
THE STAPL PARALLEL CONTAINER FRAMEWORK

A Dissertation

by

ILIE GABRIEL TANASE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2010

Major Subject: Computer Science

THE STAPL PARALLEL CONTAINER FRAMEWORK

A Dissertation

by

ILIE GABRIEL TANASE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Lawrence Rauchwerger
Nancy M. Amato

Committee Members, Jennifer Welch
Marvin Adams

Head of Department, Valerie E. Taylor

December 2010

Major Subject: Computer Science

iii

ABSTRACT

The STAPL Parallel Container Framework. (December 2010)

Ilie Gabriel Tanase, B.S., Polytechnic University Bucharest, Romania;

M.S., Polytechnic University of Bucharest, Romania

Co–Chairs of Advisory Committee: Dr. Lawrence Rauchwerger
Dr. Nancy M. Amato

The Standard Template Adaptive Parallel Library (stapl) is a parallel pro-

gramming infrastructure that extends C++ with support for parallelism. stapl pro-

vides a run-time system, a collection of distributed data structures (pContainers)

and parallel algorithms (pAlgorithms), and a generic methodology for extending

them to provide customized functionality.

Parallel containers are data structures addressing issues related to data parti-

tioning, distribution, communication, synchronization, load balancing, and thread

safety. This dissertation presents the STAPL Parallel Container Framework (PCF),

which is designed to facilitate the development of generic parallel containers. We

introduce a set of concepts and a methodology for assembling a pContainer from

existing sequential or parallel containers without requiring the programmer to deal

with concurrency or data distribution issues. The stapl PCF provides a large num-

ber of basic data parallel structures (e.g., pArray, pList, pVector, pMatrix, pGraph,

pMap, pSet). The stapl PCF is distinguished from existing work by offering a class

hierarchy and a composition mechanism which allows users to extend and customize

the current container base for improved application expressivity and performance.

We evaluate the performance of the stapl pContainers on various parallel ma-

chines including a massively parallel CRAY XT4 system and an IBM P5-575 cluster.

We show that the pContainer methods, generic pAlgorithms, and different applica-

iv

tions, all provide good scalability on more than 104 processors.

v

To my wife, Aniela who is always by my side

To my parents

vi

ACKNOWLEDGMENTS

First of all I would like to thank my advisors, Dr. Lawrence Rauchwerger and

Dr. Nancy Amato, for their continuous support and encouragement throughout my

PhD studies. It has been a long and difficult road with numerous challenges. However

together we managed to overcome them no matter how difficult they seemed to be

initially. Throughout the years I have learned from them the importance of the high

level discussions on why is our research relevant, what distinguishes us from previous

and other similar projects and what is the general direction we want to stir our

project. As a fresh graduate student I remember being always eager to get things

done as soon as possible. From them I have learned that the implementation is not

necessarily the most important part. A careful design and documentation that can

be discussed and argued for, is more important than the implementation itself. The

skills they thought me helped me throughout my PhD studies and hopefully I passed

some of this knowledge to the undergraduate and graduate students that I mentored.

I would like to thank my committee members, Dr. Marvin Adams and Dr.

Jennifer Welch, who have been of great help with both their comments and creative

ideas. With Dr. Adams I interacted while developing a large scale parallel transport

application that involved a large number of people from different area of expertise like

Computer Science, Nuclear Engineering and Math. I learned from him the importance

of providing the right layers of abstractions so that Nuclear Engineering students

not familiar with parallel programming can still write efficient programs. From Dr.

Jennifer Welch I learned the importance of formally specifying a distributed system

behavior so that there is no ambiguity for users when interacting with such a system.

Throughout the graduate school I had the opportunity to interact with a large

number of colleagues that all have contributed in one way or another to my education

vii

as a scientist. First I would like to thank all my stapl colleagues: Alin Jula, Ping

An, Paul Thomas, Silvius Rus, Chidambareswaran Raman, Tao Huang, Paul Thomas,

Steven Saunders, William McLendon, Lidia Smith, Timmie Smith, Nathan Thomas,

Xiabing Xu, Antal Buss, Adam Fidel, Ioannis Papadopoulos, Shuai Ye, Harshvardhan,

Mani Zandifar, Jeremy Vu, Olga Pearce, Tarun Jain, Shishir Sharma. For Mauro

Bianco, postdoc in our group, special thanks as he carefully read my design documents

and help me clarify the aspects that were not well explained. Special thanks to all

my colleagues that were next to me during the long nights we spent in the office while

working on papers before deadlines. I will never forget those times.

As part of a large research group I also had the opportunity to interact with

students in various areas of research. By getting involved with their work on motion

planning, protein folding and particle transport, and listening to their needs in terms

of data structure support I greatly improved the usability of my work as presented

in this thesis. I would like to thank Shawna Thomas, Lydia Tapia, Sam Ade Jacobs,

Roger Pearce, Jae Chang, Teresa Bailey and Alex Maslowski. Also I would like

to thank you Anna Tikhonova, Jessie Berlin and Anthony Nowak, undergraduate

students that I had the opportunity to mentor throughout the years.

For my late master thesis advisor, Irina Athanasiu, I have only words of gratitude.

She first introduced me to the world of research and gave me the opportunity to teach

as a teaching assistant at the Polytechnic University of Bucharest, Romania. As a

fresh graduate student I still remember the emotions I had while teaching colleagues

that were only one year younger than me. Irina first mentioned to me that I can

enroll in a PhD program abroad and she recommended me Texas A&M University

and Dr. Lawrence Rauchwerger. Thank you, Irina!

Finally a big thank you to all my family for their help and support. Aniela, my

wife, has been always by my side supporting me in the difficult times and sharing

viii

with me the numerous happy moments we had throughout graduate school. Thank

you to my children, David and Daria, for their always joyful mood. They were always

the highlight of my day when coming home tired from school after long debugging

sessions. Thank you to my father and my late mother for their constant guidance

during my first years of school. I am grateful to them for helping me realize at a very

young age the importance and the joy of learning. I am trying to pass on to my kids

the values they taught me throughout the years.

ix

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Outline . 3

II RELATED WORK . 5

III STAPL OVERVIEW . 10

A. STAPL pView Concept . 13

B. Runtime System . 18

IV PARALLEL CONTAINER . 21

A. pContainer Requirements 21

B. pContainer Definition . 23

1. Set Theory Definitions 24

2. pContainer Domain 26

3. Ordered Domain . 26

4. Partition . 29

5. Ordered Partition of Total Ordered Domains 30

C. pContainer Composability 32

V PARALLEL CONTAINER FRAMEWORK 37

A. pContainer Framework Design 38

B. pContainer Interfaces . 39

C. Shared Object View Implementation 42

1. Base Container Interface 46

2. Location Manager Interface 48

3. Domain Interface . 49

4. Partition Interface . 51

5. Partition Mapper Interface 54

6. Data Distribution Manager 55

D. Specification for pContainer Framework Concepts 59

1. pContainer Base . 59

2. Static pContainer . 62

3. Dynamic pContainer 63

4. Indexed pContainer 63

x

CHAPTER Page

5. Associative pContainer 67

6. Relational pContainer 68

7. Sequence pContainer 70

E. Integrating all Concepts using pArray Example 71

F. pContainers Implemented in the Framework 74

G. pContainer Support for Redistribution 77

1. Data Marshaling . 79

H. pContainer Customization using Traits 80

VI THREAD SAFETY . 83

A. pContainer Thread Safety Design 84

B. Data Distribution Manager 85

C. Thread Safety Manager . 86

D. Partition Locking Specification 88

E. pArray and pMatrix . 89

F. pList . 90

G. Associative pContainers 90

H. pGraph . 91

VII MEMORY CONSISTENCY MODEL 92

A. pContainer Interfaces . 93

B. Completion Guarantees . 95

C. Memory Consistency Conditions 98

1. pContainer Default Memory Consistency Model 98

D. Memory Consistency Example 102

E. Other Memory Consistency Models 103

1. The Default pContainer MCM is not Sequentially

Consistent . 103

2. The Default pContainer MCM is not Processor

Consistent . 105

3. Modifying the Default pContainer MCM 105

F. pContainer Method: Developer Side 107

G. Consistency of Other pContainer Methods 110

H. Enforcing Synchronization Points Automatically 111

VIII PCONTAINER PERFORMANCE EVALUATION 113

A. Experimental Setup . 113

B. Evaluation of pContainer Methods 114

xi

CHAPTER Page

C. Evaluation of Generic Algorithms 115

D. Specific Applications . 115

IX THE STAPL PARRAY . 116

A. Example . 117

B. The pArray Specification 118

C. pArray Partitions . 119

D. pArray Customization . 120

E. Performance Evaluation 121

1. Methods . 122

2. Algorithms . 128

F. Memory Consumption Study 130

X THE STAPL PLIST . 133

A. pList Example . 134

B. pList Specification . 134

C. pList Design and Implementation 136

D. Performance Evaluation 140

E. pList Method Evaluation 141

F. pAlgorithm Comparison 142

G. Comparison of Dynamic Data Structures in STAPL 144

H. Application using pList: Euler Tour 145

XI THE STAPL PGRAPH . 149

A. pGraph Example . 150

B. pGraph Concepts and Interfaces 151

C. pGraph Class Hierarchy 153

D. pGraph Design and Implementation 157

E. pGraph pViews . 159

F. Performance Evaluation 161

1. pGraph Methods Evaluation 161

2. Evaluation of Address Translation Mechanisms 164

3. pGraph Algorithms 167

4. Page Rank . 172

XII ASSOCIATIVE PCONTAINERS 173

A. Associative pContainer Specification 174

B. Associative pContainer Design and Implementation 176

xii

CHAPTER Page

C. Performance Evaluation 179

1. MapReduce . 179

2. Generic Algorithms 180

XIII PCONTAINER COMPOSITION EVALUATION 182

XIV CONCLUSION AND FUTURE WORK 186

REFERENCES . 189

VITA . 199

xiii

LIST OF TABLES

TABLE Page

I Comparison with related projects. 8

II stapl pViews and corresponding operations. 16

III Base container interface. 47

IV Location manager interface. 48

V Ordered domain interface. 50

VI Finite ordered domain interface. 51

VII Partition base interface. 52

VIII Ordered partition interface. 53

IX Partition mapper interface. 54

X Data distribution manager interface. 58

XI Base pContainer interface. 60

XII Static pContainer interface. 62

XIII Dynamic pContainer interface. 63

XIV Indexed pContainer interface. 64

XV Indexed partition interface. 65

XVI Associative pContainer interface. 67

XVII Relational pContainer interface. 68

XVIII Sequence pContainer interface. 70

XIX pArray interface. 118

XX pArray partitions. 119

xiv

TABLE Page

XXI pArray traits. 120

XXII pArray memory consumption. 130

XXIII Theoretical memory usage for pArray. 131

XXIV pList interface. 135

XXV Vertex reference interface. 152

XXVI Edge reference interface. 153

XXVII pGraph interface. 155

XXVIII Associative pContainers interface. 175

xv

LIST OF FIGURES

FIGURE Page

1 STAPL overview. 11

2 Overlap pView example. 17

3 Composed pArray of pArrays. 33

4 Composed pContainers. 34

5 PCF design. 38

6 Shared object view. 43

7 pContainer address resolution. 45

8 The invoke method of the data distribution manager. 56

9 The pContainer indexed method implementation. 65

10 Example of pContainer deployment on two locations. 71

11 Pseudocode of pArray set() method. 73

12 pContainers inheritance. 74

13 Redistribution for two given partitions. 78

14 Marshaling interfaces. 80

15 pContainer template arguments. 81

16 pGraph customization. 82

17 Generic invoke method implementation with locking statements. . . 87

18 User, pContainer, run time system interaction. 93

19 STAPL program execution. 94

20 Completion guarantees. 97

xvi

FIGURE Page

21 Asynchronous methods ordering. 101

22 Relaxed completion order: (a) Operations on different pContainer

elements receive their acknowledgments out of order (b) Dekker’s

mutual exclusion. 104

23 Processor consistency counter example. 106

24 Kernel used to evaluate the performance of pContainer methods. . . 114

25 Derivation chain for pArray. 116

26 pArray example. 117

27 pArray constructor execution time for various input sizes on (a)

CRAY4 and (b) P5-cluster. 121

28 CRAY4: pArray local method invocations for various container sizes. 123

29 CRAY4: pArray methods for various input sizes. 124

30 CRAY4: pArray methods set element, get element and split

phase get element. 125

31 pArray methods for various percentage of remote invocations. 126

32 CRAY4: pArray local and remote method invocations for various

container sizes. 127

33 Execution times for generic algorithms on CRAY4 for a pArray

with 20M elements per processor. 129

34 CRAY4: pArray memory usage study. 132

35 Derivation chain for pList. 133

36 pList example. 135

37 Different partitions and mappings for pList. 138

38 pList method implementation. 140

xvii

FIGURE Page

39 Execution times for pList methods. 141

40 Execution times for p for each, p generate, p accumulate al-

gorithms on CRAY4 for pArray and pList. 142

41 P5-cluster: Weak scaling for p for each allocating processes

on the same nodes when possible (curve a) or in different nodes

(curve b). 143

42 Comparison pList and pVector dynamic data structures using a

mix of 10M operations (read/write/insert/delete). 144

43 Weak scaling of Euler Tour algorithm. 147

44 Execution times for Euler Tour and its applications using a tree

made by a single binary tree with 500k or 1M subtrees per processor. 148

45 pGraph example. 150

46 Graph hierarchy of concepts. 154

47 pGraph pViews example. 159

48 pGraph pViews: (a) pGraph partitioned pView, (b) region pview,

(c) inner pview and (d) boundary pview. 160

49 CRAY4: Evaluation of static and dynamic pGraphmethods while

using the SSCA2 graph generator. 162

50 P5-cluster: Evaluation of static and dynamic pGraph methods

while using the SSCA2 graph generator. 163

51 Find sources in a directed pGraph using static, dynamic with for-

warding and dynamic with no forwarding partitions. 165

52 Comparison of various pGraph partitions. 166

53 CRAY4: Execution times for different pGraph algorithms. 168

54 CRAY4: pGraph algorithms. 169

55 P5-cluster: Execution times for different pGraph algorithms. . . . 170

xviii

FIGURE Page

56 Page rank for two different input meshes: 1500x1500 and 15x150000. 172

57 Associative pContainer: (a) derivation from the framework base

classes (b) associative pContainers internal hierarchy. 174

58 Value based partition for sorted associative pContainers. 177

59 MapReduce used to count the number of occurrences of every

word in Simple English Wikipedia website (1.5GB). 179

60 CRAY4: Scalability for generic algorithms when using associative

pContainers. 181

61 Example of pContainer composition and nested pAlgorithm in-

vocation. 183

62 Comparison of pArray<pArray<>> (pa < pa >), plist<pArray<>>

(plist < pa >) and pMatrix on computing the minimum value for

each row of a matrix. 184

1

CHAPTER I

INTRODUCTION

Parallel programming is becoming mainstream due to the increased availability of

multiprocessor and multicore architectures and the need to solve larger and more

complex problems. The Standard Template Adaptive Parallel Library (stapl) [16,

4, 67, 5, 68, 52, 63, 67, 65, 64, 15, 13, 66] is being developed to help programmers

address the difficulties of parallel programming. stapl is a parallel C++ library

with functionality similar to stl, the ISO adopted C++ Standard Template Library

[49]. stl is a collection of basic algorithms, containers and iterators that can be

used as high-level building blocks for sequential applications. Similar to stl, stapl

provides a collection of parallel algorithms (pAlgorithms), parallel and distributed

containers (pContainers) [63, 65, 64, 15, 66], and pViews to abstract the data access

in pContainers. stapl provides the building blocks for writing parallel programs

and the mechanisms (glue) to put them together in large programs. An essential

building block for such a generic library is its data structures. Sequential libraries

such as STL [49], BGL [30], and MTL [28], provide the user with a collection of

data structures and algorithms that simplifies the application development process.

Similarly, stapl provides the Parallel Container Framework (PCF) to facilitate the

development of pContainers which are parallel and concurrent data structures.

pContainers are containers that are distributed across a parallel machine and

accessed concurrently. A large number of parallel data structures have been proposed

in the literature. They are often complex data structures, addressing issues related

to data partitioning, distribution, communication, synchronization, load balancing,

The journal model is IEEE Transactions on Automatic Control.

2

and thread safety. The complexity of building such structures for every parallel pro-

gram is one of the main impediments to parallel program development. To alleviate

this problem we have developed the STAPL Parallel Container Framework (PCF).

It consists of a collection of elementary pContainers and methods to specialize, or

compose them into pContainers of arbitrary complexity. Thus, instead of building

their distributed containers from scratch in an ad-hoc fashion, programmers can use

inheritance to derive new specialized containers and composition to generate complex

data structures. Moreover, the PCF provides the mechanisms to enable any con-

tainer, sequential or parallel, to be used in a distributed fashion without requiring

the programmer to deal with concurrency mechanisms such as data distribution or

thread safety. Furthermore, when composed, these containers carry over, at every

level, their “interesting” features for parallelism.

The stapl PCF presented in this thesis makes several novel contributions.

• Modular design: Provides a set of classes and rules for using them to build new

pContainers and customize existing ones.

• Composition: Supports composition of pContainers that allows the recursive

development of complex pContainers that support nested parallelism.

• Interoperability: Provides mechanisms to generate a wrapper for any data struc-

ture, sequential or parallel, enabling it to be used in a distributed, concurrent

environment.

• Library: It provides a library of basic pContainer constructed using the PCF

as initial building blocks.

Some important properties of pContainers supported by the PCF are noted

below.

3

Shared object view. Each pContainer instance is globally addressable. This

supports ease of use, relieving the programmer from managing and dealing with the

distribution explicitly, unless desired.

Arbitrary degree and level of parallelism. For pContainers to provide

scalable performance on shared and/or distributed memory systems they must sup-

port an arbitrary, tunable degree of parallelism, e.g., number of threads. Moreover,

given the importance of hierarchical (nested) parallelism for current and foreseeable

architectures, it is important for composed pContainers to allow concurrent access

to each level of their hierarchy.

Instance-specific customization. The pContainers in the PCF can be dy-

namic and irregular and can adapt (or be adapted by the user) to their environment.

The PCF facilitates the design of pContainers that support advanced customiza-

tions so that they can be easily adapted to different parallel applications or even

different computation phases of the same application. For example, a pContainer

can dynamically change its data distribution or adjust its thread safety policy to op-

timize the access pattern of the algorithms accessing the elements. Alternatively, the

user can request certain policies and implementations which can override the provided

defaults or adaptive selections.

Portions of this dissertation have been published in the following papers [63, 65,

15, 64, 13, 68].

A. Outline

The dissertation is outlined as follows. In Chapter II we present related work. In

Chapter III we provide an overview of stapl discussing the main modules of the

library and emphasizing the ones that the pContainers will interact directly with:

4

parallel view (pView) and run time system (RTS). Chapter IV introduces the notion of

a parallel container as a parallel and distributed data structure describing the required

functionality that it needs to provide to improve parallel programming productivity.

Chapter V provides a detailed description of the Parallel Container Framework and

of the individual modules that make up a parallel container. Chapter V, Section E

shows an example of stapl pContainer implemented using the framework describing

how all modules introduced in Chapter V interact to provide the overall functionality

of a parallel array (pArray) data structure.

Chapter V , Section D introduces the base pContainers provided by the frame-

work. Chapter VI discusses the thread safety support provided by default by all stapl

pContainers and introduces the interfaces that advanced users need to customize in

order to implement custom thread safety policies. Chapter VII describes the memory

consistency model provided by the pContainers and specifies how additional models

can be implemented.

Starting with Chapter VIII we describe individual pContainers implemented

using the PCF and an evaluation of their performance. We describe their derivation

relation from the classes of the framework, their interfaces and show experimental

results or both pContainer methods and pAlgorithms. Chapter VIII introduces

the general methodology used to evaluate the pContainer methods and application

performance. Chapter IX discusses the pArray, Chapter X the pList, Chapter XI the

pGraph and Chapter XII associative pContainers. Experimental results evaluating

the pContainer composition are included in Chapter XIII. We conclude with some

final remarks in Chapter XIV.

5

CHAPTER II

RELATED WORK

There is a large body of work in the area of parallel and distributed data structures

with projects aiming at shared memory architectures, distributed memory architec-

tures or both. Parallel programming languages [19, 18, 17, 70] typically provide built

in arrays and provide minimal guidance to the user on how to develop their own

specific parallel data structures. stapl pContainers are generic data structures and

this characteristic is shared by a number of existing projects such as PSTL [39], tbb

[37], and POOMA [53].

There are several parallel libraries that have similar goals to STAPL. Some of the

libraries provide application specific data structures that are fine tuned for certain

applications. While they achieve high efficiency, lack of generality makes them hard to

use in different applications. A large amount of effort has been put into regular data

structures, like arrays and matrices, to make them suitable for parallel programming.

Irregular data structures, like graph, tree, etc., are not widely studied for this purpose.

PSTL (Parallel Standard Template Library) [39, 40] explores the same underly-

ing philosophy as STAPL, which is to extend the C++ STL for parallel programming.

PSTL emphasizes regular data structures, such as vector, multidimensional array, etc.,

which are more suited for scientific computation. The underlying runtime system pro-

vides support for explicit shared memory operations, such as put and get. The data

distribution mechanism allows for regular distribution (block distribution) and the

containers are treated as place holders for data accessed by stand alone parallel algo-

rithms. PSTL project is unfortunately not maintained anymore. The Amelia Vector

Template Library (AVTL) [59], provides a parallel vector data structure, which can

be distributed in an uniform fashion. STAPL is different that both PSTL and AVTL,

6

providing a larger variety of data structures integrated uniformly in a framework.

Hierarchically Tiled Arrays (HTA) [8, 9] is introduced as a useful programming

paradigm where the user writes programs in a single threaded fashion and the data

structure takes care of parallelization in a transparent manner. HTA is a parallel

data container whose data is partitioned in tiles and can be distributed across dif-

ferent computation servers. Operations on the data are dispatched to the servers

owning the data. The most representative characteristic of an HTA is the support

for hierarchical partitioning and indexing. Through a flexible indexing scheme for

its tiles and elements HTAs allows communication to be expressed as array assign-

ments. Hierarchical data structures can provide more flexibility to the user to express

its algorithms, can be used to improve data locality (e.g., tiling[45]), and to express

nested parallelism[10]. Some of the HTA concepts have been adopted in STAPL, like

providing hierarchical views of the data available in pContainers.

POOMA[53] is a C++ library designed to provide a flexible environment for

data parallel programming of scientific applications. POOMA provides a collection

of parallel data types together with a set of algorithms geared specifically toward

scientific applications. STAPL shares similar goals with POOMA. Code developed

using POOMA is intended to be portable, efficient, allows rapid application devel-

opment by reusing existing components. The data structures provided by POOMA

are referred to as ”Global Data Types”. They are similar to stapl pContainers

but they are oriented toward scientific computing. POOMA provides n-dimensional

arrays, vector and matrix classes. stapl’s pContainer infrastructure is more generic

providing a larger variety of data structures like graphs, list, hash maps.

Multiphase Specifically Shared Array (MSA) [21] is proposed as a data structure

that allows the users to benefit from having a distributed data structure with shared

memory interface. MSA is an important data structure developed using Charm++

7

language[41]. To improve the performance of accessing the elements of the MSA

the authors optimize for three access patterns that are common in many algorithms:

read only, write many and accumulate. The authors emphasize that while a read

write mode would be more general it is often hard to guarantee memory consistency

without performance loss. The access modes can be interchanged at certain points in

the program (synchronization points).

There has been significant research in the field of parallel and concurrent data

structures. Much work has focused on providing efficient locking mechanisms and

methodologies for transforming existing sequential data structures into concurrent

data structures [20, 24, 26, 33, 34]. Valois [69] was one of the first to present a non-

blocking singly-linked list data structure by using Compare&Swap (CAS) synchro-

nization primitives rather than locks. The basic idea is to use auxiliary nodes between

each ordinary node to solve the concurrency issues. Subsequent work [31, 48, 27, 51]

proposes different concurrent list implementations for shared memory architectures,

emphasizing the benefits on non-blocking implementations in comparison with lock

based solutions. Investigations of concurrent hash tables [24, 26, 48] and search trees

(the most common internal representation for maps and sets) [43, 47] explore effi-

cient storage schemes, different lock implementations, and different locking strategies

(e.g., critical sections, non-blocking, wait-free [33]), especially in the context of shared

memory architectures. In contrast, the stapl pContainers are designed to be used

in both shared and distributed memory environments and addresses the additional

complexity required to manage the data distribution. Ideas pioneered in these papers

can be integrated in our framework for efficient concurrent access on a shared memory

location.

UPC[25], Titanium[70], Chapel[17] and X10[18] are several other languages that

are part of the large family of Partitioned Global Address Space (PGAS) languages.

8

They all provide minimal support for parallel data structures in the form of regular

arrays. Dynamic data structures like graphs, maps, hash maps are often user respon-

sability with no explicit support from the language. All these languages recognizes

the importance of allowing users to customize the data distribution and they provide

appropriate support for parallel arrays. In [22] it is mentioned that Chapel intends

to provide support for distributions for dynamic data structures, a feature that is

supported in our framework.

Table I.: Comparison with related projects.

Features/ Paradigm Architecture Adaptive Generic Data
Project 1 Distribution

STAPL S/MPMD Shared/Dist Yes Yes Auto/User

PSTL SPMD Shared/Dist No Yes Auto

Charm++ MPMD Shared/Dist No Yes User

CILK S/MPMD Shared/Dist No No User

NESL S/MPMD Shared/Dist No Yes User

POOMA SPMD Shared/Dist No Yes User

SPLIT-C SPMD Shared/Dist Np No User

X10 S/MPMD Shared/Dist No Yes Auto

Chapel S/MPMD Shared/Dist No Yes Auto

Titanium S/MPMD Shared/Dist No No Auto

Intel TBB SPMD Shared No Yes Auto
1 SPMD - Single Program Multiple Data, MPMD - Multiple Program Multiple Data

The stapl PCF differs from the other languages and libraries by focusing on

developing a generic infrastructure that will efficiently provide a shared memory ab-

straction for pContainers. The framework automates, in a very configurable way,

aspects relating to data distribution and thread safety. We emphasize on interoper-

ability with other languages and libraries [15], and we use a compositional approach

9

where existing data structures (sequential or concurrent, e.g., tbb containers) can be

used as building blocks for implementing parallel containers. We include in Table I a

comparison between STAPL and a number of other projects according to a number

of criteria. While all the libraries above share a common goal, to make parallel pro-

gramming easier, stapl pContainer distinguish itself by placing emphasis on general

(regular and irregular) data structures (vector, list, graph, hash, etc), flexible mecha-

nisms to specify data distribution, a shared object view programming paradigm with

implicit communication, adaptivity support for both algorithms and containers.

10

CHAPTER III

STAPL OVERVIEW

stapl [16, 4, 67, 5, 68, 52] is a framework for parallel code development in C++.

Its core is a library of C++ components with interfaces similar to the (sequential)

ISO C++ standard library [49]. stapl offers to the parallel system programmer a

shared object view of the data space. The objects are distributed across the memory

hierarchy which can be shared and/or distributed address spaces. Internal stapl

mechanisms assure an automatic translation from one space to another, presenting a

unified address space to the less experienced user. For more experienced users, the

local/remote distinction of accesses can be exposed and performance enhanced for a

specific application or application domain. To exploit large hierarchical systems, such

as BlueGene [50], Cray XT5 [56], stapl allows for (recursive) nested parallelism.

The stapl infrastructure consists of platform independent and platform depen-

dent components that are revealed to the programmer at an appropriate level of detail

through a hierarchy of abstract interfaces (see Figure 1). The platform independent

components include the core parallel library, and an abstract interface to the commu-

nication library and run-time system. The core stapl library consists of pAlgorithms

(parallel algorithms) and pContainers (distributed data structures) [66]. Important

aspects of all stapl components are extendability and composability. For example,

users can extend and specialize stapl pContainers (using inheritance) and/or com-

pose them. For example, stapl users can employ pContainers of pContainers in

pAlgorithms which may themselves call pAlgorithms.

pContainers, the distributed counterpart of stl containers, are thread-safe, con-

current objects, i.e., shared objects that provide parallel methods that can be invoked

concurrently. They are composable and extensible by users via inheritance. Cur-

11

User Application Code

pAlgorithms pViews

pRange

Run-time System

Pthreads, OpenMP, MPI, Native, ...

A
da

pt
iv

e
F

ra
m

ew
or

k

Scheduler Executor Performance
Monitor

ARMI Communication
 Library

pContainers

Fig. 1. STAPL overview.

rently, stapl provides counterparts of all stl containers (e.g., pArray[63], pVector,

pList[65], pMap[64], etc.), and pContainers that do not have stl equivalents: par-

allel matrix (pMatrix [15]) and parallel graph (pGraph). pContainers provide two

kinds of methods to access their data: methods which are semantically equivalent to

their sequential counterpart and methods which are specific to parallel computations.

For example, stapl provides an insert async method that can return control to the

caller before its execution completes. While a pContainer’s data may be distributed,

pContainers offer the programmer a shared object view, i.e., they are shared data

structures with a global address space. This is provided by an internal object transla-

tion mechanism which can transparently locate both local and remote elements. The

physical distribution of a pContainer data can be assigned automatically by stapl

or can be user-specified.

A pAlgorithm is the parallel equivalent of an stl algorithm. stapl currently

includes a large collection of parallel algorithms, including parallel counterparts of stl

12

algorithms, pAlgorithms for important parallel algorithmic techniques (e.g., prefix

sums [38], the Euler tour technique [38]), and some for use with stapl extensions to

stl (i.e., graph algorithms for the pGraph). Analogous to stl algorithms that use

iterators, stapl pAlgorithms are written in terms of pViews [13, 14]. Briefly, pViews

allow the same pContainer to present multiple interfaces to its users, e.g., enabling

the same pMatrix to be ‘viewed’ (or used) as a row-major or column-major matrix

or even as linearized vector.

pAlgorithms are represented by pRanges. Briefly, a pRange is a graph whose ver-

tices are tasks and the edges the dependencies, if any, between them. A task includes

both work (represented by what we call workfunctions) and data (from pContainers,

generically accessed through pViews). The executor, itself a distributed shared ob-

ject, is responsible for the parallel execution of computations represented by pRanges;

as tasks complete, the executor updates dependencies, identifies tasks that are ready

for execution, and works with the scheduler to determine which tasks to execute.

Nested parallelism can be created by invoking a pAlgorithm from within a task.

The platform dependent stapl components are mainly contained in the stapl

runtime system (RTS) [54, 55, 57, 58], which provides the API to the OS and several

important functions. The RTS includes the communication abstractions that are used

by the higher level stapl components.

In the following two sections we provide more details regarding the stapl pView

concept and the runtime system because they are required to properly describe

pContainer functionality.

13

A. STAPL pView Concept

Decoupling of data structures and algorithms is a common practice in generic pro-

gramming. stl, the C++ Standard Template Library, obtains this abstraction by

using iterators, which provide a generic interface for algorithms to access data which

is stored in containers. This mechanism enables the same algorithm to operate on

multiple containers. In stl, different containers support various types of iterators

that provide appropriate functionality for the data structure, and algorithms can

specify which types of iterators they can use. The major capability provided by the

iterator is a mechanism to traverse the data of a container.

The stapl pView [13, 14] generalizes the iterator concept by providing an ab-

stract data type (ADT) for the data it represents. While an iterator corresponds to a

single element, a pView corresponds to a collection of elements. Also, while an itera-

tor primarily provides a traversal mechanism, pViews provide a variety of operations

as defined by the ADT. For example, all stapl pViews support size() operations

that provide the number of elements represented by the pView. A stapl pView can

provide operations to return new pViews. For example, a pMatrix supports access to

rows, columns, and blocks of its elements through row, column and blocked pViews,

respectively.

A primary objective of the pViews is that they are designed to enable parallelism.

In particular, each ADT supported by stapl provides random access to collections of

its elements. The size of these collections can be dynamically controlled and typically

depends on the desired degree of parallelism. For example, the pList pView provides

concurrent access to segments of the list, where the number of segments could be

set to match the number of parallel processes. The pView provides random access

to a partitioned data space. This capability is essential for the scalability of stapl

14

programs. To mitigate the potential loss of locality incurred by the flexibility of

the random access capability, pViews provide, to the degree possible, a remapping

mechanism of a user specified pView to the collection’s physical distribution (known

as the native pView).

In this section, we first introduce the pView concept and then explain how it

can be generalized for the parallel and distributed environment of stapl. A pView

is a class that defines an abstract data type (ADT) for the collection of elements it

represents. As an ADT, a pView provides operations to be performed on the collection,

such as read, write, insert, and delete.

pViews have reference semantics, meaning that a pView does not own the actual

elements of the collection but simply references to them. The collection is typically

stored in a pContainer to which the pView refers; this allows a pView to be a relatively

light weight object as compared to a container. However, the collection could also be

another pView, or an arbitrary object that provides a container interface. With this

flexibility, the user can define pViews over pViews, and also pViews that generate

values dynamically, read them from a file, etc.

All the operations of a pView must be routed to the underlying collection. To

support this, a mapping is needed from elements of the pView to elements of the

underlying collection. This is done by assigning a unique identifier to each pView

element (assigned by the pView itself); the elements of the collection must also have

unique identifiers. Then, the pView specifies a mapping function from the pView’s

domain (the union of the identifiers of the pView’s elements) to the collection’s domain

(the union of the identifiers of the collection’s elements).

More formally, a pView V is a tuple

V
def
= (C,D,F ,O) (3.1)

15

where C represents the underlying collection, D defines the domain of V , F represents

the mapping function from V ’s domain to the collection’s domain, and C is the set of

operations provided by V .

To support parallel use, the C and D components of the pView can be par-

titioned so that they can be used in parallel. Also, most generally, the mapping

function F and the operations O can be different for each component of the parti-

tion. That is, C = {c0, c1, . . . , cn−1}, D = {d0, d1, . . . , dn−1}, F = {f0, f1, . . . , fn−1},

and O = {o0, o1, . . . , on−1}. This is a very general definition and not all components

are necessarily unique. For example, the mapping functions fi and the operations oi

may often be the same for all 0 ≤ i < n. The tuples (ci, di, fi, oi) are called the base

views (bViews) of the pView V . The pView supports parallelism by enabling random

access to its bViews, which can then be used in parallel by pAlgorithms.

Note that we can generate a variety of pViews by selecting appropriate compo-

nents of the tuple. For instance, it becomes straightforward to define a pView over a

subset of elements of a collection, e.g., a pView of a block of a pMatrix or a pView

containing only the even elements of an array. As another example, pViews can be

implemented that transform one operation into another. This is analogous to back-

inserter iterators in stl, where a write operation is transformed into a push back

invocation in a container.

Example. A common concept in generic programming is a one-dimensional array

of size n supporting random access. The pView corresponding to this will have an

integer domain D = [0, n) and operations O including the random access read and

write operators. This pView can be applied to any container by providing a mapping

function F from the domainD = [0, n) to the desired identifiers of the container. If the

container provides the operations, then they can be inherited using the mechanisms

16

Table II. stapl pViews and corresponding operations. tranform pview implements

an overridden read operation that returns the value produced by a user

specified function, the other operations depends on the pView the transform

pView is applied to. insert any refers to the special operations provided by

stapl pContainers that insert elements in unspecified positions.

re
ad

w
ri
te

[
] b
eg
in
/e
n
d

in
se
rt
/e
ra
se

in
se
rt

an
y

fi
n
d

array 1d pview X X X X
array 1d ro pview X X X
static list pview X X
list pview X X X X X
matrix pview X X X
graph pview X X X X X
strided 1D pview X X X X
transform pview O - -
balanced pview X X X
overlap pview X X X
native pview X X X

provided in the base pView in stapl. If new behavior is needed, then the developer

can implement it explicitly.

Table II shows an initial list of pViews available in stapl. Some special cases of

pViews are particularly useful in the context of parallel programming. For instance

the single-element partition, where the domain of the collection is split into single

elements and all mapping functions are identity functions. This is the default partition

adopted by stapl when calling a pAlgorithm to express maximum parallelism.

Other pViews that can be defined include the balanced pView where the data

is split into a given number of chunks, and the native pView, where the partitioner

17

Overlap pView of A[0, 10]

For c = 2, l = 2, and r = 1,

ith element is A[c · i, c · i+ 4]

elements of the overlap pView:

A[0, 4], A[2, 6], A[4, 8], A[6, 10]

Fig. 2. Overlap pView example. The input is the pContainer A[0, 10].

takes information directly from the underlying container and provides bViews that

are aligned with the pContainer distribution. This turns out to be very useful in

the context of stapl. Another pView heavily used in stapl is the overlap pView, in

which one element of the pView overlaps another element. This pView is naturally

suited for specifying many algorithms, such as adjacent differences, string matching,

etc. As an example, we can define an overlap pView for a one-dimensional array

A[0, n−1] using three parameters, c (core size), l (left overlap), and r (right overlap),

so that the ith element of the overlap pView vo[i] is A[c · i, c · i + l + c + r − 1]. See

example in Figure 2.

The native pView is a pView whose partitioned domain D matches the data

partition of the underlying collection, allowing references to its data to be local. The

balanced pView partitions the data set into a user specified number of pieces. This

pView can be used to balance the amount of work in a parallel computation. If stapl

algorithms can use balanced or native pViews, then performance is greatly enhanced.

All stapl pContainers provide native pViews that have the same interface as

18

the pContainer. For example, pArray provides array 1d pview, pList provides

p list pview, pVector provides p vector pview, pGraph provides p graph pview,

simple associative pContainers provide p set pview, pair associative pContainers

provide p map pview and pMatrix provides array 2d pview. Additional pViews with

certain ADT can be defined on top of existing data structures. For example a pGraph

pView can be defined on top of a pArray of list of edges as shown in [14].

B. Runtime System

The stapl runtime system (RTS) [54, 55, 57, 58] is the only platform specific compo-

nent of the library that needs to be ported to each target architecture. It provides a

communication and synchronization library (ARMI), an executor, and a scheduler of

the tasks of the pRanges. The RTS is not intended to be used directly by the stapl

user or library developer.

The RTS provides locations as an abstraction of processing elements in a sys-

tem. A location is a component of a parallel machine that has a contiguous address

space and has associated execution capabilities (e.g., threads). Different locations

can communicate exclusively through ARMI, the Adaptive Remote Method Invo-

cation library, which represents the communication layer of the RTS. Special types

of objects, called p objects, implement the basic concept of a shared object. The

representative of a p object in each location has to register with the RTS to en-

able Remote Method Invocations (RMIs) between the representative objects. This

is the reason why all the parallel objects in stapl inherit from the base p object

class. RMIs enable the exchange of data between locations and the transfer of the

computation from one location to another.

RMIs are divided into two classes: asynchronous RMIs and synchronous RMIs.

19

The former execute a method on a registered object in a remote location without

waiting for its termination, while the latter block waiting for the termination of the

invoked method. A mechanism is provided to asynchronously execute methods that

return values to the caller. As parallel machine sizes reach processor counts into

the millions, it becomes essential for algorithms to be implemented using only asyn-

chronous RMIs. In stapl, these operations implement computation migration, which

allows scalability for very large numbers of processors. We also provide sync rmis

for completeness, but their use is discouraged. The RTS guarantees that requests

from a location to another location are executed in order of invocation at the source

location.

The RTS provides RMI versions of common aggregate operations. These prim-

itives come in two flavors: one-sided, in which a single requesting location invokes

the execution of a method in all others, eventually receiving a result back, and col-

lective, in which all locations participate in the execution of the operation. All the

RMI operations, point-to-point, single-sided, and collective, are defined within com-

munication groups, thus enabling nested parallelism. Collective operations have the

same semantics as the traditional MPI collective operations. The provided operations

include broadcast, reduce, and fence. The fence operation, called rmi fence, when

completed, guarantees that no pending RMIs are still executing in the group where

it is called. This is essential for guaranteeing correctness of phases of computations

that have to be completed before the next one can start.

The RTS provides some optimizations to use bandwidth and reduce overhead.

The major techniques used are aggregation, that packs multiple requests to a given

location into a single message, and combining, that supports the repetitive execution

of the same method in a given location without incurring a large overhead for object

construction and function calls. Memory management and the number of messages

20

aggregated are managed by the RTS adaptively according to the application needs.

Another RTS component, the executor, has the role of executing task graphs

corresponding to pAlgorithms. The executor identifies sets of independent tasks

to be executed, and schedules them according to the customizable scheduler module.

From its perspective, the executor treats incoming RMI requests and algorithmic tasks

as RTS tasks. Tasks can be assigned to execution threads and they are considered

independent.

21

CHAPTER IV

PARALLEL CONTAINER

Data structures are essential building blocks of any generic programming library.

Sequential libraries like STL [49], Leda[44], BGL [60], and MTL [61, 28], provide

to the user a collection of data structures and algorithms. For simple regular data

structures such as arrays, vectors, and lists, the implementation may be relatively

straightforward. More complicated data structures such as matrices (MTL) or graphs

(BGL) require the developer to consider a modular design with different functional

units that allows customization of different aspects of the data structure to improve

the performance of the algorithms. For example, the users of a matrix may want

dense or sparse storage and the layout in memory to be row or column oriented.

In a multiprocessor environment, the complexity of a data structure increases

due to a number of challenges which are not present in sequential computing. For

example, there are issues related to data management such as partitioning, distribu-

tion, communication, synchronization, load balancing, and thread safety that have

to be considered. To minimize the user’s effort in dealing with all these factors, we

have developed the STAPL Parallel Container Framework (PCF) which consists of

a set of formally defined concepts and a methodology for developing generic parallel

containers starting from sequential, STL-like containers. Users, by implementing the

appropriate interfaces, can assemble with minimal effort a data structure that will

provide methods to build and access a distributed collection of elements.

A. pContainer Requirements

Design requirements of the stapl pContainers developed within the PCF include:

scalable performance, a clearly specified memory consistency model, a shared object

22

view, thread safety, composition, and adaptivity.

• Scalable performance. pContainers must provide scalable performance on

shared and/or distributed memory systems. The performance of the pContainer

methods must achieve the best known parallel complexity. This is obtained

by efficient algorithms coupled with non-replicated, distributed data structures

that allow a degree of concurrent access proportional to the degree of desired

parallelism, e.g., the number of threads.

• Thread safety and memory consistency model. When needed, the pContainer

must be able to provide thread safe behavior and it must respect a well spec-

ified memory consistency model as discussed in Chapter VI and Chapter VII,

respectively. When a level of a pContainer is distributed across shared memory

where multiple threads can access and modify it, the PCF must ensure thread

safety.

• Shared object view. Each pContainer instance is globally addressable, i.e.,

it provides a shared memory address space (Chapter V, Section C). Individual

pContainer elements can be accessed from any computation thread indepen-

dent of their physical location. This supports ease of programming, allowing

programmers to ignore the distributed aspects of the container if they so desire.

• Composition. The capability to compose pContainers (i.e., build pContainers

of pContainers) provides a natural way to express and exploit nested paral-

lelism while preserving locality. New pContainers can be created by composing

existing pContainers, e.g., a pVector of pLists, which would be one way to

implement an adjacency list representation of a graph. This feature is not sup-

ported by other general purpose parallel libraries. pContainer composition is

23

discussed in Section C.

• Adaptivity. A design requirement of the stapl pContainer is that it can

easily be adapted to the data, the computation and the system. For example,

different storage options can be used for dense or sparse matrices or graphs

or the data distribution may be modified during program execution if access

patterns change.

B. pContainer Definition

A stapl pContainer is a distributed data structure that holds a finite collection of

elements C, each with a unique global identifier (GID), their associated storage S,

and an interface O (methods or operations) that can be applied to the collection. The

interface O specifies an Abstract Data Type (ADT), and typically includes methods

to read, write, insert or delete elements and methods that are specific to the individual

container (e.g., splice for a pList or out degree for a pGraph vertex).

The pContainer also includes meta information supporting data distribution: a

domain D, that is the union of the GIDs of the container’s elements, and a mapping

F from the container’s domain to the storage. To support parallel use in a distributed

setting, the collection C and the domain D are partitioned in a manner that is aligned

with the storage of the container’s elements. The sets C, D and S are isomorphic.

For each element of the collection C there is a unique GID in the domain D and a

unique memory storage in S.

Definition 1. A pContainer is defined as:

pC
def
= (C,D,F ,O,S) (4.1)

The tuple (C,D,F ,O) is known as the native pView of the pContainer. As in-

24

troduced in Chapter III, Section A and described in more detail in [14], stapl pViews

generalize the iterator concept and enable parallelism by providing random access to

collections of their elements. In pViews, the partition of D can be dynamically con-

trolled and depends on the needs of the algorithm (e.g., a column-based partition of

a pMatrix for an algorithm that processes the matrix by columns) and the desired

degree of parallelism (e.g., one partition for each core). The native pView associated

with a pContainer is a special view in which the partitioned domain D is aligned

with the distribution of the container’s data. Performance is enhanced for algorithms

that can use native pViews.

We formally introduce now the concepts that were briefly introduced in this

section: Global Identifier (GID), Domain, and Partition. Since data structures are

collections of elements we start first by introducing some elementary theory about

sets and then properly introduce the PCF concepts used to implement a distributed

collection of elements.

1. Set Theory Definitions

We often refer in this document to the notion of a collection of elements or identifiers

and discuss different properties associated with them. In this section we introduce the

notions of set and ordered set to facilitate subsequent discussions about containers.

Definition 2. A set is a collection S, of distinct objects {e0, e1, ..., ei...}, which are

called the elements of S. If e is an element (or member) of S, we write e ∈ S.

For example, we can define sets of integer numbers SI = {2, 7, 5}, strings Ss =

{′Red′,′ Blue′,′ Black′} or memory addresses SA = {0xa0, 0xa4, 0xa8}.

Definition 3. For a given type T , the universe of type T (Universe(T)) denotes the

maximal set of distinct elements that are of type T .

25

Definition 4. The cardinality |S| of a set S is the number of elements of S. If

the cardinality of a set is finite, then we call it a finite set. If the cardinality is

infinite, then we call it an infinite set. We use {} or φ to denote an empty set, and

its cardinality is zero.

We introduce the notion of relations between elements of a set to express ordering

and traversals of the elements of a set:

Definition 5. A set of elements S, is called a partial ordered set if there is a binary

relation R defined on it that is reflexive (∀a ∈ R, aRa), antisymmetric (if aRb and

bRa then a = b) and transitive (if aRb and bRc then aRc). If the relation R is

antisymmetric, transitive and total (∀a, b ∈ S, aRb or bRa), than it is a total ordered

set.

For example, for Si = {2, 7, 5}, we can define a total ordered set by associating

correspondingly the≤ relation on integer numbers. For Ss = {”Red”, ”Blue”, ”Black”}

we can define a total order relation using lexicographical compare for strings.

For a finite total ordered set we can define the following useful notions:

Definition 6. The first, last, next, prev element and unique enumeration (lineariza-

tion) imposed by a total order relation, R, on a finite set S, are defined as follows:

1. The first element of the set, first : S → S, first(S) = x, such that ∀z ∈

S, xRz

2. The last element of the set, last : S → S, last(S) = y, such that ∀z ∈ S, zRy

3. The next element of an element, next : S → S, next(x) = y, such that xRy and

there is no other z ∈ S, xRz and xRy

4. The previous element of an element, prev : S → S, prev(x) = y, such that xRy

and there is no other z ∈ S, yRz and zRx

26

5. A unique enumeration (linearization) imposed by R. Starting from the first

element e0 there is a unique enumeration e0 R e1 R...R en−1 that contains all

elements in S.

Linearizations are used to specify various traversals of the elements in a set. As

described in the following sections linearizations will be used by a pContainer to

specify various traversals of its elements.

2. pContainer Domain

For each pContainer element there is a unique identifier or GID associated with it.

Definition 7. A domain is a set of GIDs.

Throughout PCF we use various types of domains with different properties that

we properly introduce here. For a static container, the number of elements is fixed at

the construction time. For dynamic containers, the number of elements, in general, is

bounded only by the amount of available storage, and so in principle can be infinite.

We distinguish then, for dynamic pContainers, the pContainer’s domain which is

the universe of all GIDs that will identify its elements and the pContainer’s domain

instance which is the set of GIDs that identifies the current elements of the pContainer.

Hence, the dynamic pContainer domain is infinite while the domain instance is always

a finite domain.

3. Ordered Domain

The domain as defined in Section 2 does not specify any requirement on the order of

the GIDs it contains. To specify an order we introduce the notion of ordered domain.

Definition 8. A domain with a binary relation R on its elements that is reflexive,

antisymmetric and transitive is called a partial ordered domain. If the relation R is

27

antisymmetric, transitive and total than we have a total ordered domain. We will use

the notation OD
def
= (D,R) to represent an ordered domain.

In this document, whenever we refer to ordered domains they are total ordered

domains, unless otherwise specified. An often used relation is the total order ≤ on

integers. For example for a domain D = {2, 1, 3} we can have (D,≤) = { 1 ≤ 2 ≤ 3}

as an ordered domain. An ordered pContainer domain is often used in the PCF to

specify how the pContainer’s data is organized in memory and to specify a linear

traversal order for the elements.

Example of Domains used by pContainers

The domain is an important concept that users and developers can interact with

while using the PCF. Different pContainers require specific domains and specific

implementations to guarantee certain properties, such as the time to perform an

operation. In the following, we describe the domains that are provided and used by

our framework:

Finite Domains:

1. An enumeration of individual elements.

Examples: D = {1, 3, 2} or D = {a, c, b}

Enumerations are considered unordered. A straightforward order can be implied

for these domains, by considering the order in which they are specified. Other

orders such as ≤ or ≥ are possible;

2. Range: a sub-domain of a bigger domain. We will represent a range by a first

element, a last element and a next operator that allows us to enumerate all its

GIDs.

28

Examples: 1DRange = { [0..2),≤} = {0, 1} as a sub-domain of the integers

domain.

2DRange = [(0, 0), (2, 2)). A 2DRange can be ordered row-wise or column-wise

to obtain a total ordered domain. 2dRange row = {(0, 0), (0, 1), (1, 0), (1, 1)}

and 2dRange column = {(0, 0), (1, 0), (0, 1), (1, 1)}

Infinite Domains:

1. Open ordered domains for associative containers,

{([key1, key2), lexicographicalcompare(≤s)}

Example: Strings domain defined on a set of characters, between ”a” and ”c”,

{[”a”, ”c”), lexicographical order)}, contains an infinity of elements

(e.g., {”a”, ”aa” , ”aaa”, ”ab”, ”aba”, ...}).

Domains defined as compositions of existing domains:

1. Cartesian products over ordered domains,

OrderedD = ([(D1,≤1), (D2,≤2)], R = lexicographical order based on

≤1,≤2).

Example: OrderedD = ([(0..10,≤), (0..10,≤)], sR = lexicographical

order over integer pairs. The gids are pairs (i, j) and (i, j) ≤ (p, q) if i < p or

if i == p and j ≤ q

2. Set operations on exiting ordered domains, OD3 = OD1 op OD2 where op =

{∩, ∪,−} and the restrictions that OD1 and OD2 are defined over the same

type of GIDs. If OD1 and OD2 are ordered according to the same relation R,

then OD3 is also ordered according to R.

3. Filtered domain:

D = (D1, f ilter function) = {y|y ∈ D1 and filter function(y) = true}

29

Ex: D = (([0..10],≤), f = every second element) defines every second element

in the enumeration of the original domain according to ≤.

For the ordered domains we mentioned that the last gid is not part of the domain.

This last element is a convention (e.g., predefined value type) that has the property

that all other elements of the domain are in relation with it. For integral types this

value is predefined by our framework but for other gid types the users will have to

define the last element as part of the domain interface.

4. Partition

The pContainer manages a distributed storage where individual locations store a

subset of its elements. The pContainer uses a partition to group its elements in

individual units of storage. The partition specifies a decomposition of a domain into

sub-domains and how to map an individual GID to the sub-domain that contains

it. Later, in Chapter V, Section C.4, we will describe additional functionality that

partitions provide.

Definition 9. A partition P = {D0, D1, .., Dn−1} of a domain D is a collection of

sub-domains of D, such that:

1. D = D0 ∪D1 ∪ ... ∪Dn−1 (the union of the elements of all sub-domains is the

set of elements of the original domain)

2. Di ∩Dj = ∅, ∀ i, j, 0 <= i, j < n, i 6= j (sub-domains are disjoint)

3. The sub-domain set, {D0, D1, .., Dn−1} is ordered by the relation ≤ over domain

indices (D0 ≤ D1 ≤, ..,≤ Dn−1).

Partition properties (interface):

1. Partition a domain D into a set of sub-domains according to Definition 9.

30

2. Specify the cardinality of the sub-domain set (e.g., how many sub-domains the

partition defines).

3. Given an element, identify the sub-domain to which it is associated.

5. Ordered Partition of Total Ordered Domains

For a stapl pContainer that is the parallel equivalent of a stl container we need

to support a total order among its elements in order to provide a linearization of its

data. For this reason we describe in this section the notion of an ordered partition

that is used by the pContainer to provide a linearization of its data.

Definition 10. A partition of a total ordered domain OD(D,R), P = {(D0, R), ...,

(Dn−1, R)} is anOrdered Partition (OP) if ∀Di ∈ P, (Di, R) are total ordered domains

and there is a relation RD across the domains of P , such that, ∀x, y ∈ D and x R y

then either:

1. x and y belong to the same sub-domain Di and xRy OR

2. x and y belong to different sub-domains Di and Dj respectively, and DiRDDj

We are using the notation (P,R,RD) to denote an ordered partition. An ordered

partition of a total ordered domain preserves the order among elements from the

domain to the sub-domains.

Definition 11. Given a totally ordered domain OD ≡ (D, R) we define the split

as a blocked partition P = {D0, ..., Dn−1} of D such that D0 contains the first |D0|

elements from D according to R, D1 the next |D1| elements from D, etc.

The split is a blocking of the unique enumeration of a total ordered domain

and it is an important way of defining a partition that preserves the relation be-

tween elements in the original domain. For example, for the totally ordered domain

31

([0, 10),≤) we can have P = {D0 = ([0, 5),≤), D1 = ([5, 10),≤)} and RD ≡ D0 ≤ D1

as a possible split.

A split of a total ordered domain and the relation RD ≡ D0 ≤ ... ≤ Dn−1 induces

an ordered partition. The split can be seen as a top-down procedure of specifying an

ordered partition for an ordered domain. Next we show how to specify an ordered

domain corresponding to a set of ordered domains.

Lemma 1. Given a set of ordered domains P = {(D0, R), ..., (Dn−1, R)}, and a total

relation across the domains, RD, then P and RD defines an ordered partition of the

total ordered domain OD(D,R), where D =
⋃

i=0..n−1
Di and R is defined as:

1. if x and y belong to the same domain Di then xRy ≡ xRy

2. if x and y belong to different domains Di and Dj then xRy ≡ DiRDDj

The proof for Lemma 1 is immediate from the definition of the ordered domains.

To exemplify how Lemma 1 is useful let us consider two totally ordered domains

D0 = {”Red”, ”Blue”}, R0 = ”Red” ≤ ”Blue” and D1 = {”Black”, ”White”},

R1 = ”Black” ≤ ”White” and RD = D1 ≤ D0. Then {(D0, R0), (D1, R1)}, RD is an

ordered partition of the totally ordered domain

D = {”Red”, ”Blue”, ”Black”, ”White”}, R = ”Red” ≤ ”Blue” ≤ ”Black” ≤

”White”

32

C. pContainer Composability

There are many common data structures that are naturally described as compositions

of existing structures. For example, a pVector of pLists provides a natural adjacency

list representation of a graph. To enable the construction and use of such data

structures, we require that the composition of pContainers be a pContainer, i.e.,

that pContainers are closed under composition.

An important feature of composed pContainers is that they support hierarchical

parallelism in a natural way – each level of the nested parallel constructs can work on

a corresponding level of the pContainer hierarchy. If well matched by the machine

hierarchy, this can preserve existing locality and improve scalability.

In this section, we examine the properties of the composed pContainer, and ana-

lyze the relations between the pContainers that are composed and the final composed

pContainer. As a simple example, consider a pArray of pArrays. The following code

is used to declare the composed pArray and correspondingly resize each of the nested

pArrays to obtain the hierarchy depicted in Figure 3 :

p_array<p_array<int,...>,...> pApA(3);

pApA[0].resize(2); pApA[1].resize(3); pApA[2].resize(4);

The composed data structure obtained using composition can be thought of as a

single data structure whose domain, interface, storage, etc., are compositions of the

corresponding modules at the two levels of the hierarchy. For example, the domains of

the nested pArrays depicted in Figure 3 are D10 = {0, 1}, D11 = {0, 1, 2} and D12 =

{0, 1, 2, 3} and the domain of the outer pArray is D0 = {0, 1, 2}. The composed data

structure however can be viewed as a data structure by itself where the domain con-

sists of the following GIDs: Dcomposed = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1),

(2, 2), (2, 3)}. We formally describe the domain of the composed pContainer as the

33

0 1 2

0 1 0 1 2 0 1 2 3

p_array<p_array<int> >

p_array<int> p_array<int> p_array<int>

Fig. 3. Composed pArray of pArrays.

union of the cross products of each element in D with the corresponding domains of

the nested pContainers.

Dcomposed =
⋃

i∈D

({D0[i]} × D1i)

= ({0} × D10) ∪ ({1} × D11) ∪ ({2} × D12)

= {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (2, 3)} (4.2)

The corresponding interface of the composed container can be thought of as

the composition of the interfaces of the pArrays that are composed. For example

accessing the element corresponding to GID (1,0) in the composed container can be

done with the following invocation: pApA.get element(1).get element(0). The

method of the composed pArray is naturally an application in series of methods at

both levels of the hierarchy.

We define the height of a composed pContainer as the number of pContainers

present in the composed type. For a pContainer whose element is a non pContainer

type, the height is defined as one. For the composed pArray example in Figure 3,

the height of the composition is two. The composition can be done an arbitrary

34

0 1 2

0

p_array<p_list<p_list<p_array<int>>>>

p_list<p_list<p_array<int>>>

p_list<p_array<int>>

0 1 p_array<int>

.........

.........

.........

1 2

0 1

Fig. 4. Composed pContainers.

number of times and include various types of pContainers. For example, compos-

ing a pArray<pList<T>> with a pList<pArray<T>> results in the composed

pContainer pArray <pList <pList<pArray<T>>>> with height four. In Fig-

ure 4, we include the hierarchical organization of a possible instance of such a com-

posed pContainer.

In the remainder of this section we formalize the process of composing two arbi-

trary pContainers that themselves can be the result of a previous composition.

Definition 12. Let pC1 = (C1,D1,F1,O1,S1) and pC2 = (C2,D2,F2,O2,S2) be two

composed pContainers of heightH1 andH2, respectively. The composed pContainer

pC = pC1 ◦pC2 is of height H = H1+H2. In pC, each element of pC1, pC1[i], i ∈ D1,

is an instance of pC2, called pC2i = (C2i,D2i,F2i,O2i,S2i).

Each component of pC is derived appropriately from the corresponding compo-

nents of pC1 and pC2. For example, in the special case when all the mapping functions

35

F2i and operations O2i are the same, we have

D =
⋃

i∈D1

({D1[i]} × D2i)

F = (F1,F2)

O = (O1,O2)

where, for (x, y) ∈ D, F(x, y) = (F1,F2)(x, y) = (F1(x),F2(y)). The components

C and S are isomorphic to D and they are defined similarly (for each element of

the collection, there is a unique GID and a unique storage). With this formalism,

arbitrarily deep hierarchies can be defined by recursively composing pContainers.

Given a composed pContainer PC = (C,D,F ,O,S), with a hierarchy of height

H, we need a mapping function to access a pContainer at level 1 ≤ h ≤ H. This

function is a sub-sequence (prefix) of the tuple of functions F , Fh(x1, . . . , xh) =

(F1(x1),F2(x2), . . . ,Fh(xh)). The operations available at level h areOh. The pContai-

ner composition is made without loss of information, preserving the meta informa-

tion of its components in the same hierarchical manner. For example, if two dis-

tributed pContainers are composed, then the distribution information of the initial

pContainers will be naturally preserved in the new pContainer. In Figure 4 we

show an example of a hierarchy with four levels, where levels are counted from top

down. Accessing an element at level 3 of the hierarchy is possible with the following

interface:

pList<pArray<int>>& plpa = pc.get_element(1).get_element(1);

The pList<pArray<int>> reference obtained with the composed method invo-

cation above is possible using the mapping functions of the pContainers at level 1

and 2 of the hierarchy.

A possible research direction for pContainer composition is to allow for (static)

36

specialization of the mapping functions if machine information is provided. For ex-

ample, if the lower (bottom) level of the composed pContainer is distributed across

a single shared memory node, then its mapping F can be specialized for this envi-

ronment, e.g., some methods may turn into empty function calls.

37

CHAPTER V

PARALLEL CONTAINER FRAMEWORK

One of the main objectives of the stapl Parallel Container Framework (PCF) is to

simplify the process of developing generic parallel containers as defined in Chapter IV.

The PCF is a collection of classes that can be used to construct new pContainers

through inheritance and specializations that are customized for the programmer’s

needs while preserving the properties of the base container. In particular, the PCF

can generate a wrapper for any standard data structure, sequential or parallel, that

has the meta information necessary to use the data structure in a distributed, concur-

rent environment. This allows the programmer to concentrate on the semantics of the

container instead of its concurrency and distribution management. Thus, the PCF

makes developing a pContainer almost as easy as developing its sequential counter-

part. Moreover, the PCF facilitates interoperability by enabling the use of parallel

or sequential containers from other libraries, e.g., MTL [28], BGL [30] or TBB [36].

stapl provides a library of pContainers constructed using the PCF. These

include counterparts of stl containers (e.g., pVector, pList [65], and associative

containers [64] such as pSet, pMap, pHashMap, pMultiSet, pMultiMap) and additional

containers such as pArray [63], pMatrix [15], and pGraph.

Novice programmers can immediately use the available data structures with their

default settings. More sophisticated parallel programmers can customize or extend

the default behavior to further improve the performance of their applications. If

desired, this customization can be modified by the programmer for every pContainer

instance.

The stapl Parallel Container Framework has been designed in a modular fash-

ion. This allows developers to implement new pContainers or customize existing

38

Base pContainer

 Static
pContainer

 Dynamic
pContainer

 Indexed
 <Value>

 Associative
 <Key,Value>

 Relational
<Element,Relation>

 Sequence
 <Value>

Associative pContainers Relationship pContainers

User Specific
Container
Extensions

Index is the implicit
 key

Simple Associative
 <key=value>
Pair Associative
 <key, value>

pArray pMatrix pVector pList pGraphpMap, pSet

Fig. 5. PCF design.

ones by implementing the appropriate set of interfaces.

A. pContainer Framework Design

The PCF is designed to allow users to easily build pContainers by inheriting from

appropriate modules. It includes a set of base classes representing common data

structure features and rules for how to use them to build pContainers. Figure 5

shows the main concepts and the derivation relations between them; also shown are

the stapl pContainers that are defined using those concepts.

All stapl pContainers derive from p container base class. This class is in

charge of storing the data using a location-manager and data distribution informa-

tion using a data-distribution-manager. It provides a simple interface to initialize

the pContainer based on the traits class provided as a template argument, and a

domain and partition instance. The complete interface is described in Section D.1.

39

The remaining classes in thePCF provide additional interfaces and requirements.

First, static and dynamic pContainers are classes to indicate if elements can be

added to or removed from the pContainer. The property that the number of elements

is fixed allows for more efficient implementations of domains, partitions and pViews

to be used. The interfaces are discussed in Sections D.2 and D.3.

The next discrimination is between associative (Section D.5) and relational (Sec-

tion D.6) pContainers. In associative containers, there is an implicit or explicit

association between a key and a value. For example, in an array there is an implicit

association between the index and the element corresponding to that index; we refer

to such (multi-dimensional) arrays as indexed pContainers (Section D.4). In other

cases, such as a hashmap, keys must be stored explicitly. The PCF provides an

associative base pContainer for such cases. The relational pContainers in-

clude data structures that can be expressed as a collection of elements and relations

between them. This includes graphs and trees, where the relations are explicit and

may have values associated with them (e.g., weights on the edges of a graph), and

lists where the relations between elements are implicit.

All classes of the PCF have well defined interfaces as described in Section D

and default implementations that can be customized for each pContainer instance

using template arguments called traits. This allows users to specialize various aspects,

e.g., the data distribution, to improve the performance of their data structures. The

pContainer customization using traits is further discussed in Section H.

B. pContainer Interfaces

stapl pContainers are commonly extensions of existing sequential data structures

and they often support the same interface as the sequential counterpart. However it

40

is often the case that a pContainer provides an extended interface to better optimize

for parallelism. Relative to a sequential data structure the methods provided by a

pContainer have more complex semantics that need to be understood correctly to

reason about the correctness of an application that is using them. We distinguish the

following categories of methods:

Collective methods: These methods have to be invoked on all locations where

there is a pContainer representative in an Single Program Multiple Data (SPMD)

fashion. Examples of such methods are constructors, destructors and methods that

redistribute the pContainer’s data. A location cannot invoke another method until

the pending method completes.

Element-wise methods: The methods in this category operate on an individ-

ual pContainer element and include methods such as get element, set element,

split phase get element, insert, erase, etc. The element-wise methods are split in

the following three categories based on the guarantees we provide about their com-

pletions:

• Synchronous methods: have a return type and guarantee that the method is

executed and the result available when they return. A thread cannot invoke

another method until the pending method completes.

• Asynchronous methods: have no return value and return immediately to the

calling thread. The execution will complete subsequently.

• Split phase methods: execution is similar to Charm++ [41], X10 [18]. The

return type of a split phase method is a future that allocates space for the

result. The invocation returns immediately to the user. When the get method

is invoked on the future, the calling thread will return immediately if the result

is available or block until the result arrives. This type of method may benefit an

41

application if additional work can be performed while waiting for the result and

is provided as an alternative to synchronous methods. If one of the phases of a

split method has been invoked, then the thread cannot invoke another method

until that phase completes.

Global property methods: These methods include operations returning global

properties about the data structure such as size() or empty(). These are not collec-

tive, synchronous operations but they do require partial information from all locations

where there is a pContainer representative. A thread cannot invoke another method

until the pending method completes.

New methods facilitating parallel use: For certain pContainers we ex-

tend their interfaces with methods that improve their efficiency in a parallel environ-

ment. For example, the insert anywhere method of a pList adds an element to

the pContainer to an unspecified position. The pContainer, in such situations may

optimize the insertion to improve load balance and speed.

The stapl runtime provides a fence construct that when invoked guarantees

that all pending pContainer methods are completed. Each category of methods

described above provides different guarantees about the completion of the invocations

and ordering among them when invoked concurrently from multiple threads. The

complete specification of the guarantees provided to the user makes the pContainer

memory consistency model (MCM) discussed in detail in Chapter VII.

The information about the particular semantics of an element-wise method is

embedded in the return type. For example, the parallel array data structure available

in stapl (described in more detail in Chapter IX) provides a simple interface to

access elements based on their indices. The interface contains:

void set_element(gid, value);

42

value get_element(gid);

pc_future<value> split_phase_get_element(gid);

Based on the signature a user will be aware that set element is implemented

asynchronously (b/c no return type), get element is synchronous (returns a value)

and split phase get element is implemented using a split phase execution. More

details on the semantics of the three methods and guarantees about their completion

are included in Chapter VII where we discuss the memory consistency model for

pContainers. The performance trade offs between these three categories of methods

are discussed for various pContainers in Chapters IX, X, XI and XII.

C. Shared Object View Implementation

As depicted in Figure 6, a pContainer stores its elements in a non-replicated fashion

in a distributed collection of base containers (bContainers, Section C.1). pContainers

can be constructed from any existing container, sequential or parallel, so long as it

can support the required interface as specified in Section C.1. The pContainers

currently provided in stapl use the corresponding stl containers (e.g., the stapl

pVector uses the STL vector), containers from other sequential libraries (e.g., MTL

for matrices), containers available in libraries developed for multicore (e.g., tbb con-

current containers), or other pContainers. This flexibility allows for code reuse and

supports interoperability with other libraries.

The pContainer provides a shared object view that enables programmers to

ignore the distributed aspects of the container if they so desire. When a hardware

mechanism is not available, the shared object view is provided by a software address

resolution mechanism that first identifies the bContainer containing the required

element and then invokes the bContainer methods in an appropriate manner to

43

Location 0 Location 1

bContainer 0 bContainer 1 bContainer 2 bContainer 3

Data Distr ibution Manager

User Task

0 1 n

User Interface

Internal
Organization

pContainer

Fig. 6. Shared object view. stapl pContainer provides a shared object view to the

user. Internally it distributes the data across available locations and uses a

distribution manager to find where individual elements are stored.

perform the desired operation.

The elements of a pContainer are stored in non-replicated fashion in a dis-

tributed collection of bContainers. An important function of the PCF is to provide

a shared object view that relieves the programmer from managing and dealing with

the distribution explicitly, unless he desires to do so. In this section, we describe how

this is done.

The fundamental concept required to provide a shared object view is that each

pContainer element has a unique global identifier (GID). The GID provides the shared

object abstraction since all references to a given element will use the same GID.

Examples of GIDs are indices for pArrays, keys for pMaps, and vertex identifiers for

pGraphs.

44

The PCF supports the shared object view by providing an address translation

mechanism that determines where an element with a particular GID is stored (or

should be stored if it does not already exist). We now briefly introduce the PCF

components involved in the address translation. The set of GIDs of the elements of a

pContainer is the pContainer domain (D). A domain is partitioned into a set of non-

intersecting sub-domains by a partition class, itself a distributed object that provides

the map F from a GID to the sub-domain that contains it, i.e., a directory. There

is a one-to-one correspondence between a sub-domain and a bContainer. In general,

there can be multiple bContainers allocated in a location, where a location denotes a

unit of a parallel machine that has a contiguous memory address space and associated

execution capabilities (e.g., threads); a location may, but does not have to, be iden-

tified with a process address space. Finally, a concept called partition-mapper is

used to map a sub-domain (and its corresponding bContainer) to the location where

it resides, and a location-manager to manage the bContainers of a pContainer

mapped to a given location.

We now describe how a pContainermethod is executed using the above concepts.

In Figure 7 we show a flowchart of the address resolution procedure. Given the unique

GID identifying a pContainer element, the pContainer’s partition is queried about

the sub-domain associated with the requested GID. If the bContainer (specified by

a bContainer identifier, or BCID) is not available, the partition provides information

about the location (LOC) where it might be retrieved, and the process is restarted

on that location. If the BCID is available and valid, then the partition-mapper

receives information about the location where the bContainer resides (LID); if the

operation is not local, the method is re-evaluated on that location, otherwise the

location-manager provides the proper bContainer address and the operation is

performed.

45

(BCID, LOC)

computation
transfer

partition

yes

mapper
c
o
m
p
u
t
a
t
i
o
n

t
r
a
n
s
f
e
r

t
o

L
O
C

GID

element
reference

locationmanager

base container

(BCID, LID)

BCID valid?

to LID

Fig. 7. pContainer address resolution. pContainer modules for performing address

resolution to find the element reference corresponding to a given GID.

In dynamic pContainers, the domain may change during execution through the

insertion or deletion of elements. To properly update the domain and partition infor-

mation, pContainer operations are routed to the partition. In general, each method

of the pContainer interface has two corresponding methods in the partition class:

the where method that returns information about the sub-domain that may include

the specified GID, and the execution method that actually performs the operation and

updates the partition information if needed. To allow for work migration, the where

method can provide an incomplete answer if the sub-domain information is not avail-

able on the location where the where method is invoked. In this case, the answer is the

identifier of a location that may know the sub-domain information. This mechanism

46

is referred to as method forwarding and allows the request to be migrated instead of

fetching remote information for the requester. More details on partition functionality

and method forwarding are included in Sections C.4 and C.6. Experimental results

showing the benefits of method forwarding are included in Chapter XI, Section F.2.

In static pContainers, i.e., containers that do not support the addition and

deletion of elements, the domain does not change during execution. In this case,

it may be possible to optimize the address translation mechanism. In particular, if

the mapping from GID to sub-domain (and hence to bContainer) has a closed form

solution, then address translation is immediate and forwarding is not needed.

Next we introduce the specification and the interfaces for all modules briefly

described in this section: Base Container, Location Manager, Domain, Partition,

Partition Mapper and Data Distribution Manager.

1. Base Container Interface

The pContainer allocates a base container (bContainer) for every sub-domain de-

fined by the partition to store the data corresponding to the sub-domain. The

bContainer concept specifies a minimal interface that allows for any existing con-

tainer sequential or parallel to be used as storage for the parallel container. We can

not directly use the sequential container because different non standard implemen-

tations provide different interfaces for similar functionality. With the base container

concept we unify sequential containers such that they can be integrated with the

PCF serving as a bridge between existing data structures and PCF. The minimal

interface required for a bContainer is included in Table III.

47

Table III.: Base container interface.

Define Types Description

value type The element type stored in the
bContainer.

reference The element reference type. Do not as-
sume that T is the reference type.

gid type The gid type associated with the ele-
ments of the bContainer.

bcid type The bContainer identifier type.

domain type The domain type associated with the
bContainer.

Method Description

constructor (domain type*, const
bcid type&)

Construct a bContainer with the given
bContainer id and a given domain

destructor(void) Deallocate the memory space occupied by
the bContainer.

size t size() const Returns the number of elements in the
bContainer.

bool empty() const Returns true if the bContainers has zero
elements and false otherwise.

void clear() Deallocate the space taken by the
bContainer elements. After clear(),
size() returns zero and empty() returns
true

bcid type get bcid() Return the bContainer identifier

void define type(typer &) Define type for packing bContainer’s
data

std::pair < size t,size t > mem-
ory size(void) const

Return the memory size used by
bContainer. The first member of the
pair is the memory used by data and the
second argument represent memory used
by metadata

The main constructor used to instantiate a bContainer takes as input a reference

to the associated sub domain from the partition and a BCID. Additional methods are

typical for containers and include the size() and empty(), methods to report the

memory size and a method for serializing the data of a bContainer.

48

2. Location Manager Interface

In Definition 4.1 it is shown that a pContainer pC(C,D,F ,O,S), stores elements

identified by the GIDs encompassed in the domain D, into a storage S that is dis-

tributed across available locations L = {L0, L1, ...Lp−1}. The pContainer storage

consists of a collection of bContainers stored in a distributed fashion across the

available locations.

A location may store a sub-set of the bContainers of a pContainer. The

pContainer employs within each location a Location Manager to maintain the col-

lection of bContainers. The complete interface is presented in Table IV. It in-

cludes methods to add and delete bContainers and methods to access individual

bContainers based on their global unique BCID. The bContainers are allocated ei-

ther by the pContainer or provided from outside when external storage is used. The

location manager may use different optimizations for storing bContainers. For ex-

ample different memory managers may be used to allocate the space required by the

bContainers.

Table IV.: Location manager interface.

Define Type Description

bcontainer type bContainer used to store pContainer’s data.

bcid type bContainer identifier type.

iterator iterator type used when iterating over
bContainers.

Method Description

default constructor Initialize an empty location manager

void add bcontainer(const

bcid type&,

bContainer type*)

Add a new bContainer to the pContainer.

size t size() const Returns the number of bContainers on the cur-
rent location

49

Table IV continued

Method Description

iterator begin() Iterator pointing to the first local bContainer.

iterator end() Iterator pointing one past the last local
bContainer.

bcontainer type*

get bcontainer(const

bcid type&)

Returns a pointer to a given bContainer specified
as argument

void clear(void) Deletes the bContainers and their corresponding
memory

pair<size t,size t>
memory size(void) const

Compute the memory size for location manager
meta data and data

3. Domain Interface

Derived from its definition in Chapter IV, Section B.2, a pContainer domain specifies

the GID type of the domain, test if a specific GID belongs to the domain, compute

its cardinality if finite and provide methods to enumerate its GIDs. The framework

most commonly uses ordered domains to describe the set of GIDs of a pContainer

and the order among the elements corresponding to the GIDs. An ordered domain

implementation supports the additional functionality described next and is required

to implement the interface from Table V.

1. Specify the first and the last element of the domain according to a total order

R. The first element belongs to the domain but the last element does not belong

to the domain.

∀x ∈ OD, (firstRx) and (xRlast) and not(lastRx).

This is a requirement that provides us compatibility with C++ STL, where the

end of a range is a convention such that all elements in the range are less than

it.

50

2. Compare two GIDs according to R (e.g., gid1Rgid2 is either true or false).

Table V.: Ordered domain interface.

Define Type Description

gid type The global unique identifier type

Method Description

gid type get first gid() const The first gid of the domain

gid type get last gid() const The last gid of the domain; a convention
with the property that every other gid of
the domain will be less than it

bool contains gid (gid type gid) const Returns true or false depending if the do-
main is part of the domain

bool compare less gids (gid type,
gid type) const

Compare for ’less then’ two GIDs

gid type get invalid gid() const Required to represent NULL/invalid iter-
ators in the pView

A Finite Ordered Domain (FOD) extends the ordered domain with the following

functionality and the interface included in Table VI.

1. Return the number of elements in the domain (e.g., cardinality).

2. The next gid of a gid defined as next : FOD → FOD, next(x) = y, such that

xRy and there is no other z ∈ FOD, xRz and zRy

3. The previous gid of a gid defined as prev : FOD → FOD, prev(x) =

y, such that xRy and

there is no other z ∈ FOD, yRz and zRx

4. The nth gid following a gid defined as advancen : FOD → FOD, advancen(x) =

y, such that

51

y = next(...next(next(x))...), ntimes; apply next n times starting with x.

5. An unique enumeration imposed by R. Starting from the first element e0 there

is a unique enumeration e0 R e1 R...R en−1 that contains all elements in FOD.

6. An offset of a gid within the unique enumeration specified by R which is defined

as

offset : FOD → N(natural numbers), offset(x) = n iff advancen(first) =

x.

Table VI.: Finite ordered domain interface.

Define Type Description

gid type The global unique identifier type

Method Description

size t size (void) const The size of the domain

gid type get next gid (gid type) const The next gid of the argument according
to the domain ordering relation

gid type get prev gid (gid type) const The previous gid of the argument

gid type advance (gid type, size t n)
const

The nth gid after the current one

size t offset (gid type) const The offset of the gid in the linearization
of the domain

4. Partition Interface

In Chapter IV, Sections B.4 and B.5 we introduced the main functionality of the

partition. It specifies a decomposition of a domain into a collection of sub-domains.

The partition is one of the main functional modules of a pContainer and we envision

that this will be the most common mechanism used to customize the behavior of

52

the pContainer. In addition to specifying a collection of sub-domains the partition

will provide the information regarding the BCID associated with a given GID, and will

specify the behavior of individual pContainer methods.

For a dynamic pContainer as described later in Section D.3 the partition will

specify the bContainer where a new element will be added and the specific actions

that need to happen when the element is added to an individual bContainer. For

this reason, we decided that every pContainer method will have two corresponding

methods at the partition level describing the bContainer where the method will be

executed and how it will be executed. In Section D we include details on the additional

interface requirements for the partitions of various pContainer specializations. When

atomicity is provided by the framework the partition will additionally specify the

locking modes for each individual method in the pContainer interface. This will be

discussed in more detail in Chapter VI.

Derived from the partition description and properties introduced in this section

we designed the interface included in Table VII.

Table VII.: Partition base interface.

Define Type Description

domain type domain type

bcid type sub domain identifier type

bcid type get info(const GID&)
const

Returns the bContainer identifier associated with
input GID.

const bcids info type&
get cids info(void) const

Returns a structure with the information about
the order among BCIDs.

size t size() const Returns the total number of sub domains

void get sub domains sizes(
std::vector<size t>&) const

Return the sizes of the sub domains

void set domain(domain type*) Sets the domain of the partition. The partition
initializes its sub domains to reflect a partition of
the input domain.

53

Table VII continued

Method Description

domain type* get domain()
const

Get the domain of the partition.

domain type*
get sub domain(const
bcid type&)

Get a certain sub domain.

const
std::vector<domain type*>*
get sub domains() const

Get the sub domains of the partition.

void set partition mapper (par-
tition mapper type* pm)

Set a reference to the associated partition mapper.

partition mapper type*
get partition mapper(void)

Get a reference to the associated partition mapper.

size t memory size() const Compute the memory used. Counted as part of
the pContainer metadata.

Table VIII.: Ordered partition interface.

Define Type Description

bcid type bContainer identifier type

Method Description

bcid type get first() The identifier of the first bContainer.

bcid type get last() Last identifier. Convention such
that get next(last valid bContainer

identifier) returns get last()

bcid type get next(bcid type) Computes the identifier of the bContainer follow-
ing the one given as argument, according to the
relation order the ordered partition implements

bcid type get prev(bcid type) Computes the identifier of the bContainer before
the one given as argument

The ordered partition is another concept of the PCF and it requires users to

54

provide, as a nested data type, a class encapsulating the order among sub domains.

This concept is referred to as bcids info and has the interface included in Table

VIII.

5. Partition Mapper Interface

In the PCF a unique bContainer identifier (BCID) is associated with every sub-

domain of a partition. The partition-mapper of a pContainer provides the mapping

from the set of sub domain identifiers (BCIDs) to a set of locations. The pContainer

will use the partition mapper to decide the locations where individual bContainers

will be allocated and an interface to find where a specific BCID has been mapped.

The complete interface is included in Table IX.

Table IX.: Partition mapper interface.

Define Type Description

bcid type bContainer identifier type

location type Location identifier type; a type convertible to
armi::location type

partition mapper() Default constructor; the mapper is not initialized;
init can be used afterward

bool is local(const bcid type&)
const

Returns true or false depending if the argument
BCID is local or not

const std::vector<bcid type>&
get local cids() const

Returns the list of local allocated BCIDs.

location type map(const
bcid type& sub domain id)
const

Returns the location where the sub domain iden-
tifier passed as argument may live

void init(const cids info type&) Initialize the partition mapper with information
about the list of BCIDs passed as argument

size t get num bcontainers() Returns the total number of bContainers man-
aged by the current mapper

size t memory size(void) const Returns the memory size occupied by this object.
It will be counted by the pContainer as part of
the metadata memory usage

55

The PCF provides a set of partition mappers that are briefly introduced next.

Assuming the sub-domain identifiers are from 0 to m− 1 and the location identifiers

are from 0 to L − 1. The cyclic mapper, for which sub-domains are distributed

cyclically among locations; blocked mapper, where m/L consecutive sub-domains

are mapped in a single location and general mapper that can arbitrary map any

sub-domain to any location.

6. Data Distribution Manager

The data distribution manager base class is responsible for managing the pConta-

iner partition and partition mapper. All pContainer methods that deal with ele-

ments are forwarded to the data distribution manager. This class uses the partition

and the partition mapper to determine the locations and the bContainers where the

method will be executed finally.

As shown in Chapter VI, to simplify the pContainer developers effort while in-

teracting with the partition, the partition mapper, and thread safety management,

the data-distribution-manager provides a skeleton for any element-wise method

that users can customize by providing appropriate functors. The generic method

execution support is encapsulated within a set of methods called invoke which are

shown in Figure 8. The actions performed inside invoke require cooperation from all

previously introduced pContainer modules. The method receives as input a unique

method identifier and two functors : FunctorWhere and FunctorAction. Both func-

tors are redirections to the appropriate methods in the partition. The first action

performed by invoke is to query the partition for the BCID of the bContainer where

the method needs to be invoked (Figure 8, line 5). The partition returns a bContainer

info structure that either contains the exact bContainer identifier or a new location

where the method needs to be forwarded to be further processed (Figure 8, line 9). If

56

1 template<typename FunctorAction , typename FunctorWhere>
2 invoke (s i z e t m id , FunctorAction f , FunctorWhere where){
3 l o c a t i o n t yp e l o c ;
4 bc id type c id ;
5 // next query the p a r t i t i o n where i s the e lement l o c a t e d
6 bc id type c i n f o = where (this−>m ps) ;
7 i f (! c i n f o . c i d v a l i d ()){
8 // the p a r t i t i o n re turned p a r t i a l in format ion wi th a new
9 // l o c a t i o n t ha t may know more in format ion about the
10 // mapping from g id to bc id
11 l o c = c i n f o . l i d () ;
12 }
13 else {
14 // the p a r t i t i o n was a b l e to map from g id to bc id
15 l o c = this−>ge t pa r t i t i on mappe r ()−>map(c i n f o . c id ()) ;
16 }
17 i f (this−>g e t l o c a t i o n i d () == lo c) {// i f l o c a l
18 c id = c i n f o . c id () ;
19 // p a r t i t i o n performs the method on the bContainer c id
20 f (this−>g e t p a r t i t i o n () , c id) ;
21 }
22 else {
23 async rmi (loc , this−>getHandle () ,
24 &th i s t yp e : : invoke ,
25 m id , f ,w) ;
26 }
27 }
28
29 p array : : p con ta ine r i ndexed : : s e t e l ement (g id , v a l) {
30 this−>m dist−>invoke (MP SET ELEMENT,
31 boost : : bind(&pa r t i t i o n t yp e : : s e t e l ement , g id , v a l) ,
32 boost : : bind(&pa r t i t i o n t yp e : : g e t i n f o , g i d)) ;
33 }

Fig. 8. The invoke method of the data distribution manager.

57

the exact BCID is returned by the partition, then the pContainer uses the partition

mapper to identify the location where the method needs to be executed or forwarded

(Figure 8, line 13). If the identified location is the current one, then the partition will

be asked to perform the FunctorAction on the corresponding bContainer (Figure

8, line 17). If the location is a remote one, than the method will be forwarded and

re-executed on that location (Figure 8, line 20).

With this mechanism the pContainer can implement the shared object view.

The methods are forwarded and executed on corresponding locations according to the

policies specified in the partition class. In Figure 8, starting with line 26, we show

the implementation of the pArray set element method as a simple redirection to the

distribution manager invoke method with the FunctorWhere querying the partition

get info and the FunctorAction invoking set element method of the partition for

indexed pContainer.

The invoke methods perform additional actions related to the atomicity of ex-

ecution that will be discussed in Chapter VI. The data-distribution-manager

interface is included in Table X.

58

Table X.: Data distribution manager interface.

Define Types Description

domain type The partition domain type.

gid type The partition GID.

bcid type The partition BCID.

partition mapper type Partition mapper type

location type The location type

partition type The partition type

location manager type The location manager type

ths manager type The thread safety manager type

Method Description

data distribution base() Default constructor; the distribution in-
formation is uninitialized

data distribution base(domain type&
domain, partition type p)

Initialize the data distribution informa-
tion based on the input domain and par-
tition; the partition mapper will be allo-
cated based on the template argument

data distribution base() Destructor in charge of calling the de-
structor of the partition and partition
mapper

void clear() Deallocate the partition and the partition
mapper

bcid type get info(const gid type& gid)
const

Returns the sub domains that contains
the input GID.

bool is local(const gid type& gid) const Returns true or false if the GID argument
is mapped on the current location

location type lookup(const
gid type& gid) const

Returns the location that owns or that
may have more information about the
GID

partition type* get partition() Returns a pointer to the partition.

partition mapper type*
get partition mapper()

Returns a pointer to the partition map-
per.

template<typename FunctorAction,
typename FunctorWhere>
void invoke(size t m id, const FunctorAc-
tion& f, const FunctorWhere& w)

Support for asynchronous method execu-
tion

typename FunctorAction::result type in-
voke ret(size t m id, const FunctorAc-
tion& f, const FunctorWhere& w)

Support for synchronous method execu-
tion

typename FunctorAction::result type in-
voke opaque ret(size t m id, const Func-
torAction& f, const FunctorWhere& w)

Support for split phase method execution

59

Table X continued

Method Description

size t memory size(void) const Memory used by this class and its data
members (partition, partition mapper);
reported as metadata

The pContainer uses the data distribution (partition, partition mapping), the lo-

cation manager, and the bContainer, to determine the complete location information

(location, memory reference within location) where the data element corresponding

to a certain GID is allocated. The data distribution manager, the location manager,

and the bContainer are the modules in our framework that allow the pContainer to

provide a shared memory view to the user.

D. Specification for pContainer Framework Concepts

In this section we introduce the complete interface of the base pContainer classes

introduced in Section A and depicted in Figure 5. Each of these concepts will have as-

sociated interfaces and requirements for bContainers, Domains, Partitions, Partition

Mappings and Location Managers which are discussed in the following sections.

1. pContainer Base

All stapl pContainers derive from p container base class. This class is in charge

of storing the data using a location-manager and data distribution information

using a data-distribution-manager. It provides a simple interface to initialize the

pContainer based on the traits class provided as a template argument, and a domain

and partition instance. The complete interface is described in Table XI and includes

constructors, copy constructors that copy both data and metadata, and methods

60

to retrieve references to the location-manager and data-distribution-manager.

The type of the domain, partition, partition mapper, location-manager are passed

to this base class using the template traits class. Users will be able to customize the

behavior of this class by passing proper traits. This process will be exemplified in

Section H.

Table XI.: Base pContainer interface.

Template Arguments Description

Traits pContainer traits;

Define type Description

partition pContainer partition; Specified in the traits.

domain pContainer domain; Specified in the partition
type.

location manager type pContainer location manager; Specified in the
traits.

distribution type pContainer distribution manager; Specified in the
traits.

Method Description

constructor Collective Operation. Default constructor, regis-
ters the pContainer with RTS.

constructor(

p container base& other)

Collective Operation. Registers the pContainer

with RTS and copy the content of the other.

void init(domain*,

partition*)

Initialize based on a domain and partition. The
partition is used to define the sub domains and
implicitly the bContainers of the pContainer.

location manager type*

get location manager()

Returns a pointer to the pContainer location
manager

distribution type*

get distribution()

Returns a pointer to the data distribution manager

All stapl pContainers are pObjects, which means that they need to be al-

located in an SPMD style on all locations where the pContainer will distribute its

61

data. The pContainer will have a representative on all these locations and the union

of all pContainer representatives makes the overall pContainer. Having access to a

pContainer representative is equivalent to having access to the whole pContainer.

According to these requirements, the constructors are collective operations and they

are responsible for registering the pContainer with the RTS. The registration will

happen in the base class of the p container base, p object. The registration re-

turns a handle object that is stored and used during the pContainer’s live time to

perform remote method invocations across different locations.

The init method is in charge of the initial setup of the pContainer classes. It

takes as argument a domain and a partition. It will ask first the partition to provide

a decomposition of the given domain, followed by a query of the partition mapper to

decide which of the sub-domains will be mapped to which individual locations. This

process happens simultaneously on all locations and subsequently all locations will

allocate the bContainers for the local allocated sub domains. The bContainers are

then added to the location manager that will further administer them.

All stapl pContainers are designed to report their memory usage and this is

provided by the memory size method. This is a collective operation which will return

a pair containing the metadata size in the first field and the data size in the second

field. The p container base achieves this by recursively invoking the method size

on the data-distribution-manager and location-manager. The size is reported

in bytes.

In the following sections we describe the extensions and specializations of the

base concepts introduced for the different pContainer specializations proposed in

our taxonomy.

62

2. Static pContainer

The size of a static pContainers is fixed when the pContainer is declared and will

not change afterward. All interfaces described for the base classes will be available

for static pContainers. The property that the number of elements is fixed allows for

more efficient implementations of domains, partitions and pViews to be used. For

example partitions and pViews based on closed form solutions can be used with this

type of container.

Table XII.: Static pContainer interface.

Template Arguments Description

Traits pContainer traits;

Method Description

size t local size() const Returns the local size of the pContainer.

size t size() const Returns the size of the pContainer.

bool local empty() const Check if all the local bcontainers are empty.

bool empty() const Check if the pContainer is empty; return true if the
pContainer is empty and false otherwise.

template<class Functor>
typename Functor::result type
apply get(gid type i, Functor f)

Apply a functor f to the data corresponding to the
GID; The functor has a return type.

template<class Functor>
void apply set(gid type i, Functor
f)

Apply a functor f to the data corresponding to the
GID; The functor does not have a return type.

iterator begin() const Iterator to the first element of the pContainer.

iterator end() const Iterator pointing one past last valid element.

bool is local(gid type gid) const Returns true or false if the argument GID is local or
not.

location type lookup(gid type
gid) const

Returns the location where the given GID may be
found.

bool is local(gid type gid,
cid type& bcid) const

Returns true or false if the argument GID is local or
not.

63

The additional interface that a static pContainer provides is included in Table

XII. It includes query methods for different properties such as size() and empty()

methods to obtain references to the first or last element of the pContainer, and

references to an element with a given GID.

3. Dynamic pContainer

A dynamic pContainer allows elements to be added and deleted from a pContainer.

We include in Table XIII the additional interface a dynamic pContainer supports.

Table XIII.: Dynamic pContainer interface.

Template Arguments Description

Traits pContainer traits;

Method Description

void clear() Equivalent to remove all elements; The distribution
and location manager remain valid

cid type
add bcontainer(bcontainer type*
c)

Add a bContainer allocated dynamic outside; the
pContainer will just use it without any copying in-
volved

cid type
delete bcontainer(bcontainer type*
c)

Delete the requested bContainer.

4. Indexed pContainer

Containers in this category provide an interface to access the elements based on their

index. The domains associated with the containers in this category are derived from

Cartesian domains or compositions of Cartesian domains.

The indexed pContainer inherits either from a static or dynamic pContainer

64

and this is specified in the traits class. The additional interface supported by an

indexed pContainer is included in Table XIV.

Table XIV.: Indexed pContainer interface.

Methods Description

void set element(const gid typ&
gid, const value type& val)

Set the value of an element associated with a certain
gid.

value type get element(const
gid type& gid) const

Get the value of an element associated with a certain
gid

pc future<value type>
split phase get element(const
gid type& gid) const

split phase get element (two phase get element); It
returns a future that can be queried if the value is
available or not

reference operator[](gid type gid) Returns a reference to the element corresponding to
the GID;

value type operator[](gid type
gid) const

Returns the element

Corresponding to the element-wise interface introduced (e.g., set element,

get element, split phase get element) the partitions of indexed pContainers re-

quire the additional interface included in Table XV. The new interface is used by

the pContainer indexed as the FunctorAction. For the FunctorWhere the generic

get info method of the partition base class is used as exemplified in Figure 9.

65

1 p conta in e r i ndexed : : s e t e l ement (g id , v a l) {
2 this−>m dist−>invoke (MP SET ELEMENT,
3 boost : : bind(&pa r t i t i o n t yp e : : s e t e l ement , g id , v a l) ,
4 boost : : bind(&pa r t i t i o n t yp e : : g e t i n f o , g i d)) ;
5 }
6
7 va lue type p con ta in e r i ndexed : : ge t e l ement (g i d) {
8 this−>m dist−>invoke (MPGET ELEMENT,
9 boost : : bind(&pa r t i t i o n t yp e : : get e lement , g i d) ,
10 boost : : bind(&pa r t i t i o n t yp e : : g e t i n f o , g i d)) ;
11 }

Fig. 9. The pContainer indexed method implementation.

Table XV.: Indexed partition interface.

Methods Description

void set element(const gid typ&
gid, const value type& val, const
bcid type& bcid)

Set the value of an element associated with a certain
gid in the specified bContainer.

value type get element(const
gid type& gid, const bcid type&
bcid) const

Get the value of an element associated with a certain
gid

The domains used with indexed partitions need to implement the finite ordered

domain interface as specified in Chapter IV, Section B.3. The framework provides

default implementations for one and two dimensional indexed pContainers that are

used by pArray, pVector, pMatrix.

66

Indexed Partitions:

• partition balanced: used by pArray. For a given domain of size N it will

create P sub-domains, each of size N/P . If N < P then there will be N sub

domains of size 1;

• partition blocked : used by pArray. For a given domain of size N and a

block size BS there will be N/BS sub domains created, each of size BS

• partition blocked explicit: used by pArray. The constructors will accept

an explicit decomposition of a domain in sub-domains of arbitrary sizes.

• pv unbalanced partition: used by pVector. It is initially constructed similar

to balanced partition of the pArray. Subsequent insert or delete operations

may lead to unbalanced blocked partitions.

• p matrix partition: used by pMatrix. Allows user to specify block or block

cyclic decompositions, with row or column wise decompositions.

User-Partition Interaction

Advanced users will interact with the partition to specify the granularity of data for

different computations and to control how data will map on the machine. Creating

a new partition object will be performed by invoking the appropriate constructors.

For example, for static array-like data structures the users can choose from among

the following partition strategies:

Examples: We assume a domain D = [1..10].

1. partition balanced(domain, 2 /*num subdomains*/);

P = { 0..5, 6..10 }

67

2. partition blocked(domain, 3/*block size*/);

P = { 0..2, 3..5, 6..8, 9..10 }

3. partition block cyclic(domain, 2, BLOCK CYCLIC(3));

P = { {0,1,2 ,, 6,7,8} {3,4,5 ,, 9,10} }//two domains, cyclic, group size 3

4. partition block cyclic(domain, 2, BLOCK CYCLIC(1));

P = { {0,2,4,6,8,10} {1,3,5,7,9} } //two domains, cyclic, block 1

5. partition blocked explicit(domain, BLOCK(v{3,4,4}));

P = { 0..2, 3..6, 7..10 }

The above examples can be correspondingly extended to multi-dimensional do-

mains such as 2D or 3D arrays.

5. Associative pContainer

Containers in this category are dynamic pContainers that have associated two data

types: Key and Value. The interface supported by an associative container extends

the interface provided by the base and dynamic to accommodate the fact that we

have key/value pairs and it is included in Table XVI.

Table XVI.: Associative pContainer interface.

Template Arguments Description

Traits pContainer traits;

Key Key type

Value Value type

Methods Description

reference operator[](const
gid type& gid)

Returns a reference to the element corresponding to
the GID

void erase async(const key type&
key)

Erases key asynchronously

68

void clear() Clears the pContainer; equivalent to
erase(begin,end)

iterator find(const key type&
key)

Returns an iterator pointing to an element identified
by its key. If the key does not exist the pContainer’s
end is returned.

pair<value type,bool>
find val(const key type& key)
const

Find value type corresponding to key type. The
boolean of the pairs signals the fact that the ar-
gument key exists in the pContainer (true) or not
(false)

pc future<value type>
split phase find(const key type&
key) const

Split phase find value corresponding to the key; It
returns a future that can be queried if the value is
available or not

6. Relational pContainer

Containers in this category store elements (e.g., vertices in a graph) and relationships

between elements (e.g., edges). The interface extends the base classes with methods

to specify relationships between elements and it is included in Table XVII.

Table XVII.: Relational pContainer interface.

Template Arguments Description

Traits pContainer traits;

Define Type Description

vertex property Vertex property type

vertex descriptor Vertex descriptor type

edge descriptor Edge descriptor type

edge property Edge property type

vertex iterator Vertex iterator type

const vertex iterator Const vertex Iterator

adj edge iterator Adjacency edge iterator

const adj edge iterator const adjacency edge iterator

Method Description

69

Table XVII continued

Method Description

gid type add vertex(void) Add a new vertex into the graph; returns the vertex
descriptor.

gid type add vertex(const ver-
tex property& vp)

Add a new vertex into the graph with the specified
property.

void add vertex(const gid type&
gid, const vertex property& vp)

Add a vertex with value val and vertex descriptor
gid.

void delete vertex(const
gid type& vd)

The following method is not a transaction; Deleting
edges and vertices are atomic but the whole method
is not atomic since the execution of this method may
be done across different locations.

edge descriptor add edge(const
edge descriptor& ed, const
edge property& ep, bool
multi=true)

Add an edge.

void add edge async(const
edge descriptor& ed, bool
multi=true)

Add an edge asynchronous.

void add edge async(const
edge descriptor& ed, const edge
property& ep, bool multi=true)

Add an edge with given property asynchronously.

bool delete edge(const
edge descriptor& ed)

Delete the edge identified by its descriptor.

size t get num vertices(void)
const

Returns the total number of vertices.

size t get local num edges(void)
const

Returns the number of edges on the local storage.

size t get num edges(void) const Returns the total number of edges.

void clear(void) Erase all vertices and edges in the graph; reset dis-
tribution/partition.

vertex iterator
find vertex(gid type gid)

Returns a vertex iterator corresponding to the GID

argument.

bool find edge(const
edge descriptor& ed,
vertex iterator& vi,
adj edge iterator& ei)

Returns a vertex iterator corresponding to the
source vertex of the edge ed and an edge iterator
of the edge.

Partitions that can be used with generic relational pContainers are arbitrary

70

maps where individual GIDs can be map randomly to sub-domains. Block and block

cyclic partitions can be used for regular pGraphs with fixed number of vertices.

7. Sequence pContainer

For conformance with the STL taxonomy, we provide the Sequence as a relation

container with an implicit relationship (next). The pList implements the sequence

interface while the pVector implements both sequence and indexed. The sequence

interface is included in Table XVIII.

Table XVIII.: Sequence pContainer interface.

Template Arguments Description

Traits pContainer traits;

Method Description

void push back(const
value type& val)

Add a new element at the end of the container.

void pop back() Remove an element at the end of the container.

void push front(const
value type& val)

Add a new element at the beginning of the con-
tainer

void pop front() Remove an element at the end of the container.

void insert element async(const
gid type& gid, const
value type& val)

Insert asynchronously a new element before gid
specified.

gid type insert element(const
gid type& gid, const
value type& val)

Insert synchronously a new element before gid
specified. Returns the GID of the newly inserted
element.

void erase element(const
gid type& gid)

Erase the element corresponding to the specified
gid.

void
push anywhere async(const
value type& val)

Add an element to the pContainerat an arbitrary
position.

reference get anywhere() Returns a reference to a random element in the
pContainer.

void remove element() Remove a random selected element

71

Location 0 Location 1

Data Distribution Manager

User Task

0 2 10

User

Internal

p_array

1 754 8 113 6 9

Location Manager

 - Partition :
 Domain[0..12), P={D0=[0,3), D1=[3,6), D2=[6,9), D3=[9,12)}
 - Partition Mapper
 Four sub-domains, 2 locations(L0,L1) : D0->L0, D1->L1, D2->L0, D3->L1

bContainer 0 bContainer 2

Location Manager

bContainer 1 bContainer 3
0 1 2 6 7 8 3 4 5 9 10 11

Fig. 10. Example of pContainer deployment on two locations.

E. Integrating all Concepts using pArray Example

In this section we exemplify how all concepts described in Section B are integrated

together to implement a simple pArray data structure. The stl valarray container

is a fixed size data structure optimized for storing and accessing data based on one di-

mensional indices. The stapl pArray is the parallel equivalent of the stl valarray,

providing an efficient interface to access data elements using indices. More informa-

tion about the complete interface is included in Chapter IX.

Global Identifiers (GIDs) and Domains: For the pArray, the GIDs are the

indices of the elements. The pArray domain is the universe of GIDsthat identify its

elements and is represented as an integer range corresponding to the indices of the

72

elements (e.g., 1DRange(0,12)). The pArray’s domain is a total ordered domain that

specifies how elements are traversed by iterators of the default view. The pArray con-

structors accept an unsigned integer as an argument (N) that internally is converted

into a finite order domain (1DRange(0,n)) and the resulting index space and order of

the elements will be as specified by the domain. It is trivial to extend the interface to

have the pArray with an arbitrary domain, e.g., p array<>(Domain(5,12)). This

will declare a pArray whose first and last elements have indices 5 and 11, respectively.

In Figure 10, the pArray has the range [0, 12) as its domain.

Partition The pArray is a static container, e.g., we can use blocked partitions

using a block size as an argument. Assuming N is the size of the domain to be parti-

tioned, this partition creates N/block size sub-domains of size block size, except the

last one which may be smaller. Other partitions for pArray are balanced partitions,

that will divide the elements of the domain into the specified number of sub-domains,

each of whose size is N/#sub domains. Explicit partitions are built by explicitly

enumerating the sub-domains. The stapl pArray can be built with any of these

partitions. An important feature of stapl is that the well-defined partition interface

enables advanced users to implement their own partitions.

In Figure 10 we show the pArray with a blocked partition with blocks of size 3.

The corresponding sub-domains that this partition strategy (split) generates for the

input domain OD = ([0, 12),≤) are:

P = {OD0 = [0, 3), OD1 = [3, 6), OD2 = [6, 9), OD3 = [9, 12)}

Partition Mapper: A partition is mapped onto a set of locations using a

partition-mapper, which maps a sub-domain identifiers to a location. Any of the

mappers introduced in Section B.5 can be used with the pArray data structure. Ad-

ditional mappers with more information about the machine and interconnect can be

implemented by users provided the interface included in Table IX is implemented. In

73

Figure 10 we show the blocked partition P = {OD0, OD1, OD2, OD3} being mapped

onto available locations in a cyclic fashion. Thus sub-domain OD0 is mapped to

location 0, OD1 is mapped to location 1, OD2 is mapped to location 0 and OD3 is

mapped to location 1.

Storage bContainer: The pArray associates with every sub-domain of the par-

tition a bContainer for data storage. The bContainers are implemented as stl

valarrays. In Figure 10 we show the pContainer with two location managers in-

stances, one in each location were the pContainer’s data will reside. Each location

manager handles the bContainers for the sub-domains that were determined by the

partition and partition mapper.

1 value p array : : s e t e l ement (GID, value){
2 bcid = d i s t r i but i on manage r . p a r t i t i o n .map(GID)
3 l o c a t i o n = d i s t r i but i on manage r . par t i t i on mapper .map(bc id)
4 i f l o c a t i o n i s l o c a l
5 return l ocat ion manager . bconta ine r (bc id) . s e t (GID, value)
6 else // s e t remote ly the e lement
7 return async rmi (loc , &s e t () , GID, value) ;

Fig. 11. Pseudocode of pArray set() method.

The simplified code for the pArray method set element is shown in Figure 11

to illustrate how the pArray modules interact. The complete method performs ad-

ditional actions as described in this chapter, Section B.6 and Chapter VI, Section

B. The runtime cost of the methods in the pArray interface has three main con-

stituents: the time to decide the location and the bContainer in which the element

74

p_container_base

p_container_static

p_container_indexed

pArray/pMatrix

p_container_base

p_container_dynamic

p_container_sequence

pList

p_container_base

p_container_dynamic

p_container_associative

p_container_base

p_container_dynamic

p_container_sequence

pVector

p_container_base

p_container_dynamic

p_container_relation

pGraph

pMap pSet pHashMap/Set

(a) (b) (c)

(d) (e)

p_container_indexed

Fig. 12. pContainers inheritance. The most derived classes inherit all the methods

of the base classes. A dotted line denotes that other classes are inheritted as

explained in Chapters XI and XII.

is stored (Figure 11, lines 2-3), the communication time to get/send the required

information (Figure 11, line 7), and the time it takes to perform the operation within

a bContainer, which is currently an STL valarray (Figure 11, line 5).

F. pContainers Implemented in the Framework

stapl provides a collection of commonly used pContainers that are constructed us-

ing thePCF. This includes counterparts of stl containers (e.g., pArray [63], pVector,

pList [65], and associative containers such as pSet, pMap, pHashMap, pMultiSet,

pMultiMap [64] and additional containers such as pMatrix [15], and pGraph. In Fig-

ure 12 we depict the relationship between these pContainers and the classes of the

75

framework.

The pArray and pMatrix (Figure 12(a)) are indexed containers using one or two

dimensional indices (GIDs) respectively. The interface for these simple data struc-

tures is mainly provided by the base classes with the final classes providing only

constructors and necessary type definitions. The complete interface for the pArray

is discussed in Chapter IX. The pMatrix is described in more detail in [15], and

provides a similar interface with the pArray. The pList (Figure 12(c)) derives from

the sequence pContainer from which it inherits a reach interface to add and erase

elements at the begining, the end and an intermediate point in the sequence. The

complete interface for pList, discussed in more detail in Chapter X implements all

the methods in the sequence interface in constant time. The pVector is a sequence

pContainer that also implements the indexed pContainer interface as shown in Fig-

ure 12(d). Due to constraints on complexity for the indexed interface the pVector

incurs a bigger overhead when implementing insert operations. While both pList

and pVector are two sequence pContainers providing similar interfaces, there is a

well known performance/usability tradeoff between the two. The pVector provides

constant access time to the elements based on their indices, linear time for inserts, and

amortized constant time for push back type methods. The pList does not provide

random access to the data based on indices but implements dynamic operations such

as insert and push back in constant time. Depending on the particular needs of an

application, these two data structures can be used for different computational phases

with possible conversions from one to the other. More details about the tradeoffs

between pList and pVector are included in [65].

Associative pContainers provide efficient storage for elements based on keys.

They include sorted associative containers, which guarantee logarithmic access time

to the elements, and hashed associative containers that guarantee amortized constant

76

time. They provide a simple interface that includes insert find and erase as described

in more detail in Chapter XII. The pGraph is a relational pContainer consisting of

a collection of vertices and relations between vertices called edges. The framework

provides a relational pContainer base that implements a minimal interface to add

and delete vertices and edges. Additional functionality is supported by the pGraph

specific classes as described in Chapter XI.

77

G. pContainer Support for Redistribution

One of the design goals of the PCF is to allow pContainers with various parti-

tions and mapping on the machine. This can be achieved by specifying the desired

partitions and partition mapper as template arguments at compile time. The data

redistribution is the process of reorganizing the data of a pContainer based on a new

data distribution (new partition and/or partition mapping) as described in Chap-

ter IV, Section C. We integrate into the PCF support for allowing an individual

pContainer to change its partition and partition mapping dynamically during the

execution. This is achieved by using polymorphic implementations for both the par-

tition and partition mapper and providing the necessary support to move data across

different locations. For example, for pArray we mentioned we currently support bal-

anced, blocked and explicitly blocked partitions. These three types of partitions can

be interchanged within the same pContainer instance dynamically. In this section

we describe the support implemented in the PCF to allow this functionality.

The Partition Proxy is a polymorphic wrapper for real partitions and pro-

vides the necessary support to change the underlying partition at runtime. There

are some trade-offs when using a partition proxy. While giving users more flexibil-

ity it involves virtual methods with the associated overhead and missed opportuni-

ties for compile time optimizations. The default partitions of all pContainers are

proxy partitions and the framework provides proxies for all components of the tax-

onomy: partition proxy indexed, partition proxy dynamic, partition proxy sequence,

partition proxy associative, and partition proxy relation. When a partition proxy is

used, the interface of the pContainer is automatically extended with the the following

interface:

1 void r e d i s t r i b u t e (new par t i t i on [, par t i t i on mapper]) ;
2 void r e d i s t r i b u t e (r ed i s t r i bu t i on map) ;

78

SD_0 SD_1

SD_0 SD_1SPartition 1

Partition 2 S

Fig. 13. Redistribution for two given partitions. Section S (one or more elements) of

sub-domain 1 in first partition will migrate to sub-domain 0 in the second

partition.

Trying to invoke the above methods on a pContainer with a non proxy partition will

generate a compiler error.

While performing the redistribution, there is the new partition and/or partition

mapper and the original ones. A naive redistribution approach can simply create

a new pContainer organized according to the new partition, copy data from the

old storage and delete the old storage. However this is a very inefficient approach.

To assist users in performing efficient redistribution, we introduce the redistribution

map which contains only the elements that will migrate from a sub-domain to a

new sub-domain. A common case occurs when the repartition moves elements across

neighboring sub-domains. The redistribution map will benefit the redistribution in

this situation. In Figure 13, we depict a case were the redistribution will have to

migrate only the data corresponding to sub-domain S in order to match the second

partition. The framework will provide a set of predefined constructs for common

redistribution maps while the users will provide their own for more specific patterns.

Some simple redistribution patterns that can be easily provided by the framework

are:

• rebalance() : Redistribute the N elements of the pContainer across P locations

such that each location will own N/P elements

• rotate (how many positions, direction) : Redistributes the elements of the

79

pContainer by cyclically rotating them a given number of locations in a given

direction.

• custom redistribution for certain pContainers: transpose for two dimensional

containers, graph redistributions, etc.

1. Data Marshaling

To support the default redistribution, the framework requires that both pCont-

ainer data elements and bContainers be marshaled. Support for data marshaling

is provided by the stapl RTS[54] and requires users to implement a define type()

method as part of the class that needs to be marshaled. The bContainer interface

includes the define type as part of its required interface. This can easily be achieved

as stapl provides built in support for all stl containers and these are the building

blocks for most bContainers we employ in our pContainers.

In Figure 14 we include examples showing the define type() implementation

for some simple classes and for the pArray bContainer. The method receives as

input an object of type stapl::typer. Subsequently, the typer is made aware of all

the class data members and this process continues in a recursive fashion. In Figure

14(a), class classB has as a data member an object of classA so the define type of

classB will recursively invoke the define type of it. In Figure 14(b), we show the

define type for the pArray bContainer which invokes recursively the define type of

the stl valarray data member.

With bContainer marshaling support available, the pContainer redistribution

implementation is greatly simplified. The redistribution map specifies the sub-domains

and their new locations. Data corresponding to sub-domains is appropriately packed

in bContainers and shipped to the destination

80

1 class c lassA {
2 int a ;
3 double b [1 0] ;
4 void de f i n e t yp e (typer&t){
5 t .member(a , 1 0) ;
6 t . member(b) ;
7 }
8 }
9 class c la s sB {
10 objectA a ;
11 void de f i n e t yp e (typer&t){
12 t .member(a) ;
13 }
14 }

(a) Simple classes

1 template<class T>
2 class p a r r ay bcon ta in e r {
3 std : : va lar ray<T> m data ;
4 // s p e c i f i c i n t e r f a c e . . .
5
6 void de f i n e t yp e (typer&t){
7 t .member(a) ;
8 }
9 }

(b) pArray bContainer

Fig. 14. Marshaling interfaces.

H. pContainer Customization using Traits

When building a pContainer, a developer has the ability to customize the pContainer

main functional modules as described in Chapter IV, Section B. For example, a

developer may want to use a certain storage or certain partition and mapping on

the machine, enforce a certain memory consistency model, or enable/disable thread

safety, etc. This leads us to design the PCF in a very configurable way where users

can select individual functional modules. This is accomplished using traits classes

that are passed as template arguments to pContainer base classes. The traits can

be customized by developers and end users for classes of pContainers or even on a

per pContainer instance.

In addition to the data structure specific arguments, all pContainer classes take

as template arguments the partition and the pContainer traits. For example, in

81

1 // the STAPL Pa r a l l e l Array De f i n i t i on
2 template<typename T,
3 typename Par t i t i on=par t i t i on ba l anc ed <>,
4 typename Tra i t s=p a r r a y t r a i t s>
5 class p array : public p conta ine r indexed<Trais >{ . . .}
6
7 // the STAPL Pa r a l l e l Graph De f i n i t i on
8 template <g r aph a t t r i bu t e s D, g r aph a t t r i bu t e s M,
9 typename VertexP = no property ,
10 typename EdgeP = no property ,
11 typename Par t i t i on=p a r t i t i o n r e l a t i o n ,
12 typename Tra i t s = p g r aph t r a i t s >
13 class p graph : public p c on t a i n e r r e l a t i o n<Traits> { . . . }

Fig. 15. pContainer template arguments.

Figure 15 we list the definition of the pArray and pGraph; more detail on these

specific data structures is provided in Chapter IX and XI, respectively:

The partition specifies the GID, domain, bContainer, and thread safety manager.

The pContainer will use the definition for these types from the partition. The

pContainer traits can be used to specify lower level details such as partition mapper,

data-distribution-manager and location-manager. We expect these to be less

often customized by users than the storage and partition.

When interacting with the framework users can provide alternative implementa-

tions for domain, partition, bContainer, partition mapper and location-manager

using the template arguments. The custom provided modules need to implement the

required interfaces as specified in Sections B and D.

In Figure 16 we show an example of stapl pseudocode illustrating how users

can customize an existing pGraph implementation. Users can select the storage by

providing the type of an existing bContainer and similarly for the partition. Figure

16, line 5, shows the declaration of a directed pGraph allowing multiple edges between

82

1 // bconta iner d e f i n i t i o n :
2 // s e q u en t i a l graph us ing vec t o r s t o rage
3 typedef pg base conta ine r<vector ,> bpg s ;
4 // and a s t a t i c p a r t i t i o n
5 typedef pg s t a t i c<bpg s , . . . > p a r t i t i o n s ;
6
7 // p a r a l l e l graph us ing s t d : : map s t o rage
8 typedef pg base conta ine r<map, . . . > bpg d ;
9 //and a dynamic p a r t i t i o n
10 typedef pg fwd<bpg d , . . . > pa r t i t i o n d ;
11
12 // pgraph wi th s t a t i c p a r t i t i o n
13 p graph<DIRECTED,MULTI, p a r t i t i o n s> pg s (N) ;
14 // pgraph wi th dynamic s t o rage and
15 //method forward ing
16 p graph<DIRECTED,MULTI, pa r t i t i on d> pg d (N) ;

Fig. 16. pGraph customization.

the same source and a target vertex and using a static partition. With a static

partition, users need to declare the size of the pGraph at the construction time and

subsequent invocations of the add vertexmethod will trigger an assertion. Figure 16,

line 6, shows the declaration of a pGraph using a dynamic partition that allows for

addition and deletion of both vertices and edges. More details and performance results

regarding the benefits of having different partitions and types of storage are discussed

in Chapter XI, Section F.2 in the context of a dynamic pGraph data structure.

83

CHAPTER VI

THREAD SAFETY

In this chapter, we describe the infrastructure provided by the pContainer framework

to implement thread safe pContainers. The goal of STAPL is to allow users to

easily develop thread safe containers while giving them the possibility to override the

default locking policies implemented by the framework. We define that a pContainer

is thread safe [33, 34, 35] if concurrent method invocations from various threads are

perceived as being atomic thus always leaving a pContainer in a consistent state.

We start by first motivating the need for thread safety. Data stored in pContainers

is accessed by pAlgorithms and at this level stapl employs the task dependency

graph (TDG) to encode data dependences across various tasks of a computation.

However there are a large number of parallel algorithms employing commutative

tasks. In this case, two tasks A and B are safe to be executed in A → B order

(A followed by B) or B → A but not A||B (A in parallel with B). For such scenarios

the dependencies between two tasks can be eliminated under certain conditions as

long as atomicity of the pView and pContainer method invocations are guaranteed.

As a simple example consider the sample sort parallel algorithm where each task

inserts elements from an input pArray into a pArray of pVectors (buckets). This

computation can be expressed as a no dependency TDG where each task determines

the bucket an element belongs to and inserts the element into that bucket. This

algorithm will properly insert all the elements into buckets as long as atomicity at

the bucket level is guaranteed.

84

A. pContainer Thread Safety Design

As introduced in Chapter V, Section A, a pContainer is implemented as a collection

of existing data structures to store data (e.g., bContainers) augmented with infor-

mation for parallelism management or meta data (e.g., partition, partition mapper,

thread safety manager).

When designing the pContainer thread safety mechanisms we considered the

following:

• A pContainer method in general accesses and/or modifies both metadata and

data so these two entities need to be considered in an integrated approach.

• A pContainer method invocation typically involves more than one location due

to the forwarding mechanism introduced in Chapter V, Section C. This means

that a pContainer method may access only metadata on certain locations while

on other locations it may access both data and metadata.

• For most pContainers, the bContainer implementation is a black box. This is

encapsulation and it is key to object oriented programming. When performing

operations using the public interface we do not know what memory addresses

are touched inside the bContainer, especially by dynamic operations such as

insert/erase. For example, while an insert in a vector may touch all memory

addresses for all elements encompassed in it, a user is not generally aware of it.

For this reason, the framework takes a high level general approach where thread

safety can be provided with or without support at the bContainer level.

• The framework has to be able to integrate existing thread safe and non-thread

safe data structures to store both data and metadata. This is a crucial require-

ment in order to incorporate a large body of work that has been done in the

85

area of thread safe data structures for shared memory machines and multicores

[20, 24, 26, 33, 34, 37].

• The framework needs to provide a generic, customizable solution, where dif-

ferent custom locking policies can be used with a particular pContainer. A

desired thread safety manager can be selected by the user using custom traits.

Based on the above requirements we implemented the pContainer thread safety

as a set of specifications across the following PCF modules:

• Distribution Manager: implements pContainer methods providing call back

points to classes responsible for thread safety. This allows for customizable

locking policies. See Section B.

• Thread Safety Manager: provides a generic interface such that users can

control the type of mutual exclusion mechanism desired. See Section C.

• Partition: specification for the locking modes and the locking granularity per-

formed by the thread safety manager.

• bContainer: locking at the base container level.

B. Data Distribution Manager

This module ensures the safe access to data and metadata by employing a thread

safety manager. The data distribution implements a generic method skeleton such

that individual pContainer element-wise methods are implemented as invocations of

this generic method with customized functors to determine the location where the

method will be executed and how it will be effectively executed. This was described in

more detail in Chapter V, Sections C.4 and C.6. In Figure 17, we include the generic

86

method invoke presented in Chapter IV, Section B.6 but this time augmented with

the locking support.

As depicted in Figure 17, the pContainer framework informs the thread safety

manager about the actions it is about to perform. All the decisions on the granularity

and type of locking to be performed are completely managed by the thread safety

manager. This is either a default implementation or is provided by the user. It uses

knowledge about the particular metadata and data implementation used to perform

adequate locking. Please note that the framework doesn’t implement a particular

locking algorithm (there is no best one) but it enables users/developers to perform

custom locking according to their specific data structure.

C. Thread Safety Manager

A thread safety manager class will be associated with every pContainer. The thread

safety manager maintains the necessary information to ensure atomic updates to data

and metadata of the pContainer. The functionality of this module will be employed

by the PCF when thread safe access is required. The interface of the thread safety

manager is described next:

1 class ths manager{
2 public :
3 // de f i n e type con ta in ing the l o c k i n g i n f o
4 typedef . . . (impl s p e c i f i c) . . . t h s i n f o ;
5 con s t ruc to r (MethodIdent i f i e r , Pa r t i t i on [, g id]) ;
6 method access pre (t h s i n f o) ; //when en t e r ing the method
7 method acces s post (t h s i n f o) ; //when e x i t i n g the method
8 metadata acce s s pre (t h s i n f o) ; // be f o r e acce s s ing metadata
9 metadata acce s s pos t (t h s i n f o) ; // a f t e r acce s s ing metadata
10 da t a a c c e s s p r e (t h s i n f o , bc id) ; // be f o r e acce s s ing data
11 da t a a c c e s s po s t (t h s i n f o , bc id) ; // a f t e r acce s s ing data
12 } ;

87

1 void invoke (method id , where functor , a c t i o n f un c t o r) {
2 l o c a t i o n t yp e l o c ; c i d type c id ;
3 // i n i t i a l i z e the thread s a f e t y in format ion
4 // f o r the current method
5 t h s i n f o t i n f o (method id , this−>m part i t i on [, g id]) ;
6
7 ths manager()−>method access pre (t i n f o) ;
8 ths manager()−>metadata acce s s pre (t i n f o) ;
9 // query meta data
10 c i d type c i n f o = where functor (this−>m ps) ;
11 ths manager()−>metadata acce s s pos t (t i n f o) ;
12 i f (! c i n f o . c i d v a l i d ()){
13 // the exac t l o c a t i o n where the opera t ion
14 // w i l l be execu ted i s known
15 l o c = c i n f o . l i d () ;
16 }
17 else {
18 //Locat ion not known ; Forward to a l o c a t i o n
19 // t ha t may have a d d i t i o n a l in format ion
20 l o c = this−>m pid l id−>map(c i n f o . c id ()) ;
21 }
22 i f (this−>g e t l o c a t i o n i d () == lo c) {
23 c id = c i n f o . c id () ;
24 ths manager()−>da t a a c c e s s p r e (t i n f o , c id) ;
25 // > c r i t i c a l s e c t i on f o r data
26 a c t i o n f un c t o r (this−>m ps , c id) ;
27 ths manager()−>da t a a c c e s s po s t (t i n f o , c id) ;
28 ths manager()−>method acces s post (t i n f o) ;
29 }
30 else {
31 ths manager()−>method acces s post (t i n f o) ;
32 async rmi (loc , this−>getHandle () ,
33 &th i s t yp e : : invoke ,
34 m id , where functor , a c t i o n f un c t o r) ;
35
36 }
37 }

Fig. 17. Generic invoke method implementation with locking statements.

88

In the specification above, the MethodIdentifier is an integer value uniquely as-

sociated with a pContainer method. The partition will define appropriate locking

attributes for each of the pContainer methods as described in the next section.

D. Partition Locking Specification

A stapl pContainer is designed to support different partitions with different lock-

ing modes for the methods in its interface. This is accomplished by routing all

pContainer methods to the distribution manager, which in turn forwards to the

partition class. Users can customize this behavior by specifying partition classes.

This way they can specialize existing partitions or implement new ones with custom

locking.

The partition class allows pContainer users to specify attributes for each individ-

ual method regarding the granularity of data accesses and the type of access. For ex-

ample different methods may access an element in a bContainer (e.g., get element()),

the entire bContainer (e.g., insert into a vector) or all bContainers (e.g., size()).

Corresponding to these three situations, the framework specifies the following identi-

fiers: ELEMENT, BCONTAINER, LOCAL. Additionally each individual method accesses

the data and metadata in a READ or WRITE mode, information that can be used

in conjunction with read/write locks to allow multiple readers shared access to the

data.

A special tag that can be used when specifying the granularity is NONE, which

is used to inform the thread safety manager than no action is required. This can be

the case for example for a read only static data structure such as pArray or pMatrix.

Advanced uses of different thread safety attributes are envisioned where users can

modify them dynamically for different computation phases. Below we include the

89

specification of the method attributes used by default by the pVector.

1 // i n i t i a l i z a t i o n i n s i d e pvec tor p a r t i t i o n cons t ruc t o r
2 typedef tuple<l o c k g r anu l a r i t y , rdwr mode , rdwr mode> tup l e ;
3 //Overload the d e f a u l t l o c k i n g p o l i c i e s
4 m lo ck i ng po l i c y [LP SET] =(ELEMENT,WRITE ,MDREAD) ;
5 m lo ck i ng po l i c y [LP GET] =(ELEMENT,READ ,MDREAD) ;
6 m lo ck i ng po l i c y [LP ADD] =(LOCAL ,WRITE ,MDWRITE) ;
7 m lo ck i ng po l i c y [LP DELETE] =(LOCAL ,WRITE ,MDWRITE) ;
8 m lo ck i ng po l i c y [LP PUSH BACK]=(LOCAL ,WRITE ,MDWRITE) ;
9 m lo ck i ng po l i c y [LP POP BACK] =(LOCAL ,WRITE ,MDWRITE) ;
10 m lo ck i ng po l i c y [LP INSERT] =(LOCAL ,WRITE ,MDWRITE) ;
11 . . .
12 // method to r e t r i e v e the l o c k i n g p o l i c i e s a s s o c i a t e d wi th
13 // a g iven method
14 tuple<l o c k g r anu l a r i t y , data rdwr mode , metadata rdwr mode>
15 g e t l o c k i n g p o l i c y (me thod i d en t i f i e r) { . . . }

A thread safety manager uses the above specification to perform appropriate

actions (e.g., locking) when correspondingly invoked by the pContainer methods. In

the remainder of this chapter we discuss various thread safety managers that can be

used with stapl pContainers.

E. pArray and pMatrix

Default implementation: The meta data is static and read only for all element-

wise methods. Only data/bContainers are locked when accessing elements for read

or write.

Customizations: Using traits, a custom thread safety manager can be specified

that performs no locks. This may be useful for read only pContainers or for the

case when concurrent accesses are taken care of by the task dependency graph of the

application.

An interesting optimization that can be used to refine the lock granularity is to

90

provide a thread safety manager that uses K locks where K is arbitrary and each

individual data access for a GID is hashed to one of the locks and that lock will be

used when accessing the data for the given GID.

F. pList

Default implementation: The meta data is read only for all element-wise methods.

Only data/bContainers are locked when accessing elements for read or write. Meta

data is modified by collective operations and guarded by fence.

Customizations: Using traits, a custom thread safety manager can be specified

that performs no locks. This may be useful for read-only pContainers or for the

case when concurrent accesses are taken care of by the task dependency graph of the

application.

Thread safe bContainers can be used, in which case no locking is performed by

the framework.

G. Associative pContainers

Default implementation: The meta data is either static or closed form. Only

data/bContainers are locked when methods are executed.

Customizations: Using traits, a custom thread safety manager can be specified that

performs no locks. This is useful for the case when concurrent accesses are taken care

of at the prange level.

Thread safe bContainers can be used, in which case no locking is performed by

the framework.

91

H. pGraph

Default implementation: The meta data for a pGraph is maintained in a parallel

map. It is dynamic and modified by every add/delete vertex. In general the vertices

are added on one location and meta data inserted on another location. So adding a

vertex is naturally broken into two individual operations. Since the meta data holder

is thread safe, the pGraph performs no locking for it. Only when accessing the data

in a bContainer locking is invoked.

Customizations: A static partition where the number of vertices is fixed at con-

struction time. This kind of graph will allow for edges to be added/deleted. The

atomicity can be enforced using a set of locks (or a set of locks per bContainer) and

a hashing scheme to decide the lock to use based on the GID.

A thread safe graph bContainer can be employed to eliminate the locking per-

formed by the framework.

92

CHAPTER VII

MEMORY CONSISTENCY MODEL

In this section we describe the memory consistency model (MCM) provided by stapl

pContainers. This consists of a set of guarantees about the termination, ordering

and values returned by the pContainermethod invocations that users rely upon when

reasoning about the correctness of their applications [6, 46, 1, 3, 2]. The pContainer

provides a shared memory view to the user while storing its data distributed on dif-

ferent memory address spaces. In Figure 18 we depict a pContainer that stores a

pContainer representative on all locations where it will distribute its data. Each

representative stores a subset of the data and there is no data replication across lo-

cations. The pContainer methods hide the distributed nature of a pContainer and

allow users to access the data elements in a shared memory fashion. Users inter-

act with a pContainer through a series of method invocations and corresponding

responses. The memory consistency model is the set of guarantees provided to the

users about the possible values returned by methods or when responses or acknowl-

edgments that an operation is finished are received.

For the stapl PCF, we considered a modular design where different memory

consistency models can be employed by different pContainers. Similar to other

pContainer properties this can be customized using the traits template arguments.

In Section A we show general considerations for all pContainer methods and in

Sections B and C we introduce the default memory consistency model provided by

stapl pContainers. In Section E we show how the default memory consistency

model can be constrained or relaxed to implement other models.

93

L0 L1 L2

pContainer

pContainer_L0 pContainer_L1 pContainer_L2

Run Time System and Communication Library

Invocation

rmi rmi rmi

response

Invocation

response

Invocation

response

Fig. 18. User, pContainer, run time system interaction.

A. pContainer Interfaces

As described in Chapter V, Section B the pContainer interface contains the following

categories of methods: collective (COLL), synchronous (SM), asynchronous (AM) and

split phase (SPM). Each of these types of methods provides different guarantees about

the completion of the invocations and ordering among them when invoked concur-

rently from multiple threads. The complete specification of the guarantees provided

to the user is the pContainer memory consistency model (MCM).

To further motivate the need for a MCM for the pContainers we include in

Figure 19 an example of a simple stapl program to exemplify how users can rely on

the MCM guarantees to reason about the correctness of their application. The simple

program starts by instantiating a pArray container. This is a collective operation

that will build a pArray representative on all locations. The acknowledgment that

the constructor is finished is received when the constructor returns. Next we build

a pView on the pArray’s data. Similarly, there is a pView representative on all

94

locations and the acknowledgment the pView is built is received when the pView

constructor returns. Next, we spawn a number of parallel tasks using the map func

stapl construct. The map func takes as input a pView representing the data and

a work function that is applied to data in the pView. For the map func included in

Figure 19 we assume the stapl infrastructure creates a task for each location where

the pView has a representative. The tasks will be scheduled and run in parallel by the

stapl RTS. The code that each task executes does not have to be the same across

all tasks.

L0

Task i

pa

L1 L2

0 2 101 754 8 113 6 9

pa_0 pa_1 pa_2

View
vw_0 vw_1 vw_2

MapFunc

S1: vw.set(4,val1)
S2: vw.set(3,val2)
S3: val3=vw.get(4)

Task j
S4: vw.set(4,val4)
S5: vw.set(5,val5)
S6: val6=vw.get(5)

Task k
S7: F(val7)=vw.get(3)
S8: vw.set(3,val8)
S9: F<val7>.get()

rmi_fence()

stapl_main(){

 p_array<int> pa(12);

 view vw(pa);

 map_func(vw, task_wf);

 //tasks executed

 rmi_fence();
}

Fig. 19. STAPL program execution.

For the example in Figure 19 we assume all initial elements in the pArray are

zero. When Taski executes S1 we notice that this can be executed concurrently

with S4 from Taskj and the question is what value the read of pa[4] in S3 may

95

return. The MCM describes the completion and ordering guarantees of operations

that are concurrently executed by multiple threads of computation as we describe in

the following sections. We come back to the example in Figure 19 in Section D.

B. Completion Guarantees

In Chapter III, Section B we introduced the RTS and described the sync rmi,

async rmi and rmi fence as the main communication and synchronization primi-

tives. The rmi fence construct is provided by the RTS to ensure that previously

spawned messages are received on their target locations. There are currently two fence

calls available in stapl: rmi fence collective call, where all threads in the execution

group need to perform the invocation and one sided os fence that can be invoked

independently of the other threads of computation. From the individual thread’s

point of view, both fences ensure all acknowledgments for the pending operations are

received. The global fence ensures the acknowledgments are globally received by all

pending operations. The stapl runtime provides additional primitives that subsume

the fence semantic such as one-sided/collective reduce/broadcast.

We introduce in this section a terminology to specify the start and the termina-

tion of the pContainer methods and the specification of when pContainer methods

are completed.

• Collective methods: start CollM and termination ACK CollM (e.g., constructor).

ACK CollM is received by the invoking thread when the method returns.

• Synchronous methods: start SM and the termination is denoted as ACK SM (e.g.,

get element). For a SM(x), the ACK SM(val) is received by the invoking thread

when the method returns.

96

• Asynchronous methods: start AM and termination ACK AM (e.g., set element).

For a AM(x) there is no explicit acknowledgment sent from the pContainer to

the user. To reason about correctness we logically assume that the ACK AM is

received by the invoking thread at any point in the program order before any

one of the following events:

– Encountering a fence call

– A subsequent SM(x) or SPM(x) receives its acknowledgment. Synchronous

and split phase methods on an element x of a pContainer forces acknowl-

edgments for all pending asynchronous methods operating on the same

element x.

– A subsequent AM(x) receives its acknowledgment. Asynchronous method

invocations from the same thread and on the same element x of a pContainer

receive their acknowledgments in order.

• Split phase methods: start SPM and termination ACK SPM (e.g., split phase get

element). The invocation of a split phase method returns immediately to the

user a future. We denote the creation of the future as SFuture. The return

value corresponding to the future is obtained by invoking the method get and

we represent this as Future.get. The acknowledgment for the Future.get is

denoted as ACK F and it is received when the method returns. The acknowl-

edgment of a split phase method and implicitly the value returned, is logically

received by the invoking thread at any point in the program order after the

future creation and before any one of the following events:

– Encountering a fence call.

– A subsequent SM(x), AM(x) or SPM(x) receives its acknowledgment.

97

– When Future.get receives its acknowledgment ACK F.

The fence receives its acknowledgment when it returns together with the ac-

knowledgments of all pending asynchronous and split phase methods. Our framework

guarantees that for all method invocations there is an acknowledgment and this is an

important property of a distributed system referred to as liveness [6].

L0
SR(x) ACK_SR(0) AW(x,1)

L1
AW(y,2) ACK_AW(y), ACK_SR(2)SR(y)

L3
SPR(z) Future(z) Future(z).get() ACK_SPR(0)

Fence, ACK_AW(x), ACK_Fence

Fig. 20. Completion guarantees. The time increases from left to right.

In the following sections we use SRLi
(x) to denote the beginning of a synchronous

method that will read an element x of a pContainer. We use ACK SRLi
(val) to denote

the acknowledgment and the returned value. The index Li is a thread identifier and is

used to distinguish among invocations in different threads. Similarly, for asynchronous

write operations we use AW and ACK AW and for split phase reads we use SPR and

ACK SPR. In Figure 20 we include a picture to exemplify the termination guarantees

introduced in the previous section. We exemplify using asynchronous writes (AW),

synchronous reads (SR), and split phase reads (SPR), but the same holds for any

element-wise pContainer method. The example accesses elements corresponding to

three different pContainer elements identified by their GIDs, x, y, z. For all examples

98

considered in this chapter the elements have all value 0 initially. Each row in the figure

contains method invocations in program order from left to right. Each invocation

takes a certain amount of time which is represented as the length of the segment

between start and acknowledgment. Location L0 performs a synchronous read of

element x. The invocation returns ACK SR(0) when the method returns. The next AW

operation receives the acknowledgment before the subsequent fence returns. Location

L1 performs an AW on y followed by a SR on y. The SR operation since it is on y

implies the ACK AW(y) and the ACK SR(2). Location L2 performs a split phase read of

z. The invocation returns immediately to the user a future. When the get method of

the future is invoked the ACK SPR(2) is received.

C. Memory Consistency Conditions

In sequential programming, invocations are completed in the order in which they were

issued in the program. In a parallel system it is often the case that this requirement

is relaxed in order to provide improved performance.

1. pContainer Default Memory Consistency Model

Based on the termination guarantees introduced in the previous section we now de-

scribe the default memory consistency conditions of the pContainer methods. We

first introduce a set of notations and rules and later in this section we show the

interaction of this rules with a set of examples.

We adapted from [6] a set of notations to formally specify the pContainer

memory consistency model. Let E be an execution of a program which has con-

current method invocations by multiple threads in multiple locations and on multiple

pContainer elements. E is a sequence of method invocations as they occurred as

99

a result of interleavings of the actions of all the threads in the system. E can be

thought as a trace of a particular execution of a program. We use the notation E|i

to denote the subsequence of E consisting of all invocations performed by and re-

sponses received by a thread i. Similarly we use E|x to indicate the subsequence of

E consisting of all invocations and responses that are performed on an element x of

the pContainer.

To simplify reasoning about the possible method interleavings and values re-

turned by an execution E, we introduce the notion of a permutation of the method

invocations as a linear sequence of all method invocations in the system. The MCM

specifies the restrictions on the possible permutations corresponding to a particular

execution E. Fences serve as global synchronization points that force the completion

of all previous pContainer methods. In the following we discuss the guarantees for

the method invocations between fences.

The pContainer MCM: For an execution E, a pContainer guarantees that

there is a permutation P of all method invocations in E such that:

1. The methods in P occur sequentially (no overlapping).

2. For each element x, the restriction of P to just those methods on x, denoted

P |x, satisfies the specification of the data type of x. (E.g., if x is a register

that supports Read and Write, then each Read returns the value of the latest

preceding Write invoked on x.)

3. For each thread i, the restriction of E to just the Coll and Synch methods

invoked by i, denoted E|(Coll∪Synch)|i, must equal P |(Coll∪Synch)|i. That

is, the permutation P has all the collective and synchronous methods by i in

the same order as they were invoked. However, no guarantee is given as to how

Synch methods at different locations are ordered in P .

100

4. For each element x and each thread i, the restriction of P to the methods on x

invoked by i, denoted P |x|i, consists of all the Synch, Asynch, and Split Phase

methods on x invoked by i in E, in the order of their invocation.

5. Consider any element x and let Oi and Oj be two operations on x in E such

that Oi is invoked by some thread i, Oj is invoked by some other thread j, and

Oi completes (i.e., receives its ACK) before Oj is invoked. Then Oi is ordered

in P before Oj.

In the remaining of this section we exemplify some of the ordering relations for

pContainer methods as derived from the consistency conditions previously intro-

duced.

For asynchronous methods thePCF guarantees that subsequent invocations from

the same thread affecting the same element x will receive their implicit acknowledg-

ments in the order in which they were invoked (condition 4). For example, let us

assume a thread in location L0 performs the sequence of asynchronous write invo-

cations depicted in Figure 21(a). The acknowledgment for two consecutive writes

on x (AW0(x), AW1(x)) are guaranteed to be in the order in which they were issued.

The superscript is used to distinguish subsequent invocations of the same type on the

same element/location. The acknowledgment for the write to y has no relationship

with the acknowledgment for x. Figure 21(a) shows three possible valid interleavings

with the acknowledgment for y received in an arbitrary order relative to the acknowl-

edgments for writes to x. Corresponding to Figure 21(a) we include in Figure 21(b)

three possible valid interleavings as perceived by the user.

When invoking methods concurrently on the same pContainer element from

threads in different locations there is no guarantee about the order in which they

will terminate. Let us assume the following method invocations from two different

101

L0 : AW0(x, 1), AW(y, 1), AW1(x, 2) fence ACK AW0(x), ACK AW1(x), ACK AW(y)

or

L0 : AW0(x, 1), AW(y, 1), AW1(x, 2) fence ACK AW0(x), ACK AW(y), ACK AW1(x)

or

L0 : AW0(x, 1), AW(y, 1), AW1(x, 2) fence ACK AW(y), ACK AW0(x), ACK AW1(x)

(a) Asynchronous method relative execution order

L0
AW(x,1) ACK_AW(x)

fence
AW(y,1) ACK_AW(y) AW(x,2) ACK_AW(2)

L0
AW(x,1) ACK_AW(x)

fence
AW(y,1) ACK_AW(y)AW(x,2) ACK_AW(2)

L0
AW(x,1) ACK_AW(x)

fence
AW(y,1) ACK_AW(y) AW(x,2) ACK_AW(2)

(b) Interleavings as perceived by user

Fig. 21. Asynchronous methods ordering. (a) Relative order for acknowledgments.

The superscript is used to distinguish subsequent invocations of the same

type on the same element/location (e.g., two writes or reads of the same

variable). The or is used to denote that any interleaving is a valid one (b)

Possible interleavings.

locations:

Li : AW(x, 1), SR0(x), ACK SR(1or2)ACK AW(x)fence SR1(x), ACK SR(a)

Lj : AW(x, 2), SR0(x), ACK SR(1or2)ACK AW(x)fence SR1(x), ACK SR(a)

102

The first read invocations (SR0) on both locations do not have a deterministic result.

It can be either 1 or 2 and the result can be different on the two locations. After the

fence, it is guaranteed that both reads (SR1) will return the same value a, though is

not known if it is 1 or 2. Assuming the element x was initially zero it is guaranteed

that none of the reads in the example will return 0 because of the ordering guarantees

provided for accesses to the same element in a thread. The reads are always executed

after the previous writes in the program order.

D. Memory Consistency Example

In Figure 19 we show an example of a simple stapl program to exemplify how users

can rely on the completion and ordering guarantees introduced in the previous sections

to reason about the correctness of their application. For Taski invocation S1 can be

executed concurrently with S4 from Taskj. Thus the read in S3 is not deterministic.

The answer can be either val1 or val4. The read from S6 is deterministic and it

returns val5. Invocations S7 and S8 respect the program order so the read in S9 will

return zero. After the map func construct finishes it is guaranteed that a read of an

element of the pArray will return the same value on all threads provided there is no

other concurrent write in the system.

The example in Figure 19 is for illustration purposes only to describe various

possible interleavings. In practice individual tasks access an exclusive set of elements

from a pContainer which simplifies the reasoning about the correctness of the appli-

cation.

103

E. Other Memory Consistency Models

The default stapl pContainer MCM is relaxed and similar to weak consistency

(WC)[3, 23] discussed in the context of shared memory architectures. Under WC

model there are regular memory accesses (method invocations in our case) and syn-

chronization operations. Reordering of the operations is allowed in between synchro-

nization points and no operation is allowed to be reordered relative to synchronization

operations. As described in Sections B and C, pContainers provide additional guar-

antees about the ordering of the methods affecting the same data element that make

the model stronger than weak consistency.

In this section we show that the default pContainer MCM is more relaxed than

sequential consistency (SC) or processor consistency (PC) and describe how individual

pContainers can restrict their interfaces to provide the requirements of these stricter

models. Additionally, we show how we can further relax the ordering of the methods

on the same data element to further relax the default MCM.

1. The Default pContainer MCM is not Sequentially Consistent

A natural memory consistency model for a parallel system is sequential consistency

as introduced by Lamport[46].

Definition 13. A multiprocessor system is sequentially consistent if the result of

any execution is the same as if the operations of all the processors were executed in

some sequential order, and the operations of each individual processor appear in this

sequence in the order specified by its program.

Using our formalism, an execution E is sequentially consistent if there exists a

permutation P of the operations in E such that

104

Li : AW(x, 1), AW(y, 1), ACK AW(y), SR(y), ACK SR(1)fence ACK AW(x)

(a)

L1 : AW(f1, 1), SR(f2), ACK SR(0), fence, ACK AW(f1)

L2 : AW(f2, 1), SR(f1), ACK SR(0), fence, ACK AW(f2)

(b)

Fig. 22. Relaxed completion order: (a) Operations on different pContainer elements

receive their acknowledgments out of order (b) Dekker’s mutual exclusion.

1. For every element x, the restriction P |x satisfies the specification of the data

type of x.

2. If the acknowledgment for operation o1 at thread i occurs in E before the

invocation for operation o2 at thread i, then o1 appears before o2 in P (e.g.,

E|i = P |i, for all threads i).

In stapl when both synchronous and asynchronous methods are invoked from

the same thread on a given location Li on different elements, then there is no guar-

antee about the order in which these operations will be executed. In the example in

Figure 22(a) we show that even though the read and write on the variable y is after

the asynchronous write to x in the program order, the operations on y may finish

before the write operation on x finishes.

This relaxed order for methods operating on different elements breaks the se-

quential consistency semantic. In Figure 22 (b) we show the Dekker mutual exclusion

105

algorithm described in various memory consistency model papers [1, 2, 3]. The flags

f1 and f2 are two elements in a pArray both of which are initially zero. Dekker’s

exclusion algorithm guarantees that in a SC system the reads for flags should not

return both zero. Using the pArray methods however it is possible that both reads

for the flags return zero due to the relaxation described in the previous paragraph.

Claim 1 : When the pContainer interface includes SM and AM methods, concur-

rent invocations of them on different locations do not satisfy sequential consistency.

2. The Default pContainer MCM is not Processor Consistent

Processor consistency[1, 2] guarantees that writes from a thread are seen by all other

threads in the order in which they were issued. This is not guaranteed by stapl for

example in the case where the writes are on two different elements. In this situation,

threads on other locations may perceive the writes on the two distinct variables in

different orders. In Figure 23 we depict how threads on different locations may see

the effects of two writes from location L0. Location L3 may see the element y being

written before element x is written. This would violate the processor consistency

assumptions.

Claim 2 : When the pContainer interface includes SM and AM methods, concur-

rent invocations of them on different locations break processor consistency.

3. Modifying the Default pContainer MCM

Claim 3 : When the pContainer interface includes synchronous methods only (SM),

concurrent invocations of them on different locations satisfy sequential consistency.

With this constrained interface no pContainer methods are allowed to be re-

ordered. Each method receives its acknowledgment before the next instruction in

the program order is executed. This restriction, coupled with the fact that each

106

L0 : AW(x, 1), AW(y, 2).......................

L1 : SR(x)ACK SR(1), SR(y)ACK SR(2)

L2 : SR(x)ACK SR(0), SR(y)ACK SR(2)

L3 : SR(y)ACK SR(2), SR(x)ACK SR(0)

Fig. 23. Processor consistency counter example.

pContainer method is executed in an atomic manner, provides the necessary condi-

tions for a SC model.

Claim 4 : The pContainer can relax its ordering constraints for methods op-

erating on the same memory element by allowing them to proceed in an arbitrary

order. With this relaxation the following interleaving is possible:

Li : AW(x, 1), SR0(x), ACK SR(0)fence SR1(x), ACK SR(1)

Above, the synchronous read of element x follows an asynchronous write but it does

not return the value 1 that was previously written in the program order. After the

fence, the result of the write becomes visible and the second read (SR1) returns the

value 1.

The framework currently provides a default memory consistency model intro-

duced in this chapter. Other more relaxed memory consistency models are possible

but their impact on performance needs to be carefully analyzed and judged against

107

the complexity it may bring to the user code when reasoning about correctness.

Supporting stricter memory consistency models for element-wise methods is straight

forward and it requires all methods to be synchronous. Applications where this will

be a benefit need to be identified and analyzed.

F. pContainer Method: Developer Side

The pContainer developer expresses a method as a composition of invocations on

data that may reside on different locations. When implementing a pContainer

method the pContainer first decides if the element is local or not. If it is local,

then the operation is performed atomically on the corresponding bContainer. Oth-

erwise the operation is requested to be executed on a remote location. The remote

location can in turn forward the execution to alternative locations in a recursive man-

ner. In the following, we describe the semantics of the main pContainer methods

in terms of requests and acknowledgments. We provide examples for read, write and

split phase read operations, but the specification is the same for any element-wise

pContainer method (synch, async or split phase).

Synchronous Reads (SR): A synchronous operation SR can be described as:

108

SRLi
(x), ACK SRLi

(val) ≡ [SRLi
(mD(x))]//read metadata locally

(

//if x is in local bContainer

ACK SRLi
(bContk), [SRLi

(bContk, x)], ACK SRLi
(val)

//else x lives on location Lj(forwarding)

ACK SRLi
(Lj), SRLj

(x), ACK SRLj
(val)ACK SRLi

(val)

)

where a [...] denotes an atomic execution, Li location i, mD(x) the set of memory

addresses accessed when requesting information about element x, bContk bContainer

owning the element x, (bContk, x) the set of memory addresses touched by the current

operation on the bContainer. Everything following // is a comment.

We observe that an SR operation receives an acknowledgment before the method

is finished.

Asynchronous writes (AW): An AW method is modeled similarly to a SR

method except that the acknowledgment is not immediately received on the location

that initiates the method. This is described next:

109

AWLi
(x) ≡ [SRLi

(mD(x))]

(

//if x is in local bContainer

ACK SRLi
(bContk), [SRLi

(bContk, x)]

//else x lives on location Lj(forwarding)

ACK SRLi
(Lj), AWLj

(x)

)

The acknowledgment that an AW (x) operation is finished is received when en-

countering:

• A fence call.

• When a subsequent SR(x) or future(x).get() receives its acknowledgment.

Split phase reads (SPR): A SPR method is modeled similar to SR except

that the acknowledgment is not immediately received on the location that initiates

the method. This is described next:

110

SPRLi
(x), FutureLi

(x, val) ≡ [SRLi
(mD(x))]

(

ACK SRLi
(bContk), [SRLi

(bContk, x)]

or

ACK SRLi
(Lj), SPRLj

(x)

)

FutureLi
(x, val).get() ≡ ACK SPRLi

(x, val)

The FutureLi
(x, val) is a handle that can be queried later for the acknowl-

edgment of the SPR operation. The acknowledgment that an SPR(x) operation is

finished is received when encountering:

• A fence call.

• When a subsequent SR(x) receives its acknowledgment.

• When get() method of the future returned by SPR(x) is invoked.

G. Consistency of Other pContainer Methods

In this section we discuss the semantics of pContainer methods that do not process

individual elements. These are collective operations (e.g., constructors, destructors,

etc.) and methods that return global properties of the data structure (e.g., size(),

empty, etc.).

Methods such as size() or empty() for dynamic pContainers require infor-

mation about the entire pContainer globally. When designing these methods, we

111

considered the following alternatives: (1) a one sided reduction across all locations to

perform the accumulation of all local sizes. (2) maintaining a data member size on all

locations. Both these options are prohibitively expensive in terms of communication

traffic generated. The solution we decided to support as part of our default imple-

mentation is to have the size stored in a replicated fashion across all locations but to

update it in a lazy fashion. Dynamic operations that modify the pContainer through

inserts and deletes make the content of the size variable obsolete. The pContainer

re-synchronizes the size data member upon the invocation of the post execute()

method. This is a collective call that guarantees, when finished, that pContainer

size is properly reflected across all locations. The insertion of the synchronization

points and calls to post execute() is simplified by stapl as described in the next

section.

H. Enforcing Synchronization Points Automatically

We mentioned previously that acknowledgments for asynchronous methods invoked

on a pContainer are not received until a synchronization point is reached. To simplify

the user’s effort in controlling synchronization points in stapl, the pViews and the

executor introduce them automatically while executing the tasks corresponding to a

given computation. As introduced in Chapter III a computation is represented in

stapl as a collection of tasks and eventual dependencies between them. The pViews

are used to represent the data stored in a pContainer and all method invocations on

the container are done through pViews.

At the end of a task execution, the stapl executor invokes a fence thus ensuring

that all acknowledgments for all asynchronous methods are received before executing

the next available task in the TDG.

112

Additionally when all the tasks of a particular computation are finished, the

post execute() method of the pView is invoked by the executor. As part of this

phase, the pViews can commit pending operations and re-synchronize the pContainer

to reflect the changes done through methods in the tasks. Currently, in the post execute()

phase, pViews of dynamic pContainers update their size data member.

113

CHAPTER VIII

PCONTAINER PERFORMANCE EVALUATION

In this chapter, we describe the methodology used to evaluate the performance of rep-

resentative pContainers developed using the PCF: pArray, pList, pMatrix, pGraph

pHashMap and composed pContainers. For all these data structures, we will look at

the performance of individual methods using artificial kernels, generic algorithms and

real applications.

A. Experimental Setup

We conducted our experimental studies on various parallel machines comprising var-

ious processor architectures and network interconnects. This includes a 38,288 core

Cray XT4 (CRAY4), a 5312 core Cray XT5 (crayh), both available at NERSC, and

a 832 core Power5 Cluster (P5-cluster) available at Texas A&M University. The

CRAY4 has 9,572 compute nodes each with a quad core Opteron running at 2.3 GHz

and a total of 8 GB of memory (2 GB of memory per core). The compute nodes are

connected to a dedicated SeaStar2 router through Hypertransport with a 3D torus

topology which ensures low-latency, high bandwidth communication. The CRAY5

has 664 compute nodes, each containing two 2.4 GHz AMD Opteron quad-core pro-

cessors (5,312 total cores). The P5-cluster is a 832 processor IBM cluster with

p575 SMP nodes and 16 cores per node. In all experiments, a location contains a

single processor core, and the terms can be used interchangeably.

114

1 eva luate per fo rmance (N,P)
2 tm = s t ap l : : s t a r t t im e r () ;

// s t a r t t imer
3 // i n s e r t N/P elements concur ren t l y
4 for (i =0; i<N/P; ++i)
5 pconta iner . method (arguments) ;
6 // pconta iner can be any o f the PCF con ta ine r s
7 //and method any o f the e lement wised method
8 // o f the pconta iner ;
9 rmi f ence () ; // ensure a l l i n s e r t s are f i n i s h e d
10 e lapsed = s t ap l : : s t op t imer (tm) ; // s top the t imer
11 − Reduce e lapsed times , g e t t i n g the max time
12 from a l l p r o c e s s o r s .
13 − Report the max time

Fig. 24. Kernel used to evaluate the performance of pContainer methods.

B. Evaluation of pContainer Methods

To evaluate the scalability of individual methods we designed the kernel shown in

Figure 24. The figure shows a generic method being invoked, and the same kernel

is used to evaluate all methods. For a given number of elements N , all P available

processors (locations) concurrently perform N/P method invocations. We report the

time taken to perform all N methods globally. The measured time includes the cost

of a fence call which, as stated in Chapter III, is more than a simple barrier. Each

experiment is executed 32 times on P5-cluster and CRAY4, and 10 times on

CRAY4 due to large scale experiments performed there and limited execution time

available on the machine. The times reported in the graphs in the following chapters

are average times with confidence intervals. Due to the stability of the machine the

confidence intervals are small for certain experiments and are not always visible in

the graphs.

115

C. Evaluation of Generic Algorithms

We evaluated the performance of generic non-mutating pAlgorithms, p generate,

p for each and p accumulate, when applied to data stored in various different stapl

pContainers. For all the algorithms considered in this section, for all platforms, we

conducted weak scaling experiments. Strong scaling would be difficult to evaluate

due to the short execution times of the algorithms even when run on very large input

sizes. Additionally, when scalling to very large number of processors the problem

would not fit in memory for lower processor counts.

The p generate algorithm takes as argument a functor that generates a random

number and a pView. It assigns a random number to every element in the pView. The

p for each algorithm increments the elements of the container with a given constant

performing read, add and store operations on each individual element without the

need of any remote accesses. The p accumulate accumulates all the elements in

the container using a generic map reduce operation available in stapl. These three

algorithms are representative of a large class of algorithms that are either map or

map reduce patterns.

D. Specific Applications

For various pContainers we look at the performance in the context of more complex

applications. These are examples of how programmers may use pContainers in

applications.

116

CHAPTER IX

THE STAPL PARRAY

p_container_base

p_container_static

p_container_indexed

pArray

Fig. 25. Derivation chain for pArray.

The stl valarray container is a fixed size data structure optimized for storing and

accessing data based on one dimensional indices and iterators. The stapl pArray is

the parallel equivalent of the stl valarray, providing an efficient interface to access

data elements using indices and pViews. An important property of the pArray is

that it is a static data structure, i.e., the number of elements is known at instanti-

ation and doesn’t change during execution. As described in Chapter V, Section A,

this enables a number of optimizations such as closed form solutions for partitions

and partition mappings. In Figure 25, we show the derivation chain for the pArray

container. Correspondingly, the pArray inherits the interfaces and the default func-

tionality provided by all its base classes. In Chapter V, Section E, we introduced the

117

default pArray specification for the main functional modules. In this section we show

a simple example of pArray usage, provide the user interface and discuss experimental

results.

A. Example

1 #include <p array . h>
2
3 void s tap l main (){
4 p array<int> pa (1 0 0) ; // parray wi th 100 e lements −
5 // d e f a u l t p a r t i t i o n
6 pa r t i t i on b l o ck ed<int> pbl (1 0) ;
7 p array<int> pa ba l (100 , pbl) ; // parray wi th 100 e lements −
8 // ba lanced p a r t i t i o n
9 array 1D pview<p array<int> > pa view (pa) ;
10 p genera te (pa view , rand ()) ;
11 }

Fig. 26. pArray example.

In Figure 26 we show a simple example of pArray usage. The program declares a

pArray of 100 integers (Figure 26, Line 4) and another pArray of 100 integers with a

blocked partition with blocks of size 10 (Figure 26, Line 7). A pView is declared next

over a pArray (Figure 26, Line 9) and a generic algorithm is invoked over the data of

the pArray(Figure 26, Line 10).

118

B. The pArray Specification

The pArray template declaration is :

template<class T, class Par t i t i on=Default , class Tra i t s=Default>
class p array ;

We include in Table XIX the complete interface of the pArray.

Table XIX.: pArray interface.

Template Arguments Description

T The array’s value type: the type of object
that is stored in the array

Partition Partition used to define the blocks which the
pArray is divided

Traits pArray traits for specifying the low level
base container used and distribution fea-
tures

Define Type Description

value type The type of stored objects.

index type The type of the indices of pArray

Method Description

p array() Default constructor. O(log(P))

p array(size t m) Create a p array of m elements. O(m/P +
log(P))

p array(size t m, value type val) Create a p array ofm elements and initialize
the elements to val. O(m/P + log(P))

p array(const p array& other) Copy constructor. O(size(other)/P +
log(P))

template <class PS>

p array(size t m, const PS&) Construct a p array of a given size and using
the specified partition. O(m/P + log(P))

void set element (index type i,

const value type& v)

Set the element of index i to the value v.
O(1)

value type get element (index type

i) const

Return the value corresponding to index i.
O(1)

119

Table XIX continued

Method Description

pc future <value type>
get element split (const index type&

i) const

Returns immediately (non blocking) a fu-
ture for the value corresponding to index
i. The future will return the actual value
when queried using the corresponding get()
method. O(1)

template<class Functor> typename

Functor::result type apply get

(index type i, Functor f)

Apply a functor f to the data corresponding
to index i. The returned value is the value
returned by functor f. O(1)

template<class Functor> void

apply set (index type i, Functor

f);

Apply a functor f to the data corresponding
to index i. O(1)

p container indexed ref operator[]

(index type i)

Access operator that returns a reference to
element i. O(1)

template <class NPS> void

set partition(const NPS& ps)

Reset the partition of the pArray to be ps.
O(size/P + log(P))

bool is local(index type i) Return true if the element with index i is
stored locally, false if it is remote. O(1)

C. pArray Partitions

The pArray partitions model the partition indexed concept. Users can provide

their own partitions or select among the ones included in the table XX.

Table XX.: pArray partitions.

Partition Type Description

partition balanced<T> Partition the pArray into evenly sized
ranges; T is the p array value type

partition blocked<T> (size t bs) Split the pArray of size n into
ceiling(n/bs)-1 blocks of size
bs, the last block will have size
n-(ceiling(n/bs)-1)*bs

120

Table XX continued

Partition Type Description
partition blocked explicit<T>

(const std::vector<size t> sizes)

Partition a pArray into blocks whose sizes
are defined in the vector sizes (the sum of
the sizes have to be equal to the size of the
pArray

D. pArray Customization

Low level details about a pArray data structure are customized using the traits mech-

anism. In Table XXI we describe the modules that are customizable.

Table XXI.: pArray traits.

bContainer pArray storage

partition type pContainer partition

mapper type Class to specify the mapping of the
bContainers into locations

distribution type Data distribution manager

iterators type Type of iterators exported by pContainer

loc dist metadata Class used to specify pContainer coarsen-
ing information

The partition type can be any of the ones described in the Table XX. The par-

tition mapper type can be any of the partition mapper generic, partition mapper

blocked, partition mapper cyclic or partition mapper identity. iterators type

is a struct defining the iterator, const iterator, reference and const reference

(global iterator and reference). The default implementation for pArray iterators

121

is the pc iterators class that provides a generic random access iterator. The

loc dist metadata is required by pView to extract the pContainer locality meta-

data. The default provided implementation for this module is a class that specifies

to the pView to create a sub view for each bContainer.

E. Performance Evaluation

We evaluate the performance of the pArray parallel methods and STL algorithms

operating on data stored inside pArrays. To evaluate the performance of the methods,

we use weak scaling experiments according to the methodology described in Chapter

VIII.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Construction Weak Scaling
 10,20,50M elements/location

p array constructor 10M
p array constructor 20M
p array constructor 50M

(a) pArray constructor on CRAY4

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: pArray Constructor Weak Scaling
 10, 20, 50M elements/location

p array constructor 10M
p array constructor 20M
p array constructor 50M

(b) pArray constructor on P5-cluster

Fig. 27. pArray constructor execution time for various input sizes on (a) CRAY4 and

(b) P5-cluster.

122

1. Methods

In this section we analyze the performance of pArray collective operations (e.g., con-

structors) and representative element-wise methods set element, get element and

split phase get element. In a first experiment included in Figure 27 we show the

performance of the pArray constructor on two different parallel architectures for 10,

20 and 50 million elements per location. The pArray constructor is a fully parallel

operation with none of its modules requiring global synchronizations. On CRAY4

(Figure 27(a)) we observe very good scaling from 4 processors (the size of a compute

node) up to 16384. When using 50 M elements per location the total size of the allo-

cated pArray on 16384 processors is 819.2 billion requiring 1.19 terabytes of storage.

On P5-cluster (Figure 27(b)) we observe the performance slowly degrading as we

increase the number of processors from 1 to 16, which uses up a shared memory node

of the cluster. From 16 processors up the scaling improves. This is a well known

behavior on this architecture and it is due to memory bandwidth limitations within

a shared memory node as we use an increasing number of processors.

In Figure 28, we show the scalability of pArray set element and get element

for various input sizes and numbers of invocations. The number of method invocations

is the same as the input size N and each location performs concurrently N/P invo-

cations, where P is the number of locations. The times in this figure are for the case

when all invocations are executed locally. In this situation, both methods scale well as

they don’t involve any additional communication. In Figure 29, we show in the same

plot the pArray constructor, set element and get element, respectively, to see the

relative performance difference of these methods. set element is an asynchronous

method with no return type, while the get element returns the value read. For this

reason, the set element is faster than get element even though all invocations are

123

 0

 5

 10

 15

 20

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Set Element Weak Scaling
 10,20,50M elements/location

p array set element 10M
p array set element 20M
p array set element 50M

(a) pArray set element

 0

 5

 10

 15

 20

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Get Element Weak Scaling
 10,20,50M elements/location

p array get element 10M
p array get element 20M
p array get element 50M

(b) pArray get element

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: pArray SetElement Weak Scaling
 10, 20, 50M elements/location

p array set element 10M
p array set element 20M
p array set element 50M

(c) pArray set element

 0

 5

 10

 15

 20

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: pArray Methods Weak Scaling
 10M elements/location

p array get element 10M
p array get element 20M
p array get element 50M

(d) pArray get element

Fig. 28. CRAY4: pArray local method invocations for various container sizes. The

number of invocations is the same as the pArray size (a) set element (b)

get element.

local.

Split phase method study: In this experiment we study the performance

of the pArray methods when there are 1% remote accesses. The results are in-

cluded in Figure 30. We observe good scalability with only a 5.8% execution time

increase for the asynchronous invocations as we scale the number of processors from

124

 0

 1

 2

 3

 4

 5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Methods Weak Scaling
 10 million elements/location

p array constructor size
p array set element
p array get element

(a) 10M elements per location

 0

 2

 4

 6

 8

 10

 4 8 64 128 1024 4096 16384
E

xe
cu

tio
n

T
im

es
(s

ec
)

Number of Processors

CRAY: pArray Methods Weak Scaling
 20 million elements/location

p array constructor size
p array set element
p array get element

p array get element split

(b) 20M Elements per location

 0
 2
 4
 6
 8

 10
 12
 14

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Methods Weak Scaling
 50 million elements/location

p array constructor size
p array set element
p array get element

(b) 50M Elements per location

Fig. 29. CRAY4: pArray methods for various input sizes. All invocations are local.

125

 0

 5

 10

 15

 20

 8 64 128 1024 8192
E

xe
cu

tio
n

T
im

es
(s

ec
)

Number of Processors

CRAY4: pArray Methods Weak Scaling
 20M elements per location

set element
get element

split phase get element 1K
split phase get element 5K

Fig. 30. CRAY4: pArray methods set element, get element and split phase

get element. 20M method invocations per location with 1% remote.

8 to 8192. For the synchronous methods the execution time increases 29%. For the

split phase get element we performed two experiments where we invoke groups

of 1000 or 5000 split phase operations before waiting for them to complete. The

split phase methods have an inherent overhead for allocating the futures on the

heap but they do enable improved performance and scalability relative to the syn-

chronous methods. Split phase execution enables the aggregation of the requests

in the runtime as well as allowing communication computation overlap. For the

split phase get element the overall execution time increases 7.1% and 4.5% when

1000 and 5000 invocations, respectively, are started before waiting the result.

Remote methods study: In this experiment we study the performance of the

pArray element-wise methods for various percentages of remote invocations. The

results for the two architectures considered are included in Figure 31. The percent

of remote method invocations is either 2% or 5%. As we increase the number of

methods that are executed remotely, the execution time for all methods increases

correspondingly. The set element scales well on both architectures as we increase the

126

 0

 5

 10

 15

 20

 25

 30

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Methods Weak Scaling
 20M elements/location; 2% remote

p array set element
p array get element

p array get element split

(a) 2% remote

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 64 128 1024 4096 16384
E

xe
cu

tio
n

T
im

es
(s

ec
)

Number of Processors

CRAY: pArray Methods Weak Scaling
 20M elements/location; 5% remote

p array set element
p array get element

p array get element split

(b) 5% remote

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: pArray Methods Weak Scaling
 20M elements/location; 2% remote

p array set element
p array get element

p array get element split

(c) 2% remote

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: pArray Methods Weak Scaling
 20M elements/location; 5% remote

p array set element
p array get element

p array get element split

(d) 5% remote

Fig. 31. pArray methods for various percentage of remote invocations. Execution

times for (a)(b) CRAY4 and (c)(d) P5-cluster.

127

 0

 5

 10

 15

 20

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Methods Weak Scaling
 20M elements/location

p array set element 1%
p array set element 2%
p array set element 5%

p array get element split 1%
p array get element split 2%
p array get element split 5%

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Get Element Weak Scaling
 20M elements/location

p array get element 1%
p array get element 2%
p array get element 5%

(b)

Fig. 32. CRAY4: pArray local and remote method invocations for various container

sizes. The number of invocations is the same as the pArray size. The num-

ber of remote invocations is varied from 1% to 5% (a) set element and

split phase get element (b) get element.

number of processors. For the split phase get element we aggregate 5000 methods

before waiting for their completion. On CRAY4 this operation scales well and overall

is faster that the synchronous get element. On the P5-cluster architecture, the

overhead of allocating the futures for the return values is bigger than on CRAY4 and

on this platform the benefits of split phase execution are visible only when the number

of remote methods is 5%. Overall, we observe that the asynchronous and split phase

methods scale better than the synchronous methods but all methods considered scale

well up to 16384 processors.

In Figure 32, we show for CRAY4 the impact of increasing the remote method

invocations for individual methods. We observe that the runtime increases for all

methods. The set element and split phase get element scale well while increas-

ing the number of processors while the get element performs slightly worse.

128

2. Algorithms

In Figure 33(a), we show the execution times for the pAlgorithms p generate,

p for each and p accumulate on pArray. The figure shows a weak scaling experi-

ment with 20M elements per processor. From the plot we observe that for the pArray

the performance degradation is 5% when scaling from 128 to 16,385 processors for

p generate and p for each. For p accumulate, which performs a global reduction

to provide the result, the performance degradation is about 33%. This is due to the

limited amount of computation performed to access and add local elements relative to

the communication cost of the reduction. Figure 33(b) shows a generic inner product

algorithm operating on the data in two pArrays. For two given pArrays A[N] and

B[N] the algorithm computes res =
∑

i=0..N−1
(A[i] ∗ B[i]). the complexity of the

parallel algorithm is O(N/P + log(P)) where N is the number of elements and P is

the number of available locations.

A more complex algorithm that we analyze in this section is the string matching.

It takes as input two pViews defined over two pContainers and counts the number

of occurrences of the data of the second pView (e.g., pattern) in the first one (e.g.,

sequence). This algorithm incurs communication that can be at most the size of the

pattern. In Figure 33(c) we include results for two weak scaling experiments. In a

first experiment, we search for a pattern that doesn’t exist in the input sequence. The

input sequence is filled with “A” and the pattern is “ZZZ”. In this case there is no

communication. In a second scenario we search for the pattern “AAA” that occurs

N −2 times in the input sequence. As we see from the figure, this computation scales

well as we scale the number of processors from 4 to 16384.

129

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Algorithms Weak Scaling
 20M elements/location

p array p generate
p array p for each

p array p accumulate

(a) p generate, p for each, p accumulate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)
Number of Processors

CRAY: pArray Algorithms Weak Scaling
 20M elements/location

p array inner product

(b) Inner product

 0

 1

 2

 3

 4

 5

 6

 7

 4 16 64 256 1024 8192

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of processors

CRAY: String matching alg.
weak scaling 10M chars. per location

Best case
Worst case

(c) String matching

Fig. 33. Execution times for generic algorithms on CRAY4 for a pArray with 20M

elements per processor.

130

F. Memory Consumption Study

In this section we analyze the memory consumption of the pArray. We analyze this

using pContainer internal methods that report memory usage and using the Inte-

grated Performance Monitoring (IPM) [62] tool available for CRAY4. All memory

sizes reported in this section are in MB.

Table XXII.: pArray memory consumption: The first two columns shows the IPM reported
memory usage for a simple stapl program that performs only one fence. The next two
columns shows the memory usage for a stapl program that declares an std::valarray of
20M integers on each location; The last two columns shows the memory usage for a stapl

program that declares a pArrayof size P*20M integers. All sizes are in MB

stapl main stap main and vallarray stapl main and pArray

Processors Total PerLoc Total PerLoc Total PerLoc

4 155.72 38.93 460.89 115.22 461.14 115.29

8 838.96 104.89 1449.3 181.19 1449.8 181.25

64 6721.94 105.08 11604.68 181.37 11608.78 181.5

128 13477.89 105.3 23243.37 181.59 23251.35 181.66

1024 110880.77 108.29 189004.8 184.59 189310.98 185.58

2048 229049.34 111.91 385298.43 188.21 386081.79 190.33

4096 487207.94 118.97 799720.45 195.26 802568.19 199.66

8192 1088993.28 133.05 1714012.16 209.35 1724835.84 218.73

In Table XXII, column 3 and 4, we include the memory usage as reported by

IPM for a simple stapl program that only performs a fence and exits. IPM reports

the maximum memory used (watermark) across all processes of the application. We

observe that even though there is no data allocated by the program, the memory used

is still considerable. This is mainly due to the communication and synchronization

buffers allocated by the underlying run time system and MPI. The maximum mem-

131

ory used per processor increases with the number of processors from 38.93MB on 4

processors to 133.05MB on 8192. A considerable jump happens from 4 to 8 processors

when inter-node communication is required.

In Table XXII, columns 4 and 5, show the memory usage as reported by IPM

when a sequential array of integers of size 20 million is allocated inside stapl main.

Columns 6 and 7 show the memory used when stapl main declares a pArray with

20M elements per location. We notice very similar memory usage as we increase

the number of processors for these two situations. The pArray does allocate slightly

more memory than a simple valarray to store the data distribution information, the

location manager and the infrastructure required for synchronization (e.g., thread

safety manager). In Table XXIII we show the theoretical minimum memory used by

a distributed array with 20M elements per location. This is computed as 20M ∗ P ∗

sizeof(int).

Table XXIII.: Theorethical memory usage for pArray: minimum required memory (no meta
data) and pArray reported memory consumption (data and meta data). All sizes are in
MB

Theoretical pArray reported

Processors Total PerLoc Total PerLoc

4 305.176 76.294 305.178 76.295

8 610.352 76.294 610.357 76.295

64 4882.813 76.294 4882.850 76.295

128 9765.625 76.294 9765.700 76.295

1024 78125.000 76.294 78125.600 76.295

2048 156250.000 76.294 156251.000 76.295

4096 312500.000 76.294 312503.000 76.295

8192 625000.000 76.294 625005.000 76.295

132

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4 1024 4096 8192

M
em

or
yU

se
d

(M
B

)

Number of processors

CRAY: Memory Usage for pArray

stapl main
stapl main+valarray

stapl main+pArray
valarray

pArray

(a) Total across processors

 0

 100

 200

 300

 400

 500

 4 64 128 1024 8192

M
em

or
y

U
se

d
(M

B
)

Number of processors

CRAY: Memory Usage for pArray
 Max memory per location

stapl main
stapl main+valarray

stapl main+pArray
valarray

pArray

(b) Memory used per location

Fig. 34. CRAY4: pArray memory usage study. The simple program contains ei-

ther no data (stapl main), a valarray of 20M elements per location (stapl

main+valarray), a pArray of size P*20M (stapl main+pArray). Theoretical

memory usage for a valarray of size P*20M (valarray) and pArray reported

memory usage (pArray). Lines 2,3 overlap and similar lines 4,5. (a) Total

memory used; (b) Memory used per location.

In Figure 34(a), we plot the data from Tables XXII and XXIII. We observe

the memory per location increasing for all situations measured with IPM. This is

an expected trend that is accordingly documented in the MPI user manual of the

machine. In Figure 34(b), we show the memory used per location. We notice a slight

difference between the stapl program declaring a valarray and the stapl program

declaring a pArray. The difference increases with the number of processors from

0.06% on 4 processors to 4% on 8192 processors.

133

CHAPTER X

THE STAPL PLIST∗

p_container_base

p_container_dynamic

p_container_sequence

pList

Fig. 35. Derivation chain for pList.

The linked list is a fundamental data structure that plays an important role in many

areas of computer science and engineering such as operating systems, algorithm de-

sign, and programming languages. A large number of languages and libraries provide

different variants of lists with C++ stl being a representative example. The stl list

is a generic dynamic data structure that organizes the elements as a sequence and

allows fast insertions and deletions of elements at any point in the sequence. The

∗Part of the data reported in this chapter is reprinted with the kind permission
of Springer Science+Business Media from “The STAPL pList” by G. Tanase, X. Xu,
A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, N. Thomas, M. Bianco,
N. M. Amato, and L. Rauchwerger, 2009. Lecture Notes in Computer Science, vol.
5898, pp. 16–30, Copyright 2009 by Springer.

134

stapl pList is a parallel equivalent of the stl list with an interface for efficient in-

sertion and deletion of elements in parallel. the derivation chain for pList is included

in Figure 35.

Most stl equivalent methods require a return value, which in general translates

into a blocking method. For this reason, we provide a set of asynchronous meth-

ods, e.g., insert async and erase async. These non-blocking methods allow for

better communication/computation overlap and enable the stapl RTS to aggregate

messages to reduce the communication overhead. Since there is no data replication,

operations such as push back and push front, if invoked concurrently, may pro-

duce serialization in the locations managing the head and the tail of the list. For

this reason, we added two new methods to the pList interface, push anywhere and

push anywhere async, that allow the pList to insert the element in an unspecified

location in order to minimize communication and improve concurrency.

A. pList Example

We include in Figure 36 a simple example that inserts all elements from an input

pArray into a pList using their corresponding pViews. The program declares a

pArray of size 1000 and an empty pList using their default partitions and traits

(Figure 36, Lines 11 and 12). Subsequently, in line 14 the stapl map func construct

is called to create tasks that take individual elements from the pArray and insert

them into the pList. The work function of the tasks created by map func is included

starting with line 4 and it invokes the push anywhere method of pList.

B. pList Specification

The pList declaration is:

135

1 #include <p array . h>
2 inc lude <p l i s t . h>
3
4 class i n s e r t f u n c t o r {
5 void operator () (int& elem , l i s t p v i ew& lv i ew){
6 lv i ew . push anywhere (elem) ;
7 }
8 } ;
9
10 void s tap l main (){
11 p array<int> pa (1000) ; // parray wi th 1000 e lements
12 p l i s t <int> pl ; //empty p l i s t
13 array 1D pview<p array<int> > pa view (pa) ;
14 map func (pa view , l i s t p v i ew (p l) , i n s e r t f u n c t o r ()) ;
15 }

Fig. 36. pList example.

template<class T, class Par t i t i on=Default , class Tra i t s=Default>
class p l i s t ;

The pList has the derivation chain included in Figure 35. We include in Ta-

ble XXIV the pList interface.

Table XXIV.: pList interface.

Method Description

p list(size t N, const T& value = T()) Creates a pList with N elements, each of
which is a copy of value. O(N/P + log(P))

p list(size t N, partition type& ps) Creates a pList with N elements based
on the given partition strategy. O(N/P +
log(P))

void splice(iter pos, pList& pl); Splice the elements of pList pl into the cur-
rent list before the position pos.

size t size() const Returns the size of the pList. O(log(P))

bool empty() const True if the pList’s size is 0. O(log(P))

136

Table XXIV continued

Method Description

T& [front|back]() Access the first/last element of the se-
quence. O(1)

void push [front|back](const T& val) Insert a new element at the beginning/end
of the sequence. O(1)

void pop [front|back]() Remove the element from the begin-
ning/end of the sequence. O(1)

iterator insert(iterator pos, const T& val) Insert val before position pos and return the
iterator to the new inserted element. O(1)

void insert async(iterator pos, const T&
val)

Insert val before pos with no return value.
O(1)

iterator erase(iterator pos) Erases the element at position pos and re-
turns the iterator pointing to the new loca-
tion of the element that followed the element
erased. O(1)

void erase async(iterator pos) Erases the element at position pos with no
return value. O(1)

iterator push anywhere(const value type&
val)

Push val on to the last local bContainer
and return the iterator pointing to the new
inserted element. O(1)

void push anywhere async(const T& val) Push val on to the last local bContainer
with no return value. O(1)

C. pList Design and Implementation

In this section, we describe the pList modules used for storage and data distribution

information.

bContainer: For the stapl pList, we use the stl list as the container of the

bContainer. Most pList methods will ultimately be executed on the bContainer

using the bContainer’s corresponding methods. For example, pList insert will ul-

timately invoke the stl list insert method. The pList bContainer can also be

provided by the user so long as insertions and deletions never invalidate iterators,

and the bContainer provides the required domain interface (see below). Additional

137

requirements are relative to the expected performance of the methods (e.g., insertions

and deletions should be constant time operations).

The pList has a global view of all of the bContainers and knows the order

between them in order to provide a unique traversal of all its data. For this reason

each bContainer is identified by a globally unique BCID. For static or less dynamic

– in terms of number of bContainers – pContainers such as pArray or associative

containers, the BCID can be a simple integer. The pList, however, needs a BCID that

allows for fast dynamic operations. During the splice operation, bContainers from

a pList instance need to be integrated efficiently into another pList instance while

maintaining the uniqueness of their BCIDs. For these reasons, the BCID for the pList

bContainers is currently defined as follows:

typedef std::pair<plist_bcontainer*, location_identifier> CID

Global Identifiers (GID): Performance and uniqueness considerations similar

to those of the bContainer identifier, and the list guarantee that iterators are not

invalidated when elements are added or deleted, lead us to use the following definition

for the pList GID.

typedef std::pair<std::list<>::iterator, BCID> gid;

Since the BCID is unique, the GID is unique as well. With the above definition for GID,

the pList can uniquely identify each of its elements and access them independent of

their physical location.

Domain: The domain interface for the pList is provided by the pList bContainers.

The pList domain is a union of all domains corresponding to individual bContainers.

The union domain doesn’t replicate any data from the pList but it stores pointers

to its bContainers.

138

Location 0 Location 1

pList with blocked mapping

bCont bCont bCont bCont

pList with cyclic mapping

bCont bCont bCont bCont

Fig. 37. Different partitions and mappings for pList.

Data Distribution: The data distribution manager for a pList uses a partition

and a partition-mapper to describe how the data will be grouped and mapped on

locations. The pList specializes the partition mapper to take advantage of the fact

that the location identifier is embedded in the bContainer identifier.

The pList uses a dynamic partition that can maintain an arbitrary number

of bContainers and elements per location. The partition constructor can take an

optional argument, which is the number of desired bContainers and it will allocate

them balanced across locations. The allocation can be done in a blocked fashion or in

a cyclic fashion as depicted in Figure 37. Subsequent insert and delete operations may

lead to imbalanced distributions of elements in the bContainer. The pList provides

a method for this situation to redistribute the data so that elements are rebalanced

across locations.

pView: The pList currently supports sequence pViews that provide an iterator

type and begin() and end() methods. A pView can be partitioned into sub-views.

By default the partition of a pList pView matches the subdivision of the list in

139

bContainers, thus allowing random access to portions of the pList. This allows

parallel algorithms to achieve good scalability as shown in Section D.

pList Container: A typical implementation of a pList method that operates

at the element level is included in Figure 38 and uses the invoke skeleton introduced

in Chapter IV, Section 6. The run-time cost of the method has three constituents:

the time to decide the location and the bContainer where the element will be added

(Figure 8, line 5-15), the communication time to get/send the required information

(Figure 8, line 10), and the time to perform the operation on a bContainer (Figure 8,

line 17).

The complexity of constructing a pList of N elements is O(M+logP), where M

is the maximum number of elements in a location. The logP term is due to a fence

at the end of the constructor to guarantee the pList is in a consistent state. The

complexities of the element-wise methods are O(1). Multiple concurrent invocations

of such methods may be partially serialized due to concurrent thread-safe accesses to

common data. The size and empty methods imply reductions and the complexity is

O(logP), while clear is a broadcast plus the deletion of all elements in each location,

so the complexity is O(M + logP). This analysis relies on the pList bContainer

to guarantee that allocation and destruction are linear time operations and size,

insert, erase and push back/front are constant time operations.

The pList also provides methods to rearrange data in bulk. These methods are

splice and split to merge lists together and split lists, respectively.

The signature of the pList splice method is:

void pList::splice(iter pos, pList& pl [, iter it1, iter it2]);

where iter stands for an iterator type, pos is an iterator of the calling pList, pl

is another pList, and the optional iterators it1 and it2 are iterators pointing to

140

1 p l i s t : : p con ta ine r s equence : : i n s e r t (g id , v a l) {
2 this−>m dist−>invoke (MP INSERT ELEMENT,
3 boost : : bind(&pa r t i t i o n t yp e : : i n s e r t e l ement , g id , v a l) ,
4 boost : : bind(&pa r t i t i o n t yp e : : where in s e r t e l ement , g i d)) ;
5 }

Fig. 38. pList method implementation.

elements of pl. splice removes from pl the portion enclosed by it1 and it2 and

inserts it at pos. By default it1 denotes the begin of pl and it2 the end.

The complexity of splice depends on the number of bContainers included

within it1 and it2. If it1 or it2 points to elements between bContainers, then

new bContainers are generated in constant time using sequential list splice. Since

the global begin and global end of the pList are replicated across locations, the

operation requires a broadcast if either of them is modified.

split is also a member method of pList that splits one pList into two. It is a

parallel method that is implemented based on splice with the following signature:

void pList::split(iterator pos, pList& other_plist)

When pList.split(pos, other plist) is invoked, the part of pList starting at

pos and ending at pList.end() is appended at the end of the other plist. The

complexity of split is analogous to the complexity of splice.

D. Performance Evaluation

In this section, we evaluate the scalability of the pList methods. We compare

pList and pVector performance, evaluate generic pAlgorithms (p generate and

p partial sum) on pList, pArray and pVector, and evaluate an Euler tour imple-

141

 0

 0.5

 1

 1.5

 2

 2.5

 3

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

push anywhere async
push anywhere

insert
insert async

(a) CRAY4: Local Methods

 0

 1

 2

 3

 4

 5

 6

 7

 8

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert 1%
insert async 1%

insert 2%
insert async 2%

(b) CRAY4: Insert Remote

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

push anywhere async
push anywhere

insert
insert async

(c) P5-cluster: Local Methods

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert 1%
insert async 1%

insert 2%
insert async 2%

(d) P5-cluster: Insert Remote

Fig. 39. Execution times for pList methods.

mentation using pList.

E. pList Method Evaluation

Figure 39 shows the execution time of different pList methods. In a first study, all

methods are executed locally and we observe in Figure 39(a) that both synchronous

and asynchronous methods exhibit scalable performance as they do not incur any

communication. In Figure 39(b) we show the execution time for a mix of local and

remote method invocations to highlight the advantages of the asynchronous methods

over the synchronous methods. In this situation, the synchronous methods incur a

142

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray Algorithms Weak Scaling
 20M elements/location

p array p generate
p array p for each

p array p accumulate

(a) pArray; 20M/Proc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

plist pgenerate
plist pforeach

plist paccumulate

(b) pList; 20M/Proc

Fig. 40. Execution times for p for each, p generate, p accumulate algorithms on

CRAY4 for pArray and pList.

performance overhead being 2.5 times slower. In Figure 39(c) and 39 (d) we show

the same experiment on P5-cluster. We observe the same trends as on CRAY4

except that now the difference between synchronous and asynchronous is much larger

with the synchronous operations being 5 times slower when using 128 processors.

F. pAlgorithm Comparison

Figure 40(a) presents the execution times for the p generate, p for each and p accumulate

algorithms on the data of a pArray and a pList on CRAY4 using from 128 to 16384

processors. Figure 40(b) shows the results for the three algorithms on the pList. We

observe that the execution time for pList is higher than for pArray, which is the

result of the longer access time for the elements of the stl list with respect to the

stl valarray. When using 16384 processors there is a 18% increase in execution

time for pArray and a 5% increase for pList.

143

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

p for each a
p for each b

Fig. 41. P5-cluster: Weak scaling for p for each allocating processes on the same

nodes when possible (curve a) or in different nodes (curve b). Experiments

are for 20 million elements/processor.

Figure 41 shows two weak scaling experiments on P5-cluster for two different

processor allocation strategies. Each node of P5-cluster has 16 processors. In

the figure, p for each-a represents the case where all processors are allocated on a

single node (possible for 1-16 processors). p for each-b represents the case where

we use cyclic allocation across 128 processors, e.g., 16 processors would be allocated

one per node, and in general, there will be P/8 processors allocated on each node

for P < 128. The reason why the two curves do not match is related to memory

bandwidth saturation within a node. In p for each-b, the nodes are fully utilized

only when running on 128 processors, while for p for each-a we use all processors

in a node when running on 16 processors or more. These experiments emphasize the

importance of a good task placement policy on the physical processors.

144

0 500 700 1000 1200 1500 2000

10

20

30

40

50

60

Number of Inserts/Deletes per 10M Operations

T
im

e
(m

se
c)

pList/pVector Synthetic Workload, 10M initial elements

pList

pVector

pList and pVector comparison

Fig. 42. Comparison pList and pVector dynamic data structures using a mix of 10M

operations (read/write/insert/delete).

G. Comparison of Dynamic Data Structures in STAPL

In this section, we compare the performance of the pList and pVector for various

mixes of container operations (i.e., read(), write(), insert() and delete()). We show

that the proportion of operations that modify the container size has substantial effects

on runtime, demonstrating the utility of each and that care must be taken in selecting

the appropriate parallel data structure.

In Figure 42, we show results for both containers on the P5-cluster for 16

processors and 10 million elements. We perform 10 million operations per container.

Each operation is either a read or write of the next element in the container, an

145

insertion at the current location, or deletion of the current element. These operations

are distributed evenly among the processors, which perform them in parallel. For

these experiments, the combined number of insertions and deletions is varied from 0

to 2000, with the remaining operations being an equal number of reads and writes.

More insertions or deletions than this cause the runtime of the pVector to increase

dramatically.

As expected, the runtime of the pList remains relatively unchanged regardless

of the number insertions or deletions, as both operations execute in constant time.

The performance of the pVector is better than pList when there are no insertions

or deletions. However, at 1200 insertions/deletions, the heavy cost of the operations

(all subsequent elements must be shifted accordingly) causes the performance of the

two containers to crossover with the pList taking the lead. This experiment clearly

justifies the use of the pList in spite of not being a truly random access container

like the pVector .

H. Application using pList: Euler Tour

An Euler Tour (ET) is an important representation of a graph for parallel processing.

In particular, the ET, which traverses every edge of the graph exactly once, corre-

sponds to an edge traversal of the graph. Since the ET represents a depth-first-search

traversal, when it is applied to a tree it can be used to compute a number of tree

functions such as rooting a tree (given a vertex to be root, compute the parent of

each vertex in the tree), postorder numbering (compute the postorder number for

each vertex in the tree), computing the vertex level (the level of each vertex in the

tree), and computing the number of descendants (the number of descendants for each

vertex in the tree) [38]. In this application, we convert a tree T = (V,E) into a

146

directed tree T ′ = (V,E ′) where each edge (u, v) ∈ E is replaced by two edges (u, v)

and (v, u). T ′ is an Eulerian graph.

The parallel Euler Tour algorithm [38] implemented in stapl computes an ET

of a tree stored in a STAPL pGraph and stores it in a pList. The algorithm executes

in parallel traversals on the pGraph pView generating Euler Tour segments that are

stored in a temporary pList. Then, the segments are linked together to form the

final pList containing the Euler Tour.

The tree ET applications are computed by first using the ET algorithm to com-

pute the ET, and then applying a generic ET algorithm. The generic algorithm first

initializes each edge in the tour with a corresponding weight, and then compute prefix

sums using the partial sum algorithm. The partial sum result for each edge is copied

back to the graph, and the final step is to compute the desired result, e.g., parent,

postorder number, vertex level or descendants, using an appropriate function on the

prefix sum values.

The performance of the algorithm for computing ET is evaluated by performing

a weak scaling experiment on CRAY4 using as input a tree distributed across all

locations. The tree is generated by first building a specified number of binary trees in

each location and then linking the roots of these trees in a binary tree fashion. The

number of remote edges is at most six times of the number of subtrees for each location

(for each root of the subtree, one to its root and two to its children in each location,

with directed edges for both directions). Figure 43(a) and (b) shows the execution

time on CRAY4 for different sizes of the tree and different number of subtrees. The

running time increases with the number of vertices per location because the number of

edges in the computed ET increases correspondingly. When there are more subtrees

specified in each location, there is more communication time taken to link them.

The performance of the ET technique generic algorithms is shown in Figure 44(a),

147

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Euler Tour Weak Scaling
 tree: 500k or 1M vertices with 1 or 50 subtrees per proc

euler tour 500K 1
euler tour 500K 50

euler tour 1M 1
euler tour 1M 50

(a) List Graph

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Euler Tour Weak Scaling
 list: 1M or 2M vertices with 1 or 1000 lists per proc

euler tour 1M 1
euler tour 1M 1000

euler tour 2M 1
euler tour 2M 1000

(b) Tree Graph

Fig. 43. Weak scaling of Euler Tour algorithm. Tree made by a single binary tree

with 500k or 1M subtrees per processor.

(b), (c) and (d) for rooting a tree, computing the postorder numbering, the vertex

level, and the number of descendants, respectively. The running time increases with

the number of vertices per location because the number of edges increases, which are

proportional to the computation. The more subtrees specified in each location, the

more segments formed in the pList and the more communication time taken for the

partial sum algorithm.

148

 0

 0.5

 1

 1.5

 2

 2.5

 3

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Rooting Tree Weak Scaling
 tree: 500k or 1M vertices with 1 or 50 subtrees per proc

rooting tree 500K 1
rooting tree 500K 50

rooting tree 1M 1
rooting tree 1M 50

(a) Rooting Tree

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)
Number of Processors

CRAY4: Postorder Numbering Weak Scaling
 tree: 500k or 1M vertices with 1 or 50 subtrees per proc

postorder numbering 500K 1
postorder numbering 500K 50

postorder numbering 1M 1
postorder numbering 1M 50

(b) Postorder Numbering

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Vertex Level Weak Scaling
 tree: 500k or 1M vertices with 1 or 50 subtrees per proc

vertex level 500K 1
vertex level 500K 50

vertex level 1M 1
vertex level 1M 50

(c) Computing Vertex Level

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Number of Descendants Weak Scaling
 tree: 500k or 1M vertices with 1 or 50 subtrees per proc

num descendants 500K 1
num descendants 500K 50

num descendants 1M 1
num descendants 1M 50

(d) Computing Number of Descendants

Fig. 44. Execution times for Euler Tour and its applications using a tree made by a

single binary tree with 500k or 1M subtrees per processor.

149

CHAPTER XI

THE STAPL PGRAPH

The stapl pGraph is a generic data structures that consists of a collection of vertices

and relations between vertices called edges. We use the following notation for a

graph: G = (V,E). The pGraph associates a vertex property with each vertex and

an edge property with each edge. These are template arguments that are passed by

the user when instantiating a pGraph. Additionally, using template arguments, users

can indicate if the graph is directed (directedness) and if the graph allows multiple

edges between same source and destination (multiplicity). Similar to other stapl

pContainers, users can specify an optional partition and traits. Thus, the pGraph

declaration is the following:

stapl::p_graph<Directnedss,

Multiplicity,

vertex_property=no_property, //optional

edge_property=no_property, //optional

partition=default, //optional

traits=default_traits //optional

>

If the user application doesn’t require vertex or edge properties, then the special

value stapl::no property can be used. The traits allow users to customize low

level details such as the storage for vertices and edges. Before we introduce the pGraph

user interface, we define a set of concepts in the next section that are required to

properly describe the methods.

150

A. pGraph Example

1 #include <p array . h>
2 #include <p graph>
3 struct add ver t ex func (){
4 p graph pview pg view ;
5 void operator () (v e r t ex prope r ty& pr e f){
6 pg view . add vertex (p r e f) ;
7 }
8 } ;
9 struct add edge func (){
10 p graph pview pg view ;
11 void operator () (pair<v e r t e x d e s c r i p t o r ,
12 v e r t e x d e s c r i p t o r>& pre f){
13 pg view . add edge (p r e f . f i r s t , p r e f . second) ;
14 }
15 }
16 void s tap l main (){
17 // parray wi th 1000 v e r t e x p r o p e r t i e s
18 p array<ver tex proper ty> pa ve r t s (1 000) ;
19 // parray wi th 10000 edges
20 p array<pair<v e r t e x d e s c r i p t o r ,
21 v e r t e x d e s c r i p t o r> > pa edges (10000) ;
22 p graph<DIRECTED, MULTI, ve r t ex proper ty , edge property> pg ;
23 p f o r e a ch (array 1D pview (pa ve r t s) ,
24 add ver t ex func (p graph pview (pg)) ;
25 p f o r e a ch (array 1D pview (pa edges) ,
26 add ver t ex func (p graph pview (pg)) ;
27 }

Fig. 45. pGraph example.

In Figure 45 we include a simple example using the pGraph data structure. At line 17

and 19 we declare a pArray of vertex properties and a pArray of edges, respectively.

151

Subsequently we invoke two p for each invocations with functors to create vertices

and edges for all elements in the input pArrays. The functors call add vertex and

add edge methods of the pGraph pView which recursively invoke the add vertex

method of the pGraph.

B. pGraph Concepts and Interfaces

When implementing or using stapl graphs the user needs to be aware of a number

of additional concepts relative to the pArray and pList. The pGraph concepts and

their associated properties are introduced in this section.

Vertex Descriptor: The vertex descriptor uniquely identifies a vertex. The

vertex descriptor has to be default constructable, assignable and equality comparable.

Adding edges or finding vertices will be based on vertex descriptors.

Edge Descriptor: The edge descriptor uniquely identifies an edge. It provides

methods to return the source and target vertex and a unique edge identifier. The

reason the edge identifier is needed is to distinguish between vertices with the same

source and destination.

Vertex Iterator: The vertex iterator is an overloaded iterator concept. It

implements the stl bidirectional access iterator concept (operator ++, - -) and

can be dereferenced to provide a Vertex Reference.

Vertex Reference: We provide two vertex reference concepts. They correspond

to the case where the graph does not have properties associated with the vertex (ver-

tex reference<no property>) and the case where the graph has properties associated

with a vertex (vertex reference<vertex property>). The vertex reference is obtained

by dereferencing a vertex iterator. It provides the interface in Table XXV.

152

Table XXV.: Vertex reference interface. Property related interface is only for ver-
tex reference<vertex property>.

Defined Type Description

vertex descriptor Vertex descriptor type

property type Property type for graphs with no property is a special
type no property

adj edge iterator Adjacency edge iterator type. This type of iterator
allows to iterate over the adjacent edges of a vertex
referred by the current iterator

Method Description

adj edge iterator begin() Returns an adjacency edge iterator pointing to a first
outgoing edge. O(1)

adj edge iterator end() Returns an adjacency edge iterator pointing to a last
outgoing edge. O(1)

view edges() Returns a pView over the adjacent edges. O(1)

size t size() const Returns the number of outgoing edges. O(1)

Property& property() Returns the property associated with the vertex. O(1)

Edge Iterator: Similar to the vertex iterators, the graph provides edge iterators.

First, the adj edge iterator iterates over the adjacency list of a vertex and secondly,

edge iterator iterates over all edges of the graph. It can be dereferenced to provide

an Edge Reference.

Edge Reference: The edge reference is obtained by dereferencing an edge iter-

ator or an adjacent edge iterator. It provides the interface in Table XXVI.

153

Table XXVI.: Edge reference interface.

Defined Type Description

property type Property is of type no property meaning the edges are
without properties

vertex descriptor Vertex descriptor type

vertex descriptor source()
const

Returns vertex descriptor for the source. O(1)

vertex descriptor target()
const

Returns vertex descriptor for the target. O(1)

size t id() const Returns the unique id of the edge. O(1)

Property& property() Returns the property associated with the edge. O(1)

C. pGraph Class Hierarchy

The stapl pGraph provides the following classes of graphs: incidence p graph,

static p graph, dynamic p graph, directed p graph, undirected p graph, multi-

edges p graph and non multi edges p graph. Each of these specify an interface and

corresponding properties as summarized in Figure 46(a). More details about the func-

tionality of individual methods are included in Table XXVII.

Corresponding to each of the graph concepts in Figure 46(a) there is a pGraph

pView interface. Generic parallel graph algorithms need to specify the requirements

for the pView that they can operate on. For example certain algorithms may require

an incidence p graph view that models the incidence p graph concept.

stapl provides a default implementation of the pGraph concepts from Figure

46(a) as depicted in Figure 46(b). There is a p container relation class derived

from p container dynamic class of the framework that implements the interfaces

corresponding to incidence, static and dynamic graph concepts. Directed pGraph

specifies additional methods such as get out degree(). Undirected guarantees that

154

incidence_p_graph
::vertex_descriptor (VD)
::edge_descriptor (ED)
::view_type - default view
 ::vertex_iterator (VI)
 ::adj_edge_iterator (AEI)
 ::edge_iterator
view()

::vertex_descriptor_generator
add_vertex(VP=default)
add_vertex(VD)
add_vertex(VD,VP)
delete_vertex(VD)
void erase_graph(void)

bool add_edge(ED)
bool delete_edge(ED)

directed_p_graph Undirected_p_graph

MultiEdges_p_graph NonMulti_p_graph

p_graph<Directedness,Multiplicity>

static_p_graph
size_t get_num_vertices()
VI find_vertex(VD)
size_t get_num_edges()
bool find_edge(ED,VI,EI)

dynamic_p_graph

p_container_relation<Traits>
-Implements Incidence,
 Static,
 Dynamic

directed_p_graph
 <Traits>

Undirected_p_graph
 <Traits>

MultiEdges_p_graph
 <Traits>

NonMulti_p_graph
 <Traits>

p_graph<Directedness,
 Multiplicity,
 VertexProperty, //optional
 EdgeProperty, //optional
 PartitionStrategy=defualt,//optional
 Traits<VertexProperty,EdgeProperty>>//optional

(a) (b)

Fig. 46. Graph hierarchy of concepts (a) and hierarchy design for STAPL implementa-

tion of graph (b). AEI is an iterator over adjacent edges only; EI iterates over

all edges of a graph and it is an extension of the adjacency edge iterator(AEI).

for every edge (u, v) there is an edge (v, u). Additionally, if the graph has properties

the property is shared by the two edges. The non multiple edges class specializes

the add edge method to guarantee that there are no edge duplicates in the pGraph.

The pGraph class at the bottom of the hierarchy in Figure 46(b) uses the template

arguments to select the proper derivation chain and other internals such as partition

and storage.

155

Table XXVII.: pGraph interface.

Define Type Description

vertex property property stored on vertices; it can be of
no property type

edge property property stored on edges; it can be of
no property type

vertex descriptor vertex descriptor type

edge descriptor edge descriptor type

vertex reference vertex reference type

edge reference edge reference type

vertex descriptor add vertex() Add a vertex with default allocated prop-
erty. O(1)

vertex descriptor add vertex(const ver-
tex property& pref)

Add a vertex with the specified property.
O(1)

vertex descriptor add vertex(const ver-
tex descriptor vd)

Add a vertex with the specified descriptor.
O(1)

vertex descriptor add vertex(const ver-
tex descriptor vd, const vertex property&
pref)

Add a vertex with the specified descriptor
and property. O(1)

bool delete vertex(const vertex descriptor
vd)

Delete the vertex with the specified descrip-
tor. O(NV erts)

edge descriptor add edge(const
edge descriptor ed)

Add an edge with the given descriptor spec-
ifying the source and target vertices. O(1)

edge descriptor add edge(const
edge descriptor ed, const edge property&
pref)

Add an edge with the specified descriptor
and property. O(1)

void add edge async(const edge descriptor
ed)

Asynchronously add an edge with the given
descriptor specifying the source and target
vertices; Faster than the synchronous vari-
ant. O(1)

void add edge async(const edge descriptor
ed, const edge property& pref)

Asynchronously add an edge with the spec-
ified descriptor and property; Faster than
the synchronous variant. O(1)

bool delete edge(const edge descriptor ed) Delete the edge with the specified descrip-
tor. O(NEdges/NV erts) - proportional
with the number of edges per vertex.

vertex iterator find vertex(const ver-
tex descriptor vd)

Find the vertex with the given ver-
tex descriptor. Returns graph.end() if ver-
tex not found. O(1)

156

Table XXVII continued

Method Description

edge iterator find edge(const
edge descriptor ed, vertex iterator* vi,
edge iterator* ei)

Find the edge with the given
edge descriptor. Returns graph.end()

if vertex not found. Also returns the
vertex iterator of the source vertex, and
the corresponding adjacency edge iterator.
O(Nedges/NV erts)

size t get num vertices() Returns the number of vertices in the graph.
O(log(P))

size t get num edges() Returns the number of edges in the graph.
O(NV erts/P + log(P))

void clear() Clears the graph, erasing all edges and ver-
tices. O(N/P + log(P))

bool empty() Returns if the graph is empty (has no ver-
tices and edges). O(log(P))

In comparison with other graph libraries such as pbgl[29], for better encapsula-

tion, we decided to have each concept correspond to a C++ class rather than having

a mix of classes and stand alone functions. For example, to add a vertex or an edge

in stapl the user would say graph.add vertex() and graph.add edge(source,

target), rather than add vertex(graph) or add edge (source, target, graph)

as is done in pbgl. In addition to these syntactic differences, we now briefly summa-

rize some other important semantic differences between the stapl pGraph and pbgl

that may favor our approach for certain applications. First, the vertex and edge

descriptor are uniquely associated with vertices and edges of the graph and will not

change during the lifetime of the container. For pbgl, the descriptors are recomputed

when a vertex is removed for certain storages leading to possible inconsistencies. Also,

the vertex descriptor changes from bgl to pbgl by incorporating knowledge about

the location where the vertex lives. In stapl, we use the same vertex descriptor for

157

the sequential and the parallel graph and store location information in the data distri-

bution manager. By not associating location information with the vertex descriptor,

we can migrate vertices in our framework without invalidating descriptors to which

other locations may have references.

Another important difference between pGraph and pbgl is the fact that pGraph

provides a shared memory view to the user allowing threads on one location to access

the entire graph in a shared memory fashion.

D. pGraph Design and Implementation

In this section we describe the pGraph default implementation of the main concepts

required by the framework

bContainer: We use the sequential stapl generic graph implementation for

bContainers but other existing graph libraries such as BGL can be easily integrated.

Most pContainer methods will ultimately be executed at the bContainer level.

For example, pGraph add vertex will ultimately invoke the sequential add vertex

method in one of the pGraph bContainers.

Global Identifiers (GID): The vertex descriptor is used as the GID and the de-

fault pGraph implementation uses an unsigned integer for this. An important property

that differentiates the pGraph from other libraries is the fact that the vertex descrip-

tor associated with a vertex remains valid as long as the vertex exists in the pGraph.

Other libraries such as pbgl, depending on the storage chosen, rename all vertices in

the graph to guarantee that they are in a contiguous range from zero to the number

of vertices.

Partition: For pGraph, the partition of the set of vertices and edges into subsets

is of crucial importance. The performance of the pGraph algorithms is often directly

158

related with the number of edges crossing the different sets. The default partitions

provided by the framework partition the set of available vertices. The edges are im-

plicitly partitioned based on their source vertices. We introduce next three partitions

that can be used with the pGraph. First, a static balanced partition with a closed

form solution mapping GIDs to bContainers. This is similar to the pArray balanced

partition introduced in Chapter IV, Section E. While this partition performs fast

mappings of vertex descriptors to sub-domains, it can be used only with graphs with

a fixed number of vertices that only allow edges to be inserted or deleted.

The framework also provides two dynamic distributed partitions that allow arbi-

trary mappings of vertices to sub-domains. These two partitions can form the basis

of smarter partitions that can integrate external tools such as Metis [42] or Chaco [32]

to specify the decomposition (partition) of vertices. They are implemented using a

distributed directory where a certain location is responsible for always knowing where

a particular element lives and the location that actually stores the element needs to

inform the directory with information about the element. When invoking a method

on a specific element the partition may not have locally all the information about

where the element is located. When this happens the partition has two options: (1)

perform necessary communication and retrieve the full information about where the

bContainer that owns the element, followed by the invocations of the method on the

bContainer or (2) provide to the framework partial information about a new location

that may know more information about the given element. In the second situation the

pContainer simply forwards the method invocation to the provided location and the

lookup procedure is recursively applied there. For asynchronous methods, forwarding

the method based on partial information rather than trying to completely perform

the address resolution, possibly using synchronous communication, has performance

benefits that we analyze in Section F.

159

1 #include <p graph>
2 class i n i t f u n c t o r {
3 void operator () (v e r t e x r e f e r e n c e v){
4 v . property () = 0 ;
5 }
6 } ;
7
8 void s tap l main (){
9 p graph<DIRECTED, MULTIEDGES, double , double> pg ;
10 // popu la t e the graph wi th v e r t i c e s and edges
11 ve r t ex s e t pv i ew vs (pg) ;
12 f o r e a ch (vs , i n i t f u n c t o r ()) ;
13 }

Fig. 47. pGraph pViews example.

Partition Mapper: Similar to other stapl pContainers the pGraph can use

any of the following partition mapper: partition mapper generic, partition

mapper blocked, partition mapper cyclic or partition mapper identity.

E. pGraph pViews

In Section C we introduced a taxonomy of various graph concepts. Corresponding

to each of the concepts there is a well defined interface and graph algorithms are

written in terms of these interfaces (e.g., pViews). These pViews can be defined on

top of the stapl pGraph but they can also be defined on top of other containers or

on the composition of containers. For example, an incidence p graph pview can be

defined on top of a pArray of vertices where a vertex is a list of edges. In this section,

we describe the pViews that can be defined on top of the pGraph data structure.

For simple algorithms that access all vertices or all edges, we define a vertex set

pview and edge set pview. As illustrated in Figure 47 these pViews can be passed as

160

Region

1

2

3

1

2

2

3

3

3

1

1

(a)

(b)

(c)

(d)

Fig. 48. pGraph pViews: (a) pGraph partitioned pView, (b) region pview, (c) in-

ner pview and (d) boundary pview.

arguments to stl like pAlgorithms. The p for each computation is used to initialize

all vertex properties to zero.

pGraph Partitioned pView: In Figure 48(a) we depict a possible partition of

a pGraph according to the dotted lines. For each of the regions of the decompositions

we distinguish two categories of edges: normal edges where source and destination

vertex are within the same sub domain and boundary edges where the target of

the edge is not within the current region.

The framework provides a partitioned pGraph pView that can be used by various

pGraph algorithms. Each of the sub views of the partitioned graph pView provides

methods to obtain the following pViews:

• Region pView: (Figure 48(b)) Contains normal and boundary edges; it is not

a complete graph. This is an intuitive way of partitioning a pGraph and leads

to efficient parallel algorithms.

• Inner pView: (Figure 48(c)) A pView with the boundary edges stripped out.

161

This is a complete graph and can be passed to sequential graph algorithms.

• Boundary pView: (Figure 48(d)) An edge pView containing only the bound-

ary edges.

F. Performance Evaluation

In this section, we evaluate the scalability of the pGraph parallel methods introduced

in this chapter, discussing different performance trade-offs. We evaluate several graph

pAlgorithms such as Euler tour and different traversals.

1. pGraph Methods Evaluation

The pGraph is represented as an adjacency list and depending on its properties,

different bContainers can be used to optimize the data access. Here, we evaluate

a static and a dynamic pGraph. The static pGraph allocates all its vertices in the

constructor and subsequently only edges can be added or deleted. It uses a static

partition that is implemented as a closed-form solution and has a bContainer that

uses a std::vector to store the vertices and std::list to store edges. The dynamic

pGraph uses a distributed directory to implement its partition and its bContainer uses

std::hash map for vertices and std::list for edges. We chose the std::hash map

in the dynamic case because it allows for fast insert and find operations. As described

in Chapter V, in Figure 16 the pGraph container is one class and the static versus

dynamic behavior is achieved by passing the corresponding template arguments to it.

We include in this section results for a weak scaling experiment on CRAY4 and

P5-cluster using a 2D torus where each processor holds a stencil of 1500×1500

vertices and corresponding edges, a stencil of 15×150000 and a random graph as

specified in the SSCA2 benchmark [7]. SSCA2 generates a set of clusters where each

162

 0.01

 0.1

 1

 10

 100

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Static pGraph Methods Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

add vertex
add edge

find vertex
find edge

(a) SSCA Static pGraph

 0.1

 1

 10

 100

 4 8 64 128 1024 4096

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Dynamic pGraph Methods Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

add vertex
add edge

find vertex
find edge

(b) SSCA Dynamic pGraph

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pGraph Methods Weak Scaling
 Mesh,2.25M vertices,4.5M edges/location

add vertex
add edge

find vertex
find edge

(c) 1500×1500 Mesh Static

 0

 1

 2

 3

 4

 5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Dynamic pGraph Methods Weak Scaling
 Torus, 2.25M vertices, 4.5M edges/location

add vertex
add edge

find vertex
find edge

(d) 1500×1500 Mesh Dynamic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pGraph Methods Weak Scaling
 Mesh,2.25M vertices,4.5M edges/location

add vertex
add edge

find vertex
find edge

(e) 15×150000 Mesh Static

 0

 1

 2

 3

 4

 5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Dynamic pGraph Methods Weak Scaling
 Torus, 2.25M vertices, 4.5M edges/location

add vertex
add edge

find vertex
find edge

(f) 15×150000 Mesh Dynamic

Fig. 49. CRAY4: Evaluation of static and dynamic pGraph methods while using the

SSCA2 graph generator. The input graph has 500k vertices, 11.5M edges, ∼40

remote edges per location, ∼23 edges per vertex. (a) For the static pGraph all

vertices are built in the constructor; (b) The dynamic pGraph inserts vertices

using add vertex method.

163

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Static pGraph Methods Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

add vertex
add edge

find vertex
find edge

(a) SSCA Static pGraph

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Static pGraph Methods Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

add vertex
add edge

find vertex
find edge

(b) SSCA Dynamic pGraph

Fig. 50. P5-cluster: Evaluation of static and dynamic pGraph methods while using

the SSCA2 graph generator. The input graph has 500k vertices, 11.5M edges,

∼40 remote edges per location, ∼23 edges per vertex. (a) For the static

pGraph all vertices are built in the constructor; (b) The dynamic pGraph

inserts vertices using add vertex method.

cluster is densely connected and the inter cluster edges are sparse. We use the fol-

lowing parameters for SSCA2: cluster size = (V/P)1/4, maximum number of parallel

edges is 3, maximum edge weight is V , probability of intra clique edges is 0.5 and

probability of an edge to be unidirectional 0.3. Figure 49 shows the execution time

for add vertex, add edge, find vertex and find edges on CRAY4 and Figure 50

for P5-cluster. We include results for a static pGraph where vertices are allocated

in the constructor and a dynamic pGraph where the container is initially empty and

vertices are added using add vertex. As seen in the plots, the methods scale well

up to 24000 processors on CRAY4 and up to 128 on the P5-cluster. The ad-

dition of edges is a fully asynchronous parallel operation. Adding vertices in the

dynamic pGraph causes asynchronous communication to update the directory infor-

164

mation about where vertices are actually stored. The asynchronous communication

overlaps well with the local computation of adding the vertices in the bContainer,

thus providing good scalability up to a very large number of processors. There is only

36% increase in execution time for add vertex in the dynamic pGraph as we scale

from 4 to 16384 processors.

2. Evaluation of Address Translation Mechanisms

In this section we evaluate the performance of the three types of address translation

mechanisms introduced in Section D: a static partition with a closed form solution

mapping GIDs to bContainers, and distributed dynamic partitions with and with-

out method forwarding. When method forwarding is not allowed, the partition

fetches the GID mapping information using synchronous operations. When method

forwarding is allowed, the method is asynchronously sent first to the location owning

the directory which in turn forwards the method to the actual location where the

element resides.

We evaluate the performance of the three partitions using a simple pGraph algo-

rithm that finds source vertices (i.e., vertices with no incoming edges) in a directed

graph. The algorithm traverses the adjacency list of each vertex and increments a

counter on the target vertex of each edge. The communication incurred by this algo-

rithm depends on the number of remote edges, i.e., edges connecting vertices in two

different bContainers. We considered four graphs, all 2D tori, which vary according

to the percentage of remote edges: .03%, .33%, 3.4%, and 50%. This was achieved

by having each processor hold a stencil of 1,500×1,500, 150×15,000, 15×150,000,

1×2,250,000, respectively.

Figure 51(a) provides a summary of the execution times for the different per-

centages of remote edges and different numbers of processors, where scalability can

165

(a)

 0.1

 1

 10

 100

 1000

 0.03% 0.33% 3.4% 50%

E
xe

cu
tio

n
T

im
es

 (
se

c)

Percentage of Remote Edges

Method Forwarding for P=1024

static
fwd

no fwd

(b)

Fig. 51. Find sources in a directed pGraph using static, dynamic with forwarding and

dynamic with no forwarding partitions. Execution times for graphs with var-

ious percentages of remote edges for (a) various processor counts and for (b)

1024 processors.

be appreciated together with the increasing benefit of forwarding as the percentage

of remote edges increases. In Figure 51(b) we include results for the three approaches

on all four types of graphs for 1024 processors. As can be seen, for the methods

with no forwarding and synchronous communication, the execution time increases as

the percentage of remote edges increases. The static method and the method with

forwarding track one another and do not suffer as badly as the percentage of remote

edges increases. This indicates that the forwarding approach can scale similarly to

the optimized static partition.

In Figure 52 we show weak scaling experiments for all four graph types. While the

scalability is good for all methods, the static partition is always superior and, again,

it is seen that for the dynamic partitions, the benefit of method forwarding increases

as the percentage of remote edges increases, though it is quite significant even if

the percentage of remote edges is quite low (e.g., 3.4%). When we use a 1x2250000

166

stencil (50% remote edges), partition static is around 5 seconds, partition fwd

is 12 seconds, while partition nofwd is 190 seconds.

 0

 1

 2

 3

 4

 5

 6

 7

 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

find sources static
find sources fwd

find sources nofwd

(a) 0.03% remote edges

 0

 1

 2

 3

 4

 5

 6

 7

 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

find sources static
find sources fwd

find sources nofwd

(a) 0.33% remote edges

 0

 5

 10

 15

 20

 25

 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

find sources static
find sources fwd

find sources no fwd

(c) 3.4% remote edges

 1

 10

 100

 1000

 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

find sources static
find sources fwd

find sources no fwd

(c) 50% remote edges

Fig. 52. Comparison of various pGraph partitions. Execution times (weak scaling) for

graphs with (a) .03%, (b) .33%, (c) 3.4%, and (d) 50% remote edges.

167

3. pGraph Algorithms

In this section we analyze the performance of several generic stl algorithms and

pGraph specific algorithms for various input types and pGraph characteristics. In Fig-

ure 53 we show results for three generic stl algorithms. p for each applies to every

vertex in the graph a functor that sets the vertex property which is a double to zero.

The theoretical complexity for this operation is O(|V |/P), where |V | is the number of

vertices in the graph and P is the number of processors. p accumulate accumulates all

vertex properties. The theoretical complexity for this operation is O(|V |/P+log(P)).

The log(P) factor is due to the reduction performed. The p max weight find the edge

with the maximum edge weight. Its complexity is O(|E|/P), where |E| is the total

number of edges. We observe from the figure good scaling for all three algorithms for

both static and dynamic pGraphs. The p accumulate execution time slowly increases

as we increase the number of processors and this is due to the reduction step. For all

pGraphs considered the number of edges is bigger than the number of vertices and

this is properly reflected in the graphs.

In Figures 54 and 55 we include results for graph specific algorithms on CRAY4

and P5-cluster, respectively. The find edges collects all edges with maximum

edge weight into an output pList (SSCA2 benchmark); find sources collects all

vertices with no incoming edges into an output pList. find sources takes as input

a collection of vertices and performs graph traversals in parallel. The traversal pro-

ceeds in a DFS style. When a remote edge is encountered, a new task is spawned

to continue the traversal on the location owning the target. The current traversal

will continue in parallel with the spawned one. This is useful for example when we

want to compute all vertices and edges accessible from a set of starting points. trim

is another useful computation when computing cycles or strongly connected compo-

168

 0.01

 0.1

 1

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Static pGraph Algorithms Weak Scaling
 SSCA2, 500K vertices, 11M edges/location

p for each
p accumulate
p max weight

(a) SSCA Static

 0.01

 0.1

 1

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Dynamic pGraph Algorithms Weak Scaling
 SSCA#2,500K vertices,23M edges/location

for each
accumulate
find edges

(b) SSCA Dynamic

 0.01

 0.1

 1

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Static pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p for each
p accumulate
p max weight

(c) 1500×1500 Mesh Static

 0.01

 0.1

 1

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Dynamic pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p for each
p accumulate
p max weight

(d) 1500×1500 Mesh Dynamic

 0.01

 0.1

 1

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Static pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p for each
p accumulate
p max weight

(e) 15×150000 Mesh Static

 0.01

 0.1

 1

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Dynamic pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p for each
p accumulate
p max weight

(f) 15×150000 Mesh Dynamic

Fig. 53. CRAY4: Execution times for different pGraph algorithms. Static versus dy-

namic pGraph comparison. The input is a sparse mesh or generated using the

SSCA2 scalable generator with 500K vertices per processor.

169

 0

 2

 4

 6

 8

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Static pGraph Algorithms Weak Scaling
 SSCA2, 500K vertices, 11M edges/location

find edges
find sources

graph traversal from sources
find sources and trim

(a) SSCA Static

 0

 2

 4

 6

 8

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Dynamic pGraph Algorithms Weak Scaling
 SSCA2, 500K vertices, 11M edges/location

find edges
find sources

graph traversal from sources
find sources and trim

(b) SSCA Dynamic

 0.1

 1

 10

 100

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Static pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(c) 1500×1500 Mesh Static

 0.1

 1

 10

 100

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Dynamic pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(d) 1500×1500 Mesh Dynamic

 0.1

 1

 10

 100

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Static pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(e) 15×150000 Mesh Static

 0.1

 1

 10

 100

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Dynamic pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M vertices,3M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(f) 15×150000 Mesh Dynamic

Fig. 54. CRAY4: pGraph algorithms. Static versus dynamic pGraph comparison. The

input is a sparse mesh or generated using the SSCA2 scalable generator with

500K vertices per processor.

170

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Static pGraph Algorithms Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(a) SSCA Static

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Dynamic pGraph Algorithms Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(b) SSCA Dynamic

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Static pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M verts,4.5M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(c) 1500×1500 Mesh Static

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Dynamic pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M verts,4.5M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(d) 1500×1500 Mesh Dynamic

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Static pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M verts,4.5M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(e) 15×150000 Mesh Static

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

P5: Dynamic pGraph Algorithms Weak Scaling
 Sparse Mesh,2.25M verts,4.5M edges/location

p find edges
p find sources

p graph traversal
p fs and trim

(f) 15×150000 Mesh Dynamic

Fig. 55. P5-cluster: Execution times for different pGraph algorithms. Static versus

dynamic pGraph comparison. The input is a sparse mesh or generated using

the SSCA2 scalable generator with 500K vertices per processor.

171

nents. It computes the set of sources for a directed graph and removes all their edges,

recursively continuing with the newly created sources. The process will stop when

there are no more sources.

We run the algorithms on various input types including a sparse mesh and SSCA2

random graphs. In Figure 54(a), (b), and Figure 55(a), (b), weak scaling results are

shown for SSCA2 for both static and dynamic pGraphs. The number of processors

varied from 4 to 24000. For all algorithms considered, the static graph performed

better due to the faster address resolution and std::vector storage for vertices versus

std::hash map. find edges, a fully parallel algorithm, exhibits good scalability

with less than 5% increase in execution time for both types of graphs on CRAY4.

find sources incurs communication proportional to the number of remote edges.

The algorithms use two containers, traversing an input pGraph and generating an

output pList. The traversal from sources and trim algorithm spawn new computation

asynchronously as it reaches a remote edge. Additionally, the trim algorithm removes

pGraph edges, which negatively impacts performance. The increase in execution time

for the trim algorithm is 28% for static and 25% for dynamic pGraphs on CRAY4.

Figure 54(c), (d), (e) and (f) illustrate that the execution time of pGraph algo-

rithms increases with the number of remote edges. When the 1500×1500 stencil is

used the number of remote edges is small relative to the local ones and there is good

communication computation overlap enabling the algorithms to scale up to a large

number of processors. When the stencil used is 15×150000, the remote to local edges

ratio is 3.4%. The increased number of remote edges is reflected in the execution

times of the algorithms because they incur communication proportional to the num-

ber of edges. Despite an increased execution time we observe that the algorithms

scale well up to 24000 processors, proving that the stapl pGraph data structure can

be successfully used to solve very large graph problems.

172

4. Page Rank

In this section we examine the performance of the page rank [12] algorithm. The

algorithm performs a number of iterations and in each iteration, for all vertices, we

update the ranks of all neighbor vertices based on the rank of the current vertex.

The algorithm incurs communication proportional to the number of remote edges.

In Figure 56 we show experimental results for two different meshes, one with 0.03%

remote edges and one with 3.4% remote edges per location. The algorithm scales well

as we scale the number of processors from 4 to 8192, the communication cost being

visible only on the larger number of processors.

 0

 5

 10

 15

 20

 25

 4 8 64 128 1024 8192

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: pGraph Page Rank Weak Scaling
 Mesh,2.25M vertices,4.5M edges/location

page rank 1500x1500
page rank 15x150000

Fig. 56. Page rank for two different input meshes: 1500x1500 and 15x150000.

173

CHAPTER XII

ASSOCIATIVE PCONTAINERS∗

An associative container provides optimized methods for storing and retrieving data

using keys. In stapl, similar to stl [49], we consider the following six basic asso-

ciative container concepts: simple, pair, sorted, hashed, unique and multiple. Simple

specifies that the container will store only keys while pair means that the container

will store pairs of keys and values. Sorted guarantees that the internal organiza-

tion allows logarithmic time implementations for insert, delete and find operations,

while hashed containers guarantee asymptotic constant time for these operations.

In addition, traversing the data of a sorted associative container from begin to end

guarantees that the elements are traversed in sorted order. Unique guarantees that

all data elements have unique keys, while multi allows for duplicate keys. Each of

these concepts specifies properties and interfaces, e.g., simple associative pContainer

methods have keys in the interface (e.g., sets), while pair associative pContainers

have methods with both keys and values (e.g., maps), hashed and sorted associa-

tive pContainers specify complexity requirements, and single or multi specify the

semantics of the operations.

Based on this taxonomy, stapl provides six associative pContainers that are

compositions of the basic concepts (see Figure 57(b)): pSet (simple, sorted, unique),

pMap (pair, sorted, unique), pMultiSet (simple, sorted, multiple), pMultiMap (pair,

sorted, multiple), pHashMap (pair, hashed, unique), and pHashSet (simple, hashed,

∗Part of the data reported in this chapter is reprinted with the kind permission of
Springer Science+Business Media from “Associative parallel containers in STAPL,”
by G. Tanase, C. Raman, M. Bianco, N. M. Amato, and L. Rauchwerger, 2008.
Lecture Notes in Computer Science, vol. 5234, pp. 156–171, Copyright 2008 by
Springer.

174

p_container_base

p_container_dynamic

p_container_associative

(a)

Associative
pContainer Base

Simple
Associative
pContainer

Pair
Associative
pContainer

Unique
Associative
pContainer

Multiple
Associative
pContainer

Sorted
Associative
pContainer

Hashed
Associative
pContainer

pMap pHashMap...

(b)

Fig. 57. Associative pContainer: (a) derivation from the framework base classes (b)

associative pContainers internal hierarchy.

unique).

A. Associative pContainer Specification

The template declarations for the six stapl associative pContainers are:

template <class Key , Class Value , class Compare ,
class Par t i t i on=Default , class Tra i t s=Default>

class p map ;
template <class Key , Class Value , class Compare ,

class Par t i t i on=Default , class Tra i t s=Default>
class p multi map ;
template <class Key , class Compare ,

class Par t i t i on=Default , class Tra i t s=Default>
class p s e t ;
template <class Key , class Compare ,

class Par t i t i on=Default , class Tra i t s=Default>
class p mu l t i s e t ;
template <class Key , class Value , class Hash ,

class Par t i t i on=Default , class Tra i t s=Default>

175

class p hash map ;
template <class Key , class Hash

class Par t i t i on=Default , class Tra i t s=Default>
class p hash s e t ;

The stapl associative pContainers provide the generic specification (data types

and methods) included in table XXVIII. The complexity of all element-wise methods

is O(log(N)) for sorted where N is the pContainer size, and amortized constant time

for hashed.

Table XXVIII.: Associative pContainers interface.

Template Arguments Description

Traits Traits to specify the low level base container
used and distribution features.

Define Type Description

key type the type of the Key

value type the type of the Value (not available for sim-
ple associative)

key compare the type for key comparisons (not available
for hashed)

Method Description

iterator insert(key[,value]) insert the (key,value) pair (no value for
simple associative). Return iterator point-
ing to inserted item.

size t erase(key) Erases all elements with key equal to k. Re-
turn number of erased elements.

iterator find(key) Return an iterator pointing to an element
with key equal to k or end() if no such ele-
ment is found.

void insert async(key[,value]), void
erase async(key)

Non-blocking insert/erase (no value for
simple associative)

key find val(key) blocking operations returning values (in-
stead of iterators).

176

All stl equivalent methods require a return type, which in general translates

into a synchronous (blocking) method. For this reason, we provide a set of asyn-

chronous methods as part of the associative pContainer, e.g., insert async and

erase async. These non-blocking methods allow for better communication/com-

putation overlap and enable the stapl RTS to aggregate messages to reduce the

communication overhead.

We also introduce new associative pContainer methods that return values in-

stead of iterators. These methods are provided because in stapl a remote call will be

issued when an iterator to a remote element is dereferenced. Hence, if a programmer

knows the value will be needed, they should use the method that returns a value

rather than the method that returns an iterator.

B. Associative pContainer Design and Implementation

In this section, we describe the pList modules used for storage and data distribution

information.

bContainer: We have implemented the associative pContainer bContainers

by extending the corresponding sequential container (typically STL containers) with

functionality needed to implement domain instances.

Global Identifier (GID): For a simple associative pContainer the GID asso-

ciated with each element is a key, whereas it is a (key, m) pair for a multi associative

pContainer, where m is an integer used to manage multiplicity

Domain and Domain Instance: The domain of the associative pContainer is

given by the range of possible keys the pContainer can hold. For example, for a pMap

over strings the domain can be the set of all possible strings or the set of all possible

strings between two boundaries according to some order relation (e.g., lexicographical

177

template<class Domain>

class partition{

partition(vector<Domain>&);

//compute the sub-domain

//to which the GID is associated

BCID map(GID);

}

typedef

associative_domain<string,

lexi_compare> Domain;

vector<Domain> doms;

doms.push_back(Domain(’a’..’d’);

doms.push_back(Domain(’d’..’z’);

partition_strategy(doms);

Fig. 58. Value based partition for sorted associative pContainers.

order). At any instant, there is only a finite set of elements in the container. The

GIDs associated with these elements is the domain instance of the pContainer. For

example AssociativeDomain<string>(’a’,’k’) is a domain comprising all strings

that are greater than ’a’ and strictly smaller than ’k’ according to the lexicograph-

ical order. A domain instance corresponding to the previously defined associative

domain might be {’a’, ’aa’, ’abc’, ’joe’}.

Data Distribution: The data distribution manager uses (i) a partition to

decide for every key in the domain to which sub-domain it has been allocated, and (ii)

a partition-mapper to decide to which location each sub-domain has been allocated.

Partition: Associative pContainers are dynamic containers supporting con-

current additions and deletions of elements, thus the corresponding partitions have

to provide functionality to add or delete GIDs to/from the corresponding domain

instance or, e.g., to perform repartitions to ensure load balance. The default parti-

tion implemented by stapl sorted associative pContainers is a static blocked par-

tition over the key space. Users can provide additional partitions for associative

178

pContainers by explicitly enumerating the corresponding sub-domains as illustrated

in Figure 58. For a hashed associative pContainer, the partition can be specified by

providing a hash function that will map a key to a sub-domain ID (e.g., hash(key)

mod num subdomains).

Partition Mapper: Similar to other stapl pContainers associative contain-

ers can use any of the following partition mappers: partition mapper generic,

partition

mapper blocked, partition mapper cyclic or partition mapper identity.

Associative pContainer pViews: pViews are defined as the accessors for the

data elements stored in the pContainer. The pViews over pMap, pMultiMap, and

pHashMap support mutable iterators over data. This allows the value field to be

modified. The others (pSet, pMultiSet, and pHashSet) provide read only pViews

with const iterators.

Associative pContainer Base Class: To automate and standardize the pro-

cess of developing associative pContainers, we designed a common base that is re-

sponsible for maintaining the data and the distribution manager. The associative

pContainer base is generic and uses template parameters and traits classes to tailor

the data structure to the user’s needs. Each basic associative concept (simple, pair,

unique, multi, sorted, hashed) is implemented as a class derived from the associative

pContainer base to provide the specified functionality and enforce the required prop-

erties. Each associative pContainer (e.g., pMap), inherits from three corresponding

classes as depicted in Figure 57(b).

The time for performing the operation on the bContainers is logarithmic or

amortized constant time for sorted and hashed pContainers, respectively. The

memory overhead depends on the partition used. A blocked partition for a sorted

pContainer requires space proportional to the number of sub-domains, while for a

179

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

CRAY XT5: MapReduce Strong Scaling
on Simple English Wikipedia website

MapReduce std
MapReduce tbb

(a) MapReduce Execution Times

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1 2 4 8 16 32 64 128 256 512

S
ca

la
bi

lit
y

(T
1

/ T
P
)

Num Procs

CRAY XT5: MapReduce Strong Scaling
on Simple English Wikipedia website

std hashmap
tbb concurrent hashmap

(b) MapReduce Scalability

Fig. 59. MapReduce used to count the number of occurrences of every word in Simple

English Wikipedia website (1.5GB).

hashed partition the overhead is constant in each location. Different partitions, with

more complex invariants, may incur different computational and memory overheads.

C. Performance Evaluation

In this section, we evaluate the scalability of the parallel methods using a map reduce

application and we evaluate two generic pAlgorithms, p for each and p accumulate.

1. MapReduce

Here we examine the performance of a simple application implemented on top of a

MapReduce framework developed in stapl. The MapReduce uses the pHashMap[64],

a dynamic associative pContainer. The application splits the input data across the

available processors and first applies the map and reduce functions locally. After the

local MapReduce phase is finished, the processor asynchronously inserts its locally

reduced data into a pHashMap. The asynchronous insert calls the user’s reduce func-

180

tion if the key being inserted already exists in the pHashMap. The communication

and data distribution is taken care of entirely by the pContainer. We ran a com-

putation that computes the mutliplicity of each word in a 1.5GB text input of the

Simple-English Wikipedia website (simple.wikipedia.org). Because the input size was

fixed and given, we include a strong scaling study where we measure the time taken

to compute the multiplicity for all input words on CRAY5. In Figure 59 we show

experiments corresponding to two different pHashMap storages, one using the stl

std::hash map and another using the tbb concurrent hash map. We observe that

the application scales well up to 512 processors and there is no noticeable difference

when using different storages. The slowdown on 256 and 512 processors is due to the

small computation performed per processor relative to the communication required

to insert the data into the pHashMap.

2. Generic Algorithms

In this section, we examine the performance of various generic parallel algorithms

operating on a linearization of the associative pContainer’s data. Figure 60 shows

the performance for p for each when operating on a single element pView defined

over the pMap. As we scale the number of processors from 4 to 16384 we observe

good scalability for all three algorithms considered: p for each, p accumulate, and

finding the maximum value in the container.

181

 0

 1

 2

 3

 4

 5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pMap Algorithms Weak Scaling
 20 elements/location

for each
accumulate

max

Fig. 60. CRAY4: Scalability for generic algorithms when using associative

pContainers.

182

CHAPTER XIII

PCONTAINER COMPOSITION EVALUATION

In Chapter V, Section C we introduced the pContainer composition as one of the

main mechanisms for extending our library with custom data structures. We argue

that composition helps increase the programmer productivity. Instead of directly

building a complex pContainer, the programmer can compose one from the basic

pContainers available in the PCF and shorten the development and debug time. For

example, multi-dimensional arrays can be expressed as the composition of pArrays

or pMatrices or a large scale distributed pGraph can be expressed as a pList of

vertices where each vertex stores another pList of edges. In this section, we include

experimental results to study the performance overhead of composed data structures

relative to custom made ones.

For this comparison, we use a simple application that computes the minimum

element in each row of a matrix using a pMatrix pContainer (which is available

in the PCF library), a composed pArray of pArrays, and a composed pList of

pArrays. The algorithm code is the same for all pContainers used, due to the access

abstraction mechanism provided by stapl pViews. It calls a parallel for each on

each row, and within each row, a map-reduce to compute the minimum value. The

code for the algorithm is shown in Figure 61. We measure also the time to create

and initialize the storage. The pMatrix allocates the entire structure in a single step

(Figure 61, line 16), while the pArray of pArrays allocates the outer structure first

(Figure 61, line 14) and subsequently allocates the nested pArrays in parallel using

a parallel for each (Figure 61, line 20). In Figure 61, line 23 a parallel for each is

invoked on a pView defined over the elements of the outer pArray. The functor of

the parallel for each contains a nested pAlgorithm invocation (find minimum) that

183

1 struct r e s i z e i n i t {
2 void operator () (p a r e f& pa view){
3 pa view . r e s i z e (M)
4 p genera te (pview (pa view) , rand ()) ;
5 }}
6
7 struct min row{
8 void operator () (r ow re f& view , r e s r e f& r e s){
9 r e s = p min element (pview (pa view)) ; // nes ted pAlgorithm
10 }}
11
12 main () {
13 //composed parray o f parrays
14 p array<p array<int> > cpa (N) ;
15 //pMatrix
16 p matrix<int> pm(N, M) ;
17 // r e s u l t parray wi th minimum of each row
18 p array<int> r e s u l t (N) ;
19 // r e s i z e each o f the neted parrays
20 p f o r e a ch (pview (cpa) , r e s i z e i n i t n e s t e d (M))
21
22 // c a l l minimum of each row on the composed pArray
23 p f o r e a ch (pview (cpa) , pview (r e s u l t) , min row ()) ;
24
25 // c a l l minimum of each row on the pMatrix
26 p f o r e a ch (row pview (pm) , pview (r e s u l t) , min row ()) ;
27
28 }

Fig. 61. Example of pContainer composition and nested pAlgorithm invocation.

is applied to each of the nested pArrays. In Figure 61, Line 26 the exact code used

for computing the minimum of each nested pArray is used to compute the minimum

of each row of the pMatrix by using appropriate pViews. This time the parallel

for each is invoked over a rows pView defined over pMatrix data and the functor to

be applied to each row contains a nested parallel minimum algorithm. This simple

184

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: Composed pArray versus pMatrix
 Px100M elements

allo and fill pa<pa>
alloc and fill pMatrix

min rows pa<pa>
min row pMatrix

P × 100M

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY: pArray<pArray<>>
 Px100M elements

alloca and fill pa<pa>
alloc and fill plist<pa>

min rows pa<pa>
min rows plist<pa>

P × 100M

(b)

Fig. 62. Comparison of pArray<pArray<>> (pa < pa >), pList<pArray<>>

(plist < pa >) and pMatrix on computing the minimum value for each

row of a matrix. Weak scaling experiment with P × 100M elements. For

the composed pContainer the outer pContainer is of size P and the in-

ner pContainer is of size 100M (a) pArray<pArray<>> versus pMatrix:

pArray<pArray<>> takes longer to initialize while the algorithm execu-

tions are very similar (b) pArray<pArray<>> versus plist<pArray<>>: The

plist<pArray<>> has additional overhead when creating the pViews over its

data

example shows both the benefits of composition and the abstraction power provided

by the pViews that allows users to easily assemble a parallel application.

In Figure 62(a) we include, for CRAY4, the execution times for allocating and

initializing the composed pArray and the pMatrix and the times to run the min-of-

each-row algorithm, in a weak scaling experiment. The input used is a P ×100M ma-

trix where P is the number of processors. In all experimens considered in this section

the nested pArrays store their data on a single location and the nested pAlgorithms

are executed by a single processor. These are preliminary results of the prototype

185

of this mechanism. As expected, the pArray of pArrays allocation and initialization

time is higher than that for a pMatrix. The time for the composed pArray includes

the time of executing a parallel algorithm. The time for min-of-each-row algorithm,

is very similar for the two data structures and scales well up to 16384 processors.

In Figure 62(b) we compare two composed pContainers. The composed pArray

described in the previous paragraph and a composed pList of pArrays. In this

case we observe similar times for the initialization of the data and computing the

minimum for the low processor counts. While increasing the number of processors

both the time for initialization and the time to run the algorithm increase for the

composed pList much faster than the composed pArray. This is mainly due to the

overhead of creating the pView abstractions on top of the pList container. Some of

the overhead in the pView creation is subject to further research.

While we cannot state with certainty that our PCF allows for efficient compo-

sition (no additional overhead) for any combination of pContainers, the presented

experiments indicate it is possible.

186

CHAPTER XIV

CONCLUSION AND FUTURE WORK

In this dissertation, we presented the stapl Parallel Container Framework (PCF), an

infrastructure to facilitate the development of parallel and concurrent data structures.

The salient features of this framework are: (a) a set of classes and rules to build

new pContainers and customize existing ones, (b) mechanisms to generate wrappers

around any sequential or parallel data structure, enabling its use in a distributed,

concurrent environment and their use in cooperation with other libraries, (c) support

for the (recursive) composition of pContainers into nested, hierarchical pContainers

which can support arbitrary degrees of nested parallelism and (d) a library of basic

pContainers constructed using the PCF as initial building blocks. We have shown

how we have implemented a shared object view of the pContainers on distributed

systems in order to relieve the programmer from managing and dealing with the

distribution explicitly, unless so desired. The PCF allows users to customize its

pContainers and adapt to dynamic and irregular environments, e.g., a pContainer

can dynamically change its data distribution or adjust its thread safety policy to

optimize the access pattern of the algorithms accessing the elements. Alternatively,

the user can request certain policies and implementations which can override the

provided defaults or adaptive selections. The PCF is an open ended project where

users can add features as well as to the library and thus continuously improve the

PCF’s performance and utility.

Our experimental results on a very large parallel machine available at NERSC

and a Power 5 cluster at Texas A&M University supercomputing center show that

pContainers provide good scalability for both static and dynamic pContainers.

The pContainer framework we developed enables a large number of new research

187

directions that can be further pursued. First, our research will help users be more

productive while developing new pContainers tuned for specific applications. For

example motion planning [68] applications use a roadmap as their main data structure

which is a natural extension of the graph. Using the PCF researchers in this area

are provided with automatic support for parallelism by deriving the roadmap from

the pGraph pContainer. Other applications such as particle transport use regular or

arbitrary discretizations of the space called grids which can be naturally expressed as

extensions of the pGraph data structure. We envision that for applications like this

and numerous others, deriving data structures from base classes already provided by

a library will be an important boost for user productivity.

Implementing various thread safety policies is another dimension that can be

further exploited in our framework. The framework provides the proper interfaces for

the thread safety manager as described in Chapter VI. Additionally, a set of prede-

fined implementations are available but they have been minimally evaluated due to

current limitations of the stapl runtime system. With multithreading support avail-

able where multiple threads can be active within one locations all this functionality

can be exercised and novel solutions proposed.

We described in Chapter VII the default relaxed memory consistency model pro-

vided by the pContainers developed in our framework. We have chosen the current

model as it provides a good trade off between programmability and performance.

However as mentioned in Chapter VII, Section E, other memory models more re-

strictive or more relaxed are possible. An interesting research direction is to study

alternative models and evaluate their impact on productivity and performance.

pContainer composition as described in Chapter IV, Section C and Chapter

XIII is a novel feature proposed in our framework as a modality to express new data

structures. The composition opens a large number of research directions that require

188

further exploration. These include deciding what is the optimal data distribution at

different levels of the hierarchy, how data can be accessed by nested pAlgorithms

and how composed pViews can be defined on data of a composed pContainer.

Another research dimension that our framework enables is the possibility to

adapt a data structure to specific applications and architectures. We mentioned

throughout this thesis that one of the major design goals of the library is to allow

users to specialize functional modules of a pContainer by implementing well defined

interfaces. Adaptivity will allow a pContainer to select among various modules

with similar functionality. For example, different partitions and distributions may

be available for a particular pContainer and currently the user decides which one to

use. We envision that a pContainer can be augmented with the necessary support

to perform the selection automatically.

In addition to providing users with a very large number of data structures, thus

improving productivity, we believe that stapl and the PCF are flexible infrastruc-

tures allowing researchers to experiments with data structures as a whole or with the

individual functional modules that make up a parallel data structure.

189

REFERENCES

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tuto-

rial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, 1996.

[2] S. V. Adve and H. J. Boehm, “Memory models: A case for rethinking parallel

languages and hardware,” Commun. ACM, vol. 53, no. 8, pp. 90–101, 2010.

[3] S. V. Adve and M. D. Hill, “Weak ordering—a new definition,” In Proc. of the

17th annual Int. Symposium on Computer Architecture, New York, NY, USA,

1990, pp. 2–14.

[4] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,

and L. Rauchwerger, “STAPL: A standard template adaptive parallel C++

library,” In Proc. of the Int. Workshop on Advanced Compiler Technology for

High Performance and Embedded Processors (IWACT), Bucharest, Romania, Jul

2001, pp. 37–46.

[5] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,

and L. Rauchwerger, “STAPL: An adaptive, generic parallel C++ library,” In

Int. Workshop on Languages and Compilers for Parallel Computing, in Lecture

Notes in Computer Science, vol. 2624, pp. 195–210, 2003.

[6] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations and

Advanced Topics, London: McGraw-Hill, 1998.

[7] D. A. Bader and K. Madduri, “Design and implementation of the hpcs graph

analysis benchmark on symmetric multiprocessors,” In The 12th Int. Conf. on

High Performance Computing (HiPC 2005), pp. 465–476. Springer, 2005.

190

[8] G. Bikshandi, J. Guo, C. Praun, G. Tanase, B. B. Fraguela, M. J. Garzaran, D.

Padua, and L. Rauchwerger, “Design and use of htalib: A library for hierarchi-

cally tiled arrays,” In Int. Workshop on Languages and Compilers for Parallel

Computing, in Lecture Notes in Computer Science, vol. 4382, pp. 17–32, 2007.

[9] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B.B. Fraguela, M.J. Garzaran,

D. Padua, C. Praun, “Programming for parallelism and locality with hierarchi-

cally tiled arrays,” In Proc. ACM SIGPLAN Symp. Prin. Prac. Par. Prog., New

York, NY, 2006, pp. 48-57.

[10] G. Blelloch, “NESL: A nested data-parallel language,” Dept. Comp. Sci.,

Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep., CMU-CS-95-170, 1993.

[11] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha,

“Implementation of a portable nested data-parallel language,” In Proc. ACM

SIGPLAN Symp. Prin. Prac. Par. Prog., 1993, pp. 102–111.

[12] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search

engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–117, 1998.

[13] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase, N. Thomas, X. Xu,

M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL pView,” In Int.

Workshop on Languages and Compilers for Parallel Computing, Houston, TX,

2010.

[14] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase, N. Thomas, X. Xu,

M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL pView,” Dept.

Comp. Sci., Texas A&M Univ., College Station, TX, Tech. Rep., TR10-001, July

2010.

191

[15] A. Buss, T. Smith, G. Tanase, N. Thomas, M. Bianco, N. M. Amato, and

L. Rauchwerger, “Design for interoperability in STAPL: pMatrices and linear

algebra algorithms,” In Int. Workshop on Languages and Compilers for Parallel

Computing, in Lecture Notes in Computer Science, vol. 5335, pp. 304–315, July

2008.

[16] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase,

N. Thomas, X. Xu, M. Bianco, N. M. Amato and L. Rauchwerger “STAPL:

Standard template adaptive parallel library,” In Proc. of the 3rd Annual Haifa

Experimental Systems Conf., pp. 1–10, 2010.

[17] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The cascade high productivity

language,” In The Ninth Int. Workshop on High-Level Parallel Programming

Models and Supportive Environments, vol. 26, pp. 52–60, 2004.

[18] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Praun, and V. Sarkar, “X10: An object-oriented approach to non-uniform

cluster computing,” In Proc. of the 20th annual ACM SIGPLAN Conf. on

Object-Oriented Programming, Systems, Languages, and Applications, New York,

NY, 2005, pp. 519–538.

[19] D. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. Eicken,

and K. Yelick, “Parallel programming in Split-C,” In Int. Conf. on Supercom-

puting, November 1993.

[20] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-free dynamically resizable

arrays. In Proc. of OPODIS, Bordeaux, France, 2006, pp. 142–156.

[21] J. Desouza and L. V. Kale, “MSA: Multiphase specifically shared arrays,” In

192

Int. Workshop on Languages and Compilers for Parallel Computing, in Lecture

Notes in Computer Science, vol. 3602, pp. 268–282, 2005.

[22] R. E. Diaconescu and H. P. Zima, “An approach to data distributions in chapel,”

Int. J. of High Performance Computing Applications, vol. 21, no. 3, pp. 313–335,

2007.

[23] M. Dubois, C. Scheurich, and F. Briggs, “Memory access buffering in multipro-

cessors,” In ISCA ’98: 25 years of the Int. Symposium on Computer Architecture,

New York, NY, 1998, pp. 320–328.

[24] H. Gao, J. F. Groote, andW. H. Hesselink. Almost wait-free resizable hashtables.

18th International Parallel and Distributed Processing Symposium, Santa Fe,

New Mexico, 2004.

[25] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, UPC: Distributed Shared-

Memory Programming. Hoboken, NJ: Wiley-Interscience, 2003.

[26] M. Greenwald. Two-handed emulation: how to build non-blocking implemen-

tations of complex data-structures using DCAS. In Proc. of the Twenty-first

Annual Symposium on Principles of Distributed Computing (PODC), Monterey,

Ca, 2002, pp. 260–269.

[27] M. Fomitchev and E. Ruppert, “Lock-free linked lists and skip lists,” In Proc.

Symp. on Princ. of Distributed Programming, New York, NY, 2004, pp. 50–59.

[28] P. Gottschling, D. S. Wise, and M. D. Adams, “Representation-transparent

matrix algorithms with scalable performance,” In Proc. Int. Conf. on Supercom-

puting, Seattle, Washington, 2007, pp. 116–125.

193

[29] D. Gregor and A. Lumsdaine, “Lifting sequential graph algorithms for

distributed-memory parallel computation,” In Proc. of the 20th annual ACM

SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and

Applications, New York, NY, 2005, pp. 423–437.

[30] D. Gregor and A. Lumsdaine, “The parallel BGL: A generic library for dis-

tributed graph computations,” In Proc. of Workshop on Parallel Object-Oriented

Scientific Computing, July 2005.

[31] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,” In

Proc. Int. Conf. Dist. Comput., London, UK, 2001, pp. 300–314.

[32] B. Hendrickson and R. Leland, The Chaco User’s Guide Version 2. Sandia

National Laboratories, Albuquerque NM, 1995.

[33] M. Herlihy, “A methodology for implementing highly concurrent data struc-

tures,” In Proc. of the Second ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, Seattle, Washington, 1990, pp. 197–206.

[34] M. Herlihy, “A methodology for implementing highly concurrent data objects,”

ACM Trans. Prog. Lang. Sys., vol. 15, no. 5, pp. 745–770, 1993.

[35] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San Fran-

cisco, CA: Morgan Kaufmann Publishers Inc., 2008.

[36] Intel. Reference Manual for Intel Threading Building Blocks, version 1.13. Intel

Corp., Santa Clara, CA, 2009.

[37] Intel. Reference Manual for Intel Threading Building Blocks, version 1.0. Intel

Corp., Santa Clara, CA, 2006.

194

[38] J. JàJà, An Introduction Parallel Algorithms. Reading, MA: Addison–Wesley,

1992.

[39] E. Johnson, “Support for Parallel Generic Programming”. PhD thesis, Indiana

University, Indianapolis, 1998.

[40] E. Johnson and D. Gannon, “HPC++: Experiments with the parallel standard

template library,” In Proc. Int. Conf. on Supercomputing, Vienna, Austria, 1997,

pp. 124–131.

[41] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object ori-

ented system based on C++,” SIGPLAN Not., vol. 28, no. 10, pp. 91–108,

1993.

[42] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irregular

graphs,” J. of Parallel and Distributed Computing, vol. 48, no. 1, pp. 96-129,

1998.

[43] H. T. Kung and P. L. Lehman. “Concurrent manipulation of binary search

trees,” ACM Trans. Database Syst., vol. 5, no. 3, pp. 354–382, 1980.

[44] K. Mehlhorn and S. Naher, LEDA: A Platform for Combinatorial and Geometric

Computing. New York: Cambridge University Press, 1999.

[45] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and

optimizations of blocked algorithms,” In Proc. of the fourth Int. Conf. on Archi-

tectural Support for Programming Languages and Operating Systems, New York,

NY, 1991, pp. 63–74.

[46] L. Lamport, “How to make a multiprocessor computer that correctly executes

multiprocess programs,” Computers, IEEE Transactions on, vol. C-28, no. 9,

195

pp. 690 –691, Sep. 1979.

[47] P. L. Lehman and S. B. Yao. “Efficient locking for concurrent operations on

b-trees,” ACM Trans. Database Syst., vol. 6, no. 4, pp. 650–670, 1981.

[48] M. M. Michael, “High performance dynamic lock-free hash tables and list-based

sets,” In Proc. of the Fourteenth Annual ACM Symposium on Parallel Algorithms

and Architectures, Winnipeg, Manitoba, Canada, 2002, pp. 73–82.

[49] D. Musser, G. Derge, and A. Saini, STL Tutorial and Reference Guide, Second

Edition. Reading, MA: Addison–Wesley, 2001.

[50] J. Moreira, V. Salapura, G. Almasi, C. Archer, R. Bellofatto, P. Bergner, R. Bick-

ford, M. Blumrich, J. Brunheroto, A. Bright, M. Brutman, J. Castanos, D. Chen,

P. Coteus, P. Crumley, S. Ellis, T. Engelsiepen, A. Gara, M. Giampapa, T. Good-

ing, S. Hall, R. Haring, R. Haskin, P. Heidelberger, D. Hoenicke, T. Inglett,

G. Kopcsay, D. Lieber, D. Limpert, P. McCarthy, M. Megerian, M. Mundy,

M. Ohmacht, J. Parker, R. Rand, D. Reed, R. Sahoo, A. Sanomiya, R. Shok,

B. Smith, G. Stewart, T. Takken, P. Vranas, B. Wallenfelt, M. Blocksome and

J. Ratterman, “The Blue Gene/L supercomputer: A hardware and software

story,” International Journal of Parallel Programming, vol. 35, no. 3., pp. 181-

206.

[51] W. Pugh, “Concurrent maintenance of skip lists,” Univ. of Maryland at College

Park, Tech. Rep., UMIACS-TR-90-80, 1990.

[52] L. Rauchwerger, F. Arzu, and K. Ouchi “Standard templates adaptive parallel

library (STAPL),” In Wkshp. on Lang. Comp. and Run-time Sys. for Scal.

Comp., in Lecture Notes in Computer Science, vol. 1511, pp. 402–410, 1998.

196

[53] J. W. Reynders, P. J. Hinker, J. C. Cummings, S. R. Atlas, S. Banerjee,

W. F. Humphrey, S. R. Karmesin, K. Keahey, M. Srikant, and M. D. Tholburn,

“POOMA: A framework for scientific simulations of paralllel architectures,” In

Gregory V. Wilson and Paul Lu, editors, Parallel Programming in C++ Cam-

bridge, MA: MIT Press, 1996, pp. 547–588.

[54] S. Saunders and L. Rauchwerger, “Armi: An adaptive, platform independent

communication library,” In Proc. ACM SIGPLAN Symp. Prin. Prac. Par. Prog.,

San Diego, California, 2003, pp. 230–241.

[55] S. Saunders and L. Rauchwerger, “A parallel communication infrastructure for

STAPL,” In Wkshp. on Perf. Opt. for High-Level Languages and Libraries , New

York, NY, Jun 2002.

[56] S. R. Alam, J. A. Kuehn, R. F. Barrett, J. M. Larkin, M. R. Fahey, R. Sankaran,

P. H. Worley, “Cray XT4: An early evaluation for petascale scientific simula-

tion,” In Proc. of Supercomputing, Reno, NV, 2007, pp. 1–12

[57] N. Thomas, S. Saunders, T. Smith, G. Tanase, and L. Rauchwerger “Armi: A

high level communication library for STAPL,” Parallel Processing Letters, vol.

16, no. 2, pp. 261–280, 2006.

[58] S. Saunders, “Object Oriented Abstractions for Communication in Parallel Pro-

grams”. M.S. thesis, Texas A&M University, College Station, 2003.

[59] T. J. Sheffler, “The amelia vector template library,” In G. V. Wilson and P. Lu,

editors, Parallel Programming in C++, Scientific and Engineering Computation

Series, pages 43–90, Cambridge, MA: MIT Press, 1996.

197

[60] J. Siek, L. Lee and A .Lumsdaine, The Boost Graph Library: User Guide and

Reference Manual. Reading, MA: Addison–Wesley, 2001.

[61] J. Siek and A. Lumsdaine, “The matrix template library: Generic components

for high-performance scientific computing,” Computing in Science and Eng., vol.

1, no. 6, pp. 70–78, 1999.

[62] D. Skinner, “Performance monitoring of parallel scientific applications,” Na-

tional Energy Research Scientific Computing Center, Lawrence Berkeley Na-

tional Laboratory, Berkeley, CA, Tech. Rep., LBNL-5503, 2005.

[63] G. Tanase, M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL

pArray,” In Proc. of the 2007 Workshop on Memory Performance (MEDEA),

Brasov, Romania, 2007, pp. 73–80.

[64] G. Tanase, C. Raman, M. Bianco, N. M. Amato, and L. Rauchwerger, “As-

sociative parallel containers in STAPL,” In Int. Workshop on Languages and

Compilers for Parallel Computing, in Lecture Notes in Computer Science, vol.

5234, pp. 156–171, 2008.

[65] G. Tanase, X. Xu, A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith,

N. Thomas, M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL pList,”

In Int. Workshop on Languages and Compilers for Parallel Computing, in Lecture

Notes in Computer Science, vol. 5898, pp. 16–30, 2009.

[66] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Papadopoulos, O. Pearce,

T. Smith, N. Thomas, X. Xu, N. Mourad, J. Vu, M. Bianco, N. M. Amato,

and L. Rauchwerger, “The STAPL pContainer Framework,” In Proc. ACM

SIGPLAN Symp. Prin. Prac. Par. Prog., San Antonio, TX, 2011, to appear.

198

[67] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauch-

werger, “A framework for adaptive algorithm selection in STAPL,” In Proc.

ACM SIGPLAN Symp. Prin. Prac. Par. Prog., Chicago, IL, 2005, pp. 277–288.

[68] S. Thomas, G. Tanase, L. K. Dale, J. M. Moreira, L. Rauchwerger, and N. M.

Amato, “Parallel protein folding with STAPL,” Concurrency and Computation:

Practice and Experience, vol. 17, no. 14, pp. 1643–1656, 2005.

[69] J. D. Valois, “Lock-free linked lists using compare-and-swap,” In Proc. ACM

Symp. on Princ. of Dist. Proc. (PODC), New York, NY, 1995 , pp. 214–222.

[70] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,

P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A high-

performance Java dialect,” In ACM, editor, ACM 1998 Workshop on Java for

High-Performance Network Computing, New York, NY, 1998.

199

VITA

Gabriel Tanase received his Bachelor of Science from the Polytechnic University

of Bucharest, Romania in May 1999. He graduated in the top 5% of his class and his

thesis was titled “Adaptive Parallelism using TupleSpace”. In May, 2000 he received

his Master of Science from the Polytechnic University of Bucharest, Romania. His

Master’s thesis was titled “Parallel Algorithms for STAPL”.

Gabriel Tanase did his Ph.D. studies in the Department of Computer Science

at Texas A&M University working with Dr. Lawrence Rauchwerger and Dr. Nancy

Amato in the Software & Systems Group of the Parasol Lab. His research interests are

in the area of high performance computing, including parallel programming languages

and libraries, parallel algorithms and generic programming. He received his Ph.D. in

computer science from Texas A&M University in December 2010.

More information about Gabriel Tanase’ research and publications may be found

at http://parasol.tamu.edu/people/gabrielt. He may be reached at: Parasol Lab, 301

Harvey R. Bright Bldg, 3112 TAMU, College Station, TX 77843-3112.

The typist for this dissertation was Gabriel Tanase.

