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ABSTRACT 

 
Prognostic Control and Load Survivability in Shipboard Power Systems. 

(December 2010) 

Laurence J. Thomas, B.S., Prairie View A&M University 

Chair of Advisory Committee: Dr. Karen L. Butler-Purry 

 

In shipboard power systems (SPS), it is important to provide continuous power to 

vital loads so that their desired missions can be completed successfully. Several 

components exist between the primary source and the vital load such as transformers, 

cables, or switching devices. These components can fail due to mechanical stresses, 

electrical stresses, and overloading which could lead to a system failure. If the normal 

path to a vital load cannot supply power to it, then it should be powered through its 

alternate path. The process of restoring, balancing, and minimizing power losses to loads 

is called network reconfiguration. Prognostics is the ability to predict precisely and 

accurately the remaining useful life of a failing component. In this work, the prognostic 

information of the power system components is used to determine if reconfiguration 

should be performed if the system is unable to accomplish its mission. Each component 

will be analyzed using the Weibull Distribution to compute the conditional reliability 

from present time to the end of the mission. To determine if reconfiguration is needed, all 

components to a given load will be utilized in structure functions to determine if a load 

will be able to survive during a time period. Structure functions are used to show how 

components are interconnected, and also provide a mathematical means for computing 

the total probability of a system. This work will provide a method to compute the 

conditional survivability to a given load, and the results indicate the top five loads that 

have the lowest conditional survivability during a mission in known configuration. The 

results show the computed conditional survivability of loads on an all electric navy ship. 

The loads conditional survivability is computed on high/medium voltage level and a low 

voltage level to show how loads are affected by failing components along their path. 
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CHAPTER I 

1 INTRODUCTION 

A basic power system consists of power generation plants, transmission systems and 

distribution systems. Electric power can be generated from various types of generation 

plants such as fossil fuel power plants, nuclear power plants, or hydroelectric power 

plants. Electric power today is also being generated by renewable sources such as wind, 

solar, etc. Transmission systems consist of transformers, circuit breakers, and 

transmission lines to deliver power from the generation power plants to distribution 

systems. Commercial, residential, and industrial customers are the types of loads served 

by the distribution system. 

Traditionally, reliability has been used on terrestrial systems to improve outage 

situations. The outages are recorded and used as data to predict when an outage might 

occur during future years. To improve reliability, energy companies build redundancies 

throughout a power system. These redundancies are normally placed between the power 

generation plant and the distribution system. The distribution system may have 

redundancies also. The whole idea of the redundancy concept is to provide constant 

power delivery and minimize the number of outages. 

The US Navy protects the country on various combatants, cruisers, and submarines 

which are usually in service for an average 35 years. During the past decade, the concept 

of an all electric ship has been introduced as the next generation ships. Research on the 

all electric ship is ongoing to the Navy and to the Texas A&M University Electrical 

Engineering Department. Navy ships have a power system with similar power system 

components as traditional terrestrial power system but on a condensed space. Since Navy 

ships are used during warfare, the Department of Defense needs the power system on 

ships to be as reliable as possible. To keep the power systems reliable, redundancies are 

used to maximize the systems’ reliability.  

                                                 
This thesis follows the style and format of IEEE Transactions on Power Delivery. 
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1.1 Objective 

Research in the Power Systems Automation Lab at Texas A&M University 

developed reconfiguration techniques for Navy ships. Two techniques were developed 

for catastrophic events such as faults and cascading faults due to weapon damage. The 

first reconfiguration technique used an optimization technique that focused on the best 

configuration for the ship. The second reconfiguration technique focused on load priority 

at which the algorithm checks for a continuous path back to the source from vital loads. 

The purpose of this work is to show that reconfiguration can be determined by computing 

the conditional survivability to each load. The objectives of the work presented in this 

thesis were to:  

1) Develop an algorithm to compute the load survivability using the remaining 

life of power system components. 

2) Develop an approach to determine if reconfiguration in shipboard power 

systems is needed based on load survivability. 

1.2 Motivation 

It is imperative to know survivability information because ships are deployed for 

long periods of time. The more reliable a system is the less the user has to be concerned 

with maintenance and other problems with the system. The motivation of this work is to 

ensure that loads are continuously served based on component survivability. The 

components of the power system are continuously monitored to provide the user with 

survivability information so that the user will know if a load can be continuously served 

during a mission. 

1.3 Content Overview 

In this section, this thesis will be briefly discussed by each chapter. A background 

and literature review begins the thesis by describing Navy ships and its topology. Chapter 

II also discusses reconfiguration techniques that were developed in the Power System 

Automation Lab (PSAL). Reliability, reliability centered maintenance (RCM), and power 

distribution system reliability techniques are principles are mentioned as well. In chapter 

III, the modeling principles of structure functions and survivability are stated. The 
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problem formulation is also stated clearly through mathematical representation. Chapter 

IV demonstrates the structure function method to determine conditional load 

survivability. The results from the methodology are shown through case studies in 

chapter V. A summary of the methodology and results are discussed in chapter VI. 
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CHAPTER II 

2 BACKGROUND AND LITERATURE REVIEW 

This chapter presents background information about power systems on Navy ships. It 

is important that the power system on Navy ships is reliable and able to survive weapon 

attacks. Survivability can be used to reconfigure a subsystem if is near failure. If a 

component is near failure, then a ship’s topology should change to provide power to 

essential loads for specific tasks and missions. The definition and concepts of reliability 

are also discussed in this chapter to build an understanding of how it is used in terrestrial 

systems for outages and planning for utility companies. 

2.1 AC Radial Shipboard Power System 

AC Radial Shipboard Power Systems (SPS) are radial distribution systems that are 

connected in a ring configuration. One reason for this ring structure is to make sure there 

is continuous power flow to loads at all times. U.S. Navy ships are three phase 460 VAC 

delta connected distribution systems. The SPS is delta connected ungrounded network. 

The advantage of ungrounded systems is that line to ground faults do not result in an 

outage of the grounded feeder. It also improves reliability because the system remains 

functional if ground faults occur.  

There are many components that make up a distribution network on a SPS such as 

generators, cable, switches, and loads. Generators are the primary source of power, and 

are also used for emergency purposes. For example, if the primary generator(s) cannot 

supply the desired power to a system, then a back-up generator will supply the remaining 

power needed to the system. Transformers are also essential in the ship network. Since 

SPS is a distribution network, 480/208-120V step-down transformers are used to supply 

120 volt single phase loads. Single phase loads consist of lighting, air conditioning, 

receptacles, etc. Two types of loads exist on a SPS: vital loads and non-vital loads, which 

are either single-phase or three-phase. Communications, weapons, steering, and other 

motors are types of vital loads. Automatic bus transfers (ABT) are switches that 

automatically disconnect vital loads from the primary path and connect the load to the 

secondary path when it senses the loss of voltage from the primary source. Manual bus 



5 

 

transfers (MBT) are identical to ABTs except the switching is done manually. Circuit 

breakers are protection devices placed throughout the system to protect the power system 

from overcurrent, undervoltages, etc. Circuit breakers are normally closed and trip when 

a fault has been detected in the system. Once the fault has cleared, the circuit breakers are 

closed manually or automatically. Low voltage releases (LVR) are also protection 

devices that are placed in front of motor loads and automatically starts when power is 

returned to normal after a fault. The low voltage protector (LVP) is also a protective 

device that protects motors from high currents. The LVP does not automatically restart 

after a fault has cleared and an operator must physically reset this device to put the motor 

back in service. Switchboards are buses that distribute electrical power from the 

generator to various loads.  

2.2 Integrated Power System (IPS) 

The integrated shipboard power system (IPS) has some similarities to the AC Radial 

SPS. In Fig. 2.1, the IPS schematic is shown. This figure shows all components at the 

high level and all components in each zone. The advanced induction motors are loads at 

the high voltage level powered by two 36MW generators and two 4MW generators 

connected by a ring bus. The loads in each zone are powered via PCM4s, power 

converters, which convert AC voltage to DC voltage. The DC zone powers DC loads and 

AC loads in each zone. The AC loads are powered via DC/AC power converters. 

The high voltage subsystem is configured in a ring structure and contains four 

generators as shown in Fig. 2.1. Each generator is connected to a main and an auxiliary 

bus, which are interconnected depending on the ship’s configuration or mode of 

operation. The IPS is also a radial distribution system in which the power flows directly 

from the generator to the load. The IPS is different because it introduces DC buses at the 

1kV level. The voltage is decreased by 13.8k/ 4160V AC step down transformers. The 

1kV DC is obtained via AC/DC converters. The propulsion motors on the IPS are 

induction motors that require 4160V AC rated at 18.25MW at full rating. Voltage used by 

the propulsion motor is obtained through the transformers as described above. The 

second step-down voltage occurs through a PCM, power converter, which converts AC 

voltage to DC voltage. 1kV DC is then converted to three voltages via DC/DC converters 
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to supply DC loads of 375VDC, 650VDC, and AC loads from 800VDC power 

converters. 

The four zones on the IPS are energized from PCM4’s through two DC buses. The 

two DC buses are labeled as the port and starboard buses. The power flow is radial and it 

flows from the bus directly to the load. Six DC/DC converters are used for different DC 

voltage levels for a given loads. Each DC bus contains three DC/DC converters at each of 

the voltage levels as described above. The loads are of two types: vital and non-vital. The 

vital loads are loads that are necessary for the ship to perform its mission. There are two 

paths available to supply vital loads. In each zone, 800VDC is converted to AC voltage to 

supply AC loads. AC loads can also be vital or non-vital at which the vital loads have an 

alternate path to continuously supply such loads. Each zone is interconnected by zone 

ties. 

The IPS is designed in such a way that it can be configured in one of four 

configuration modes. Each configuration mode changes the way the generators work 

together through the ring structure. Two generators are rated at 36MW each, and the 

other two are rated at 4MW each. The Common Bus Mode utilizes the complete ring of 

the ship and all four generators work together to supply all loads. The Port/Starboard 

Split Bus Mode provides power by opening breakers to split the ring in half. The 

Port/Starboard Split Bus Mode divides the ship into an upper region and lower region 

which generators 1MTG  and 1ATG  work together to energize loads connected to the star 

bus. Generators 2MTG  and 2ATG  work together to energize loads connected to the port 

bus. The Forward/Aft Split Bus Mode separates the generators in half forming a left-hand 

region (fore) and a right hand-region (aft) pairing generators 1MTG  and 2ATG  together 

to energize the star bus and 1ATG  and 2ATG  together to energize the port bus. In the 4-

Way Split Bus Mode all generators work separately to energize loads in each zone 

separately. In this work, no studies were done on the 4-Way Split Bus Mode due to the 

zone connectivity. 
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Fig. 2.1  Integrated Shipboard Power System Schematic 

 



8 

 

2.3 Reconfiguration 

Network reconfiguration is the process of altering the topological structures of 

distribution feeders by changing the open/closed status of sectionalizing and tie switches 

[1]. The purpose of network reconfiguration is to restore loads that have lost power, 

balance loads, and minimize power losses. In SPS, network reconfiguration is essential 

because loads must be continuously supplied if catastrophic events or attacks should 

occur. There are many different purposes for reconfiguration such as predictive 

reconfiguration, restoration reconfiguration, and preventive reconfiguration for 

catastrophic events. 

In the Power System Automation Lab (PSAL) at Texas A&M University, two 

methods for reconfiguration were developed for service restoration on a SPS. One of 

these two methods discussed below can be used to reconfigure the power system.  

Method one is an optimization technique that uses an objective function as well as a set 

of constraints that should not be violated for reconfiguration. The objectives that are 

accomplished in the optimization technique is to supply as many loads as possible 

considering their priority and surrounding circumstances along with three constraints: 1) 

the radial nature of the SPS must be maintained, 2) the current capacities of the 

generators, cables, and circuit breakers are not to be exceeded, and 3) the voltage should 

be within tolerable limits [2]. The optimization method considers a graphical 

representation of the SPS to show all connections to each component. Variables are then 

assigned to each component as discussed in [2]. The loads in the system are categorized 

into two categories vital or non-vital. Then these loads are further classified into variable 

or fixed loads. The variable loads’ current can vary from zero to maximum capacity 

while the fixed loads are either maximum capacity or zero capacity. The overall objective 

is to maximize the energized loads in case there is a disturbance adhering to constraints 

of the source node, load node, intermediate node, edge capacity, radiality, and voltage. 

The results display the capacities of each load and the new path taken to supply the load, 

and status of the switches in the SPS. 

The second method of reconfiguration is a rule-base technique implemented using a 

program called EXSYS. The objective in this case is to restore the loads one by one based 
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on load priority and location [2]. The loads are put into four categories: 1) vital loads on 

the switchboard, 2) vital loads on the load center, 3) non-vital loads on the switch board, 

and 4) non-vital loads on the load center. In each category, the EXSYS program will 

check to see where the fault is on a component. Based on the fault location, the program 

will decide if the load can be restored. If the load(s) can be restored, an alternative path 

should be found. When alternate path check is initialized, then a bus transfer, load center, 

or switchboard should be checked for availability. The load cannot be restored if the bus 

transfer’s alternate path has a fault, the switchboard has a breaker fault or the load center 

has a cable or breaker fault. The EXSYS program takes in real time data that includes the 

fault location(s), out-of-service loads, open breakers, and system topology information 

[2]. If the load is restorable, then a load flow is run to ensure current capacity and voltage 

constraints are satisfied. From this given information the loads are restored one by one. 

2.4 Reliability 

The basic definition of reliability can be stated as the “quality of measurement.” It 

can also mean how long a system can repeat an action before an undesirable action 

occurs. Many utility companies use reliability to perform maintenance on components in 

a network. Basic reliability terms include availability, duration, failure rate, failure 

probability, frequency, interruption, mean time between failures (MTBF), mean time to 

repair (MTTR), reliability, reporting period, restoration, restoration time, service, forced 

outage, and scheduled outage. These indices provide the utility companies with 

information about customer load loss, number of customers per outage, and the duration 

of outage. Reliability of distribution is evaluated in terms of outage rate and outage 

duration [3]. Utility companies use reliability equations to simplify a network when 

calculating the outage rates. If the network has components in series or parallel, the 

components are combined to one equivalent subsystem to carry out the calculations 

needed to perform outage studies.  
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2.5 Reliability Centered Maintenance 

Reliability centered maintenance (RCM) involves specifying and scheduling 

electrical preventive maintenance in accordance with the statistical failure rate and/or life 

expectancy of the equipment being maintained; the most cost-effective way to improve 

reliability, plant safety, etc [4]. The three steps in RCM are (1) identify the equipment 

that requires preventive maintenance, (2) specify the different types of maintenance 

activities, and (3) ensure the preventive maintenance are executed. The three cornerstones 

are as follows: (1) know when a single failure is acceptable or not, (2) know how to 

identify hidden failures, and (3) know when a multiple failure analysis is required. RCM 

comprises a set of tasks generated on the basis of a systematic evaluation that is used to 

develop or optimize a maintenance program. A single failure analysis exists when there 

are no hidden failures present.  Hidden failures are not evident to operating personnel, 

and multiple failure analyses are required when single failures are hidden.  

Preventive maintenance is a subset of conditioned-directed maintenance and includes 

using mostly nonintrusive technologies to monitor equipment for precursors. Predictive 

maintenance is the strategy designed to prevent an unwanted consequence of failure. 

These two definitions correlate with one another because in order to do preventive 

maintenance, predictive maintenance has to be implemented first. RCM has two 

assessments that can be used for preventive maintenance; failure modes and effects 

analysis (FMEA) and consequence of failure analysis (COFA).  

  



11 

 

FMEA is not practical because it is essentially capturing all functions in system and 

subsystem levels. Therefore, there is no guarantee that all functions are captured. The 

three phases can then be simplified using the COFA assessment. Phase I of the COFA 

assessment identifies the equipment that must have a preventive maintenance strategy to 

prevent failure and remain reliable in order to preserve critical equipment functions and 

minimize any challenge to a plant as a consequence of failure [4]. Phase I also classifies 

the components into four categories: critical, potentially critical, commitment, and 

economic components. This is shown at the end of Phase I in Fig. 2.2.Once these 

components have been identified, the other components are called run-to-failure 

components. Phase II of the COFA assessment deals with preventive maintenance tasks. 

The terminology of preventive maintenance includes: condition-directed, time-directed, 

failure finding, conditioned-based, proactive, reactive, predictive, in situ, on-condition, 

and surveillances. The COFA assessment uses condition-directed, time-directed and 

failure finding preventive maintenance tasks to classify components. Condition-directed 

and time-directed tasks focus on preventing failures at the component level. Failure 

finding tasks are used to prevent failure at the plant level. Fig. 2.3 describes Phase 2, 

which decides in which category a component is placed. Phase III of the COFA 

assessment applies the preventive maintenance task specified in Phase II of the RCM 

process. Fig. 2.2 shows the three phases of RCM using the COFA assessment. 
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Fig. 2.2  Three Phases of RCM [4] 
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Fig. 2.3  Phase II Logic Tree [4] 

 

2.6 Power Distribution System Reliability 

Distribution in a power system is the final stage of delivering electricity to the 

customer. Voltage levels in distribution systems are normally in the range from 4kV to 

34kV. There are three types of distribution systems: (1) radial, (2) loop, and (3) network 

as shown in Fig. 2.4. The radial system has one electrical path from the source to the 

load. The loop system has two electrical paths from the source to the load, and the 

network system has many electrical paths from the source to the load.  

The distribution system can be partitioned into two phases, primary and secondary. 

Primary distribution systems deliver electricity to the substation to distribution 

transformers while secondary distribution system delivers electricity from distribution 

transformers to the customer. Most distribution systems are radial because of easier fault 
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current protection, lower fault current over most of the circuit, easier voltage control, 

easier prediction and control over power flows, and lower cost.  

The most commonly used distribution indices include system average interruption 

frequency index (SAIFI), system average interruption duration index (SAIDI), customer 

average interruption duration index (CAIDI), and average service availability index 

(ASAI). Utility companies use SAIFI and SAIDI to benchmark reliability, characterize 

frequency and duration of interruptions [5]. There are many factors that influence the 

indices such as weather, load density, age, distribution voltage, physical environment, 

percent underground and different methods of recording interruptions. Methods to 

improve reliability in a distribution system include: reducing faults, finding and repairing 

faults faster, limiting the number of customers from interruptions, and only interrupting 

customers for permanent faults [5]. 

SourceSource Source

a. Radial b. Loop c. Network

 

Fig. 2.4  Distribution Systems [5] 
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2.7 Summary 

This chapter presented information about shipboard power systems and distribution 

systems. It is interesting to note that the IPS is a topology for next generation ships of the 

future for the U.S. Military, and this ship also integrates power electronics into the 

system to convert from AC to DC and vice versa to supply loads in a radial path. This 

chapter provided a definition of reconfiguration and discussed two reconfiguration 

methods developed in the Power System Automation Lab (PSAL) at Texas A&M 

University. The two reconfiguration methods use an optimization technique and an expert 

system based load priority technique for restoration. Reliability techniques were 

discussed in sections 2.4 through 2.6. In these sections, the basic concepts and definitions 

of reliability are introduced. Maintenance techniques are also discussed through RCM 

and distribution reliability. Many utility companies use reliability techniques in different 

ways. For instance, one company may be concerned with outages, while another may be 

concerned with the upkeep of hardware. 

The concept of reliability can be used reconfigure a SPS while on a mission. The 

reliability of a system or subsystem is very important to know because loads should be 

available during catastrophic events. For example, if the communication subsystem fail, 

seamen would not be able to communicate with an outside source for aid during a 

mission or an attack was taken place. Before the communication subsystem fails, a 

prognostic protocol should be called to ensure that the communication subsystem is 

available during a mission. The prognostic protocol determines the availability of the 

subsystem for the entire mission. 

Chapter II explains basic reliability concepts and background information about 

power systems on Navy ships. The following chapter will discuss in detail the problem 

formulation and describe how components fail, and how the remaining life of 

components is used in computing the conditional reliability for a system. 
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CHAPTER III 

3 PROBLEM FORMULATION 

This chapter provides information about aging electrical components over time, and 

demonstrates mathematically the computation of remaining life from measured 

characteristics of each electrical device. The Arrhenius Model is used to model thermal 

stresses on equipment and is combined with a probability density function to compute the 

reliability of each component. The problem formulation is shown mathematically by 

structure functions using each component’s reliability. 

3.1 Life Distribution of Components 

A life assessment is performed by monitoring specific characteristics which causes 

electrical components to fail. The characteristics are used in aging models to predict the 

remaining life available before a component should be replaced. All electrical equipment 

fail due to deterioration factors causing the insulating material to deplete or the physical 

properties to change. Once the insulating material depletes, or the physical properties 

change at a large magnitude, electrical equipment is near failure or has failed. 

The life distribution of electrical components can be modeled using various 

distributions. The most commonly used distribution of electrical equipment is Weibull 

distribution because it has a wide family of curves. Also it can be used to model other 

distributions such as the Normal distribution and the Exponential distribution. The 

characteristics from the aging components are used in probability distribution functions 

to show the remaining life distribution of an electrical component. The life distribution 

shows the point in time where a component is expected to fail. The life distribution is 

used to compute the survivability of a component at time t. The survivability 

demonstrates the probability that a component is operating at time t as well as shown in 

equation (3.1) 

 ( )
ttf t e

t

ββ
αβ

α

⎛ ⎞−⎜ ⎟
⎝ ⎠⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (0.1)(3.1) 
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( )
where:

life distribution
shape parameter
characteristic life
time.

f t

t

β
α

=

=
=
=

 

 

A hazard rate is also associated with the probability density function as shown in 

equation (3.2). The hazard rate is used to show the number of failures per unit of time. 

The electrical component’s life stage can be classified as early life failures, middle of life 

failures, and end of life failures depending on time. The hazard rate shows numerically 

how fast a component is deteriorating over a period of time. If the hazard rate 

exponentially increases, then the component has a chance of failing sooner than expected. 

 ( ) th t
t

ββ
α

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (0.2)(3.2) 

 

3.1.1 Aging And Remaining Life of Electrical Equipment 

Electrical components age over time and can result a power system being able to 

perform its mission. As electrical components age, their failure rates increase 

exponentially. The increase in age also increases the number of inspections and 

maintenance costs [6]. Deterioration of electrical components can be caused by corrosion, 

dielectric loss, wear, and moisture retention. All of these deterioration factors impact the 

physical and mechanical strengths of equipment. When voltage is applied to an electrical 

component, the insulation breakdown process begins by the acceleration of chemical 

processes in the dielectric. The dielectric strength is affected by electromagnetic fields 

which cause corrosion. The movement of mechanical parts erode material in the moving 

junction by loosening and scratching smooth surfaces. This type of deterioration is found 

( )
where:

hazard  rate
shape parameter
characteristic life
time. 

h  t

t

β 
α

=

=
=
=
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in moving devices such as switches and rotating machines. Heat, one of the leading 

causes of deterioration, is generated by the electrical losses from components. Heat 

accelerates physical and chemical mechanisms involved in material deterioration. In the 

following sections, a description of how electrical components deteriorate due to heat 

stress, voltage stress, or wear are explained, along with the equations used to compute the 

remaining life. 

3.1.1.1 Transformer 

The remaining lifetime of a transformer is said to be measured by the degradation of 

insulating material [7, 8] which is also called dielectric. The dielectric separates the 

primary and secondary sides of a transformer and is usually in the form of air or some 

type of fiber material. Three elements can damage the dielectric in a transformer; 

hydrolysis (water), oxidation (oxygen), and pyrolysis (heat) [7]. These elements reduce 

the Degree of Polymerization (DP) which shorten and weaken the fiber. Transformers fail 

primarily because of fiber reductions caused by high temperatures. There are other 

factors that cause reductions in dielectric such as overloading and voltage surges. The DP 

is a measure of the mechanical strength for the transformer. As the transformer degrades, 

the DP value decreases. When the DP value goes below a threshold value, a transformer 

has reached the end of its life. The initial DP value is a constant that depends on the class 

or the type of insulation which is usually given by the manufacturer. The remaining 

lifetime in time is represented in (3.3) [9]. 

 
13350

2731 1 1 1 1
rem

end begin end begin

TT e B
A DP DP DP DP

⎛ ⎞
⎜ ⎟+⎝ ⎠=

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (0.3)(3.3) 

In this equation, Trem is the remaining lifetime, T is the hot-spot temperature in °C, 

DPbegin and DPend are the DP values of the insulation at the beginning of life and the end 

of life respectively, and A is a parameter that depends on the type of paper and water 

content [9]. 

Partial discharge (PD) test is also an indication that dielectric is aging. A PD is an 

electrical discharge that occurs across a portion of the insulation between two conducting 
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electrodes, without completely bridging the gap. PD is a way to show that the insulation 

is getting older because as the dielectric degrades, the PD number increases as well as its 

magnitude. PD is measured by its voltage (mV) or its phase angle. Though there is no 

way to tell the remaining life of the dielectric through PD, it is a way of showing that the 

insulating material is degrading and that the transformer needs to be replaced or repaired. 

3.1.1.2 Rotating Machines 

Generators and motors are two components that are recognized as rotating machines. 

The insulation life of an electrical winding in rotating machinery is described by 

incorporating constants based on the class of insulating material and rotating machine 

power rating, measuring the temperature of insulating material over time, and summing 

the consumed life [10]. The electrical endurance of insulation materials are temperature 

and time. The life expectancy of rotating machines is represented by two equations 

depending on the loading conditions. Equation (3.4) is used if a machine’s loading 

conditions are less than or equal to the rated loading conditions. Equation (3.5) is used if 

the machine is operated greater than its rated value.  

 100 2x

Tc Tx
HICL L

−⎛ ⎞
⎜ ⎟
⎝ ⎠= ×  (0.4)(3.4) 

 100

2
x Tc Tx

HIC

LL
−⎛ ⎞

⎜ ⎟
⎝ ⎠

=  (0.5)(3.5) 

The value of Lx is the percent lifetime at x% load , L100 is the entire lifetime of the 

machine, and the units are in the form of time in hours. Tc is the hot spot temperatures in 

°C. It can be read from the class of insulation chart, which is provided by the 

manufacturer. Tx is found by using equation (3.6) below. 

 40T F T= ×Δ +  (0.6)(3.6) 

Tx is equal to the value of T in °C, F is the rated loss factor in percentage given from the 

rated life loss factor at various loads table, and ΔT is the allowable temperature rise in °C 

from the insulation class rating table described in [11]. The parameter HIC can also be 
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read from the insulation class rating table. The HIC is a constant that depends on the class 

of insulation being used, and it is known as the halving interval constant. 

The rated life of rotating machines can also be determined by its bearings. 

Manufacturers call the bearing lifetime L10 life, which is the time duration when there is a 

10% probability of fatigue failure under a given constant load. Fatigue failure occurs in 

the form of metal chips breaking off from the surface of bearings or rolling elements. The 

L10 life of a bearing is the number of revolutions that can be attained before 10% of the 

identical bearings would fail. L10 is represented in hours given by equation (3.7) [12]. A 

rotating machine’s lifetime is controlled by the operating conditions of the winding 

(temperature) and bearing (load conditions or rotational speed). 

 
3

6

10
10 2
3600

r

eq r

CL
P

π
ω

⎛ ⎞ ⋅
= ×⎜ ⎟⎜ ⎟ ⋅⎝ ⎠

 (0.7)(3.7) 

where:
 - the bearing's radial load rating specified by the manufacturer (N or lbf);
  - equivelant radial load applied to bearing;

  - angular speed of the rotating machine (rad/s);

 r

eq

r

C
P

ω

 

3.1.1.3 Protective Switching Devices 

Isolation switches and transfer switches are two types of protective devices shown in 

Fig. 3.1. Isolation switches are devices that isolate other critical devices from danger. 

They are usually in the normally open (N.O.) position or the normally closed (N.C.) 

position. Isolation switches include circuit breakers (CB), low voltage release (LVR), and 

low voltage protection (LVP). Relays communicate to circuit breakers engaging them to 

open or close depending on the settings of the relay. Relays are programmed to check for 

fault conditions that detect overcurrent, undervoltage, directionality of current, 

differential impedance, etc to send a trip command to the circuit breaker. LVR and LVP 

protect motors from low voltages, and trip if the voltage supplied to a motor is below the 

motors voltage rating. The major difference between the LVR and LVP is that the LVP 

has to be manually reset to connect the motor to the system when the voltage returns to 

the acceptable value. The LVR will connect the motor back to the system automatically 
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when voltage has reached the acceptable operating value. Automatic bus transfers (ABT) 

and manual bus transfers (MBT) are transfer switches (shown in Fig. 3.1 C), that have 

three conductors for connection. The switches’ conductors are connected to the normal 

path, alternate path, and the load. Transfer switches shift the load to the alternate path 

when the normal path is unable to supply the load. Like the LVR and the LVP, the ABT 

and MBT are different in the sense that they are automatically and manually switched 

back to the normal path respectively, once the normal path can properly supply the 

required operational value to a desired load. 

 

 

Fig. 3.1  Protective Switches 

 

Switching devices, like any other electrical equipment, age through mechanical, 

electrical, and thermal stresses. Electrical and mechanical stresses are taken care of by 

International Standards through durability testing and operation. 

Thermal aging of all safety-related materials is assessed and measures are taken to 

ensure each part can perform its safety-related function until the end of the projected life 

of the plant. Insulating materials are very sensitive and must be individually considered, 

taking into account life expectancy and the operating conditions. As insulating materials 

thermally age, their mechanical properties degrade. The degradation in mechanical 

properties usually determines the life which is normally limited to 50% reduction in 

mechanical strength. Switching devices, like other aging electrical components, can be 

modeled by the Arrhenius equation to represent life expectancy. Life expectancy is where 

the life of the insulating material is determined at a particular temperature with 
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knowledge of the activation energy. The life of insulating materials at any temperature 

can be modeled by equation (3.8) [13] 

 
1 2

1
2 1 1A

K T T

tt

e
⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞⋅ −⎜ ⎟⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

=  (0.8)(3.8) 

1 1

1

2 2

2

where:
    - Thermal life (years) at temperature ;
     - Temperature ( ) from thermal life data;
     - Thermal life (years) at temperature ;
     - Temperature ( ) from thermal life data;
 

 t T
T K
t T
T K
K      - Boltzmann's constant;

      - Activation energy ( ).A eV

 

The parameter values can be obtained by the class of insulation data sheet provided 

by the manufacturer. Switches also fail due to the movement of the armature and the 

contact points. Over time, the armature and the contact point(s) begin wear out, creating a 

hidden failure. Hidden failure can be in the form of a short circuit or open circuit 

depending on the use of the device. The lifetime of a protective switching device is 

determined by its operatiing temperature and the normal wear of the switch.  

3.1.1.4 Cable 

The life expectancy of a cable depends on four factors: operating temperature, 

dielectric fluid pressurization, dielectric fluid contamination, and mechanical 

deterioration. The cable insulation will begin to deteriorate if it is operated for 

temperatures equal to or exceeding 100 °C for extended periods of time. Deterioration 

due to dielectric fluid pressurization and contamination occurs if the pressure was below 

its required dielectric fluid pressure, and if moist and harmful particles get inside of a 

cable structure and damage the insulation over time. A cable can also deteriorate due to 

improper installation [14]. The useful thermal life of insulation can be estimated by using 

the Arrhenius expression or the reaction rate equation given in equation (3.9) [15]. 

 kTL Ae
ϕ⎛ ⎞−⎜ ⎟

⎝ ⎠=  (0.9)(3.9) 
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where:
   - thermal life expectancy;

    - material constant;
     - Boltzmann constant;
     - Absolute temperature ( );
     - Activation energy of the aging reaction ( ).

 L
A
k
T K

eVϕ

 

The values of A and φ are constants that are given by the manufacturer, and the 

thermal life expectancy is given in hours. The Arrhenius model is represented in a graph 

having coordinates log(L) vs. -1/T, where the model gives rise to a straight line of  slope 

φ/k. This relationship involves changes in the life model and the Arrhenius equation 

becomes equation (3.10) [15]. 

 
[ ]1 2logk A k
TL Ae

+⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠=  (0.10)(3.10) 

where k1 and k2 are the regression parameters describing the log(A) vs. φ/k relationship. 

The degree and the aging rate on insulation depends on the physical and chemical 

properties of the material, the nature and duration of applied stresses and material 

processing and treatment during manufacturing and subsequent use in equipment [16]. 

3.1.2 Arrhenius-Weibull Relationship 

The Arrhenius equation is a physical acceleration that uses the difference between 

two temperatures to show how the change in temperature accelerates the age of an item. 

The Arrhenius equation and the Weibull distribution are combined to show the affects of 

temperature and time on an electrical component where the Arrhenius equation is called 

the life parameter depending on the distribution used. In order to understand how the 

remaining lifetime can be shown in a distribution, a relationship must be made between 

the lifetime equations from the above sections and parameters of a probability density 

function. The equations discussed in the previous sections are a form of the Arrhenius 

Rate Equation as shown in equation (3.11), where L represents a quantifiable life 

measure such as mean life, characteristic life, median life, etc. C is one of the model 

parameters to be determined ( )0C > , V represents the stress level (in absolute units if 
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temperature), and B is another model parameter to be determined later [17, 18]. The 

Arrhenius Rate Equation is only used when thermal stresses are significant to the 

degradation of an item. 

 ( )
B
VL V Ce

⎛ ⎞
⎜ ⎟
⎝ ⎠=  (0.11)(3.11) 

The Arrhenius equation can be written as any life distribution parameter depending 

on the type of distribution that is used such as the T50 parameter for the Lognormal 

Distribution, the α parameter for the Weibull Distribution, or the 1/λ parameter for the 

Exponential distribution [18]. If the desired distribution was the Weibull Distribution as 

shown in equation (3.12), α would be the parameter to substitute the Arrhenius equation 

where α is known as the scale parameter or characteristic life and β is known as the shape 

parameter [19]. Equation (3.13) is now formed after substituting equation (3.11) into 

equation (3.12).  

The components described above demonstrate the remaining life by using a form of 

the Arrhenius equation. The remaining life equations are substituted into the Weibull 

distribution to form the Arrhenius-Weibull relationship. The Arrhenius-Weibull 

relationship is shown in Table 3.1 for the electrical components’ remaining life described 

in the previous sections. These relationships are a function of time and thermal stresses 

which deteriorates the insulation of each component. 
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⎜ ⎟
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Table 3.1 Arrhenius-Weibull PDF Model 
Component Arrhenius Model Arrhenius-Weibull PDF Model 

Transformer 
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TT e
A DP DP

⎛ ⎞
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where:
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Table 3.1 continued 

Component Arrhenius Model Arrhenius-Weibull PDF Model 

Rotating Machines 
(Generator/Motor) 
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Table 3.1 continued 
Component Arrhenius Model Arrhenius-Weibull PDF Model 

Cable 
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3.1.3 Hazard-Scale Parameter Relationship 

The hazard rate, often referred to as the failure rate ( )h t , of any component can be 

described as the probability that the component will fail in a time interval ( ],t t t+ Δ  [20]. 

In Fig 3.2, the probability is plotted against time to show how the hazard rate changes 

over time. The hazard rate plot is a piece-wise function known as the bathtub curve 

describing the intervals at which the hazard rate changes. The three intervals at which the 

curve changes are called the burn-in period, the useful life period, and the wear-out 

period as shown in Fig. 3.2. BT  and PT  are points at which a component ends the burn in 

period and useful life period respectively, and WT  is the point at which a component 

begins the wear-out period. The Weibull shape parameter is chosen depending on what 

period or interval the component is operating in at that period of time. When the hazard 

rate is plotted against time using the Weibull hazard rate function, all intervals will take 

on a different shape. The shape parameter, ( )β in the Weibull distribution, has an effect 

on the change of the hazard rate and what interval a component is operating in at that 

point in time. 
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Fig. 3.2  Hazard Rate as a Function of Time 

 

The burn-in period is also called the infant mortality period, which has a high failure 

rate initially. It is characterized by a decreasing failure rate, which begins from T0 to the 

burn-in time TB shown in Fig. 3.2. This period can be due to a result in poor design, the 

use of substandard components, or lack of adequate controls in the manufacturing 

process. Early failures can be eliminated from the customer by “burn in” during which 

time the component is operated at stress levels equal to the intended actual operating 

conditions. A component is released for actual use only when it has passed through the 

burn-in period [21]. The burn-in period is usually modeled using the Gamma or Weibull 

distribution with the shape parameter 1β <  [18]. 

The useful-life period is characterized by a constant failure rate and is usually the 

longest interval of the three periods. The useful-life period extends from the burn-in time 

TB to the wear-out time TW also shown in Fig. 3.2. This period is dominated by chance or 

random failures. This period cannot be eliminated by lengthy burn-in periods or good 

preventive maintenance practices. In this interval, the component is designed to operate 

under certain conditions and up to certain stress levels. When these stress levels are 

exceeded due to random unknown events, a chance of failure could occur. The time when 
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a chance failure will occur cannot be predicted; however, the probability that one will 

occur during a given period of time within the useful life can be determined by analyzing 

the equipment design [21]. The useful-life period is normally modeled using the 

Exponential distribution, but the Weibull distribution can be used with 1β =  [18]. In this 

period, the remaining life of an electrical component is considered to start from the end of 

the burn-in period TB to the failure or prognostic time TP which is usually located in the 

wear-out period given that there are no failures at the component’s present time as shown 

in Fig. 3.2 [22]. 

The wear-out period is characterized by an increasing failure rate resulting in 

equipment deterioration due to age, which begins from the wear-out time TW to the end of 

the components life as shown in Fig. 3.2. The only way to prevent failure due to wear-out 

is to replace or repair the deteriorating component before it fails [21]. The wear-out 

period takes the shape of the Normal distribution, but it too can be modeled using the 

Weibull distribution with shape parameter 3 4β≤ ≤  [18].  

The Weibull distribution can be used to model the entire bathtub curve as a function 

of the shape parameter and the time interval that the component is operating. Throughout 

the rest of this work, the useful-life period and the wear-out period will be used because 

electrical components are only distributed after they have passed the burn-in period. 

3.2 System Survivability 

The system survivability is defined by its individual components’ operation and the 

structure that it follows. A system can be grouped into three basic parts depending on the 

size of the system. These basic parts of the system are the individual components, 

subsystems, and the system itself. Each component’s survivability is taken into account 

when determining the system or subsystem’s survivability.  
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3.2.1 Component Survivability 

Since the components are assumed to be non-repairable, we are only interested in 

studying components until the first failure occurs. When the failure occurs, then the 

component may be repaired or discarded. The state of the component at time t may be 

described by the state variable ( )x t : 

 ( )
1,    if the component is functioning at time 
0,    if the component is in a failed state at time 

t
x t

t
⎧

= ⎨
⎩

 (0.19)(3.19) 

The state variable of a non-repairable component is illustrated in Fig. 3.3 and is a 

random variable. The time to failure of a component is the time elapsing from when the 

component is put into operation until the component fails the first time. 

Time to Failure, T
0

t

1
( )x t Failure

 

Fig. 3.3  The State Variable and the Time to Failure of a Component [20] 

 

The relationship between the state variable ( )x t  and time to failure T is illustrated by 

equation (3.20) where T is a random variable. 

 ( )
1, 0
0, otherwise

t T
x t

≤ ≤⎧
= ⎨

⎩
 (0.20)(3.20) 
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Since time to failure can be a discrete variable, it can be approximated by a 

continuous time variable. Now we will assume that time to failure T is continuously 

distributed with the probability density function (PDF), ( )f t , and distribution function 

( )F t . ( )F t  denotes the probability that the item fails within the time interval ( ]0, t  [20].  

 ( ) ( ) ( )
0

Pr for  0
t

F t T t f u du t= ≤ = >∫  (0.21)(3.21) 

Assuming the remaining lifetime of electrical components are modeled using the Weibull 

distribution, the reliability of components are modeled using the mean and standard 

deviation to illustrate the remaining lifetime of components as a function of time. The 

Weibull distribution is a successful model for electrical components because it is a 

flexible distribution with a wide variety of possible failure rate curves [18]. In the 

Weibull distribution, the scale parameter α  and shape parameter β  are used to model the 

appearance of the distribution. The PDF is given by (3.22) where it is a function of time, 

and remaining lifetime at time t is the value that will signify the percentage of time 

available until a failure occurs. Assuming that time to failure data of a component fits the 

Weibull distribution, (3.22) can is used to represent a component’s lifetime distribution. 

Lifetime distribution is the time interval that a component is expected to survive. 

 ( )
ttf t e

t

ββ
αβ

α

⎛ ⎞−⎜ ⎟
⎝ ⎠⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (0.22)(3.22) 

The parameters mean lifetime μ  and variance 2σ  are given by the manufacturer, 

and are used in the Weibull distribution to estimate the parameters α  and β  . The 

Weibull mean (3.23) and variance (3.24) equations are used to solve for α  and β  where 

the Gamma Function, ( )xΓ , is substituted into each equation. The Appendix of [23] 

demonstrates the steps taken to estimate the parameters α  and β . 

 
11μ α
β

⎛ ⎞
= Γ +⎜ ⎟

⎝ ⎠
 (0.23)(3.23) 
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 2 2 22 11 1σ α
β β

⎡ ⎤⎛ ⎞ ⎛ ⎞
= Γ + − Γ +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (0.24)(3.24) 

 1

0

( ) x tx t e dt
∞

− −Γ = ∫  (0.25)(3.25) 

Once the component’s lifetime distribution is represented as a function, ( ), ,f tα β  

as described in (3.22), then the cumulative distribution function (CDF), ( )F t , can be 

obtained by integrating (3.22) from 0 to t as shown in (3.26). To evaluate ( )F t , u 

substitution must be used to simplify the expression for integration with 
tu

β

α
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and 

tdu dt
t

ββ
α

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 ( )
0 0

( )
t t

ut duF t f u du e
t t

t

β

β

β
α β

α

−⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫  (0.26)(3.26) 

The limits are in terms of u as shown in equation (3.27) since integration is with respect 

to u . 

 ( )
0

u
uF t e du−= ∫  (0.27)(3.27 

 ( )
0

u
tuF t e

u

β

α−
⎛ ⎞= ⎜ ⎟= − ⎝ ⎠

=

 (0.28)(3.28) 
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( ) ( )0

0

1

1

t

t

t

t

F t e e

e e

e

e

β

β

β

β

α

α

α

α

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

= − − −

= − +

= − +

= −

 (0.29)(3.29) 

Evaluating (3.28) from 0 to u  yields (3.29), which is known as the unreliability function. 

The CDF function represents the summation of area underneath ( )f t , and displays how 

failure increases for the change in time t. The component’s survival also depends on the 

age of the component.  

 ( ) 1
t

F t e
β

α
⎛ ⎞−⎜ ⎟
⎝ ⎠= −  (0.30)(3.30) 

( )F t  minus 1 yields ( )R t  as shown in (3.31), which is known as the survivability 

equation. The survivability equation represents the reliability of the component’s lifetime 

over a period of time for ( )0t >  [20]. It can be seen that the component’s reliability 

decreases as time t approaches time T as illustrated in Fig. 3.4. 

 
( )( ) 1 ( ) , for 0

( )
t

R t F t P T t t

R t e
β

α
⎛ ⎞−⎜ ⎟
⎝ ⎠

= − = > >

=
 (0.31)(3.31) 
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Tx

1

0
t

( )R x

( )
t

R t e
β

α
⎛ ⎞−⎜ ⎟
⎝ ⎠=

 

Fig. 3.4  Survivability Plot for Component i 

 

Since the Arrhenius equation is used to characterize life in any distribution, it can also be 

used in reliability equations such as equation (3.31). The characteristic life parameter α  

is equal to ( )L V  in the Arrhenius equation as discussed in section 3.1.2. Since 

( )
B
VL V Ceα = = , then the reliability equation (3.31) now becomes (3.32) where V is the 

thermal stress applied to an electrical component [19]. Equation (3.32) is known as the 

Arrhenius-Weibull Reliability equation because it is a function of thermal stress and time. 

If the parameter B  is positive, then the reliability increases as the temperature decreases 

[19]. 

 ( ),
B
V

t

CeR t V e

β

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠=  (0.32)(3.32) 

From Table 3.1, in section 3.1.2, the probability density function for each component can 

be directly related to a reliability equation similar to equation (3.32) when the steps of 

integration are used as described previously beginning from equation (3.13). Table 3.2 

lists the reliability model for each component when its respected Arrhenius model is 

substituted for the characteristic variable α . 
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Table 3.2 Arrhenius-Weibull Reliability Model 
Component Arrhenius Stress Model (Equation) Arrhenius Stress – Weibull Reliability Model (R(t)) 

Transformer 
13350

2731 1 1 T
rem

end begin
T e

A DP DP

⎛ ⎞
⎜ ⎟+⎝ ⎠⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (3.3) 

( )
13350

2731 1 1 T
end begin

t

e
A DP DPR t e

β

⎛ ⎞
⎜ ⎟+⎝ ⎠

⎛ ⎞
⎜ ⎟

−⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠=                (3.33) 

Rotating Machines 
(Generator/Motor) 

 
 

100 2
c xT T
HIC

xL L e
−⎛ ⎞

⎜ ⎟
⎝ ⎠= ×  (0.4)(3.4) ( )

100 2
Tc Tx
HIC

t

L e

R t e

β

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟− ⎜ ⎟×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=     (3.34) 

Rotating Machines 
(Generator/Motor) 

 
 

100

2
c x

x T T
HIC

LL
e

−⎛ ⎞
⎜ ⎟
⎝ ⎠

=  (0.5)(3.5)

( )
100

2
Tc Tx
HIC

t

L

eR t e

β

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=      (3.35) 

Switches 
(CB,BT, & LV) 

 (0.8)(3.8) ( )

1
1 1
1 2

A
K T T

t

t

eR t e

β

⎡ ⎤⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎢ ⎥
⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=                 (3.36) 

Cable kTL Ae
ϕ⎛ ⎞−⎜ ⎟

⎝ ⎠=  (0.9)(3.9) ( )
kT

t

Ae

R t e

β

ϕ⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟− ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=      (3.37) 

OC LRC≤

OC LRC>

1 2

1
2

1 1A
K T T

tt

e
⎡ ⎤⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

=

36 
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Each component in the power system is modeled by its conditional survivability 

function ( )|P T t x T x> + > . The conditional survivability function is the probability a 

component will survive another t time units given that it has survived for x time units. 

The conditional reliability function follows equation (3.38) when ( ) 0P T x> ≠  and T t>  

[24]. 

 ( ) ( )
( )

,
|

P T t x T x
P T t x T x

P T x
> + >

> + > =
>

 (3.38) 

Since { } { }T t x T x> + ⊂ > , it follows that { } { } { }T t x T x T t x> + ∩ > = > + . Thus, 

( ) ( ),P T t x T x P T t x> + > = > +  and ( )|P T t x T x> + >  is given by the conditional 

probability law shown in equation (3.39). 

 
( ) ( )

( )
( )

( )

|
P T t x

P T t x T x
P T x

R t x
R x

> +
> + > =

>

+
=

 (0.33)(3.39) 

The component survivability is found by evaluating (3.31) at x  and t x+  as given in 

(3.40) and (3.41), respectively. 

 ( ) ( )
x

P T x R x e
β

α
⎛ ⎞−⎜ ⎟
⎝ ⎠> = =  (0.34)(3.40) 

 ( ) ( )
t x

P T t x R t x e
β

α
+⎛ ⎞−⎜ ⎟

⎝ ⎠> + = + =  (0.35)(3.41) 

Thus the survivability of component j, Pj, is defined as shown in equation (3.42). 

 ( ) ( )|
( )

t x

j
x

R t x eP T t x T x
R x

e

β

β

α

α

+⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

+
> + > = =  (0.36)(3.42) 
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Fig. 3.5 shows a component conditional reliability plot given that it has already 

survived for x time units. This figure is derived from Fig. 3.4 after time has advanced x 

time units where T t>  and T represents the end of life of a component. 

Tx

0
t

( )R x ( ) ( )|
( )

t x

x

R t x eP T t x T x
R x

e

β

β

α

α

+⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

+
> + > = =

 

Fig. 3.5  Conditional Survivability Plot Given x 

 

When thermal stresses are applied to an electrical component, then the Arrhenius 

equation is substituted for the scale parameter α  in (3.42) where ( )
B
VL V Ceα = = . The 

conditional survivability equation is shown in (3.43) where V is the applied thermal stress 

to an electrical device [19]. 

 ( ) ( , )|
( , )

B
V

B
V

t x

Ce

x

Ce

R t x V eP T t x T x
R x V

e

β

β

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

+⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

+
> + > = =  (0.37)(3.43) 
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3.2.2 Structure Function Representation of a System 

Structure functions are used to show how a system or subsystem is interconnected 

and which components are critical in a system. Structure functions are also used to 

compute reliability indices to show the probability that a component fails or survives. 

Structure functions are mathematical expressions that represent the topology of systems 

or subsystems that are composed of n components numbered from 1 to n. The state of 

component i, for 1, 2, ,i n= …  can then be described by a binary variable from equation 

(3.19). 

( ) ( ) ( ) ( )( )1 2, , , nx t x t x t x t=
G …  is called a state vector [20]. The state of a system can be 

described as a binary function as well where ( )( ) ( ) ( ) ( )( )1 2, , , nx t x t x t x tφ φ=
G …  and 

(3.44) holds if the structure function is non-decreasing in each vector argument and such 

that each component is relevant. 

 ( )( ) 1,    if the system is functioning
0,    if the system is in a failed state

x tφ
⎧

= ⎨
⎩

G
 (0.38)(3.44) 

A system is said to be monotone under the following two conditions: 

1) its structure φ  is non-decreasing in each argument, and 

2) ( )0 0φ =  and ( )1 1φ = . 

The first condition means that a system cannot deteriorate (the system cannot change 

from a failed state to a functioning state) by improving performance of a component 

(replacing a functioning component by a failed component) [25]. The second condition 

states that if all components in a system are in a failed state then the system is in a failed 

state, and if all components in a system are in a functioning state then the system is in a 

functioning state. 

A system is said to be coherent if all its components are relevant and the structure 

function is non-decreasing in each argument [20]. It is seen that if φ  is coherent, then it 

is also monotone, and if component i is irrelevant, then 
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 ( ) ( ) ( )1 , 0 , ,        for all ,i i ix x xφ φ= ⋅  

where ( )1 ,i x  represents a state vector where the state of the ith component = 1, ( )0 ,i x

represents a state vector where the ith component = 0 [20, 25]. Therefore, coherent 

structure functions describe the relevancy of components that are used in a specific 

structure. 

A system is considered to be a series configuration if all components are 

interconnected end- to- end as shown in Fig. 3.6. Series systems only function if all 

components are functioning properly, providing a continuous path from point A to point 

B. A series structure is represented by (3.45) where ( )xφ G  is called the structure function 

of the system/subsystem or structure [20]. 

 ( )( ) ( )
1

n

i

i

x t x tφ
=

= ∏G  (0.39)(3.45) 

 

Fig. 3.6  Series Block Structure 

A system is considered to have a parallel configuration if all components are 

interconnected as shown in Fig. 3.7, and the system will still function if there is at least 

one path available from point A to point B. A parallel structure, ( )( )x tφ G  is represented 

by (3.46) [20].  

 ( )( ) ( )( )
1

1 1
n

i

i

x t x tφ
=

= − −∏G  (0.40)(3.46)  
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Fig. 3.7  Parallel Block Structure 

 

Structure functions can have a combination of series and parallel structures to describe 

the topology of an entire system. An example of the combination of both structures is 

shown in Fig. 3.8. Series - parallel structure functions are represented by equation (3.47). 

 ( ) ( )( ) ( ) ( )( )
1 1

, 1 1
pn

i j

i j

m t z t m t z tφ
= =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏G G  (0.41)(3.47) 

 

Fig. 3.8  Series and Parallel Block Structure 
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3.2.3 System Representation Using Structure Functions and Component 

Remaining Life 

Let us consider a system that consist of mutually independent and non-repairable 

components, and the system’s probability is based upon each component’s probability. 

Recall the component conditional survival function given by (3.42). By definition, the 

reliability can be described as an expectation and/or probability as shown in equation 

(3.48). Since the system is defined as a structure of i components, then the reliability of 

the system is defined as the structure of i reliabilities in a system as shown below [24]. 

 [ ] ( ) ( )1 for 1, 2, ,i i iE x P x R t i n= = = = …  (0.42)(3.48) 

To determine the probability that the system will survive another t time units given 

that it has survived for x time units, the conditional survivability of each component is 

used [24]. Let ( ) ( ) ( )( )1 2, , , nx t x t x tφ …  be a random structure function where the random 

state variables each take values in the set { }0,1  [20]. Recall the state variables ( )ix t  for 

1, 2, ,i n= …  are independent and take on only values of 0 or 1. Thus equation (3.49) is 

given for fixed 0t ≥ .  

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 1 2, , , , , ,n i nE x t x t x t P T t R t R t R tφ φ⎡ ⎤ = > =⎣ ⎦… …   (3.49) 

Recall the conditional survivability of a component is the probability that a 

component survives for another t time unit, given that it has survived for x time units. The 

conditional survivability for a system is shown in equation (3.50). 

 ( ) ( )
( )

1

1

( ), , ( )
|

( ),..., ( )
n

sys
n

R t x R t x
P T t x T x

R x R x
φ

φ
+ +

> + > =
…

 (0.43)(3.50) 
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3.3 Reconfiguration/Control 

In the previous section, the conditional reliability for a load is given by equation 

(3.50). This equation lets the operator know the condition of the path to a load given that 

all components have survived for x amount of time units. This equation is also used to get 

prognostic information about the path for a given mission. Missions are described by how 

long a ship will be in a particular configuration, or how long will particular loads will be 

used over a period of time. The missions can be broken into three parts such as early life, 

middle of life, and end of life as components age. 

In this work, the Navy ships’ lifetime is assumed to be thirty-five years; therefore, 

each component can have a maximum life of thirty-five years, although some 

components may have a longer lifetime. It is assumed that after thirty-five years, a Navy 

ship is decommissioned or totally overhauled. Operators on the ship would need to know 

the condition of the ship to decide whether reconfiguration is required during a mission. 

The operator would also decide whether a ship’s condition is acceptable to perform that 

particular mission. For instance, if the operator is in a particular configuration in the early 

stages of life, then a reliability of 0.5 may be acceptable for all loads and reconfiguration 

may not be needed. If loads were to go below the 0.5 threshold, the operator would 

reconfigure the loads to keep the system’s loads available if they will be needed during a 

mission. Since there are three life periods, there would be three threshold values that an 

operator would use to determine if reconfiguration is needed.  

The IPS is controlled by the opening and closing of various switches, bus transfers, 

and circuit breakers. The known conditional survivability of the supply path to each load 

can be used to determine whether or not the path can be improved. Based on the 

survivability of the path to each load, reconfiguration may possibly be performed to 

improve a system’s overall survivability. The information used in computing the 

conditional survivability leads to an indication that there is a possible failure or low 

survivability during a mission. If the conditional survivability of the supply path to a load 

is close to zero, then there is a possibility that the load will not be served. To avoid this 

situation, prognostic information must be known to alert the operator that there may be a 

problem during a particular mission. Reconfiguration is needed to improve the load’s 
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chances of survival during a time period. By knowing prognostic information, control 

actions can be performed on the ship, therefore improving the chances of survival for 

each load in an entire mission. 

3.4 Summary 

This chapter presented the problem formulation mathematically and information 

about the remaining life of electrical components and how they fail. In this work, thermal 

stresses are used to show that all components fail when they are over stressed. It is also 

important to note that thermal stresses are not the main contribution to failure. Wear-out 

and mechanical stresses are essential in the failure of components. The Arrhenius Model 

is the model to show the aging of electrical components due to thermal stresses and it can 

be substituted into the Weibull Distribution to make a relationship. The relationship is 

made through the lifetime or characteristic parameter. This chapter also gives a 

relationship between the hazard rate and the shape parameter from the Weibull 

Distribution. In section 3.1.3, the shape parameter determines how fast a components 

deteriorates over a period of time. Using the Weibull probability density function, the 

reliability equation was derived. A system is represented by series, parallel, or series-

parallel structures. The reliability of each relevant component in a structure is used to 

compute a system’s reliability. 

In this chapter, the remaining life of each electrical component is used in the 

Arrhenius-Weibull distribution to compute the conditional survivability of a system. The 

following chapter will discuss in detail the solution methodology and the steps taken to 

build a system starting with individual components. 
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CHAPTER IV 

4 SOLUTION METHODOLOGY 

The methodology to determine if reconfiguration is needed based on prognosis 

information for individual component’s lifetime distributions under normal operating 

conditions. From the lifetime distributions, their survivability is calculated based on when 

the component was installed. The survivability function for each component is used in the 

system’s structure function to compute the conditional survivability to each load in both 

the HV/MV and LV levels. Fig. 4.1 depicts the proposed methodology for computing the 

subsystem survivability for each load and 4PCM  modules. 

The process begins by loading the values of characteristic life ( )α  and shape 

parameter ( )β  for each component, present time (x), mission time (t), and configuration 

information into an external database. The present time, x, and mission time, t, are inputs 

that are used to compute the present reliability ( )R x , and the conditional reliability 

( )R x t+ , for each component. The inputs listed above are shown in Fig. 4.1 module one. 

The mode of operation is determined and the computation process follows input module. 

The next step is to compute the reliability at present time for all components in module 

two. The present time reliability of each component is used to later in each structure to 

compute load survivability. Next in module three, the reliability at mission time given the 

present time is computed for each component in the shipboard power system. The 

mission time reliability of each component is also used later in each structure to compute 

load survivability. 

Module four in Fig. 4.1 begins the process of determining the structure function of 

the shipboard power system. When the mode of operation is determined, then the 

structure function is known. The present time and mission time reliability values are used 

from modules two and three are used in the structure functions to compute the load’s 

present time survivability and mission time survivability. The present time and mission 

time are used to compute the conditional survivability to each load in module five. 

Module five is the final computation to each load. The final step is to determine if 
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reconfiguration is needed based on the conditional survivability to each load and the 

threshold set by the operator. This algorithm will compute all conditional survivability 

values in each mode of configuration, and are ranked by the top five lowest conditional 

survivability values at the LV level. The loads in the HV/MV level are all ranked in no 

specific order because there are only six loads. The system’s structures are explained in 

detailed at both HV/MV level and LV level in next section. 

4.1 System Interpretation 

There are many ways that the IPS can be described by a structure function. In this 

work, the system is divided into two levels: the generator and ring level which is the HV 

level of the ship and within the zones which is the LV level of the ship. The load 

survivabilities for each load is computed. The load survivability of each PCM4 module 

and propulsion motor are computed at the HV/MV level. The load survivability of the 

other loads are computed in the DC zonal level. The ship is split into three levels at which 

structure functions are determined. The HV and MV structure functions form a series 

configuration to each PCM4 and propulsion motor resulting in equation (4.1) where K 

represents the total number of PCM4’s and AIMs shown in Fig. 4.2. Fig. 4.2 shows a high 

level view of the SPS without displaying the LV loads explicitly. Each PCM4 and  

is circled and labeled to show the different paths from the generators (MTG1, MTG2, 

ATG1, and ATG2). 

  (0.44)(4.1) 

 

AIM

( ) ( )( ) for 1  k k kX HV MV k to Kφ = =
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Fig. 4.1  Load Survivability Solution Methodology 
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Next it is determined whether there is an available path to each of the vital and non-vital 

loads per zone where the PCM4s act as sources to these loads. The loads are shown in 

Fig. 2.1 where the PCM4s serve as sources to the loads. This will be determined by the 

LV structure function shown in equation (4.2) where J represents the total number of 

loads. 

  (0.45)(4.2) 

The LV structure will consist of components from a PCM4 to each of the loads in the 

each zone. In the sections below, the formulation of the HV, MV, and the LV structure 

functions are discussed in sections 0, 4.3, and 4.5, respectively. 

4.2 HV System Structure Function 

The HV structure consists of generators, circuit breakers, and cables that begin from 

the generator to the main and/or the auxiliary buses. The ring cables are also a part of the 

HV structure because they connect all generators to the main and auxiliary buses as 

shown in Fig. 4.2. Buses 1SWBD S , 1SWBD SA , 2SWBD S , 2SWBD SA , 3SWBD S , 

3SWBD SA , 4SWBD S , and 4SWBD SA  are used to designate which generators are used 

for each load. The HV structure function is formulated for each of the four modes of 

operation connecting the generator to each switchboard or bus. The modes of operation 

are the Common Bus Mode, Port/Starboard Split Bus Mode, Forward/Aft Split Bus 

Mode, and the 4 Way Split Bus Mode. In the following subsections these modes of 

operation will be discussed for HV structure for the PCM4s and propulsion motors. The 4 

Way Split Bus Mode was not studied because the topology information was not available 

to understand its operation. 

( ) ( ) for 1  j jX LV j to Jφ = =
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Fig. 4.2  Notional All Electric Common Bus Mode Schematic 

AIM1 

AIM2 1PCM4 2PCM4 3PCM4 4PCM4
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4.2.1 Common Bus Mode 

The Common Bus Mode topology is configured such that the four generators are 

connected to the ring structure energizing all buses. The ring structure consists of circuit 

breakers and cables as shown in Fig. 4.3. In Fig. 4.3, the Common Bus Mode is shown 

highlighting the ring structure and all paths to each switchboard from generator 2ATG
.The generators, along with the ring structure, are used to energize power electronic 

devices called PCM4s that convert AC voltage to DC voltage. The PCM4s are labeled 

1 4PCM , 2 4PCM , 3 4PCM , and 4 4PCM , which supply each zone as shown in Fig. 

4.3. The propulsion system also has the same HV structure as the PCM4s. The propulsion 

system is made up of two propellers at which two induction motors per propeller are used 

(see Fig. 4.2). The Advanced Induction Motor 1 (AIM1) consist of two induction motors 

labeled S1 and S2 as shown on Fig. 4.3. Similarly, the Advanced Induction Motor 2 

(AIM2) also consists of two induction motors S1 and S2 also shown in Fig. 4.2. To avoid 

confusion between induction motors S1 and S2, 11SAIM , 21SAIM , 12SAIM , and 

22SAIM  are used to specify which induction motor is being discussed. In the case of the 

propulsion system, the decision whether reconfiguration is needed will be made. In Fig. 

4.3, the path to 1PCM4 is shown by arrows. The paths are labeled HV for the high 

voltage level and MV for the medium voltage level. 
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Fig. 4.3  HV Common Bus Mode Schematic 
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The Common Bus Mode is the only configuration at which all the components in the 

ring are used. The ring structure is a series structure used in each HV structure as shown 

in equation (4.3). For simplicity of the ring equation, four different equations are used in 

this thesis. When the ring is being used, all components will be used as a series structure 

together when demonstrating a HV structure in the common bus mode. 

 ( )( )( )( )1 2 1 2A A B BRing Ring Ring Ring Ring=  (0.46)(4.3) 

( ) ( )( )( )( )
( ) ( )( )( )( )( )
( ) ( )( )( )( )
( ) ( )( )( )( ) ( )

1

2

1

2

where:
4 1 4 2 3 4 3 2

3 1 3 2 1 3 1 2 1 1

1 2 1 5 1 2 2 2

2 1 2 3 2 2 2 4 4 2

A

A

B

B

Ring CB S CB S C SA S CB SA

Ring CB S CB S C SA S CB SA CB SA

Ring CB S CB S C S SA CB SA

Ring CB SA CB S CB S C S SA CB SA

=

=

=

=

 

The structures to each 4PCM  and AIM  consist of two structures in series; the HV 

structure and MV structure. In this section, the Common Bus HV structure functions are 

presented. In order to find all possible paths to 1PCM4 and AIM2S2, one source at a time 

must be chosen. The first source that will be selected is ATG2 and an imaginary sink is 

placed at bus 4SWBD SA . Next, the path to the sink is traced from the source placing 

each component that is encountered into a series structure. The first set of components in 

this structure are ATG2, C2G, CB4S3, and CB4S1. This set of components are labeled 

PathA1 as shown in equation (4.4). 

 ( )( )( )( )1 2 2 4 3 4 1APath ATG C G CB S CB S=  (0.47)(4.4) 

The second series structure involves components from the ring structure as shown in 

equation (4.3). To obtain the second series structure, the process will begin with the same 

source and end at the same sink placing the notable components in a series structure. This 

set of components are ATG2, C2G, CB4S3, and all the components listed in equation 

(4.3) except for component CB4S1 because it is not encountered in this path. This series 

path will be set equal to PathA2 as shown in equation (4.5). Also in equation (4.5), 

component CB4S1 is also in the ring structure. To eliminate this component from PathA2 
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it will be divided from the ring structure to cancel the component’s relevance in this path. 

PathA1 and PathA2 can be combined into one equation called PathA as shown in equation 

(4.6) by factoring the common components and adding the different components.  

 ( )( )( ) ( )
( )

2 2 2 4 3
4 1

A

Ring
Path ATG C G CB S

CB S
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (0.48)(4.5) 

 ( )( )( ) ( ) ( )
( )

2 2 4 3 4 1
4 1

A

Ring
Path ATG C G CB S CB S

CB S
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (0.49)(4.6) 

The OR logic is represented by the OR logic symbol in equation (4.6), and where each 

path from source to load represents a parallel structure function as shown in equation 

(3.46). The same process with each generator to the sink was used to determine the 

remaining paths. Since all four generators are connected to bus 4SWBD SA  through the 

ring, a total of two paths per generator to any load is established. The HV structure for 

1PCM4 is shown in equation (4.7) where PathB, PathC, and PathD are similar in structure 

to PathA using the remaining generators one at a time. The remaining structure functions 

are shown in Appendix A, Section A.1 for each 4PCM  and Appendix B, Section B.1 for 

each AIM . 

 1 4PCM A B C DHV Path Path Path Path= + + +  (0.50)(4.7) 

Equation (4.7) can also be written as equation (4.8) to compute the survivability of the 

HV structure. 

 ( )( )( )( )1 4 1 1 1 1 1PCM A B C DHV Path Path Path Path= − − − − −  (0.51)(4.8) 

4.2.2 Port/Starboard Split Bus Mode 

The Port/Starboard Split Bus Mode introduces a configuration such that a bus is 

energized by two generators with one path from each generator as shown in Fig. 4.4. In 

this configuration, MTG1 and ATG1 energize buses 1SWBD S , 1SWBD SA , 3SWBD S , 

and 3SWBD SAwhich are connected together, and MTG2 and ATG2 energize buses 
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2SWBD S , 2SWBD SA , 4SWBD S , and 4SWBD SA  which are connected together. This 

configuration is different from the Common Bus Mode because the entire ring structure is 

not connected since there are no connections between buses 1SWBD S  and 2SWBD SA  

and buses 3SWBD SA  and 4SWBD S . Bus tie lines 1 2C S SA and 3 4C SA S  are not 

connected with circuit breakers 1 5CB S , 2 2CB SA , 3 2CB SA , and 4 2CB S  in open status 

as shown in Fig. 4.4. The structure to bus 4SWBD SA  is derived below and only two 

paths will be shown. 

The HV structure to each 4PCM  and AIM  consist of two series structures in 

parallel. In order to find all possible HV structures to 1PCM4 and AIM2S2, one source is 

chosen. The first source that will be selected is ATG2, and an imaginary sink is placed at 

bus 4SWBD SA . Next, the path to the sink is developed by placing each component that 

is encountered into a series structure. The first series set of components in this structure 

are components ATG2, C2G, CB4S3, and CB4S1. These set of components are labeled 

PathA as shown in equation (4.9). 

 ( )( )( )( )2 2 4 3 4 1APath ATG C G CB S CB S=  (0.52)(4.9) 

The second series structure begins with the second generator MTG2. The same procedure 

that was used to derive equation (4.9) is used to derive the series structure from MTG2 to 

bus 4SWBD SA . The set of components that are in the second structure are MTG2, C4G, 

CB2S3, CB2S2, C2S4SA, and CB4SA2. This set of components will be labeled PathB as a 

series structure shown in equation (4.10). 

 ( )( )( )( )( )( )2 4 2 3 2 2 2 4 4 2BPath MTG C G CB S CB S C S SA CB SA=  (0.53)(4.10) 

PathA and PathB represent the two alternate paths in the HV structure to bus 4SWBD SA  

shown in equation (4.11). As stated above, the addition sign in equation (4.11) represents 

a parallel connection between PathA and PathB, and can also be written as equation 

(4.12). The remaining HV structures for the Port/Starboard Split Bus Mode are shown in 

Appendix A, Section A.2 for each PCM4 and Appendix B, Section B.2 for each AIM . 
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 1 4PCM A BHV Path Path= +  (0.54)(4.11) 

 ( ) ( )1 4 1 1 1PCM A BHV Path Path= − − −  (0.55)(4.12) 
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Fig. 4.4  HV Port/Starboard Split Bus Mode Schematic 
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4.2.3 Forward/Aft Split Bus Mode 

The Forward/Aft Split Bus Mode is similar to the Port/Starboard Split Bus Mode 

because it too energizes a bus by two generators providing one path from each generator. 

In this configuration, MTG1 and MTG2 are connected together to energize buses 

1SWBD S , 1SWBD SA , 2SWBD S , and 2SWBD SA , and ATG1 and ATG2 are connected 

together to energize 3SWBD S , 3SWBD SA , 4SWBD S , and 4SWBD SA  as shown in Fig. 

4.5. This configuration is also different from the common bus mode because the entire 

ring structure is not used. The Forward/Aft Split Bus Mode, like the Port/Starboard Split 

Bus Mode, splits the ship’s generators in half. In this configuration, the bus tie lines 

1 3C SA S  and 2 4C S SA  are not connected with circuit breakers 1 2CB SA , 3 2CB S , 

2 2CB S , and 4 2CB SA  in open status as shown in Fig. 4.5. The structure to bus 

4SWBD SA  is shown below and has only two paths from generators ATG2 and ATG1. 

The HV structure to each PCM4 and propulsion motor consists of two series 

structures in parallel. All HV structures to 1PCM4 and AIM2S2, are determined to 

compute the load survivability to each load. The first source selected is ATG2 and an 

imaginary sink is placed at bus 4SWBD SA . Next, the components that are in the path 

from the source to sink are placed in a series structure. The first series set of components 

in this structure are components ATG2, C2G, CB4S3, and CB4S1. This set of components 

will be labeled PathA as shown in equation (0.56). 

 ( )( )( )( )2 2 4 3 4 1APath ATG C G CB S CB S=  (0.56)(4.13) 
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Fig. 4.5  HV Forward/Aft Split Bus Mode Schematic 
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The second series structure will begin with the second generator ATG1. The same 

procedure that was used to derive equation (4.13) is used to derive the series structure 

from ATG1 to bus 4SWBD SA . The set of components that are in the second structure are 

ATG1, C1G, CB3SA3, CB3SA2, C3SA4S, CB4S2, and CB4S1. This set of components 

will be labeled PathB as a series structure shown in equation (4.14)1. 

 
( )( )( )( )
( )( )( )

1 1 3 3 4 2

3 4 3 2 4 1

BPath ATG C G CB SA CB S

C SA S CB SA CB S

= …
 (0.57)(4.14) 

PathA and PathB represent the two alternate paths in the HV structure to bus 4SWBD SA  

shown in equation (4.15). Since component CB4S1 is common in both structures, it can 

be factored out and placed in series with the parallel combination of PathA and PathB. 

PathA and PathB can also be written as equation (4.16). The remaining HV structures for 

the Forward/Aft Split Bus Mode are shown in Appendix A, Section A.3 for each PCM4 

and Appendix B, Section B.3 for each AIM . 

 ( )( )1 4 4 1PCM A BHV CB S Path Path= +  (0.58)(4.15) 

 ( ) ( )( )( )1 4 4 1 1 1 1PCM A BHV CB S Path Path= − − −  (0.59)(4.16) 

4.3 MV Structure Function 

The MV system to each 4PCM  and AIM  will be the same independent of the 

configuration mode. The eight MV structures in this system consist of components that 

are grouped in a set labeled nMV  where n  represents the path number from one to four to 

each 4PCM  and from five to eight to each propulsion motor. The MV structures consist 

of cables, circuit breakers, and a transformer. The MV structures to the sAIM  have an 

additional power electronic device, an AC/AC propulsion converter. As stated in section 

2.2, the voltage level is stepped down from 13.8kVAC to 4.16kVAC through a 

transformer for components such as the AIM . In Fig. 4.6, the notional SPS configured in 

the Forward/Aft Split Bus Mode is used to show the MV paths from each switchboard to 
                                                 
1 The three dots used in equations throughout this thesis implies to continue to the next line. 



60 

 

each 4PCM  and AIM . The paths are shown with dotted lines and labeled 1MV  to 

8MV . In the following two sections, the MV structures to each 4PCM  and AIM  will 

be presented. 

4.3.1 PCM4 Structure Function 

The MV structure to each 4PCM  is a series structure from one of the buses as 

mentioned above in section 0 to one of the four PCM4s shown in Fig. 4.6. 1MV  structure 

function is determined by starting with the set of components structure to 1 4PCM  which 

consist of one transformer, three cables, and three circuit breakers. This MV structure 

starts with the first component behind bus 4SWBD SA  and ends with the last component 

connected to 1 4PCM . The components in this MV structure are in a series structure and 

is given by equation (4.17). The remaining MV structures from buses 2SWBD SA , 

1SWBD S , and 3SWBD SA  to 2 4PCM , 3 4PCM , and 4 4PCM , respectively are given in 

Appendix A, Section A1. Note, the MV structure functions are the same for each 

configuration and are included in Appendix B, Section B1. 

 
( )( )( )( )
( )( )( )

1 4 3 4 1 21 4 12

212 211 211

MV CB SA C S X C S

CBLC CBLC CLC

= …
 (0.60)(4.17) 
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Fig. 4.6  MV Path Schematic
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4.3.2 Propulsion Structure Function 

The MV structures for each AIM are series structures from one of the buses as 

mentioned above to one of the four propulsion motors as shown in Fig. 4.6.  is 

determined by starting with the set of components structure to AIM1S1 which consist of 

one transformer, four cables, one AC/AC propulsion converter, and three circuit breakers. 

The MV structure function is determined by the first component behind bus , 

and ends with the last component connected to . The components in this MV 

structure are in a series structure and given by equation (4.18). To distinguish the 

different propulsion converters connected to the induction motors, the propulsion 

converters are labeled IM1PCS1, IM1PCS2, IM2PCS1, and IM2PCS2. The remaining MV 

structures from buses , , and  to , , and 

, respectively, are given in Appendix B, Section B1. The MV paths to each 

 are the same for each mode of configuration. 

  (0.61)(4.18) 

4.4 HV/MV Structure Function 

The subsystem structure for the each  and propulsion system consist of a HV 

structure in series with a MV structure as explained in sections 0 and 4.3. In this section, 

each structure function for the PCM4s and propulsion systems, defined as , will 

be presented using the HV and MV structures. The components that are used to derive the 

HV and MV structures are also used to determine each  and propulsion motor. 

The mode of operation is negligible because once the HV structure function is 

determined, the appropriate MV structure is also determined depending on the load that is 

being studied. The PCM4 structure functions will be explained first, and then the 

propulsion motor structure functions will be explained. 

5MV

2SWBD SA

11SAIM

1SWBD S 3SWBD SA 4SWBD SA 21SAIM 12SAIM

22SAIM

AIM

( )( )( )( )( )
( )( )( )( )

5

1

2 3 2 1 11 2 12 111

113 112 1 1121S

MV CB SA C SA X C SA CBLC

CBLC CLC IM PC CLC

= …

4PCM

( )k Xφ

4PCM
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4.4.1 PCM4 Structures 

There are a total of four PCM4s; therefore there will be four general equations for 

each of the configuration modes. Equation (4.1) is used to determine the path/structures, 

beginning with 1k =  or 1 4k PCM= . Equation (4.19) shows the HV structure derived in 

section 0 and the MV structure derived in section 4.3, which shows the path/structure to 

1PCM4. Equations (4.20) to (4.22) describe the remaining 4PCM s for 2,  3,  and 4k =  

or 2 4,  3 4,  and 4 4k PCM PCM PCM= . All HV and MV structure functions are shown in 

Appendix A, Sections A1-A3 for all modes of configuration. 

 ( ) ( ) ( )1 4 1 4 1PCM PCMX HV MVφ =  (0.62)(4.19) 

 ( ) ( )( )2 4 2 4 2PCM PCMX HV MVφ =  (0.63)(4.20) 

 ( ) ( )( )3 4 3 4 3PCM PCMX HV MVφ =  (0.64)(4.21) 

 ( ) ( )( )4 4 4 4 4PCM PCMX HV MVφ =  (0.65)(4.22) 

4.4.2 Propulsion Structures 

The propulsion structures are slightly different from the 4PCM  structures because 

of the MV structure as stated earlier. There are also a total of four propulsion motors; 

therefore, there will be four general equations for each configuration mode. Equation 

(4.1) is used to determine the path structures, beginning with 5k =  or 11Sk AIM= . 

Equation (4.23) shows how the HV structure function derived in section 0 and the MV 

structure function derived in section 4.3 is developed to AIM1S1. Equations (4.24) to 

(4.26) are used to describe the remaining 4PCM s for 6,  7,  and 8k =  or 

2 1 21 ,  2 ,  and 2S S Sk AIM AIM AIM= . HV2PCM4 to HV4PCM4 and MV6 to MV8 are shown in 

Appendix B, Sections B1-B3 for all configuration modes. 

 ( ) ( )( )11 2 4 5SAIM PCMX HV MVφ =  (0.66)(4.23) 
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 ( ) ( )( )21 1 4 6SAIM PCMX HV MVφ =  (0.67)(4.24) 

 ( ) ( )( )12 4 4 7SAIM PCMX HV MVφ =  (0.68)(4.25) 

 ( ) ( )( )22 3 4 8SAIM PCMX HV MVφ =  (0.69)(4.26) 

4.5 DC Zonal Structure Function 

The low voltage system is a system at which the 4PCM ’s are energizing loads. 

These loads are located in each zone connected to the DC buses. As stated in section 2.2, 

these loads are connected to power converters in which the DC voltage is stepped down 

from 1kVDC to 375VDC, 650VDC, or 800VDC. Each AC load in each zone is fed by a 

PCM4 (DC/AC converter). The zones are interconnected by zone tie lines which consist 

of switches and cables. The components that are in a LV structure function are cables, 

bus transfers, switches, and converters. Bus transfers such as 1 1Z BT  is two individual 

switches labeled 1 1pZ BT  and 1 1sZ BT  for the port and starboard side of each zone. The 

power flows only through the normal or alternate path. Each zone is interconnected 

through zone ties connecting all four port DC buses and all four starboard DC buses as 

shown in 

Fig. 4.7. Each zone tie consists of two switches and a cable. The zone tie structure 

functions are labeled 1 _ 2pTie  to connect zone one to zone two, 2 _ 3pTie  to connect zone 

two to zone three, and 3 _ 4pTie  to connect zone three to zone four on the port (upper) 

side of each zone. These three structures are shown in equation (4.27). 

 
( )( )( )
( )( )( )
( )( )( )

1 _ 2

2 _ 3

3 _ 4

1 39 1 21 2 41

2 39 2 31 3 41

3 39 3 41 4 41

pTie Z SW C Z Z SW

pTie Z SW C Z Z SW

pTie Z SW C Z Z SW

=

=

=

 (0.70)(4.27) 

The star (lower) side of each zone is labeled similarly except it will be labeled 1 _ 2sTie  to 

connect zone one and zone two, 2 _ 3sTie  to connect zone two and zone three, and 3 _ 4sTie  

to connect zone three and zone four as shown in equation (4.28). 
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( )( )( )
( )( )( )
( )( )( )

1 _ 2

2 _ 3

3 _ 4

1 40 1 22 2 42

2 40 2 32 3 42

3 40 3 42 4 42

sTie Z SW C Z Z SW

sTie Z SW C Z Z SW

sTie Z SW C Z Z SW

=

=

=

 (0.71)(4.28) 

4.5.1 Common Bus Mode and Port/Starboard Split Bus Mode 

The loads in each zone are energized the same way in the Common Bus Mode and 

the Port/Starboard Split Bus Mode. This configuration includes closed switches Z1SW20, 

Z2SW20, Z3SW19, and Z4SW19 and open switches Z1SW19, Z2SW19, Z3SW20, and 

Z4SW20 on 

Fig. 4.7 results in Fig. 4.8. The open switches are circled and labeled as shown in 

Fig. 4.8. The port side buses of each zone are energized by 3PCM4 and 4PCM4, and the 

starboard side buses are energized by 1PCM4 and 2PCM4 as shown in Fig. 4.8. The vital 

loads are typically energized through the normal path and switched to their alternate path 

when bus transfers detect low voltage conditions. 

4.5.2 Forward/Aft Split Bus Mode 

The loads in the Forward/Aft Split Bus Mode are energized differently than the way 

described above for the Common Bus Mode and Port/Starboard Split Bus Mode. This 

configuration includes closed switches Z1SW20, Z2SW19, Z3SW19, and Z4SW20 and 

opened switches Z1SW19, Z2SW20, Z3SW20, and Z4SW19 on  

Fig. 4.7 results in Fig. 4.9. The open switches are circled and labeled as shown in 

Fig. 4.9. The port side buses of each zone are energized by 2PCM4 and 3PCM4, and the 

starboard side buses are energized by 1PCM4 and 4PCM4 as shown in Fig. 4.9. The 

general structure for vital and non-vital loads will be discussed in the next section. 
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Fig. 4.7  DC Zonal System Schematic 
 
 
 
 
 
 
 

Z1SW19 

Z1SW20 

Z2SW19 

Z2SW20 

Z3SW19 

Z3SW20 

Z4SW19 

Z4SW20 

66 



67 

 

2 4PCM

2
20

Z
SW

2
19

Z
SW

2Zone

1 4PCM

1
20

Z
SW

1
19

Z
SW

 1Zone

3 4PCM

3
20

Z
SW

3
19

Z
SW

3Zone

4 4PCM

4
20

Z
SW

4
19

Z
SW

4Zone

1 39Z SW

1 21C Z

2 41Z SW 2 39Z SW

2 31C Z

3 41Z SW 3 39Z SW

3 41C Z

4 41Z SW

1 40Z SW 1 22C Z 2 42Z SW 2 40Z SW 2 32C Z 3 42Z SW 3 40Z SW 3 42C Z 4 42Z SW

 

Fig. 4.8  Common Bus Mode and Port/Starboard Split Bus Mode Load Configuration 
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Fig. 4.9  Forward/Aft Split Bus Mode Load Configuration 
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4.5.3 Vital Load General Structure Functions 

The vital loads in zone 1 shown in Fig. 4.10 are identified by the first letter in the 

load name beginning with the capital letter V. Zones two, three and four are mirror 

images of zone one. The loads in zone one are also labeled by the zone number Z1, load 

number L1, and if it is a DC or AC load by using AC or DC. For example, VLZ1DCL1 

represents the following: vital load, zone one, DC load one. Non-vital loads are identified 

in a similar manner except the letter N precedes the name of the load. A general structure 

function to each vital load is presented in this section. There are a total of eight paths to 

each vital load from each PCM4. The mode of operation will determine the structure for 

each vital load because of the bus transfers and the position of the switches from each 

PCM4. 

The structure function to load VLZ1DCL1 is determined by using 1 4PCM  as the 

source. From 1 4PCM , there are two paths to load VLZ1DCL1. The first set of 

components in the first path are 1PCM4, Z1SW19, CZ111, Z1SW25, Z1375VDC1, 

Z1SW1, CZ112, pZ1BT, CZ11, and Z1SW35. These components are labeled as Path1 as 

shown in equation (4.29). 

 
( )( )( )( )( )( )
( )( )( )( )

1 1 4 1 19 111 1 25 1375 1 1 1

            112 1 11 1 35

Path PCM Z SW CZ Z SW Z VDC Z SW

CZ pZ BT CZ Z SW

= …
  (4.29) 

The second path includes components 1PCM4, Z1SW20, CZ121, Z1SW26, Z1375VDC2, 

Z1SW10, CZ122, sZ1BT, CZ11, and Z1SW35. These components are labeled as Path2 as 

shown in equation (4.30). 

 
( )( )( )( )( )( )
( )( )( )( )

2 1 4 1 20 121 1 26 1375 2 1 10

             122 1 11 1 35

Path PCM Z SW CZ Z SW Z VDC Z SW

CZ sZ BT CZ Z SW

= …
(4.30) 
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Fig. 4.10  Zone 1 Schematic 

The next path begins from 2PCM4. The same procedure is repeated one path at a 

time until the sink has been reached. As stated earlier, there are two paths from each 

PCM4 to each vital load, and the zone tie that connects zone one to zone two is also 

included in the structure function to each vital load. For example, the Port (upper) side of 

schematic in Fig. 4.10 is used to determine the series structure from 2PCM4 to 

VLZ1DCL1. The components in this series structure function are 2PCM4, Z2SW19, 

CZ211, pTie1_2, Z1375VDC1, Z1SW1, CZ112, pZ1BT1, CZ11, and Z1SW35. This set of 

components will be a series structure labeled Path3 as shown in equation (4.31). In 

Appendix C, Section C1, the general structure functions for all loads are given. 

 
( )( )( )( )( )
( )( )( )( )( )

3 1 _ 22 4 2 19 211 1375 1

            1 1 112 1 1 11 1 35

Path PCM Z SW CZ pTie Z VDC

Z SW CZ pZ BT CZ Z SW

= …
(0.72)(4.31) 
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When all eight structure functions are determined, the series structures will be placed 

in a parallel structure as shown in equation (4.32) which can also be written as equation 

(4.33). Not all paths will be active at a time because of the switches that are in each 

equation. The switches will be open or closed depending on the configuration mode. 

 ( )1 1 1 2 3 4

5 6 7 8           

VLZ DCL X Path Path Path Path

Path Path Path Path

φ = + + + +

+ + +

…
 (0.73)(4.32) 

 ( ) ( )
8

1 1

1

1 1

for 1,  2, ,8 number of paths to load 1 1

VLZ DCL i

i

X Path

i VLZ DCL

φ
=

= − −

=

∏
…

 (0.74)(4.33) 

All vital loads can be written in the form of equation (4.33), which represents the 

structure function for each of the vital loads in zones one through four. Each structure is 

unique because of the different components in each structure. In each mode of operation, 

four paths are not energized due to the configuration of the zones. For example, if the 

zones are configured such that the normal path of all vital loads in zones one and two are 

energized by 1PCM4 and 2PCM4, six paths are not energized from the general structure 

function forming the normal path to load VLZ1DCL1. From equation (4.33), equation 

(4.34) is the structure function to load VLZ1DCL1 in the Common Bus Mode and the 

Port/Starboard Split Bus Mode. 

 ( ) ( )
2

1 1

1

1 1VLZ DCL i

i

X Pathφ
=

= − −∏  (0.75)(4.34) 

( ) ( )( )( )( )
( )( ) ( )( ) ( )
( ) ( )( )( )
( )( ) ( )( ) ( )

1

2 1 _ 2

where:
1 4 1 20 121 1 26 1375 2

1 10 112 1 1 11 1 35

2 4 2 20 1375 2

1 10 112 1 1 11 1 35

Path PCM Z SW CZ Z SW Z VDC

Z SW CZ sZ BT CZ Z SW

Path PCM Z SW sTie Z VDC

Z SW CZ sZ BT CZ Z SW

=

=

…

…

 

Further, the alternate path of all vital loads in zones one and two are energized from the 

port side (3PCM4 and 4PCM4). In the previous example, the normal path structure 

function was given by the equation (4.33). The alternate path structure function is given 
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by equation (4.43) in the Common Bus Mode or the Port/Starboard Split Bus Mode. The 

source is 3PCM4, and the sink is VLZ1DCL1. The set of components in Path3 are 

3PCM4, Z3SW20, CZ321, Z3SW26, pTie1_2, pTie2_3, Z1375VDC1, Z1SW1, CZ112, CZ11, 

Z1SW35, pZ1BT1, and are placed in a series structure shown in equation (4.35). Path4 is 

given by the series structure from 4PCM4 to the sink shown in equation (4.36). 

 
( )( )( )( )( )( )
( )( )( )( )( )( )

3 1 _ 2 2 _ 33 4 3 20 321 3 26

1375 1 1 1 112 1 1 11 1 35

Path PCM Z SW CZ Z SW pTie pTie

Z VDC Z SW CZ pZ BT CZ Z SW

= …
 (4.35) 

 ( )( )( ) ( )( )( )( )
( )( )( ) ( ) ( )( )

4 1 _ 2 2 _ 3 3 _ 44 4 4 20 421 4 26

1375 1 1 1 112 1 1 11 1 35

Path PCM Z SW CZ Z SW pTie pTie pTie

Z VDC Z SW CZ pZ BT CZ Z SW

= …  (4.36) 

The bus transfer will never have the switch position connected to both the normal and 

alternate path. Therefore, two paths will exist to a vital load during a particular 

configuration. 

4.5.4 Non-Vital Load General Structure Functions 

The general structure function for non-vital loads are similar to vital loads because 

there are also multiple paths to each non-vital load from all PCM4s. The non-vital loads 

will never have more than two paths because there is only a normal path to these types of 

loads. The non-vital loads are supplied from the port side only or the starboard side only. 

In this section, all paths to NVLZ1DCL2 are presented. 

1PCM4 will serve as the source and the load NVLZ1DCL2 will be the sink. Since 

there is only a normal path to these types of loads, then four paths are used to complete 

the general structure to the sink. The following components are used in the first series 

structure to the load: 1PCM4, Z1SW19, CZ111, Z1SW25, Z1375VDC1, Z1SW2, CZ113, 

and Z1SW36 shown in equation (437). 

 
( )( )( )( )
( )( )( )( )

1 1 4 1 19 111 1 25

            1375 1 1 2 113 1 36

Path PCM Z SW CZ Z SW

Z VDC Z SW CZ Z SW

= …
 (0.76)(4.37) 
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Path2 shown in equation (4.38) will comprise of a zone tie from zone two. Starting from 

2PCM4 the series path is established. These set of components are 2PCM4, Z2SW19, 

CZ211, pTie1_2 from equation (4.27), Z1375VDC1, Z1SW2, CZ113, and Z1SW36. 

 
( )( ) ( )( )
( )( )( )( )

2 1 _ 22 4 2 19 211

            1375 1 1 2 113 1 36

Path PCM Z SW CZ pTie

Z VDC Z SW CZ Z SW

= …
 (0.77)(4.38) 

After writing the remaining two series structures from 3PCM4 and 4PCM4, the structure 

for NVLZ1DCl2 can be written as shown in equation (4.39). Equation (4.39) can also be 

written as equation (4.40). The remaining structure functions for non-vital loads in each 

zone are given in Appendix C, Section C.1.1. 

 ( )1 2 1 2 3 4NVLZ DCL X Path Path Path Pathφ = + + +  (0.78)(4.39) 

 ( ) ( )
4

1 2

1

1 1NVLZ DCL i

i

X Pathφ
=

= − −∏  (0.79)(4.40) 

For example, in the Port/Starboard Split Bus Mode, all non-vital loads connected to the 

port side of each zone are energized by 3PCM4 and 4PCM4. In this configuration, two 

paths are eliminated from the general structure function forming the normal paths to load 

NVLZ1DCL2. From equation (4.40), equation (4.41) is the structure function to load 

NVLZ1DCL2 in the Common Bus Mode and the Port/Starboard Split Bus Mode. 

 ( ) ( )
2

1 2

1

1 1NVLZ DCL i

i

X Pathφ
=

= − −∏  (0.80)(4.41) 

 
( )( )( ) ( )( )( )
( ) ( )( )
( )( )( ) ( )( )( ) ( )
( ) ( )( )

1 1 _ 2 2 _ 3

2 1 _ 2 2 _ 3 3 _ 4

where:
3 4 3 19 311 1375 1

1 1 113 1 36

4 4 4 19 411 1375 1

1 1 113 1 36

Path PCM Z SW CZ pTie pTie Z VDC

Z SW CZ Z SW

Path PCM Z SW CZ pTie pTie pTie Z VDC

Z SW CZ Z SW

=

=

…

…
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4.6 Reconfiguration 

To this point, all structure functions to each load were formulated. Recall from 

section 0, all relevant components in a series structure must be operating for the system to 

operate. In the parallel structure, all components in one path must be operating for the 

system to be operational. The path to each PCM4 and AIM  are considered to be a series 

structure, therefore the MV path and the HV path must be operating to energize the 

PCM4s and induction motors. 

Overall reconfiguration is decided by comparing the normal and alternate path’s 

conditional reliability for each of the loads in each zone. If the comparison of the normal 

and alternate paths to a load are close in survivability, then reconfiguration may not be 

needed. The loads in each zone are reconfigured by changing the topology. Since the 

non-vital loads do not have alternate paths, they can only be reconfigured by changing 

the topology. Also, each component must be checked to determine if any if the 

components have failed along the path to the load.  

Reconfiguration is performed at the HV level of the IPS. Reconfiguration on the HV 

level is done by changing the topology. The current configuration must be known in 

order to know what configuration to change to. Similar to the loads in the zone, the path 

to each PCM4 and induction motor are compared by mode of operation, and if the 

conditional survivability to each load is significantly higher in a different topology then 

reconfiguration may be needed. 

The ranking of loads and paths are both based on priority. The sorting procedure is 

based on three parameters, the advanced induction motors, the paths to the PCM4s, and 

the vital and non-vital loads. Since the PCM4s and AIMs have no alternate path, the 

sorting for this type of load is very simple. The AIMs would be placed in order from most 

critical to least critical survivability value after comparing the two AIM values. The 

PCM4s are also ranked in a similar manner. Each PCM4’s survivability value is 

compared to sort the PCM4 in ascending order. For example, the PCM4 survivability 

values in Table 4.1 will be sorted as shown in Table 4.2. From Table 4.2, component 

2 4PCM  is the most critical component and 4 4PCM  is least critical. 
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Table 4.1 Unsorted Survivability Table 

Component Survivability 

 0.740529 

 0.703732 

 0.734103 

 0.742500 

 

Table 4.2 Sorted Survivability 

Component Survivability 

 0.703732 

 0.734103 

 0.740529 

 0.742500 

  

1 4PCM

2 4PCM

3 4PCM

4 4PCM

2 4PCM

3 4PCM

1 4PCM

4 4PCM
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The vital and non-vital loads are sorted by the normal path to show which load is closest 

to failure. For both load types, the top five loads with most critical survivability are used 

to determine if reconfiguration is needed. The ranking of loads is discussed in chapter V 

of this thesis. 

4.7 Summary 

This chapter presented information about how to interpret a system using structures. 

The structures are determined by relevant components from the source to the sink. The 

IPS has three levels at which the structure was constructed, the HV level, the MV level, 

and the LV level. The loads are located in the MV and LV levels. The HV and MV levels 

are combined to formulate the structure to all MV loads. The power converters, PCM4s, 

are used as sources for the LV loads. The development of the procedure to compute the 

conditional survivability was shown in Fig. 4.1, which described the steps taken to 

compute load conditional survivability. Components are sorted from most critical to least 

critical to determine the need for reconfiguration. 

This chapter provided information on structure function formulation for all LV loads, 

advanced induction motors, and the paths to each PCM4. The reconfiguration of loads 

was also addressed in this chapter to show how ranking is done with each type of load. 

The following chapter will discuss in detail the results from a few case studies. These 

case studies will emphasize reconfiguration and show how the failing of significant 

components affect load conditional survivability. 
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CHAPTER V 

5 RESULTS 

In this chapter, case studies are shown to illustrate scenarios where reconfiguration 

could be needed to improve the load survivability for a mission. These case studies show 

how failing components affect the survivability to loads over time. In the following 

sections, the middle of life is shown and how the failing components affect the 

survivability of a load during a horizon period. Since the system was separated between 

two load types, the 4PCM s and AIM s will be sorted from for each case study for these 

particular loads. The vital and non-vital loads in each zone are shown in its own case 

studies as well, and each load will be sorted from most critical to least critical. Only the 

top five most critical loads from each zone will be shown from each case study. The 

loads that are not above a desired threshold can easily be seen by sorting the loads from 

most critical to least critical. If five or more loads in the zone are below the threshold 

value, then reconfiguration is needed. If two or more HV/MV loads are below the 

threshold then reconfiguration is needed as well. The results will show the loads that are 

below the threshold value for a horizon period and if reconfiguration is needed. 

5.1 Case Studies 

The results are shown numerically and compared to similar components’ paths to see 

the difference between a failing path and a non-failing path. To keep a good prospective, 

a Navy ship along with their components are considered to have at most a 

remaining/characteristic life ( )α  of thirty five years. The non-failing components will be 

chosen when present time x  is selected. For example, if a present time 5x =  then the 

non-failing components would have a remaining/characteristic life of 28 30α≤ ≤ . The 

horizon time is the sum of the present time and mission time ( )ht x t= +  where the 

mission time is the period over which the study will be performed. The failing 

components are set to fail within the mission time and before the horizon time. Therefore, 

the failing components remaining/characteristic life is less than the horizon time 

( )2h ht tα− ≤ ≤ . The shape parameter β  determines how fast a component will 
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deteriorate. For example, if component A has a shape parameter 2.3β =  and component 

B  has a shape parameter of 3.5β = , then component B  will age faster after the 

characteristic life parameter has been reached. 

In the next three sections, individual case studies are shown. Section 5.1.1 is a cable 

failure in zone one that will affect the conditional load survivability of vital and non-vital 

loads in two modes of configuration in the beginning, middle and end of life time 

periods. Section 5.1.2 is a zone tie failure that affects the conditional survivability to 

HV/MV loads. Section 5.1.3 is a transformer failure and it also affects the conditional 

survivability to HV/MV loads. All sections below will show the conditional survivability 

to loads in which the survivability is lowest in each time period and all modes of 

configuration. 

5.1.1 Case Study 1: Cable Failure in Zone 1 

The objective of this study is to show that reconfiguration is needed because on the 

normal path to the vital load (VLZ1DCL1) in zone 1; a critical component is failing or 

will fail during the mission time. The focus of this study is to show that the failing 

component listed in Table 5.1 affects the survivability to vital load VLZ1DCL1. The 

following data set in Table 5.1 shows the remaining life α in years and the shape 

parameter β for the failing cable and the remaining components. The other components’ 

remaining life is between twenty four and twenty five years, and their shape parameter is 

between one and four. The present time x, horizon time tH, and the threshold values 

Thold for each period is also shown in Table 5.1. 

. 
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Table 5.1 Case 1 Data Set 

Component α β 
CZ122 11.025 3.58 
Other 24 < α < 25 1 < β < 4  

Horizon Period x tH (yrs) Thold 
Early 0 6  0.3 

Middle 10 13  0.2 
End 13 17  0.1 

 

The failing component is cable CZ122 along the normal path to load VLZ1DCL1. 

From the cable will begin to fail faster than the other components over time because the 

remaining life is smaller than the other components. The results in Table 5.2 show the 

conditional survivability for each load in all modes of configuration. The beginning, 

middle, and end of life periods are shown in Table 5.2. The components in zones one and 

two are shown in this table because there are components below the threshold for each 

period. Loads in zones three and four are above the threshold value. Since the number of 

loads that are failing in the beginning and middle of life is lower than six, reconfiguration 

will not be needed for these two periods. The end of life period shows five components 

below the threshold for that period in the Forward/Aft Split Bus Mode (F/A SBM). If the 

mode of operation was in this configuration, reconfiguration would be needed. During the 

Common Bus Mode (CBM) and Port/Starboard Split Bus Mode (P/S SBM), all 

components except for load VLZ1DCL1 are above the threshold, therefore 

reconfiguration would not be needed for this mode of operation. The failing component 

CZ122 directly affects vital load VLZ1DCL1 due to its low remaining life and the horizon 

period. The failing of other loads is due to the structure, remaining life and the horizon 

period as well. 
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Table 5.2 Case 1 Conditional Survivability Table 
Beginning of Life 

CMB or P/S SBM  F/A SBM 

Zone 1 

VLZ1DCL1  0.2629  VLZ2DCL1  0.2681 

VLZ1ACL2  0.3323  VLZ2ACL2  0.3389 

NVLZ1ACL1  0.3828  NVLZ2ACL1  0.4112 

NVLZ1ACL4  0.4046  NVLZ2ACL4  0.4126 

VLZ1ACL3  0.5083  VLZ2ACL3  0.5184 

Zone 2 

NVLZ2ACL1  0.3798  VLZ2ACL2  0.2306 

VLZ2ACL2  0.3915  NVLZ2ACL1  0.4039 

VLZ2DCL4  0.4549  VLZ2DCL4  0.4282 

VLZ2ACL3  0.5170  VLZ2ACL3  0.4863 

NVLZ2DCL8  0.5422  VLZ2DCL1  0.5005 

Middle of Life 

CMB or P/S SBM  F/A SBM 

Zone 1 

VLZ1DCL1  0.1058  VLZ2DCL1  0.1041 

VLZ1ACL2  0.2378  VLZ2ACL2  0.2340 

NVLZ1ACL4  0.2705  NVLZ2ACL4  0.2661 

VLZ1ACL3  0.2824  VLZ2ACL3  0.2778 

NVLZ1ACL1  0.2852  NVLZ2ACL1  0.2806 

End of Life 

CMB or P/S SBM  F/A SBM 

Zone 1 

VLZ1DCL1  0.0048  VLZ2DCL1  0.0044 

NVLZ1ACL1  0.1156  VLZ2ACL2  0.1154 

VLZ1ACL2  0.1266  NVLZ2ACL1  0.1459 

VLZ1ACL3  0.1653  VLZ2ACL3  0.1507 

NVLZ1ACL4  0.1756  NVLZ2ACL4  0.1601 

Zone 2 

VLZ2ACL2  0.1262  VLZ2ACL2  0.0824 

VLZ2ACL3  0.1394  VLZ2DCL1  0.0930 

NVLZ2ACL1  0.1458  VLZ2ACL3  0.0941 

VLZ2DCL4  0.1767  VLZ2DCL5  0.0974 

NVLZ2ACL4  0.1857  NVLZ2ACL4  0.1558 
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5.1.2 Case Study 2: Port/Starboard Bus Tie Failure 

The objective of this study is to show that reconfiguration may be needed because 

two critical cables in the Port/Starboard Split Bus Mode will fail during the mission. The 

results for Forward/Aft Split Bus Mode and Common Bus Mode will also be shown for 

comparison. The focus in this case is the path to each AIM  and 4PCM  in the 

Port/Starboard Split Bus Mode. The following data set in Table 5.3 shows the remaining 

life α  in years and the shape parameter β  for the failing cables and the remaining 

components. The other components’ remaining life is between twenty eight and thirty 

years, and their shape parameter is between one and four. The present time x, horizon 

time tH, and the threshold values Thold for each period is also shown in Table 5.3.  

Table 5.3 Case 3 Data Set 

Component Α β 
C2S4SA 7.099 2.83 

C1SA3S 6.267 1.53 
Other 28 < α < 30 1 < β < 4  

Horizon Period x tH (yrs) Thold 
Early 0 5  0.75 

Middle 5 8  0.65 
End 11 18  0.1 

 

The failing components are cables C2S4SA and C1SA3S which connects generators 

MTG1 and ATG1, and MTG2 and ATG2 to supply all HV/MV loads. Table 5.3 shows that 

the cables will fail before the horizon time, and during the mission time. The results from 

Table 5.4 show conditional survivability for each 4PCM  and AIM  in all modes of 

operation. The survivability to each 4PCM  and AIM  are lower than the survivability of 

the Common Bus Mode (CBM) and Forward/Aft Split Bus Mode (F/A). In this case 

study, reconfiguration would be needed because one load is below the threshold in both 

the middle of life period and end of life period.  The cables that are failing in this study 

affect the survivability to 2 4PCM  in the Port/Starboard Split Bus Mode (P/S) because 

half of the ring structure is used. If the cables were to actually fail, all loads in the 
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Port/Starboard Split Bus Mode would show a low survivability and reconfiguration 

would be needed. 

Table 5.4 Case 3 Conditional Survivability Table 

Component Beginning of Life Middle of Life End of Life 
CBM P/S F/A CBM P/S F/A CBM P/S F/A 

1PCM4 0.8482 0.7943 0.8274 0.7494 0.6682 0.7405 0.1093 0.1089 0.1109
2PCM4 0.7804 0.6792 0.7523 0.7234 0.5725 0.7037 0.1073 0.1123 0.1111
3PCM4 0.8653 0.7953 0.8353 0.7545 0.6750 0.7341 0.1096 0.1107 0.1136
4PCM4 0.7864 0.7363 0.7803 0.7516 0.6650 0.7425 0.1130 0.1069 0.1144
AIM1 0.9813 0.9495 0.9718 0.9302 0.8580 0.9193 0.1483 0.1524 0.1534
AIM2 0.9297 0.9026 0.9228 0.8923 0.8374 0.8869 0.1354 0.1317 0.1372

 
 

5.1.3 Case Study 3: Transformer Failure 

The objective of this study is to show how transformers X11 and X31 affect the 

conditional survivability to components AIM1S1, AIM1S2, 2PCM4, and 3PCM4. The 

focus in this case are the paths to 1AIM  (AIM1S1 and AIM1S2), and PCM4s, 2PCM4, 

and 3PCM4 because the transformers are critical components to the loads and the HV 

configuration has no influence. The following data set in Table 5.5 shows the remaining 

life α in years and the shape parameter β for the failing cable and the remaining 

components. The other components’ remaining life is between twenty seven and twenty 

five years, and their shape parameter is between one and four. The present time x, horizon 

time tH, and the threshold values Thold for each period is also shown in Table 5.5. 

. 
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Table 5.5 Case 5 Data Set 

Component α β 

X11 11.515 3.04 

X31 10.302 3.25 
other 25 < α < 27 1 < β < 4 

Horizon Period X tH Thold 
Early 0 8  0.5 

Middle 8 12  0.3 
End 15 20  0.1 

 

The failing components are transformers X11 and X31. These transformers are very 

critical because they are needed for the HV/MV loads AIM1S1, AIM1S2, 2PCM4, and 

3PCM4 to function. From Table 5.5, the transformers are failing during the middle of life 

horizon period, and before the end of life horizon period. The results from Table 5.6 

show that the survivability to load 1 4PCM  in the Port/Starboard Split Bus Mode and the 

Forward/Aft Split Bus Mode are below the threshold in the beginning of life period. 

Since only one load is below the threshold, reconfiguration will not be needed during this 

period. The middle and end of life periods show that the all loads are below the threshold 

and reconfiguration will be needed because 2 or more loads are below the threshold. 

 

Table 5.6 Case 5 Conditional Survivability Table 

Component Beginning of Life Middle of Life End of Life 
CBM P/S F/A CBM P/S F/A CBM P/S F/A 

1PCM4 0.5193 0.4829 0.4847 0.0849 0.0776 0.0747 0.0065 0.0075 0.0072
2PCM4 0.7242 0.6815 0.6985 0.1145 0.1127 0.1090 0.0073 0.0083 0.0082
3PCM4 0.8053 0.7811 0.7714 0.0955 0.0636 0.0682 0.0013 0.0005 0.0018
4PCM4 0.6277 0.6123 0.6076 0.0933 0.0772 0.0859 0.0053 0.0062 0.0061
AIM1 0.8331 0.8117 0.8137 0.1320 0.1113 0.1119 0.0041 0.0042 0.0048
AIM2 0.8484 0.8243 0.8234 0.1268 0.1113 0.1143 0.0041 0.0048 0.0047
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5.2 System Results for Case Studies 

The system results from each case study are shown in two parts, the HV/MV 

summary table and the Zone summary table. Table 5.7 shows the data set for each 

analyzed study. The HV/MV loads as well as Zonal loads conditional survivability are 

shown in Tables 5.8 through 5.11. These loads are affected by components failing during 

a life period. In Case Study 1, transformers X11 and X31 are shown to be failing 

components, affecting the conditional survivability to HV/MV loads. In case Studies 2, 4, 

5 and 6 are cables shown to be failing, affecting the conditional survivability to HV/MV 

loads. Case Study 3 shows AC/DC converter AIM2CONS2 failing affecting the conditional 

survivability to Zonal loads. Case Study 7 and 8 shows cables failing, affecting the 

conditional survivability to HV/MV loads. Case Study 9 shows generator MTG1 failing, 

affecting the conditional survivability to HV/MV loads. 

The HV/MV summary table, Table 5.8, shows all loads in each horizon period. The 

Zone summary table shows the top five most critical load survivability values for each 

zone and horizon period. The Zone summary table, Tables 5.9 through 5.11, is also split 

into three tables, the early life table, the middle of life table, and the end of life table. 

Each table shows the beginning of life period, middle of life period, and the end of life 

period. The tables show a comparison of each configuration and how each load is sorted 

from one configuration to another. The PCM4s and AIMs are shown for only HV/MV 

studies and the low level loads (vital and non-vital loads) are shown for only LV studies. 

The remaining life ( )α  and shape parameter ( )β  are the same for each component 

through all three life periods or horizons. The present time and horizon time changes for 

each horizon in a case study.  

In the data set summary table, α  represents the remaining life in years and β  is the 

shape parameter. The data set summary table, Table 5.7, also shows the horizon periods 

(early life, middle life, and end of life), the present time x in years, the horizon time tH in 

years, and the threshold value Thold for each period. In this section, the results for each 

load are shown sorted along with the corresponding data set. 
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Table 5.7 Data Set Summary Table 

System Case Study 1 
Component α β 

X11 11.515 3.04 

X31 10.302 3.25 
other 25 < α < 27 1 < β < 4 

Horizon Period x tH Thold 
Early 0 8  0.5 

Middle 8 12  0.3 
End 15 20  0.1 

System Case Study 2 
Component α β 

C2S4SA 7.099 2.83 

C1SA3S 6.267 1.53 
other 28 < α < 30 1 < β < 4  

Horizon Period x tH Thold 
Early 0 5  0.75 

Middle 5 8  0.65 
End 11 18  0.1 

System Case Study 3 
Component α β 

AIM2CONS2 7.099 2.83 
other 30 < α < 32 1 < β < 4  

Horizon Period x tH Thold 
Early 0 3  0.85 

Middle 3 6  0.80 
End 9 12  0.4 
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Table 5.7 continued 
System Case Study 4 

Component α β 
C1SA3S 9.809 2.41 

other 26 < α < 28 1 < β < 4  

Horizon Period x tH Thold 
Early 0 7  0.5 

Middle 7 11  0.3 
End 13 20  0.1 

System Case Study 5 
Component α β 

C1SA3S 8.602 3.79 

C1S2SA 7.589 2.24 
other 28 < α < 30 1 < β < 4  

Horizon Period x tH Thold 
Early 0 5  0.75 

Middle 5 8  0.65 
End 11 16  0.1 

System Case Study 6 
Component α β 

C1SA3S 15.168 3.75 

C1S2SA 15.705 3.96 

C3SA4S 16.449 1.72 
other 23 < α < 25 1 < β < 4  

Horizon Period x TH Thold 
Early 0 6  0.5 

Middle 6 10  0.4 
End 10 14  0.1 
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Table 5.7 continued 
System Case Study 7 

Component α β 
C1Z21 8.848 3.51 

C3Z42 9.053 2.08 
other 25 < α < 30 1 < β < 4  

Horizon Period x tH Thold 
Early 0 5  0.7 

Middle 5 10  0.4 
End 15 19  0.15 

System Case Study 8 
Component α β 

CZ122 11.025 3.58 
other 24 < α < 25 1 < β < 4  

Horizon Period x tH Thold 
Early 0 6  0.3 

Middle 10 13  0.2 
End 13 17  0.1 

System Case Study 9 
Component α β 

MTG1 15.135 3.14 
other 23 < α < 25 1 < β < 4  

Horizon Period x th Thold 
Early 0 8  0.5 

Middle 8 10  0.3 
End 10 18  0.1 
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Table 5.8 HV/MV Load Survivability Summary Table 

System  
Case Study  Component Beginning of Life Middle of Life End of Life 

CBM P/S F/A CBM P/S F/A CBM P/S F/A 

1 

1PCM4 0.6151 0.4671 0.3484 0.3940 0.3609 0.3061 0.0460 0.0503 0.0573 
2PCM4 0.5349 0.4992 0.5618 0.2574 0.2319 0.2494 0.0037 0.0042 0.0039 
3PCM4 0.2765 0.2241 0.2519 0.1239 0.1046 0.1190 0.0005 0.0005 0.0005 
4PCM4 0.7387 0.6260 0.5726 0.4642 0.4338 0.4007 0.0488 0.0592 0.0557 
AIM1 0.6748 0.5729 0.6291 0.3068 0.2732 0.2972 0.0025 0.0028 0.0027 
AIM2 0.7445 0.6680 0.5871 0.5729 0.5386 0.4890 0.0588 0.0678 0.0700 

2 

1PCM4 0.8482 0.7943 0.8274 0.7494 0.6682 0.7405 0.1093 0.1089 0.1109 
2PCM4 0.7804 0.6792 0.7523 0.7234 0.5725 0.7037 0.1073 0.1123 0.1111 
3PCM4 0.8653 0.7953 0.8353 0.7545 0.6750 0.7341 0.1096 0.1107 0.1136 
4PCM4 0.7864 0.7363 0.7803 0.7516 0.6650 0.7425 0.1130 0.1069 0.1144 
AIM1 0.9813 0.9495 0.9718 0.9302 0.8580 0.9193 0.1483 0.1524 0.1534 
AIM2 0.9297 0.9026 0.9228 0.8923 0.8374 0.8869 0.1354 0.1317 0.1372 

3 

1PCM4 0.9904 0.9877 0.9874 0.9507 0.9277 0.9253 0.6366 0.5139 0.5019 
2PCM4 0.8954 0.8927 0.8946 0.8530 0.8320 0.8440 0.4703 0.3833 0.4243 
3PCM4 0.9192 0.9188 0.9190 0.8543 0.8486 0.8513 0.4586 0.4214 0.4345 
4PCM4 0.8872 0.8859 0.8853 0.8029 0.7901 0.7867 0.3766 0.3257 0.3122 
AIM1 0.9930 0.9929 0.9930 0.9658 0.9619 0.9639 0.5856 0.5312 0.5539 
AIM2 0.9676 0.9670 0.9668 0.8423 0.8319 0.8295 0.3052 0.2639 0.2530 
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Table 5.8 continued 

System  
Case Study Component 

Beginning of Life Middle of Life End of Life 
CBM P/S F/A CBM P/S F/A CBM P/S F/A 

4 

1PCM4 0.7448 0.6957 0.6327 0.5398 0.5023 0.4560 0.0113 0.0110 0.0098 
2PCM4 0.4095 0.3868 0.3913 0.4199 0.3850 0.4056 0.0115 0.0105 0.0116 
3PCM4 0.6148 0.5349 0.5853 0.5164 0.4605 0.5070 0.0155 0.0151 0.0162 
4PCM4 0.4738 0.3914 0.4936 0.3721 0.2858 0.3363 0.0044 0.0040 0.0051 
AIM1 0.9043 0.8254 0.8941 0.7242 0.6692 0.7122 0.0149 0.0142 0.0154 
AIM2 0.8398 0.7844 0.7516 0.6444 0.5782 0.5772 0.0065 0.0062 0.0062 

5 

1PCM4 0.8229 0.8052 0.8091 0.7717 0.7292 0.7387 0.1186 0.1011 0.1050 
2PCM4 0.6655 0.6496 0.6415 0.6382 0.6080 0.5844 0.0638 0.0619 0.0580 
3PCM4 0.8624 0.8291 0.8302 0.7694 0.7131 0.7174 0.1083 0.1124 0.1132 
4PCM4 0.8483 0.8125 0.8245 0.7631 0.6502 0.7256 0.0952 0.0662 0.0919 
AIM1 0.9447 0.9309 0.9277 0.8979 0.8684 0.8626 0.1176 0.1189 0.1167 
AIM2 0.9110 0.8965 0.9026 0.8853 0.8354 0.8637 0.1052 0.0826 0.0973 

6 

1PCM4 0.7564 0.7171 0.7131 0.4398 0.4449 0.3430 0.1007 0.1084 0.0787 
2PCM4 0.6874 0.6563 0.6529 0.4493 0.4554 0.4101 0.1180 0.1267 0.1150 
3PCM4 0.7498 0.6897 0.6737 0.4404 0.4413 0.4430 0.1171 0.1325 0.1266 
4PCM4 0.5384 0.5014 0.4963 0.3311 0.3362 0.3380 0.0758 0.0846 0.0856 
AIM1 0.9081 0.8808 0.8857 0.6088 0.6129 0.5859 0.1413 0.1547 0.1440 
AIM2 0.7516 0.7211 0.7009 0.4992 0.5047 0.4512 0.0997 0.1088 0.0936 
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Table 5.8 continued 

System  
Case Study Component 

Beginning of Life Middle of Life End of Life 
CBM P/S F/A CBM P/S F/A CBM P/S F/A 

7 

1PCM4 0.5193 0.4829 0.4847 0.0849 0.0776 0.0747 0.0065 0.0075 0.0072 
2PCM4 0.7242 0.6815 0.6985 0.1145 0.1127 0.1090 0.0073 0.0083 0.0082 
3PCM4 0.8053 0.7811 0.7714 0.0955 0.0636 0.0682 0.0013 0.0005 0.0018 
4PCM4 0.6277 0.6123 0.6076 0.0933 0.0772 0.0859 0.0053 0.0062 0.0061 
AIM1 0.8331 0.8117 0.8137 0.1320 0.1113 0.1119 0.0041 0.0042 0.0048 
AIM2 0.8484 0.8243 0.8234 0.1268 0.1113 0.1143 0.0041 0.0048 0.0047 
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Table 5.9 Zone Beginning of Life Summary Table 
Case Study 1 

CMB or P/S SBM  F/A SBM 

Zone 1 

VLZ1ACL3  0.6997  VLZ1ACL3  0.6924 

NVLZ1ACL4  0.7294  NVLZ1ACL4  0.7218 

NVLZ1ACL1  0.8666  NVLZ1ACL1  0.8532 

VLZ1DCL1  0.8701  VLZ1DCL1  0.8610 

VLZ1DCL7  0.8759  VLZ1DCL7  0.8667 

Zone 2 

VLZ2DCL1  0.7371  VLZ2DCL1  0.6926 

NVLZ2ACL4  0.7713  NVLZ2ACL4  0.7632 

VLZ2ACL3  0.8233  VLZ2ACL3  0.7652 

VLZ2DCL4  0.8629  VLZ2DCL4  0.7842 

VLZ2DCL7  0.8919  VLZ2DCL7  0.8776 

Zone 3 

VLZ3ACL3  0.7552  VLZ3ACL3  0.7542 

VLZ3DCL7  0.7786  VLZ3DCL7  0.7776 

VLZ3DCL1  0.8044  VLZ3DCL1  0.8033 

VLZ3DCL5  0.8293  VLZ3DCL5  0.8282 

VLZ3ACL2  0.8484  VLZ3ACL2  0.8472 

Zone 4 

NVLZ4ACL4  0.5127  VLZ4DCL5  0.7028 

NVLZ4DCL6  0.5364  NVLZ4ACL1  0.7686 

NVLZ4DCL8  0.5985  VLZ4ACL3  0.7809 

VLZ4ACL2  0.7228  VLZ4ACL2  0.7924 

NVLZ4ACL1  0.7688  NVLZ4ACL4  0.8118 
 
  



91 

 

Table 5.9 continued 
Case Study 2 

CMB or P/S SBM  F/A SBM 

Zone 1 

VLZ1DCL1  0.2629  VLZ2DCL1  0.2681 

VLZ1ACL2  0.3323  VLZ2ACL2  0.3389 

NVLZ1ACL1  0.3828  NVLZ2ACL1  0.4112 

NVLZ1ACL4  0.4046  NVLZ2ACL4  0.4126 

VLZ1ACL3  0.5083  VLZ2ACL3  0.5184 

Zone 2 

NVLZ2ACL1  0.3798  VLZ2ACL2  0.2306 

VLZ2ACL2  0.3915  NVLZ2ACL1  0.4039 

VLZ2DCL4  0.4549  VLZ2DCL4  0.4282 

VLZ2ACL3  0.5170  VLZ2ACL3  0.4863 

NVLZ2DCL8  0.5422  VLZ2DCL1  0.5005 

Zone 3 

VLZ3DCL1  0.3601  VLZ2DCL1  0.3384 

VLZ3ACL2  0.3702  VLZ2ACL2  0.3478 

NVLZ3ACL4  0.3835  VLZ2ACL3  0.3673 

VLZ3ACL3  0.3909  VLZ2DCL7  0.3770 

VLZ3DCL7  0.4013  NVLZ2ACL4  0.4045 

Zone 4 

NVLZ4ACL4  0.3108  VLZ2DCL1  0.3751 

VLZ4DCL1  0.3650  NVLZ2ACL4  0.4001 

NVLZ4DCL6  0.3739  VLZ2ACL2  0.4024 

NVLZ4DCL8  0.4489  VLZ2DCL7  0.4732 

VLZ4DCL4  0.5509  NVLZ2DCL6  0.4814 
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Table 5.10 Zone Middle of Life Summary Table 
Case Study 1 

CMB or P/S SBM  F/A SBM 

Zone 1 

NVLZ1ACL1  0.2514  NVLZ1ACL1  0.2275 

NVLZ1DCL3  0.3173  NVLZ1DCL3  0.2872 

NVLZ1DCL2  0.3226  NVLZ1DCL2  0.2920 

VLZ1ACL3  0.5264  VLZ1ACL3  0.4811 

NVLZ1ACL4  0.5681  NVLZ1ACL4  0.5192 

Zone 2 

VLZ2DCL1  0.5820  VLZ2ACL3  0.5472 

NVLZ2ACL4  0.6064  NVLZ2ACL4  0.5500 

VLZ2ACL3  0.6125  VLZ2DCL4  0.5829 

VLZ2DCL4  0.6935  VLZ2DCL1  0.6033 

VLZ2DCL7  0.7073  VLZ2DCL7  0.6753 

Zone 3 

VLZ3ACL3  0.5533  VLZ3ACL3  0.5416 

VLZ3DCL5  0.5969  VLZ3DCL5  0.5842 

VLZ3ACL2  0.6175  VLZ3ACL2  0.6044 

VLZ3DCL1  0.6316  NVLZ3ACL4  0.6135 

VLZ3DCL7  0.6586  VLZ3DCL1  0.6182 

Zone 4 

NVLZ4ACL4  0.2158  VLZ4DCL5  0.5599 

NVLZ4DCL6  0.2199  VLZ4ACL2  0.5797 

NVLZ4DCL8  0.2538  VLZ4ACL3  0.6158 

VLZ4ACL2  0.5242  NVLZ4ACL1  0.6313 

VLZ4DCL5  0.6262  VLZ4DCL7  0.6583 
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Table 5.10 continued 
Case Study 2 

CMB or P/S SBM  F/A SBM 

Zone 1 

VLZ1DCL1  0.1058  VLZ2DCL1  0.1041 

VLZ1ACL2  0.2378  VLZ2ACL2  0.2340 

NVLZ1ACL4  0.2705  NVLZ2ACL4  0.2661 

VLZ1ACL3  0.2824  VLZ2ACL3  0.2778 

NVLZ1ACL1  0.2852  NVLZ2ACL1  0.2806 

Zone 2 

VLZ2ACL2  0.2434  VLZ2ACL2  0.2042 

NVLZ2ACL1  0.2582  VLZ2ACL3  0.2385 

VLZ2ACL3  0.2629  VLZ2DCL1  0.2451 

VLZ2DCL4  0.2740  VLZ2DCL5  0.2514 

NVLZ2ACL4  0.2885  VLZ2DCL4  0.2646 

Zone 3 

VLZ3ACL2  0.2431  VLZ2ACL2  0.2296 

VLZ3DCL7  0.2451  VLZ2DCL7  0.2316 

NVLZ3ACL4  0.2511  VLZ2DCL5  0.2418 

VLZ3DCL5  0.2559  VLZ2ACL3  0.2474 

VLZ3ACL3  0.2619  NVLZ2ACL4  0.2604 

Zone 4 

NVLZ4ACL4  0.2497  VLZ2ACL2  0.2737 

NVLZ4ACL1  0.2521  VLZ2ACL3  0.2836 

VLZ4ACL3  0.2720  VLZ2DCL1  0.2844 

NVLZ4DCL6  0.2815  VLZ2DCL7  0.2918 

VLZ4DCL1  0.2849  NVLZ2ACL4  0.2947 
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Table 5.11 Zone End of Life Summary Table 
Case Study 1 

CMB or P/S SBM  F/A SBM 

Zone 1 

NVLZ1ACL1  0.1437  NVLZ1ACL1  0.1766 

VLZ1ACL2  0.1979  VLZ1ACL2  0.1865 

VLZ1ACL3  0.2084  VLZ1ACL3  0.1964 

NVLZ1DCL3  0.2466  NVLZ1ACL4  0.2417 

NVLZ1DCL2  0.2487  VLZ1DCL1  0.2507 

Zone 2 

NVLZ2ACL1  0.1999  VLZ2ACL2  0.1422 

VLZ2ACL3  0.2037  VLZ2DCL7  0.1654 

VLZ2ACL2  0.2110  VLZ2ACL3  0.1693 

NVLZ2ACL4  0.2267  VLZ2DCL5  0.1806 

VLZ2DCL7  0.2658  NVLZ2ACL4  0.1809 

Zone 3 

VLZ3DCL4  0.1463  VLZ3DCL4  0.1413 

VLZ3ACL3  0.1545  VLZ3ACL3  0.1493 

VLZ3DCL5  0.1665  VLZ3DCL5  0.1609 

VLZ3ACL2  0.1751  VLZ3ACL2  0.1692 

NVLZ3ACL4  0.1844  VLZ3DCL1  0.1829 

Zone 4 

VLZ4ACL3  0.1010  NVLZ4ACL1  0.2202 

VLZ4DCL1  0.1703  VLZ4DCL5  0.2662 

VLZ4DCL4  0.1961  VLZ4ACL2  0.2707 

NVLZ4ACL4  0.1993  VLZ4ACL3  0.2711 

VLZ4ACL2  0.2050  VLZ4DCL7  0.2734 
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Table 5.11 continued 
Case Study 2 

CMB or P/S SBM  F/A SBM 

Zone 1 

VLZ1DCL1  0.0048  VLZ2DCL1  0.0044 

NVLZ1ACL1  0.1156  VLZ2ACL2  0.1154 

VLZ1ACL2  0.1266  NVLZ2ACL1  0.1459 

VLZ1ACL3  0.1653  VLZ2ACL3  0.1507 

NVLZ1ACL4  0.1756  NVLZ2ACL4  0.1601 

Zone 2 

VLZ2ACL2  0.1262  VLZ2ACL2  0.0824 

VLZ2ACL3  0.1394  VLZ2DCL1  0.0930 

NVLZ2ACL1  0.1458  VLZ2ACL3  0.0941 

VLZ2DCL4  0.1767  VLZ2DCL5  0.0974 

NVLZ2ACL4  0.1857  NVLZ2ACL4  0.1558 

Zone 3 

VLZ3ACL2  0.1154  VLZ2ACL2  0.1036 

VLZ3DCL7  0.1191  VLZ2DCL7  0.1070 

VLZ3DCL5  0.1244  VLZ2DCL5  0.1117 

VLZ3ACL3  0.1317  VLZ2ACL3  0.1182 

NVLZ3ACL4  0.1382  VLZ2DCL4  0.1353 

Zone 4 

VLZ4ACL3  0.1214  VLZ2ACL2  0.1595 

NVLZ4ACL4  0.1236  VLZ2ACL3  0.1630 

VLZ4ACL2  0.1442  NVLZ2ACL1  0.1794 

VLZ4DCL7  0.1602  VLZ2DCL1  0.1948 

VLZ4DCL4  0.1760  VLZ2DCL7  0.1997 
 

In case study 1, of Table 5.8, the threshold for load conditional survivabilities are 

0.5, 0.3, and 0.1 for the beginning, middle, and end of life periods respectively. In the 

beginning of life period, load 3PCM4’s conditional survivability is below the threshold in 

all three modes of configuration.  In the Forward/Aft and Port/Starboard Split Bus Mode 

configurations, loads 1PCM4, 2PCM4, and 3PCM4 are below the threshold value. The 

Common Bus Mode configuration shows that one load, 3PCM4, is affected by failing 

components in the beginning of life period. The middle of life period shows loads 

2PCM4, and 3PCM4 are below the threshold of 0.3, and AIM1 is also below the threshold 
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in the Port/Starboard and Forward/Aft Split Bus Modes. The end of life period shows that 

all loads will not survive in this time period. This is due to the remaining life of the 

failing component as well as the other components remaining life over a period of time. 

In case study 2, of Table 5.8, the threshold for load conditional survivabilities are 

0.75, 0.65, and 0.1 for the beginning, middle, and end of life periods respectively. In the 

beginning of life period, load 2PCM4’s conditional survivability is below the threshold in 

the Port/Starboard Split Bus Mode in the beginning and middle of life periods. The end of 

life period shows that all loads will survive in this time period.  

In case study 3, of Table 5.8, the threshold for load conditional survivabilities are 

0.85, 0.8, and 0.4 for the beginning, middle, and end of life periods respectively. In the 

beginning of life period, no loads are below the threshold in all three modes of 

configuration. The middle of life period shows that load 4PCM4 is below the threshold of 

0.8 in the Port/Starboard and Forward/Aft Split Bus Modes. The end of life period shows 

that loads 4PCM4 and AIM2 in the Common Bus Mode and Forward/Aft Split Bus Mode 

are below the threshold of 0.4. Loads 2PCM4, AIM2, and 4PCM4 in the Port/Starboard 

Split Bus Mode are also below the threshold of 0.4 in the end of life period. 

In case study 4, of Table 5.8, the threshold for load conditional survivabilities are 

0.5, 0.3, and 0.1 for the beginning, middle, and end of life periods respectively. In the 

beginning of life period, load 2PCM4’s conditional survivability is below the threshold in 

all three modes of configuration.  In the Port/Starboard Split Bus Mode configuration, 

load 4PCM4’s conditional survivability is also below the threshold value in the beginning 

of life period. The middle of life period shows that load 4PCM4 is below the threshold of 

0.3 in the Port/Starboard Split Bus Mode. The end of life period shows that all loads will 

not survive in this time period. This is due to the remaining life of the failing component 

as well as the other components remaining life over a period of time. 

In case study 5, of Table 5.8, the threshold for load conditional survivabilities are 

0.75, 0.65, and 0.1 for the beginning, middle, and end of life periods respectively. In the 

beginning of life period, load 2PCM4’s conditional survivability is below the threshold in 

the Forward/Aft and Port/Starboard Split Bus Modes and will not survive during this 
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period. The middle of life period shows load 2PCM4 is below the threshold of 0.65 in all 

modes of configuration and will not survive during this period. The end of life period 

shows that loads 2PCM4 and 4PCM4 in all three modes of configuration will not survive 

in this time period because they are not above the threshold of 0.1. Furthermore in the 

end of life period, AIM2 is also below the threshold and will not survive in the 

Forward/Aft and Port/Starboard Split Bus Modes. 

In case study 6, of Table 5.8, the threshold for load conditional survivabilities are 

0.5, 0.4, and 0.1 for the beginning, middle, and end of life periods respectively. In the 

beginning of life period, load 4PCM4’s conditional survivability is below the threshold in 

the Forward/Aft Split Bus Mode. The middle of life period shows that load 4PCM4 is 

below the threshold in all modes of configuration. Load 1PCM4 in the Forward/Aft Split 

Bus Mode is also below the threshold in middle of life period. The end of life period 

shows that load 4PCM4 will not survive in this time period for all modes of 

configuration. Load 1PCM4 is below the threshold in the Forward/Aft Split Bus Mode, 

and load AIM2 will not survive because it is below the threshold in the Common Bus 

Mode as well as the Forward/Aft Split Bus Mode. The loads will not survive during the 

end of life period. 

In case study 7, of Table 5.8, the threshold for load conditional survivabilities are 

0.5, 0.3, and 0.1 for the beginning, middle, and end of life periods respectively. In the 

beginning of life period, load 1PCM4’s conditional survivability is below the threshold in 

the Port/Starboard and Forward/Aft Split Bus Modes. The middle and end of life periods 

shows that loads will not survive during these time periods.  

In case study 1, of Table 5.9 through 5.11, the threshold for load conditional 

survivabilities are 0.7, 0.4, and 0.15 for the beginning, middle, and end of life periods 

respectively. Each zone shows loads that are affected by a component or components that 

are failing in each of the time periods. In the beginning of life period, shown in Table 5.9, 

load VLZ1ACL3 conditional survivability in Zone 1 is below the threshold in all three 

modes of configuration. Load VLZ2DCL1 conditional survivability in Zone 2 is below 

the threshold in the Forward/Aft Split Bus Mode. Loads NVLZ4ACL4, NVLZ4ACL6, and 
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NVLZ4ACL8 conditional survivability in Zone 4 is below the threshold in the Common 

Bus Mode or Port/Starboard Split Bus Mode. The middle of life period, shown in Table 

5.10, shows loads NVLZ1ACL1, NVLZ1DCL3, and NVLZ1DCL2 are below the threshold 

of 0.4 in Zone 1, in all modes of configuration. Loads NVLZ4ACL4, NVLZ4ACL6, and 

NVLZ4ACL8 conditional survivability in Zone 4 is below the threshold in the Common 

Bus Mode. The end of life period, shown in Table 5.11, shows that load NVLZ4ACL1 

conditional survivability in Zone 1 is below the threshold in the Common Bus Mode. In 

Zone 2, load VLZ2ACL1 conditional survivability is also below the threshold in the 

Forward/Aft Split Bus Mode. Also in the Forward/Aft Split Bus Mode in Zone 3, loads 

VLZ3DCL4 and VLZ3ACL3 are below the threshold value of 0.15. The Common Bus 

Mode in Zones 3 and 4, loads VLZ3DCL4 and VLZ4ACL3 respectively are also below the 

threshold value and these noted loads will not survive during the beginning, middle, and 

end of life periods. 

In case study 2, of Table 5.9 through 5.11, the threshold for load conditional 

survivabilities are 0.3, 0.2, and 0.1 for the beginning, middle, and end of life periods 

respectively. Each zone shows loads that are affected by a component or components that 

are failing in each of the time periods. In the beginning of life period, shown in Table 5.9, 

load VLZ1DCL1 conditional survivability in Zone 1 is below the threshold in all three 

modes of configuration. Load VLZ2ACL2 conditional survivability in Zone 2 is below the 

threshold in the Forward/Aft Split Bus Mode. The middle of life period, shown in Table 

5.10, shows load VLZ1DCL1 is below the threshold of 0.2 in Zone 1, in all modes of 

configuration. The end of life period, shown in Table 5.11, shows that load VLZ1DCL1 

conditional survivability in Zone 1 is below the threshold in all configuration modes. In 

Zone 2, loads VLZ2ACL2, VLZ2DCL1, VLZ2ACL3, and VLZ2DCL5 conditional 

survivability are also below the threshold in the Forward/Aft Split Bus Mode and these 

noted loads will not survive during the beginning, middle, and end of life periods. 
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5.2.1 HV/MV System Failures 

The HV/MV loads are very critical components because they provide the IPS with 

mobility and the supply to vital and non-vital loads. The HV/MV loads can be affected 

locally, and the system as a whole can be affected by components in the ring structure, 

the MV structure, and generators. The cables in the ring structure impact HV/MV loads 

depending on the mode of configuration. The Common Bus Mode uses all components in 

the ring structure, but the survivability may not standout because of multiple paths to the 

loads. The Port/Starboard and Forward/Aft Split Bus Modes show the survivability 

significance depending on the cable that is failing. Results of case studies two, four, five, 

and six show how the failing cables affect conditional survivability to loads. The 

remaining life of the failing cables also has an impact on the system. The system as a 

whole may need to be reconfigured if two or more loads are below the desired threshold 

value. 

Components in the MV structure also present problems for HV/MV loads because 

these components are in series with the load. If any MV component fails, the 

survivability to the load will be close to the failing component value. Transformers to the 

4sPCM  will directly show a small survivability value to a specific 4PCM  but not 

necessarily to the AIM . If two transformers are failing to a particular AIM  the 

survivability will be reflected. This is shown in case study 1. The system would need to 

be reconfigured if two or more transformers were to fail in a horizon period. 

Generators directly affect all HV/MV loads. If any generator fails during the horizon 

period, the supply path to a load is lost. Case study 9 shows an example of how a 

generator affects the survivability to a load. The system will show a low survivability if a 

generator is lost. The generator is the most critical component in this system because the 

generators are the source of energy. If there is no source of energy, then there is no 

supply path for a load. 
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5.2.2 Zonal System Failures 

The normal path to vital loads is very critical. If any component along this path fails, 

the load will not be supplied. The loads in all zones are combined and treated as one 

system. This system will need to be reconfigured if five or more components’ 

survivability is lower than the threshold value. Cables are the most essential components 

in each zone. If a cable fails along the normal path, the survivability will be low as shown 

in case studies seven and eight. The cable in series with a load will show a low 

survivability to a load. The remaining life of the components and the horizon period 

affect the zone system because of the components in series to the loads. 

5.3 Summary 

This chapter presented results of various case studies. These studies showed load 

survivability on two levels. Components failing during the horizon time lowered a 

component’s conditional survivability significantly. Components failing along a series 

path affect the survivability to a load significantly. The MV path is an example of this 

situation. The more components that are in series with one another, the lower the 

survivability becomes. To avoid this series situation, most reliability engineers use 

redundancy as much as possible to avoid situations as such. The more redundancy, the 

more expensive the project becomes, because of the cost of components. The following 

chapter will discuss in detail the conclusions drawn from this work and the future work. 
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CHAPTER VI 

6 CONCLUSIONS AND FUTURE WORK 

The research study presented in this thesis is a part of a research project being 

conducted by Power System Automation Laboratory (PSAL) at Texas A&M University, 

College Station. The goal of the research study is to develop a predictive control 

reconfiguration technique using remaining life of each electrical component on an all-

electric shipboard power system. This technique should use the remaining life of each 

component and compute the conditional survivability to each load on the all electric ship. 

The objective of this research work presented in this thesis was to develop a framework 

for computing conditional survivability of loads and an approach for assessing the need 

for reconfiguration based on these values. The research work addressed the following: 

1) Aging equipment and how it fails with time and remaining life. 

2) How the remaining life of equipment affects a load and sub-system’s 

survivability. 

3) Structure functions and how they are used in computing conditional 

survivability 

In the following sections, the conclusions from each chapter and future work are 

discussed. 

The thesis work done as part of an ongoing research being conducted in the PSAL of 

Texas A&M University to show when to do reconfiguration on shipboard power systems. 

All power electrical equipment can fail due to heat stresses causing insulation 

breakdowns. By using the Arrhenius Model, the remaining life of a component can be 

determined. The Weibull Reliability function shows how a component performs over 

time given the shape parameter β  and scale parameter α . In this work, the scale 

parameter, α , represents remaining life of each component. 

Chapter III presented the mathematical model of each component by using a form of 

the Arrhenius Model and other parameters that affected the failure of each component. 

These models were shown to understand what happens mathematically to a component if 
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it was over stressed thermally. The relationship between the Arrhenius Model and 

Weibull Reliability Model was established through the scale parameter α . Since the scale 

parameter represents characteristic/remaining life, and the Arrhenius Model, 
H

kTL Ae
Δ⎛ ⎞

⎜ ⎟
⎝ ⎠= , 

shows the lifetime of a component, then Lα = . By using the remaining life of a 

component and substituting L into the Weibull Distribution, the Arrhenius-Weibull 

Reliability equations can be used to calculate the survivability of a component.  

The series structure function and the parallel structure function are introduced to 

understand the symbolic and mathematical representations. The series structure is a 

system at which components are connected end to end and the survivability is a product 

of the components. The parallel structure is a connection at which the components’ inputs 

were connected together and the output ends are connected together. The mathematical 

representation of the parallel structure is by the OR logic or an addition sign of all the 

components in parallel.  

The integrated shipboard power system has series, parallel, and series-parallel 

structures to describe how each component is connected to one another. The reliability of 

each component and the structure are used together to show the probability of a system 

surviving ( )P T x> . The probability that a component survives another t  time units 

( )P T t x> + , is calculated the same way, using the same components and structures. The 

conditional survivability ( )|P T x t T x> + >  is the condition that a system or component 

has already survived for an amount of time. The probability is also equal to the reliability 

of a component, therefore, ( ) ( )P T x R x> = , ( ) ( )P T t x R t x> + = + , and 

( ) ( )
( )

|
R x t

P T x t T x
R x

+
> + > = .  

Chapter IV describes the solution methodology that was used to perform the studies 

and produce the results. The entire ship was isolated into three sections to derive structure 

functions to each load. These structure functions consisted of the HV level, MV level, 

and the LV level. The HV and MV levels were used in series for each MV level load 

such as the induction motors and the PCM4s for all three configurations. The LV level 
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loads used the PCM4s as a source, and two structures (normal path and alternate path) are 

derived for each vital load for the Common Bus Mode or Port/Starboard Split Bus Mode 

and the Forward/Aft Split Bus Mode.  

Chapter V presented case studies. These case studies show that reconfiguration is 

needed to improve the reliability to the loads. It also shows how the failure of a critical 

component affects the reliability to loads. Reconfiguration can only be done on the HV 

and LV levels. At the HV level, the system can be switched between three configurations 

(Common Bus Mode, Port/Starboard Split Mode, and Forward/Aft Split Bus Mode). At 

the LV level, loads can be reconfigured using the Common Bus Mode or Port/Starboard 

Split Bus Mode and the Forward/Aft Split Bus Mode. Since vital loads are essential, there 

are two paths for each of the loads that allow for reconfiguration from the normal path to 

the alternate path. 

6.1 Conclusions 

With this proposed methodology, the conditional survivability can be shown to make 

a decision to reconfigure. Since the actual shape parameter β  and scale parameter α  for 

each components is not available, then random generation was used in this work used to 

produce results. This method will work when the shape parameter β  is given by the 

manufacturer, and the parameters from each component are measured to find the 

characteristic life α . A major disadvantage with MV structure is that it is a series 

structure with no redundancies. The more components in a series structure, the lower the 

survivability. If one component fails in the MV structure, then the MV structure fails and 

the MV loads cannot be served. The major advantage of HV and LV systems is that there 

are redundancies making the path to the load more reliable. In the LV system, 

reconfiguration can take place in more than one way. The vital loads can be reconfigured 

due to bus transfers and the mode of configuration. Non-vital load’s survivability can 

only be improved by the mode of operation. 
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6.2 Future Work 

The main work would include using the conditional survivability structures to 

determining if reconfiguration is possible based on a recommended topology. This work 

covered all loads in two separate parts, the HV/MV level and the Zonal level. The 

shipboard power system should be studied using both the HV/MV and LV structures 

together to show overall system conditional survivability to each load. The IPS also 

should be studied using the 4-Way Split Bus Mode when the topology of this 

configuration is known. Since remaining life of power electronic devices were not 

determined, an approach to determine the remaining life of power electronic devices 

should be explored to modify HV/MV as well as LV structures to get an more accurate 

system conditional survivability to loads. The addition of breakers between the alternate 

and main bus on the HV/MV levels should also be taken into consideration because the 

alternate provides an additional path to each load in the HV/MV level. A reconfiguration 

subroutine should be implemented to determine if reconfiguration is possible based on 

results from the conditional survivability to each load.  
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APPENDIX A 

7 PCM4 STRUCTURE FUNCTIONS 
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A.1 Common Bus Structure from Generators to 1PCM4-4PCM4 

 ( )( )A BRing Ring Ring=  (0.81)(A.1) 

( ) ( )( )( )( )( )( )( )( )( )
( ) ( )( )( )( )( )( )( )( )( )

where :
4 1 4 2 3 4 3 2 3 1 3 2 1 3 1 2 1 1

1 2 1 5 1 2 2 2 2 1 2 3 2 2 2 4 4 2

A

B

Ring CB S CB S C SA S CB SA CB S CB S C SA S CB SA CB SA

Ring CB S CB S C S SA CB SA CB SA CB S CB S C S SA CB SA

=

=

 

 ( )( )1 4 11 4 PCMPCM HV MV=  (0.82)(A.2) 

( )

( )( )( ) ( ) ( )
( )

( )( )( ) ( )( )( )( ) ( )
( )( )( )( )

( )( ) ( )( )( )

1 4

where :

2 2 4 3 4 1
4 1

1 1 3 3 3 2 3 4 4 2 4 1
3 2 3 4 4 2 4 1

2 4 2 3 2 2 2 4
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B

C

HV Path Path Path Path

Ring
Path ATG C G CB S CB S

CB S

Ring
Path ATG C G CB SA CB SA C SA S CB S CB S

CB SA C SA S CB S CB S

Path MTG C G CB S CB S C S SA C

= + + +

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= ( ) ( )
( )( )( )( )

( )( )[ ]

( )( )( )( )( )( )( )( )( )
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1 2
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4 2
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1 3
where:

1 1 1 2 1 3 3 2 3 1 3 2 3 4 4 2 4 1

1 2 1 5 1 2 2 2 2 1 2 3 2 2 2 4 4 2

D d d

d

d

Ring
B SA

CB S CB S C S SA CB SA

Path MTG C G Path Path

Path CB SA CB SA C SA S CB S CB S CB SA C SA S CB S CB S

Path CB S CB S C S SA CB SA CB AS CB S CB S C S SA CB SA

MV CB

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= +

=

=

= ( )( )( )( )( )( )( )4 3 4 1 21 4 12 212 211 211SA C S X C S CBLC CBLC CLC  
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 ( )( )2 22 4 ZPCM HV MV=  (0.83)(A.3) 

( )

( )( ) ( ) ( )
( )

( )( ) ( )( )( )( ) ( )
( )( )( )( )

( )( )( ) ( ) ( )
( )

2 4

1

1
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 ( )( )3 4 33 4 PCMPCM HV MV=  (0.84)(A.4) 

109 



110 

 

( )

( )( ) ( ) ( )
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 ( )( )4 4 44 4 PCMPCM HV MV=  (0.85)(A.5) 

( )
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where :

1 1 3 3 3 1
3 1

2 2 4 3 4 2 3 4 3 2 3 1
4 2 3 4 3 2 3 1

1 3 1 1 1 2 1 3

PCM A B C D

A

B

C

HV Path Path Path Path

Ring
Path ATG C G CB SA CB S

CB S

Ring
Path ATG C G CB S CB S C SA S CB SA CB S

CB S C SA S CB SA CB S

Path MTG C G CB SA CB SA C SA

= + + +

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= ( )( ) ( )
( )( )( )( )

( )( )[ ]

( )( )( )( )( )( )( )( )( )
( )( )( )( )( )( )( )( )( )

1 2

1

2

4

3 2
1 1 1 2 1 3 3 2

2 4
where :

2 3 2 2 2 4 4 2 4 1 4 2 3 4 3 2 3 1

3 2 1 3 1 2 1 1 1 2 1 5 1 2 2 2 2 1

D d d

d

d

Ring
S CB S

CB SA CB SA C SA S CB S

Path MTG C G Path Path

Path CB S CB S C S SA CB SA CB S CB S C SA S CB SA CB S

Path CB S C SA S CB SA CB SA CB S CB S C S SA CB SA CB AS

MV

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= +

=

=

= ( )( )( )( )( )( )( )3 3 3 1 41 3 12 411 412 411CB S C SA X C SA CBLC CBLC CLC  

A.2 Port/Starboard Split Structure from Generators to 1PCM4-4PCM4 

 ( )( )1 4 11 4 PCMPCM HV MV=  (0.86)(A.6) 
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( )( )( )( )
( )( )( )( ) ( )( )

( )( )( )( )( ) ( )( )

1 4

1

where :

2 2 4 3 4 1

2 4 2 3 2 2 2 4 4 2

4 3 4 1 21 4 12 212 211 211

PCM A B

A

B

HV Path Path
Path ATG C G CB S CB S

Path MTG C G CB S CB S C S SA CB SA

MV CB SA C S X C S CBLC CBLC CLC

= +

=

=

=

 

 ( )( )2 4 22 4 PCMPCM HV MV=  (0.87)(A.7) 

( )( )( )
( )( )( )( )( )( )( )( )( )

( )( )( )( )( )( )( )

2 4

2

where :

2 4 2 1

2 2 4 3 4 1 4 2 2 4 2 2 2 3 2 1

2 3 2 1 11 2 12 111 112 111

PCM C D

C

D

HV Path Path
Path MTG C G CB AS

Path ATG C G CB S CB S CB SA C S SA CB S CB S CB AS

MV CB SA C SA X C SA CBLC CBLC CLC

= +

=

=

=

 

 ( )( )3 4 33 4 PCMPCM HV MV=  (0.88)(A.8) 

( )( )( )
( )( )( )( )( )( )( )( )( )

( )( )( )( )( )( )

3 4

3

where :

1 3 1 2

1 1 3 3 3 1 3 2 1 3 1 2 1 1 1 2

1 3 1 1 31 311 312 311

PCM A B

A

B

HV Path Path
Path MTG C G CB S

Path ATG C G CB SA CB S CB S C SA S CB SA CB SA CB S

MV CB S C S X CBLC CBLC CLC

= +

=

=

=

 

 ( )( )4 4 44 4 PCMPCM HV MV=  (0.89)(A.9) 
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( )( )( )( )
( )( )( )( )( )

( )( )( )( )( )( )( )

4 4

4

where :

1 1 3 3 3 1

1 3 1 2 1 3 3 2

3 3 3 1 41 3 12 411 412 411

PCM C C

C

D

HV Path Path
Path ATG C G CB SA CB S

Path MTG C G CB SA C SA S CB S

MV CB S C SA X C SA CBLC CBLC CLC

= +

=

=

=

 

A.3 Forward/Aft Split Structure from Generators to 1PCM4-4PCM4 

 ( )( )1 4 11 4 PCMPCM HV MV=  (0.90)(A.10) 

( ) ( )
( )( )( )
( )( ) ( )( )( )( )

( )( ) ( )( ) ( )( )( )

1

1

where :
4 1

2 2 4 3

1 1 3 3 4 2 3 4 3 2

4 3 4 1 21 4 12 212 211 211

Z A B

A

B

HV CB S Path Path

Path ATG C G CB S

Path ATG C G CB SA CB S C SA S CB SA

MV CB SA C S X C S CBLC CBLC CLC

= +

=

=

=

 

 ( )( )2 22 4 ZPCM HV MV=  (0.91)(A.11) 

( )( )( )
( )( )( )( )( ) ( )

( )( )( )( )( )( )( )

2 4

2

where :

2 4 2 1

1 3 1 2 1 5 1 2 2 2

2 3 2 1 11 2 12 111 112 111

PCM C D

C

D

HV Path Path
Path MTG C G CB AS

Path MTG C G CB S CB S C S SA CB SA

MV CB SA C SA X C SA CBLC CBLC CLC

= +

=

=

=
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 ( )( )3 4 33 4 PCMPCM HV MV=  (0.92)(A.12) 

( )( )( )
( )( )( )( )( )( )

( )( )( ) ( )( )( )( )

3 4

3

where :

1 3 1 2

2 4 2 1 2 2 1 2 1 5

1 3 1 1 31 1 12 311 312 311

PCM A B

A

B

HV Path Path
Path MTG C G CB S

Path MTG C G CB AS CB SA C S SA CB S

MV CB S C S X C S CBLC CBLC CLC

= +

=

=

=

 

 ( )( )4 4 44 4 PCMPCM HV MV=  (0.93)(A.13) 

( )( )
( )( )( )
( )( ) ( )( ) ( ) ( )

( )( )( )( )( )( )( )

4 4

4

where :
3 1

1 1 3 3

2 2 4 3 4 2 3 4 3 2

3 3 3 1 41 3 12 411 412 411

PCM C D

C

D

HV CB S Path Path

Path ATG C G CB SA

Path ATG C G CB S CB S C SA S CB SA

MV CB S C SA X C SA CBLC CBLC CLC

= +

=

=

=
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APPENDIX B 

8 PROPULSION STRUCTURE FUNCTIONS 
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B.1 Common Bus Structure from Generators to AIMS1-AIMS2 

 ( )( )2 41 51 PCMSAIM HV MV=  (0.94)(B.1) 

( )

( )( ) ( ) ( )
( )

( )( ) ( )( )( )( ) ( )
( )( )( )( )

( )( )( ) ( ) ( )
( )

2 4

1

1

where :

2 4 2 1
2 1

1 3 1 2 1 5 1 2 2 2
1 2 1 5 1 2 2 2

2 2 4 3

PCM A B C D

A

B

C c

c

HV Path Path Path Path

Ring
Path MTG C G CB AS

CB AS

Ring
Path MTG C G CB S CB S C S SA CB SA

CB S CB S C S SA CB SA

Ring
Path ATG C G CB S Path

Path

= + + +

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛
= + ⎜⎜

⎝

( )( )( )( )( )( )
( )( )( )[ ]

( )( )( )( )( )( )( )( )( )
( )( )( )( )( )( )( )

1

1 2

1

2

where :
4 1 4 2 2 4 2 2 2 3 2 1

1 1 3 3
where :

3 1 3 2 1 3 1 2 1 1 1 2 1 5 1 2 2 2

2 1 2 3 2 2 2 4 4 2 4 1 4 2 3

c

D d d

d

d

Path CB S CB SA C S SA CB S CB S CB AS

Path ATG C G CB SA Path Path

Path CB S CB S C SA S CB SA CB SA CB S CB S C S SA CB SA

Path CB AS CB S CB S C S SA CB SA CB S CB S C

⎡ ⎤⎞
⎢ ⎥⎟⎟⎢ ⎥⎠⎣ ⎦

=

= +

=

= ( )( )
( )( )( )( )( )( )( )( )( )5

4 3 2

2 3 2 1 11 2 12 111 113 112 1 1 1121

SA S CB SA

MV CB SA C SA X C SA CBLC CBLC CLC IM CONS CLC=
 

 ( )( )3 4 621 PCMSAIM HV MV=  (0.95)(B.2) 

116 



117 

 

( )

( )( ) ( ) ( )
( )

( )( ) ( )( )( )( ) ( )
( )( )( )( )

( )( )( ) ( ) ( )
( )

3 4

1

1

where :

1 3 1 2
1 2

2 4 2 1 2 2 1 2 1 5
2 1 2 2 1 2 1 5

1 1 3 3

PCM A B C D

A

B

C c

c

HV Path Path Path Path

Ring
Path MTG C G CB S

CB S

Ring
Path MTG C G CB AS CB SA C S SA CB S

CB AS CB SA C S SA CB S

Ring
Path ATG C G CB SA Path

Path

= + + +

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛
= + ⎜

⎝

( )( )( )( )( )( )
( )( )( )[ ]

( )( )( )( )( )( )( )( )( )
( )( )( )( )( )( )( )

1

1 2

1

2

where :
3 1 3 2 1 3 1 2 1 1 1 2

2 2 4 3
where :

4 1 4 2 2 4 2 2 2 3 2 1 2 2 1 2 1 5

1 2 1 1 1 2 1 3 3 2 3 3 3 2

c

D d d

d

d

Path CB S CB S C SA S CB SA CB SA CB S

Path ATG C G CB S Path Path

Path CB S CB SA C S SA CB S CB S CB AS CB SA C S SA CB S

Path CB S CB SA CB SA C SA S CB S CB SA CB SA

⎡ ⎤⎞
⎢ ⎥⎟⎜ ⎟⎢ ⎥⎠⎣ ⎦

=

= +

=

= ( )( )
( )( )( )( )( )( )( )( )( )6

3 4 3 2

1 3 1 1 31 1 12 311 313 312 1 2 3121

C SA S CB SA

MV CB S C S X C S CBLC CBLC CLC IM CONS CLC=
 

 ( ) ( )4 4 712 PCMSAIM HV MV=  (0.96)(B.3) 
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( )

( )( )( ) ( ) ( )
( )

( )( )( ) ( )( )( )( ) ( )
( )( )( )( )

( )( ) ( )( )

4 4

where :

1 1 3 3 3 1
3 1

2 2 4 3 4 2 3 4 3 2 3 1
4 2 3 4 3 2 3 1

1 3 1 1 1 2 1 3

PCM A B C D

A

B

C

HV Path Path Path Path

Ring
Path ATG C G CB SA CB S

CB S

Ring
Path ATG C G CB S CB S C SA S CB SA CB S

CB S C SA S CB SA CB S

Path MTG C G CB SA CB SA C SA

= + + +

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= ( )( ) ( )
( )( )( )( )

( )( )[ ]

( )( )( )( )( )( )( )( )( )
( )( )( )( )( )( )( )( )( )

1 2

1

2

7

3 2
1 1 1 2 1 3 3 2

2 4
where :

2 3 2 2 2 4 4 2 4 1 4 2 3 4 3 2 3 1

3 2 1 3 1 2 1 1 1 2 1 5 1 2 2 2 2 1

D d d

d

d

Ring
S CB S

CB SA CB SA C SA S CB S

Path MTG C G Path Path

Path CB S CB S C S SA CB SA CB S CB S C SA S CB SA CB S

Path CB S C SA S CB SA CB SA CB S CB S C S SA CB SA CB AS

MV

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= +

=

=

= ( )( )( )( )( )( )( )( )( )3 3 3 1 41 3 12 412 413 412 2 1 4121CB S C SA X C SA CBLC CBLC CLC IM CONS CLC  

 ( )( )1 4 822 PCMSAIM HV MV=  (0.97)(B.4) 
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( )

( )( )( ) ( ) ( )
( )

( )( )( ) ( )( )( )( ) ( )
( )( )( )( )

( )( ) ( )( )( )

1 4

where :

2 2 4 3 4 1
4 1

1 1 3 3 3 2 3 4 4 2 4 1
3 2 3 4 4 2 4 1

2 4 2 3 2 2 2 4

PCM A B C D

A

B

C

HV Path Path Path Path

Ring
Path ATG C G CB S CB S

CB S

Ring
Path ATG C G CB SA CB SA C SA S CB S CB S

CB SA C SA S CB S CB S

Path MTG C G CB S CB S C S SA C

= + + +

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= ( ) ( )
( )( )( )( )

( )( )[ ]

( )( )( )( )( )( )( )( )( )
( )( )( )( )( )( )( )( )( )

1 2

1

2

8

4 2
2 3 2 2 2 4 4 2

1 3
where :

1 1 1 2 1 3 3 2 3 1 3 2 3 4 4 2 4 1

1 2 1 5 1 2 2 2 2 1 2 3 2 2 2 4 4 2

D d d

d

d

Ring
B SA

CB S CB S C S SA CB SA

Path MTG C G Path Path

Path CB SA CB SA C SA S CB S CB S CB SA C SA S CB S CB S

Path CB S CB S C S SA CB SA CB AS CB S CB S C S SA CB SA

MV CB

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= +

=

=

= ( )( )( )( )( )( )( )( )( )4 3 4 1 21 4 12 212 213 212 2 2 2121SA C S X C S CBLC CBLC CLC IM CONS CLC  

B.2 Port/Starboard Structure from Generators to AIMS1-AIMS2 

 ( )( )2 4 511 PCMSAIM HV MV=  (0.98)(B.5) 
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( )( )( )
( )( )( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )

2 4

5

where :

2 4 2 1

2 2 4 3 4 1 4 2 2 4 2 2 2 3 2 1

2 3 2 1 11 2 12 111 113 112 1 1 1121

PCM A B

A

B

HV Path Path
Path MTG C G CB AS

Path ATG C G CB S CB S CB SA C S SA CB S CB S CB AS

MV CB SA C SA X C SA CBLC CBLC CLC IM CONS CLC

= +

=

=

=

 

 ( )( )3 4 621 PCMSAIM HV MV=  (0.99)(B.6) 

( )( )( )
( ) ( )( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )

3 4

6

where :

1 3 1 2

1 1 3 3 3 1 3 2 1 3 1 2 1 1 1 2

1 3 1 1 31 1 12 311 313 312 1 2 3121

PCM A B

A

B

HV Path Path
Path MTG C G CB S

Path ATG C G CB SA CB S CB S C SA S CB SA CB SA CB S

MV CB S C S X C S CBLC CBLC CLC IM CONS CLC

= +

=

=

=

 

 ( ) ( )4 4 712 PCMSAIM HV MV=  (0.100)(B.7) 

( )( )( )( )( )( )
( )( )( )( )

( )( )( )( )( )( )( )( )( )

4 4

7

where :

1 3 3 2 1 3 1 2 1 1

1 1 3 3 3 1

3 3 3 1 41 3 12 412 413 412 2 1 4121

PCM A B

A

B

HV Path Path
Path MTG C G CB S C SA S CB SA CB SA

Path ATG C G CB SA CB S

MV CB S C SA X C SA CBLC CBLC CLC IM CONS CLC

= +

=

=

=

 

 ( )( )1 4 822 PCMSAIM HV MV=  (0.101)(B.8) 
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( )( )( )( )( )( )
( )( )( )( )

( )( )( )( )( )( )( )( )( )

1 4

8

where :

2 4 2 3 2 2 2 4 4 2

2 2 4 3 4 1

4 3 4 1 21 4 12 212 213 212 2 2 2121

PCM A B

A

B

HV Path Path
Path MTG C G CB S CB S C S SA CB SA

Path ATG C G CB S CB S

MV CB SA C S X C S CBLC CBLC CLC IM CONS CLC

= +

=

=

=

 

B.3 Forward/Aft Structure from Generators to AIMS1-AIMS2 

 ( )( )2 4 511 PCMSAIM HV MV=  (0.102)(B.9) 

( )( )( )
( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )

2 4

5

where :

2 4 2 1

1 3 1 2 1 5 1 2 2 2

2 3 2 1 11 2 12 111 113 112 1 1 1121

PCM C D

C

D

HV Path Path
Path MTG C G CB AS

Path MTG C G CB S CB S C S SA CB SA

MV CB SA C SA X C SA CBLC CBLC CLC IM CONS CLC

= +

=

=

=

 

 ( )( )3 4 621 PCMSAIM HV MV=  (0.103)(B.10) 

( )( )( )
( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )

3 4

6

where :

1 3 1 2

2 4 2 1 2 2 1 2 1 5

1 3 1 1 31 1 12 311 313 312 1 2 3121

PCM A B

A

B

HV Path Path
Path MTG C G CB S

Path MTG C G CB AS CB SA C S SA CB S

MV CB S C S X C S CBLC CBLC CLC IM CONS CLC

= +

=

=

=
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 ( ) ( )4 4 712 PCMSAIM HV MV=  (0.104) 

( )( )
( )( )( )( )
( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )

4 4

7

where :
3 1

1 1 3 3 3 1

2 2 4 3 4 2 3 4 3 2 3 1

3 3 3 1 41 3 12 412 413 412 2 1 4121

Z PCM C D

C

D

HV CB S Path Path

Path ATG C G CB SA CB S

Path ATG C G CB S CB S C SA S CB SA CB S

MV CB S C SA X C SA CBLC CBLC CLC IM CONS CLC

= +

=

=

=

 

 ( )( )1 42 82 PCMSAIM HV MV=  (0.105)(B.12) 

( )( )
( )( )( )( )
( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )

1 4

8

where :
3 1

2 2 4 3 4 1

1 1 3 3 4 2 3 4 3 2 4 1

4 3 4 1 21 4 12 212 213 212 2 2 2121

PCM A B

A

B

HV CB S Path Path

Path ATG C G CB S CB S

Path ATG C G CB SA CB S C SA S CB SA CB S

MV CB SA C S X C S CBLC CBLC CLC IM CONS CLC

= +

=

=

=
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APPENDIX C 

9 LOAD STRUCTURE FUNCTIONS 
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C.1 PCM4 Path to Zone 1 
 

( )( )( )( )
( )( )( )( )
( )( )( )( )( )
( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )

1

2

3 1 _ 2

4 1 _ 2

5 1 _ 2 2 _ 3

6

1 4 1 20 121 1 26

1 4 1 19 111 1 25

2 4 2 20 221 2 26 _

2 4 2 19 211 2 25 _

3 4 3 20 321 3 26 _ _

3 4 3 19 311 3 25

Path PCM Z SW CZ Z SW

Path PCM Z SW CZ Z SW

Path PCM Z SW CZ Z SW s Tie

Path PCM Z SW CZ Z SW p Tie

Path PCM Z SW CZ Z SW s Tie s Tie

Path PCM Z SW CZ Z SW

=

=

=

=

=

= ( )( )
( )( )( )( )( )( )( )
( )( )( )( )( )( )( )

1 _ 2 2 _ 3

7 1 _ 2 2 _ 3 3 _ 4

8 1 _ 2 2 _ 3 3 _ 4

_ _

4 4 4 20 421 4 26 _ _ _

4 4 4 19 411 4 25 _ _ _

p Tie p Tie

Path PCM Z SW CZ Z SW s Tie s Tie s Tie

Path PCM Z SW CZ Z SW p Tie p Tie p Tie

=

=  
 

C.1.1 375VDC 

 ( )( ) ( )( ) ( )( )1 1 11 1 35 1 1 1 1VLZ DCL CZ Z SW pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.106)(C.1) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
1375 2 1 10 122

1375 1 1 1 112

Star Z VDC Z SW CZ Path Path Path Path

Port Z VDC Z SW CZ Path Path Path Path

= + + +

= + + +

 

 ( ) ( ) ( ) ( )[ ]2 4 6 81 2 1375 1 1 2 113 1 36NVLZ DCL Z VDC Z SW CZ Z SW Path Path Path Path= + + +  (0.107)(C.2) 

 ( )( ) ( )( ) ( )( )1 7 13 1 37 1 2 1 2VLZ DCL CZ Z SW pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.108)(C.3) 
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( )( )( )( )
( )( )( )( )

1 3 5 7

5 6 7 8

where :
1375 2 1 12 124

1375 1 1 3 114

Star Z VDC Z SW CZ Path Path Path Path

Port Z VDC Z SW CZ Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]1 3 5 71 6 1375 2 1 11 123 1 38NVLZ DCL Z VDC Z SW CZ Z SW Path Path Path Path= + + +  (0.109)(C.4) 

C.1.2 650VDC 

 ( )( ) ( )( ) ( )( )1 4 12 1 32 1 3 1 3VLZ DCL CZ Z SW pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.110)(C.5) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
1650 2 1 13 125

1650 1 1 5 116

Star Z VDC Z SW CZ Path Path Path Path

Port Z VDC Z SW CZ Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]2 4 6 81 3 1650 1 1 4 115 1 31NVLZ DCL Z VDC Z SW CZ Z SW Path Path Path Path= + + +  (0.111)(C.6) 

 ( )( ) ( )( ) ( )( )1 5 14 1 34 1 4 1 4VLZ DCL CZ Z SW pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.112)(C.7) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
1650 2 1 14 126

1650 1 1 6 117

Star Z VDC Z SW CZ Path Path Path Path

Port Z VDC Z SW CZ Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]1 3 5 71 8 1650 2 1 15 127 1 35NVLZ DCL Z DC Z SW CZ Z SW Path Path Path Path= + + +  (0.113)(C.8) 
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C.1.3 800VDC 

( )( )( )( )( )( )( )( )2 4 6 81 1 1800 1 1 9 1110 1 21 1 21 15 1 27NVLZ ACL Z VDC Z SW CZ PCM Z SW CZ Z SW Path Path Path Path= + + +  (0.114)(C.9) 

 ( )( )( )( )( )1 3 1 23 1 22 16 1 28VLZ ACL PCM Z SW CZ Z SW Port Star= +  (0.115)(C.10) 

( )( )( )( )
( )( )( ) ( )

1 3 5 7

2 4 6 8

where :
129 1 17 1800 2

119 1 8 1800 1

Star CZ Z SW Z DC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )( )1 2 1 29 17 1 23 1 22VLZ ACL Z SW CZ Z SW PCM Port Star= +  (0.116)(C.11) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
128 1 16 1800 2

118 1 7 1800 1

Star CZ Z SW Z DC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

( )( )( )( )( )( )( ) ( )1 3 5 71 4 1800 2 1 18 1210 1 24 1 24 18 1 30NVLZ ACL Z VDC Z SW CZ PCM Z SW CZ Z SW Path Path Path Path= + + + (0.117)(C.12) 

  

126 
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C.2 PCM4 Path to Zone 2 

( )( )( )( )( )
( )( )( )( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )( )
( )( )( )( )( )

1 1 _ 2

2 1 _ 2

3

4

5 2 _ 3

6 2 _ 3

1 4 1 20 121 1 26 _

1 4 1 19 111 1 25 _

2 4 2 20 221 2 26

2 4 2 19 211 2 25

3 4 3 20 321 3 26 _

3 4 3 19 311 3 25 _

Path PCM Z SW CZ Z SW s Tie

Path PCM Z SW CZ Z SW p Tie

Path PCM Z SW CZ Z SW

Path PCM Z SW CZ Z SW

Path PCM Z SW CZ Z SW s Tie

Path PCM Z SW CZ Z SW p Tie

=

=

=

=

=

=

( )( )( )( )( )( )
( )( )( )( )( )( )

7 2 _ 3 3 _ 4

8 2 _ 3 3 _ 4

4 4 4 20 421 4 26 _ _

4 4 4 19 411 4 25 _ _

Path PCM Z SW CZ Z SW s Tie s Tie

Path PCM Z SW CZ Z SW p Tie p Tie

=

=

 

 
C.2.1 375VDC 

 ( )( ) ( )( ) ( )( )2 1 2 35 21 2 1 2 1VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.118)(C.13) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
2375 2 2 10 222

2375 1 2 1 212

Star Z VDC Z SW CZ Path Path Path Path

Port Z VDC Z SW CZ Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]2 4 6 82 2 2375 1 2 2 213 2 36NVLZ DCL Z VDC Z SW CZ Z SW Path Path Path Path= + + +  (0.119)(C.14) 

 ( )( )( )( )[ ]1 3 5 72 6 2 38 223 2 11 2375 2NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.120)(C.15) 

 ( )( ) ( )( ) ( )( )2 7 2 37 23 2 2 2 2VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.121)(C.16) 127 
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( )( )( ) ( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
2375 2 2 12 224

2375 1 2 3 214

Star Z VDC Z SW CZ Path Path Path Path

Port Z VDC Z SW CZ Path Path Path Path

= + + +

= + + +

 

C.2.2 650VDC 

 ( )( ) ( )( )[ ]2 4 6 82 3 2 31 215 2 4 2650 1NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.122)(C.17) 

 ( )( ) ( )( ) ( )( )2 4 2 32 22 2 3 2 3VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.123)(C.18) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
225 2 13 2650 2

216 2 5 2650 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

 ( )( ) ( )( ) ( )( )2 5 2 34 24 2 4 2 4VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.124)(C.19) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
226 2 14 2650 2

217 2 6 2650 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]1 3 5 72 8 2 35 227 2 15 2650 2NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.125)(C.20) 

  

128 
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C.2.3 800VDC 

( )( )( )( )( )( )( )( )2 4 6 82 1 2 27 25 2 21 2 21 2110 2 9 2800 1NVLZ ACL Z SW CZ Z SW PCM CZ Z SW Z VDC Path Path Path Path= + + +   (C.21) 

 ( )( )( )( )( )2 3 2 28 26 2 22 2 23VLZ ACL Z SW CZ Z SW PCM Port Star= +  (0.126)(C.22) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
229 2 17 2800 2

219 2 8 2800 1

Star CZ Z SW Z DC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )( )2 2 2 29 27 2 23 2 22VLZ ACL Z SW CZ Z SW PCM Port Star= +  (0.127)(C.23) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
228 2 16 2800 2

218 2 7 2800 1

Star CZ Z SW Z DC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

( )( )( )( )( )( )( )( )1 3 5 72 4 2 30 28 2 24 2 21 2210 2 18 2800 2NVLZ ACL Z SW CZ Z SW PCM CZ Z SW Z VDC Path Path Path Path= + + +   (C.24) 
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C.3 PCM4 Path to Zone 3 

( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )
( )( )( )( )( )
( )( )( )( )
( )

1 1 _ 2 2 _ 3

2 1 _ 2 2 _ 3

3 2 _ 3

4 2 _ 3

5

6

1 4 1 20 121 1 26 _ _

1 4 1 19 111 1 25 _ _

2 4 2 20 221 2 26 _

2 4 2 19 211 2 25 _

3 4 3 20 321 3 26

3 4

Path PCM Z SW CZ Z SW s Tie s Tie

Path PCM Z SW CZ Z SW p Tie p Tie

Path PCM Z SW CZ Z SW s Tie

Path PCM Z SW CZ Z SW p Tie

Path PCM Z SW CZ Z SW

Path PCM Z

=

=

=

=

=

= ( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )

7 2 _ 3 3 _ 4

8 2 _ 3 3 _ 4

3 19 311 3 25

4 4 4 20 421 4 26 _ _

4 4 4 19 411 4 25 _ _

SW CZ Z SW

Path PCM Z SW CZ Z SW s Tie s Tie

Path PCM Z SW CZ Z SW p Tie p Tie

=

=

 

C.3.1 375VDC 

 ( )( ) ( )( ) ( )( )3 1 3 35 31 3 1 3 1VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.128)(C.25) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
322 3 10 3375 2

312 3 1 3375 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

 ( )( )( ) ( )[ ]2 4 6 83 2 3 36 313 3 2 3375 1NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.129)(C.26) 

 ( )( )( )( )[ ]1 3 5 73 6 3 38 323 3 11 3375 2NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.130)(C.27) 

 ( )( ) ( )( ) ( )( )3 7 3 37 33 3 2 3 2VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.131)(C.28) 130 
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( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
324 3 12 3375 2

314 3 3 3375 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

C.3.2 650VDC 

 ( )( )( )( )[ ]2 4 6 83 3 3 31 315 3 4 3650 1NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.132)(C.29) 

 ( )( )( ) ( )( ) ( )( )3 4 3 32 32 3 3 3 3 3 3VLZ DCL Z SW CZ Z BT pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.133)(C.30) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
325 3 13 3650 2

316 3 5 3650 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

 ( )( )( ) ( )( ) ( )( )3 5 3 34 34 3 4 3 4 3 4VLZ DCL Z SW CZ Z BT pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.134)(C.31) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
326 3 14 3650 2

317 3 6 3650 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]1 3 5 73 8 3 35 327 3 15 3650 2NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.135)(C.32) 
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C.3.3 800VDC 

( )( )( )( )( )( )( )[ ]2 4 6 82 1 3 27 35 3 21 3 21 3110 3 9 3800 1NVLZ ACL Z SW CZ Z SW PCM CZ Z SW Z VDC Path Path Path Path= + + +   (C.33) 

 ( )( )( )( )( )3 3 3 28 36 3 22 3 23VLZ ACL Z SW CZ Z SW PCM Port Star= +  (0.136)(C.34) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
329 3 17 3800 2

319 3 8 3800 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

 ( )( )( ) ( )( )3 2 3 29 37 3 23 3 22VLZ ACL Z SW CZ Z SW PCM Port Star= +  (0.137)(C.35) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
328 3 16 3800 2

318 3 7 3800 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

( )( )( )( )( )( )( )[ ]1 3 5 83 4 3 30 38 3 24 3 21 3210 3 18 3800 2NVLZ ACL Z SW CZ Z SW PCM CZ Z SW Z VDC Path Path Path Path= + + +   (C.36) 
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C.4 PCM4 Path to Zone 4 

( )( )( )( )( )( )( )
( )( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )

1 1 _ 2 2 _ 3 3 _ 4

2 1 _ 2 2 _ 3 3 _ 4

3 1 _ 2 2 _ 3

4 1 _ 2 2 _ 3

5

1 4 1 20 121 1 26 _ _ _

1 4 1 19 111 1 25 _ _ _

2 4 2 20 221 2 26 _ _

2 4 2 19 211 2 25 _ _

3

Path PCM Z SW CZ Z SW s Tie s Tie s Tie

Path PCM Z SW CZ Z SW p Tie p Tie p Tie

Path PCM Z SW CZ Z SW s Tie s Tie

Path PCM Z SW CZ Z SW p Tie p Tie

Path P

=

=

=

=

= ( )( )( )( )( )
( )( )( )( )( )
( )( )( )( )
( )( )( )( )

3 _ 4

6 3 _ 4

7

8

4 3 20 321 3 26 _

3 4 3 19 311 3 25 _

4 4 4 20 421 4 26

4 4 4 19 411 4 25

CM Z SW CZ Z SW s Tie

Path PCM Z SW CZ Z SW p Tie

Path PCM Z SW CZ Z SW

Path PCM Z SW CZ Z SW

=

=

=

 

C.4.1 375VDC 

 ( )( ) ( )( ) ( )( )4 1 4 35 41 4 1 4 1VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.138)(C.37) 

( )( )( )( )
( ) ( )( )( )

1 3 5 7

2 4 6 8

where :
422 4 10 3800 2

412 4 1 4375 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]2 4 6 84 2 4 36 413 4 2 4375 1NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.139)(C.38) 

 ( )( )( )( )[ ]1 3 5 74 6 4 38 423 4 11 4375 2NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.140)(C.39) 

 ( )( ) ( )( ) ( )( )3 7 4 37 43 4 2 4 2VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.141)(C.40) 133 
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( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
424 4 12 3800 2

414 4 3 4375 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

C.4.2 650VDC 

( )( ) ( )( )[ ]2 4 6 84 3 4 31 415 4 4 4650 1NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.142)(C.41) 

 ( )( ) ( )( ) ( )( )4 4 4 32 42 4 3 4 3VLZ DCL Z SW CZ pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦  (0.143)(C.42) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
425 4 13 3800 2

416 4 6 4650 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

( )( )( ) ( )( ) ( )( )4 5 4 34 44 3 4 4 4 4 4VLZ DCL Z SW CZ Z BT pZ BT Port sZ BT Star= +⎡ ⎤⎣ ⎦                 (0.144)
(C.43) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
426 4 14 3800 2

417 4 7 4650 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z VDC Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )[ ]1 3 5 74 8 4 35 427 4 15 4650 2NVLZ DCL Z SW CZ Z SW Z VDC Path Path Path Path= + + +  (0.145)(C.44) 
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C.4.3 800VDC 

( )( )( )( )( )( )( )[ ]2 4 6 84 1 4 27 45 4 21 4 21 4110 4 9 4800 1NVLZ ACL Z SW CZ Z SW PCM CZ Z SW Z VDC Path Path Path Path= + + +   (C.45) 

 ( )( )( )( )( )4 3 4 28 46 4 22 4 23VLZ ACL Z SW CZ Z SW PCM Port Star= +  (0.146)(C.46) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
429 4 17 3800 2

419 4 8 4800 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

 ( )( )( )( )( )4 2 4 29 47 4 23 4 22VLZ ACL Z SW CZ Z SW PCM Port Star= +  (0.147)(C.47) 

( )( )( )( )
( )( )( )( )

1 3 5 7

2 4 6 8

where :
428 4 16 3800 2

418 4 7 4800 1

Star CZ Z SW Z VDC Path Path Path Path

Port CZ Z SW Z DC Path Path Path Path

= + + +

= + + +

 

( )( )( ) ( )( )( )( )( )1 3 5 74 4 4 30 48 4 24 4 21 4210 4 18 4800 2NVLZ ACL Z SW CZ Z SW PCM CZ Z SW Z VDC Path Path Path Path= + + +   (C.48)
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