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ABSTRACT

Extremal Fields and Neighboring Optimal Control of Constrained Systems.

(December 2010)

Matthew Wade Harris, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John Valasek

This work provides first and second-order expressions to approximate neighboring

solutions to the m-point boundary value problem. Multi-point problems arise in op-

timal control because of interior constraints or switching dynamics. Many problems

have this form, and so this work fills a void in the study of extremal fields and neigh-

boring optimal control of constrained systems. Only first and second-order terms

are written down, but the approach is systematic and higher order expressions can

be found similarly. The constraints and their parameters define an extremal field

because any solution to the problem must satisfy the constraints. The approach is

to build a Taylor series using constraint differentials, state differentials, and state

variations. The differential is key to these developments, and it is a unifying element

in the optimization of points, optimal control, and neighboring optimal control. The

method is demonstrated on several types of problems including lunar descent, which

has nonlinear dynamics, bounded thrust, and free final time. The control structure

is bang-off-bang, and the method successfully approximates the unknown initial con-

ditions, switch times, and final time. Compared to indirect shooting, computation

time decreases by about three orders of magnitude.
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CHAPTER I

INTRODUCTION

Optimal control theory provides a systematic way to determine the controls so that

a process satisfies all constraints in the most efficient manner. The theory is appli-

cable to many problems in mathematics, physics, and engineering. Application of

optimal control to linear systems is mostly understood because problems that result

have analytical solutions. Application of optimal control to nonlinear systems is less

understood because many problems that result do not have analytical solutions. In

this case, one must resort to numerical methods [1]. Indirect shooting [2] is used in

this work.

Optimal control problems that do not have interior constraints are called uncon-

strained, and they can be solved as two-point boundary value problems. In spite of

their name, these problems still have constraints at the initial and final time. Optimal

control problems that do have interior constraints are called constrained, and they

can be solved as multi-point boundary value problems. In either case, some combina-

tion of analytical and numerical methods can be used to solve the problem. However,

one may also be interested in generating families of solutions or solving neighboring

optimal control problems.

The meaning of an extremal field depends upon the context. Commonly, one

refers to an extremal field as a family of extremal solutions, and it is generally assumed

that the solutions are similar and local to each other. Another definition considers an

extremal field as a family of constraints that define a problem. This work is motivated

This thesis follows the style of Journal of Guidance, Control, and Dynamics.
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by some mixture of the definitions. The goal is to find neighboring solutions to

constrained optimal control problems, but the approach is to compute differentials of

constraints. The differentials form a Taylor series approximation local to a reference

solution. Such an approach is known as neighboring optimal control.

The study of extremal fields and neighboring optimal control is not new. These

topics originated with calculus of variations in the 1600s [3], and modern extensions

followed the development of optimal control theory in the 1960s. One approach

to neighboring optimal control is to solve the accessory optimization problem [4]

whereby one minimizes the second variation subject to constraints linearized about

a reference solution. The result is a first-order approximation. A second approach is

to consider the Euler-Lagrange equations and compute variations about a reference

solution [5]. First-order variations result in a first-order approximation. Second-order

variations result in a second-order approximation, and so on. The two approaches

are fundamentally the same. Choosing one is mostly a matter of personal preference,

however, the second approach more easily permits higher order approximations. Work

in the 1960s focused on unconstrained problems that can be solved as two-point

boundary value problems.

Every real system, however, is subject to constraints. Temperature cannot be

less than absolute zero, mass cannot be negative, thrust cannot be infinite, and so on.

Optimal solutions may or may not encounter the constraints, and the solution can be

made of any number of constrained and unconstrained arcs. Predicting the number

of arcs and switch times is difficult and an area of ongoing research [6–9]. Neighbor-

ing optimal control of constrained systems is still possible under certain restrictions

discussed later. In the late 1960s and 1970s, the accessory optimization approach

was extended to constrained, multi-point boundary value problems [10–12]. In the

1980s, the approach was successfully applied as a guidance scheme for a constrained
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Space Shuttle reentry [13–15]. The work addressed several issues regarding prediction

of switching times, trajectory tracking, and numerical implementation. Neighboring

optimal control as guidance requires storage of the reference solution and state tran-

sition matrices. Large storage requirements and frequent table look-up have made

real-time implementation infeasible for fast systems. Higher order approximations

further increase the burden.

Nonetheless, technology is always improving and higher approximations reduce

truncation error. Research in the early 2000s focused on derivative computation for

two-point boundary value problems. There are at least three methods for comput-

ing derivatives: automatic differentiation [16], differential algebra [17], and complex

differentiation [18]. Algebraic equations, feedback control, and unconstrained opti-

mization are a few applications for these methods [19–21].

To summarize, previous work focused on first and higher order approximations

for unconstrained problems and first-order approximations for constrained problems.

This research develops first and second-order expressions to approximate solutions to

neighboring optimal control problems with constraints. Only first and second-order

terms are written down, but the approach is systematic and higher order terms can

be found similarly. Constraints naturally occur in every real system, and this work

helps fill a void in the study of extremal fields and neighboring optimal control of

constrained systems.

The approach is to find a reference solution, compute differentials of constraints,

and obtain approximate solutions using a Taylor series. This work is based on two

assumptions. First, the reference and neighboring solutions satisfy the strengthened

Legendre-Clebsch condition. Second, the neighboring solutions are optimal in the

same sense as the reference. Extensive use of the differential is made, and it is noted

that the differential serves a unifying role in the optimization of points, optimal
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control, and neighboring optimal control.

Four types of problems are investigated: 1) fixed final time, 2) free final time, 3)

control constrained, and 4) state constrained. These problems include characteristics

common to many optimal control problems such as unknown initial conditions, switch

times, interior jumps, and final time. The method is then demonstrated with the lunar

descent problem, which has nonlinear dynamics, bounded thrust, and free final time.

The problem is one of historical significance and current interest. As stated by Apollo

engineers [22]:

The powered descent and landing on the lunar surface from lunar orbit

is perhaps the most critical phase of the lunar-landing mission. Because

of the large effect of weight upon the booster requirements of the earth

launch and upon the payload delivered to the lunar surface, the weight of

the fuel expended during powered descent and landing must be minimized.

Chapter II introduces fundamental concepts relevant to the research. Chapter III

develops the method to solve neighboring optimal control problems with constraints.

Chapter IV solves the four example problems. Chapter V introduces and solves

the lunar descent problem. Finally, Chapter VI summarizes the results and draws

conclusions.
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CHAPTER II

PRELIMINARIES

A. Differentials

Differentials are critical elements in this research. They provide a convenient way

to write derivatives and build Taylor series for algebraic, differential, and integral

equations [23]. Naturally, they play an important role in the optimization of points,

optimal control, and neighboring optimal control. Necessary conditions are derived

by setting the first differential to zero, and sufficiency is verified by checking the pos-

itiveness of the second differential [24]. Appendix A provides additional information

regarding functions, their derivatives, and the Kronecker product.

1. Differentials of Algebraic Equations

Consider the algebraic equation y = f(x). Let x be the independent variable and let

y be the dependent variable. The total change in y is

∆y = dy + 1
2
d2y + · · · . (2.1)

The differentials of y are

dy = fxdx (2.2)

d2y = fxx(dx · dx) (2.3)

and so on. Note that differentials of independent differentials are zero, i.e., d(dx) =

d2x = 0. It follows that

∆y = fxdx+ 1
2
fxx(dx · dx) + · · · . (2.4)
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2. Differentials of Differential Equations

Consider the first-order, ordinary differential equation

ẋ = f(t, x). (2.5)

The total change in x at a given time is the sum of differentials.

∆x = dx+ 1
2
d2x+ · · · (2.6)

The time-fixed change in x at a given time is the sum of variations.

∆̃x = δx+ 1
2
δ2x+ · · · (2.7)

The differential of a time varying function consists of a variation and a time part.

d(·) = δ(·) +
d

dt
(·)dt (2.8)

Applying the formula gives the differentials of x.

dx = δx+ ẋdt (2.9)

d2x = δ2x+ ẋd2t+ 2δẋdt+ ẍdt2 (2.10)

Variations and differentials are interchangeable with time derivatives. That is,

d

dt
δx = δẋ,

d

dt
dx = dẋ. (2.11)

One can then write expressions for the total and time-fixed changes in ẋ.

∆ẋ = dẋ+ 1
2
d2ẋ+ · · · (2.12)

∆̃ẋ = δẋ+ 1
2
δ2ẋ+ · · · (2.13)

The same goes for higher order time derivatives.
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3. Differentials of Integral Equations

Consider the integral equation

J =

∫ tf

t0

F (t, x) dt. (2.14)

The total change in J is the sum of differentials.

∆J = dJ + 1
2
d2J + · · · (2.15)

The formula for a differential of an integral is given by Leibniz’s rule.

dJ = [Fdt]
tf
t0 +

∫ tf

t0

δF dt (2.16)

Leibniz’s rule is important in optimal control because the performance index is an in-

tegral equation. Fixing the initial time and applying the formula gives the differentials

of J .

dJ = Ffdtf +

∫ tf

t0

δF dt (2.17)

d2J = Ffδ
2dtf + 2(Fx)fδxfδtf + Ḟfδt

2
f +

∫ tf

t0

[Fxδ
2x+ Fxx(δx · δx)] dt (2.18)

B. State Transition Matrix

The state transition matrix relates variational changes at one time to variational

changes at another time. To see this, consider the first-order, ordinary differential

equation

ẋ = f(t, x), x(t0) = x0. (2.19)

Differentiation with respect to the initial states gives

Φ̇(1) = fxΦ
(1), Φ(1)(t0, t0) = I (2.20)
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Φ̇(2) = fxx(Φ
(1) · Φ(1)) + fxΦ

(2), Φ(2)(t0, t0) = 0 (2.21)

where

Φ(1)(t, t0) =
∂x(t)

∂x(t0)
and Φ(2)(t, t0) =

∂2x(t)

∂x(t0)2
(2.22)

are the first and second-order state transition matrices. For convenience, let Φji =

Φ(tj, ti). Integrating the first-order state transition matrix forward in time then gives

Φ
(1)
00 , Φ

(1)
10 , Φ

(1)
20 (2.23)

and so on. These matrices have the following first-order group property.

Φ
(1)
21 = Φ

(1)
20 Φ

(1)
01 (2.24)

= Φ
(1)
20 [Φ

(1)
10 ]−1. (2.25)

Thus, intermediate state transition matrices can be found with a single forward in-

tegration of the state and state transition matrix differential equations. Analogous

group properties do not exist for the higher order state transition matrices. One can

of course append the first-order matrix to the state vector, integrate the augmented

vector, and obtain some group property. This is not a higher-order property, but it

is satisfactory from a computational perspective.

If the initial condition is considered independent, then a time-fixed change at the

initial time has only a first-order part, i.e., ∆̃x0 = δx0. Variations at a later time t1

are

δx1 = Φ
(1)
10 ∆̃x0 (2.26)

δ2x1 = Φ
(2)
10 (∆̃x0 · ∆̃x0) (2.27)
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so that the time-fixed change at t1 is

∆̃x1 = Φ
(1)
10 ∆̃x0 + 1

2
Φ

(2)
10 (∆̃x0 · ∆̃x0) + · · · . (2.28)

Series reversion gives the inverse mapping

∆̃x0 = [Φ
(1)
10 ]−1∆̃x1 − 1

2
Φ

(2)
10 ([Φ

(1)
10 ]−1 · [Φ(1)

10 ]−1)(∆̃x1 · ∆̃x1)− · · · . (2.29)

C. Optimal Control Theory

Optimal control theory provides a systematic way to determine the controls so that a

process satisfies all constraints in the most efficient manner. Optimal control problems

that do not have interior constraints are called unconstrained, and they can be solved

as two-point boundary value problems. In spite of their name, these problems still

have constraints at the initial and final time. Optimal control problems that do have

interior constraints are called constrained, and they can be solved as multi-point

boundary value problems. To begin, consider the following optimal control problem

with constraints. Find the control history u(t) that minimizes the performance index

J = φ(tf , xf ) +

∫ tf

t0

L(t, x, u) dt, tf = free (2.30)

subject to the differential constraints

ẋ = f(t, x, u) (2.31)

interior state and control constraints

S(t, x) ≤ 0 (2.32)

C(t, u) ≤ 0 (2.33)
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and prescribed initial and final conditions

θ(t0, x0) = 0 (2.34)

ψ(tf , xf ) = 0. (2.35)

The state vector is x ∈ Rn; the control vector is u ∈ Rm; the interior state constraint

is S ∈ Rs; the interior control constraint is C ∈ Rr where r ≤ m; the initial point

constraint is θ ∈ Rq where q ≤ n; the final point constraint is ψ ∈ Rp+1 where

p ≤ n; and φ and L are scalars. Note that the initial time is fixed and the final

time is free. Because the states are differentiated variables, they are required to

be continuous. Because the controls are not differentiated variables, they can be

discontinuous. Here, they are assumed to be piecewise continuous, i.e., single-valued

over intervals and possibly double-valued at interior points.

Necessary conditions for optimal control can be found using differentials. It is

convenient to first define the Hamiltonian

H = L(t, x, u) + λ>f(t, x, u) (2.36)

with λ ∈ Rn being a Lagrange multiplier. First-order necessary conditions for the

unconstrained problem are below [24].

ẋ−H>λ = 0 (2.37)

λ̇+H>x = 0 (2.38)

H>u = 0 (2.39)

θ(t0, x0) = 0 (2.40)

θ>x µ+ λ(t0) = 0 (2.41)
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θ>t µ−H(t0) = 0 (2.42)

ψ(tf , xf ) = 0 (2.43)

φ>x + ψ>x ν − λ(tf ) = 0 (2.44)

φ>t + ψ>t ν +H(tf ) = 0 (2.45)

The initial condition Lagrange multiplier is µ ∈ Rq, and the final condition Lagrange

multiplier is ν ∈ Rp+1. Differentiating the Hamiltonian with respect to time along

the optimal path gives

Ḣ = Ht +Huu̇+Hxẋ+Hλλ̇ (2.46)

= Ht. (2.47)

Consequently, the Hamiltonian is constant for time invariant systems. This is espe-

cially useful for single state systems and free time problems. Further, the optimal

control problem is nonsingular if it satisfies the strengthened Legendre-Clebsch con-

dition.

Huu > 0 (2.48)

When interior control constraints are present and active, additional corner con-

ditions exist [24].

H(t+1 ) = H(t−1 ) (2.49)

λ(t+1 ) = λ(t−1 ) (2.50)

The corner time is t1, and the same conditions hold at entry and exit. When interior

state constraints are present and active, additional point and corner conditions exist.



12

For a qth-order state constraint, q point constraints result [24].

Ω1 = S(q−1)(t1, x1) = 0 (2.51)

Ω2 = S(q−2)(t1, x1) = 0 (2.52)

...

Ωq = S(0)(t1, x1) = 0 (2.53)

The corner conditions at an entry time t1 are

H(t+1 ) = H(t−1 ) + Ω>t ζ (2.54)

λ(t+1 ) = λ(t−1 )− Ω>x ζ (2.55)

where ζ ∈ Rq is a Lagrange multiplier. The corner conditions at an exit time t2 are

H(t+2 ) = H(t−2 ) (2.56)

λ(t+2 ) = λ(t−2 ). (2.57)

D. Boundary Value Problem

The necessary conditions for optimal control result in a multi-point boundary value

problem. To motivate the development, consider the m-point problem: determine

the initial conditions z0, times ti, and constants ξi so that the ordinary differential

equations

ż = fi(t, z), i = 0, . . . ,m− 1 (2.58)

satisfy all point constraints

θi(ti, z
−
i , pi) = 0 (2.59)

and corner conditions

z+i = z−i + ξi (2.60)
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for a given set of parameters pi. The shorthand z−i means z(t−i ) and z+i means z(t+i ).

The state vector is z ∈ Rn and it is piecewise continuous. The constants ξi are Rn.

The dimension of each constraint vector θi is free, but all constraints and corner

conditions must sum to mn+m+n−1. The parameters pi may have any dimension,

and they serve the convenient role of resizing or reshaping the constraints.
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CHAPTER III

NEIGHBORING SOLUTIONS

The boundary value problem described by Equations 2.58 through 2.60 can be solved

when the parameters pi are set. If the parameters change, the solution changes. The

goal is to find this relationship. A well known fact in calculus and perturbation theory

is that such a relationship can be approximated using differentials [3, 24–26].

The constraints and their parameters define an extremal field because any so-

lution to the problem must satisfy the constraints. Computing differentials of con-

straints gives the first and second-order relationship between the parameters and the

solution. One can then compute state differentials and variations, substitute into the

constraint differentials, and solve two linear equations for the first and second-order

terms of a Taylor series.

The work is based on two assumptions. First, the reference and neighboring

solutions satisfy the strengthened Legendre-Clebsch condition so that the problem is

nonsingular. Solving the linear equations requires matrix inversion, and this assump-

tion guarantees that the inverse exists. The second assumption is that the neighboring

solutions are optimal in the same sense as the reference. In other words, neighboring

problems must have as many or fewer interior constraints as the reference, and the

form of the interior constraints cannot change. The following sections derive the first

and second-order expressions to approximate neighboring solutions to the m-point

boundary value problem.
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A. Taylor Series

Recall that a solution to the original problem is given by the initial conditions z0,

corner times ti, and constants ξi. A solution to the neighboring problem is given by

z∗0 , t∗i , and ξ∗i where

z∗0 = z0 + ∆z0 (3.1)

t∗i = ti + ∆ti (3.2)

ξ∗i = ξi + ∆ξi. (3.3)

The initial time is fixed so that

∆z0 = dz0 + 1
2
d2z0 + · · · (3.4)

= δz0 + 1
2
δ2z0 + · · · . (3.5)

Similarly,

∆ti = dti + 1
2
d2ti + · · · (3.6)

∆ξi = dξi + 1
2
d2ξi + · · · . (3.7)

A first-order neighboring solution needs δz0, dti, and dξi. A second-order neighboring

solution needs the first-order terms along with δ2z0, d2ti, and d2ξi. The goal of

upcoming sections is to find these terms as functions of the parameters.

B. Constraint Differentials

A solution satisfies the constraints exactly. This means that the total change in the

constraints must be zero.

∆θi = dθi + 1
2
d2θi + · · · = 0 (3.8)
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Setting the differentials to zero gives

dθi = 0, d2θi = 0. (3.9)

Computing the differentials gives the first and second-order relationship between the

solution and the parameters.

dθi = θizdz
−
i + θipdpi + θitdti (3.10)

d2θi = θizz(dz
−
i · dz−i ) + θizd

2z−i + θitt(dti · dti) + θitd
2ti + θipp(dpi · dpi)

+2θizp(dz
−
i · dpi) + 2θizt(dz

−
i · dti) + 2θipt(dpi · dti)

(3.11)

C. State Differentials

The state differentials represent changes in state. Because of discontinuities, one must

distinguish between the “just before” and “just after” state differentials. First-order

differentials at the “just after” time depend on first-order jumps.

dz−i = δz−i + ż−i dti (3.12)

dz+i = δz+i + ż+i dti = dz−i + dξi (3.13)

Second-order differentials at the “just after” time depend on second-order jumps.

d2z−i = δ2z−i + ż−i d2ti + 2δż−i dti + z̈−i dt2i (3.14)

d2z+i = δ2z+i + ż+i d2ti + 2δż+i dti + z̈+i dt2i = d2z−i + d2ξi (3.15)

D. State Variations

Similarly, one must make the time distinction for state variations. The “just before”

variations come by definition of the state transition matrix. The “just after” vari-

ations come by rearranging the state differential equations above. To illustrate the
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procedure, first-order variations at the first two interior times are provided.

δz−1 = Φ
(1)
10 δz0 (3.16)

δz+1 = Φ
(1)
10 δz0 + (ż−1 − ż+1 )dt1 + dξ1 (3.17)

δz−2 = Φ
(1)
21 Φ

(1)
10 δz0 + Φ

(1)
21 (ż−1 − ż+1 )dt1 + Φ

(1)
21 dξ1 (3.18)

δz+2 = Φ
(1)
21 Φ

(1)
10 δz0 + Φ

(1)
21 (ż−1 − ż+1 ) + (ż−2 − ż+2 )dt1 + Φ

(1)
21 dξ1 + dξ2 (3.19)

The general series expressions for first-order state variations are

δz−i = Φ
(1)
i0 δz0 +

i−1∑
j=1

Φ
(1)
ij (ż−j − ż+j )dtj +

i−1∑
j=1

Φ
(1)
ij dξj (3.20)

δz+i = Φ
(1)
i0 δz0 +

i∑
j=1

Φ
(1)
ij (ż−j − ż+j )dtj +

i∑
j=1

Φ
(1)
ij dξj (3.21)

= δz−i + (ż−i − ż+i )dti + dξi. (3.22)

The general series expressions for second-order state variations are

δ2z−i = Φ
(1)
i0 δ

2z0 +
i−1∑
j=1

Φ
(1)
ij (ż−j − ż+j )d2tj +

i−1∑
j=1

Φ
(1)
ij d2ξj

+
i−1∑
j=0

Φ
(1)
i(j+1)Φ

(2)
(j+1)j(δz

+
j · δz+j ) + 2

i−1∑
j=1

Φ
(1)
ij (δż−j − δż+j )dtj (3.23)

+
i−1∑
j=1

Φ
(1)
ij (z̈−j − z̈+j )dt2j

δ2z+i = Φ
(1)
i0 δ

2z0 +
i∑

j=1

Φ
(1)
ij (ż−j − ż+j )d2tj +

i∑
j=1

Φ
(1)
ij d2ξj

+
i−1∑
j=0

Φ
(1)
i(j+1)Φ

(2)
(j+1)j(δz

+
j · δz+j ) + 2

i∑
j=1

Φ
(1)
ij (δż−j − δż+j )dtj (3.24)

+
i∑

j=1

Φ
(1)
ij (z̈−j − z̈+j )dt2j

= δ2z−i + (ż−i − ż+i )d2ti + d2ξi + 2(δż−i − δż+i )dti + (z̈−i − z̈+i )dt2i (3.25)



18

Summations that have upper limits less than lower limits are defined to be zero.

E. Solution Procedure

The neighboring solution can now be found. 1) Substitute the state variations into the

state differentials. 2) Substitute the state differentials into the constraint differentials.

3) Solve the first-order constraint differential for δz0, dti, and dξi. 4) Solve the

second-order constraint differential for δ2z0, d2ti, and d2ξi. 5) Substitute these values

into the Taylor series. This approach provides first and second-order expressions to

approximate neighboring solutions to the m-point boundary value problem.
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CHAPTER IV

NUMERICAL EXAMPLES

Four types of problems are investigated: 1) fixed final time, 2) free final time, 3)

control constrained, and 4) state constrained. These problems include characteris-

tics common to many optimal control problems such as unknown initial conditions,

switch times, interior jumps, and final time. The problems are presented in order

of increasing difficulty, however, difficulties arise only in finding a reference solution.

Once a solution is known, computing neighboring solutions is systematic.

In each problem, four neighboring solutions are found. The first two, denoted a

and b, lie on one side of the reference. The third and fourth, denoted c and d, lie

on the other side of the reference. In each case, an exact solution is calculated using

an indirect method for illustration purposes and error analysis. Exact solutions are

denoted by solid curves, and approximate solutions are denoted by circle markers.

The approximation has “graphing accuracy” when the circles lie on the solid curves,

and this qualitatively suggests that the approach is successful. Figures show exact

solutions and second-order approximations. Tables provide errors for first and second-

order approximations.

Neighboring solutions arise because of changes in parameters, and so parameters

are embedded in the problem wherever a change is desired. Parameters, p, are zero in

the original problem and take on different values for each neighboring solution. Over-

barred symbols are set for the original problem and do not change for neighboring

problems. As an example, let the family of initial conditions be x0 = {3, 4, 5, 6, 7}.

Then x0 = x̄0 + px0 with x̄0 = 5 and px0 = {−2,−1, 0, 1, 2}. Similar constructs are

made for final conditions, control bounds, and state bounds.
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A. Fixed Final Time Problem

Consider the following optimal control problem with fixed final time [21]. Minimize

J [u] =
1

2

∫ 5

0

(
x2 + v2 + u2

)
dt (4.1)

subject to

ẋ = v, x0 = x̄0 + px0 (4.2)

v̇ = u, v0 = v̄0 + pv0 (4.3)

x2f + v2f = (ᾱ + pαf
)2. (4.4)

The initial conditions require that the states begin at specified points. The final

condition requires that the states terminate on a circle. There are no interior control

or state constraints, and so the controls and states are unbounded. The Hamiltonian

is

H = 1
2
(x2 + v2 + u2) + λxv + λvu. (4.5)

Along with the state equations, the Euler-Lagrange equations are

λ̇x = 0, λ̇v = −λx, u = −λv. (4.6)

The constraints that define the extremal field are

θ0 =

x0 − x̄0 − px0
v0 − v̄0 − pv0

 , θf =

x2f + v2f − (ᾱ + pαf
)2

λxfvf − λvfxf

 . (4.7)
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Conditions for the original problem and parameters for the neighboring problems are

in Tables 1 and 2.

Table 1. Reference conditions for the fixed final time problem.

x̄0 v̄0 ᾱ

4 4 2

Table 2. Parameters for the fixed final time problem.

Case px0 pv0 pαf

a 1.0 1.0 0.5

b 0.5 0.5 0.25

c -0.5 -0.5 -0.25

d -1.0 -1.0 -0.5
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Figures 1 and 2 show the state trajectories and control histories.
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Figure 1. State trajectories for the fixed final time problem.
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Figure 2. Control histories for the fixed final time problem.
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Tables 3 and 4 show absolute errors in the unknown initial conditions.

Table 3. First-order errors for the fixed final time problem.

Case λx0 λv0

a 2.7× 10−8 4.6× 10−9

b 1.3× 10−8 2.3× 10−9

c 1.3× 10−8 2.3× 10−9

d 2.7× 10−8 4.6× 10−9

Table 4. Second-order errors for the fixed final time problem.

Case λx0 λv0

a 2.7× 10−8 4.6× 10−9

b 1.3× 10−8 2.3× 10−9

c 1.3× 10−8 2.3× 10−9

d 2.7× 10−8 4.6× 10−9

Although not apparent from the tables, the second-order terms do affect the approx-

imation. Their contribution does not appear within the two decimals shown.
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B. Free Final Time Problem

Consider the following free-time optimal control problem. Minimize

J [u] =
1

2

∫ tf

0

(
x2 + v2 + u2

)
dt, tf = free (4.8)

subject to

ẋ = v, x0 = x̄0 + px0 (4.9)

v̇ = u, v0 = v̄0 + pv0 (4.10)

x2f + v2f = (ᾱ + pαf
)2. (4.11)

The initial conditions require that the states begin at specified points. The final

condition requires that the states terminate on a circle in an optimal time. As evident

in the last example, there is more than one way for the states to contact the final

constraint. In fact, there are infinitely many solutions that terminate on the circle.

The cost function monotonically increases with time, and so the optimal solution is

the one that takes the least time. There are no interior control or state constraints,

and so the controls and states are unbounded. The Hamiltonian is

H = 1
2
(x2 + v2 + u2) + λxv + λvu. (4.12)

Along with the state equations, the Euler-Lagrange equations are

λ̇x = 0, λ̇v = −λx, ḣ = H, u = −λv. (4.13)

The constraints that define the extremal field are

θ0 =


x0 − x̄0 − px0

v0 − v̄0 − pv0

h0

 , θf =


x2f + v2f − (ᾱ + pαf

)2

λxfvf − λvfxf

hf

 . (4.14)
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Conditions for the original problem and parameters for the neighboring problems are

in Tables 5 and 6.

Table 5. Reference conditions for the free final time problem.

x̄0 v̄0 ᾱ

4 4 2

Table 6. Parameters for the free final time problem.

Case px0 pv0 pαf

a 0.5 0.5 -0.3

b 0.25 0.25 -0.15

c -0.25 -0.25 0.15

d -0.5 -0.5 0.3
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Figures 3 and 4 show the state trajectories and control histories.
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Figure 3. State trajectories for the free final time problem.
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Figure 4. Control histories for the free final time problem.
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Tables 7 and 8 show absolute errors in the unknown initial conditions and final time.

Table 7. First-order errors for the free final time problem.

Case λx0 λv0 tf

a 2.0× 10−2 7.3× 10−3 1.2× 10−2

b 5.8× 10−3 2.1× 10−3 3.6× 10−3

c 8.3× 10−3 3.0× 10−3 4.9× 10−3

d 4.2× 10−2 1.5× 10−2 2.3× 10−2

Table 8. Second-order errors for the free final time problem.

Case λx0 λv0 tf

a 7.3× 10−3 2.7× 10−3 4.7× 10−3

b 1.0× 10−3 4.0× 10−4 6.0× 10−4

c 1.5× 10−3 5.0× 10−4 7.0× 10−4

d 1.4× 10−2 5.2× 10−3 6.5× 10−3
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C. Control Constrained Problem

Consider the following optimal control problem with control constraints [27]. Mini-

mize

J [u] =

∫ 35

0

|u| dt (4.15)

subject to

ẋ = v, x0 = x̄0 + px0 , xf = x̄f + pxf (4.16)

v̇ = u, v0 = v̄0 + pv0 , vf = v̄f + pvf (4.17)

|u| ≤ c̄+ pc. (4.18)

The initial conditions require that the states begin at specified points, and the final

conditions require that the states terminate at specified points. There is an inte-

rior control constraint, and so the control magnitude is bounded while the states are

unbounded. One might expect a solution with any number of constrained and uncon-

strained arcs, but because the differential constraints are linear, one can show that

there are at most three arcs [27]. In other words, the solution is bang-off-bang. The

Hamiltonian is

H = |u|+ λxv + λvu. (4.19)

Along with the state equations, the Euler-Lagrange equations are

λ̇x = 0, λ̇v = −λx, u = {umin, 0, umax}. (4.20)

The constraints that define the extremal field at the initial and final times are

θ0 =

x0 − x̄0 − px0
v0 − v̄0 − pv0

 , θf =

xf − x̄f − pxf
vf − v̄f − pvf

 . (4.21)
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The constraints at interior times are

θ1 =

[
λv1

]
, θ2 =

[
λv2

]
. (4.22)

Conditions for the original problem and parameters for the neighboring problems are

in Tables 9 and 10.

Table 9. Reference conditions for the control constrained problem.

x̄0 v̄0 x̄f v̄f c̄

10 10 2 2 1

Table 10. Parameters for the control constrained problem.

Case px0 pv0 pxf pvf pc

a 1.0 -1.0 0.1 0.1 -0.12

b 0.5 -0.5 0.05 0.05 -0.06

c -0.5 0.5 -0.05 -0.05 0.06

d -1.0 1.0 -0.1 -0.1 0.12
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Figures 5 and 6 show the state trajectories and control histories.
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Figure 5. State trajectories for the control constrained problem.
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Figure 6. Control histories for the control constrained problem.
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Tables 11 and 12 show absolute errors in the unknown initial conditions and switch

times.

Table 11. First-order errors for the control constrained problem.

Case λx0 λv0 t1 t2

a 1.3× 10−3 2.7× 10−2 1.1× 10−1 1.3× 10−1

b 2.8× 10−3 5.8× 10−3 2.5× 10−2 3.0× 10−2

c 2.2× 10−3 4.6× 10−3 2.1× 10−2 2.5× 10−2

d 7.9× 10−4 1.6× 10−2 7.8× 10−2 9.3× 10−2

Table 12. Second-order errors for the control constrained problem.

Case λx0 λv0 t1 t2

a 3.2× 10−4 6.7× 10−3 1.9× 10−2 2.1× 10−2

b 3.4× 10−5 7.2× 10−4 2.1× 10−3 2.4× 10−3

c 2.7× 10−5 5.6× 10−4 1.8× 10−3 2.0× 10−3

d 1.9× 10−4 4.0× 10−3 1.3× 10−2 1.5× 10−2
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D. State Constrained Problem

Consider the following optimal control problem with state constraints [28]. Minimize

J [u] =
1

2

∫ 1

0

u2 dt (4.23)

subject to

ẋ = v, x0 = x̄0, xf = x̄f (4.24)

v̇ = u, v0 = v̄0, vf = v̄f (4.25)

|x1| ≤ c̄+ pc. (4.26)

The initial conditions require that the states begin at specified points, and the final

conditions require that the states terminate at specified points. There is an interior

state constraint. This reduces to a control constraint and additional point constraints

at entrance times. The Hamiltonian and Lagrange multipliers can jump at any en-

trance time. The Hamiltonian is

H = 1
2
u2 + λxv + λvu. (4.27)

Along with the state equations, the Euler-Lagrange equations are

λ̇x = 0, λ̇v = −λx, u = {−λv, 0, −λv}. (4.28)

The constraints that define the extremal field at the initial and final times are

θ0 =

x0 − x̄0
v0 − v̄0

 , θf =

xf − x̄f
vf − v̄f

 . (4.29)
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The constraints at interior times are

θ1 =


x1 − c̄− pc

v1 − 0

λv1 − 0

 , θ2 =

[
λv2

]
. (4.30)

Conditions for the original problem and parameters for the neighboring problems are

in Tables 13 and 14. Note that only the state constraint varies.

Table 13. Reference conditions for the state constrained problem.

x̄0 v̄0 x̄f v̄f c̄

0 1 0 -1 .1

Table 14. Parameters for the state constrained problem.

Case pc

a -0.01

b -0.005

c 0.005

d 0.01
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Figures 7 and 8 show the state trajectories and control histories.
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Figure 7. State trajectories for the state constrained problem.
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Figure 8. Control histories for the state constrained problem.
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Tables 15 and 16 show absolute errors in the unknown initial conditions, switch times,

and jumps.

Table 15. First-order errors for the state constrained problem.

Case λx0 λv0 ξλx ξλv t1 t2

a 7.7× 10−1 7.4× 10−2 1.5× 100 6.2× 10−1 0 0

b 1.8× 10−1 1.8× 10−2 3.6× 10−1 1.4× 10−1 0 0

c 1.6× 10−1 1.6× 10−2 3.1× 10−1 1.2× 10−1 0 0

d 5.9× 10−1 6.1× 10−2 1.2× 100 4.7× 10−1 0 0

Table 16. Second-order errors for the state constrained problem.

Case λx0 λv0 ξλx ξλv t1 t2

a 1.0× 10−1 7.4× 10−3 2.0× 10−1 8.7× 10−2 0 0

b 1.2× 10−2 8.7× 10−4 2.4× 10−2 1.0× 10−2 0 0

c 1.0× 10−2 7.9× 10−4 2.1× 10−2 8.9× 10−3 0 0

d 7.9× 10−2 6.1× 10−3 1.6× 10−1 6.7× 10−2 0 0

E. Discussion

Four types of problems are solved, and neighboring solutions are computed for each.

Figures show “graphing accuracy”, but a conclusive statement about errors cannot

be made. The fixed time problem has errors around 1×10−8, and second-order terms

are negligible. Letting the final time be free increases the error to about 1 × 10−3,

and second-order terms improve the approximation by an order of magnitude. The

significant increase in error is caused by additional nonlinear equations needed to
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solve for the final time. The presence of interior constraints increases the error to

about 1 × 10−1. Again, second-order terms improve the approximation by an order

of magnitude.
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CHAPTER V

LUNAR DESCENT

The lunar descent problem is well studied [22, 29–36]. In short, the descent mission

begins in a circular parking orbit around the moon. An impulsive burn lowers the orbit

and subsequent phases null velocity to prepare for landing. Within a few kilometers

of the landing site, the vehicle can retarget to avoid craters and uneven surfaces. A

successful landing is defined as one where the vehicle arrives at the landing site with

zero velocity and vertical pitch angle.

Mass is an important factor and so the goal is to land successfully and minimize

fuel usage. Unfortunately, fuel minimal solutions have at least a few undesirable

properties. Mainly, they pass through the moon and do not have vertical pitch angles

at the final time. An alternative is to penalize fuel usage and flight time. The time

penalty keeps the vehicle away from the surface until the final moments, and the final

pitch angle is near vertical. The thrust magnitude is bounded, and consequently, the

optimal solution is bang-off-bang.

This work focuses on the last few kilometers where the vehicle retargets to new

landing sites. A reference solution is calculated using indirect shooting, and neigh-

boring solutions are found for a variety of initial states, landing sites, and thrust

magnitudes. The lunar gravitational parameter is µ = 4, 902.8 km3/s2 and the lunar

radius is R = 1, 737.4 km. Normalized units are used for computations.

Table 17. Normalized units for lunar descent.

DU TU MU

1,737.4 km 500 s 9,000 kg
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A. Problem Statement

Consider the following optimal control problem. Minimize

J [T, ψ] = −mf +

∫ tf

0

1 dt, tf = free (5.1)

subject to the differential constraints

ṙ = v, v̇ =
T

m
sinψ − µ

r2
+ rω2 (5.2)

φ̇ = ω, ω̇ = − T

mr
cosψ − 2

vω

r
(5.3)

ṁ = −T/C (5.4)

interior state and control constraints

r ≥ R (5.5)

0 ≤ T ≤ T̄ + pT (5.6)

and initial and final conditions

r0 = r̄0 + pr0 , rf = R (5.7)

v0 = v̄0 + pv0 , vf = 0 (5.8)

φ0 = 0, φf = φ̄f + pφf (5.9)

ω0 = ω̄0, ωf = 0 (5.10)

m0 = m̄0, mf = free. (5.11)

The radius is r such that the altitude is h = r − R. The radial velocity is v. The

central angle is φ such that the projected range is d = Rφ. The central angle rate

is ω such that the range rate is w = rω. The two control variables are the thrust T

and the thrust angle ψ. All of the states are constrained at the initial and final times
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except mass which is to be optimized. Time is also free for optimization. The interior

control constraint is active and causes the thrust to alternate between its maximum

and minimum value, i.e., the thrust is bang-off-bang. The Hamiltonian is

H = 1 + λrv + λv

(
T

m
sinψ − µ

r2
+ rω2

)
+ λφω − λω

(
T

mr
cosψ + 2

vω

r

)
− λm

T

C
.

(5.12)

Along with the state equations, the Euler-Lagrange equations are

λ̇r = −2λv
µ

r3
− λvω2 − λω

T

mr2
cosψ − 2λω

vω

r2
, λ̇v = −λr + 2λω

ω

r
(5.13)

λ̇φ = 0, λ̇ω = −2λvrω − λφ + 2λω
v

r
(5.14)

λ̇m = λv
T

m2
sinψ − λω

T

rm2
cosψ, ḣ = H (5.15)

where

sinψ = − rλv√
r2λ2v + λ2ω

, cosψ =
λω√

r2λ2v + λ2ω
. (5.16)

The constraints that define the extremal field at the initial and final times are

θ0 =



r0 − r̄0 − pr0

v0 − v̄0 − pv0

φ

ω0 − ω̄0

m0 − m̄0

h0


, θf =



rf −R

vf

φf − φ̄f − pφf

ωf

λmf
+ 1

hf


. (5.17)

The constraints at interior times are

θ1 =

[
h1

]
, θ2 =

[
h2

]
. (5.18)
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Conditions for the original problem and parameters for the neighboring problems are

in Tables 18 and 19.

Table 18. Reference conditions for lunar descent.

T̄ C h̄0 v̄0 w̄0 m̄0 d̄f

45 kN 3.5 km/s 2 km -45 m/s 45 m/s 9,000 kg 1.5 km

Table 19. Parameters for lunar descent.

pT pr0 pv0 pdf

Case (N) (m) (m/s) (m)

a -500 -250 5 -250

b -250 -125 2.5 -125

c 250 125 -2.5 125

d 500 250 -5 250

The parameters change the thrust magnitude, initial altitude, initial altitude rate,

and final downrange distance.
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B. Results

Figure 9 shows altitude as a function of range. Each trajectory begins at a different

altitude and ends at a different range.
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Figure 9. Altitude for lunar descent.

Figure 10 shows thrust as a function of time. Each thrust profile has the same bang-

off-bang sequence, but the maximum allowable thrust is different for each case. The

switch times and final times are approximated. Figure 11 shows thrust angle as a

function of time. The thrust angle is continuous and ends so that the vehicle is nearly

vertical.
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Figure 10. Thrust for lunar descent.
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Figure 11. Thrust angle for lunar descent.
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Tables 20 and 21 show the first-order, absolute errors in the unknown initial costates,

switching times, and final time.

Table 20. First-order Lagrange multiplier errors for lunar descent.

Case λr0 λv0 λφ0 λω0 λm0

a 1.9× 10−1 1.3× 10−2 5.1× 10−1 2.1× 10−2 1.1× 10−3

b 5.2× 10−3 4.5× 10−3 4.0× 10−2 1.1× 10−2 5.0× 10−4

c 1.4× 10−1 1.7× 10−3 1.8× 10−1 2.6× 10−3 3.8× 10−4

d 3.6× 10−1 2.7× 10−3 3.2× 10−1 1.6× 10−2 5.9× 10−4

Table 21. First-order time errors for lunar descent.

Case t1 t2 tf

a 3.3× 10−2 3.6× 10−1 1.6× 10−1

b 1.3× 10−2 1.4× 10−1 8.8× 10−2

c 5.0× 10−2 4.4× 10−2 1.2× 10−1

d 1.2× 10−1 3.8× 10−2 2.8× 10−1
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Tables 22 and 23 show the second-order, absolute errors in the unknown initial

costates, switching times, and final time.

Table 22. Second-order Lagrange multiplier errors for lunar descent.

Case λr0 λv0 λφ0 λω0 λm0

a 9.7× 10−2 6.4× 10−2 2.0× 10−1 2.6× 10−3 7.4× 10−4

b 6.8× 10−2 2.9× 10−3 3.8× 10−2 4.6× 10−3 4.1× 10−4

c 7.1× 10−2 3.6× 10−3 1.0× 10−1 8.6× 10−3 4.6× 10−4

d 7.1× 10−2 9.2× 10−3 6.6× 10−3 7.6× 10−3 9.1× 10−4

Table 23. Second-order time errors for lunar descent.

Case t1 t2 tf

a 3.9× 10−2 1.3× 10−1 2.2× 10−1

b 3.1× 10−2 8.1× 10−2 1.0× 10−1

c 3.3× 10−2 1.0× 10−1 1.0× 10−1

d 4.5× 10−2 1.9× 10−1 2.2× 10−1



45

Table 24 shows computation times for exact and approximate solutions. All calcu-

lations are done in MATLAB on an eMachines ET1810-01 running Ubuntu Linux

10.04. Exact solutions are calculated using indirect shooting. Computation times for

the approximate solutions are significantly less because the method is non-iterative

and requires only algebraic operations.

Table 24. Computation times for lunar descent.

Exact Approximate

Case (s) (s)

a 2.7 2.0× 10−2

b 2.0 8.0× 10−3

c 2.0 2.5× 10−4

d 2.4 2.4× 10−4

C. Discussion

Neighboring solutions are computed for the lunar descent problem, which has nonlin-

ear dynamics, bounded thrust, and free final time. A reference solution is calculated

using indirect shooting and neighboring solutions are found for a variety of initial

states, landing sites, and thrust magnitudes. Second-order terms do not significantly

reduce errors. If first-order errors are satisfactory, higher order terms are unneces-

sary. If ample computing power is available, higher order terms can reduce error.

Compared to indirect shooting, computation time decreases by about three orders of

magnitude.
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CHAPTER VI

CONCLUSIONS

This work provides first and second-order expressions to approximate neighboring

solutions to the m-point boundary value problem. Multi-point problems arise in

optimal control because of interior constraints or switching dynamics. Many problems

have this form, and so this work fills a void in the study of extremal fields and

neighboring optimal control of constrained systems. Only first and second-order terms

are written down, but the approach is systematic and higher order expressions can

be found similarly.

The constraints and their parameters define an extremal field because any so-

lution to the problem must satisfy the constraints. Computing differentials of con-

straints gives the first and second-order relationship between the parameters and the

solution. One can then compute state differentials and variations, substitute into the

constraint differentials, and solve two linear equations for the first and second-order

terms of a Taylor series. The differential is key to these developments, and it is a uni-

fying element in the optimization of points, optimal control, and neighboring optimal

control.

Four types of problems are worked to illustrate the method: 1) fixed final time,

2) free final time, 3) control constrained, and 4) state constrained. These problems

include characteristics common to many optimal control problems such as unknown

initial conditions, switch times, interior jumps, and final time. Figures show “graph-

ing accuracy”, but a conclusive statement about errors cannot be made. Results

are problem specific and depend on the nonlinearity of the system, magnitude of

perturbations, and order of approximation.
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The method is demonstrated on the lunar descent problem, which has nonlinear

dynamics, bounded thrust, and free final time. The control structure is bang-off-

bang, and the method approximates the unknown initial conditions, switch times,

and final time. Compared to indirect shooting, computation time decreases by about

three orders of magnitude. Computational improvements are expected because the

strengthened Legendre-Clebsch condition guarantees that the Jacobian is full rank,

and the method is non-iterative.

Applications outside of extremal fields and neighboring optimal control include

feedback control and guidance. Both give control commands in real-time based on

state feedback. If a reference solution is known this method is feasible because of the

small computation time.
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APPENDIX A

DERIVATIVES OF FUNCTIONS

Consider the multi-valued vector function f : Rn → Rm. In matrix notation,

f(x) =



f 1

f 2

...

fm


. (A.1)

The first derivative is

fx(x) =


f 1
x1
· · · f 1

xn

...
. . .

...

fmx1 · · · fmxn

 . (A.2)

The second derivative is

fxx(x) =


f 1
x1x1

f 1
x1x2

· · · f 1
x2x1

f 1
x2x2

· · · f 1
xnxn

...
...

. . .
...

...
. . .

...

fmx1x1 fmx1x2 · · · fmx2x1 fmx2x2 · · · fmxnxn

 . (A.3)

Higher derivatives follow similarly. A Taylor series for the change in f is then

∆f = fxdx+ 1
2
fxx(dx · dx) + · · · (A.4)

where dx is a differential and the dot operator is a Kronecker product.
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APPENDIX B

ADDITIONAL FIGURES
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Figure 12. Mass for lunar descent.
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Figure 13. Altitude rate for lunar descent.
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Figure 14. Range rate for lunar descent.
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