ)⊤Ω−1(x − ξ) and
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x ∈ R
d (Fang et al. 1990, p. 46).

Genton (2004) summarizes various approaches for defining skew-elliptical distri-

butions. We consider a class of skew-elliptical distributions with a density of the

form

fSEd
(x; Θ) = 2 fd(x; ξ,Ω, g(d))F{α⊤ω−1(x − ξ); gQξ,Ω

x
}, x ∈ R

d, (3.1)

where Θ = (ξ,Ω,α, g(d)), α ∈ R
d is a shape parameter, ω = diag(Ω)1/2 is a d×d scale

matrix, fd(x; ξ,Ω, g(d)) is the density of ECd(ξ,Ω, g
(d)) defined above, and F (u; gQξ,Ω

x
)

is the cumulative distribution function of EC1(0, 1, gQξ,Ω
x

) with the generator function

gQξ,Ω
x

(u) = g(d+1)(u+Qξ,Ω
x )/g(d)(Qξ,Ω

x ). Although α is referred to as a shape parameter,

the shape of the distribution (3.1) is regulated in a more complex way. In what

follows we use the notation SEd(ξ,Ω,α, g
(d+1)) to refer to a family of skew-elliptical

distributions with density (3.1).

We also consider two special cases of multivariate skew-elliptical distributions:

the skew-normal and the skew-t. The density of the multivariate skew-normal distri-

bution is

fSNd
(x; Θ) = 2φd(x; ξ,Ω)Φ{α⊤ω−1(x − ξ)}, x ∈ R

d, (3.2)

where Θ = (ξ,Ω,α), φd(x; ξ,Ω) is the density of a d-variate normal distribution with

location ξ and dispersion matrix Ω, and Φ(·) is the cumulative distribution function

of the standard normal distribution. We denote a multivariate skew-normal random

vector with density (3.2) as X ∼ SNd(ξ,Ω,α). For more details and applications

of the multivariate skew-normal distribution, see Azzalini and Dalla Valle (1996),

Azzalini and Capitanio (1999), Capitanio et al. (2003), and Azzalini (2005).

The density of the multivariate skew-t distribution is

fSTd
(x; Θ) = 2 td(x; ξ,Ω, ν)T

{

α⊤ω−1(x − ξ)

(

ν + d

ν +Qξ,Ω
x

)1/2

; ν + d

}

, x ∈ R
d,

(3.3)
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where Θ = (ξ,Ω,α, ν), T (·; ν + d) is the cumulative distribution function of a uni-

variate Student’s t distribution with ν + d degrees of freedom, and td(x; ξ,Ω, ν) =

Γ{(ν + d)/2}(1 +Qξ,Ω
x /ν)−(ν+d)/2/{|Ω|1/2(νπ)d/2Γ(ν/2)} is the density of a d-variate

Student’s t distribution with ν degrees of freedom. We denote a multivariate skew-

t random vector with density (3.3) as X ∼ STd(ξ,Ω,α, ν). For more details and

applications of the multivariate skew-t distribution see, for example, Azzalini and

Capitanio (2003) and Azzalini and Genton (2008), among others.

The chapter is organized as follows. The multivariate log-skew-elliptical distribu-

tions and their properties are defined and studied in Section A, with emphasis on two

special cases: the log-skew-normal and log-skew-t distributions. The relevant proofs

of the results are given in the Appendix B. Numerical applications of the log-skew-

normal and log-skew-t distributions to U.S. monthly precipitation data are presented

in Section B. The chapter ends with a discussion in Section C.

A. Multivariate Log-Skew-Elliptical Distributions

In this section we provide a formal definition of a family of multivariate log-skew-

elliptical distributions and present their probabilistic properties including stochastic

representations, conditional and marginal distributions, and moments, as well as in-

ferential properties.

1. Definitions

Let ln(X) = {ln(X1), . . . , ln(Xd)}⊤, Xi > 0, i = 1, . . . , d be the component-wise

logarithm of the positive random vector X = (X1, . . . , Xd)
⊤ and exp(Y) =

{exp(Y1), . . . , exp(Yd)}⊤ be the component-wise exponential of the random vector

Y = (Y1, . . . , Yd)
⊤.



36

Definition 1. A positive random vector X has a multivariate log-skew-elliptical

distribution, denoted as X ∼ LSEd(ξ,Ω,α, g
(d+1)), if ln(X) is a multivariate skew-

elliptical random vector, ln(X) ∼ SEd(ξ,Ω,α, g
(d+1)), with density (3.1). Likewise,

if X ∼ SEd(ξ,Ω,α, g
(d+1)), then exp(X) ∼ LSEd(ξ,Ω,α, g

(d+1)).

If the multivariate log-skew-elliptical density exists, it is of the form

fLSEd
(x; Θ) = 2

(

d
∏

i=1

x−1
i

)

fd{ln(x); ξ,Ω, g(d)}F [α⊤ω−1{ln(x)−ξ}; gQξ,Ω
ln(x)

], x > 0,

(3.4)

where Θ = (ξ,Ω,α, g(d)), and all other terms are as defined in (3.1). Here, the

term
(

∏d
i=1 x

−1
i

)

is the Jacobian associated with the transformation ln(x) → x.

Notice that when α = 0, the multivariate log-skew-elliptical density (3.4) reduces to

a multivariate log-elliptical density as defined in Fang et al. (1990, p. 56).

Clearly, the interpretation of the parameters in Θ is not the same for X as

for ln(X). For example, ξ, Ω, and α do not regulate strictly location, scale, and

skewness, respectively, on the original scale compared with the log scale. From the

definition, X = exp{ln(X)} = exp{ξ + ωln(Z)} = diag{exp(ξ)}exp{ωln(Z)},

where ln(Z) ∼ SEd(0, Ω̄,α, g
(d+1)) and Ω̄ = ω−1Ωω−1 is the correlation matrix. We

can see that ξ affects the scale of the distribution of X, and ω (and more generally

Ω) together with the “shape” parameter α regulate the shape of the distribution. We

investigate how these parameters affect the shape of the distribution in more detail

using the log-skew-normal and log-skew-t distributions which we define next.

From Definition 1 and from (3.2) and (3.3), the density of a multivariate log-

skew-normal distribution, denoted as LSNd(ξ,Ω,α), is

fLSNd
(x; Θ) = 2

(

d
∏

i=1

x−1
i

)

φd{ln(x); ξ,Ω}Φ[α⊤ω−1{ln(x) − ξ}], x > 0, (3.5)

and the density of a multivariate log-skew-t distribution, denoted as LSTd(ξ,Ω,α, ν),
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is for x > 0:

fLSTd
(x; Θ) =

2 td{ln(x); ξ,Ω, ν}T
[

α⊤ω−1{ln(x) − ξ}
(

ν+d
ν+Qξ,Ω

ln(x)

)1/2

; ν + d

]

∏d
i=1 xi

.

(3.6)

It is easily seen that the densities (3.5) and (3.6) reduce to the density of a multivariate

log-normal distribution, when α = 0 and ν = ∞. Also, the density (3.6) reduces to

the density of a multivariate log-t distribution, when α = 0. For d = 1, the densities

(3.5) and (3.6) correspond to the distributions in Azzalini et al. (2003), although they

did not give the densities explicitly.

We illustrate the shapes of univariate log-skew-normal and log-skew-t distribu-

tions, and bivariate log-skew-normal distributions next.
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Figure 3. Left panel: skew-normal (solid curves) and log-skew-normal (dashed curves)

densities with α = 0 (thick curves) and α = 0.5, 2, 20. Right panel: skew-t

(solid curves) and log-skew-t (dashed curves) densities with α = 0 (thick

curves) and α = 0.5, 2, 20 for fixed ν = 3.
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Figure 3 presents univariate log-skew-normal (left panel) and log-skew-t (right

panel) densities for ξ = 0, ω = 1, ν = 3, and varying α = 0, 0.5, 2, 20 (dashed

curves). The respective skew-normal and skew-t densities are depicted for comparison

as solid curves. The respective reference distributions are log-normal (log-t) and

normal (Student’s t) (thick curves). The additional parameter α allows the log-

skew-normal and log-skew-t densities to have more flexible shapes than the reference

log-normal and log-t distributions. The spike in the shape of the log-t density (right

panel, thick dashed curve) is explained by the fact that this density has two stationary

points for small values of ν. We observe a similar behavior for the log-skew-t density

with α = 0.5, but as in the case of the log-t distribution, it vanishes as α (or ν)

increases.
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Figure 4. Log-skew-normal densities LSN(ξ, ω2, 2) for varying ξ (left panel) and vary-

ing ω (right panel). Left panel: ξ = 0 (solid thick curve), ξ = −0.2,−0.5

(dashed curves), and ξ = 0.2, 0.5 (solid curves). Right panel: ω = 1 (solid

thick curve), ω = 0.6, 0.8 (dashed curves), and ω = 2, 5 (solid curves).



39

Figure 4 depicts how the shape of a log-skew-normal density changes as a function

of ξ and ω. The location ξ affects the shape in a multiplicative fashion (left panel).

For positive values of ξ the density is stretched compared with the reference density

with ξ = 0. For negative values of ξ, the density contracts toward the mode. Varying

values of ω (right panel) change the look of the distribution, especially for large values

of ω.

Figure 5 depicts bivariate log-skew-normal densities for various values of α =

(α1, α2)
⊤. The shape α = 0 corresponds to the reference bivariate log-normal distri-

bution. For negative values of α1 and α2, the density is skewed to the left in each

direction, whereas for positive values of α1 and α2, it is more skewed to the right in

each direction.

2. Stochastic representations

As in the case of the multivariate skew-elliptical distributions, there are other equiv-

alent ways of defining the log-skew-elliptical distribution by using different stochastic

representations. These representations may be used for simulation purposes. In this

subsection we formulate three stochastic representations for log-skew-elliptical ran-

dom vectors.

Proposition 1 (selection representation 1). Consider a d+1-dimensional random

vector (Ũ0,U
⊤)⊤ that follows a multivariate elliptical distribution ECd+1(0, Ω̄

⋆
, g(d+1))

with

Ω̄
⋆

=







1 0⊤

0 Ω̄






.

Let X = exp{ξ + ωln(Z)}, V = exp(U) and Z
d
= (V|Ũ0 < α⊤U). Then Z ∼

LSEd(0, Ω̄,α, g
(d+1)) and, so, X ∼ LSEd(ξ,Ω,α, g

(d+1)).
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Figure 5. Contour plots of the standard bivariate log-skew-normal density plot-

ted at levels 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.8 for varying values of α.

α = (0, 0)⊤ (top left panel), α = (−2,−2)⊤ (top right panel),

α = (0.5, 0.5)⊤ (bottom left panel), and α = (0.5, 2)⊤ (bottom right panel).
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Proposition 2 (selection representation 2). Consider a d+1-dimensional random

vector (U0,U
⊤)⊤ that follows a multivariate elliptical distribution ECd+1(0, Ω̄

⋆
, g(d+1))

with

Ω̄
⋆

=







1 δ⊤

δ Ω̄






,

and skewness parameter δ = (δ1, . . . , δd)
⊤ ∈ (−1, 1)d. Let X = exp{ξ + ωln(Z)},

V = exp(U) and Z
d
= (V|U0 > 0). Then Z ∼ LSEd(0, Ω̄,α, g

(d+1)) and, so, X ∼

LSEd(ξ,Ω,α, g
(d+1)) with α = Ω̄

−1
δ/(1 − δ⊤Ω̄

−1
δ)1/2.

Azzalini and Dalla Valle (1996) refer to the selection representation 2 as a condi-

tioning method and apply it to define a multivariate skew-normal distribution. This

stochastic representation corresponds to the so-called δ-parameterization of the shape

parameter α from R
d to (−1, 1)d. The selection representation 1 may be obtained

from the selection representation 2 by setting U0 = (1 + α⊤Ω̄α)−1/2(α⊤U − Ũ0).

Branco and Dey (2001) present a special subclass of the skew-elliptical distribu-

tions, the scale mixture of a skew-normal distribution, denoted as

SMSNd {ξ,Ω,α, K(η), H(η)}, with a density of the form

fSMSNd
(x; Θ) = 2

∫ ∞

0

φd{x; ξ, K(η)Ω}Φ{α⊤ω−1(x − ξ)K−1/2(η)}dH(η), x ∈ R
d,

(3.7)

where Θ = {ξ,Ω,α, K(η), H(η)}, η is a random variable (a so-called mixing variable)

with cumulative distribution function H(η) and K(η) is a weight function. We denote

X ∼ LSMSNd{ξ,Ω,α, K(η), H(η)}, if ln(X) ∼ SMSNd{ξ,Ω,α, K(η), H(η)} with

density (3.7).

Proposition 3 (log-skew-normal mixture). Let Z ∼ LSNd(0,Ω,α). Suppose

that η is a random variable with cumulative distribution function H(η) and K(η) is

a weight function. If X = exp(ξ)ZK1/2(η), then X ∼ LSMSNd {ξ,Ω,α, K(η), H(η)}.
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For example, the multivariate log-skew-normal and log-skew-t distributions are

special cases of the LSMSN distribution. The multivariate log-skew-normal distri-

bution arises when K(η) = 1 and H(η) is degenerate. The multivariate log-skew-t

distribution arises when K(η) = 1/η and η is distributed as Gamma(ν/2, ν/2) with

density f(η) = (ν/2)ν/2 exp(−νη/2)/Γ(ν/2).

Other stochastic representations of the skew-elliptical random vectors can be used

to generate the log-skew-elliptical random vectors. For example, similarly to Proposi-

tion 2 we can formulate the convolution-type stochastic representation (Arellano-Valle

and Genton 2010a) for the log-skew-elliptical random vector. Also, the skew-elliptical

random variates can be viewed as linear combinations of order statistics of elliptical

exchangeable random variates (Arellano-Valle and Genton 2007). Coupled with Def-

inition 1, this presents yet another stochastic representation of the log-skew-elliptical

random variates.

3. Marginal and conditional distributions

From Definition 1 it can be inferred that all marginal distributions of X are univariate

log-skew-elliptical. Since ln(X) is multivariate skew-elliptical, then each component

ln(Xi) is univariate skew-elliptical (e.g. Branco and Dey 2001). Therefore, by defini-

tion Xi is univariate log-skew-elliptical.

Proposition 4 (marginal distribution). Let X ∼ LSEd(ξ,Ω,α, g
(d+1)). Consider

the following partition of X⊤ = (X⊤
1 ,X

⊤
2 ), ξ⊤ = (ξ⊤

1 , ξ
⊤
2 ), and α⊤ = (α⊤

1 ,α
⊤
2 ) into q

and d− q components, respectively. Let Ω = (ωij)
d
i,j=1 have the following partition:







Ω11 Ω12

Ω21 Ω22






,
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with Ω21 = Ω⊤
12. Define ω1 = diag(w

1/2
11 , . . . , w

1/2
qq ) of dimension q × q and ω2 =

diag(w
1/2
q+1q+1, . . . , w

1/2
dd ) of dimension (d − q) × (d − q). Then the marginal distri-

butions of X1 and X2 are LSEq(ξ1,Ω11,α
⋆
1, g

(d+1)) and LSEd−q(ξ2,Ω22,α
⋆
2, g

(d+1)),

respectively, where

α⋆
1 =

α1 + ω1Ω
−1
11 Ω12ω

−1
2 α2

(1 + α⊤
2 Ω̄22·1α2)1/2

, α⋆
2 =

α2 + ω2Ω
−1
22 Ω21ω

−1
1 α1

(1 + α⊤
1 Ω̄11·2α1)1/2

,

Ω̄22·1 = ω−1
2 (Ω22 − Ω21Ω

−1
11 Ω12)ω

−1
2 , Ω̄11·2 = ω−1

1 (Ω11 − Ω12Ω
−1
22 Ω21)ω

−1
1 .(3.8)

As in the case of the skew-elliptical family, the log-skew-elliptical family is closed

under marginalization but not under conditioning. To present a conditional distribu-

tion of X2|X1 for a log-skew-elliptical random vector X, we first need to define the

so-called extended skew-elliptical family (Arellano-Valle and Genton 2010a; Arellano-

Valle and Azzalini 2006; Arellano-Valle et al. 2006). A random vector X has a multi-

variate extended skew-elliptical distribution, denoted by X ∼ ESEd(ξ,Ω,α, τ, g
(d+1)),

if its density is of the form

fESEd
(x; Θ) =

fd(x; ξ,Ω, g(d))F{α⊤ω−1(x − ξ) + τ ; gQξ,Ω
x

}
F
(

τ/
√

1 + α⊤Ω̄α; g(d)
) , x ∈ R

d, (3.9)

where Θ = (ξ,Ω,α, g(d), τ), τ ∈ R is the extension parameter, and other parameters

are as defined in (3.1). Note that (3.9) reduces to (3.1) if τ = 0.

Similar to Definition 1, we define X to be a random vector from a log-extended-

skew-elliptical family, denoted as X ∼ LESEd(ξ,Ω,α, τ, g
(d+1)), if ln(X) ∼

ESEd(ξ,Ω,α, τ, g
(d+1)) as defined in (3.9). The density function of the LESE random

vector may be obtained similarly to (3.4) using rules for transformation of random

vectors.

Proposition 5 (conditional distribution). Let X ∼ LSEd(ξ,Ω,α, g
(d+1)). Con-
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sider the partitions defined in Proposition 4. Then

(X2|X1) ∼ LESEd−q(ξ2·1,Ω22·1,α2, τ, g
(d+1)

Qξ1,Ω11
x1

),

where ξ2·1 = ξ2 + Ω21Ω
−1
11 (x1 − ξ1), Ω22·1 = Ω22 − Ω21Ω

−1
11 Ω12, and the extension

parameter is τ = (α1 + ω1Ω
−1
11 Ω12ω

−1
2 α2)

⊤ω−1
1 (x1 − ξ1).

4. Moments

Similar to the log-elliptical distribution (Fang et al. 1990), if the mixed moments

of a log-skew-elliptical distribution exist, they can be expressed conveniently using

the characteristic function (or the moment generating function if it exists) of the

skew-elliptical distribution.

Proposition 6 (mixed moments). Let X ∼ LSEd(ξ,Ω,α, g
(d+1)) and

n = (n1, n2, . . . , nd)
⊤, ni ∈ N, i = 1, . . . , d. If the mixed moments E

(

∏d
i=1X

ni
i

)

exist, then

E

(

d
∏

i=1

Xni
i

)

= Mln(X)(n),

where Mln(X)(·) is the moment generating function of the skew-elliptical random vec-

tor ln(X) ∼ SEd(ξ,Ω,α, g
(d+1)).

The mixed moment of the multivariate log-skew-normal random vector

X ∼ LSNd(ξ,Ω,α) can be expressed as

E

(

d
∏

i=1

Xni
i

)

= 2 exp(ξ⊤n + n⊤Ωn/2)Φ{α⊤Ω̄ωn/(1 + α⊤Ω̄α)1/2},

where the right-hand-side term in the above is the moment generating function of the

skew-normal random vector (e.g., Genton 2004, p. 17). For example, the first four



45

moments of the univariate log-skew-normal random variate X ∼ LSN(ξ, ω2, α) are

E(X) = 2 exp(ξ + ω2/2)Φ{αω/(1 + α2)1/2}, (3.10)

E(X2) = 2 exp(2ξ + 2ω2)Φ{2αω/(1 + α2)1/2},

E(X3) = 2 exp(3ξ + 4.5ω2)Φ{3αω/(1 + α2)1/2}, (3.11)

E(X4) = 2 exp(4ξ + 8ω2)Φ{4αω/(1 + α2)1/2}.

We can use these expressions to estimate the mean and skewness (and also kurtosis)

of the fitted log-skew-normal distribution by substituting the parameters with the

respective maximum likelihood estimates (MLEs).

As for the log-t distribution, positive moments of the log-skew-t distribution do

not exist.

Proposition 7 (log-skew-t moments). The mixed moments E
(

∏d
i=1X

ni
i

)

of

the log-skew-t random vector X ∼ LSTd(ξ,Ω,α, ν) are infinite for any ni ≥ 0,

i = 1, . . . , d, such that
∑d

i=1 ni > 0, and any ξ ∈ R
d, positive definite matrix Ω,

α ∈ R
d, and ν > 0.

5. Inference with log-skew-elliptical distributions

Let lLSE(Θ|x) be the log-likelihood function for the log-skew-elliptical model with

density (3.4):

lLSE(Θ|x) = ln{fLSEd
(x; Θ)} = −

d
∑

j=1

ln(xj) + ln{fSEd
(ln(x); Θ)}

= −
d
∑

j=1

ln(xj) + lSE(Θ|ln(x)). (3.12)

From relation (3.12), the LSE log-likelihood differs from the SE log-likelihood only

by the term −
∑d

j=1 ln(xj), which is free of any unknown parameters Θ. As such,
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inferences about Θ may be based on the SE log-likelihood. This allows us to use

existing estimation methods developed for the skew-elliptical models to estimate pa-

rameters of the log-skew-elliptical model. To estimate the parameters, we simply fit

the desired skew-elliptical model to the log-transformed original data. Since the LSE

and the SE log-likelihoods are equivalent, we briefly summarize the inferential aspects

for two important special cases, the log-skew-normal and the log-skew-t.

Inferential properties of skewed distributions received much attention in the lit-

erature, especially for the case of skew-normal and skew-t distributions (e.g., Azzalini

and Capitanio 1999, 2003; Sartori 2006; Pewsey 2000, 2006; Azzalini and Genton

2008; Arellano-Valle and Azzalini 2008). The two important inferential aspects are

the existence of a stationary point at α = 0 of the profile log-likelihood function

and the unboundedness of the log-likelihood function in some regions of the param-

eter space. In the case of the univariate skew-normal distribution, Pewsey (2006)

proved the existence of a stationary point at α = 0 of the profile log-likelihood func-

tion. Azzalini and Genton (2008) extended his argument to the multivariate case and

showed that the Fisher information matrix of the profile log-likelihood of the skew-

normal model is singular at α = 0. Azzalini (1985) proposed an alternative (cen-

tered) parameterization that alleviates the singularity of the resulting reparametrized

information matrix for the univariate skew-normal distribution. Arellano-Valle and

Azzalini (2008) extended this centered parametrization to the multivariate case. This

unfortunate property seems to vanish in the case of the skew-t distribution. Azzalini

and Capitanio (2003) noted that the behavior of the profile log-likelihood function of

the skew-t distribution is more regular and demonstrate it numerically with several

datasets. Although there is no rigorous proof of it, Azzalini and Genton (2008) pre-

sented a theoretical insight into why the Fisher information matrix is not singular at

α = 0 in the case of the multivariate skew-t distribution.
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The unboundedness of the MLEs of the shape and degrees-of-freedom parameters

of the skew-t distributions was first discussed by Azzalini and Capitanio (2003). In

the case of the univariate standard skew-t distribution with fixed degrees of freedom,

the infinite estimate of the shape parameter is encountered when either all obser-

vations are positive or all observations are negative which can happen with positive

probability. In other more general cases, such as unknown degrees of freedom and

the multivariate case, the conditions under which the log-likelihood is unbounded are

more complicated and, thus, more difficult to describe. Sartori (2006) and Azzalini

and Genton (2008) presented ways of dealing with the unbounded estimates. Sartori

(2006) proposed a bias correction to the maximum likelihood estimates. Azzalini

and Genton (2008) suggested a deviance-based approach according to which the un-

bounded MLEs of (α, ν) are replaced by the smallest values (α0, ν0) such that the

likelihood ratio test of H0: (α, ν) = (α0, ν0) is not rejected at a fixed level, say 0.1.

B. Precipitation Data Analysis

U.S. national and regional precipitation data are publicly available from the National

Climatic Data Center (NCDC), the largest archive of weather data. We use monthly

precipitation data measured in inches to hundreds for the period of 1895 through 2007

(113 observations per month). Monthly (divisional) precipitation data are obtained as

monthly equally-weighted averages of values reported by all stations within a climatic

division. The regional values are computed from the statewide values (which are

obtained from the divisional values weighted by area) weighted by area for each of the

nine U.S. climatic regions: Northeast, East North Central, Central, Southeast, West

North Central, South, Southwest, Northwest, and West (see Figure 61). National

1The map of U.S. climatic regions was made available by the National Oceanic and
Atmospheric Administration/Department of Commerce.
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Figure 6. U.S. climatic regions from NCDC.

values are obtained from the regional values weighted by area.

Table 6 and Table 7 present basic summary statistics of the data for each month

and climatic region (including national values). The analyses were performed in R

(R Development Core Team 2008) and Stata (StataCorp 2009) using, among other

capabilities, the R package sn developed by Azzalini (2006) and a suite of Stata

commands to be presented in Marchenko and Genton (2010a).

1. U.S. national scale

We analyze U.S. national precipitation data by fitting univariate log-skew-normal

and log-skew-t models and compare their fits to the conventional log-normal model

(e.g., Crow and Shimizu 1988). Separate analyses are carried out for each month. As

discussed in Subsection 5 of Section A of this chapter, we estimate the parameters

of the log-skew-normal and log-skew-t distributions by fitting the skew-normal and

skew-t distributions, respectively, to the log-transformed data.

The attractiveness of the skew-normal and, more generally, the skew-elliptical
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Table 6. Monthly (January-June) precipitation minimum, mean, median, and maxi-

mum values for nine U.S. climatic regions. Region labels: Northeast (NE),

East North Central (ENC), Central (C), Southeast (SE), West North Central

(WNC), South (S), Southwest (SW), Northwest (NW), and West (W). The

last column records summaries of monthly national values.

U.S. regions
Month NE ENC C SE WNC S SW NW W National

January 0.87 0.32 0.72 0.92 0.16 0.53 0.23 0.43 0.28 0.92
3.07 1.16 3.09 3.83 0.63 2.29 0.91 3.77 3.08 2.21
2.93 1.04 2.87 3.61 0.61 2.18 0.79 3.83 2.59 2.17
7.22 2.47 9.61 7.73 1.25 5.34 2.90 7.81 11.69 3.95

February 0.70 0.31 0.67 1.36 0.30 0.69 0.14 0.51 0.21 0.96
2.71 1.06 2.71 3.95 0.60 2.30 0.81 2.94 2.42 2.01
2.53 1.00 2.54 3.94 0.58 2.34 0.73 2.94 2.00 2.03
5.43 2.40 5.47 7.45 1.07 5.63 2.07 5.75 7.57 3.20

March 0.71 0.23 0.55 1.45 0.39 0.89 0.20 0.58 0.25 0.97
3.40 1.70 3.82 4.51 0.96 2.71 1.02 2.60 2.23 2.39
3.33 1.66 3.70 4.55 0.93 2.79 0.93 2.47 1.97 2.35
6.56 3.50 6.91 8.89 2.10 6.28 2.63 5.25 6.62 3.89

April 1.40 1.04 1.55 0.85 0.50 1.08 0.26 0.61 0.17 1.41
3.39 2.56 3.90 3.62 1.57 3.22 0.94 1.90 1.27 2.42
3.32 2.50 3.73 3.51 1.53 3.03 0.84 1.86 1.07 2.41
6.81 4.85 6.82 7.06 2.83 6.92 2.50 3.81 3.33 3.56

May 0.98 1.15 1.65 0.97 0.65 1.53 0.19 0.36 0.08 1.78
3.57 3.49 4.38 3.80 2.51 4.08 1.01 1.89 0.87 2.86
3.43 3.32 4.25 3.62 2.43 4.09 1.01 1.79 0.69 2.87
7.25 6.85 8.03 7.61 4.63 7.33 2.31 4.19 3.24 4.15

June 1.60 1.41 1.03 2.20 1.25 0.98 0.25 0.36 0.01 1.43
3.76 4.01 4.24 4.98 2.86 3.66 0.90 1.46 0.41 2.90
3.67 3.96 4.21 4.78 2.76 3.56 0.84 1.33 0.31 2.93
8.53 6.68 9.11 8.37 5.27 7.05 1.94 3.02 1.14 4.21
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Table 7. Monthly (July-December) precipitation minimum, mean, median, and max-

imum values for nine U.S. climatic regions. Region labels: Northeast (NE),

East North Central (ENC), Central (C), Southeast (SE), West North Central

(WNC), South (S), Southwest (SW), Northwest (NW), and West (W). The

last column records summaries of monthly national values.

U.S. regions
Month NE ENC C SE WNC S SW NW W National

July 2.02 0.85 1.47 2.94 0.84 1.34 0.90 0.16 0.01 1.81
3.86 3.54 4.09 5.81 2.00 3.22 1.89 0.62 0.29 2.77
3.74 3.41 4.02 5.74 1.89 3.17 1.81 0.54 0.25 2.79
6.57 6.18 8.27 11.56 5.56 6.04 3.58 2.05 1.18 3.85

August 1.78 1.35 1.55 2.71 0.77 0.70 0.56 0.10 0.01 1.77
3.84 3.54 3.61 5.26 1.72 2.93 1.92 0.74 0.34 2.59
3.71 3.58 3.57 5.15 1.65 2.89 1.90 0.58 0.25 2.59
8.01 6.27 6.30 9.77 3.03 6.06 3.25 2.98 2.01 3.55

September 1.25 0.95 0.71 1.91 0.47 0.88 0.09 0.12 0.03 1.45
3.64 3.36 3.47 4.57 1.53 3.19 1.29 1.19 0.47 2.46
3.42 3.28 3.34 4.42 1.46 3.15 1.34 1.11 0.30 2.47
8.04 7.21 6.94 9.68 3.42 6.87 3.07 3.42 2.00 3.57

October 0.45 0.25 0.53 0.53 0.13 0.12 0.02 0.14 0.04 0.54
3.36 2.33 2.90 3.18 1.14 2.81 1.10 2.22 0.97 2.14
3.08 2.28 2.67 3.04 1.08 2.46 0.90 2.16 0.91 2.15
9.43 4.66 7.15 7.33 2.95 7.07 3.67 5.20 3.24 3.72

November 0.88 0.24 0.72 0.83 0.06 0.20 0.09 0.30 0.04 0.88
3.46 1.80 3.20 2.92 0.75 2.47 0.78 3.68 1.86 2.13
3.36 1.73 3.13 2.73 0.71 2.36 0.70 3.64 1.57 2.09
6.34 4.03 7.71 8.39 1.63 6.48 2.33 7.84 5.79 3.76

December 0.98 0.37 0.90 1.18 0.19 0.68 0.16 1.17 0.09 1.22
3.26 1.27 3.13 3.71 0.62 2.55 0.88 3.91 2.50 2.23
3.18 1.24 3.14 3.49 0.58 2.47 0.79 3.77 2.08 2.27
6.74 2.62 7.58 7.05 1.20 5.51 2.29 8.42 7.05 3.60
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distributions is that they preserve some pleasant properties of their respective el-

liptical counterparts. One of them is that the distribution of quadratic forms of

skew-elliptical random vectors does not depend on the skewness parameter (and is

chi-squared for the skew-normal model). This property is useful, for example, for

investigating how well the specified skew-elliptical model fits the data. Specifically,

we can compare the probabilities of quantiles of the squared standardized residuals

from a univariate skew-normal fit to the probabilities of quantiles of the chi-squared

distribution with 1 degree of freedom. We present an example of such a probability

plot (PP-plot) for the skew-normal fit for January in Figure 7 (top panel).

From Figure 7, the skew-normal distribution fits the log-precipitation data slightly

better than the normal distribution for January. In fact, PP-plots for the skew-normal

and skew-t fits revealed that these distributions fit the log-precipitation data slightly

better than the normal distribution for most months. For other months all distribu-

tions provided good fit.

Figures 8 and 9 present estimated log-skew-normal means and skew-normal skew-

ness indexes, respectively, for each month. Mean estimates are computed from the

formula for the first moment of the log-skew-normal distribution given in (3.10) with

all parameters being replaced by the obtained maximum likelihood estimates. We

present the skewness indexes on the log scale. If desired, skewness indexes on the

original scale can be obtained similarly to means from (3.11) using the recursive re-

lationship between moments and central moments. The skew-normal model failed

to converge when fitted to the June and October data due to unboundedness of the

MLE for the shape parameter α. To alleviate this problem, we used the approaches of

Sartori (2006) (labeled on the graph as MMLE for modified MLE) and of Azzalini and

Genton (2008) (labeled on the graph as BMLE for bounded MLE), briefly mentioned

in Subsection 5 of Section A of this chapter. The obtained two estimates (BMLE and
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Figure 7. PP-plots for the univariate normal model (top left panel) and the univariate

skew-normal model (top right panel) fitted to the log-precipitation for Jan-

uary. PP-plots for the multivariate normal model (bottom left panel) and

the multivariate skew-t model (bottom right panel) fitted to the log-precip-

itation for November.
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Figure 8. Estimated mean of the log-skew-normal distribution fitted to precipitation

for each month.
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Figure 9. Estimated skewness indexes (log scale) of the log-skew-normal distribution

fitted to precipitation for each month.
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MMLE) of the shape parameter are similar and their magnitude is comparable to the

shape parameter estimates from other months.

The estimated mean precipitation ranges between 2.01 and 2.89 inches (after

correcting for the unboundedness of the shape parameter). From Figure 8, a par-

ticular trend is visible for the mean precipitation at the national level. The mean

precipitation increases in Spring and Summer and decreases in Fall and Winter. The

lowest mean precipitation of 2 inches is observed in February and the highest of 2.9

is observed in June. From Figure 9, the estimated skewness index ranges between

−0.7 and −0.1 and is negative for all months suggesting that the log-precipitation

data are left-skewed. The values of the skewness indexes are not too far from zero for

some months which explains only a slight improvement in the fit of the skew-normal

distribution. However for other months based on the estimated skewness indexes the

shape of the precipitation distribution deviates from symmetry and the fitted model

allows to capture such deviations. More specifically, the normality assumption of the

log-precipitation data was rejected by the likelihood ratio test of the null hypothesis

of α = 0 at the 1% significance level for June, September, October, November, and

December.

Figure 10 displays the estimated degrees-of-freedom parameter ν, controlling the

heaviness of the distributional tails of the fitted log-skew-t models. According to this

picture, the degrees of freedom ν is estimated to be 10 and higher for most months,

including December, not depicted in the picture, for which the estimated degrees of

freedom are very large. For these months the log-skew-t fit may be comparable to

that of the log-skew-normal (or log-normal if the skewness index or the estimated

shape parameter is not far from zero). For March and, especially, June and July, the

estimated degrees of freedom are small suggesting heavier tails of the distribution of

the precipitation compared with the log-skew-normal and the log-normal.
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Figure 10. Estimated degrees of freedom of the log-skew-t distribution fitted to the

national precipitation data for each month. (December is not included

because of the very large estimate).
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Since positive moments of the log-skew-t distribution are infinite (Proposition

7), we cannot estimate the mean and marginal skewness on the original scale as

for the skew-normal distribution above. However, if estimation of the median (or

any other quantile) is of interest, the log-skew-t model may be preferable, especially

for estimating extreme events, than the skew-normal model due to its robustness

properties (Azzalini and Genton 2008).

If the significance or the precision of the considered quantities is of interest, one

can perform a formal significance test (see, for example, Dalla Valle 2007) or compute

confidence intervals. Since all considered quantities are functions of MLEs, a classical

Delta method can be used to make inferences about them. Another alternative is to

use the bootstrap method to obtain confidence intervals. The latter approach may

have better finite sample properties than the former, which relies on large sample

sizes.

2. U.S. regional scale

We apply multivariate log-skew-normal and log-skew-t models to fit monthly precipi-

tation data over the nine U.S. climatic regions. The multivariate aspect of the model

accounts for possible dependence between the precipitation measurements from the

regions. More data are usually required to reliably estimate parameters of the multi-

variate models, compared with their univariate analogs. For multivariate analysis of

the regional precipitation data, we consider a 3-months moving window (t−1, t, t+1),

resulting in a total of 339 observations per region, to analyze precipitation data for

month t.

Bivariate scatter and fitted contour plots visually confirmed a satisfactory fit

of the multivariate log-skew-t model to the precipitation data. The multivariate

log-skew-normal model exhibits some lack of fit for several months but still fits the
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Figure 11. Bivariate scatter plots overlaid with contour plots for the multivariate

skew-t model fitted to log-precipitation for November.
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data slightly better than the multivariate log-normal model. In this subsection we

concentrate on the multivariate log-skew-t model. We present the contour and PP-

plots for the multivariate skew-t fit to the log-precipitation for November in Figures 11

and 7 (bottom panel), respectively. The bivariate scatter plot suggests that bivariate

distributions for some pairs of regions, such as bivariate distributions involving the

West region, may deviate from the bivariate normal distribution. The PP-plot in

Figure 7 confirms this by demonstrating some lack of fit of the multivariate normal

distribution (left panel) and the improved fit by the multivariate skew-t distribution

(right panel). The flexibility of the skew-t model in capturing both the skewness and

heavier tails of the data results in a better fit. As with any richer model, however,

such flexibility comes with the price of having to estimate more parameters and may

also lead to the problem of overfitting.

The estimated degrees of freedom from the multivariate skew-t models fitted to

each month (window) is presented in Figure 12. From the graph, there is a noticeable

separation in the tail behavior of the observed precipitation distribution over the

seasons. The estimates of the degrees of freedom are around 40 and higher for the

Winter, Spring, and Summer months and they drop to under 20 for the Fall and early

Winter months suggesting somewhat heavier-tailed distributions of the precipitation

in these months. We can also see that for November from the bivariate scatter plot

depicted in Figure 11: a fair number of precipitation values are observed in the tails

of the distribution for some regions. The estimates of the degrees of freedom are fairly

large. This may be explained by the fact that only a single parameter, ν, controls

the tails of the whole multivariate (9-dimensional) distribution.

We cannot plot the skew-t skewness indexes for the data in the original scale.

However we can still infer the information about the changes in skewness from the

skewness indexes obtained for the log-transformed data. Mardia (1970) defines the
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Figure 12. Estimated degrees of freedom of the multivariate log-skew-t distribution

fitted to the regional precipitation data for each month.
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measures of multivariate skewness and kurtosis for multivariate data and Arellano-

Valle and Genton (2010a) present these measures for the multivariate extended skew-t

distribution. For the purpose of this exposition we consider marginal skewness in-

dexes. We compute them as follows. First, we compute the parameters of the marginal

distributions using the property of linear transformations of the skew-elliptical ran-

dom vectors (e.g., Capitanio et al. 2003). Then, we use these parameters to compute

the univariate skewness index (see Subsection 1 of Section B of this chapter), which

we refer to as a marginal skewness index. Plots of these marginal skewness indexes

computed for each region based on the log-transformed data are given in Figure 13.

As for the national-level precipitation data, the estimated marginal skewness in-

dexes are close to zero for most months in all regions. This suggests that the marginal

distributions of the log-precipitation corresponding to the regions are symmetric for

these months. In some regions, a negative estimate of skewness is observed for some

months. For example, the skewness values of −0.83, −0.89, −0.98, and −0.44 are

observed for July, August, September, and October in the Southwest region. So, the

use of the skew-normal or skew-t model may be justified for these months.

As we briefly mentioned in Subsection 1 of Section B of this chapter, using a skew-

t distribution may be preferable to using a skew-normal distribution when modeling

of the tails of the distribution is of interest. This is important, for example, to obtain

accurate estimates of extreme quantiles (say p > 0.95). The estimated quantiles may

then be used to make inferences about extreme events and their magnitude (Beirlant

et al. 2004). The definition of a univariate quantile is straightforward but a concept of

a multivariate quantile is more difficult. Various definitions of a multivariate quantile

have been proposed and studied in the literature (e.g., Chaudhuri 1996; Chakraborty

2001). As for the skewness index above, we concentrate on the marginal quantiles,

i.e. the quantiles obtained using the marginal distributions of a random vector.
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Figure 13. Estimated marginal skewness indexes of the multivariate skew-t distribu-

tions fitted to log-precipitation for each month.
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Figure 14. The estimated 95th marginal percentiles of the multivariate log-skew-t dis-

tributions fitted to the precipitation for each month.
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Figure 14 presents the 95th marginal percentiles corresponding to the multivari-

ate log-skew-t distributions fitted to precipitation data over U.S. climatic regions for

all months. We compute the quantiles of the log-skew-t distribution by exponentiating

the quantiles obtained from the respective skew-t distribution.

There are only slight variations in the estimated values of the 95th marginal per-

centile values over months in the Northeast, Central, Southeast, South, and Southwest

regions. The variations are much more pronounced in the East North Central, West

North Central, Northwest, and West regions. For example, in the West region the

estimated values are declining rapidly from 6 inches in January and February to 1

inch in July and August and increase to 5 inches in December. This suggests that

observing a monthly average precipitation of 6 inches is very unlikely for July or

August whereas there is a 5% chance of observing it in January in the West region.

C. Discussion

The introduced family of multivariate log-skew-elliptical distributions enlarges the

family of multivariate distributions with positive support. As for the classical log-

elliptical families, its definition is based on the component-wise log transformation,

traditionally used to map positive values onto a real line, applied to a skew-elliptical

random vector. Although various approaches may be pursued to define multivariate

log-skew-elliptical distributions, the considered definition is the most natural one.

Its attractiveness is that existing techniques, developed for the skew-elliptical family,

can be used to estimate the parameters of and to generate from the defined log-skew-

elliptical distribution.

Other extensions to the log-skew-elliptical family, similar to those suggested in

the literature for the log-elliptical family, may be considered. One of them is, for
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example, the addition of the location parameter θ ∈ R
d, by considering X = θ + Z,

where Z ∼ LSEd(ξ,Ω,α, g
(d+1)). The corresponding density will be of the form (3.4),

where x and ln(x) are replaced with (x − θ) and ln(x − θ), respectively, and the

constraint x > θ is placed on x. However, this would require the development of spe-

cialized maximum-likelihood estimation techniques or at the very least incorporation

of the profile-likelihood estimation approach to estimate the extra parameter, θ.

Two considered special cases, the log-skew-normal and log-skew-t distributions,

provide more flexibility in capturing various shapes of the distribution compared

with the conventional log-normal model, while introducing only d and d+1 additional

parameters, respectively. The d-dimensional shape parameter α controls the skewness

and the degrees-of-freedom parameter ν controls the heaviness of the tails of the

underlying distribution on the log-transformed scale. Of course, such extra complexity

may not be worthwhile in some applications due to limited availability of the data

relative to the dimensionality of the model, in which case difficulties in estimating

the model parameters and the problem of overfitting may occur. In the case of the

multivariate log-skew-normal and log-skew-t distributions, a sample size sufficient for

estimation of the multivariate log-normal model should often suffice for estimation of

these models as well.

We stated and proved some properties, known to hold for the skew-elliptical

family and the log-elliptical family, in the case of the log-skew-elliptical family. As for

the log-t distribution, the positive moments of the log-skew-t distribution do not exist.

This introduces some limitations to its use in applications for which the estimation

of mean (or other moments and their functions) is the goal. However, it may be

preferred to the log-skew-normal and the log-normal distributions in applications for

which the tails of the distribution are of interest (e.g., the analysis of extreme events).

We also presented the numerical application of both the univariate and the mul-
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tivariate log-skew-normal and log-skew-t models to U.S. monthly precipitation data.

The application has some promising results demonstrating that, although for most

months and U.S. climatic regions the log-normal distribution provides a satisfactory

fit (possibly due to data being averaged over time and space), there are months

and regions for which the use of a more flexible parametric model, such as the log-

skew-normal and the log-skew-t, is beneficial. Also, in the case of the multivariate

log-skew-t (or log-t) models, it would be interesting to see if extending these models to

allow for component-specific degrees of freedom results in an improved fit, although

the construction of such a generalization is difficult, see the discussion in Azzalini and

Genton (2008).

The log-skew-elliptical distributions may also be used to model daily precipitation

data. In this case we should see more improvement in the fit of the log-skew-elliptical

models over the log-normal model since no averaging over time is done. Since daily

precipitation often have zeros, a mixture model, which is a linear combination of con-

tinuous distributions and distributions with point mass at zero, can be considered. A

log-skew-elliptical distribution can be used for the continuous component of the mix-

ture model. For example, Chai and Baily (2008) investigated such mixture modeling

using the univariate log-skew-normal distribution.
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CHAPTER IV

A SUITE OF COMMANDS FOR FITTING THE SKEW-NORMAL AND

SKEW-T MODELS

Non-normal data arise often in practice. One common way of dealing with non-normal

data is to find a suitable transformation that makes the data more normal-like and

apply standard normal-based methods for the transformed data. Finding a suitable

transformation can be difficult with multivariate data. Also, for the ease of interpre-

tation, it is often preferable to work with data in the original scale. This motivated

a search for more flexible parametric families of distributions to model non-normal

data. Because real data often deviate from normality in the tails and/or asymmetry

of the distribution, there has been a growing interest in distributions with additional

parameters allowing to regulate asymmetry and tails. For example, for heavier-tailed

data, the Student’s t distribution is often considered. To accommodate asymmetry,

skew-normal and skew-t distributions can be considered, which are “skewed” versions

of the respective Normal and Student’s t distributions. More generally, the family

of skew-elliptical distributions is proposed by Branco and Dey (2001) to allow for

asymmetry in a class of elliptically symmetric distributions.

The simplest representative of the skew-elliptical family, as defined by Azzalini

(1985), is the skew-normal distribution. Compared with the Normal distribution, in

addition to the location and scale parameters, the skew-normal distribution has a

shape parameter, regulating the asymmetry of the distribution. Another commonly

used representative is the skew-t distribution (Azzalini and Capitanio 2003) that

extends the normal distribution to allow for both asymmetry and heavier tails with

two additional parameters, the shape and the degrees-of-freedom parameters. These

extra parameters allow to capture the features of the data more adequately. Azzalini
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and Dalla Valle (1996), Branco and Dey (2001), and Azzalini and Capitanio (2003)

introduce multivariate analogs of these distributions.

What makes these distributions appealing for use in practice is that they are

simple extensions of their more commonly used counterparts, the Normal and Stu-

dent’s t distributions, and that they share some of their properties. For example, the

distribution of the quadratic forms of skew-normal and skew-t random vectors does

not depend on the shape parameter (and is chi-square for the skew-normal model as

it is for the normal model). This property is useful for evaluating model fit. These

distributions are closed under linear transformations and multivariate versions are

closed under marginalization (but not conditioning). Similar to the Normal and Stu-

dent’s t distributions, the skew-normal and skew-t distributions can also be adapted

to handle nonnegative data by considering their log versions (Azzalini et al. 2003,

Marchenko and Genton 2010b).

A more detailed description of these and other skewed distributions can be found

in the book edited by Genton (2004) and in the review by Azzalini (2005).

The structure of this chapter is the following. We start with a motivating example

in Section A and proceed to describe the skewed distributions in more detail in Section

B. We present Stata (StataCorp 2009) commands for fitting the skewed regressions

in Section C. In Sections D, E, and F we demonstrate more examples of using skew-

normal and skew-t models. We conclude the chapter with Section G.

In what follows we refer to Stata concepts, such as command names, option

names, datasets, variable names, etc, using the typewriter font. All of the presented

output is obtained using Stata 11. The commands used are shown with a dot (.).
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A. Motivating Example

We consider the Australian Institute of Sport data, AIS, (Cook and Weisberg 1994),

repeatedly used in the literature about skewed distributions. The ais.dta dataset

contains 202 observations (100 females and 102 males) recording 13 biological char-

acteristics of Australian athletes (Table 8).

Table 8. Description of the Australian Institute of Sport data.

. use ais
(Biological measures from athletes at the Australian Institute of Sport)

. describe

Contains data from ais.dta
obs: 202 Biological measures from

athletes at the Australian
Institute of Sport

vars: 13 30 Mar 2010 11:25
size: 18,584 (99.9% of memory free)

storage display value
variable name type format label variable label

female byte %9.0g sex Gender
lbm double %9.0g Lean body mass (kg)
bmi double %9.0g Body mass index (kg/m^2)
weight double %9.0g Weight (kg)
height double %9.0g Height (m)
bfat double %9.0g Body fat percentage
rcc double %9.0g Red blood cell count
wcc double %9.0g White blood cell count
hc double %9.0g Hematocrit
hg double %9.0g Hemoglobin
fe int %9.0g Plasma ferritin concentration
ssf double %9.0g Sum of skin folds
sport byte %9.0g sport Sport activity

Sorted by:

For the purpose of illustration, we consider a simple regression model relating

lean body mass, lbm, to weight and height. To adjust for likely differences in the

relationship due to gender we interact weight and height with female. (Or, we

could have fit separate regressions for males and females to also allow the variability

in the measurements to differ across gender.)

First, we fit a Normal regression to the data using regress and specify the
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noconstant option to force regression through the origin (Table 9).

Table 9. Regression of lean body mass on weight and height.

. regress lbm i.female#c.(weight height), noconstant

Source SS df MS Number of obs = 202
F( 4, 198) =35991.71

Model 883259.002 4 220814.75 Prob > F = 0.0000
Residual 1214.76071 198 6.13515512 R-squared = 0.9986

Adj R-squared = 0.9986
Total 884473.763 202 4378.58298 Root MSE = 2.4769

lbm Coef. Std. Err. t P>|t| [95% Conf. Interval]

female#
c.weight

0 .7316397 .0237056 30.86 0.000 .6848918 .7783875
1 .5268039 .027829 18.93 0.000 .4719247 .5816831

female#
c.height

0 7.706318 1.065338 7.23 0.000 5.605454 9.807183
1 11.11977 1.086061 10.24 0.000 8.978036 13.2615

We examine the distribution of the residuals from the regression model:

. predict resid, residuals

. kdensity resid, normal
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5

.2
D

en
si

ty
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Residuals

Kernel density estimate
Normal density

kernel = epanechnikov, bandwidth = 0.6351

Kernel density estimate

Figure 15. Normal residuals density estimate.
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Figure 15 demonstrates a slight skewness (longer left tail) in the distribution of resid-

uals compared with the assumed underlying Normal distribution.

To capture the asymmetry in the data, we fit the skew-normal regression us-

ing the new command skewnreg and obtain results as shown in Table 10. A quick

examination of the output confirms the existence of the negative skewness in the dis-

tribution of the data — the estimated skewness (labeled as gamma in the output) is

−0.66 with a 95% confidence interval of (−0.88,−0.43).

Table 10. Skew-normal regression of lean body mass on weight and height.

. skewnreg lbm i.female#c.(weight height), noconstant nolog

Skew-normal regression Number of obs = 202
Wald chi2(4) = 153403.46

Log likelihood = -458.68244 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

female#
c.weight

0 .7941643 .0273495 29.04 0.000 .7405602 .8477683
1 .5725823 .0252675 22.66 0.000 .5230589 .6221057

female#
c.height

0 4.777069 1.25218 3.82 0.000 2.322841 7.231298
1 9.431404 .9825755 9.60 0.000 7.505591 11.35722

gamma -.6564894 .1143292 -5.74 0.000 -.8805706 -.4324082

sigma2 5.960411 .6520583 4.810124 7.385776

LR test vs normal regression: chi2(1) = 18.28 Prob > chi2 = 0.0000

We also obtain the residual fit plot in Figure 16 by using command skewrplot

after skewnreg. Figure 16 demonstrates an improved fit to the distribution of resid-

uals.
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. skewrplot, kdensity
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Residual density estimates

Figure 16. Skew-normal residuals density estimate.

Table 11. Skew-t regression of lean body mass on weight and height.

. skewtreg lbm i.female#c.(weight height), noconstant nolog

Skew-t regression Number of obs = 202
Wald chi2(4) = 82096.51

Log likelihood = -452.19315 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

female#
c.weight

0 .7959185 .029476 27.00 0.000 .7381466 .8536904
1 .5802067 .0204974 28.31 0.000 .5400326 .6203809

female#
c.height

0 5.972125 1.238966 4.82 0.000 3.543796 8.400454
1 10.50348 .7941971 13.23 0.000 8.946881 12.06008

alpha -2.285011 .8234053 -2.78 0.006 -3.898856 -.6711667

omega2 6.544033 1.876612 2.865941 10.22213

DF 3.940011 1.314396 2.048966 7.576351

LR test vs normal regression: chi2(2) = 31.26 Prob > chi2 = 0.0000
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Similarly, we can fit a skew-t regression in Table 11. In addition to negative

skewness, the estimated degrees of freedom (labeled as DF in the output) of 3.94

suggests that the distribution of residuals has heavier tails than the Normal and

skew-normal distributions. By examining the residuals from the skew-t regression

fit in Figure 17, we see that the fitted skew-t density line follows the nonparametric

estimate very closely.

. skewrplot, kdensity

0
.0

5
.1

.1
5

.2

−15 −10 −5 0 5

Nonparametric Skew−t

Shape = −2.29, df = 3.94

Residual density estimates

Figure 17. Skew-t residuals density estimate.

As expected, all three regressions find weight and height adjusted for gender to

be strong predictors of LBM. However, the coefficients for the height of females and,

especially, of males from the skew-normal and skew-t regressions differ greatly from

those from the Normal regression.
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B. The Skew-Normal and Skew-t Regression Models

1. Definition and some properties

The density of the univariate skew-normal (SN) distribution, SN(ξ, ω, α), is

fSN(x; ξ, ω, α) = 2ω−1φ(z)Φ(αz), x ∈ R, (4.1)

where z = ω−1(x−ξ), φ(·) is the density of a univariate standard normal distribution,

and Φ(·) is the cumulative distribution function of the standard normal distribution.

The additional multiplier 2Φ{αz} is a “skewness” factor and it is controlled by the

shape parameter α ∈ R. When α > 0, the distribution is skewed to the right, when

α < 0 the distribution is skewed to the left, and when α = 0, the skew-normal

distribution (4.1) reduces to the Normal distribution.

The univariate skew-t distribution, ST(ξ, ω, α, ν), is defined in a similar man-

ner by introducing a multiplier to the Student’s t density which is a heavier-tailed

distribution than the Normal distribution:

fST(x; ξ, ω, α, ν) = 2ω−1t(z; ν)T
{

αz
√

(ν + 1)/(ν + z2); ν + 1
}

, x ∈ R, (4.2)

where t(x; ξ, ω2, ν) is the density of a univariate Student’s t distribution with degrees

of freedom ν, and T (·; ν + 1) is the cumulative distribution function of a univariate

Student’s t distribution with ν+1 degrees of freedom. Here, again, the shape param-

eter α regulates asymmetry of the distribution and the degrees-of-freedom parameter

ν > 0 regulates the tails of the distribution. When α = 0, the density (4.2) reduces

to the Student’s t density and when α = 0 and the degrees of freedom becomes very

large (ν tends to ∞), the skew-t density reduces to the Normal density. By introduc-

ing an extra parameter for regulating the tails, the skew-t distribution accommodates

outlying observations and, thus, can be viewed as a more robust model than the
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skew-normal model; see Azzalini and Genton (2008) for details.

As we mentioned in the introduction, one of the useful properties of the skew-

normal and skew-t distributions is that their quadratic forms do not depend on the

shape parameter. In the univariate case, if X ∼ SN(ξ, ω, α), then (X − ξ)2/ω2 ∼ χ2
1.

If X ∼ ST(ξ, ω, α, ν), then (X − ξ)2/ω2 ∼ F1,ν . These properties provide a way of

evaluating model fit using quantile-quantile (QQ) or probability-probability (PP) plots.

Multivariate analogs of the skew-normal and skew-t distributions are constructed

in a similar manner for the corresponding multivariate Normal and multivariate Stu-

dent’s t distributions. The density of the multivariate skew-normal distribution,

SNd(ξ,Ω,α), is

fSNd
(x; Θ) = 2φd(x; ξ,Ω)Φ{α⊤z}, x ∈ R

d, (4.3)

where Θ = (ξ,Ω,α), z = ω−1(x − ξ) ∈ R
d, φd(x; ξ,Ω) is the density of a d-variate

Normal distribution with location ξ and covariance matrix Ω, and ω is the d × d

diagonal matrix containing the square roots of the diagonal elements of Ω. Similarly

to the univariate case, when all d components of α are zero, the multivariate skew-

normal density (4.3) reduces to the multivariate Normal density φd(·).

The density of the multivariate skew-t distribution, STd(ξ,Ω,α, ν), is

fSTd
(x; Θ) = 2 td(x; ξ,Ω, ν)T

{

α⊤z

(

ν + d

ν +Qξ,Ω
x

)1/2

; ν + d

}

, x ∈ R
d, (4.4)

where Θ = (ξ,Ω,α, ν), z = ω−1(x − ξ), Qξ,Ω
x = (x − ξ)⊤Ω−1(x − ξ), td(x; ξ,Ω, ν) =

Γ{(ν + d)/2}(1 +Qξ,Ω
x /ν)−(ν+d)/2/{|Ω|1/2(νπ)d/2Γ(ν/2)} is the density of a d-variate

Student’s t distribution with ν degrees of freedom, and T (·; ν + d) is the cumulative

distribution function of a univariate Student’s t distribution with ν + d degrees of

freedom. When all d components of α are zero, the multivariate skew-t density (4.4)
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reduces to the multivariate Student’s t density td(·) and to the multivariate Normal

density φd(·) when in addition ν tends to ∞.

Similarly to the univariate case, if X ∼ SNd(ξ,Ω,α), then the Mahalanobis

distance (X−ξ)⊤Ω−1(X−ξ) ∼ χ2
d. If X ∼ STd(ξ,Ω,α, ν), then 1

d
(X−ξ)⊤Ω−1(X−

ξ) ∼ Fd,ν .

2. Regression models

Consider a sample Y = (y1, y2, . . . , yN)⊤ of N observations. In linear regression,

yi = β0 + β1x1i + · · ·+ βpxpi + ǫi, i = 1, . . . , N, (4.5)

where x1i, . . . , xpi define covariate values, β0, . . . , βp are the unknown regression coef-

ficients, and ǫi is an error term. In Normal linear regression, the errors are assumed to

be normally distributed, ǫi
iid∼ Normal(0, σ2). The skew-normal regression is a linear

regression (4.5) with errors from the skew-normal distribution, ǫi
iid∼ SN(0, ω2, α). Sim-

ilarly, the skew-t regression is defined by (4.5) with ǫi
iid∼ ST(0, ω2, α, ν). Equivalently,

the sample Y is assumed to follow the skew-normal distribution, yi ∼ SN(ξi, ω
2, α)

or the skew-t distribution, yi ∼ ST(ξi, ω
2, α, ν), respectively, where ξi = β0 + β1x1i +

· · · + βpxpi. However, because the mean µ of a skewed random variate is not the

same as the location parameter ξ, E(ǫi) 6= 0 (unless α = 0) unlike the Normal

linear regression. The mean E(ǫi) =
√

2/πωδ for the skew-normal regression and

E(ǫi) = ωδ
√

ν/πΓ{(ν − 1)/2}/Γ(ν/2) when ν > 1 for the skew-t regression, where

δ = α/
√

1 + α2. Then, E(yi) = ξ + E(ǫi).

Under the multivariate regression setting, Y becomes an N × d data matrix, β

becomes a p× d matrix of unknown coefficients, and the errors follow the multivari-

ate skew-normal distribution, SNd(0,Ω,α), or the multivariate skew-t distribution,

STd(0,Ω,α, ν), respectively.
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The method of maximum likelihood is used to obtain estimates of regression coef-

ficients β and other parameters, Ω,α, ν. There are two issues arising with likelihood

inference for the skew-normal and skew-t models: 1) the existence of the stationary

point at α = 0 of the profile log-likelihood function for the skew-normal model; and

2) unbounded maximum likelihood estimates. We discuss each issue in more detail

below.

The existence of the stationary point at α = 0 for the skew-normal model leads

to the singularity of the Fisher information matrix of the profile log-likelihood for

the shape parameter α (Azzalini 1985, Azzalini and Genton 2008). This violates

standard assumptions underlying the asymptotic properties of the maximum likeli-

hood estimators, and, consequently, leads to slower convergence and possibly bimodal

limiting distribution of the estimates (Arellano-Valle and Azzalini 2008). All model

parameters ξ, Ω, and α are identifiable so the issue is really due to the chosen

parametrization. To alleviate this, Azzalini (1985) suggested an alternative centered

parametrization for the univariate skew-normal model. Arellano-Valle and Azzalini

(2008) extended this parametrization to the multivariate case. We will discuss the

centered parametrization in more detail in Subsection 3 of Section B of this chap-

ter. This unfortunate property seems to vanish in the case of the skew-t distribution,

unless the degrees of freedom are large enough so that the skew-t distribution essen-

tially becomes the skew-normal distribution; see Azzalini and Capitanio (2003) and

Azzalini and Genton (2008) for details. More generally, the issue of the singularity of

multivariate skew-symmetric models was investigated by Ley and Paindaveine (2010)

and Hallin and Ley (2010).

Both the skew-normal and skew-t models suffer from the problem of unbound-

edness of the maximum likelihood estimates for the shape and degrees-of-freedom

parameters, that is, the maximum likelihood estimator can be infinite with positive
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probability for the finite true value of the parameter. For example, in the cases of

the univariate standard skew-normal distribution and the univariate standard skew-t

distribution with fixed degrees of freedom, when all observations are positive (or nega-

tive), which can happen with positive probability, the likelihood function is monotone

increasing and, thus, an infinite estimate of the shape parameter is encountered. In

other more general cases, such as unknown degrees of freedom and the multivariate

case, the conditions under which the log-likelihood is unbounded are more compli-

cated and, thus, more difficult to describe. Sartori (2006) and Azzalini and Genton

(2008) presented ways of dealing with the unbounded estimates. Sartori (2006) pro-

posed a bias correction to the maximum likelihood estimates. Azzalini and Genton

(2008) suggested a deviance-based approach according to which the unbounded MLEs

of (α, ν) are replaced by the smallest values (α0, ν0) such that the likelihood ratio test

of H0: (α, ν) = (α0, ν0) is not rejected at a fixed level, say 0.1. Within a Bayesian

framework, Liseo and Loperfido (2006) showed that the estimate of the posterior

mode of the shape parameter is finite for the skew-normal model under the Jeffreys

prior and Bayes and Branco (2007) considered an alternative noninformative uniform

prior for the shape parameter.

3. Centered parametrization

Here, we briefly describe the centered parametrization for the univariate skew-normal

distribution as proposed by Azzalini (1985) and outline the points made in Arellano-

Valle and Azzalini (2008). More details and the extension to the multivariate case

can be found in Arellano-Valle and Azzalini (2008).

Let Y be distributed as SN(ξ, ω2, α). Consider the following decomposition of

Y :

Y = ξ + ωZ = µ+ σ(Y − µz)/σz,
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where µz = E(Y ) =
√

2/πδ, σ2
z = Var(Y ) = 1 − 2δ2/π, and δ = α/

√
1 + α2. Let

γ = (4−π) sign(α) (µz/σ
2
z)

3/2 denote the skewness index of Y . Then, mean, standard

deviation, and skewness index, (µ, σ, γ), form the centered parametrization. They are

referred to as the centered parameters (CP) because they are obtained via centering

Y . The set of parameters (ξ, ω, α) are referred to as the direct parameters (DP).

The use of CP is advantageous from both estimation and interpretation stand-

points. The sampling distributions of the maximum likelihood estimates of CP are

closer to quadratic forms, and the profile log-likelihood for γ does not have a sta-

tionary point at γ = 0. Although the shape parameter α can be used as a guidance

to whether the normal model is sufficient for analysis, it is easier to infer the actual

magnitude of the departure from normality based on the skewness index γ. Also, in

the multivariate case, components of a skewness vector γ correspond to the skewness

indexes of the marginal distributions whereas individual components of α cannot be

used to infer the direction or the magnitude of the skewness but only if asymmetry

is not present. DP is useful for direct interpretation in original model.

From the above formulas, there is a one-to-one correspondence between CP and

DP. So, after obtaining estimates in the CP metric, one can use the formulas above

and the delta method to obtain respective estimates and their standard errors in the

DP metric, if desired.

The centered parameterization for the skew-t distribution is not yet available; it

is currently being developed by Adelchi Azzalini and Reinaldo B. Arellano-Valle.
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C. A Suite of Commands for Fitting Skewed Regressions

1. Syntax

The syntaxes of the commands for fitting univariate and multivariate skew-normal

regressions are presented in Figures 18 and 19. The syntaxes of the commands for

fitting univariate and multivariate skew-t regressions are presented in Figures 20 and

21. The syntaxes for postestimation commands are presented in Figures 22 and

Figures 23.

skewnreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, noconstant constraints(constraints)

collinear vce(vcetype) level(#) postdp estmetric dpmetric display options

maximize options coeflegend
]

Figure 18. The syntax for fitting univariate skew-normal regression.

mskewnreg depvars
[

= indepvars
] [

if
] [

in
] [

weight
] [

, noconstant fullml dp

constraints(constraints) collinear vce(vcetype) level(#) postdp estmetric

dpmetric noshowsigma display options maximize options coeflegend
]

Figure 19. The syntax for fitting multivariate skew-normal regression.

skewtreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, noconstant df(#)

constraints(constraints) collinear vce(vcetype) level(#) postdp estmetric

display options maximize options coeflegend
]

Figure 20. The syntax for fitting univariate skew-t regression.
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mskewtreg depvars
[

= indepvars
] [

if
] [

in
] [

weight
] [

, noconstant df(#)

constraints(constraints) collinear vce(vcetype) level(#) postdp estmetric

noshowsigma display options maximize options coeflegend
]

Figure 21. The syntax for fitting multivariate skew-t regression.

predict
[

type
]

newvar
[

if
] [

in
] [

, xb residuals stdp score
]

Figure 22. The syntax for obtaining predictions.

skewrplot
[

, kdensity
[

(kden options)
]

qq
[

(qq options)
]

pp
[

(pp options)
] ]

Figure 23. The syntax for producing goodness-of-fit plots.

2. Description

The skewnreg and skewtreg commands fit skew-normal and skew-t regression models

to univariate data. The mskewnreg and mskewtreg commands fit skew-normal and

skew-t regression models to multivariate data. The skew-normal regression supports

both the CP metric (the default) and the DP metric (option dpmetric), whereas the

skew-t regression supports only the DP metric. In the skew-t regression the degrees-

of-freedom parameter can optionally be set to a fixed value via the df() option.

The postestimation features include predictions and residual plots. The predict

command can be used after any of the four estimation commands to obtain linear

predictions and their standard errors, residual estimates, and the score estimates.

The skewrplot command can be used to obtain the residual density plots (option

kdensity(), assumed by default), and QQ and PP goodness-of-fit plots via options

qq() and pp(), respectively.
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3. Options

a. Common estimation options

noconstant suppresses the constant term (intercept) in the model.

constraints(constraints) specifies the linear constraints to be applied during esti-

mation. The default is to perform unconstrained estimation. See [R] estimation

options for details.

collinear specifies that the estimation command not omit collinear variables. See

[R] estimation options for details.

vce(vcetype) specifies the type of standard error reported, which includes types that

are derived from asymptotic theory, that are robust to some kinds of misspecifi-

cation, that allow for intragroup correlation, and that use bootstrap or jackknife

methods; see [R] vce option.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The

default is level(95) or as set by set level. This option may be specified either

at estimation or upon replay.

postdp stores direct parameter estimates and their VCE in e(b) and e(V), respectively.

estmetric displays results in the estimation metric. The estimation metric used is

specific to each estimation command. This option may be specified either at

estimation or upon replay.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels;

see [R] estimation options. These options may be specified either at estimation

or upon replay.

maximize options: difficult, technique(algorithm spec), iterate(#),
[

no
]

log,

init(init spec), trace, gradient, showstep, hessian, showtolerance,

tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance;
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see [R] maximize.

coeflegend specifies that the legend of the coefficients and how to specify them in

an expression be displayed rather than the coefficient table. This option may be

specified either at estimation or upon replay.

b. Other options of skewnreg

dpmetric specifies to display results in the DP metric instead of the default CP metric.

This option may be specified either at estimation or upon replay.

c. Other options of mskewnreg

fullml specifies to estimate parameters using full maximum likelihood instead of the

default profile likelihood estimation.

dp specifies to fit the model under the direct parameterization instead of the default

centered parameterization.

dpmetric specifies to display results in the DP metric instead of the default CP metric.

This option may be specified either at estimation or upon replay.

noshowsigma specifies to suppress the display of the covariance parameter estimates.

d. Other options of skewtreg

df(#) specifies to fix the degrees-of-freedom parameter at # during estimation. This

is equivalent to the constrained estimation using the constraints() option when

the degrees-of-freedom parameter is set to #.

e. Other options of mskewtreg

df(#) specifies to fix the degrees-of-freedom parameter at # during estimation. This
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is equivalent to the constrained estimation using the constraints() option when

the degrees-of-freedom parameter is set to #.

noshowsigma specifies to suppress the display of the covariance parameter estimates.

f. Other options of predict

xb, the default, calculates the linear prediction.

residuals calculates the residuals.

score calculates first derivative of the log likelihood with respect to xb.

stdp calculates the standard error of the linear prediction.

g. Options of skewrplot

kdensity(kdens options) specifies to produce the residual fit plot; the default after

univariate regressions. kdens options specifies options as allowed by [G] twoway

kdensity. This option is not allowed after mskewnreg or mskewtreg.

qq(qq options) specifies to produce the quantile-quantile plots of the observed resid-

uals versus the residuals obtained from the fitted parametric model. qq options

specifies options as allowed by qqplot in [R] diagnostic plots.

pp(pp options) specifies to produce the probability plots of the observed residuals

versus the residuals obtained from the fitted parametric model.

D. Analyses of Australian Institute of Sport Data

1. Univariate analysis

Recall our motivating example using the Australian Institute of Sport data. Now we

describe each command in more detail. We start with the skew-normal regression in

Table 12.
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Table 12. Skew-normal regression analysis of the AIS data.

. use ais
(Biological measures from athletes at the Australian Institute of Sport)

. skewnreg lbm i.female#c.(weight height), noconstant nolog

Skew-normal regression Number of obs = 202
Wald chi2(4) = 153403.46

Log likelihood = -458.68244 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

female#
c.weight

0 .7941643 .0273495 29.04 0.000 .7405602 .8477683
1 .5725823 .0252675 22.66 0.000 .5230589 .6221057

female#
c.height

0 4.777069 1.25218 3.82 0.000 2.322841 7.231298
1 9.431404 .9825755 9.60 0.000 7.505591 11.35722

gamma -.6564894 .1143292 -5.74 0.000 -.8805706 -.4324082

sigma2 5.960411 .6520583 4.810124 7.385776

LR test vs normal regression: chi2(1) = 18.28 Prob > chi2 = 0.0000

By default, skewnreg estimates and displays model parameters in the CP metric,

as discussed in Subsection 3 of Section B of this chapter. From the output, both

weight and height are strong predictors of lean body mass measurements and the

relationship is different between males and females. The estimated skewness index,

labeled as gamma in the output, is −0.66 which suggests that the distribution of lbm is

skewed to the left. According to the reported test of H0: γ = 0 with the test statistic

of −5.74, we have strong evidence that there is asymmetry in the distribution of

lbm and, thus, the skew-normal regression may be more appropriate for the analysis

than the Normal regression. The likelihood ratio test for the skew-normal regression

versus the Normal linear regression, reported at the bottom of the table, also favors

the skew-normal model.

We can redisplay results in the DP metric by using the dpmetric option (Table

13). Notice that all regression coefficients remain the same: the transformation from

the CP to DP metric only changes the intercept. The estimate of the shape parameter,
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labeled as alpha in the output, is −2.93 with the 95% confidence interval of (−4.31,

−1.56). The confidence interval does not include 0, corresponding to the Normal

regression, which agrees with our earlier findings. Also, note that the squared scale

parameter omega2 is now reported instead of the variance sigma2.

Table 13. Skew-normal regression of lean body mass on weight and height in the DP

metric.

. skewnreg, dpmetric

Skew-normal regression Number of obs = 202
Wald chi2(4) = 153403.46

Log likelihood = -458.68244 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

female#
c.weight

0 .7941643 .0273495 29.04 0.000 .7405602 .8477683
1 .5725823 .0252675 22.66 0.000 .5230589 .6221057

female#
c.height

0 4.777069 1.25218 3.82 0.000 2.322841 7.231298
1 9.431404 .9825755 9.60 0.000 7.505591 11.35722

alpha -2.933908 .7030481 -4.311857 -1.555959

omega2 13.87301 2.038646 9.877334 17.86868

LR test vs normal regression: chi2(1) = 18.28 Prob > chi2 = 0.0000

In our earlier example, we used the skewrplot command to graphically eval-

uate model fit by comparing residual density estimates obtained nonparametrically

with those from the skew-normal distribution evaluated at the MLEs of the model

parameters (Figure 15). Alternatively, we can obtain QQ or PP plots by using the re-

spective options. For example, the skewrplot, pp name(snpp, replace) command

specification produces the PP plot of the probabilities of quantiles of the squared stan-

dardized residuals from the fitted skew-normal model to the probabilities of quantiles

of the chi-squared distribution with 1 degree of freedom (Figure 24). The name(snpp)

option is used to store our graph in memory under the name snpp for later use. Ac-
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cording to the PP plot, the skew-normal model does not seem to fit data well in the

middle of the distribution, as we also observed in Figure 16. See Dalla Valle (2007)

for a formal test of the skew-normality in a population.
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Figure 24. Probability plot for the skew-normal model.

Next, we store estimation results from the skew-normal regression for later com-

parison with other models:

. estimates store skewn

Now we fit the skew-t model (Table 14). The centered parametrization for the

skew-t model is not yet available although it is currently being investigated by re-

searchers. Thus, the skewtreg command reports results only in the DP metric. Com-

pared with the output of direct parameters from skewnreg, the skewtreg command

reports an additional estimate of the degrees of freedom. The estimate of the de-

grees of freedom is 3.94 with a 95% confidence interval of (2.05, 7.58) which implies

heavier tails for the distribution of lbm. The estimate for the shape parameter alpha
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Table 14. Skew-t regression analysis of the AIS data.

. skewtreg lbm i.female#c.(weight height), noconstant nolog

Skew-t regression Number of obs = 202
Wald chi2(4) = 82096.51

Log likelihood = -452.19315 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

female#
c.weight

0 .7959185 .029476 27.00 0.000 .7381466 .8536904
1 .5802067 .0204974 28.31 0.000 .5400326 .6203809

female#
c.height

0 5.972125 1.238966 4.82 0.000 3.543796 8.400454
1 10.50348 .7941971 13.23 0.000 8.946881 12.06008

alpha -2.285011 .8234053 -2.78 0.006 -3.898856 -.6711667

omega2 6.544033 1.876612 2.865941 10.22213

DF 3.940011 1.314396 2.048966 7.576351

LR test vs normal regression: chi2(2) = 31.26 Prob > chi2 = 0.0000

is −2.29 and is larger than the estimate obtained earlier from the skew-normal re-

gression −2.93, although the skew-normal estimate is still within the reported 95%

confidence interval (−3.90, −.67). Again, the reported likelihood ratio test rejects

the hypothesis of normality, although the results from this test should be interpreted

with caution because it does not account for the fact that the degrees of freedom ν

are tested at the boundary value ν = ∞ (DiCiccio and Monti 2009).

We can also perform the likelihood ratio test of the skew-t model versus the

skew-normal model using the lrtest command (Table 15). (The above comment

about boundary correction applies here as well.) Because skewnreg and skewtreg

are two different estimation commands, we need to specify the force option to obtain

results. Although using this option is generally not recommended, it is safe in our

case because we know that the skew-normal model is nested within the skew-t model.

According to the results in Table 15, the likelihood ratio test favors the skew-t model

over the skew-normal model.
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Table 15. Likelihood-ratio test of the skew-t regression versus the skew-normal regres-

sion.

. lrtest skewn ., force

Likelihood-ratio test LR chi2(1) = 12.98
(Assumption: skewn nested in .) Prob > chi2 = 0.0003

We can also compare the two fits visually using, for example, PP plots. We use

skewrplot, pp to obtain the PP plot after skewtreg. We then combine the PP plot

obtained earlier for the skew-normal regression with the one for the skew-t regression

using graph combine to obtain Figure 25.

. skewrplot, pp name(stpp) nodraw

. graph combine snpp stpp
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Figure 25. Probability plots for the skew-normal model (left panel) and the skew-t

model (right panel).

According to Figure 25, the skew-t model fits the lbm regression better than the

skew-normal model, although it may suffer from possible data overfitting.

Alternatively, we can use information criteria to compare the two models (Ta-
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ble 16). Both AIC and BIC are smaller for the skew-t model suggesting that it is

preferable to the skew-normal model.

Table 16. AIC and BIC for the skew-normal and skew-t models.

. estimates stats skewn .

Model Obs ll(null) ll(model) df AIC BIC

skewn 202 . -458.6824 6 929.3649 949.2145
. 202 . -452.1932 7 918.3863 941.5442

Note: N=Obs used in calculating BIC; see [R] BIC note

We can also compare results from all three regressions, including the Normal

regression, side-by-side by using estimates table. To use estimates table, we

must first obtain estimation results from all three models.

Because there is no CP parametrization for the skew-t regression, we can compare

results only in the DP metric. Although skewtreg displays results in the DP metric,

the results are saved in the estimation metric. To save results in the DP metric, we

use the postdp option.

. skewtreg, postdp

. estimates store skewt_dp

Next, we repeat the same for the skew-normal regression. Prior to reposting

results to the DP metric, we use estimates restore to make the estimation results

of the previously fitted skewnreg active.

. estimates restore skewn
(results skewn are active now)

. skewnreg, postdp

. estimates store skewn_dp

Finally, we obtain estimation results from the Normal linear regression:

. regress lbm i.female#c.(weight height), noconstant
(output omitted )

. estimates store reg
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We now combine all three estimation results in one Table 17 using estimates

table.

Table 17. Combined regression results.

. estimates table reg skewn_dp skewt_dp, equation(1) star(0.05 0.01 0.005)

Variable reg skewn_dp skewt_dp

#1
female#

c.weight
0 .73163967*** .79416426*** .79591845***
1 .52680392*** .5725823*** .58020674***

female#
c.height

0 7.7063182*** 4.7770693*** 5.9721247***
1 11.119767*** 9.4314038*** 10.503479***

alpha
_cons -2.9339079*** -2.2850114**

omega2
_cons 13.873007*** 6.5440334***

df
_cons 3.9400106***

legend: * p<.05; ** p<.01; *** p<.005

According to the three regression models, all considered covariates are strong pre-

dictors of lean body mass measurements. Coefficient estimates are highly significant

at a 0.005 level of a test against zero. Both skewnreg and skewtreg report larger

estimates of the coefficients for weight than the Normal regression. The estimates

of the coefficients for height from the skew-t regression fall between the estimates

reported by the other two regressions. The estimates of the shape parameter provide

significant evidence against the null hypothesis H0: α = 0 for both models. Because

tests against zero are not appropriate for the scale and degrees-of-freedom parame-

ters, the significance levels, reported automatically by estimates table, should be

ignored.
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2. Multivariate analysis

Suppose we are interested in the distribution of lbm and bmi, recording the body

mass index. The scatter plot in Figure 26 of the lbm and bmi values suggests that

the two variables are related and, thus, should be analyzed jointly.

. use ais
(Biological measures from athletes at the Australian Institute of Sport)

. scatter lbm bmi, ytitle(Lean body mass) xtitle(Body mass index)
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Figure 26. Scatter plot of lbm and bmi.

The scatter plot also suggests that the joint distribution of lbm and bmi is somewhat

asymmetric and so we fit the bivariate skew-normal distribution to lbm and bmi

using mskewnreg (Table 18). Here we chose to estimate all parameters by using

full maximum likelihood (option fullml) instead of the default profile log-likelihood

approach. The estimate of the skewness parameter for lbm is close to zero and,

according to the z-test (p = 0.520), the hypothesis of H0: γ1 = 0 cannot be rejected.

For bmi, however, there is a strong evidence that the skewness parameter is different
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from zero.

Table 18. Bivariate skew-normal fit to lean body mass and body mass index.

. mskewnreg lbm bmi, fullml nolog

Skew-normal regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1213.2609 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
_cons 64.9224 .916583 70.83 0.000 63.12593 66.71887

bmi
_cons 23 .1964777 117.06 0.000 22.61491 23.38509

gamma
1 .006136 .0095483 0.64 0.520 -.0125783 .0248504
2 .4534164 .0935876 4.84 0.000 .269988 .6368447

Sigma
11 169.681 16.86091 136.6342 202.7278
12 26.31286 3.148478 20.14195 32.48376
22 7.910924 .820492 6.302789 9.519059

LR test vs normal regression: chi2(2) = 37.55 Prob > chi2 = 0.0000

The joint test of H0 : γ1 = 0, γ2 = 0 (see Table 19) and the reported LR test

strongly reject the hypothesis of bivariate normality for lbm and bmi.

Table 19. Joint test of bivariate normality for lean body mass and body mass index.

. test [gamma1]_cons [gamma2]_cons

( 1) [gamma1]_cons = 0
( 2) [gamma2]_cons = 0

chi2( 2) = 52.16
Prob > chi2 = 0.0000

We can also redisplay the results in the DP metric in Table 20. Notice that the

estimate of α1 corresponding to the shape parameter of lbm in the DP metric is very

far from zero compared with the skewness index, reported earlier. As we mentioned in

Subsection 3 of Section B of this chapter, the individual shape parameters are poor

estimates of the magnitude of the asymmetry. Although their zero values provide
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evidence that the multivariate Normal model may be adequate the opposite is not

necessarily true, as we witnessed in this example.

Table 20. Bivariate skew-normal fit to lean body mass and body mass index in the DP

metric.

. mskewnreg, dpmetric

Skew-normal regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1213.2609 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
_cons 61.76091 1.859599 33.21 0.000 58.11616 65.40565

bmi
_cons 20.13544 .292038 68.95 0.000 19.56306 20.70782

alpha
1 -2.302208 .5772413 -3.99 0.000 -3.43358 -1.170836
2 5.515455 1.30094 4.24 0.000 2.96566 8.065251

Omega
11 179.676 21.2868 137.9547 221.3974
12 35.36914 7.520692 20.62885 50.10942
22 16.11664 2.297473 11.61367 20.6196

LR test vs normal regression: chi2(2) = 37.55 Prob > chi2 = 0.0000

We again compare the fit against the Normal model using the PP plots. Figure

27 shows that the bivariate skew-normal model fits the data better than the bivariate

Normal model.

We can fit the bivariate skew-t model as shown in Table 21. The estimated

degrees of freedom are large and the estimates are very close to those from the skew-

normal model suggesting that the skew-normal model is adequate for modeling lbm

and bmi.

We can also adjust the location for gender by including variable female as a

covariate as depicted in Table 22. (Alternatively, we could fit separate regressions

for males and females to allow all parameters of the joint distribution to vary across

gender.)
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. skewrplot, pp normal
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Figure 27. Probability plot for bivariate skew-normal and Normal model.

Table 21. Bivariate skew-t fit to lean body mass and body mass index.

. mskewtreg lbm bmi, nolog

Skew-t regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1213.1074 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
_cons 61.9651 1.926496 32.16 0.000 58.18923 65.74096

bmi
_cons 20.19786 .3165281 63.81 0.000 19.57748 20.81825

alpha
1 -2.234864 .5836008 -3.83 0.000 -3.378701 -1.091028
2 5.242385 1.355909 3.87 0.000 2.584852 7.899918

Omega
11 171.7734 24.33631 130.1249 226.7522
12 32.63322 8.546205 15.88297 49.38348
22 14.8864 3.046903 9.967089 22.23366

DF 51.00153 95.45759 1.301435 1998.684

LR test vs normal regression: chi2(3) = 37.86 Prob > chi2 = 0.0000
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Table 22. Gender-specific bivariate skew-t fit to lean body mass and body mass index.

. mskewnreg lbm bmi = female, fullml nolog

Skew-normal regression Number of obs = 202
Wald chi2(1) = 314.13

Log likelihood = -1105.0246 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
female -20.36519 1.149042 -17.72 0.000 -22.61728 -18.11311
_cons 75.0455 .8219825 91.30 0.000 73.43444 76.65655

bmi
female -2.267239 .3202247 -7.08 0.000 -2.894868 -1.639611
_cons 24.13093 .2413966 99.96 0.000 23.6578 24.60406

gamma
1 .103742 .0543487 1.91 0.056 -.0027796 .2102635
2 .6843177 .0915275 7.48 0.000 .5049271 .8637083

Sigma
11 71.51101 7.115746 57.5644 85.45761
12 16.63505 2.002029 12.71114 20.55896
22 6.954868 .7537917 5.477463 8.432272

LR test vs normal regression: chi2(2) = 35.63 Prob > chi2 = 0.0000

E. Analysis of Automobile Prices

Consider the auto.dta dataset, distributed with Stata (see Section 1.2.2 in the User’s

Guide of the Stata 11 documentation), containing prices (in dollars) of 74 automobiles

in 1978 (Table 23).

Suppose that we want to analyze the distribution of automobile prices. It is

natural to compare the distribution to the Normal distribution first. Although we

can already suspect that the normality assumption is implausible for these data from

the output above — the distribution is not symmetric and, in fact, is right skewed —

let us look at the Normal probability plot of price in Figure 28. Visual inspection

of Figure 28 confirms our earlier observation — the distribution of prices is skewed

to the right and also seems to have heavier tails than the Normal distribution.



97

Table 23. Summary statistics of automobile prices.

. sysuse auto, clear
(1978 Automobile Data)

. summarize price, detail

Price

Percentiles Smallest
1% 3291 3291
5% 3748 3299
10% 3895 3667 Obs 74
25% 4195 3748 Sum of Wgt. 74

50% 5006.5 Mean 6165.257
Largest Std. Dev. 2949.496

75% 6342 13466
90% 11385 13594 Variance 8699526
95% 13466 14500 Skewness 1.653434
99% 15906 15906 Kurtosis 4.819188

. pnorm price

0.
00

0.
25

0.
50

0.
75

1.
00

N
or

m
al

 F
[(

pr
ic

e−
m

)/
s]

0.00 0.25 0.50 0.75 1.00
Empirical P[i] = i/(N+1)

Figure 28. Normal probability plot of automobile prices.

Let us fit the skew-t distribution to the automobile prices and inspect its fit. As

before, we use the skewtreg command to fit a skew-t distribution to price. From

the output in Table 24, the estimate of 6.66 with 95% confidence interval of (0.36,

12.96) of the shape parameter α supports our claim that the distribution is skewed
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to the right. The estimated degrees of freedom of 1.53 with 95% confidence interval

of (0.86, 2.74) provides strong evidence for heavy tails of the distribution of prices.

Table 24. Skew-t model for automobile prices.

. skewtreg price, nolog

Skew-t regression Number of obs = 74
Wald chi2(0) = .

Log likelihood = -661.43121 Prob > chi2 = .

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 3702.711 117.3818 31.54 0.000 3472.647 3932.775

alpha 6.657068 3.213596 2.07 0.038 .3585365 12.9556

Omega 2502318 1168437 212222.5 4792413

DF 1.531112 .4548823 .8553057 2.740898

LR test vs normal regression: chi2(2) = 68.56 Prob > chi2 = 0.0000

The reported results correspond to the estimates of the parameters of the skew-t

distribution and, as we mentioned earlier, do not correspond to the actual moments

of the distribution. For example, the estimate of the mean of the fitted skew-t distri-

bution is not ξ̂ = 3702.7 but a function of all estimated parameters (Table 25).

Table 25. Estimated moments of the skew-t fit to automobile prices.

. estat summarize
note: moments missing because estimated DF <= 2

Moments

mean 6784.941
variance .
skewness .

We used estat summarize after skewtreg to obtain the estimates of the three central

moments: mean, variance, and skewness. The mean estimate is 6784.941, which is

somewhat larger than the sample mean estimate of 6165.257 obtained earlier. The

variance and skewness estimates cannot be computed in this example because the
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estimated degrees of freedom are less than 2. The variance of the skew-t distribution

is defined for ν > 2 and the skewness is defined for ν > 3.

We can use the skewrplot command to obtain a probability plot (Figure 29) to

inspect how well the skew-t distribution fits the data.

. skewrplot, pp
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Figure 29. Skew-t probability plot of automobile prices.

Figure 29 plots empirical probabilities of the residuals from the skew-t fit above

against the probabilities of the skew-t distribution with parameters ξ = 0, ω̂2 =

2502318, α̂ = 6.66, and ν̂ = 1.53. According to this plot, the skew-t distribution fits

the automobile price data very well.

F. Log-Skew-Normal and Log-Skew-t Distributions

The log-normal and log-t distributions are often used to model data with a nonneg-

ative support such as precipitation data or income data. These distributions imply
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that the distribution of the data in the log metric is symmetric. This assumption may

be too restrictive in some applications. For example, here we investigate how rea-

sonable this assumption is in the analysis of the monthly U.S. national precipitation

data as described in Marchenko and Genton (2010b). The data are publicly available

from the National Climatic Data Center (NCDC), the largest archive of weather data,

and include monthly precipitation measured in inches to hundreds for the period of

1895-2007 (113 observations per month).

To fit the log-skew-normal model to the precipitation data, we follow the standard

procedure and fit the skew-normal model, described previously, to the log of the

precipitation. For example, we generate the new variable lnprecip to contain the log

of the precipitation and fit the skew-normal distribution to the January (month==1)

log-precipitation measurements over 113 years (Table 26).

Table 26. Log-skew-normal fit to U.S. national precipitation data in January.

. use precip07_national
(Precipitation (inches), national US data)

. gen lnprecip = ln(precip)

. skewnreg lnprecip if month==1, nolog

Skew-normal regression Number of obs = 113
Wald chi2(0) = .

Log likelihood = .71065091 Prob > chi2 = .

lnprecip Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .7651154 .0228328 33.51 0.000 .7203639 .8098669

gamma -.3321966 .1894123 -1.75 0.079 -.703438 .0390447

sigma2 .058959 .0081885 .0449088 .0774049

LR test vs normal regression: chi2(1) = 2.96 Prob > chi2 = 0.0853

The skewness index is not significantly different from zero at a 5% level so the as-

sumption of normality seems reasonable for January log precipitation.

More generally, we can obtain skewness indexes for all months. As depicted in
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Figure 30, we use the statsby command to collect the estimates of skewness indexes

and their respective standard errors from skewnreg over months and plot them along

with their associated 95% confidence intervals.

. statsby gamma=_b[gamma:_cons] se_gamma=_se[gamma:_cons], by(month) clear: skewnreg lnprecip
(running skewnreg on estimation sample)

command: skewnreg lnprecip
gamma: _b[gamma:_cons]

se_gamma: _se[gamma:_cons]
by: month

Statsby groups
1 2 3 4 5

............

. gen lb = gamma-1.96*se_gamma

. gen ub = gamma+1.96*se_gamma

. twoway (line gamma month, sort) (rcap ub lb month, sort), yline(0) xtitle("") legend(off)
> xlabel(1(1)12, valuelabel angle(45))
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Figure 30. Skewness indexes over months with 95% confidence intervals.

From Figure 30 we can see that the assumption of the symmetry of the distribution

of the log precipitation is questionable for some months (e.g., September, October).

We can see that the distribution of the log precipitation is negatively skewed for

summer and fall months and becomes more symmetric in early spring. Similarly, we

can investigate the trend in the tails of the distribution over months by plotting the
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estimated degrees of freedom from skewtreg. If average precipitation is of interest, it

can be computed as described in Marchenko and Genton (2010b) using the expressions

for the moments of the log-skew-normal distribution.

G. Conclusion

In this chapter we described two flexible parametric models, the skew-normal and

skew-t models, which can be used for the analysis of non-normal data. We presented

a suite of commands for fitting these models in Stata to univariate and multivariate

data. We also provided postestimation features to obtain linear predictions and to

graphically evaluate the goodness of fit of the skewed distributions to the data. We

demonstrated how to use the commands for univariate analysis of automobile-prices

data and univariate and multivariate analyses of the well-known Australian Institute

of Sport data. We also showed how to use the developed commands to analyze data

with nonnegative support on the example of U.S. precipitation data.
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CHAPTER V

SUMMARY

We presented novel approaches for analysis and modeling using multivariate skew-

normal and skew-t distributions in econometrics and environmetrics.

Specifically, we established the link between sample-selection models and ex-

tended skewed distributions and used this link to introduce and study properties of

the selection-t model, a robust version of the selection-normal model. We provided a

numerical algorithm for estimating the model parameters and studied finite-sample

performance of MLEs under various simulation scenarios. We demonstrated that

with heavy-tailed data, MLEs from the selection-normal model are biased, and the

asymptotic tests, such as Wald and likelihood-ratio tests, do not maintain the correct

nominal level unlike MLEs from the proposed selection-t model. We applied the pro-

posed selection-t model to analyze ambulatory expenditures and obtained statistical

evidence of the existence of sample selection in these data which was not detected by

the conventional selection-normal model.

We introduced a family of multivariate log-skew-elliptical distributions and stud-

ied their formal properties. We provided a number of stochastic representations of

log-skew-elliptical random vectors and expressions for their marginal and conditional

distributions. We also provided expressions for the moments of log-skew-normal ran-

dom vectors and showed that positive moments of log-skew-t random vectors do not

exist. We used log-skew-normal and log-skew-t distributions to model univariate and

multivariate U.S. precipitation data.

We implemented four user-written estimation commands in Stata for fitting

univariate and multivariate skew-normal and skew-t regression models: skewnreg,

skewtreg, mskewnreg, and mskewtreg. We also implemented two postestimation
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commands: predict, for obtaining predictions, and skewrplot, for graphical eval-

uation of the goodness-of-fit. As a tutorial, we demonstrated detailed use of the

commands for the analyses of the well-known Australian Institute of Sport data,

automobile price data, and U.S. precipitation data.

For the future, it would be interesting to investigate the sensitivity of the pro-

posed selection-t model to misspecification of the error distribution. Also, one may

look into extending the proposed selection-t model to the skew-selection-t model,

where the errors are modeled according to the multivariate skew-t distribution. Such

extension is appealing from a practical standpoint because it allows a more flexible

model for the entire underlying population and not only the selected sample. More

applications of the multivariate log-skew-normal and log-skew-t distributions to en-

vironmetrics as well as to other areas are encouraged.
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APPENDIX A

A1. Score equations

Let θ = (β⊤,γ⊤, ρ, σ, ν). The log-likelihood for the selection-t model based on a

single pair of observations (y, u) is

l(θ; y, u) = u ln t(y;x⊤β, σ2, ν) + u lnT (ηθ; ν + 1) + (1 − u) lnT (−w⊤γ; ν), (A.1)

where u = 1 if y is observed and u = 0 if y is unobserved, z = (y − x⊤β)/σ,

ln t(y;x⊤β, σ2, ν) = c(ν, σ) − ν + 1

2
ln

(

1 +
z2

ν

)

,

ηθ =

√

ν + 1

ν + z2

ρz + w⊤γ
√

1 − ρ2
,

and

c(ν, σ) = lnΓ

(

ν + 1

2

)

− ln Γ
(ν

2

)

− 0.5 ln π − 0.5 ln ν − ln σ.

Let

Qν =

√

√

√

√

ν + 1

ν +
(

y−x⊤β

σ

)2 =

√

ν + 1

ν + z2
,

ζθ−ν =
ρ(y−x⊤β)

σ
+ w⊤γ

√

1 − ρ2
= Aρρz + Aρw

⊤γ,

ηθ =

√

√

√

√

ν + 1

ν +
(

xi−x⊤β

σ

)2

ρ(y−x⊤β)
σ

+ w⊤γ
√

1 − ρ2
= Qνζθ−ν = Qν

(

Aρρz + Aρw
⊤γ
)

,

Mν(x) =
t(x; ν)

T (x; ν)
=
∂lnT (x; ν)

∂x
,

where Aρ = 1/
√

1 − ρ2 and Aρρ = ρ/
√

1 − ρ2 = ρAρ.

Let Sα = ∂l(θ)
∂α

be the score function corresponding to the parameter α. For
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α ∈ {β⊤,γ⊤, ρ, σ},

Sα = u
∂ln t(y;x⊤β, σ2, ν)

∂α
+ u

∂ln T (ηθ; ν + 1)

∂ηθ

∂ηθ

∂α
− (1 − u)

∂lnT (−w⊤γ; ν)

∂(−w⊤γ)

∂w⊤γ

∂α

= −uI(α=σ)
1

σ
− uQ2

νz
∂z

∂α
+ uMν+1(ηθ)

∂ηθ

∂α
− (1 − u)I(α=γk)wkMν(−w⊤γ).

In particular, the scores are

Sβk
=

uxkQν

σ

[

Qνz +
{

ζθ−ν (ν + z2)−1z − Aρρ

}

Mν+1(ηθ)
]

, k = 1, . . . , p

Sγk
= uwkAρQνMν+1(ηθ) − (1 − u)wkMν(−w⊤γ), k = 1, . . . , q

Sρ = uQνA
3
ρ

(

z + ρw⊤γ
)

Mν+1(ηθ)

Sσ =
u

σ

[

−1 +Q2
νz

2 +Qνz
{

ζθ−ν(ν + z2)−1z − Aρρ

}

Mν+1(ηθ)
]

Sν = u

{

∂c(ν, σ)

∂ν
− 1

2
ln

(

1 +
z2

ν

)

+
Q2

νz
2

2ν
+
∂lnT (ηθ; ν + 1)

∂ν

}

+(1 − ui)
∂ln T (−w⊤γ; ν)

∂ν
,

where ∂c(ν,σ)
∂ν

= 1
2
ψ
(

ν+1
2

)

− 1
2
ψ
(

ν
2

)

− 1
2ν

, ψ(·) is the derivative of the log-gamma

function, and ∂lnT (x;ν)
∂ν

must be computed numerically.

A2. Hessian matrix

Let si(θ̂) be the score vector of the selection-t model from A1 for observation i for

i = 1, . . . , N , evaluated at the MLE θ̂. Then, under appropriate regularity conditions,

the Hessian matrix H can be approximated using H = 1
N

∑N
i=1 si(θ̂)si(θ̂)⊤.

We also provide direct computation of the Hessian matrix below. Let Sα1α2 =

∂2l(θ)
∂α1∂α2

be the second-order partial derivative of l(θ) from (A.1) with respect to α1

and α2. The lower diagonal entries of the Hessian matrix are
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Sβkβl
=

uxkxlQ
2
ν

σ2

[

{

2z2(ν + z2)−1 − 1
}

+

{

ζθ−ν

z

ν + z2
− Aρρ

}2

M ′
ν+1(ηθ)

]

+
uxkxl

σ2
Qν(ν+z2)−1
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ζθ−ν

{

3(ν + z2)−1z2−1
}

−2Aρρz
]

Mν+1(ηθ)
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xkwnQνAρ

σ
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Mν+1(ηθ) + ζθ−νM
′
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′
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uzQνA

3
ρ
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(z+ρw⊤γ)

[

z
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{

ηθM
′
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−QνAρρM
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3
ρ

σ
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Sρν = uQνA
3
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∂Mν+1(ηθ)

∂ν
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1

2
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ν + 1
− 1
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Mν+1(ηθ)
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Sσ2 =
u

σ2
− 3uQ2

νz
2

σ2
+

2uQν

σ2

z2

ν+z2

×
[

Qνz
2 +

{

3

2
ζθ−ν

(

z2

ν+z2
− 1

)

−QνAρρ

}

Mν+1(ηθ)

]

+
2uQνAρρz

σ2
Mν+1(ηθ) +

uz2

σ2

(

ηθ
z

ν + z2
−QνAρρ

)2

M ′
ν+1(ηθ)

Sσν =
uQνz

2

σ

{

Qν

(

1

ν + 1
− 1

ν + z2

)

− Mν+1(ηθ)

(ν + z2)2

}

+
uQνz

σ

{

∂Mν+1(ηθ)

∂ν
+

1

2

(

1
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ν + z2
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Mν+1(ηθ)

}

Sν2 = u
∂2c(ν, σ)

∂2ν
+

u

2ν

z2

ν + z2
+
uQ2

νz
2

2ν

(

1

ν + 1
− 1

ν + z2

)

− uz4

2ν2

+u
∂2 lnT (ηθ; ν + 1)

∂2ν
+ (1 − u)

∂2 lnT (−w⊤γ; ν)

∂2ν

where k, l = 1, . . . , p andm,n = 1, . . . , q,M ′
ν(x) = ∂Mν(x)

∂x
= −Mν(x)

{

x ν+1
ν+x2 +Mν(x)

}

,

and ∂Mν+1(x)
∂ν

must be computed numerically. Moreover

∂2c(ν, σ)

∂2ν
=

1

4
ψ′
(

ν + 1

2

)

− 1

4
ψ′
(ν

2

)

+
1

2

1

ν2
,

where ψ′(·) is the trigamma function.

A3. Fisher and observed information matrices at ρ = 0 for the selection-normal

model

When ν −→ ∞, Qν = 1, ηθ = ζθ−ν = Aρρz+Aρw
⊤γ, Mν(x) = M(x) = φ(x)

Φ(x)
= ∂lnΦ(x)

∂x
,

M ′
ν(x) = M ′(x) = −M(x){x +M(x)}, ∂c(ν,σ)

∂ν
= 0, and ∂T (x;ν)

∂ν
= 0.
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The scores are

Sβk
=

uxk

σ
(z − AρρM(ηθ)) , k = 1, . . . , p

Sγk
= uwkAρM(ηθ) − (1 − u)wkM(−w⊤γ), k = 1, . . . , q

Sρ = uA3
ρ

(

z + ρw⊤γ
)

M(ηθ)

Sσ =
u

σ

{

−1 + z2 − zAρρM(ηθ)
}

Sν = 0.

At ρ = 0, Aρ = 1, Aρρ = 0, ηθ = w⊤γ and the scores are

Sβk
=

uxk

σ
z, k = 1, . . . , p

Sγk
= uwkM(w⊤γ) − (1 − u)wkM(−w⊤γ), k = 1, . . . , q

Sρ = uzM(w⊤γ)

Sσ =
u

σ

{

−1 + z2
}

Sν = 0.

W.l.g. let p = q = 1, then the observed information for (β0, β1, γ0, γ1, ρ, σ) for

the sample of size N at ρ = 0 is
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where

Mi = M(w⊤
i γ)

M ′
i = M ′(w⊤

i γ)

Bi = B(ui;w
⊤
i γ) = −uiM

′(w⊤
i γ) − (1 − ui)M

′(−w⊤
i γ)

w⊤
i γ = γ0 + γ1w1i

O5,5 = −
∑

i

ui

(

z2
iM

′
i + w⊤

i γMi

)

O6,6 = −
∑

i

ui

σ2
+
∑

i

3uiz
2
i

σ2
.

To compute the Fisher information, consider the following expectations:

E(Ui) = Φ(w⊤
i γ)

E(UiZi) = E{UiE(Zi|Ui)}=E

[

Ui

{

E

(

Y ⋆
i − x⊤

i β

σ
|Ui = 1

)

+ 0

}]

= ρ
φ(w⊤

i γ)

Φ(w⊤
i γ)

E(Ui)=ρφ(w⊤
i γ)|ρ=0 =0

E(UiZ
2
i ) = E{UiE(Z2

i |Ui)}=

(

1 − ρ2w⊤
i γ

φ(w⊤
i γ)

Φ(w⊤
i γ)

)

E(Ui)

= Φ(w⊤
i γ) − ρ2w⊤

i γφ(w⊤
i γ)|ρ=0 =Φ(w⊤

i γ).

Note that

E{B(Ui;w
⊤
i γ)} = −M ′(w⊤

i γ)E(Ui) − (1 −E(Ui))M
′(−w⊤

i γ)

= −Φ(w⊤
i γ)M ′(w⊤

i γ)−Φ(−w⊤
i γ)M ′(−w⊤

i γ)

=
φ2(w⊤

i γ)

Φ(w⊤
i γ)Φ(−w⊤

i γ)
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E
{

−UiZ
2
i M
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i γ) − Uiw

⊤
i γM(w⊤
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}
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.
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i γ)
. Then, the Fisher information matrix is I =
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i Ii,

where Ii is
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.

Unlike the case of the extended skew-normal model (Arellano-Valle and Genton 2010a,

p. 17), the scores, corresponding to the selection-normal model, are not linearly

dependent at ρ = 0. Also, the observed information and Fisher information for

θ = (β,γ, ρ, σ) are nonsingular at ρ = 0, which is not the case for the extended

skew-normal model.
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A4. Stata output for the numerical results

Heckman selection-normal model:

. heckman lny age female edu blhisp totchr ins, sel(dy=age female educ blhisp totchr ins income)

Heckman selection model Number of obs = 3328
(regression model with sample selection) Censored obs = 526

Uncensored obs = 2802

Wald chi2(6) = 288.88
Log likelihood = -5836.219 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lny
age 0.212 0.023 9.21 0.000 0.167 0.257

female 0.348 0.060 5.79 0.000 0.230 0.466
educ 0.019 0.011 1.77 0.076 -0.002 0.039

blhisp -0.219 0.060 -3.66 0.000 -0.336 -0.102
totchr 0.540 0.039 13.73 0.000 0.463 0.617

ins -0.030 0.051 -0.59 0.557 -0.130 0.070
_cons 5.044 0.228 22.11 0.000 4.597 5.491

dy
age 0.088 0.027 3.21 0.001 0.034 0.142

female 0.663 0.061 10.87 0.000 0.543 0.782
educ 0.062 0.012 5.15 0.000 0.038 0.086

blhisp -0.364 0.062 -5.88 0.000 -0.485 -0.243
totchr 0.797 0.071 11.20 0.000 0.658 0.936

ins 0.170 0.063 2.71 0.007 0.047 0.293
income 0.003 0.001 2.06 0.040 0.000 0.005
_cons -0.676 0.194 -3.48 0.000 -1.056 -0.296

/athrho -0.131 0.150 -0.88 0.380 -0.425 0.162
/lnsigma 0.240 0.014 16.59 0.000 0.211 0.268

rho -0.131 0.147 -0.401 0.161
sigma 1.271 0.018 1.236 1.308
lambda -0.166 0.188 -0.534 0.202

LR test of indep. eqns. (rho = 0): chi2(1) = 0.91 Prob > chi2 = 0.3406

Heckman selection-t model:

. heckt lny age female edu blhisp totchr ins, sel(dy=age female educ blhisp totchr ins income)

Heckman-t selection model Number of obs = 3328
(regression model with sample selection) Censored obs = 526

Uncensored obs = 2802

Wald chi2(6) = 325.58
Log likelihood = -5822.076 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lny
age 0.207 0.023 9.16 0.000 0.163 0.251

female 0.307 0.056 5.45 0.000 0.196 0.417
educ 0.017 0.010 1.69 0.091 -0.003 0.037

blhisp -0.193 0.058 -3.35 0.001 -0.306 -0.080
totchr 0.513 0.036 14.36 0.000 0.443 0.583

ins -0.052 0.050 -1.04 0.298 -0.151 0.046
_cons 5.206 0.209 24.93 0.000 4.797 5.615
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dy
age 0.099 0.030 3.31 0.001 0.040 0.157

female 0.725 0.069 10.58 0.000 0.591 0.859
educ 0.065 0.013 5.06 0.000 0.040 0.090

blhisp -0.394 0.067 -5.92 0.000 -0.524 -0.263
totchr 0.890 0.087 10.21 0.000 0.719 1.061

ins 0.180 0.068 2.65 0.008 0.047 0.313
income 0.003 0.001 2.06 0.040 0.000 0.006
_cons -0.748 0.208 -3.60 0.000 -1.155 -0.341

/athrho -0.334 0.128 -2.61 0.009 -0.584 -0.083
/lnsigma 0.178 0.021 8.29 0.000 0.136 0.220

/lndf 2.559 0.221 11.61 0.000 2.127 2.992

rho -0.322 0.115 -0.526 -0.083
sigma 1.195 0.026 1.146 1.246

df 12.928 2.851 8.391 19.917
lambda -0.385 0.140 -0.659 -0.110

Wald test of indep. eqns. (rho = 0): chi2(1) = 6.82 Prob > chi2 = 0.0090
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APPENDIX B

Proof of Proposition 1 (selection representation 1): To show that

Z ∼ LSEd(0, Ω̄,α, g
(d+1)), we apply a property that if Z

d
= (V|Ũ0 < α⊤U), then

ψ(Z)
d
= (ψ(V)|Ũ0 < α⊤U) with ψ(·) = ln(·). Then, the result follows from Definition

1 and a selection representation of a skew-elliptical random vector as given by, for

example, Arellano-Valle and Genton (2010a). Then, X ∼ LSEd(ξ,Ω,α, g
(d+1)), since

ln(X) = ξ + ωln(Z) ∼ SEd(ξ,Ω,α, g
(d+1)). �

Proof of Proposition 2 (selection representation 2): Although this result can

also be shown using similar arguments as in the proof for the selection representation

1, we choose a different approach here. We use properties of elliptical and log-elliptical

distributions (Fang et al. 1990, pp. 45, 56) to show that the density of Z is of the

form (3.4). It can be written as

fZ(z) = fV|U0>0(z) = fV(z)
P (U0 > 0|V = z)

P (U0 > 0)
. (B.1)

Using properties of elliptical distributions, U ∼ ECd(0, Ω̄, g
(d)) and U0|U ∼

EC(δ⊤Ω̄
−1

u, 1 − δ⊤Ω̄δ, g
Q0,Ω̄

u

), where Q0,Ω̄
u = u⊤Ω̄u. Then V = exp(U) follows a

d-dimensional multivariate log-elliptical distribution with density

fV(z) =

(

d
∏

i=1

z−1
i

)

fU{ln(z)} =

(

d
∏

i=1

z−1
i

)

fd{ln(z); 0, Ω̄, g(d)}.

Let U⋆
0 = {U0−δ⊤Ω̄

−1
ln(z)}/(1−δ⊤Ω̄

−1
δ)1/2, then U⋆

0 ∼ EC(0, 1, g
Q0,Ω̄

ln(z)

), where

Q0,Ω̄
ln(z)

= ln(z)⊤Ω̄ln(z). Hence

P (U0 > 0|V = z) = P{U0 > 0|U = ln(z)} = P{U⋆
0 < α⊤ln(z)|U = ln(z)}

= F{α⊤ln(z); g
Q0,Ω̄

ln(z)

}.
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Since the distribution of U0 is symmetric, P (U0 > 0) = 1/2. Substituting the terms

obtained above into (B.1), we arrive at the density of Z,

fZ(z) = 2

(

d
∏

i=1

z−1
i

)

fd{ln(z); 0, Ω̄, g(d)}F{α⊤ln(z); g
Q0,Ω̄

ln(z)

},

which is a special case of (3.4) with ξ = 0 and Ω = Ω̄. Then, X ∼ LSEd(ξ,Ω,α, g
(d+1)),

since ln(X) = ξ + ωln(Z) ∼ SEd(ξ,Ω,α, g
(d+1)). �

Proof of Proposition 3 (log-skew-normal mixture): This representation arises

from the definition of a log-skew-elliptical random vector and skew-scale mixture

representation of a skew-elliptical random vector: if X ∼ SNd(0,Ω,α), then Y
d
= ξ+

K(η)1/2X has the density of the form (3.7), Y ∼ SMSNd{ξ,Ω,α, K(η), H(η)}; see

Azzalini and Capitanio (2003), among others. Since X = exp(ξ)ZK1/2(η) = exp{ξ +

K1/2(η)ln(Z)} = exp(Y), the result follows from Definition 1. �

Proof of Proposition 4 (marginal distribution): By definition, we have that

the vector ln(X) = {ln(X1)
⊤, ln(X2)

⊤}⊤, ln(X) ∼ SEd(ξ,Ω,α, g
(d)). Using the re-

sult about the marginal distribution of a skew-elliptical random vector, ln(X1) ∼

SEq(ξ1,Ω11,α
⋆
1, g

(d)) and ln(X2) ∼ SEd−q(ξ2,Ω22,α
⋆
2, g

(d)) with parameters as de-

fined in (3.8). Then, the result follows from Definition 1 of a log-skew-elliptical

random vector. �

Proof of Proposition 6 (mixed moments): Provided the moment exists,

E

(

d
∏

i=1

Xni
i

)

= E

{

d
∏

i=1

eni ln(Xi)

}

= E
{

e
∑d

i=1 ni ln(Xi)
}

= E
{

en
⊤ln(X)

}

= Mln(X)(n).

�

Proof of Proposition 7 (log-skew-t moments): Without loss of generality, let

ξ = 0 and Ω = Ω̄. We compute the moments directly from the log-skew-t density

(3.6).
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Let Uln(x) = α⊤ln(x)
(

ν+d
ν+Qln(x)

)1/2

and Ω̄
−1

= (ρ̃ij)
d
i,j=1, where ρ̃ii > 0 and

ρ̃ij = ρ̃ji. Let R
d
a denote (a,∞)d and Ddx denote dx1dx2 . . . dxd. For any ni ≥ 0,

i = 1, . . . , d the condition
∑d

i=1 ni > 0 requires that at least one of the ni’s is nonzero.

Suppose that nd > 0. Then, E
(

∏d
i=1X

ni
i

)

equals

∫

Rd
0

(

d
∏

i=1

xni
i

)

fLSTd
(x; 0, Ω̄,α, ν)Ddx

= 2aνbν

∫

Rd
0

d
∏

i=1

xni−1
i

(

1 +
Qln(x)

ν

)− ν+d
2
∫ Uln(x)

−∞

(

1 +
u2

ν + d

)− ν+d+1
2

duDdx

= 2aνbν

∫

R
d−1
0

d−1
∏

i=1

xni−1
i

∫ ∞

0

xnd−1
d

(

1 +
Qln(x)

ν

)− ν+d
2

×
∫ Uln(x)

−∞

(

1 +
u2

ν + d

)− ν+d+1
2

dudxdD
d−1x (B.2)

where aν and bν are normalization constants.

The quadratic formQln(x) can be rewritten as a function of xd, Qln(x) = Aln(x−d)+

(ln xd + Bln(x−d))
2, where Aln(x−d) and Bln(x−d) do not depend on xd (are functions

of only ln x1, . . . , lnxd−1 and ρ̃ij , i, j = 1, . . . , d). Then, Uln(x) −→ αd

√
ν + d as

xd → ∞, and so
∫ Uln(x)

−∞

(

1 + u2

ν+d

)− ν+d+1
2

du −→
∫ αd

√
ν+d

−∞

(

1 + u2

ν+d

)− ν+d+1
2

du > 0 as

xd → ∞. Thus, there is a cν,αd
> 0 (does not depend on x), such that

∫ Uln(x)

−∞

(

1 +
u2

ν + d

)− ν+d+1
2

du > cν,αd
, for large xd > x⋆

d.
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Then,

(B.2) > 2aνbν

∫

R
d−1
0

d−1
∏

i=1

xni−1
i

∫ ∞

x⋆
d

xnd−1
d

(

1 +
Qln(x)

ν

)− ν+d
2

×
∫ Uln(x)

−∞

(

1 +
u2

ν + d

)− ν+d+1
2

dudxdD
d−1x

> 2aνbνcν,αd

∫

R
d−1
0

d−1
∏

i=1

xni−1
i

×
[

∫ ∞

x⋆
d

xnd−1
d

{

1 +
Aln(x−d)

ν
+

(ln xd +Bln(x−d))
2

ρ̃ddν

}− ν+d
2

dxd

]

Dd−1x.

The innermost integral over xd (in square brackets) diverges at infinity for any nd > 0,

and, therefore, the d-dimensional integral from the last step diverges for any ni ≥ 0,

i = 1, . . . , d− 1. As such, the integral (B.2) also diverges and E
(

∏d
i=1X

ni
i

)

= ∞ for

any ni ≥ 0, i = 1, . . . , d− 1 and nd > 0. More generally, E
(

∏d
i=1X

ni
i

)

= ∞ for any

ni ≥ 0, i = 1, . . . , d, such that
∑d

i=1 ni > 0. �
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