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ABSTRACT

Taking Man Out of the Loop:

Methods to Reduce Human Involvement in Search and Surveillance Applications.

(December 2010)

Kevin Michael Brink, B.A., Mathematics, University of San Diego;

M.S., Mathematics, Texas A&M University

Co–Chairs of Advisory Committee: Dr. Shankar Bhattacharyya
Dr. John E. Hurtado

There has always been a desire to apply technology to human endeavors to in-

crease a person’s capabilities and reduce the numbers or skill level required of the

people involved, or replace the people altogether. Three fundamental areas are inves-

tigated where technology can enable the reduction or removal of humans in complex

tasks.

The first area of research is the rapid calibration of multiple camera systems

when cameras share an overlapping field of view allowing for 3D computer vision

applications. A simple method for the rapid calibration of such systems is introduced.

The second area of research is the autonomous exploration of hallways or other urban-

canyon environments in the absence of a global positions system (GPS) using only

an inertial motion unit (IMU) and a monocular camera. Desired paths that generate

accurate vehicle state estimates for simple ground vehicles are identified and the

benefits of integrated estimation and control are investigated. It is demonstrated

that considering estimation accuracy is essential to produce efficient guidance and

control. The Schmidt-Kalman filter is applied to the vision-aided inertial navigation
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system in a novel manner, reducing the state vector size significantly. The final area

of research is a decentralized swarm based approach to source localization using a

high fidelity environment model to directly provide vehicle updates. The approach is

an extension of a standard quadratic model that provides linear updates. The new

approach leverages information from the higher-order terms of the environment model

showing dramatic improvement over the standard method.
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CHAPTER I

INTRODUCTION

The goal of this research is to develop or advance technology that minimizes the

human input required for search and surveillance applications. As such, this work is

conducted in a broad setting, but focuses on three specific applications:

Well-calibrated multi-camera systems are used in many applications, such as

security and human-robot interaction, to provide three-dimensional representations

of changes within the shared camera views (3D computer vision) [20], [27], [28].

The calibration process is often a difficult and tedious task requiring complicated

optimizations or knowledge of the true position of multiple calibration target points

within the field of view. Simple optimization algorithms often require the use of large

calibration objects or one has to accurately measure the world position of numerous

feature points, which may require image correspondences have to be identified by

hand. For simple targets where little or nothing is known of the target location, the

optimizations tend to be much more complicated.

A simple, effective method is introduced which calibrates a system of cameras

with no knowledge of the true calibration target positions and is compatible with a

steepest decent optimization. This method is not intended to directly compete with

standard camera calibration methods, but instead allows rapid deployment of cam-

era systems in non-traditional settings and provides an easy method to use for those

interested in applications of 3D computer vision and not the study of camera calibra-

tion and optimization specifically. The proposed method also allows for deployment

with just two cameras, as well as calibration of camera systems where some individual

The journal model is IEEE Transactions on Automatic Control.
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pairs of cameras do not share an overlapping field of view.

The second area of research, autonomous exploration of unknown environments,

has become a hot-topic problem over the last decade. Specifically, there is a lot

of interest in global positioning system (GPS) denied environments of hallways or

alleyways using an unmanned ground vehicle (UGV) [12], [22], [33], [42]. The primary

interest of this portion of research lies in the integration of estimation and control

to provide efficient, accurate guidance. It has been well documented that additional

accelerations, like S-turns, improve observability of the system and the accuracy of the

state estimates. The extent these maneuvers benefit the system is investigated with

an overarching goal to develop capabilities for autonomous optimization or selection

of paths based on current state estimates.

The setting is an unknown hallway with unknown features visible to the camera.

As a UGV progresses down the hallway, the unknown feature states are estimated

and used to aid the inertial navigation system (INS) egostate (position, velocity, at-

titude) estimates in the absence of GPS. Unlike traditional simultaneous localization

and mapping (SLAM) applications, specifically bearings-only, also known as vision

SLAM (vSLAM), the filter used does not keep Euclidian coordinate estimates for

the unknown features, but instead estimates initial range and bearing for each fea-

ture. The approach is referred to as the unit sphere observation model [43]. In the

monocular camera case, bearing values are measured with a camera and the range to

a feature is estimated using a synthetic stereo approach.

Using the unit sphere approach with a complementary form EKF allows for easy

assimilation of additional sensors to the system and there is also the added benefit

that a vehicle motion model is not required. Not requiring a motion model makes this

framework applicable to any vehicle type, especially small and micro vehicles, whose

motion models can to be unreliable. The unit sphere is a relatively unused approach to
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vSLAM and one consequence of the filter design is the initial bearing state estimates

for a feature are the errors of direct measurements (the camera measures the bearings,

which is directly fed into the filter, so the initial covariance value is the measurement

uncertainty). This provides interesting possibilities for filter size reductions through

the use of Schmidt-Kalman filter methods [41].

A thorough examination of the estimation performance as a function of path

parameters is provided using sinusoidal and sawtooth paths with varied amplitudes

and spatial periods in the open-loop setting. Closed-loop guidance is applied to the

same prescribed paths and the introduction of turns in the hallway is also addressed.

The advantages of integrated estimation and control is demonstrated, showing that

“low cost” nominal paths can require more total control than some “higher cost”

nominal paths in the closed-loop setting. An observability analysis of the six degree

of freedom (6DoF) vSLAM problem is performed to provide insight into filter over-

confidence and potentially path selection. Finally, drastic reductions in filter state

size is achieved using the Schmidt-Kalman filter formulation, reducing the number of

states per feature from three to just one.

The final area of research is the decentralized, swarm approach to source localiza-

tion. This approach allows for low cost, unsophisticated individual robotic agents to

perform a difficult task. Agents share position and sensor measurement information

to develop polynomial environment models which are used to determine desired agent

updates [19]. The standard quadratic environment model, linear update method is

improved upon by allowing more accurate, arbitrary dimensional polynomial envi-

ronment models. A Lagrangian expansion technique is used [1], which leverages the

higher order model terms, to solve for agent position updates. Agent’s updates are no

longer simply in the direction of the model gradient, but are instead in the direction

of the estimated minimum of the higher-order polynomial.
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Significant improvement over standard quadratic methods is demonstrated us-

ing a fourth order environment model. Demonstrations of the higher order method

are performed on a cubic function, the Rosenbrock Banana function and Matlab’s

Peaks function. The ability to locate iso-contours is also demonstrated. The method

is developed in a generalized fashion and can be applied to 2D, 3D, or arbitrary

dimensional spaces, drastically increasing the array of environments and uses for de-

centralized search applications.
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CHAPTER II

SIMPLE EXTRINSIC SELF-CALIBRATION OF MULTI-CAMERA SYSTEMS

A. Introduction

The goal of camera self-calibration is to identify the extrinsic camera parameters

(global position and orientation) of a camera system without knowledge of the world

position of the calibration target points. Calibrated multi-camera systems have a

wide range of potential uses as they allow for the 3D localization of changes occurring

in shared image spaces (3D computer vision). However, due to the tedious nature

of many calibration procedures, multi-camera systems are generally limited to fixed

location, long-term applications. By removing the requirement for position knowledge

of the calibration target points, there is potential for rapid deployment and therefore

a broad expansion of plausible environments and applications for 3D computer vision.

There has be a lot of work in the related area of 3D computer vision [20], [27], [28].

A well-calibrated camera system is capable of identifying and displaying the volume

elements, called voxels, currently experiencing motion, thus providing a 3D rendering

of motion within a space. However, the focus of this research will be the calibration

and not the uses of these camera systems. Significant research in camera calibration

has been performed in the photogrammetry and computer vision communities. For

multiple camera systems, especially those with wide baselines, methods involving

3D [13], [15] and 2D [10], [47], [52] targets for extrinsic calibration are not desirable.

Although very accurate, the target objects are subject to observability and scalability

issues, so other methods have been created to avoid these problems.

Methods using 1D targets that take advantage of the known distance between

collinear points, or the rotation of collinear points about a fixed point have recently
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been introduced [26], [31], [54], [53]. These methods look very promising, and al-

though more computationally complex, there is no scale ambiguity and the targets

result in a relatively simple correspondence problem.

Point targets, i.e. 0D objects, have long been used [15], [30] but have always

been susceptible to noise and scaling issues because the distance between targets is

unknown. In the past, the point correspondence problem has relied on RANSAC or

similar computationally complex methods. Lately, however, simple objects such as a

penlight or laser pointer have been used to generate correspondences [17], [44] using

synchronized video. With the correspondence issue greatly simplified, 0D methods

have become more desirable once again.

The goal here is to develop a simple, practical self-calibration routine that is

easily implementable using basic optimization methods applications in 3D computer

vision. The focus is on developing a suitable optimization cost function for unknown,

0D target points and demonstrating its accuracy in simulation.

A very simple two step process is proposed where the intrinsic calibration (focal

length, lens model, etc.) is performed beforehand, either in the lab or in the field.

Target features are then recorded throughout the desired space and extrinsic camera

parameters (position and orientation) are optimized, using the cost function, to best

fit the collected target point data.

B. Camera Model and 3D Reprojection

The pinhole camera model and a least squares method for solving the world location

of a feature point are presented. Three dimensional reprojection of corresponding

points on two images from calibrated cameras is the primary component required

for the proposed calibration method. The basic mathematical underpinnings for the
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pinhole model and 3D reprojections are provided here.

1. Pinhole Camera Model

A key element of camera work is the mapping of three dimensional world coordinates

onto the two dimensional pixel coordinates. Generally, this mapping is nonlinear

and rather complicated; however, it can be greatly simplified by making assumptions

regarding the camera lens. For the cost function, (2.16), to be developed requires a

ideal pinhole camera model assumption be made. A basic overview of the pinhole

camera model is provided herein and some required nomenclature is presented in

Table I. For a more thorough treatment, the reader is directed to [15]. See Fig. 1 for

a graphical illustration of the camera mapping.

Table I. Camera Nomenclature

Notation Definition

Pw = [Xw, Yw, Zw]T Target feature location in the world coordinate frame

Pc = [Xc, Yc, Zc]
T Target feature location in the camera coordinate frame

Ps = [Xs, Ys]
T Target feature location in the sensor coordinate frame

Ppix = [U, V ]T Target feature location in the pixel coordinate frame

Rj Orthonormal rotation matrix between world and camera

coordinate frames

f Focal length

i Calibration target index

j Camera index

Pj World coordinates of the jth camera

Mapping a 3D world coordinate to the associated pixel coordinate is a three step
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Fig. 1. Coordinates of a 2D imaging system.

process, see Fig. 2. First, one maps the global location to the camera frame, then

to the sensor frame (the 2D location on the camera sensor), and finally to the pixel

frame proving the corresponding pixel values.

Fig. 2. Mapping from global position to pixel values (Henderson, 2006).

A standard transformation is used to take a point in world coordinate frame and

map it to the camera coordinate frame of the jth camera.

Pj
c = Rj(Pw −Pj). (2.1)

This text follows the conventions seen in camera model literature, so P represents a

vector and R represents the rotation matrix.

A point defined in the camera coordinate frame, Pj
c, can be mapped to a point
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on the sensor plane of the camera, Pj
s, using similar triangle relations associated the

pinhole camera model. Fig. 3 graphically illustrates the relationships.

Xs

f
=
Xc

Zc
(2.2)

Ys
f

=
Yc
Zc

(2.3)

The pixel value associated with the point Ps is dependent on the size of the sensor

array as well as the number of pixels. The position on the sensor array is mapped to

the pixel pair [U, V ]T as

U =

[
Nw

w
Xs

]
(2.4)

V =

[
Nh

h
Ys

]
(2.5)

where [·] denotes the nearest integer value. The values Nw and Nh are the number

of pixels in the Xs and Ys directions of the sensor plane respectively, where w is the

width of the sensor, and h is the height. Assuming square pixels, and using (2.2) and

(2.3), the pixel values can be rewritten as

U =

[
S
Xc

Zc

]
(2.6)

V =

[
S
Yc
Zc

]
(2.7)

where S = f Nw

w
= f Nh

h
.

2. 3D Reprojection

The 3D reprojection of corresponding pixel values is not as simple as mapping a 3D

point to pixel values because it is attempting to generate 3D information from 2D

data. However, each pixel maps back to the sensor plane, and each location on the

sensor plane is associated with the ray originating at the focal point and emanating
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Fig. 3. Image plane relations.

out through the image plane. Any point on that ray will be mapped to the specific

point on the sensor plane and thus the specific pixel values. Assuming two cameras see

the same point in space, the associated rays (one from each camera) should intersect

at that point in space. If the position and orientation of the two cameras are known,

the pixel values can be used to generate rays and reproject the 3D location to their

intersection. This section details the development of that 3D reprojection mapping.

Assuming two ideal pinhole cameras with known extrinsic parameters, this text

follows the development seen in [17]. Starting with the standard equation (2.1), the

rotation matrix of the jth camera is inverted.
XW
i −Xj

Y W
i − Yj

ZW
i − Zj

 = R−1
j


X ij
C

Y ij
C

Zij
C

 (2.8)
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Rewriting the previous equation in terms of scaled pixel position,
U i

j

Sj
and

V i
j

Sj
,

XW
i −Xj

Y W
i − Yj

ZW
i − Zj

 = R−1
j


Zij
C

U i
j

Sj

Zij
C

V i
j

Sj

Zij
C

 (2.9)

Expanding the above relation in terms of elements of Rj, denoted rlm for the lth

row and mth column, achieves the following results by dropping the j notation and

noting that R−1 = RT .

XW
i −Xj

ZW
i − Zj

=
Zij
C (r11

U i
j

Sj
+ r12

V i
j

Sj
+ r13)

r31
U i

j

Sj
+ r32

V i
j

Sj
+ r33

≡ Aij (2.10)

XW
i −Xj

ZW
i − Zj

=
Zij
C (r21

U i
j

Sj
+ r22

V i
j

Sj
+ r23)

r31
U i

j

Sj
+ r32

V i
j

Sj
+ r33

≡ Bi
j (2.11)

The process is repeated for the kth camera to arrive at Aik and Bi
k. Rearranging

equations (2.10) and (2.11) results in a matrix equation that facilitates a least squares

solution to the projected world coordinates of the ith target.

1 0 −Aij

0 1 −Bi
j

1 0 −Aik

0 1 −Bi
k




XW
i

Y W
i

ZW
i

 =



Xj − AijZj

Yj −Bi
jZj

Xk − AikZk

Yk −Bi
kZk


(2.12)

The previous equation is in the form of Ax = b with known 4× 3 matrix A and

4×1 vector b and unknown 3×1 vector x. Eq. (2.12) can now be solved providing a

least squares approximation, x̃ = P̃i
jk. Note, that for prefect reprojection the vectors

extending from each image plane would intersect. This is not generally the case, so

the least squares solution locates the midpoint between the vectors at there closest

point, as seen in Fig. 4.
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Fig. 4. 3D Reprojection.

C. Intrinsic Calibrations

In reality, cameras are not perfectly represented by the pinhole model. Even if the

focal length and sensor size is known, there is generally lens distortion that causes tar-

get points to map to unexpected pixel values. A user must characterize this distortion

in order to map true pixel values seen by a camera to the ideal pinhole pixel value

required to perform the extrinsic calibration. Caltech’s Matlab Camera Toolbox,

[2], offers a five-parameter model for camera distortion with three radial distortion

parameters (b1, b2, and b3), and two tangential distortion parameters (t1 and t2).

If the distortion parameters are known, the distorted pixel values, Ud and Vd,

can be mapped to the undistorted or corrected pixels Uu and Vu. Uu

Vu

 = [1 + b1r
2 + b2r

4 + b3r
6]

 Ud

Vd

+Dtan (2.13)
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where r2 = U2
d + V 2

d and

Dtan =

 2t1UdVd + t2(r2 + 2U2
d )

t1(r2 + 2V 2
d ) + 2t2UdVd

 (2.14)

The required intrinsic parameters can be identified with [2], allowing the user to

rectify images or individual pixel values resulting in undistorted data. An example is

shown in Fig. 5.

Fig. 5. Left: Distorted image. Right: Rectified image.

D. Extrinsic Calibrations

The goal here is to develop a self-calibration method that identifies the unknown

extrinsic camera parameters and does so without knowledge of the true world positions

of the calibration targets. To do so, the “fitness” of the 3D reprojections are evaluated.

For the ith target and the jth and kth cameras, the 3D reprojection is evaluated via
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the error function, e = Ax̃−b. From (2.12) the error function is formally written as

ejki =



1 0 −Aij

0 1 −Bi
j

1 0 −Aik

0 1 −Bi
k




X̃jk
i

Ỹ jk
i

Z̃jk
i

 −


Xj − AijZj

Yj −Bi
jZj

Xk − AikZk

Yk −Bi
kZk


(2.15)

If the camera parameters are known perfectly, and neglecting pixel noise, then

ejki would equal zero. Although ejki lacks a physical meaning, intuitively, the smaller

its value the better the camera parameters fit the pixel data. Therefore the following

is to be minimized

J =
∑
i

∑
j 6=k

[ejki ]T [ejki ] (2.16)

Eq.2.16 will be refered to as the “reprojection fitness” (RF) cost function which

is a direct adaptation of the “inverse” cost function seen in [17]. The inverse cost

function attempts to minimize the variance of the 3D reprojections whereas the RF

cost function minimizes the numerical error associated with the least squares solu-

tions. The assumption is made that, given the correct calibration of the system, each

pair of cameras will return the same world location of a target. Also ejki = 0 if the

ith target isn’t visible to either the jth or kth cameras.

This approach is desirable for a number of reasons. Unlike many calibration

techniques with unknown feature positions, there is no need to optimize over the

N target world positions. This reduces the dimensionality of the classic calibration

problem by 3N parameters. Additionally, unlike most calibration methods, including

[17], the RF cost function only requires two cameras and is less computationally

complex than the inverse function.

The RF cost function is also versatile in that for larger camera systems, specific

camera pairs do not need to share a common field of view. As a consequence of
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only requiring two cameras, there is no limitation to only optimize over features seen

by three or more cameras. This increases (drastically in the three camera case) the

physical space where calibration points can be collected, leading to a broader sample

set of target points available for calibration.

E. Implementation

Given the RF cost function (2.16), some practical implementation details are provided

here. Some of these details are not required for numerical simulation but they will be

needed for the implementation of a real system. It is assumed that intrinsic camera

parameters are already calibrated, which can be done beforehand in a lab or out in

the field.

1. Extrinsic Calibration Target

Robust point correspondences are required for the RF cost function because outliers

can drastically affect the solutions. This can be achieved using RANSAC or other

correspondence algorithms, but the preferred method is to take advantage of video

data and use a single, 0D target such as a penlight [44]. In an indoor setting a glow

in the dark target can often work well. With color cameras there are many additional

possible solutions because a uniquely colored object could be used then located in the

image.

Given a single 0D target and time-synched cameras, the user can easily retrieve

corresponding pixel values for the target at multiple locations. The centroided pixel

values associated with the target object should be taken to provide a sub-pixel accu-

racy. For automated image processing to collect pixel correspondences, the type of

camera, lens, and environment need to be considered when selecting a target object.
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In the case of manual pixel identification, the target object is of much less impor-

tance, but a larger number of target locations is recommended to compensate for the

decreased accuracy, which is generally no longer sub-pixel and sometimes biased by

the user.

2. Optimization Initial Parameter Guesses

The rotation matrix, Rj, has many characterizations. For ease of use a 3-2-1 Euler

angle set is chosen [40], as seen in (2.17). That is, given the Euler angle set [α, β, γ],

the camera is first rotated about the z-axis by γ, then the y-axis by β, and finally the

x-axis by α. Note that the work is performed in a right-handed coordinate system

and a positive rotation is in the counter-clockwise direction, Fig. 6. Any Euler angle

set will work, in fact any other parametrization of Rj will work; however, the 3-2-1

set allows the user to make very accurate initial guesses for the rotation parameters

which increases the likelihood of correctly identifying the global minima of the RF

cost function.

Rj =


cos β cosα cos β sinα − sin β

sin γ sin β cosα− cos γ sinα sin γ sin β sinα− cos γ cosα sin γ sin β

sin γ cos β cosα− sin γ sinα cos γ sin β sinα− sin γ cosα cos γ sin β


(2.17)

Once pixel data has been collected and rectified for a reasonable number of

target points, and initial guesses are made for the camera parameters and the RF

cost function can then be applied.
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Fig. 6. Camera frame description, the upper right camera is looking into the page.

F. Numerical Simulation

Numerical simulations are performed on potential camera arrangements to evaluate

the RF cost function performance. The RF cost function becomes ill-posed for certain

camera orientations and/or target sets, but is demonstrated to perform quite well in

many useful settings. A simple gradient descent optimization is used to demonstrate

the RF cost function accuracy and its functionality. For the purposes of this opti-

mization, the Euler angles are converted to Modified Rodriguez Parameters, (MRPs)

[40]. This is done because MRPs have an extended linear range which improves the

conditioning of the cost function and allows larger updates; the 3-2-1 Euler angles

are much more user friendly in terms of estimating parameters.

The camera positions are not included in the optimization because a gradient

search is ill-suited to handle the scaling differences between camera position and

orientation parameters. Assuming the camera positions have been measured or are
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otherwise known to a reasonable degree, simulations show that rather large position

errors are tolerated quite well. Conceptually, and often practically, there is the option

of using the cameras to define the world coordinate frame. In this case the exact

location of the first camera is known because it is chosen. The user can also define

the space so one axis extends from the first camera through the second camera (or

define a specific offset); thus, the user can arbitrarily assign two of the second camera’s

location components, only considering measurement error along a single axis. For the

third camera, the user is able to assign one component arbitrarily, this defines a plane

between all three cameras, the other two location components must be measured. For

any additional cameras, errors must be considered in all three position components.

Errors in the camera position estimates (measurements) are generated in simula-

tion as uniform random variables with values in the range ±6 inches for each required

axis. For initial guesses of camera orientation parameters, the truth plus normal er-

rors with means of 10 degrees for each parameter are used. Standard black and white

cameras, with 640 × 480 resolution on a 1/2” sensor and a focal length of 2.8 mm,

are modeled for the simulations.

1. A Small Room With Three Cameras

Very often the 3D calibration of camera systems is used to facilitate the 3D rendering

of movement in a confined area. This may be for security purposes, human robot

interaction, or any other number of applications. To demonstrate the effectiveness

of the cost function, the placement of three cameras around a 20ft by 20ft room

is simulated. This could also represent three cameras set on tripods in an outdoor

setting. A representation of the simulated camera setup is shown in Fig. 7. True

camera parameters are listed in Table II. For the simulations, 150 targets points are

generated as a set of 3D uniform random variables that run from floor to ceiling, 0ft
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to 8ft, and wall to wall, to within two feet of the walls. The true camera parameters

are used to generate the true pixel positions with random measurement noise added.

The noise is normal with a mean of one pixel, which is also quite large.

Fig. 7. Depiction of camera configuration used in simulations.

The simulated camera views of the target points can be seen in Fig. 8, where

the boxed region represents the cameras’ fields of view. Each ‘x’ represents a specific

camera’s view of a target point. The points outside of the boxed region represent

target points not seen by the corresponding camera; however, if the other cameras

have the target in view, it is still used in the optimization.

The initial guesses for camera parameter values for this example can be seen in

Table III. Those initial values are used to generate a 3D reprojection, Fig. 9, where

the 3D reprojections are not representative of the true system with estimated 3D
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Table II. True Extrinsic Camera Parameters

Camera Xj Yj Zj αj βj γj

1 0.0 2.0 8.0 -125.0 0.0 -55.0

2 5.0 20.0 8.0 -115.0 0.0 -145.0

3 20.0 0.0 8.0 -120.0 0.0 30.0
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Fig. 8. Camera views of target points.

locations spread well beyond the 20ft×20ft grid. Little to no correspondence between

the 3D reprojections of the same target points from different camera pairs (ideally

each camera pair reprojects the same target point back to the same 3D location).

After minimizing the RF cost function, (2.16), with respect to the camera ori-

entations, the correspondences between the 3D reprojections of the target points by

each camera pair are clearly seen, Fig. 10. The reprojections are well within the

20ft×20ft grid, and each camera pair is producing very similar reprojections. Note

that some ‘x’ values are by themselves, particularly at the edges, this is because only
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Table III. Initial Guess of Extrinsic Camera Parameters

Camera Xj Yj Zj αj βj γj

1 0.0 2.0 8.0 -115.2084 4.7041 -54.5367

2 5.4345 20.0 8.0 -104.7321 -2.1340 -149.7814

3 20.3516 0.3247 8.0 -121.9071 -5.6609 37.3890
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Fig. 9. 3D reprojection of target points using initial guesses for camera parameters.

two cameras see the target point, so only one 3D reprojection can be produced. The

final parameter estimates can be seen in Table IV.

The resulting parameter estimates are within 2.0 degrees of the truth on all

angles, which would be a decidedly good optimization when considering the noise

involved. Note that since the camera positions are fixed, and wrong, some of the

error in the angles may actually be corrective, allowing the reprojection points to

come closer to the truth than if the angles perfectly matched the true orientation

values.
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Fig. 10. 3D reprojection of target points using optimized camera parameters.

Table IV. Three Camera Self-calibration Results and Associated Error

Camera αj βj γj ∆αj ∆βj ∆γj

1 -124.7312 -0.1537 -55.9048 0.2688 -0.1537 -0.9048

2 -114.8297 -0.4086 -143.1626 0.1703 -0.4086 1.8374

3 -119.7610 0.3051 30.7038 -0.2390 0.3051 0.70386

While it is important in many applications to reproject points back to the true

3D position, it may be even more important for a given 3D point in space that

all the camera pair reprojections are consistent. The largest discrepancy between

reprojections and the variance of reprojections are both good measures of consistency.

The constancy of the reprojections is addressed with a set of test targets, not used in

calibration, which range from 4ft to 16ft in the x and y directions placed at one foot

intervals. Along the z-axis, targets are placed every foot between 1ft and 6ft.

Using the previously solved parameters, the 3D reprojections of each test target is
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very consistent, seen in Fig. 11, and the maximum discrepancy between reprojections

for each target features is rather small with the vast majority under six inches, seen in

Fig. 12. The average error falls in the range of four inches or less. The majority of the

larger errors are test points near the ceiling or towards the outside edges, as expected,

and some are due to unusually large pixel noise for a particular point. Finally the

reprojection variance can be seen in Fig. 13. Overall these figures show consistent 3D

reprojection results for each camera pair and suggest the results could be used for 3D

computer vision applications.
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Fig. 11. 3D reprojections of test targets using optimized camera parameters.

If the camera positions are known quite well, to within three inches (quite feasible

for an indoor space), and a 0.25 mean error in pixel measurements is achieved, the

results are improved and the smaller maximum discrepancies can be seen in Fig. 14.

In this case, the room could be very finely partitioned for high resolution 3D computer

vision applications.
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Fig. 12. Maximum discrepancy between 3D reprojections of test targets.
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Fig. 13. Variance of 3D reprojections of test targets.
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Fig. 14. Maximum discrepancy between 3D reprojections of test targets for improved

camera position estimates.

The previous results presented were from a single test run, so several more simu-

lations are needed to characterize the performance. The presented configuration was

used and the process was repeated 100 times. This included generating new target

points, new noisy pixel data, and new initial guess for camera parameters (including

the error to the assigned camera positions). Out of 100 runs, 76 converge to results

very similar to what is seen in the example, while 24 runs did not result in usable

parameter sets.

The five worst results from the 24 simulations which did not converge to the

truth were selected and 100 additional simulations were run on each. Using the same

values as the non-converging run, only the initial parameter guesses are perturbed.

Starting with the original, non-convergent initial guesses, a normal random variable

of mean zero and standard deviation of 10 degrees is added to each camera angle for

each of the additional 100 runs. For all five cases, the additional 100 runs achieved
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convergence between 64 and 78 times using the newly perturbed initial parameter

guesses.

Converging about 75% of the time does not seem impressive. However, this

implies that out of 100 feature point distributions and initial guesses of camera pa-

rameters, the first attempt was convergent in 75% of cases. The feature distributions

that did not converge with the original initial guesses where found to be convergent

after perturbations of the original initial guesses. In other words, the system is in

general convergent for a set of feature points, even if the initial optimization attempt

is not.

2. A Small Room With Two Cameras

Using the same setup as the three camera example, shown in Fig. 7, the third camera

is dropped from the system and the same optimization procedure is preformed again.

The main drawback with calibrating just two cameras is the lack of a defined

coordinate system. Because the target points are not assigned a global position, it is

always possible to transform the system by simply rotating about the vector passing

through the two cameras. Assuming the calibration targets are also transformed

by this rotation the camera views would not change. Since the target positions are

not known, the cameras may in fact find a solution which is accurate up to the

described rotation transformation. The spatial relations between true 3D values and

3D reprojections will be accurate, but the 3D reprojections will be shifted by the

transformation with respect to the global frame.

Given a unit vector ê, the rotation matrix about ê by and angle of φ can be

defined as

C(φ) = I + (1− cos(φ))[×ê][×ê]− sin(φ)[×ê] (2.18)
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where [×ê] is the skew-symetric matrix of ê [40]. The vector of rotation, ê, associated

with the two camera example is the normalized vector pointing from camera 1 to

camera 2.

ê =
x2 − x1

|x2 − x1|
(2.19)

In order to rotate the 3D reprojections about the appropriate vector, they must

first be written with respect to x1 as the origin (otherwise points are not rotating

about the vector connecting x1 to x2, but rather the same vector direction except

emanating from the origin). C(φ) is applied to the translated 3D positions and then

the rotated points are translated back with respect to the true origin. The points x1

and x2, and in fact everything on the vector connecting them, will be invariant to

the transformation as they lie on the vector of rotation, but every point lying off that

vector will be mapped to a new location. The value of φ for any given optimization

will be arbitrary based on initial errors of the system and must be adjusted through

trial and error until correspondence is obtained (i.e. test points near the floor are

level, or some other metric is achieved).

Fig. 15 shows the true location of test points, the initial 3D reprojection, and the

transformed 3D reprojections. While the initial 3D reprojection captures the essence

of the system, the coordinate frame is clearly incorrect and can be seen to have

rotated about ê. However, the transformation procedure rotates the reprojections

back about ê and brings the reprojected points into close proximity of the true values.

3D reprojection discrepancies and variance cannot be produced because there is only

one reprojection for just two cameras, but the close alignment with the true test point

positions suggests accurate 3D renderings is possible for a two cameras system.
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Fig. 15. Test targets, blue. Original 3D reprojection of test targets containing rotation

error, red. Corrected 3D reprojection of test targets, green.

G. Comparison to Variance Based Inverse Cost Function

The reprojection fitness cost function and the work in this chapter is an extension

of work done in [17], where “forward” and “inverse” cost functions were developed

and tested. Specifically the inverse cost function that minimized the square of the

variance of the 3D reprojections was adapted. This section compares the inverse cost

function with the RF cost function.

The inverse cost function was successful in 62 of 100 simulations using the three

camera setup, where the RF cost function was successful in 76 of the 100 runs.

Similar to the RF cost function results, additional perturbations of the nonconvergent

initial guesses generally resulted in convergent estimates for the inverse cost function,

but for a smaller fraction of runs. Most notably, the inverse cost function suffers

from less consistent final estimates and larger reprojection discrepancies due to the

comparatively shallow nature of the cost function minimum.
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For each camera, three MRPs are used to define the rotation matrix for opti-

mization purposes. Using a random set of calibration points and sampling both cost

functions, seven of nine MRPs are set to the true values and the other two are varied

around the true value. Local cost function mappings are generated. Displaying the

cost function evaluation as a function of error size in the two varied parameters (one

from camera one, the other from camera two), surface and contour plots can be seen

in Figs. 16 and 17.
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Fig. 16. Left: Normalized RF cost function for two varied camera parameters. Right:

Normalized inverse cost function for two varied camera parameters.

Clearly shown, the RF cost function is much sharper, especially in the MRP

parameter for camera two, than the inverse cost function. This is consistent with

the increased convergence rate of the RF cost function and the tighter grouping

of final estimates over several runs. This added sharpness not only generates more

consistent results, but faster convergence as well. The results shown are representative

of additional pairings of the nine total parameters showing that the inverse function

is less sensitive to changes in certain parameters. Thus, the RF cost function is better

suited to simple gradient based optimizations.



30

MRP error, camera 1

M
R

P
 e

rr
or

, c
am

er
a 

2

−5 0 5

x 10
−5

−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−5

MRP error, camera 1

M
R

P
 e

rr
or

, c
am

er
a 

2

−5 0 5

x 10
−5

−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−5

Fig. 17. Left: RF cost function contour lines for two varied camera parameters. Right:

Inverse cost function contour lines for two varied camera parameters.

H. Summary

A simple, straightforward method for the extrinsic calibration of multi-camera sys-

tems has been presented. The method shown allows for the rapid deployment of

cameras, quick collection of calibration target data, and accurate estimation of cam-

era orientations with just basic camera and optimization knowledge. The RF cost

function was shown to be an improvement from the inverse cost function approach.

Overall the RF cost function is superior to the inverse cost function in several

facets; it only requires two cameras total, for additional cameras it only requires that

two see a given target point, and the cost function is better suited to gradient based

approaches. A two-camera system calibration was demonstrated while the three-

camera system results showed strong calibration accuracy even for crude position

measurements and noisy pixel measurements using a low resolution camera.
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CHAPTER III

VISION-AIDED INERTIAL NAVIGATION

A. Introduction

The benefits of tightly integrating inertial navigation sensors with global positioning

systems (GPS) are well known [4]. The use of an inertial measurement unit (IMU)

along with GPS is effective because the sensors complement one another; the IMU

provides a high frequency feedback, whereas the GPS provides a slower more stable

benchmark signal. This allows a Kalman filter, or something similar, to process the

IMU data at a high rate with intermittent corrective updates based on GPS data

resulting in a high precision inertial navigation systems (INS).

Currently, GPS/IMU systems are the standard method for accurate INS ca-

pabilities. However, GPS signals are not always available and this leaves the INS

vulnerable. And because even the best IMUs experience gyro drift and accelerometer

biases, an INS running with an IMU alone will experience unstable egostate (position,

velocity and attitude) estimates. For any sort of autopilot the vehicle will drift well

off its intended course during any prolonged GPS absence. Often a human operator

can control the vehicle until GPS is again available, but in the case of an unmanned

air or ground vehicle (UAV/UGV) that is not the case.

Due to the vulnerability of INS to GPS outages, there is significant interest

in the aerospace and defence communities to develop autonomous systems that can

navigate effectively in the absence of GPS [3], [12], [45]. GPS may be unavailable

due to location such as in an “urban canyon” environment of city streets or inside

buildings. Or, it may be denied due to malicious jamming or spoofing of the signal

where falsified information is transmitted to disrupt or fool the GPS [9], [50].
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Although navigation systems have been developed that use just two GPS satel-

lites [8] when four or more are required for a standard GPS system, an INS will be

more robust and more widely applicable if it can function without any GPS signal

at all. This counteracts the jamming/spoofing threat while also providing guidance

in environments were signals are simply not available. Several approaches have been

developed including the use of laser scanners [22], stereo vision [42], [45], known

features, odometry and monocular cameras [33].

This research focuses on navigating within unknown corridors, such as a hallway

or other “urban canyon”-like environment, using a vision-aided inertial navigation

approach with a single monocular camera. It is assumed that there is no known map

of the environment and the location of features seen by the camera is unknown. In

this case the geometry of features can not be used in a GPS-like (globally defined)

manner to solve for camera and vehicle position and orientation.

The single monocular camera approach was chosen because a single camera is

scalable in ways stereo pairs and laser range finders are not. Range determination

from a stereo pair of cameras is limited by the baseline separation between the cam-

eras, and on certain vehicles, a large separation may not be possible. Furthermore,

laser range finders have limited range; those with larger ranges typically have higher

power requirements and higher mass, that may be a limiting factor in some applica-

tions. Moreover, if a bearings-only INS estimator is able to provide suitable solutions

then the results would only be improved upon if the vehicle platform is capable of

supporting additional sensors.

Vision-aided inertial navigation is effectively a simultaneous localization and

mapping (SLAM) application where a range measuring device is not used. The term

vision SLAM (vSLAM) is used to reference the camera as the only additional sensor

aiding the IMU. The primary concern of this research will be the vehicle egostate es-
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timates and not the feature map itself and at times the standard capability of SLAM

and vSLAM to recognize previously seen features may not be required, thus making

the application a visual odometry method.

Inspiration is taken from the success of outdoor vSLAM applications that either

operate with just their INS and cameras when GPS is not available [25], or operate

without GPS altogether [5], [29]. Like other vSLAM applications, a complementary

form EKF is used [4], [5], [24]; However, in this research a unit sphere based ob-

servation model is used [43]. The filter keeps estimates of each feature’s position in

spherical coordinates as opposed to typical Euclidean coordinates in most filters. The

unit-sphere based observation model leverages geometric constraints, as opposed to

the traditional SLAM and vSLAM methods of comparing estimated and measured

3D position (SLAM) or estimated and measured pixel values (vSLAM). The unit-

sphere approach was developed for easy assimilation of multiple sensors, referred to

as multi-sensor fusion, and although only a single camera is used in this research, in

related efforts there is a desire for a generic and flexible filter structure.

The vision-aided inertial navigation research to be presented herein concerns itself

with identifying and understanding which vehicle paths lead to better estimates, the

integration of estimation and control, and the reduction of filer size required for such

INS systems. This research is conducted in simulation, where results will be applied

to hardware implementations occurring in related efforts.

It is well established that vehicle motion in a camera-aided system is paramount

to producing accurate estimation. The observability of the system is improved due to

additional accelerations such as S-turn maneuvers, and improved observability leads

to more accurate estimates. This area of research takes a specific scenario of a UGV

with a forward facing monocular camera moving down a hallway with previously

unknown feature points disbursed along the walls. Specific path types, sinusoidal and
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sawtooth, are simulated and estimation accuracy results are presented. Simulations

are conducted with open-loop control using prescribed paths to look at path effacy.

Simulations are also done with closed-loop control where egostate estimates are used

by the guidance system attempting to follow a desired path.

After extensive simulation of paths with varied characteristics, clear preferences

are shown for a specific scenario. However, if the scenario is changed, either due to

feature availability or equipment changes, the resulting performance of a given path

may also vary. The near-term goal of this research is to identify trajectories for a

given scenario that, on average, produce accurate estimation at an acceptable control

cost. The long-term goal is to develop methods to properly select effective trajectories

in real-time regardless of the scenario.

It will be shown in future chapters that the covariance, a top candidate for the

real-time judging of estimator performance, is unreliable. Simulations demonstrate

that in the closed-loop case, acceleration monitoring can provide modest guidelines for

path selection. In the same vain, an observability analysis of the system is performed

to give insight into desired trajectories and the difficulties associated with vSLAM

systems.

Finally, a Schmidt-Kalman filter is used to reduce the number of states required

in the filter. A reduction from three states per feature to just one is achieved. Per-

formance comparisons are given for both the open-loop and closed-loop cases.

B. The Complementary Form Extended Kalman Filter

A complementary form EKF is used to estimate the errors in vehicle egostates states

and feature states, nomenclature can bee found in Table V. The EKF state vector
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used is

x = [δrT , δvT , δαT , γT , βT , · · · ρ1
p, θ

1
p, φ

1
p, · · · ]T (3.1)

In this formulation, the vehicle egostates are propagated using the INS that is gener-

ated using IMU measurements. When bearing measurements become available from

the camera, the Kalman filter estimates the errors between the true egostates and the

current estimates, the system is represented in Fig. 18. The discrete representation

of the system propagation based on the IMU measurements is

x−k+1 = Fx+
k (3.2)

P−k+1 = FP+
k FT + Q (3.3)

The first 15× 15 elements of F, written in 3× 3 submatrix form, are

F =



I I∆t 0 0 0

0 I −[×f ]∆t 0 Cb
N∆t

0 0 I Cb
N∆t 0

0 0 0 I 0

0 0 0 0 I


(3.4)

The rest of F applies the identity operation to all feature states as features are

assumed stationary. The INS is used in place of the vehicle model, so there is no

need to propagate vehicle states based on control commands in the prediction phase.

In (3.2) no noise term is added because the INS is a function of measurements and

the noise is captured in the covariance matrix, P. Because of the fast INS update

rate, it is used “as is” until the next camera measurements become available. In the

case no camera measurement is ready the estimated state values are set to the INS

prediction, x+
k+1 = x−k+1.
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Table V. Complementary EKF Nomenclature

Notation Definition

xk Filter states at time k

δr Vehicle position errors

δv Vehicle velocity errors

δα Vehicle attitude errors

γ Gyro drift

β Accelerometer bias

ρ1 Estimate of initial range to a feature

θ1, φ1 Estimates of initial bearings to a feature

F State transition matrix

P State covariance matrix

Q Process noise matrix

Cb
N Rotation matrix between the vehicle and navigation

frames

[×f ] Skew-symmetric matrix of the measured specific forces

[·]− Predicted value

[·]+ Corrected (updated) value

H Observation matrix

K Kalman gain matrix

R Measurement covariance matrix

∆t Time step between measurements
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Fig. 18. Complementary form Kalman filter design of vision-aided INS systems. The

dashed line represents the slower update rate of camera measurements.

When the camera has captured an image and bearing measurements to features

are extracted, they are used to estimate the errors in the INS. This allows the INS to

provide guidance information at the IMU update rate and receive corrective image-

based updates at the rate the image data is being processed. The update equations

are

x+
k = x−k + K(y −Hx−k ) (3.5)

P+
k = (I−KH)P−k (3.6)

where

K = P−k HT (HP−k HT + R)−1 (3.7)

and H is the observation matrix, which is discussed in the following section.
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C. Unit Sphere Observation Model

Typical vSLAM applications use euclidian coordinate estimates of feature point loca-

tions to generate anticipated pixel coordinates for each feature based on the estimated

vehicle states. Those anticipated pixel values are then compared to the measured pixel

values, as seen by the camera. The difference is then used in the extended Kalman

filter (EKF) to update the filter states. Although, not the focus of this research, an

alternative approach to the SLAM problem is used. The filter takes advantage of

geometric constraints on the unit sphere relating the initial bearing and range to a

feature, the change in position and orientation of the vehicle, and the latest bearing

measurement to a feature. Instead of directly comparing measured and anticipated

pixels as in most vSLAM applications, the filter measures how well the constraint

equations are met to generate the gain matrix K, as seen in (3.7), and update filters

states accordingly.

A unit-circle frame is represented in Fig. 19, which associates with one of the

two constraints associated with the unit-sphere, (3.8). A full workup of the constraint

equation and corresponding observation model can be seen in [43], only the essentials

are provided here using nomenclature found in Table VI.

In the six degree of freedom (6DoF) case the two constraint equations for a single

feature are

(e2)T ·∆Cb
N ·B ·∆R = (e1)T ·BT ·∆Cb

N · e2 · ρ1 (3.8)

(e2)T ·∆Cb
N ·D ·∆R = (e2)T ·∆Cb

N · e1
⊥ · ρ1 (3.9)

where

ej =


cos(φj) · cos(θj)

sin(φj) · cos(θj)

sin(θj)

 (3.10)
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Table VI. Unit Sphere Constraint Nomenclature

Notation Definition

∆R Change in vehicle position

∆Cb
N Change in vehicle orientation

(ej) Unit normal in the direction of the feature at the jth

time instant

(ej⊥) Unit normal perpendicular to (ej)

ρ1 Estimate of the initial range to a feature

θ1, φ1 Estimates of initial bearing values

θj, φj Bearing measurement at the jth time instant

Fig. 19. Unit circle representation of translational only motion (Soloviev et al., 2009).
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B =


0 −1 0

1 0 0

0 0 0

 (3.11)

D =


0 0 − cos(φ1)

0 0 − sin(φ1)

cos(φ1) sin(φ1) 0

 (3.12)

The motion constraints are used to generate motion observables by substituting

egostate estimates into the equations, then subtracting the right side from the left

side in both (3.8) and (3.9). By writing each component (position, velocity, altitude,

bearings, range, etc.) as the truth plus an error, the equations can be reorganized

and contain constant, linear and quadratic error components. The constant term will

be zero because it will be the constraint equation exactly and the linear error terms

will be associated with position, attitude, initial bearings and initial range. Finally

to support the complementary form EKF formulation the system is linearized by

dropping the quadratic error terms that results in equation (9) from [43], rewritten

in 3.13.

η(n)
p = Hp,∆Rδr + Hp,∆αδα+ Hp,f


δφ1

p

δθ1
p

δρ1
p

+ Hp,ε

 δφnp

δθnp

 (3.13)

The reader should note in (3.8) and (3.9) that the constraints scale with the

size of vehicle motion and distance to features. This scaling will cause a bias where

the filter tends to underestimate distance traveled and the distance to features in

non-observable or weakly observable settings. To avoid this scalability the user could

simply divide both sides of each equation by the ρ term and normalize the constraint

equation (so the system is unitless in distance). However, dividing the constraints by
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ρ causes the partial derivative with respect to ρ to become highly nonlinear. While

normalizing the constraints does improve estimator accuracy, in weakly observable

cases the estimates are still not suitable. For paths that generate better observability

the un-normalized filter avoids the scale biasing (there is enough pertinent information

in the filter to prevent scaling) and estimator results are more consistent than the more

nonlinear, normalized constraints. For this reason the non-normalized constraints,

(3.8) and (3.9), are used throughout.

This covers the basic estimator development. There is still the issue of a synthetic

stereo approach to generate an initial range estimate for a feature, however this is

covered in [43], and will not be revisited except to say care must be taken when

generating the initial range estimate. If the range values are calculated and used

without regard for the correlation with the uncertainties in your vehicle states, then

the range estimates will effectively match the INS errors providing no benefit to the

estimator.

D. Simulation: Hallway With Turns

The estimator is simulated in a generic hallway environment that is three meters wide

and three meters tall. There are random feature points distributed along the walls.

Using a forward facing camera, the vehicle is asked to track a specified path using

a simple closed-loop guidance law, to be discussed in Chapter IV. The vehicle runs

solely on IMU signals to start while generating initial guess for feature distances.

Once features are initialized into the filter, estimation and correction of egostates

occur as previously described.

An example with turns can be seen in Fig. 20 along with the position estimation

error and 3-sigma values. For normal distributions the standard deviation, generally
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denoted sigma, σ, is the square root of the variance of the distribution. Statistically

speaking, approximately 99.7% of random samples from the normal distribution will

fall in the range µ±3σ, where µ is the mean value of the normal distribution. Kalman

filters make assumptions that the states have a normal-like distribution, the estimator

covariance determines the 3-sigma boundary the vast majority of errors should lie in.

Fig. 20 shows the position error is within the 3-sigma bounds and the improvement

due to hallway turns is especially evident at the first turn. The UGV has a final

position error of 0.36 meters.

Paths used in the simulation are combinations of the sawtooth and sinusoidal

paths. Straight line trajectories are used with rounded corners, minimum radius of

two meters, allowing the vehicle to travel at a constant speed of two meters per

second for simulation. It is clear in Fig. 20 the UGV is able to keep accurate egostate

estimates. If the vehicle did not have the camera onboard, the IMU drifts and biases

would cause the estimates to diverge. In Fig. 21 the vehicle operates without a

camera. In this simulation, open-loop control is used so the vehicle tracks the desired

path exactly. Clearly seen, with the IMU alone the filter is unable to keep an accurate

estimate of vehicle egostates and the simulation finishes with a 10.1 meter error in its

position estimate.

E. Simulation: Visual Odometry Filters

In SLAM or vSLAM the EKF is able to initialize a feature, lose it from view, return

to and recognize (reassociate) the feature. This is an important trademark because it

allows loop closure that boosts estimate accuracy in feature and vehicle egostates [5].

This capability requires a feature map be maintained and when a feature is revisited it

must be verified to be a previously identified feature, which can be a computationally
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Fig. 20. Left: Modified sinusoidal path in a hallway with turns. Magenta lines are the

desired vehicle position, red lines are the estimated vehicle position, and blue

lines are the true vehicle position. Right: Position error and 3-sigma values

vs. time.
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Fig. 21. Modified sinusoidal path in a hallway with turns. IMU only, no camera.

Magenta lines are the desired vehicle position, red lines are the estimated

vehicle position, and blue lines are the true vehicle position.
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complex task. If instead a visual odometry approach is taken and revisited features

are treated as new features there is no longer a need to recognize and reassociate

features. This drastically simplifies the hardware implementation of this problem

requiring only the use of a simple feature tracker, but will generally reduce accuracy

of the system because there is pertinent information going unused.

The same hallway with turns simulation can be seen in Fig. 22, where a visual

odometry filter is used. The UGV simulation finishes with a position error of less

than 0.22 meters that is better than the associative filter, although the average error

over the course of the run is larger. Again, you can clearly see the hallway turns

dramatically improve estimation errors, although not to the same extent, likely due

to the inability to reassociate previously seen feature points and the error introduced

when reinitializing them. Over several run with differing features the average visual

odometry filter simulations resulted in errors approximately 1.5 times that of the full

vSLAM filter.
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Fig. 22. Left: Modified sinusoidal path in a hallway with turns for a visual odometry

filter. Magenta lines are the desired vehicle position, red lines are the esti-

mated vehicle position, and blue lines are the true vehicle position. Right:

Position error and 3-sigma values vs. time.
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F. Summary

Autonomous navigation in GPS denied environments is becoming an increasingly

desired capability. The complementary form Kalman filter was introduced along with

the unit sphere observation model allowing a non-GPS based INS to keep egostate

estimates in unknown settings. In the following chapters, only an IMU and camera

will be considered although the unit sphere approach easily accommodates additional

sensor packages including GPS when available. Not only does this filter setup provide

the flexibility to navigate in most imaginable settings, it also acts as a safety margin

for navigation when GPS is expected. The complementary form of the filter does not

require a vehicle model, making this approach applicable to UAVs/UGVs of any size.

The filter was demonstrated in simulation for both the vSLAM and visual odometry

approaches.
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CHAPTER IV

IDENTIFYING DESIRED VEHICLE PATHS

A. Introduction

Simulations of a UGV navigating a long straight hallway or corridor are conducted.

The hallway is three meters wide and three meters tall, and there are features ran-

domly distributed on the walls. The position of each feature is initially unknown to

the vehicle. As the UGV moves down the hallway it keeps estimates of its egostates.

Features seen by the camera are incorporated into the filter to aid egostate estimation

using the observation model introduced in Chapter III. The hallway scenario is used

to gauge the effects of path, feature visibility and availability on egostate estimates.

Two path types are generated for the UGV to follow, sinusoidal and sawtooth, de-

scribed by their amplitude and spatial period. Example paths can be seen in Fig. 23.

The performance of the estimator is initially examined using open-loop guidance,

when the vehicle follows a desired path exactly. While not physically possible to im-

plement, results indicate which motion types provide good egostate estimates without

the complications of feedback control. Later closed-loop guidance using the estimated

vehicle states is simulated and shown to be consistent with open-loop results.

B. Simulation Settings

For sinusoidal paths, the vehicle maintains a constant speed of two meters per second

along the path and the vehicle orientation is in the direction of travel. Sawtooth

paths move forward at two meters per second and take a tenth of a second to stop

and half a second to accelerate from zero to two meters per second at each path apex,

the vehicle turns at a rate of 60 degrees per second (note these values were altered
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and it showed negligible impact on the estimator performance). A pinhole camera

model is used with a 40 by 30 degree field of view and 640 by 480 resolution. The

angular measurement errors have a standard deviation of 0.23 degrees. The distance

at which features become visible is simulation can also be set by the user.

The IMU bias and drift are modeled using first-order Gauss-Markov processes

characterized by a gyro drift stability of 200 degrees per hour and an accelerometer

bias of two milli-gravity. The UGV begins with zero uncertainty in initial position

(there is no global signal, so any error here is irrelevant), an initial velocity estima-

tion error with a standard deviation of 0.02 meters per second and an initial vehicle

orientation error with a standard deviation of 0.1 degrees.

Because the UGV has no prior knowledge of feature locations, a synthetic stereo

technique is used to initialize range and angular error estimates and covariance [43].

As the UGV comes across new features it continues to use the synthetic stereo to

initialize new features as it progresses down the hallway. A depiction of the UGV in

the hallway can be seen in Fig. 24.

Fig. 23. Sinusoidal and sawtooth path descriptions.
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Fig. 24. Depiction of a UGV moving down a hallway.

C. Desired Control Signatures

Sinusoidal and sawtooth paths should accommodate almost all UGVs, and are fully

characterized by their amplitude and spatial period parameters (aside from phase

shifts, that is not currently considered). The goal here is to identify which parameter

sets provide high estimation accuracy in the average case. Feature reassociation is

perfect in these simulations, meaning that if a feature leaves the field of view and

later returns to the field of view, it will be recognized as the same feature and not as

a new feature. Thus, turning sharply could be beneficial since the UGV repeatedly

revisits established features as it moves down the hallway in typical SLAM fashion.

1. Prescribed Paths

The first example is for 80 total features, 40 on each wall. The features are visible

from up to 25 meters away. The UGV navigates the same hallway for each pairing of

amplitude and spatial period in Table VII and the final position errors at 75 meters

are recorded. Results of single runs for each parameter pairing is shown in Figs. 25
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Table VII. Sample Amplitude and Spatial Period Values

Index Amplitude (m) Spatial Period (m)

1 0.1139 1.1391

2 0.1709 1.7086

3 0.2563 2.5629

4 0.3844 3.8443

5 0.5767 5.7665

6 0.8650 8.6498

7 1.2975 12.9746

8 - 19.4620

9 - 29.1929

10 - 43.7894

and 26 and there is a clear correlation between path parameters and performance.

These plots are representative of the average results with differing initial biases and

features distributions.

There is a large region of path parameters with final position errors of 0.75 meters

(1%) or less (everything located below the dark blue, 0.75 meter contour in Fig. 26).

Some regions even have errors as small as 0.1%. Not surprisingly the parameter sets

that do well are combinations of larger amplitudes and shorter spatial periods, which

are the paths requiring the most acceleration. The associated sawtooth results can

be seen in Figs. 27 and 28. It should be noted that the sawtooth performs almost as

well, but begins to have trouble for the larger amplitudes, where the sinusoid excels,

due to the lengthy straight line sections associated with those paths.

It is of interest that the error contours of the sinusoidal path correspond rather

closely to the maximum acceleration experienced by the vehicle. However, if the visual
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Fig. 25. Sinusoidal path parameters vs. estimation error using open-loop guidance, 80

features, and 25 meter sight distance.
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Fig. 26. Sinusoidal path error contours using open-loop guidance, 80 features, and 25

meter sight distance.
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Fig. 27. Sawtooth path parameters vs. estimation error using open-loop guidance, 80

features, and 25 meter sight distance.
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Fig. 28. Sawtooth path error contours using open-loop guidance, 80 features, and 25

meter sight distance.
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range or the number of features is decreased, the error contours begin to resemble the

vehicle’s maximum angular orientation with respect to the hallway walls, Fig. 29. This

suggests that turning sharply towards the wall is important when the feature count

is low becasue it provides a longer time history with individual features, leveraging

more of the available information.

0.75

0.
75

0.
75

1
1

1

1.5
1.

5

1.
5

2

2

2

2

3

3

3

4

4
4

Amplitude (m)

S
pa

tia
l P

er
io

d 
(m

)

0.2 0.4 0.6 0.8 1 1.2

5

10

15

20

25

30

35

40

Fig. 29. Sinusoidal path parameters vs. estimation error using open-loop guidance, 10

features, and 25 meter sight distance.

Simulations show the low visual ranges negatively affect the estimator, and as

visual range is increased performance improves quickly until the vehicle is able to see

features at 20 meters, where additional sight distance shows little benefit. Interest-

ingly the estimator achieves a larger path parameter set with under 1% error with

only 10 features on the walls as opposed to the 80 feature case when the sight distance

is 25 meters. However, the best results are no longer in the 0.1% range as in the 80

feature case.
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Additional features can degrade estimator performance if their initialization in-

troduces more error into the filter than the features can mitigate during the time they

are seen. For the larger spatial periods where there is little angular change of the

vehicle along its path features are generally seen from a distance and grouped near

one another in the image. In this case an additional features provides little additional

information because they are practically overlapping other features. Again, this is

evident in Fig. 29, where the 1% or less error region is actually larger for the 10

feature case that it is for the 80 feature case shown in Fig. 26.

If however, a more energetic path is used the features are more often seen while

close to the vehicle (due to the sharper angle with respect to the hallway), effectively

spreading them out in the image plane and the additional features may now provide

additional, unique information that results in more accurate estimates. This is also

demonstrated in 10 feature case where the smallest estimation errors are on the order

of 0.5% as opposed to 0.1% in the 80 feature case. Using just 10 features results in

a larger “acceptable” region, but it lacks the required information to attain the most

accurate estimates.

More feature points is intuitively better, but it is also computationally expensive.

Additional features will be beneficial if they provide unique information to the filter,

and the more energetic the path the more features can be used. This suggests a user

can be selective when choosing to add a feature into the filter. When potential features

are stacked near one another, especially for lower energy paths, the user should only

incorporate a couple into the filter. In this case fewer features will not only reduce the

computational loads, but actually improve egostate estimation making this an ideal

rule to follow. For the more energetic paths, additional features beyond the 80 used,

quickly stop improving estimation accuracy and simply require more computations

for the same or even degraded results.
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2. Closed-loop: Proportional-difference Control Feedback

The previous simulations used prescribed vehicle positions at each time step and con-

trol signatures that provided good egostate estimates were identified. Now closed-loop

control of the vehicle, using the estimated state rather than the true state, is simu-

lated to examine the system performance in closed-loop. A very simple proportional-

difference (PD) control method is applied using a damped oscillator model and nomen-

clature can be seen in Table VIII.

Table VIII. Closed-loop Control Nomenclature

Notation Definition

rn Nominal (desired) position

r̃ Estimated position

an Nominal acceleration

ẽ Estimated position error

˙̃e Estimated position error rate

ã Corrective acceleration term

c, k Control gains

dt Time step

a Total acceleration

The nominal acceleration required to follow a desired path at the ith step, ain, is

ain = (ri+1
n − 2rin + ri−1

n )/dt2 (4.1)

The estimated position and velocity errors over the last few time steps are defined
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using the estimated position values, r̃.

ẽi = r̃i−1
n − ri−1

n (4.2)

˙̃ei = (ẽi − ẽi−1)/dt (4.3)

Using the damped oscillator model, the corrective acceleration term is,

ãi = −c ˙̃ei − kẽi (4.4)

In this case letting c = 2
√
k provides a critically damped system (when position

estimates are equal to the truth). The guidance now uses the total acceleration,

ai = ain + ãi (4.5)

This is clearly not a robust controller, but will demonstrate the use of estimated

egostates in a guidance scheme. If the estimator error becomes too large, there is

nothing limiting the accelerations and the system could diverge drastically. However,

the path signatures that provided accurate estimates in open-loop also perform well

in closed-loop for a several gain values. Examples in this section will use a gain value

of k = 15.

An example sinusoidal path with an amplitude of 0.87 meters and a spatial period

of 12.97 meters is shown in Figs. 30. The vehicle begins displaced 0.9 meters from the

desired path and is commanded to track back appropriately. The estimator performs

quite well and over the first 20 meters the UGV estimated position converges with

the desired path, keeping excellent egostate estimation accuracy throughout. If a

larger spatial period of 43.79 meters is used the estimate begins to diverge as seen in

Fig 31. The estimated position tracks the desired path but the estimate is no longer

accurate and the true vehicle position begins to deviate from desired location. This is
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expected as similar errors were seen in the estimates for the open-loop case. Similar

results are obtained for the sawtooth path type.
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Fig. 30. Desired path tracking using closed-loop guidance for a 12.97 meter spatial

period and 0.87 meter amplitude path. Magenta lines are the desired vehicle

position, red lines are the estimated vehicle position, and blue lines are the

true vehicle position.

The simulations from the previous section are repeated for the closed-loop case

with the control pairings from Table VII. The surface and contour maps of final

position error as a function of spatial period and amplitude for the sinusoidal case can

be seen in Figs. 32 and 33. These examples clearly outperform the open-loop cases for

the same trajectories, Figs. 25 and 26, due to the additional accelerations generated in

the guidance law. However; the acceptable (1%) range, remains virtually unchanged

(small errors in position estimates translates to small additional acceleration terms).

Similar results are obtained for the sawtooth path-type. However, the simulated

vehicle is no longer running straight trajectories. A more robust simulation is needed



57

−20 0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(m)

(m
)

Fig. 31. Desired path tracking using closed-loop guidance for a 43.79 meter spatial

period and 0.87 meter amplitude path. Magenta lines are the desired vehicle

position, red lines are the estimated vehicle position, and blue lines are the

true vehicle position.
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Fig. 32. Sinusoidal path parameters vs. estimation error using closed-loop guidance,

80 features, and 25 meter sight distance.
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Fig. 33. Sinusoidal path estimation error contours using closed-loop guidance, 80 fea-

tures, and 25 meter sight distance.

where corrects are made to straight line courses once estimated position errors reach a

certain size in order to be more consistent with sawtooth path types. Again, additional

control is used and it outperforms the open-loop simulation for the same desired

nominal trajectory.

3. Benefits of Integrated Estimation and Control

The PD controller from the previous section is used to demonstrate the importance

of taking estimation into account when choosing a path. Generally in the closed-loop

setting, the more nominal acceleration a path requires the larger the total acceler-

ation will be. However, due to more inconsistent estimation results the corrective

acceleration terms for lower nominal acceleration paths are sometimes rather large.

At some point, the additional corrective acceleration terms will outweigh the initial

cost benefits of the “lower cost” nominal path. In these cases a “higher cost” nominal
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path should be used.

With no specific vehicle model, the total acceleration for a path is used as a mea-

sure of the control cost. The true control cost would certainly be vehicle dependent

and require knowledge of the platform for simulation. The total acceleration used is

a simple and practical substitute assuming larger or more accelerations will incur a

larger control cost.

The acceleration contours for the closed-loop case can be seen in Fig. 34. As the

spatial period is increased the total acceleration initially decreases drastically before

leveling out and eventually beginning to increase. The increase in acceleration is

entirely due to the corrective acceleration terms as the nominal accelerations continue

to decrease as the spatial period increases. Fig. 34 clearly shows that approximately

15 meter spatial periods are the most efficient for this particular simulation in terms of

total acceleration used. The acceleration demands more than doubles by increasing

the spatial period from 15 meters to 40 meters yet the estimation errors actually

increases, shown in Fig. 33.

The evaluation index of total acceleration multiplied by the estimation error with

even weights on each component is applied to the closed-loop simulations. This cost

function rewards accurate estimates with minimal accelerations; while simplistic it

captures the essence of the trade off between control cost and estimation accuracy

in a crude manner. It becomes clear for this particular measure that the use of

excessively costly nominal paths is unwarranted as their is little if any estimation

accuracy gain compared to the significant acceleration increase. Additionally, using

low cost nominal paths also becomes undesirable, notably due to the poor estimation,

but also due to the increased control required. Fig. 35 displays the associated contour

lines of the ad hock evaluation function.

To emphasize the connection between estimation and control, a single varied
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Fig. 34. Total acceleration contours as a function of path parameters for sinusoidal

paths using closed-loop guidance, 80 features, and 25 meter sight distance.
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path parameters for sinusoidal paths using closed-loop guidance, 80 features,

and 25 meter sight distance.
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parameter is used with a fixed amplitude of 0.87 meters. Fig. 36 shows the estimation

error as a function of spatial period for sinusoidal paths with 0.87 meter amplitude.

Fig. 37 shows the total accelerations for each path, demonstrating the less accurate

estimates of larger spatial period paths can result additional, undesired accelerations.

It becomes clear that for this particular configuration, it is ideal from a estimation

and control perspective to use spatial periods in the range of 10 to 20 meters. Any

longer, and the estimates degrade (and costs rise slightly), any shorter and the control

cost increases rapidly with little or no estimation benefit. Again, using the simple

index of total acceleration multiplied by the position estimation error, the desired

spatial period is easily identified and Fig. 38 shows the minima at approximately a

13 meter spatial period.
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Fig. 36. Position error vs. spatial period for sinusoidal paths with 0.87 meter ampli-

tude using closed-loop guidance, 80 features, and 25 meter sight distance.

These simulations were done with a simple damped oscillator model to provide
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Fig. 37. Total acceleration vs. spatial period for sinusoidal paths with 0.87 meter am-

plitude using closed-loop guidance, 80 features, and 25 meter sight distance.

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

Spatial Period (m)

E
rr

or
 *

 A
cc

el
er

at
io

n 
(m

2 /s
2 )

Fig. 38. Total acceleration multiplied by position error vs. spatial period for sinusoidal

paths with 0.87 meter amplitude using closed-loop guidance, 80 features, and
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the guidance law with no vehicle model. The use of more sophisticated guidance

laws should reduce the phenomenon of increased control cost due to poor estimates;

however, the examples demonstrate that poor path choices will undoubtable reduce

the effectiveness of the guidance, generating erroneous controls due to the less than

stellar accuracy of the egostate estimates. There is a need for estimation to be

considered in path selection, not just to meet estimation accuracy requirements, but

to reduce control cost as well.

D. Summary

A hallway simulation has been developed for UGVs using camera-aided INS navi-

gation. A unit sphere based complementary EKF was implemented in simulations

to estimate vehicle egostates as the UGV traversed the hallway using just an IMU

and the bearing measurements of unknown feature points captured with a monocular

camera.

It is clear that nearly straight trajectories are not a viable option for accurate

estimation. Since the system must be excited in some manner, two very simple path

types were simulated. The sinusoidal and sawtooth paths were shown to provide

the system with enough data to accurately estimate vehicle egostates. This was

accomplished without the need for a vehicle motion model making results, and the

estimator, applicable to most UGV types. It was also demonstrated that a relatively

small number of features are required for accurate egostate estimation.

A simple closed-loop guidance law was developed and demonstrated the egostate

estimates were sufficiently accurate to be used in guidance laws. A clear benefit

to path selection with estimation accuracy as a criterion was shown. Cases where

demonstrated where higher initial cost trajectories were shown to be favorable to
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lower initial cost trajectories because of additional accelerations generated in the

guidance law due to poor estimation accuracy and consistency.
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CHAPTER V

TOWARDS INTEGRATED ESTIMATION AND CONTROL

A. Introduction

Given specific vehicles, environments, guidance laws, sensors and estimators; there is

clearly a “most desirable” path choice for the proper balance of control cost versus

estimation accuracy. While what that balance is is highly debatable and how to

capture this relationship in an effective manner is anything but simple, the work in

this chapter is focused on possible methods and obstacles of integrating estimation

and control.

Recall, the goal behind integrated estimation and control is to generate more

efficient controls by accounting for estimation accuracy when selecting a trajectory to

follow. The error and acceleration contours for position error and acceleration, seen

in Figs. 33 and 34 in Chapter IV, clearly demonstrated that accurate estimation can

lead to more efficient control commands from a given guidance law. The simplistic

cost function of total acceleration multiplied by the estimation error, seen in Fig. 35,

also captured this relationship and could be used to select path parameters after an

exhaustive search in simulation or a controlled setting. Unfortunately, exhaustive

searches are not generally implementable in the field and there is no truthing to pro-

vide estimate error values (or the estimator would not be needed), so alternative path

selections must be developed in order to be applicable in new, unknown environments.

A proactive path selection approach is investigated with the intent of using cur-

rent filter states to aid in path selection. Here an N-step covariance based path

selection method is considered and shown to be undesirable currently, due to estima-

tor overconfidence. A 6DoF observability analysis is performed and gives incite into
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the overconfidence of the filter and other potential path selection criterion.

Finally, a reactive path selection method involving acceleration monitoring is

investigated and shown to have some promise. The time history of accelerations is

used to determine if more or less nominal control input should be used. It is shown

to accurately identify the desired path parameters from earlier sections.

B. N-step Covariance Optimization

To maximize the accuracy of the egostate estimates the most obvious criterion to

optimize is the expected covariance of those states. To do so, the future covariance

must be predicted for a potential path given current filter states. An N-step ahead

path optimization that minimize the expected value of a joint estimation and guidance

cost function (involving the state estimates and their covariance as well as control

costs) is developed in [48]. They make small perturbations to a nominal path in order

to identify feature locations and avoid collisions with minimal additional control effort.

However; their system has the benefit of GPS signals, which are used for navigation,

and only a small number of features to track in order to avoid collision. In this case

the path perturbations are designed primarily to affect the estimates and covariance

for the features, not the egostates themselves. Due to the GPS signal the egostate

estimates are quite good, although perturbations improve observability for the vehicle

[38], the largest uncertainties lie in the feature states and those covariances will be

the most affected by the additional guidance. Vision SLAM egostate estimates are

highly sensitive to changes in feature state estimates due to large covariance values (

because there is no GPS signal to rely on, the features are vastly more important).

In the vSLAM case, changes made to the path will affect the feature state estimates,

but it will also highly influence the egostate estimates, complicating the matter.
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The idea of using estimated covariance as a selection criterion is desirable and is

investigated here. Initially the covariance values are monitored for accuracy, Fig. 39

shows the final position error and 3-sigma bound at 75 meters for 0.87 meter amplitude

sinusoidal paths over several spatial periods. Similar, but slightly less accurate results

are seen for the sawtooth path in Fig. 40. Both figures clearly suffer from filter

overconfidence for larger spatial period paths, were the position error is actually larger

than the 3-sigma bounds. Overconfidence is known to plague EKF implementations

of vSLAM, [29]. Currently covariance does not appear to be a reliable indicator of

performance and it seems highly unlikely covariance based path selection, based on

estimated future covariance, would be viable.
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Fig. 39. Position error and 3-sigma value vs. spatial period for sinusoidal paths with

0.87 meter amplitude using closed-loop guidance, 80 features, and 25 meter

sight distance.

To verify this in simulation, a “designer” path was generated by allowing the

filter to propagate 250 steps into the future for several potential paths, then the path
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Fig. 40. Position error and 3-sigma value vs. spatial period for sawtooth paths with

0.87 meter amplitude using closed-loop guidance, 80 features, and 25 meter

sight distance.

with the smallest position covariance per meter of forward travel was selected. After

the UGV moved 250 steps down the preferred path, the selection process was repeated

for another set of potential paths extending out an additional 250 steps. Because this

was done in simulation, the filter did not have to estimate future covariance for each

path, but was instead allowed to use the true covariance results due to each path

in the evaluation. Even so, the designer paths generated did not improve estimator

performance. Path selection succeeded in generating more confident estimates, but

not necessarily a more accurate ones.

Overconfident filters are common in EKFs, especial in the case of significant

linearization error or consistently low observability. The complementary form filter

removes the nonlinear motion model, but the constraint equations contain nonlinear

terms (similar to the nonlinear mapping from world coordinates to the pixel values in
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standard SLAM and vSLAM). The most significant linearizations are due to errors in

range estimates. The range based linearization errors are inherit in the system, but

they and other states can be more accurately estimated and with valid covariance if

they are made more observable.

C. 6DoF Observability Analysis of vSLAM Systems

Observability analysis is an excellent way to gain incite into potential pitfalls for a

given estimator. By identifying the expected observable states as functions of vehicle

motion the designer can better understand the source of estimation error and find

methods to mitigate its occurrence. The observability analysis of vSLAM has been

well treated, however the majority of these analysis are limited to the much simpler

2D planner case [18], [37], [46]. Six degree of freedom (6DoF) SLAM observability

analysis has also been treated, but generally includes range measurement along with

the bearing measurements to aid the INS and the results are not applicable to vSLAM

applications. The same procedure applied to range and bearing SLAM in [5], [24] is

applied to 6DoF vSLAM observers here and results are compared.

The filter carries 15 egostate estimates including six states to estimate the gyro

drifts and accelerometer biases. Drift and bias are not technically required to run the

filter. They are used because estimating the drift and bias mitigates errors in the INS

position and attitude solutions that are used in the constraint equation and make the

observation linearizations more accurate. Because they are not truly needed, and for

simplicity, they are not include in the observability analysis. Nomenclature for this

section can be seen in Table IX.

Without further delving into the unit sphere development [43], it suffices to

know the reduced form of the transition matrix, F, and linearized observation matrix
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Table IX. Observability Analysis Nomenclature

Notation Definition

F Transition matrix

H Observation matrix

Hδr Position error observation submatrix

Hδα Attitude error observation submatrix

Hδp Feature error observation submatrix

[×f ] Skew-symmetric specific force matrix

i Feature indexing

j Time indexing

H = [HT
1 · · ·HT

N ]T for N visible targets. The F matrix from Chapter III is modi-

fied by removing the drift and bias components and written in the continuous time

framework. At time j, F can be can be written as

Fj =



0 I 0 0 · · · 0

0 0 −[×f j] 0 · · · 0

0 0 0 0 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 0


(5.1)

and Hj
i is

Hj
i = [Hj

δr,i 0 Hj
δα,i · · · Hj

δp,i · · · ] (5.2)

where Hj
δr,i, Hj

δα,i and Hj
δρ,i are the 2× 3 observation submatrices.
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1. Instantaneous Observability

The instantaneous observability of an n state system is the collection of feature states

that are observable due to sensor measurements from a single time segment. The

instantaneous observability matrix at time j can be computed as

Oj = [(Hj)T , (HjFj)T , (Hj(Fj)2)T · · · (Hj(Fj)n−1)T ]T (5.3)

where the number of observable states is equal to the rank of Oj. For this system

(Fj)m = 0 for m > 2 and the instantaneous observability matrix for a single feature

can be written as

Oj =


Hj
δr,1 0 Hj

δα,1 Hj
δρ,1

0 Hj
δr,1 0 0

0 0 −Hj
δr,1[× f j] 0

 (5.4)

The matrix Oj is 6 × 12 and clearly has rank six or less, meaning that at most

six of the desired 12 filter states can be observed from a single time period for a single

feature. Adding a second feature generates the following instantaneous observability

matrix

Oj =



Hj
δr,1 0 Hj

δα,1 Hj
δρ,1 0

Hj
δr,2 0 Hj

δα,2 0 Hj
δρ,2

0 Hj
δr,1 0 0 0

0 Hj
δr,2 0 0 0

0 0 −Hj
δr,1[× f j] 0 0

0 0 −Hj
δr,2[× f j] 0 0


(5.5)

Now Oj is 12 × 15 but will have at most nine observable states (the skew-

symmetric terms only provides two independent rows). The addition of more features

will not help, increasing observable states by at most two while increasing the filter
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size by three states. The observability for a single time instance will be rank deficient

by N + 4 for N ≥ 2 features.

The addition of a range measurement would lead to a 9 × 12 and a 12 × 15

matrix and eight and 11 observable states respectively [5]. For range and bearings

SLAM the trend continues, and given appropriate vehicle motion the instantaneous

observability will remain rank four deficient regardless of the number of features. In

vSLAM, with no range sensor, requires at least two time steps to generate range and

orientation values. Therefore, the estimator will always be severely rank deficient in

terms of instantaneous observability, a far cry from range and bearings SLAM.

2. Total Observability

The total observability matrix (TOM) is a measure of the observable states from

the first measurement time period to the jth measurement time period and can be

represented as

Oj
TOM =



O1

O2eF
1∆1

...

OjeF
j−1∆j−1...F1∆1


(5.6)

where ∆i is the time between measurements i − 1 and i. For the single target case,

OTOM can be generated for two time periods using a Taylor series expansion of eF
1∆1

.

eF
1∆1 ≈ I + F1∆1 (5.7)
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resulting in

OTOM =



Hj
δr,1 0 Hj

δα,1 Hj
δρ,1

0 Hj
δr,1 0 0

0 0 −Hj
δr,1[× f j] 0

Hj+1
δr,1 −Hj

δr,1[× fj]∆
j Hj+1

δα,1 Hj+1
δρ,1

0 Hj+1
δr,1 −Hj

δr,1[× f j]∆j 0

0 0 −Hj+1
δr,1[× f j+1] 0


(5.8)

The matrix will be rank nine when f j × f j+1 6= 0 and noting Hδr,1 and Hδα,1

vary with time provided there is some vehicle translation. This leaves the estimator

three states short of full observability, the best result possible since there is no global

reference.

In order to study the total observability rank of the system over time, a much

more convenient format is available. If null(Oj) ⊂ null(Fj) ∀j then rank(Oj
TOM) =

rank(Oj
SOM), [24], where

OSOM = [(O1 )T (O2 )T . . . (Oj )T ]T . (5.9)

An equivalent requirement is the basis vectors of Oj must span the basis vectors of Fj.

For the two feature case it can be assumed that [(Hj
δr,1)T (Hj

δr,2)T ]T to be rank three.

The sixth through ninth rows of Oj span the rows of Fj associated with the identity

matrix and the 10th through 15th rows of Oj will span the rows of Fj containing

[×f j], allowing the use of OSOM to analyze system observability rank for two or more

features.
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For two time steps and two features OSOM can be written as

OSOM =



Hj
δr,1 0 Hj

δα,1 Hj
δρ,1 0

Hj+1
δr,1 0 Hj+1

δα,1 Hj+1
δρ,1 0

Hj
δr,2 0 Hj

δα,2 0 Hj
δρ,2

Hj+1
δr,2 0 Hj+1

δα,2 0 Hj+1
δρ,2

0 Hj
δr,1 0 0 0

0 Hj+1
δr,1 0 0 0

0 Hj
δr,2 0 0 0

0 Hj+1
δr,2 0 0 0

0 0 −Hj
δr,1[× f j] 0 0

0 0 −Hj+1
δr,1[× f j+1] 0 0

0 0 −Hj
δr,2[× f j] 0 0

0 0 −Hj+1
δr,2[× f j+1] 0 0



(5.10)

The first eight rows can contain at most six independent rows, the next eight can

contain three more, and the last eight hold the final the independent rows assuming

f j × f j+1 6= 0, for a total of at most 12 independent rows. Although they are in

different coordinate frames than typical SLAM, Hj
δr,i and −Hj

δρ,i are still equivalent

up to a coordinate transform, representing errors associated with the relative position

of the UGV and the feature, and this generates the rank three deficiency. For two

time steps the filter should generate full observability, up to relative position, of the

system.

These results mirror that of the range and bearings SLAM problem; however,

in vSLAM the range estimates are a effectively the result of synthetic stereo. Ana-

lytically the vSLAM system may be fully observable; however, with a forward facing

camera the stereo baseline used to generate the range estimate is often far too small
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with respect to the bearing measurement errors to obtain practical observability of

the system. High update rates on the camera are valuable as a method of averaging

down measurement error, but not valuable in regard to information content from one

image to the next. Unlike range and bearings SLAM, vSLAM will gain little to no

practical observability of feature range over short time intervals. This implies that

observability of velocity, and therefore position, may be particularly weak in the di-

rection the camera faces, lending to the overconfidence of the filter for nearly straight

paths.

The observability in the direction of travel would be greatly improved if the

camera was turned to the side. However, the observability in the direction the camera

is now facing is severely reduced. Camera angles of 10, 20, and 45 degrees where

simulated in the same manner as as the zero degree camera offset in Chapter IV,

and the new camera configuration did not improve performance. In fact, the larger

the angular offset the worse the results. Observability analysis suggests even though

the observability in the direction of travel is improved now that motion is somewhat

orthogonal to the camera orientation, the lack of motion in the direction the camera

now faces makes the system highly subject to IMU biases. Because the observability

is weak in the direction the camera faces, the reduced motion in that direction further

degrades estimation accuracy.

Because the concern is always that biases will accumulate in the direction the

camera faces, a forward facing camera may be the best option. With a forward fac-

ing camera, the minimal orthogonal motions, and associated biases, becomes highly

observable. Again, this leaves the direction of travel less observable, but this config-

uration also generates the largest possible signals in the direction the camera faces.

This helps identify the final IMU bias and appears to be the best compromise.

To better identify specifically which states are and are not observable the observ-
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ability Grammian can be applied, which is constructed from either the instantaneous

or total observability matrices as

Q = OTO (5.11)

The eigenvectors associated with the zero eigenvalues of Q are the unobservable sub-

space of the filter states. Eigenvectors with large eigenvalues are strongly observable.

Based on the analytical form of Q = OTOM
TOTOM , the resulting zero eigenvalues

associate with linear combinations of errors in the vehicle positions and feature states.

There is no manner in which the vehicle can translate or rotate, regardless of features

or camera angles, to provide full observability of the vehicle position. This is due

the lack of a global reference, the system will be observable up to the local frame

as expected. However, the velocities and attitude states are in the observable space

so with proper vehicle motion those states are observable. With full observability of

velocities and attitudes, drift in the vehicle position estimates can be mitigated, but

not eliminated, leading to long term accuracy of the egostate estimation.

3. Observability Recap

The unobservable subspace associated with the instantaneous observability Gram-

mian will be of rank six or higher. For N features vSLAM will be N + 4 states short

of full observability for N ≥ 2. In range and bearings SLAM, only a single subspace

associated with velocity and/or attitude will be unobservable in the instantaneous

case and [5] analytically identified that subspace as a function of the current vehicle

motion. For vSLAM there will be N +1 unobservable subspaces that include velocity

and/or attitude, making similar analysis of the unobservable states significantly more

complicated. A more comprehensive study is warranted in the hope of producing a

corollary result for vSLAM, one that may be used in path planning. When consid-
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ering the total observability over multiple camera measurements, vSLAM gains full

local observability. However, as discussed before, the range observability is a function

of camera baseline, and often remains minimally observable due to bearings sensor

error.

D. Path Selection via Acceleration Monitoring

The concept is for the vehicle to vary its path and monitor the total acceleration

(control) commands issued by the guidance laws in order to identify the preferred

path. Unfortunately the vehicle does not know the optimal total acceleration values,

so the relative changes in acceleration as a function of path is monitored. Taking

inspiration from the results seen in Figs. 36 through 38 of Chapter IV, it appears

that in the sinusoidal case, the optimal estimation results coincide nicely with the

spatial period that produced the minimal total accelerations. A smaller spatial period

may generate better estimation results, but it was shown there would be only minor

improvement at the expensive of a significant acceleration increase. Longer spatial

periods quickly incur larger estimation errors.

To demonstrate the merits of this approach, the UGV errors on the side of

estimation accuracy and begins moving with a relatively small spatial period, and

slowly increase the period, Fig. 41. The concept is to reduce nominal accelerations

until the total acceleration commands produced begin to level off. The results from

Chapter IV are based on the total accelerations for the life of the path and not the

acceleration at any given point so a running average will be taken.

The resulting acceleration profile for the path in Fig. 41 can be seen in Fig. 42.

The blue lines are the instantious acceleration commands as functions of forward

progress, and are clearly too noisy to be an effective indicator or performance. The
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red line is the running average acceleration over the previous half period (i.e. averaged

results will contain data from the current and previous spatial period portion of the

run, the window size is designed to average the entire previous half period), and is

very smooth. The plot shows dramatic reductions in acceleration commands over

the first 10 meters, with a smaller reduction between 10 and 20 meters of forward

progress. After the 20 meter mark, little to no reduction is seen in the acceleration

commands.

At 20 meters of forward progress down the hallway the simulation is using a 15

meter spatial period path, that appears to be the ideal spatial period in terms of

acceleration requirements, it also matches the earlier results seen in Fig. 34. This

demonstrates that the acceleration required for a single half period is representative

of the average acceleration for the particular spatial period over the course of a 75

meter run. This is again verified in Fig. 43 where the discrete average acceleration

per half period is shown as a function of the spatial period and closely matches the

profiles from Chapter IV.

If a vehicle carefully monitors the its acceleration profile there is the potential

to exploit the information to determine if more or less nominal control should be

applied. This requires a very rapid assessment in a hallway environment, but would

easily apply to UAVs, especially high-fliers, who have long flight times in which to

identify and use the appropriate flight profile. This approach is crude, but is more

desirable than simply setting path parameters without any additional information.

In the previous example it was clear in the first 10 meters of hallway that the control

cost could be reduced to less than half the original value without drastically affecting

estimate quality.

The same simulation is run but with 7.5 meters of sight distance. The results

are shown in Fig. 44 where the ideal acceleration commands were reached at a much
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Fig. 41. Sinusoidal path with one meter amplitude, using closed-loop guidance, 25 me-

ter sight distance, and increased spatial period every half cycle. Magenta lines

are the desired vehicle position, red lines are the estimated vehicle position,

and blue lines are the true vehicle position.
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Fig. 42. Acceleration values as function of forward progress in blue, smoothed accel-

eration profile in red, for a sinusoidal path using closed-loop guidance, one

meter amplitude, 25 meter sight distance, and increased spatial period every

half cycle.
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Fig. 43. Average acceleration of each half period as a function of spatial period for

sinusoidal path using closed-loop guidance, one meter amplitude, 25 meter

sight distance, and increased spatial period every half cycle.

earlier point. The ideal values appears to be near 10 meters of forward progress

that corresponds to a nine meter spatial period. Similarly, by adjusting the path

amplitude the desired spatial period is also affected, Fig 45, although less dramati-

cally. This demonstrates that the acceleration commands are sensitive to the differing

environment and sensor capabilities.

In an unknown or changing environment, monitoring the acceleration itself may

prevent the use of too little or too much acceleration while maintaining solid estimator

accuracy. Methodical alterations of nominal acceleration could be performed to iden-

tify a safe, yet cost effective path. Or, intermittent spot checks could be performed

to see if increasing or decreasing nominal acceleration rates is warranted.
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Fig. 44. Acceleration values as function of forward progress in blue, smoothed acceler-

ation profile in red for a sinusoidal path using closed-loop guidance, one meter

amplitude, 7.5 meter sight distance, and increased spatial period every half

cycle.
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Fig. 45. Acceleration values as function of forward progress in blue, smoothed acceler-

ation profile in red for a sinusoidal path using closed-loop guidance, 0.5 meter

amplitude, 25 meter sight distance, and increased spatial period every half

cycle.
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E. Summary

Currently covariance based path optimization appears to be a misguided approach.

Therefore, a predetermined path approach would be advisable. The choice of which

prescribed path (a moderately integrated approach) may be obtainable by monitoring

the corrective acceleration terms as assigned by the guidance law. For a truly inte-

grated estimation and control approach either methods for more reliable covariance

estimates or alternative path selection criterion must be investigated.

Based on the observability analysis, the vSLAM approach is significantly less

observable over a single measurement time period than standard SLAM, because

three states are carried per feature, and only two measurements are generated. The

total observability results match for two or more time instances with appropriate

vehicle excitation and the vehicle has full observability up to the local frame. The

difference lies in relying on artificial stereo to act as the range sensor as opposed to

an actual range measurement, this suggests that even though the vSLAM system

analytically gains the required observable states over a second time epoch, many of

those states are not practically observable. Additionally, the range estimates comes

from multiple measurement times, and as such is subject to multiple linearization

points, leading to an artificial inflation of the observability matrix.

A more in depth investigation into the specific unobservable states could yield

methods for path optimization/selection by either improving observability or mitigat-

ing the filter overconfidence [18] and allowing covariance to be used. Another possible

approach is to move to a higher-order or particle filter approach to better handle the

nonlinearities in the system, especially those due to errors in the range estimates [29].

Acceleration monitoring could be a viable method to identify an appropriate

spatial period for a given amplitude path. The method is responsive to environment
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changes, such as feature availability, sensor quality and path amplitude, and provides

suitable results. As indicated in earlier sections the amplitude of sinusoidal paths

should be chosen to be large, because it generally improves estimates and has little

effect on control cost for most spatial periods. The corollary approach, acceleration

monitoring to determine desired amplitude for a given spatial period, is not recom-

mended due to the smaller discrepancies in performance.
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CHAPTER VI

FILTER ORDER REDUCTION

A. Introduction

The unique observation structure of the unit sphere based filter can be exploited

in order to reduce the filter state vector size. Due to the use of measurements to

directly initialize feature error states a Schmidt-Kalman filter can be successfully

implemented. Simulations validate the results comparing them to the full vSLAM

implementation used in earlier chapters. The Schmidt-Kalman filter was introduced

to account for, but avoid estimating, biases or other model uncertainties, especially

those with poor observability, in large systems when simply ignoring those uncer-

tainties lead to unacceptable estimation accuracy. This method also reduced the

computational load on the estimator because less states are being propagated and

updated in the filter [41].

Because the bearing error covariances are directly initialized as the measurement

covariance (mapped back to the initial reference frame) and those states experience

very small updates over the life of the filter, it suggests the filter may not need

to estimate the states. However, simply dropping the states out of the estimator

completely and using the measurements “as is” with no regard of measurement error

results in unacceptable estimator performance. Implementing the Schmidt-Kalman

filter avoids estimating the initial bearings states and simply takes into account the

uncertainty in the sensor measurement. This approach will not work in a standard

SLAM or vSLAM application because the states maintained for each feature are

generally the Euclidean coordinates of the feature in world frame. Clearly, one would

be unable to remove any of those states from a filter, making this application of a
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Schmidt-Kalman filter to this vSLAM application rather unique.

B. Schmidt-Kalman Filter Development

When estimating using an Extended Kalman Filter (EKF) there may be particular

uncertainties that when ignored can cause excessive errors or overconfidence in the

estimator. However, the inclusion of these uncertainties as filter states may be unde-

sirable due to their unobservable nature or the dramatic increase to the computational

complexity of the filter. The Schmidt-Kalman filter, also known as the “Consider”

Kalman filter, allows the filter to account for the influence of those uncertainties

without the need to estimate their values [34], [51].

The development in [4] is used and starts with the standard Kalman Filter gain

and update equations.

K = (P−HT )α−1 (6.1)

α = (HP−HT ) (6.2)

x̄+ = x̄− + K(z−Hx̄−) (6.3)

P = (I−KH)P (6.4)

Consider filters partition the filter states into states to be estimated and those to

be considered, x̄ = [x|y]T . This alters the process and measurement models as well,

most notably z = [Hx|Hy][x|y]T where Hx and Hy are the portions of the original H

matrix associated with states now being estimated and those just being considered.

The covariance matrix P is also redefined in terms of Px, covariance of states to be

estimated, Pxy and Pyx, cross covariance of the states to be estimated and those to

be considered, and Py, the covariances of states to be considered.
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The new gain and update equations for the Schmidt-Kalman filter are as follows

Kx = (P−xHT
x + P−xyH

T
y )α−1

x (6.5)

αx =(HxP
−
xHT

x + HxP
−
xyH

T
y + ...

HyP
−
yxH

T
x + HyP

−
y HT

y + R)

(6.6)

x+ = x− + Kx(z−Hxx−) (6.7)

y+ = y− (6.8)

Px = (I−KxHx)P
−
x −KxHyP

−
xy (6.9)

Pxy = (I−KxHx)P
−
xyKxHyP

−
y (6.10)

Pyx = Pxy (6.11)

Py = Py (6.12)

C. Schmidt-Kalman Filter Applied to the Unit Sphere Constraint Equations

In the Schmidt-Kalman filter framework the filter includes the uncertainties of the

initial bearings measurements into the state update equations without having to up-

date the bearings themselves. The inverted matrix α will still be size m ×m for m

measurements, however the resulting gain matrix, K, will reduce in size significantly

based on the number of former states now only being considered. For an original n

state filter, if r states are kept and s are considered, K will reduce from an n × m

matrix to an r ×m matrix. For unit sphere, 6DoF vSLAM two out of three feature

states can be considered, decreasing the size of the state vector and gain matrix by

nearly 2/3rds. Further savings may also be found in calculation redundancies in the

Schmidt-Kalman filter update laws.

In the general case, the Py matrix is diagonal because y is often model parameter
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uncertainties which are independent. The Pxy and Pyx matrices begin as zero matri-

ces, then build up a covariance between considered states and the estimated states

over time. In the unit sphere case each new features initial bearings and range esti-

mate are mapped back to the original vehicle location and orientation. This mapping

inherently builds covariance between the new feature states and the existing states.

Therefore the filter will have a full Py matrix that will not be updated and a non-zero

initial Pxy and Pyx matrices that are updated.

There will be available data going unused in the implementation of the Schmidt-

Kalman filter, but the computational savings may be worth the trade off in accuracy.

A thorough investigation into computational savings would require careful optimiza-

tion of both the full and Schmidt-Kalman filters, and is not performed here. In this

case only the estimation accuracy of a vSLAM application is investigated.

Using the same simulation as Chapter IV the Schmidt-Kalman filter is applied

with an open-loop controller. Bearing measurements are still updated while the range

estimate is being initialized, and once the feature is fully initialized into the filter the

bearings states are dropped out of the state vector and are simply considered from

that point on.

Comparing the Schmidt-Kalman results in Figs. 46 and 47 to the open-loop

results of Chapter IV seen in Figs. 25 and 26, the Schmidt-Kalman filter does not

perform as well as the full implementation. The acceptable control region (1% or

smaller error) is reduced to about half the size, but the filter does achieve more than

a 50% reduction in state vector size.

The closed-loop simulation results for the Schmidt-Kalman filter are shown in

Figs. 48 through 51. Most notably, the 1% or smaller error region is dramatically

increased and closely matches the full EKF case, Figs. 32 and 33. It is of interest that

the 1% or less control region increases between the open and closed-loop Schmidt-
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Fig. 46. Schmidt-Kalman filter: Sinusoidal path parameters vs. estimation error using

open-loop guidance, 80 features, and 25 meter sight distance.
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ance, 80 features, and 25 meter sight distance.
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Kalman filter case while the full EKF implementation showed almost no change from

open to closed-loop. Also, for closed-loop control, the total accelerations required

is, on average, double for the Schmidt-Kalman filter compared with the full EKF

implementation.

It is suspected the additional accelerations generated by the closed-loop control

was required for the Schmidt-Kalman filter to provide sufficient information to update

filter states. With a fixed covariance for bearing error, after a feature has been seen for

a period of time the discrepancies in the constraint equations must be larger for the

reduced order case than the full implementation before updates to states are made.

Otherwise the errors in the constraint equation could be accounted for by the bearing

uncertainty and no action would be taken by the filter. The additional accelerations

revealed errors in the constraint equations that could not be accounted for by the

bearing uncertainty, allowing the filter to updated vehicle states more effectively and

producing better egostate estimate accuracy.

D. Summary

The filter state reduction of a vSLAM application is a novel result due to the unit

sphere observation model. While not validating the choice of a Schmidt-Kalman filter

over the standard EKF formulation, the Schmidt-Kalman filter was shown to have

similar accuracy in close-loop simulation at the expense of additional control cost.

Depending on the vehicle and computers being used there may in fact be advantages

as nearly a 2/3rds reduction in filter size was achieved.

While untested, there is the potential to use the unit sphere constraints not just

for vSLAM but for SLAM applications as well. Effectively reversing the constraint

equations used here and using current range measurements with current bearings at
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Fig. 48. Schmidt-Kalman filter: Sinusoidal path parameters vs. estimation error using

closed-loop guidance, 80 features, and 25 meter sight distance.
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each time update the filter would only need to keep initial bearings as filter states.

This may not be a efficient utilization of resources compared to standard SLAM

methods because it only produces two measurement equations per feature, and not

three. However, because range measurements are taken at each update, only two

states, the initial bearings, are are needed. The unit sphere approach with range

would then allow the Schmidt-Kalman filter to be applied to the initial bearings

states, removing feature states from the estimator entirely, resulting in a 15 state

SLAM application.
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CHAPTER VII

A HIGHER-ORDER METHOD FOR COOPERATIVE, DECENTRALIZED

SOURCE LOCALIZATION

A. Introduction

Cooperative agent-based methods are used to generate solutions to many problem

types. The solution methods are referred to as cooperative because they are carried

out by a team of agents where the sharing of information is paramount. Although the

types of problems vary widely, a common feature of these methods is the sharing of

measurement information among team members. Commonly, the autonomous agents,

robotic or otherwise, use the shared information to create a mathematical model and

identify possible solutions to difficult problems. Based on these test solutions the

agents update their position in the solution space, resample, and re-evaluate those

possible solutions until an acceptable solution is attained. In many instances, the

agents work in a decentralized manner; that is, after information is exchanged, the

agents individually create models, identify possible solutions, update, etc.

An application of the above general procedure is the cooperative localization of

optima or iso-contours of unknown environmental fields, such as odor plumes [21],

[49], acoustic sources [6], or (underwater) chemical plumes or heat sources [23]. In

these scenarios a source emits a measurable scalar field and a team of robotic agents

measure the scalar field. Subsequent to sharing their position measurements and

scalar information among themselves, the agents individually determine their position

update, which they believe will take them closer to the unknown source location,

[14], [36]. The robotic agent controls are categorically represented as decentralized

feedback controls.
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There has been a lot of work done using gradient based approaches for source

localization, often with a single vehicle, [21], [39], and the results show that multiple

sensors on a single vehicle can work but are often inadequate because of the close

proximity of the onboard sensors. It has also been demonstrated that multiple vehicle

teams that share and integrate information can increase the efficiency and robustness

of the system [11], [16]. Using multiple agents with single sensors effectively extends

the distance of sensors coverage, and because each agent can move independently,

the multi-agent system is exploited by allowing each agent to update based on its

quadratic approximation to the environment.

In earlier work, a decentralized control method for swarms of agents using a

quadratic model approximation was developed to identify possible source locations

[19]. The quadratic approximation approach is attractive because it leads to a lin-

ear update equation for the agent positions. In this current study, the quadratic

model is replaced by higher-order approximations to help identify possible source lo-

cations. This creates a nonlinear expression for the agent position updates, which is

solved using a Lagrangian expansion technique [1]. The motivation for investigating

a higher-order methods is to attain improved performance in the cooperative source

localization problem without a significant increase in computational complexity.

B. Review of the Quadratic Model Approach

For simplicity, consider a group of robotic agents that operate in the plane. Their

task is to localize a source that emits a measurable scalar field, F (x, y). Assume that

the source appears as a minimum of the field, so from an optimization perspective,

the function F (x, y) becomes an objective function to be minimized. This assumption

is in keeping with many applications; for example, chemical plumes, and light and
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acoustic beacons satisfy this property [7], [35]. It is assumed that the agents can

evaluate the field via a sensor (which amounts to a function evaluation) and can

communicate their positions (or locations) and sensor measurements to neighboring

agents.

To simplify the discussion, it is assumed that the agents are in a region where

the Hessian matrix of the objective function remains positive definite and the ob-

jective function decreases with a unit step along the search direction. Several useful

modifications to the eventual update algorithm are presented in [19] for the case that

these conditions are not satisfied. The control law for the ith agent begins with a

local quadratic approximation to the true field.

F (x, y) ≈ a0 + a1(x− x∗) + a2(y − y∗) +
1

2
a3(x− x∗)2

+ a4(x− x∗)(y − y∗) +
1

2
a5(y − y∗)2 (7.1)

In this equation, F (x, y) represents the true field, the pair (x∗, y∗) represents the

location of the ith agent, and aj are unknown coefficients that define the quadratic

approximation. This equation can be written in a convenient matrix form.

F (q) ≈ a0 + gTq +
1

2
qTHq (7.2)

Here, q = [x− x∗, y− y∗]T , g = [a1, a2]T , and H = [a3, a4; a4, a5]. The unknown

coefficients aj appear linearly and therefore they can be easily determined by fitting

the quadratic model to the sensor measurements of neighboring agents. The gathered

set of equations can be written in one matrix form, such as Da = f , where D is a

P × 6 matrix and p is the number of measurements; a is a 6× 1 column arrangement

of the unknown coefficients aj; and f is a p× 1 column arrangement of corresponding

sensor readings. A least square solution is applied if p > 6.
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Once the coefficients defining the quadratic model are computed, the position

update for the ith agent is determined from equating the gradient of the field approx-

imation to zero. This gives an update equation for the ith agent that depends on the

model.

[x∗,k+1, y∗,k+1]T = [x∗,k, y∗,k]
T −H−1

k gk (7.3)

The position update marks the presumed source location, which is the minimum of

the quadratic model that best fits the data supplied by the neighboring agents. The

index k denotes the current position and information whereas k + 1 denotes the new

position.

Notationally, equation (7.3) can be written as δk+1 = δk −H−1
k gk. Notice that

Hk is the Hessian matrix of the local quadratic approximation associated with the

current location of the ith agent, whereas gk is the corresponding gradient vector.

This update equation is the basis of the quadratic method of decentralized control for

a swarm of agents performing source localization: each agent uses neighboring agent

information to determine the coefficients aj and then updates its position accordingly.

The method is seen as a variation on the theme of quasi-Newton methods for function

minimization, or perhaps a Newton-type method [32] that approximates both the

Hessian and gradient by finite differences.

Once the agents have updated their positions, they can resample and reapply

equation (7.1) for each agent. Many implementation details of this method, such as

dealing with non-positive definite Hessians and constrained updates, are omitted here

but are addressed in [19]. The steps to implementing the Quadratic Model Approach

are given below:

1. Each agent evaluates the field with its sensor and communicates their current

positions and sensor measurements to neighboring robots. The communication
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can be done wirelessly.

2. Each agent accepts the shared information and fits the neighboring agent data

to a quadratic model in matrix form, Da = f .

D =



1 (x1 − xi) (y1 − yi) · · · 1
2
(y1 − yi)2

1 (x2 − xi) (y2 − yi) · · · 1
2
(y2 − yi)2

...
...

... · · · ...

1 (xp − xi) (yp − yi)
. . . 1

2
(yp − yi)2



a =[ a0 a1 a2 a3 a4 a5 ]T

f =[ F (x1, y1) F (x2, y2) . . . F (xp, yp) ]T

The index p denotes there are p participating agents, i.e., the ith agent and

p − 1 neighboring agents. The various agent locations help compose the ma-

trix D, whereas the corresponding sensor readings help compose the vector f .

The unknown coefficients aj are determined from this equation using the prin-

ciple of least squares, which an agent’s micro controller can perform using QR

factorization or any other robust method.

3. Once the coefficients of a are determined, the gradient vector g = [a1, a2]T ,

and Hessian matrix H = [a3, a4; a4, a5], are formed and the agent can update

its position according to equation (7.3), which is restated here.

[x∗,k+1, y∗,k+1]T = [x∗,k, y∗,k]
T −H−1

k gk (7.4)
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C. A Higher-order Extension

The quadratic approximation can be extended in a straightforward way, starting with

a higher-degree polynomial representation of the scalar field for the ith agent.

F (x, y) ≈ a0 + a1(x− x∗) + a2(y − y∗) + a3(x− x∗)2

+ a4(x− x∗)(y − y∗) + a5(y − y∗)2

+ a6(x− x∗)3 + a7(x− x∗)2(y − y∗) + . . . (7.5)

As before, the pair (x∗, y∗) represents the location of the ith agent and aj are unknown

coefficients that define the polynomial approximation. The order of the polynomial

representation is given as n. The process for developing an update equation for the

ith agent follows the steps that were performed for the quadratic method. A group of

neighboring agents communicate their sensor readings and locations to the ith agent,

and because the unknown coefficients aj appear linearly, they can be determined by

fitting the higher-order model to the neighboring true sensor measurements. Again,

the set of equations can be written as a matrix equation Da = f . Where D is

a p × M(n) matrix, p is the number of neighboring measurements, and M(n) is

the number of unknown coefficients; a is a M(n) × 1 column arrangement of the

unknown aj coefficients and f is a p× 1 column arrangement of corresponding sensor

readings. The number of unknown coefficients depends on the order of the polynomial

representation.

M(n) =
1

2
(n− 1)(n+ 4) + 3 (7.6)

It should be noted that M(n) is the minimum number of data points the ith agent

requires to create its nth order model. This does not necessarily require M(n) agents,

but rather M(n) viable data points, some of which could possibly be maintained in

memory assuming recent measurements are still accurate.
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As before, once the coefficients that define the polynomial model are computed,

the position update for the ith agent is determined from equating the gradient of

the field approximation to zero. It is convenient to write the gradient using indicial

notation, wherein an index that is repeated within a term is summed over its range.

0 = φi + φijqj + φijkqjqk + φijklqjqkql + . . . (7.7)

This equation deserves some comments. The computed coefficients aj are contained

in the parameters φ, which can be considered as higher-order tensors. The first-order

tensor φi contains the elements of the gradient vector g from before: specifically, it

contains the coefficients from the linear part of equation (7.5); the second-order tensor

φij contains the elements of the Hessian, H from before: specifically, it contains the

coefficients from the quadratic part of equation (7.5). The higher-order φ’s contain

the appropriate remaining aj coefficients. Furthermore, qj means the jth element of q,

which is constructed as before, q = [x−x∗, y−y∗]T . Finally, if the original polynomial

representation given in equation (7.5) is order n, then this gradient equation has

polynomial order equal to n− 1.

The position update for the ith agent is constructed from the elements of q that

satisfy (7.7). Eq. (7.7) is a vector equation (i.e., q is 2× 1 column arrangement) and

there are no closed form expressions for the general polynomial form. Consequently,

to determine the elements of q, a Lagrangian expansion technique is used [1].

To begin, a `th-order expansion of qj is defined in terms of an artificial scalar

parameter λ.

qj = ε0j + λε1j + λ2ε2j + . . .+ λ`ε`j (7.8)

Here, like q, each ε term is a 2× 1 vector.

Moreover, the system is perturbed by introducing powers of the same artificial
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parameter λ into equation (7.7) as scalar multiples of the φ’s.

0 = φi + φijqj + λφijkqjqk + λ2φijklqjqkql + . . . (7.9)

Now equation (7.9) can be written using the assumed form of q, and the sub-

sequent equation can be arranged by gathering coefficients based on the associated

order of the artificial parameter λ.

0 = (φi + φijε0j) + λ(φijε1j + φijkε0jε0k)

+ λ2(φijε2j + 2φijkε0jε1k + φijklε0jε0kε0l)

+ λ3(φijε3j + . . . (7.10)

The unknown ε vectors can be determined in a recursive manner by requiring that

each parenthetical term of (7.10) independently vanish.

ε0m = −φ−1
imφi (7.11)

ε1m = −φ−1
imφijkε0jε0k (7.12)

ε2m = −φ−1
im(2φijkε0jε1k + φijklε0jε0kε0l) (7.13)

...

Because the interest lies in solving for q, which is assumed to be of order `, only the

coefficients associated with λ’s of order ` or less are considered. This results in an over-

determined system and only the first ` + 1 parentheticals must be solved; the other

higher-order terms will go unused. This truncation can lead to some approximation

error in the update; however the added information provided by this approach has

been found beneficial over the quadratic-based approach; this will be demonstrated

in the following section.

Once the ε vectors are determined, the vector q can be formed by setting the
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artificial parameter λ equal to one, which brings equations (7.7) and (7.9) into agree-

ment, as required. This gives the position update for the ith agent.

q = ε0 + ε1 + ε2 + . . .+ ε` (7.14)

or

[x∗,k+1, y∗,k+1]T = [x∗,k, y∗,k]
T

+ γ(ε0 + ε1 + ε2 + . . .+ ε`) (7.15)

Where γ is a step size parameter, 0 < γ ≤ 1. For γ = 1 the position update marks the

presumed source location, which is the minimum as approximated by the Lagrangian

expansion of the polynomial model that best fits the data supplied by the neighboring

agents. The index k denotes the current position and information, and k+ 1 denotes

the new position.

The quadratic update term, ε0, of (7.14) is solved in (7.11). Because εi, for i 6= 0,

is dependent on the higher-order tensors, shown in (7.12) and on, they are referred

to as higher-order update terms. This implies the solution update is not as simple as

a steepest decent method (of a truncated higher-order model), and does in fact take

additional information from the higher-order terms in the model.

1. Iso-contour Localization

If instead of identifying minima of a field source the interest is finding iso-contours,

the same approximation and update procedure can be used. The agents still generate

the nth order environment model F (x, y), as seen in Section C. To locate the contour

F (x, y) = c, for some constant c, sensor positions with updated with respect to the

associated (2n)th order function G(x, y) where

G(x, y) = (F (x, y)− c)2 (7.16)
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In order to update with respect to G(x, y), the same update laws as before are used

with no need to alter the update parameter ` of equation (7.14) unless desired. All

that is required is to relate the coefficients of G(x, y) to the coefficients, aj, of F (x, y)

and update as previously described.

2. Technical and Implementation Notes

The Hessian, φim, was assumed to be invertible. In the case that it is non-positive

definite, an alternate Hessian based on the absolute values of the eigenvalues of φim

can be used instead to determine an update. Also, in practice, the updates should be

constrained to create smoother paths. This can be done by adjusting the value of γ

in (7.14) as needed. For mobile robotic platforms, additional sensors/methods must

also be employed to avoid collision. Again, these and other implementation concerns

are thoroughly addressed in [19] for the quadratic method and are applicable in the

higher-order method as well.

In [11], pressure measurements are used to model a gradient map to locate an

acoustic signal. While real vehicles were not used, hand placed sensors verified that

their quadratic model equivalent algorithm worked and provided appropriate position

updates. In [6], miniature robots were equipped with temperature gauges and used

the quadratic model update law to locate a single source of dry ice. This implemen-

tation was based on that work, and returned very similar results to the numerical

simulations, in [19]. It is believed the straight forward implementation of the higher-

order update laws onto any autonomous platform with appropriate sensors should

also achieve results similar to the numerical simulations in the following section.
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D. Numerical Simulation Results

In this section some numerical simulation results are presented to gauge the efficacy

of the higher-order method. Specifically, all numerical results were achieved with

a fourth-order method, and the update vector q = ε0 + ε1 + ε2. The results are

compared and contrasted against the quadratic method results discussed in [19].

1. A Cubic Environment

First a cubic environment is considered.

F (x, y) = x2 − 0.2xy + y2 − 0.3x3 − 0.1y3 (7.17)

This function has a minimum at the origin. Results from the quadratic and fourth-

order methods are shown in Fig. 52, upper left and upper right. A total of 25 agents

are used and agent movement is indicated from ‘x’ to ‘o’. In these plots, the quadratic

method used 20 position updates with a maximum update length of 0.1 units, whereas

the fourth-order method used 25 position updates with the same maximum update

length. Both methods are able to sufficiently locate the minimum, and in each case

the minimum could be located with fewer steps but the trajectories would contain

sharp corners. The purpose of this example is to show that the higher-order method

works as well as the quadratic method for relatively simple environment models.

In practice, however, it is may not desirable nor practical to have each of the

robotic agents approach a minima. The use of supporting robotic agents, ones which

help provide a rich set of data points, may be desired. Many more complicated control

schemes may be used to control such support agents but for simplicity support agents

are stationary in this note.

In Fig. 52, bottom left, the quadratic method search agents are greatly influenced
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by the support agents. In this case it biases the model to the right of the true minima

as agents stationed to the left of zero on the x-axis measure a larger scalar value than

those to the right. This causes the mobile search agents to falsely believe the minima

is located away from the origin. Certain configurations of search versus support agents

as well as total number of agents may yield better results, but a resulting bias will

remain unless communication is severely limited (a technique referred to as “local

communication,” where the agents only use information provided by other agents

within a specified distance) or all agents are allowed to converge together. More

advanced mobile support agent models were also used and displayed similar results.

Note in Fig. 52, bottom right, the fourth-order method is not negatively influ-

enced by the supporting agents and locates the minima. Also, the support agents,

while acting in a more realistic manner, help maintain a more numerically stable

approximation model with respect to the least squares procedure.

2. A Cubic Environment Iso-contour Localization

If the interest is locating the iso-contour line, c = 20, the update law is altered as seen

in the previous section. Fig. 53, left, shows the results when F (x, y) is a quadratic

approximation and the associated G(x, y) is a fourth-order polynomial. Because the

environment model is quadratic, it does not adequately model the test environment.

The result is agents are near, but off the true contour. Fig. 53, right, shows the results

when F (x, y) is a fourth-order approximation (and therefore very accurate) and the

associated G(x, y) is a eighth order polynomial. It is clear that the higher-order

approach accurately locates the desired iso-contour.
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Fig. 52. Cubic test function: Upper left: Quadratic method. Upper right:

Fourth-order method. Bottom left: Quadratic method with stationary sup-

port agents. Bottom right: Fourth-order method with stationary support

agents.
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Fig. 53. Iso-contour localization: Left: Quadratic method. Right: Fourth-order

method.
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3. Rosenbrock Function

The Rosenbrock function presents a challenge. This popular non-convex function is

often used to test the capability of optimization methods and has a global minimum

located at (1, 1).

F (x, y) = 100(y − x2)2 + (1− x)2 (7.18)

To begin, twenty-five agents are distributed around the origin. Results from

a quadratic method and a fourth-order are shown in Fig. 54. The upper left plot

shows the quadratic model results where the quadratic model leads the agents to the

origin, after which, the agents cease to update. Due to the restrictive nature of the

quadratic model, the steep gradient of the valley sides dominate the approximation

and the more subtle gradient leading to the minima is missed. Once the robots have

converged they no longer have a rich set of data points and become more or less

stationary. Results for the fourth-order model are shown in the upper right plot.

Here, the agents move along the steep gradient to the valley, and then move along

the valley to the global minimum at (1, 1). At the final time shown, sixteen of the

twenty-five agents have located the minimum. Three of the agents are actually led

away from the plotting area because their constructed fourth-order models indicated

other possible minima. (Recall that this approach is decentralized, which means

that each robotic agent decides its own update based on the environment model and

location associated with that individual.)

The lower plots of Fig. 54 show results for the quadratic method and a fourth-

order method with stationary support agents similar to those seen in the cubic ex-

ample. Unfortunately, the quadratic method still leads the agents more or less to the

origin, and even with a more diversified data set, once they mobile agents approach a

position near (0.5, 0.5) they too cease to update. The stationary support agents were
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used with the fourth-order method, the results are shown in the lower right plot and

are a slight improvement over the no support agent scenarios.

Plots pertaining to the quadratic method use twenty position updates (more

updates did not improve performance) at a maximum update length of 0.1 units.

Plots pertaning to the fourth-order method also use a maximum update length of 0.1

units. For this maximum update length, four of the twenty-five agents converge on the

minimum in twenty position updates with no support agents, and an additional twelve

converge by fifty position updates. For the fourth-order example with support agents,

three of the thirteen mobile agents converge on the minimum in twenty position

updates, an additional four converge by fifty position updates, and an additional two

converge by seventy updates.

Although this example considers a fourth-order method on a fourth-order func-

tion, there is numerical error introduced when the agents create their environment

models, thus there is not a perfect match. More significantly, as noted earlier, the

Lagrangian expansion technique will provide some truncation error, it is encouraging

to see the fourth-order method work so well for the Rosenbrock function. Moreover,

this example suggests that the higher-order method may be useful in other numerical

optimization tasks in that the method applies to higher-dimensional problems.

4. Peaks Function

Next the MATLAB “peaks” function is considered. This multi-modal function was

used in evaluating the performance of the quadratic method in [19] and the key figures

are reproduced herein. Fig. 55 shows a collection of thirty-six agents cooperatively

localizing the global minimum of the function. The agents successfully collect around

the minimum after nearly fifty position update steps. Fig. 56 shows the same collec-

tion of thirty-six agents cooperatively localizing the minimums of the function using
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Fig. 54. Rosenbrock test function: Upper left: Quadratic method. Upper right:

Fourth-order method. Lower left: Quadratic method with stationary support

agents. Lower right: Fourth-order method with stationary support agents.
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local communication, where communication is restricted to agents within a two unit

radius. These simulations demonstrate that the quadratic method is capable of lo-

cating global and local minimums by tuning the communication radius of the agents.

However, this can be problematic since there is no reason to believe a user will have

advanced knowledge of the spatial resolution required for accurate environment map-

pings.

Fig. 55. Peaks test function: Quadratic method with global communication (Hurtado

et al., 2004).
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Fig. 56. Peaks test function: Quadratic method with local communication (Hurtado

et al., 2004).
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The performance of the fourth-order method with twenty-five agents is shown in

Fig. 57. The plots show that the fourth-order method is able to find and gather around

the global and local minimums, without any special communication features. The

results are comparable to the quadratic method using the special local communication

feature. Note that altering the communication radius for the quadratic method will

affect the outcome and can easily cause the agents to miss the local minimum (larger

communication radius) or strand an agent (smaller communication radius) which is

too far removed from other agents; There is no such concern using the higher-order

method and we can simply use global communication.

5. Robustness to Measurement and Position Error

The two predominate errors associated with implementation of these search algo-

rithms are measurement errors due to the scaler sensors and position estimate errors.

The robustness of the higher-order method is demonstrated by comparing the fourth-

order model performance using the peaks test function with no error, with 5% error

in position readings, with 3% error in measurement of the scalar function, and with

errors in both position and measurement. A 5% error refers to error with normal

distribution and a mean of 5% of the value range. For position, the range is between

−3 and 3, so the error value is normal with mean of 0.3 (5% error is added in both x

and y directions). For sensor measurements, the peaks function ranges between −7

and 8, so the error value is normal with mean of 0.5 units.

The higher-order method preforms admirably in each situation, see Fig 58. The

plots show only the initial position, ‘x’, and the final agent positions, ‘o’. Note that

several agents appear in the same final position in the zero error case, upper left.

Clearly the performance is reduced when one or both errors are introduced, but the

results are still rather accurate. The introduced errors of each robotic agent change
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Fig. 57. Peaks test function: Fourth-order method.
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randomly from one sensor reading to the next, same for the position error, creating the

choppy update paths seen. If, instead, agents were to take longer sensor readings and

average over time, they can reduce noise, and presumably improve performance even

in a turbulent setting [49]. When each agent was assigned unique, constant biases for

measurements and position estimates throughout the simulation very similar results

were achieved.

Fig. 58. Peaks test function: Fourth-order method, starting agent positions marked

with ‘o’, final agent positions marked with ‘x’. Upper left: No errors. Upper

right: 5% position error. Lower left: 3% measurement errors. Lower right:

5% measurement and 3% position error.
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6. Effects of Higher-order Update Terms

Generally the performance increase between the quadratic and a higher-order method

is attributed to the increase in model order. Given a more accurate model, a linear

update can be solved by truncating the model and following the quadratic method

often delivering better results than simply starting with the quadratic model. How-

ever, it should be noted that the fourth-order method examples shown herein used

the first three update terms from (7.14), the latter two update terms based on the

higher-order tensors in the approximation.

A portion of the Rosenbrock test function is shown in Fig. 59 with update laws

using one, two, and three update terms. While all three simulations result in agents

converging at the minimum, both the middle and lower plot provide a smoother path

and do so with fewer updates than the upper plot which used only the quadratic

update term. The second and third update terms run along iso-contours of the func-

tion, combining these update terms with the quadratic term generate more efficient

trajectories and demonstrates the value in solving for the higher-order update terms.

E. Summary

The main strength of the higher-order method is that it generates a more accurate

environment model. This more accurate model provides the possibility to locate mul-

tiple minima. In [19], it was shown that lower order models can identify multiple

minima by restricting communication distances between neighboring agents, but this

is likely not a desired practice and is not needed in the the higher-order approach.

Moreover, the higher-order approach is able to act on more subtle features of the en-

vironment, as demonstrated with the Rosenbrock function. The higher-order method

was shown to provided accurate results in scenarios the quadratic method would not
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Fig. 59. Rosenbrock test function: Fourth-order method. Upper: First update term.

Middle: First two updates terms. Bottom: All three update terms.

because of the quadratic model’s tendency to mask subtle features or its propensity

to be biased by agents located away from the minima. Because of the additional

freedom in the environment model the higher-order method does not encounter these

problems.

One perceived disadvantage of the higher-order approach is the requirement of

more data points. A quadratic method for agents acting on a two-dimensional surface

requires six independent measurements, whereas the fourth-order method requires

fifteen. To sidestep this issue, a system that has a limited number of agents could

use old data points in relatively static environments; [21], [49] and others use a single

robotic agent and rely heavily on old data. The higher order method also has the

advantage that it can utilize lower-order models when old data is perceived to be

unreliable. And, unlike single agent systems this method may prove more valuable
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with time-variant sources, as models can be created using only current or very recent

if multiple agents are being employed.

Overall the higher-order method is more robust and has a wider range of possible

use. In cases where a quadratic model works well the fourth-order model also pre-

formed well, while the quadratic model failed in several examples where the higher-

order method succeeded. The higher-order method is a strong improvement over

previous quadratic-based localization methods.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

A. Simple Extrinsic Self-calibration of Multi-camera Systems

1. Conclusions

The problem of multi-camera system calibration was addressed. The focus for this

research was to develop a simple method for calibration of such systems that only

requires a basic understanding of cameras, image processing, and optimization. The

ability to use video to obtain image correspondences of a single point target moved

throughout the shared fields of view of the cameras has made 0D methods highly

desirable. The corresponding pixel values are easily attained through video; how-

ever, there is no information regarding the true, global position of the feature points.

Previously, in [17], a novel approach was used that reprojected the estimated 3D lo-

cation of the feature point as a function of camera parameters and pixel values for

each camera pairing. The evaluation function being minimized was the variance of

3D reprojections for each of the target points.

Instead of minimizing the variance, the RF cost function, developed in Chapter

II, minimizes the numerical fitting error when solving for the 3D reprojections. This

approach was shown to be beneficial in several ways. First, the process is less com-

putationally complex, requiring less calculations in the cost evaluation. Second, the

approach is more general; it only requires two cameras (not three). Not only does

the RF evaluation only require two cameras, but when more cameras are used only

two cameras need to see a feature before it is included in the optimization. This can

drastically increase the amount of physical space target features can be collected in

and results in a more uniform solution. Third, for the same feature points, the RF
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cost function is sharper than its predecessor with a more clearly defined minimum

making it better suited for simple optimization methods.

Overall, the new RF cost function was shown to be a more efficient evaluation

index, applicable to more applications and provide better results for comparable ap-

plications.

2. Future Work

Data has been collected and the RF cost function has been used to calibrate camera

systems in a lab setting. Collaborations are anticipated with groups who use 3D com-

puter vision and have three dimensional video motion detection (3DVMD) software

available. The goal is to compare results in the field to more standard calibration

results, however the true test will be the 3D renderings provided by the 3DVMD

software using RF evaluation based calibration results.

B. Vision-aided Inertial Navigation

1. Conclusions

A vision-aided inertial navigation system was introduced using a complementary form

EKF and the unit sphere observation model. Primarily results were presented using

a vSLAM system where a feature map was generated and the vehicle recognized pre-

viously seen features. The visual odometry approach was also demonstrated. For a

UGV in a hallway environment it was shown that basic paths, sinusoids and saw-

tooths, provided the IMU and forward facing camera sufficient information to main-

tain accurate egostate estimates for a large array of path amplitudes and spatial pe-

riods. It was also shown that position estimates were accurate and consistent enough

for many of those paths to be used in the guidance law.
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Examples in Chapter IV demonstrated the need to consider estimation accuracy

in the control cost when path planning, integrated estimation and control. It was

shown that a poor choice in nominal path can lead to poor egostate estimates, which

in turn cause inefficient control outputs from the guidance law. Methods to recognize

which paths are accurate and efficient were investigated, and it was clear that the

covariance of the current estimator is not a reliable index and that overconfidence is

prevalent in the filter for less active paths.

A 6DoF observability analysis was performed and showed that the instantaneous

observability of the system is very weak, as expected, but that over multiple mea-

surements the system gains full local observability. Further investigation shows that

the increased observability is in some part due to vehicle translation relative to the

features. Because the motion between measurements is small, it takes several mea-

surements (and therefore more time) to develop practical observability, particularly

in the direction the camera is facing.

It was demonstrated in Chapter V that monitoring the changes in total acceler-

ation as the desired path is adjusted can indicate when more or less nominal control

should be used. This is promising, although it is a reactive method.

Finally, the Schmidt-Kalman filter was applied to the vSLAM system to achieve

nearly a 2/3rds reduction in filter size. Estimation results were degraded in the open-

loop case, where position estimate errors basically doubled. For closed-loop control,

the estimation results were equivalent for the full and reduced EKF at the expense

of doubling the control effort in the Schmidt-Kalman filter case. Depending on the

system in use, especially one with generally erratic motion (flapping vehicles, small

UAVs), it may be beneficial to require less computational power at the expense of

control effort.
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2. Future Work

The hardware implementation of such a vSLAM system is the main focus of future

work. Once a hardware testbed is in place, a higher fidelity simulation environment

will be developed that incorporates more realistic hallway settings, realistic path

generation using a vehicle model for accurate control cost, and camera resolution and

IMU capabilities that match the vehicle/hardware in use.

Continued investigations into integrated estimation and control are needed. Specif-

ically, path selection methods are being investigated that rely on observability anal-

ysis and not covariance. This could potentially allow the identification of recently

unobservable states and providing updated controls to counteract that. Camera ori-

entation is being more thoroughly investigated, as well as the use of multiple cameras

to generate improved observability in the direction of travel. This work will rely

heavily on the higher fidelity hallway environment.

C. A Higher-order Method for Cooperative, Decentralized Source Localization

1. Conclusions

Based on a standard quadratic model approach to source localization, a higher-order

polynomial approach was introduced. Previously, agents generated a quadratic model

estimate of their environments, then used a gradient method (linear updates) to up-

date their position towards the assumed minimum. The higher-order approach allows

agents to generate high(er) fidelity environment models to be used when solving for

their desired position update. The higher-order terms generate nonlinear equations;

however, a Lagrangian expansion technique [1] is used which avoids the use of a

nonlinear solver.

Without significantly increasing the computational complexity of solving for the
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position updates, the higher-order method was shown to outperform the quadratic

approach in several examples. The higher-order terms were shown to contribute to

smoother paths, specifically for the Rosenbrock function. Overall, the higher-order

method was shown to be a significant improvement over its predecessor.

2. Future Work

Hardware testing which compares the quadratic and higher-order methods would be

ideal, but requires access to several vehicles. Additional study of which environment

types benefit the greatest due to the improved model fidelity should be conducted.

And optimization applications of nonphysical systems should be considered due to

the generic architecture of the higher-order method.

The topics in this dissertation are methods that enable autonomous navigation

and cooperative search in indoor environments. One application that ties the methods

together is one that allows the implementation of the higher-order source localization

approach on agents that use vision-aided inertial navigation. The scenario could be

chemical weapons stored inside a large warehouse or a container ship where GPS is

often blocked or suffering from severe multipath issues. In this hypothetical scenario,

a swarm of micro-sized UAVs would be sent to cooperatively locate and confirm the

source location, and then report the accurate weapons location without being noticed.

Similar scenarios could include chemical leaks inside industrial buildings, heat sources

in disaster areas, or locating gunfire (sound) sources in GPS jammed/spoofed settings.
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