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ABSTRACT 

 

Immersed Boundary Methods in the Lattice Boltzmann Equation for Flow Simulation. 

(December 2010) 

Shin Kyu Kang, B.S.; M.S., Seoul National University, South Korea 

Chair of Advisory Committee: Dr. Yassin A. Hassan 

 

In this dissertation, we explore direct-forcing immersed boundary methods (IBM) under 

the framework of the lattice Boltzmann method (LBM), which is called the direct-

forcing immersed boundary-lattice Boltzmann method (IB-LBM).  

First, we derive the direct-forcing formula based on the split-forcing lattice 

Boltzmann equation, which recovers the Navier-Stokes equation with second-order 

accuracy and enables us to develop a simple and accurate formula due to its kinetic 

nature. Then, we assess the various interface schemes under the derived direct-forcing 

formula. We consider not only diffuse interface schemes but also a sharp interface 

scheme. All tested schemes show a second-order overall accuracy. In the simulation of 

stationary complex boundary flows, we can observe that the sharper the interface scheme 

is, the more accurate the results are.  

The interface schemes are also applied to moving boundary problems. The sharp 

interface scheme shows better accuracy than the diffuse interface schemes but generates 

spurious oscillation in the boundary forcing terms due to the discontinuous change of 

nodes for the interpolation. In contrast, the diffuse interface schemes show smooth 
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change in the boundary forcing terms but less accurate results because of discrete delta 

functions. Hence, the diffuse interface scheme with a corrected radius can be adopted to 

obtain both accurate and smooth results. 

Finally, a direct-forcing immersed boundary method (IBM) for the thermal lattice 

Boltzmann method (TLBM) is proposed to simulate non-isothermal flows. The direct-

forcing IBM formulas for thermal equations are derived based on two TLBM models: a 

double-population model with a simplified thermal lattice Boltzmann equation (Model 

1) and a hybrid model with an advection-diffusion equation of temperature (Model 2). 

The proposed methods are validated through natural convection problems with 

stationary and moving boundaries. In terms of accuracy, the results obtained from the 

IBMs based on both models are comparable and show a good agreement with those from 

other numerical methods. In contrast, the IBM based on Model 2 is more numerically 

efficient than the IBM based on Model 1. 

Overall, this study serves to establish the feasibility of the direct-forcing IB-LBM 

as a viable tool for computing various complex and/or moving boundary flow problems.
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CHAPTER I 

INTRODUCTION 

 

In computational fluid dynamics (CFD), a primary issue is the development of accurate, 

efficient treatments of complex and/or moving boundaries. Many researchers have 

developed various numerical methods to resolve this issue. One example of such 

methods is the immersed boundary method (IBM). 

 

A. Background 

1. Immersed boundary method (IBM) 

The IBM can be defined as a non-body-conformal grid method which adds a force 

density (or acceleration) term either explicitly or implicitly to the flow governing 

equation to satisfy the no-slip condition on the boundary. The adoption of the structured 

non-body-conformal grid (usually the Cartesian grid) relieves the burden of meshing and 

reduces the amount of memory and CPU time used compared with unstructured body-

conformal grids, and the accurate evaluation of the force density term maintains a high 

accuracy.  

In general, there are two ways to evaluate the boundary force density in the 

IBM– feedback-forcing method and direct-forcing method. In the feedback-forcing 

method [1-6], the boundary force density is computed through the feedback process  

____________ 
This dissertation follows the style of International Journal for Numerical Methods in 

Fluids. 
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forcing method [7-27], the boundary force density is directly determined by using a flow 

equation, such as the Navier-Stokes equation (NSE) or the lattice Boltzmann equation 

(LBE). 

The IBMs require interface schemes additionally because the boundary, in 

general, does not match the computational nodes. The interface scheme can be 

subdivided into the diffuse and sharp interface schemes. In the diffuse interface scheme, 

forcing points, on which the boundary force is evaluated, are located on the boundary, 

while in the sharp interface scheme, forcing points are placed on computational nodes 

closest to the boundary. In the diffuse interface scheme, the boundary force effect needs 

to be distributed into neighboring computational nodes because forcing points are not on 

the computational nodes. In general, discrete delta functions are used for the force 

distributions, thus making the boundary diffuse. That is why we call it the diffuse 

interface scheme. On the other hand, in the sharp interface scheme, the velocity on the 

forcing node is determined by interpolation so that the corresponding boundary point 

may satisfy the no-slip condition. Because the type of interface scheme we adopt directly 

influences the accuracy of the IBM, the selection of the interface scheme is another 

crucial issue together with the force evaluation method in the IBM. 

 

a. Feedback-forcing IBM 

The feedback-forcing IBM was pioneered by Peskin [1-2] for the simulation of blood 

flow in an elastic heart valve. The boundary force was computed by Hooke’s law, where 

the force is a function of the deformation of the surface boundary with the spring 
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constant. Lai and Peskin [3] applied this forcing method to a rigid boundary problem, 

such as flow past a circular cylinder, by taking the spring constant to be a large value; 

that is, they made the spring stiff. Goldstein et al. [4] and Saiki and Birigen [5] 

developed feedback-forcing methods with two free parameters (called virtual boundary 

methods) in conjunction with the spectral and finite difference methods, respectively.  

In this model [4], the force density term (or acceleration term) is determined by 

straight feedback of velocity information, i.e., time integration of the velocity difference 

between calculated velocity and desired velocity (production) and the velocity difference 

itself (damping) as follows: 

0
( ) ( )

t
d dd     F u U u U        (1) 

where Ud is the desired velocity and α and β are two free parameters to be tuned 

depending on the flow conditions. It is noted that Peskin’s method [3] can also be 

regarded as the virtual boundary method with one free parameter. In terms of practical 

applications, the feedback-forcing method introduces one or two free parameters that 

need to be tuned according to the flow conditions and this, especially for unsteady flows, 

causes a time step limitation that reduces efficiency. In addition, regarding the use of 

discrete delta functions, the boundary forces are spread across the boundary, which 

diffuses over the grid, thus decreasing the accuracy of the solution. 
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b. Direct-forcing IBM 

Direct-forcing IBM with sharp interface schemes 

The direct-forcing IBM was originally derived by Mohd-Yusof  [7] in a spectral context 

with a sharp interface scheme. Fadlun et al. [8] applied the direct-forcing method to 

various flow problems in the frame of the finite-difference method. The forcing point 

was located on the interior node (fluid node) closest to the boundary. The boundary force 

on the forcing point was evaluated by linear interpolation from the boundary and fluid 

velocities in an arbitrary direction. Kim et al. [9] derived the direct-forcing IBM in the 

finite-volume method. They introduced the mass source/sink, as well as momentum 

forcing to satisfy, not only the no-slip boundary condition on the immersed boundary, 

but also the continuity for the cell containing the immersed boundary. The forcing node 

was located on the exterior node (solid node) closest to the boundary. To remove the 

arbitrariness in the interpolation direction, as in [8], they proposed a consistent second-

order interpolation scheme based on a bilinear interpolation, which is reduced to a one-

dimensional linear interpolation when there are no available points except another 

forcing point near the boundary.  

In the direct-forcing method, the force density (or acceleration) term is naturally 

determined in the calculation process. In other words, Navier-Stokes equation can be 

expressed as: 

1n n
n n

t

 
 



u u
RHS F

        (2) 

where ∆t is a time step, n and n+1 are current and next time steps, and RHSn includes 
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convective, viscous, and pressure terms. If the desired velocity at the next time step, Ud, 

is given, then Equation (2) becomes 

d n
n n

t


 



U u
RHS F .        (3) 

Equation (3) can be rewritten in terms of the next-time-step velocity without being 

forced, unoF (which is originally calculated regardless of existence of the forcing term), 

as 

d noF n t  U u F          (4) 

with  

noF n n t  u u RHS .         (5) 

From Equations (3) and (5), the force density (or acceleration) term can be directly 

expressed as: 

d noF
n

t






U u
F .         (6) 

It should be pointed out that in the direct-forcing method with a sharp interface 

scheme, the boundary force density term can be added either implicitly or explicitly, 

mainly depending on the adopted time-advancement scheme. In the explicit time-

advancement scheme, as in [7-8], the boundary force density term is not involved 

explicitly in the actual calculation. Instead, the velocity at the forcing node is directly 

replaced by the desired velocity. In contrast, in the semi-implicit time advancement 

scheme, as in [9-10], the force density term is evaluated at the predictor step because the 

change of force after the predictor step is sufficiently small not to deteriorate the entire 
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order of accuracy; it is then incorporated into the remaining flow equation calculations 

explicitly. 

Regarding the location of the forcing points in the direct-forcing method with a 

sharp interface scheme, either interior (in fluid) nodes as in [8] or exterior (in solid) 

nodes as in [7, 9] can be selected. Actually, many of the following studies adopted one 

of these methods. Balaras [10], Gilmanov et al. [11], Choi et al. [12], Ikeno and 

Kajishima [13] used interior forcing nodes. Majumdar et al. [14], Iaccarino and Verzicco 

[15], Tseng and Ferziger [16], Ghias et al. [17], and Shen et al. [18] used exterior forcing 

nodes. All these authors proposed their own systematic interpolation algorithms and 

successfully applied them to various problems, even turbulent flow problems. 

Compared with the feedback-forcing method, in the direct-forcing method with a 

sharp interface scheme, the forcing does not affect the stability or require force 

smoothing, and no free parameters to be adjusted are used. However, for moving 

boundary problems, the direct-forcing IBM with a sharp interface scheme may cause 

spurious oscillations due to discontinuous changes of interpolation points and freshly 

cleared cells, which stand for the nodes in the solid region at the previous time step and 

in the fluid region at the new time step [22, 28]. 

 

Direct-forcing IBM with diffuse interface schemes  

In the context of the direct-forcing method, a diffuse interface scheme was first adopted 

by Silva et al. [22]. They used a second-order Lagrange polynomial approximation to 

calculate the pressure and velocity derivatives, which are needed to evaluate the force on 
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the boundary points. The boundary force is distributed onto the forcing points through 

the discrete delta function, which was used in the feedback-forcing method. Uhlmann 

[23] applied the diffuse direct-forcing method to 3D particulate flows. In the IBM, the 

discrete delta function was used for velocity interpolation on Lagrangian forcing points, 

as well as for boundary force distribution. In other words, instead of interpolating each 

term of the Navier-Stokes equation on Lagrangian forcing points to evaluate the 

boundary force, as in [22], Uhlmann used the unforced velocities on the neighboring 

nodes in the interpolation process, thereby obtaining the force more easily than in [22]. 

He also showed that the diffuse direct-forcing method provides smooth solutions for 

moving particle problems compared with sharp forcing methods, where spurious 

oscillation occurs.  

In the direct-forcing method with a diffuse interface scheme, the velocity field 

used to evaluate the boundary force is reconstructed by the boundary force again. Thus, 

the forcing-point velocity interpolated from reconstructed velocities may not satisfy the 

no-slip condition exactly. To ensure this, several direct-forcing methods with an implicit 

diffuse scheme were proposed. We call previous diffuse schemes, which are not implicit, 

explicit diffuse schemes. Su et al. [24] and Le et al. [25] proposed implicit forcing 

methods to solve implicit banded force matrix equations. To avoid the complicated 

calculation of the matrix equations, Luo et al. [26] and Wang et al.[19] proposed multi-

direct-forcing, which iterates the procedure of forcing and spreading until a given 

criterion is satisfied, and applied it to fixed and moving particle problems.  
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In summary, the direct-forcing IBM consists of the direct-forcing formula and 

the interface scheme. The direct-forcing formula can change depending on the numerical 

schemes, especially time advancement schemes. The interface scheme can be classified 

into the sharp interface scheme and the explicit and implicit diffuse schemes. Figure 1 

depicts the structure of direct-forcing immersed boundary method. 

  

 

Figure 1. Structure and classification of the direct-forcing IBM. 

  

2. Immersed boundary method for energy equation 

In recent years, the concept of forcing in momentum equations under the IBM has been 

also extended to the energy equation to satisfy the thermal boundary conditions [29-32]. 

Kim and Choi [29] applied their exterior sharp direct-forcing scheme [9] for the 

momentum forcing in momentum equation to the energy equation for energy forcing (or 

heat source/sink). They simulated forced or mixed convection around hot circular 

cylinders and obtained comparable results with other experiments and calculations. 
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Pacheco et al. [30] used another exterior sharp direct-forcing scheme to successfully 

simulate 2D natural convection problems with stationary boundaries. Gilmanov and 

Acharya [33] used their interior sharp direct-forcing scheme [11] for energy forcing to 

simulate not only flow past a hot rigid sphere, but also deformable hot spherical particle 

sedimentation by coupling the material point method (MPM). Zhang et al. [32] used 

their diffuse direct-forcing scheme [34] to simulate the convection with flows over 

stationary and oscillating cylinders, respectively. Feng and Michaelides [31, 35] used the 

explicit diffuse direct (momentum and energy) forcing scheme to successfully simulate 

various cases of particle sedimentation. In this study, we call the forcing terms in the 

momentum equations for no-slip boundary conditions “momentum-forcing” and the 

energy source term in the energy equation for thermal boundary conditions “energy-

forcing” [30]. The principles of forcing term evaluation in both momentum and energy 

equations are basically the same; the only difference is that the no-slip boundary 

condition is only considered in the momentum-forcing IBM, while more various 

boundary conditions, such as Dirichlet and Neumann types, can be involved in the 

energy-forcing IBM. 

 

3. Immersed boundary-lattice Boltzmann method 

Due to its simplicity and efficiency, the lattice Boltzmann method (LBM) has been 

broadly used to simulate complex flows as an alternative to the Navier-Stokes methods 

[36-37]. The lattice Boltzmann equation (LBE) is a kinetic equation of particle 

distribution functions (PDF) discretized on the Cartesian grid. At each node, taking 
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moments of PDFs provides hydrodynamic variables, such as density and velocity. The 

common feature of using the Cartesian grid motivates the coupling of the LBM and the 

IBM, which is called the immersed boundary-lattice Boltzmann method (IB-LBM). By 

replacing the Navier-Stokes equation with the lattice Boltzmann equation for flow field 

calculations, almost the same discussion as in the IBM based on Navier-Stokes equation 

can be applied to the IB-LBM. 

Feng and Michaelides [6] first proposed the IB-LBM. Their IB-LBM is basically 

the same as the feedback-forcing IBM used by Lai and Peskin [3], with the exception 

that it solves the LBE instead of the NSE for fluid flows. Then, they proposed a direct-

forcing IB-LBM with an explicit diffuse interface scheme [20] to solve 3D particulate 

flow problems. However, in their direct-forcing IB-LBMs, they used the NSE for the 

evaluation of boundary forces. Niu et al. [38] proposed an IB-LBM with an explicit 

diffuse interface scheme, which is called the momentum-exchange-based IB-LBM. In 

this method, instead of solving Navier-Stokes equations for the boundary force 

evaluation, they used the bounce-back rule, which is used in the LBM for wall boundary 

conditions but is not second-order when applied on nodes [39], as in this IB-LBM. 

Dupuis et al. [21] proposed a direct-forcing IB-LBM without solving the NSE for the 

evaluation of boundary force density. Their method can be said to be a pure direct-

forcing IB-LBM since they used the LBE to evaluate the boundary force density as well 

as to solve the fluid flow. They tested an explicit diffuse and an interior sharp schemes 

through the simulation of flow past an impulsively started cylinder. However, the direct-

forcing IB-LBMs [20-21] neglected the kinetic nature of the lattice Boltzmann method 
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and used the lumped-forcing LBE, which does not recover the NSE with second-order 

accuracy. These issues will be discussed in greater detail in Chapters II and III. 

In contrast, some authors [40-41] proposed direct-forcing IB-LBMs based on the 

split-forcing LBE proposed by Guo et al. [42]. The adoption of the split-forcing LBE 

gives not only recovery of the NSE with second-order accuracy but also more accurate 

interface results. Kang and Hassan [40] used an explicit diffuse interface scheme to 

simulate stationary and moving particle flows, while Wu and Shu [41] used an implicit 

diffuse interface scheme solving banded matrix equations, as in Su et al. [24] and Le et 

al. [25], for complex boundary flows.  

 

B. Motivation 

In terms of the accurate, efficient treatment of complex and moving boundaries, 

coupling the direct-forcing concept and various interface schemes developed in the NSE 

method with the LBM with simplicity and efficiency is very promising. As noticed in the 

direct-forcing IBMs based on the NSE, different interface schemes have been used 

depending on the purpose. For stationary complex boundary problems, the sharp 

interface schemes were mainly used to achieve the greater accuracy in results. Their 

applications were extended even to turbulent flow problems [13-16]. For moving 

boundary problems, although the diffuse interface schemes have diffuse (less accurate) 

solutions, they were usually used because they relieve or remove the spurious 

oscillations [23]. Thus, for the applications of the direct-forcing IB-LBM based on the 

split-forcing LBE to various problems, we need to assess systematically the various 
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interface schemes, including the sharp interface scheme as well as the diffuse interface 

scheme. In addition, to cover a broader range of thermal hydraulic problems including 

the non-thermal flows, the extension of the IB-LBM to energy equations is needed. 

 

C. Objectives 

The objective of this dissertation is to develop and assess the direct-forcing immersed 

boundary-lattice Boltzmann method (IB-LBM), based on the split-forcing lattice 

Boltzmann equation models, applicable to 2D/3D isothermal flow problems with 

stationary or moving boundaries and also to extend the isothermal IB-LBMs to thermal 

IB-LBMs for covering the non-isothermal flows. The focus areas are as follows: 

 Application of the IB-LBMs to complex, stationary boundary problems; 

 Application of the IB-LBMs to moving boundary problems covering solid-fluid 

two-phase flows; 

 Extension of the IB-LBM to the energy equation for the thermal flow simulation. 

To better understand these topics, we start with discussing the lattice Boltzmann 

equation models, which are adopted as governing equations for the simulation of fluid 

flows and heat transfers in this study.  
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CHAPTER II 

LATTICE BOLTZMANN METHOD 

 

Recently, the lattice Boltzmann method (LBM) has been successfully applied to simulate 

fluid flows and transport phenomena [36]. In contrast to conventional CFD methods 

using the Navier-Stokes equation (NSE) based on macroscopic continuum theory, the 

LBM is based on mesoscopic kinetic equations, in which the collective behavior of 

particles is adopted to simulate the continuum mechanics of the system [43]. In this 

chapter, we discuss basic theories of the lattice Boltzmann method needed for the 

application of the immersed boundary method (IBM), which cover the lattice Boltzmann 

equation (LBE) and thermal lattice Boltzmann equation (TLBE). The details of the IB-

LBM and its applications are presented in the following chapters. 

 

A. Lattice Boltzmann Equation 

1. Single-relaxation-time lattice Boltzmann equation 

The lattice Boltzmann equation with a single-relaxation-time (SRT-LBE) [44-45] is 

usually adopted in the LBM. Historically, the SRT-LBE evolved empirically from the 

lattice gas automata (LGA) [46-47], which is a discrete particle kinetics utilizing a 

discrete lattice and discrete time, through overcoming some serious drawbacks of the 

LGA, such as large statistical noise, limited range of physical parameters, non-Galilean 

invariance, and implementation difficulty in three dimensions. However, it was shown 

later that the SRT-LBE can be directly derived from the continuous Boltzmann equation 
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through discretization in both time and phase space [48], and the equilibriums and 

collision matrices can be constructed independently to better suit numerical applications 

[49]. 

 

a. Boltzmann BGK equation 

Let x be Cartesian coordinates of a physical space and ξ the molecular velocity. Then the 

continuous Boltzmann equation of the particle distribution function ( , , )f tx ξ can be 

written as 

( )
f

f J f
t


  


ξ          (7) 

where J( f ) is the collision operator and models the rate of change of the particle 

distribution function f due to molecular collisions. This collision operator has a complex 

integral form, so Equation (7) is a nonlinear integro-differential equation.  

The simple single-relaxation-time (SRT) model used in kinetic theory is also 

called the BGK model, named after Bhatnager, Gross, and Krook, who introduced the 

model in a paper published in 1954 [50]. In this model, the collision term J( f ) in the 

Boltzmann equation is simplified as 

(0)1
( ) ( )J f f f


   .         (8) 

Here, the Maxwellian distribution function f (0) is expressed in terms of the local mean 

velocity and temperature and λ is the mean relaxation time, which may depend on 

temperature but not on molecular velocity. Therefore, the Boltzmann BGK equation can 

be expressed as 
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(0)1
( )

f
f f f

t 


    


ξ .        (9) 

 

b. Single-relaxation-time lattice Boltzmann equation 

The SRT-LBE can be directly derived from the Boltzmann BGK equation (9). 

Integrating Equation (9) along characteristics and then performing Taylor-series 

expansion to the first-order in time, we can obtain 

1
( , , ) ( , ) [ ( , ) ( , )]Mf t t t f t f t f t


         x ξ ξ x ξ x ξ x ξ     (10) 

where / t   is the dimensionless mean relaxation time and t is the discretized time 

step. Discretizing Equation (10) in the velocity space, we can obtain the following 

simple SRT-LBE for incompressible flow: 

( )1
( , ) ( , ) [ ( , ) ( , )]eqf t t t f t f t f t    


      x e x x x     (11) 

where ( , ) ( , )f t f t  x x e  is the discretized particle distribution function (PDF),  

( ) ( , )eqf t x is the discretized equilibrium PDF, and {eα} is the discrete velocity set. The 

equilibrium distribution function and the discrete velocity set change depending on the 

lattice model selected. The equilibrium PDF,
( )eqf , is obtained by using the Taylor series 

expansion of the Maxwell-Boltzmann distribution function with velocity u up to second 

order, and it can be expressed as 

( ) 2 2

2 4 2

3 9 3
1 ( ) ( )

2 2

eqf w
c c c

   
 

      
 

e u e u u
     (12) 

where the lattice speed c=Δx/Δt, and Δx and Δt are the lattice size and the time step size, 
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respectively. The weighting coefficient, wα, depends on the discrete velocity set, {eα}. 

Although there are various discrete velocity sets, we use the 9-velocity model on a 2D 

square lattice, denoted as the D2Q9 model, and the 19-velocity model on a 3D cubic 

lattice, denoted as the D3Q19 model, which have been shown to have better performance 

than other models [51]. In D2Q9 and D3Q19 models, discrete velocity vectors are 

defined by 

(0,0), 0

( 1,0), (0, 1), 1,2,3,4

( 1, 1), 5,6,7,8

c c

c












   
   

e

       (13a) 

and 

(0,0,0), 0

( 1,0,0), (0, 1,0), (0,0, 1), 1,2, ,6

( 1, 1,0), ( 1,0, 1), (0, 1, 1), 7,8, ,18

c c c

c c c












    
       

e ,    (13b) 

respectively, and the corresponding weighting coefficients wα are 

  
4 / 9, 0

1/ 9, 1,2,3,4

1/ 36, 5,6,7,8

w










 
 

       (14a) 

and 

 
1/ 3, 0

1/18, 1,2, ,6

1/ 36, 7,8, ,18

w










 
 

,       (14b) 

respectively. Figure 2 illustrates discrete velocity spaces (lattices) in the D2Q9 and 

D3Q19 models. 
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Applying the Chapman-Enskog multi-scale analysis [42], we can show that SRT-LBE 

(11) recovers the NSE. Here, density and velocity are defined by the 0th and 1st moments 

of PDFs, respectively: 

( )eqf f 

 

    ,         (15) 

( )eqf f   

 

   u e e .        (16) 

The pressure, p, is determined by the following equation of state (EOS): 

2

sp c            (17) 

and the kinematic viscosity, ν, is determined by 

  21/ 2 sc t    .         (18) 

where cs is the speed of sound and is related to the lattice speed, c by / 3sc c .  

 

Figure 2. Discrete velocity spaces (lattices) in (a) the D2Q9 and (b) the D3Q19 models. 

 

c. LBM algorithm 

The SRT-LBE (12) can be simply implemented in numerical calculation as the following 

two steps. 
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Collision step: 
( )1

( , ) ( , ) [ ( , ) ( , )]eqf t f t f t f t   


   x x x x    (19a) 

Streaming step: ( , ) ( , )f t t t f t  
   x e x     (19b) 

Here, f is the post-collision PDF. It should be noted that in the streaming step, no 

arithmetic calculation is involved and only the data shifting occurs. Figure 3 depicts the 

LBM calculation algorithm. 

1

( ) ,

( )

t t f

t t f





 


   

  



u e

Initial conditions

Collision step

Streaming step

( )f t t  

( )1( ) [ ]eqf t f f f   
   

( , ) ( , )f t t t f t  
    x e x

( )f t


Convergence

( ), ( )t t t t    u

, u

( )f t t  

( ) ( )( ) ( , )eq eqf t f   u

, , f u

Boundary 

conditions

 

Figure 3. LBM calculation algorithm. 
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d. Characteristics of the LBM 

The LBM based on the kinetic equation (Boltzmann equation) can be regarded as a 

mesoscopic approach because instead of considering each individual molecule at the 

microscopic level in molecular dynamics, it considers the fluid particles at mesocopic 

scale, which are made up of a group of molecules. 

In microscopic and mesoscopic approaches, the macroscopic variables, such as 

density and velocity, can be obtained by taking moments of particle variables, such as 

particle distribution functions, as Equations (15) and (16) and the LBE can recover the 

Navier-Stokes equation (NSE) by multi-scale analysis. This is in contrast to the 

conventional macroscopic approach based on continuum fluid mechanics, in which 

macroscopic variables are directly obtained by solving differential or integral forms of 

the Navier-Stokes equation of the macroscopic variables. Figure 4 illustrates the 

relations between the lattice Boltzmann equation (LBE), the Boltzmann BGK equation, 

and the Navier-Stokes equation (NSE). 

 

Macroscopic

approach
Navier-Stokes equation

Lattice Boltzmann 

equation

Boltzmann BGK 

equation
Discretization in 

momentum space

Taking moments
Applying multi-scale analysis ( , ), ( , )t t x u x

( , )f t x ( , , )f tx ξ

Taking moments

,f f  

 

   u e
,f d f d   ξ u ξ ξ

Integration, Taylor-

series expansionMesoscopic

approach

 

Figure 4. Relations between the LBE, the Boltzmann BGK equation, and the NSE. 
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The major characteristics of the LBE distinguished from the conventional CFD 

methods based on the NSE originate from the facts that (i) the LBE is based on the 

kinetic equation with a simple collision rule and (ii) the discretization of configuration 

space is defined by discretization of momentum (velocity) space. As a result, the LBE 

has the following advantages over the conventional CFD methods [37, 43]: 

 The NSE method must deal with nonlinear convective terms, whereas in the LBE 

model the streaming process corresponding to the convective term is linear in 

velocity space and is handled by simple advection along the constant streamline, 

i.e., uniform data shifting. It should be noted that although the collision step in 

the LBM includes non-linear terms, it is local, thus not requiring complex 

calculations involving neighboring information.  

 Since the incompressible Navier-Stokes equations can be obtained in the nearly 

incompressible limit in the LBM, pressure is explicitly obtained through an 

equation of state, and data communication is always local in the LBM. In 

contrast, for incompressible flows, the NSE method usually employs expensive 

iterative procedures to solve the elliptic Poisson equation, which involves global 

communication of data. Hence, the LBM with low communication/computation 

ratio is efficient for parallel computing based on the Message Passing Interface 

(MPI). 

 The LBM seeks the minimum set of velocities in phase spaces. Therefore, simple 

relations exist between particle density distribution functions and macroscopic 
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variables and mass and momentum conservations are guaranteed to machine 

round-off in computer implementation.  

 The strain rate tensor can be evaluated locally. Like pressure, the strain rate 

tensor is directly obtained from the moment of the non-equilibrium PDFs without 

additional communications with neighbor nodes. This aspect in the LBM is 

beneficial to eddy-viscosity-type subgrid scale models in large eddy simulation 

(LES) and non-Newtonian fluid modeling requiring the evaluation of the strain 

rate tensor. 

 The LBE consists of simple arithmetic calculations, so it is easy to program. 

 Due to the kinetic nature of the Boltzmann equation, the physics associated with 

the molecular level interaction can be incorporated more easily in the LBE model.  

 The LBE is ideally suited for handling multi-phase flow with phase transition 

and multi-species mixtures where diffusivity is important. NSE solvers can be 

computationally too expensive for these flows. 

These characteristics configure the LBE as a special finite-difference scheme for fluid 

dynamics and enable the LBE to show impressive growth as an alternative numerical 

technique for complex fluid flow problems. 

 

2. Multiple-relaxation-time lattice Boltzmann equation 

Although the SRT-LBE is the most popular in the LBM calculation due to its simplicity 

[44-45], the SRT-LBE has limitations due to its numerical instability [52] and 

inaccuracy in boundary conditions [53]. Most of these limitations in the SRT-LBE can 
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be resolved by using the multiple-relaxation-time lattice Boltzmann equation (MRT-

LBE) [37, 52, 54-55]. The MRT-LBE has marked advantages over the SRT-LBE. For a 

given resolution, the MRT-LBE is significantly more stable numerically and more 

accurate for problems with anisotropy, with an insignificant additional computational 

overhead; this allows access to a greater range of problems, particularly at higher 

Reynolds numbers [56]. 

In the MRT model, different moments of the distribution function relax at 

different rates, while in SRT model, all moments relax at the same rate [57]. 

Specifically, the MRT-LBE adopts an equivalent representation of particle distribution 

functions in terms of their moments, including various hydrodynamic fields such as 

density, mass flux, and stress tensor. Therefore, the relaxation process due to collision 

can more naturally be described in terms of a space spanned by such moments, which 

can, in general, relax at different rates [52, 54]. By carefully separating the time scales of 

various hydrodynamic and kinetic modes through a linear stability analysis, the 

numerical stability of the MRT-LBE can be significantly improved when compared with 

the SRT-LBE [52, 58]. 

 

a. D3Q19 MRT-LBE 

Since we use the MRT-LBE only for 3D flow simulations in the present study, we focus 

on the D3Q19 model hereafter. To discuss the MRT-LBE, we start with rewriting the 

SRT-LBE in a vector form: 

( )( , ) ( , ) [ ( , ) ( , )]eqt t t t t     f x e f x S f x f x      (20) 
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with a particle distribution vector 0 1 18( , , , )Tf f ff , an equilibrium particle 

distribution vector ( ) ( ) ( ) ( )

0 1 18( , , , )eq eq eq eq Tf f ff , and a collision matrix (1/ )S I . In the 

MRT-LBE, we consider the moment vector 0 1 18
ˆ ˆ ˆˆ ( , , , )Tf f ff with the relation of 

ˆ f Mf  where M is the transformation matrix from the particle velocity space to the 

moment space. Here, the elements of M are obtained in a suitable orthogonal basis as 

combinations of monomials of the Cartesian components of the particle 

velocity e through the standard Gram-Schmidt procedure [54]. The resulting 

transformation matrix M in D3Q19 model is given as 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

30 11 11 11 11 11 11 8 8 8 8 8 8 8 8 8 8 8 8

12 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 4 4 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 4 4 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0

      

     

    

    

    

    

    

0 0 0 4 4 0 0 0 0 1 1 1 1 1 1 1 1
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0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1

    

       
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     

     

 
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 
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       

. 

The resulting 19 moments in the moment vector are arranged as follows: 

2ˆ ( , , , , , , , , ,3 ,3 , , , , , , , , )T

x x y y z z xx xx ww ww xy yz xz x y ze e j q j q j q p p p p p m m m  f  (21) 
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Here, ρ is the density fluctuation, e and e2 are related to energy and its square 

respectively,  jx,  jy,  jz are components of the momentum, qx, qy, qz are related to 

components of the heat flux,  pxx, pww and pxy, pyz, pzx are related to the components of the 

symmetric and traceless strain-rate tensors, πxx, πww are the fourth-order moments, and  

mx, my, mz are the third-order moments [54]. 

The MRT-LBE computes the collision in moment space, while the streaming 

step is performed in the usual particle velocity space [54]. The MRT-LBE can be 

expressed as 

1 ( )ˆ ˆ ˆ( , ) ( , ) [ ]eqt t t t

      f x e f x M S f f .     (22) 

Here, the equilibrium moments ( )ˆ eqf  are the function of the conserved moments, i.e., 

( ) ( ) ( ) ( )

0 3 5 7
ˆ ˆ ˆ ˆ, , ,eq eq eq eq

x y zf f j f j f j     and are given as [58] 

( ) ( ) ( ) ( )

1 2 4 6

( ) ( ) 2 ( ) ( ) ( ) 2 2

8 9 10 9 11

( ) ( ) ( ) ( )

12 11 13 14 15

11 2 2ˆ ˆ ˆ ˆ11 19 , 3 , , ,
2 3 3

2 1 1 1ˆ ˆ ˆ ˆ ˆ, (3 ), , ( ),
3 2

1 1 1ˆ ˆ ˆ ˆ ˆ, , ,
2

eq eq eq eq

x y

eq eq eq eq eq

z x y z

eq eq eq eq

x y y z

f f f j f j

f j f j f f f j j

f f f j j f j j f

 
 

 

 

 
        

        

   

j j j j

j j

( ) ( )

16,17,18

1 ˆ, 0.eq eq

x zj j f


 

  (23) 

Also, 0 1 18
ˆ ( , , , )diag s s sS  is the diagonal collision matrix in moment space, and its 

elements 0 1 18, , ,s s s  are relaxation times for the respective moments. The transport 

properties of the fluid flow, such as bulk and kinematic viscosities, can be related to the 

appropriate relaxation times through either Chapman-Enskog analysis of the MRT-LBE 

or the von Neumann stability analysis of its linearization version [59]. The kinematic 

viscosity ν and the bulk viscosity ζ of the model are  
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1 1 1
, 9,11,13,14,and 15

3 2
t

s
 

 
    

 
      (24) 

1

2 1 1

9 2
t

s


 
   

 
.         (25) 

Based on linear stability analysis [52], the relaxation parameters are determined as 

follows [54]:  

1 2 10 12 4 6 8 16 17 181.19, 1.4, 1.2, 1.98s s s s s s s s s s          .   (26) 

 

b. MRT-LBE calculation algorithm 

Numerical implementation of the MRT-LBE is also very simple as in the SRT-LBE. The 

difference from the SRT-LBE is that in collision step the MRT-LBE involves additional 

matrix multiplications for the calculation of the relaxation in moment space. The 

streaming step is the same as that of the SRT-LBM. In other words,  

Collision step: 

( )

1 ( )

( , ) [ ( , ) ( , )] / for the SRT-LBM
( , )

ˆ ˆ ˆ( , ) { [ ( , ) ( , )]} for theMRT-LBM

eq

eq

f t f t f t
f t

f t t t

  



 





  
  

 

x x x
x

x M S f x f x
  (27a) 

Streaming step: 

( , ) ( , )f t t t f t  
   x e x .        (27b) 

 

B. Thermal Lattice Boltzmann Equation 

To deal with thermal flows in the lattice Boltzmann equation framework, several thermal 

lattice Boltzmann models (TLBM) have been developed. The TLBMs can be classified 
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into three categories: the single-population model, the double-population model, and the 

hybrid model. In the single-population model (or multi-speed model), only the particle 

distribution function was used, but additional discrete velocities were introduced to 

obtain the energy equation, and the equilibrium distribution functions usually include 

higher order velocity terms [60-61]. However, the multi-speed type single-population 

models were found to suffer from severe numerical instability, and the range of 

temperature variation was limited [62]. 

On the other hand, in the double-population models, distribution functions for 

temperature (or internal energy) were introduced in addition to the original density-

distribution function, so that the athermal LBE of density distribution functions for 

momentum and the thermal LBE of temperature (or internal energy) distribution 

functions for energy were separately solved. As a result, this kind of model could 

effectively overcome two limitations of the multi-speed models, namely, severe 

numerical instability and narrow range of temperature variation [63]. The correct 

double-population model, including terms of the viscous heat dissipation and the 

compression work done by pressure, was derived by He et al. [63]. In this thermal 

model, the density distribution function and the energy distribution function satisfy the 

following equations, respectively: 

( )( , ) ( , ) ( , ) ( , )
0.5 0.5

feq

f f

F tt
f t t t f t f x t f x t

t t



    



 


            

x e x , (28a) 

( )
( , )

( , ) ( , ) ( , ) ( , )
0.5 0.5

geq

g g

f t q tt
g t t t g t g x t g x t

t t

 

    



 


            

x
x e x ,(28b) 
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where two new variables, f and g , are used to keep the consistency of the viscosity as 

well as to keep the scheme explicit and defined as 

( )( )
2 2

eq

f

t t
f f f f F    



 
    ,       (29a) 

( )( )
2 2

eq

g

t t
g g g g f q     



 
    ,       (29b) 

respectively. The other variables are defined as 

2

( ) ( )eq eq

s

F f f
RT c

 
  

   
 

G e u G e u
,      (30) 

1
( ) ( ) ( ) ( ) ( )q p

t
    



   
                 

u
e u Π e u u e u e u ,  (31) 

( )T  Π u u .         (32) 

Here, G is the external force acting on the unit mass, f and g are relaxation times for 

isothermal and thermal LBEs, respectively, and ( )eqg  is the equilibrium energy 

distribution function. In this double population model, the macroscopic variables are 

determined by 

f


  ,          (33) 

2
f t 




   

G
u e ,        (34) 

2

t
e g f q  

 




           (35) 

where e is the internal energy, and viscosity and diffusivity are determined by 
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2

0
3

f

f

c
RT


   ,         (36) 

2

0

2
2

3
g gRT c    .          (37) 

However, this method is too complicated to use because it contains a complex 

gradient term f q   in the thermal LBE. Hence, several double-population models with a 

simplified thermal LBE have been proposed [64-66] and applied to various heat transfer 

problems successfully [67-71]. The simplified thermal LBEs corresponded to the energy 

equation without terms of the viscous dissipation and compression work done by 

pressure, i.e., advection-diffusion equation of temperature. Among them, the simplified 

TLBE proposed by Peng et al. [64] is adopted in the present study. This simplified 

thermal model is based on the assumption that in real incompressible applications, the 

compressible work done by the pressure and the viscous heat dissipation are negligible. 

In the model, the complicated gradient term is discarded in the simplified thermal model 

because the term in the original thermal energy distribution model is mainly used to 

recover the compressible work and the viscous heat dissipation. After this simplification, 

there is no viscous term in the evolution for the new density distribution function, so 

there is no need to introduce the new variables such as Equations (29a) and (29b) to keep 

the viscosity same for both governing equations. As a result, the complexity in the 

original thermal energy distribution model can be overcome [64]. 

The simplified TLBE can be expressed as [64]: 

( )1
( , ) ( , ) [ ( , ) ( , )]eq

g

g x t t t g t g t g t    


     e x x x     (38) 
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where gα is the energy distribution function, and ( )eqg is the equilibrium energy 

distribution function, which is determined in D2Q9 model by: 

2

2

2 2
( )

2 4 2

2 2

2 4 2

1.5 , 0

( )
1.5 1.5 4.5 1.5 , 1,2,3,4

( )
3 6 4.5 1.5 , 5,6,7,8

eq
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w e
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g w e

c c c

u
w e

c c c
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 


 

 

 

  
   
 

   
      

 
   
     
  

e u e u

e u e u

   (39) 

where e=RT with the gas constant R and c2=3RT0 with the mean temperature T0. The 

energy distribution functions satisfy the following condition: 

g e



 .          (40) 

Applying the Chapman-Enskog multi-scale analysis, we can show that Equation (38) 

recovers the following energy equation: 

2( ) ( ) ( )e e e
t
   


  


u        (41) 

where the thermal diffusivity χ is expressed as 

22 1

3 2
g c t 

 
   

 
.         (42) 

It should be noted that in Equations (38) and (41), the compressible work and the 

viscous heat dissipation terms are neglected. 

Even double-population models with simplified TLBEs are still numerically 

inefficient because they utilize a full set of distribution functions to calculate the 

temperature, although a reduced set of distribution functions [65, 72] can slightly 
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improve the numerical inefficiency [55]. Thus, the hybrid TLBM [55, 73-74] was 

proposed in which the mass and momentum conservation are solved by the usual 

athermal LBE, while the advection-diffusion equation satisfied by the temperature is 

solved separately by a finite difference technique. The hybrid methods could effectively 

overcome both the instability of single-population models and the numerical inefficiency 

of double-population models. 
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CHAPTER III 

DIRECT-FORCING IMMERSED BOUNDARY-LATTICE BOLTZMANN 

METHOD* 

 

A. Introduction 

In this chapter, we derive the direct-forcing formula based on a split-forcing lattice 

Boltzmann equation (LBE) and assess several interface schemes for stationary complex 

boundary flows under the derived direct-forcing formula.  

We investigate not only the common diffuse interface schemes but also a sharp 

interface scheme. For the diffuse interface schemes, we consider the explicit diffuse 

interface scheme, as in [40], and the implicit diffuse scheme, as in [41] The differences 

of this study from these previous schemes are: (i) to clearly see the effect of boundary 

diffuseness on accuracy, we adopt both 2-point and 4-point discrete delta functions, 

which give second-order approximations, whereas previous studies [40-41] only used the 

cosine-type 4-point discrete delta function, which gives first-order approximation [75-

76]; (ii) for the implicit diffuse interface scheme, we adopt the simple multi-direct-

forcing scheme used under the IBM based on the NSE in [19, 26] to avoid solving the 

complicated banded matrix equations as in [41]. For a sharp interface scheme, we 

consider the exterior sharp interface scheme used in the direct-forcing IBM based on the  

____________ 
* Reproduced in part with permission from “A comparative study of direct-forcing 
immersed boundary-lattice Boltzmann methods for stationary complex boundaries” Shin 

K. Kang, Yassin A. Hassan, 2010, Int. J. Numer. Meth. Fluids. DOI: 10.1002/fld.2304, 
Copyright 2010 John Wiley & Sons, Ltd. 
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NSE by Kim et al. [9], where forcing nodes are located on the exterior (solid) nodes. 

This is the first trial of application of a sharp interface scheme to a direct-forcing IB-

LBM based on the split-forcing LBE. 

It should be noted that in this chapter, we focus mainly on the stationary 

boundary problems as a first step. Assessment and applications of the present IB-LBM 

for moving boundary problems will be discussed in Chapter IV. 

The organization of this chapter is as follows: In Section B, we explain not only 

explicit-type split-forcing SRT-LBE [42] but also explicit-type split-forcing MRT-LBE 

[58], which is important for the broad applications of the IB-LBM, especially for high-

Reynolds-number flows, because the LBE with MRT can attain better stability than the 

LBE with SRT. Then, in Section C.1, we derive the direct-forcing IB-LBM based on the 

split-forcing LBEs. We also mention the previous direct-forcing IB-LBMs’ implicit 

assumption that makes the boundary intrinsically diffuse. This is an important 

motivation to adopt the split-forcing LBE in the direct-forcing IBM; however, previous 

works [40-41] did not mention it. In section C.2, we account for the explicit and implicit 

diffuse and sharp interface schemes to be assessed in this study. In Section D.1, the 

accuracy of the direct-forcing IB-LBMs with each interface scheme is investigated 

through the Taylor-Green vortex, which has the analytical solutions. Then, in Section 

D.2, each scheme is applied to steady and unsteady flows over stationary circular 

cylinder; those flows have been tested by various numerical methods for the evaluation 

of accuracy. We also consider the laminar flow past a sphere in order to validate the 

present IBM included in D3Q19 MRT-LBE in Section D.3. In Section D.4, this IB-LBM 
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is applied to flow in a pebble channel, which is a preliminary numerical test to extend 

real flow in Pebble Bed Reactor (PBR). Finally, the summary and conclusions of this 

chapter are presented in Section E. 

 

 B. Lattice Boltzmann Equation with Forcing Term 

To adopt the immersed boundary method in the LBM, we need the LBE with a forcing 

term. Therefore, in this section, we first explore the SRT- and MRT-LBEs with a forcing 

term, which keep the accuracy second-order.  

The LBE adopted in most of previous IB-LBMs [6, 20-21] is a lumped-forcing 

LBE, in which the forcing term is simply added to the LBE (Equation (11)) without any 

changes. This lumped-forcing LBE enables us to directly derive the simple direct-

forcing [21]. However, it was shown that this lumped-forcing LBE cannot recover the 

Navier-Stokes equation with a second-order accuracy for unsteady and non-uniform 

force required in the IBM [42]. Besides, as will be discussed in Section C.1, the derived 

direct-forcing formula has intrinsic diffuse properties. On the other hand, the split-

forcing LBE, in which momentum needed for the equilibrium distribution function is 

first increased by the half force and then an explicit forcing term is added to the LBE, 

overcomes the deficiencies of the lumped-forcing LBE. 

In the following subsections, we discuss the difference between the lumped-

forcing and the split-forcing in detail and show that the split-forcing is more accurate in 

terms of the IBM. Then, we derive the direct-forcing formula based on split-forcing LBE 

and explain various interface schemes.  
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1. Single-relaxation-time lattice Boltzmann equation with forcing term 

The lumped-forcing SRT-LBE can be expressed as the following explicit form [77-78]: 

( )1
( , ) ( , ) [ ( , ) ( , )] ( , )eqf t t t f t f t f t F t t     


       x e x x x x    (43) 

where the discrete force distribution function can be defined as 

2
( , ) ( , )

s

w
F t t

c


  x e F x          (44a) 

or 

2 4

( , ) ( , )
( , ) 3 9 ( , )

t t
F t w t

c c

 
  

  
   

 

e u x e u x
x e F x     (44b) 

both of which satisfy the following relations of the 0th and the 1st moments: 

( , ) 0F t



 x ,          (45) 

( , ) ( , )F t t 



e x F x .        (46) 

It should be noted that Equations (44a) and (44b) satisfy the following 2nd moment 

relations [78]: 

( , ) 0F t  



e e x ,         (47a) 

( , ) ( , ) ( , ) ( , ) ( , )F t t t t t  



 e e x u x F x F x u x      (47b) 

respectively. Other relations for the LBE without a forcing term are still valid in this 

lumped-forcing SRT-LBE.  

However, if we perform the Chapman-Enskog multi-scale expansion, Equation 

(43) with Equation (44a) have an extra force divergence term in the continuity equation 
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and extra terms of time derivative of force and divergence of velocity-force density 

tensor, i.e., RHS of Equation (47b), in the momentum equation. The adoption of 

Equation (44b) instead of Equation (44a) removes the extra term of divergence of 

velocity-force density tensor; however, it still contains other remaining extra terms, 

which can be removed for steady and uniform force such as gravity.  

To remove the extra terms even for unsteady, non-uniform force, Guo et al. [42] 

proposed the split-forcing LBE, which enables the LBE to recover the NSE (continuity 

and momentum equations) with second-order accuracy. It has the same form as Equation 

(43). However, Guo et al. inserted the external force effect to the momentum by 

redefining the velocity (momentum) as 

2

t
f 






 u e F           (48) 

instead of Equation (16). Correspondingly, they changed the discrete force distribution 

function from Equation (44b) to 

2 4

( , ) ( , )1
( , ) 1 3 9 ( , )

2

t t
F t w t

c c

 
  



   
      
   

e u x e u x
x e F x    (49) 

which satisfies 

( , ) 0F t



 x ,          (50) 

1
( , ) 1 ( , )

2
F t t 

 

 
  
 

e x F x .       (51) 

For consistency with the MRT-LBE, which will be discussed in the next section, this 

explicit-type split-forcing SRT-LBE can be rewritten as 
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( )1 1
( , ) ( , ) [ ( , ) ( , )] 1 ( , )

2

eqf t t t f t f t f t F t t     
 

 
         

 
x e x x x x   (52) 

with Equation (44b) instead of Equation (43) with Equation (49).  

Alternatively, Cheng and Li [79] proposed a split-forcing LBE with a semi-

implicit form: 

( )1
( , ) ( , ) [ ( , ) ( , )]

[ ( , ) ( , )]
2

eqf t t t f t f t f t

t
F t F t t t

    

  


      


    

x e x x x

x x e

    (53) 

with Equation (44b). 

Two split-forcing LBEs proposed by Guo et al. [42] and Cheng and Li [79] are 

equivalent as shown in Appendix A. The difference is that Guo et al.’s equation 

represents the implicitness of force density by redefining the velocity, as in Equation 

(48), and correspondingly changing Equation (44b) to Equation (49). It should be also 

pointed out that the split-forcing LBE with multiple-relaxation-time (MRT) proposed by 

Premnath et al. [56, 58], which recovers the NSE with a second-order accuracy, has the 

similar explicit form as the split-forcing LBE with SRT by Guo et al. [38]. Thus, we can 

extend the same direct-forcing concept to the split-forcing LBE with MRT. Details are 

given in the next section. 
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Figure 5. Comparison of force fields affecting the particle density distribution function 

in (a) the lumped-forcing LBE and (b) the split-forcing LBE. 

 

The differences between the lumped- and split-forcing LBEs can be easily 

explained in terms of particle kinetics. As shown in Figure 5, a particle moves from 

point 1 to 2 during one time step under different force fields, 1( , )tF x and 2( , )t tF x . 

The momentum change of the particle is equal to the impulse (force multiplied by time). 

In the lumped-forcing LBE, only 1( , )tF x is exerted during one time step. In contrast, in 

the split-forcing LBE, 1( , )tF x and 2( , )t tF x are exerted during the first and the second 

half-time step, respectively. The important difference in terms of direct-forcing is that in 

the lumped-forcing LBE the momentum on point 2 at t+Δt is affected by only the force 

on point 1 at t, whereas in the split-forcing LBE the momentum is affected by the force 

on point 2 at t+Δt as well as the force on point 1 at t.  

In actual numerical calculation, the LBE with a forcing term can be solved in the 

following four steps: 
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 First-forcing step:  

( , ) ( , ) ( , ) ( , )
2

t
t t f t t 






 x u x e x F x ,      (54a) 

( , ) ( , ) ( , )
2

t
f t f t F t  


  x x x        (54b) 

 Collision step: 

( )1
( , ) ( , ) [ ( , ) ( , )]eqf t f t f t f t   


   x x x x      (55a) 

( )1
( , ) ( , ) [ ( , ) ( , )]eqf t f t f t f t   


     x x x x      (55b) 

  Second-forcing step: 

( , ) ( , ) ( , )f t f t t F t  
  x x x        (56a) 

( , ) ( , ) ( , )
2

t
f t f t F t  


  x x x        (56b) 

 Streaming step: 

( , ) ( , )f t t t f t  
   x e x        (57a) 

( , ) ( , )f t t t f t  
   x e x        (57b) 

where Equations (54a), (55a), (56a), and (57a) and Equations (54b), (55b), (56b), and 

(57b) represent the calculation algorithms for Guo et al.’s and Cheng and Li’s LBEs, 

respectively. In Guo et al.’s LBE, andf f 
  are called post-collision and post-forcing 

particle distribution functions, respectively, while in Cheng and Li’s LBE, 

, , andf f f  
    are called post-first-forcing, post-collision, and post-second-forcing 

PDFs, respectively. We adopt Guo et al.’s LBE in the present study because calculating 
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only the macroscopic variables in the first-forcing step here is more efficient than 

calculating all PDFs in Cheng and Li’s LBE, and the force term in Guo et al.’s LBE can 

be explicitly applied in the IB-LBM as will be discussed in Section C.1. It should be also 

noted that two results are the same. 

 

2. Multiple-relaxation-time lattice Boltzmann equation with forcing term 

The MRT-LBE with a forcing term [58] also computes the forcing term, which 

represents the effect of external forces as a second-order accurate time-discretization, in 

moment space.  

The explicit-type split-forcing MRT-LBE can be expressed as [56]: 

1 ( ) 1
2

ˆ ˆ( , ) ( , ) { [ ] ( ) }eq
Ft t t t

       f x e f x M S f f I S f     (58) 

where  ˆ
F Ff Mf  with 0, ,18 0 1 18{ } ( , , , )T

F F F F F  f  in D3Q19 model. The forcing 

term F  can be written as [80-81]:  

( )

2

( ) eq

s

F f
c


 



 


e u F
.         (59)  

By neglecting terms with higher order than 2(Ma )O , Equation (59) can be simplified as 

2 4

( , ) ( , )
( , ) 3 9 ( , )

t t
F t w t

c c

 
  

  
   

 

e u x e u x
x e F x     (60) 

which is the same as Equation (44b). Also, the macroscopic velocity is redefined as in 

the explicit-type split-forcing SRT-LBE by Equation (48).  
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It should be noted that the explicit-type split-forcing SRT-LBE (52) and MRT-

LBE (58) have the same form with the exception that the collision calculation part in 

Equation (58) is expressed in the moment space. 

In the MRT-LBE without the forcing term, the value of the relaxation times for 

the conserved moments ( 0 3 5 7, , , ands s s s ) are insignificant because their corresponding 

equilibrium distribution is set to the value of the respective moments itself. However, 

with a forcing term, they need to be nonzero [82-83]. In this study, we use 

0 3 5 7 1.0s s s s     as in [58]. Other relaxation times are the same as in Equation (26) 

in the MRT-LBE without a forcing term. 

 

C. Direct-Forcing Immersed Boundary-Lattice Boltzmann Method 

In this section, we derive the direct-forcing formula based on the explicit-type split-

forcing LBE and apply the various interface schemes to the derived direct-forcing 

formula. 

 

1. Direct-forcing formula 

Here, we consider the direct-forcing formula to evaluate the boundary force density in 

the IB-LBM. In the previous direct-forcing IB-LBMs, most of authors [20-21, 84] used 

the following direct-forcing formula for the evaluation of the boundary force, as in the 

direct-forcing IBM based on the NSE method: 

( , )
( , )

d noF t t
t

t


 




U u x
F x        (61) 
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where Ud and unoF are the desired velocity and the unforced velocity at a forcing point x 

and time t+Δt, respectively. Here, the unforced velocity can be evaluated from the 

information at (x,t) by using the NSE without a forcing term, as in [20, 84], or the LBE 

without a forcing term, as in [21]. The direct-forcing formula (61) is valid in the IB-

LBM if the LBE is 

( )1
( , ) ( , ) [ ( , ) ( , )] ( , )eqf t t f t f t f t F t t    


     x x x x x     (62) 

instead of Equation (43). However, in the LBM, as shown in Equation (43), regardless of 

adopting lumped- and split-forcing LBEs, the velocity on a given node at the next time 

step is determined by the PDFs not on the given node at the current time step but on 

neighboring nodes at the current time step, which will be streamed to the given node at 

the next time step. This is due to the kinetic nature of the LBE. Actually, on the basis of 

the lumped-forcing LBE, the following direct-forcing formula is satisfied: 

( , )
( , )

d noF t t
F t t

t
  




 

  



U u x

e x e       (63) 

whose derivation is given in Appendix B. Thus, if we adopt Equation (64) for the 

boundary force calculation in the LBM, the force field is intrinsically diffuse because it 

assumes implicitly that 

( , ) ( , )F t t t  



  e x e F x ,        (64) 

which means that the force field is F(x,t) even on the neighboring nodes, i.e., diffused by 

one node; thus producing less accurate (more diffuse) results.  
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On the other hand, based on the split-forcing LBE, we can derive the following 

direct-forcing formula: 

( , )
( , ) 2 ( , )

d noF t t
t t t t

t


 
  



U u x
F x x ,     (65) 

whose derivation is presented in Appendix C. It is evident that the same formula is valid 

for the split-forcing MRT-LBE. The direct-forcing formula based on the split-forcing 

LBE, Equation (65), does not involve the diffuse force field as in Equation (61). The 

preliminary calculation of flow past a circular cylinder with the explicit diffuse interface 

schemes with 2- and 4-point discrete delta functions showed that Equation (61), coupled 

with lumped-forcing LBE as in [21], produces more diffuse results than the results from 

Equation (65) coupled with split-forcing LBE. For example, at Re=40, the former had 

drag coefficients of 1.595 and 1.617 for 2- and 4-point discrete delta functions, 

respectively, while the latter had 1.576 and 1.597. We could find that the drag 

coefficient from the direct-forcing formula (61) with a 2-point discrete delta function is 

comparable to that from the direct-forcing formula (65) with a 4-point discrete delta 

function. In this simulation, the effect of lumped-forcing LBE on the results can be 

neglected because extra terms related to time derivative of force and divergence of 

velocity-force density tensor in momentum equation are almost zero due to steady flow 

and stationary boundary conditions, respectively; the extra term related to divergence of 

force density in continuity equation is zero due to the assumption of Equation (64). 

Thus, the difference of drag coefficients can be mainly due to the difference between 

two direct-forcing formulas. 
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2. Interface schemes 

In this section, we consider interface schemes under the direct-forcing formula based on 

the split-forcing LBE, Equation (65). The interface region affected by the boundary 

force can be set either diffusely or sharply. In this paper, both the diffuse and sharp 

interface schemes are dealt with. For the diffuse interface scheme, both explicit and 

implicit methods are considered.  

 

a. Diffuse interface scheme 

In the diffuse interface scheme, the boundary is represented by a set of the Lagrangian 

forcing points on the boundary, and the flow field is represented by the Eulerian 

computational nodes covering both inside and outside the boundary. Hence, 

interpolation from neighboring nodes to boundary points for the boundary force 

evaluation and distribution of the force to the neighboring nodes are needed.  

Figure 6 shows the calculation procedure of the direct-forcing IB-LBM with an 

explicit diffuse interface scheme. After the streaming step, with streamed PDFs, 

unforced velocities in Eulerian nodes ( noF

ijku ) are calculated in Step (a). Then, in Step (b), 

the unforced velocity on the boundary point ( noF

bu ) is calculated by interpolating from 

neighboring unforced velocities. The boundary force on boundary point b (Fb) is 

evaluated using the interpolated velocity ( noF

bu ) and a desired velocity (Ub) given by the 

no-slip condition in Step (c). Its distribution to neighboring nodes is implemented in 

Step (d). Then, in Step (e), the velocities of neighboring Eulerian nodes are updated 

(forced). Here, D is the discrete delta function, h is the mesh spacing and is equal to 
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lattice size; that is, h=Δx, and Δsb is the arc length of the boundary segment in 2D and 

the area of the boundary surface in 3D. In this study, to check the effect of the sharpness 

of the boundary on the solution, two types of discrete delta functions D are chosen: 

2

1
( )

j bi b
ij b h h

y yx x
D d d

h h h

  
    

   
x x  in 2D,     (66a) 

3

1
( )

j bi b k b
ijk b h h h

y yx x z z
D d d d

h h h h

     
      

    
x x in 3D   (66b) 

with 

1 | |, | | 1
( )

0, | | 1
h

r r
d r

r

 
 


        (67) 

and 

 

 

2

2

1
3 2 | | 1 4 | | 4 , 0 | | 1

8

1
( ) 5 2 | | 7 12 | | 4 , 1 | | 2

0, | | 2

h

r r r r

d r r r r r

r


     




       






.    (68) 

Here, Equation (67) is the 2-point discrete delta function, which corresponds to the 

bilinear interpolation in 2D and tri-linear interpolation in 3D, and Equation (68) is the 4-

point discrete delta function introduced by Peskin [75]. It should be pointed out that the 

2-point and 4-point discrete delta functions adopted in this study satisfy the 0th and 1st 

discrete moment conditions, while cosine-type 4-point discrete delta function used in 

[41, 84] only satisfies the 0th discrete moment condition. Thus, the former gives a 

second-order approximation and the latter gives a first-order approximation [75-76].  
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Figure 6. Calculation algorithm of the explicit diffuse direct-forcing IB-LBM. 

 

In the IBM, the surface force for the stationary body can be easily evaluated 

using [3]: 

2

,

( ) ( )s b b ij

b i j

s h     F F x F x  in 2D,      (69a) 



46 
 

 
 

3

, ,

( ) ( )s b b ijk

b i j k

s h     F F x F x  in 3D      (69b) 

We can adopt the first- or the second-summation formulas in the diffuse interface 

scheme. The surface force evaluation for moving boundary problems will be discussed 

in the next chapter. 

In this explicit diffuse interface scheme, the boundary force density is explicitly 

obtained. However, as mentioned in Chapter I, the explicit forcing may not ensure the 

no-slip condition when the velocity on xb is interpolated again from the updated (forced) 

velocities on neighboring Eulerian nodes; this is because the forces used for updating 

(forcing) the velocities were from velocities before update (forcing). Thus, in this study, 

we also consider the implicit forcing scheme. 

For the implicit diffuse interface scheme, we adopt the multi-direct-forcing 

method proposed by Luo et al. [26] and Wang et al. [19] in order to avoid the calculation 

of complicated banded matrix equations as in [25, 41]. The calculation algorithm is 

depicted in Figure 7. Steps (a) to (e) are the same as in the explicit diffuse forcing 

scheme. The differences occur after this. We iterate the forcing procedures in Steps (c) 

to (f) until the difference between the boundary velocity interpolated from the updated 

velocities and the desired velocity becomes very small; that is, the no-slip condition on 

the boundary points is better satisfied. In the multi-direct-forcing method, the number of 

forcing (NF) adjusts the implicitness of the method. We can also notice that if there is no 

iteration, that is, NF=1, then this corresponds to an explicit forcing scheme.  
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Figure 7. Calculation algorithm of the multi-direct-forcing IB-LBM (implicit diffuse 

direct-forcing IB-LBM). 
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b. Sharp interface scheme 

In this section, the sharp interface scheme is explained. Figure 8 presents the calculation 

procedure of the direct-forcing IB-LBM with a sharp interface scheme. Because the 

forcing nodes are located on the computational nodes, not on the boundary, the 

interpolation procedure is required to obtain the desired velocity on the node so that its 

corresponding boundary points can satisfy the no-slip boundary condition and the force 

distribution step is not required. In addition, surface forces can be directly calculated by 

the second-summation formula in Equation (69a) and (69b) as in [3, 9].  

The accuracy of the sharp interface scheme depends on interpolation I in Step 

(b). In this paper, we consider the case of exterior forcing nodes, that is, the exterior 

sharp interface scheme. As mentioned in Chapter I, the exterior forcing point is located 

on the computational node outside the interested fluid domain and closest to the 

boundary.  

To evaluate the boundary force density on the forcing node, we adopt the simple, 

systematic interpolation procedure proposed by Kim et al. [9]. It uses second-order 

linear and bilinear interpolations from neighboring fluid node velocities and the 

boundary point velocity where the no-slip boundary condition is satisfied in order to 

evaluate the desired velocity and boundary forcing on the forcing point. Figure 9 

illustrates the interpolation procedure in 2D geometry to evaluate the desired velocity on 

the forcing point (f-point), which makes the no-slip boundary satisfied at the adjacent 

boundary point (b-point). The interpolation has two typical cases in 2D, as shown in 

Figure 9(a). For Case 1, where three unforced fluid nodes are available, the following 
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second-order bilinear interpolation is used (Figure 9(b)): 

 2 3 4

1
[ (1 ) (1 )(1 ) (1 ) ]f b x y x y x y

x y

         
 

u U u u u    (70) 

where the location of Ub (b-point) is chosen to be a point on the boundary where a 

straight line passes through the forcing point (f-point) perpendicularly, intersecting the 

boundary. However, if only two unforced fluid nodes are available, as in Case 2, the 

bilinear interpolation involves another forcing node; thus, requiring the iteration. To 

avoid this, for Case 2, the following second-order linear interpolation is adopted (Figure 

9(c)): 

1

1 2

1 1
, if 1/ 2

2 2 (1 2 ) , if 1/ 2

b

f

b


  

  
       

U u
u

U u u

.     (71)  

The reason we separate the linear interpolation into two cases is that if Δ is small, the 

denominator in the upper interpolation becomes small, thus causing the instability [9].  

For 3D problems, we can begin with the tri-linear interpolation if the forcing 

node has seven neighboring fluid nodes to be used for the interpolation. Otherwise, the 

interpolation degenerates into bilinear or linear interpolations, as explained in the 2D 

case. 

Notably, the present direct-forcing IB-LBM with a sharp interface scheme is 

similar to Kim et al.’s [9] not only in that both of them adopt the same velocity 

interpolation scheme for the evaluation of the boundary force density on the forcing 

nodes but also in that both of them explicitly add the force density term to the governing 

equations. The difference is that Kim et al. [9] used the predictor step for the evaluation 
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of the body force density, while we used the discrete lattice effect due to the kinetic 

nature of the split-forcing LBE.  

It should also be noted that this interpolation procedure for exterior forcing nodes 

is one example of various interpolation methods. As mentioned in Chapter I, the other 

systematic interpolation procedures in [14-17] can also be adopted. Also, for interior 

forcing points, refer to [10-13].  

 

 

Figure 8. Algorithm of the sharp direct-forcing IB-LBM. 
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Figure 9. Schematic diagram of bilinear and linear interpolations for evaluating the 

desired velocity on the exterior forcing point f in 2D problem: (a) typical two 

cases, (b) bilinear interpolation for Case 1, and (c) linear interpolation for Case 

2. 

 

D. Simulation Results 

1. Taylor-Green decaying vortex 

To evaluate the accuracy of the proposed IB-LBM, the simulation of unsteady flow is 

carried out in this section. The test problem is the 2D Taylor-Green vortex flow in a 

square box, which has the following analytical solutions: 

2

0 cos( / )sin( / )exp( 2 ( / ) )xu u x L y L L t      ,     (72a) 
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2

0 sin( / )cos( / )exp( 2 ( / ) )yu u x L y L L t     ,     (72b) 

 
2

20
0 cos(2 / ) cos(2 / ) exp( 4( / ) )

4

u
p p x L y L L t       .    (72c) 

  In this simulation, a circle with the radius of 0.5L is embedded at the center of 

the square domain [-L,L]×[-L,L]. Initial conditions are imposed by Equations (72a) 

through (72c) with t=0. Time-dependent boundary conditions at the square and the 

embedded circle are given by Equations (72a) and (72b) using the non-equilibrium 

extrapolation scheme [85] and the immersed boundary methods explained in the 

previous section, respectively. In the exterior sharp interface scheme, forcing points are 

located on the Eulerian nodes outside the embedded circle because the interested flow 

field is inside the circle. For the diffuse interface schemes, forcing points are distributed 

on the circle boundary with a spacing of Δs=h/1.5, which is small enough to ensure the 

spacing-independent solution [25]. Reynolds number is taken as Re=u0L/ν=10, and the 

dimensionless relaxation time is set to be τ=0.65, as in [34]. The simulation is carried out 

using four sets of grids, L=10, 20, 40, and 80Δx. At time t=L/u0=1, the overall error of 

velocities inside the embedded circle is evaluated by using the following L2-norm error: 

  2 2

2L -error 1/ ( ) ( )c a c a

x x y yn u u u u          (73) 

where the summation is over the nodes inside the circle, and thus, N is number of the 

nodes and superscripts, c and a mean computational and analytical values, respectively. 

In addition, to evaluate the no-slip error on the boundary points for the explicit and 

implicit diffuse direct-forcing schemes, the following boundary-error is adopted: 
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2 2

2 2

( ) ( )
boundary-error

( ) ( )

c a c a

x x y y

a a

x y

u u u u

u u

  







     (74) 

where the summation is over boundary points on the circle.  

Figure 10 shows the velocity magnitude and vector plots at t=1 when using the 

explicit diffuse interface scheme. Figure 11 presents the overall errors versus the number 

of grids across the circle in the log scale. Regarding the order of accuracy, the present 

IB-LBM is almost second-order. Regarding accuracy itself, the sharp interface scheme is 

more accurate than the explicit diffuse interface schemes and its accuracy is close to that 

without the embedded circle. In the explicit diffuse interface scheme, the 2-point discrete 

delta function produces more accurate results than the 4-point discrete delta function 

does. The results indicate that the narrower (sharper) is the distribution of the forced 

point, the better is the accuracy. 

Figures 12 and 13 present the effect of the implicit forcing on the accuracy in 

cases of using the 2-point discrete delta function and the 4-point discrete delta function, 

respectively. As can be seen in Figures 12(a) and 13(a) in both cases, as the number of 

forcing increases, the boundary-error decreases clearly, although in the case of the 4-

point discrete delta function, the decrease in the boundary-error is reduced as the grid 

size decreases. However, the local and overall accuracies are not improved, as shown in 

Figures 12(b) and (c) and 13(b) and (c). Besides, in the diffuse interface scheme with the 

2-point discrete delta function, both local (L∞) and overall (L2) errors rather increase 

with the increasing number of forcing, as shown in Figures 12(b) and (c). The results of 

implicit forcing effects indicate that implicit forcing enhances the accuracy on boundary 



54 
 

 
 

points but does not improve the accuracies of the flow field due to its intrinsic nature of 

discrete delta functions. Instead, a more fundamental enhancement of accuracy in the 

diffuse direct-forcing scheme can be attained by selecting the sharper discrete delta 

functions, as discussed in the explanation of Figure 11. 

 

 

Figure 10. Velocity magnitude and vector plots of the Taylor-Green vortex at t=1 

resulting from the explicit diffuse direct-forcing scheme with L=D=80Δx. 

The solid line indicates the embedded circle. 

 

It should be noted that Wu and Shu [41] also performed the same simulation with 

a different implicit diffuse interface scheme and showed the deterioration of the order of 

overall accuracy (1.9), while the present result shows 1.98. As Wu and Shu stated, this 

can be attributed to the use of a cosine-type 4-point discrete delta function, which gives 

only a first-order approximation [75-76]. 
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Figure 11. Overall accuracy of the present IB-LBMs for the Taylor-Green vortex. 

 

Figure 12. The effect of the number of forcing on (a) the boundary-error, (b) the local 

L∞-error, and (c) the overall L2-error in diffuse direct-forcing schemes with 

the 2-point discrete delta function. 
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Figure 13. The effect of the number of forcing on (a) the boundary-error, (b) the local 

L∞-error, and (c) the overall L2-error in diffuse direct-forcing schemes with 

the 4-point discrete delta function. 

 

2. Flow past a circular cylinder 

Now, we assess the interface schemes for flow past a circular cylinder. This is one of the 

representative benchmark problems for checking the accuracy of a numerical method in 

complex geometries and thus there are many comparable results from various numerical 

methods available. In this problem, the flow pattern changes according to the Reynolds 

number, which is defined as Re=u∞D/ν, where u∞ is the freestream velocity and D is the 

diameter of the cylinder. At a low Reynolds number (Re<46), the flow is steady, and a 

pair of counter-rotating vortices is generated symmetrically about the centerline of the 
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wake. In this study, Re=20 and 40 are investigated for steady flows in this range. For 

Re>46, unsteadiness arises spontaneously, and vortex shedding occurs. As Reynolds 

number increases further, the transition to 3D is induced in the near wake. Thus, for 

unsteady flows, Reynolds numbers ranging up to 150, specifically Re=100 and 150, are 

investigated in this study because 2D flow simulations do not accurately reflect the 

transition range (Re=150~300) [86-87]. 

In the steady flow simulation, the computational domain is taken as 40D×40D 

with 801×801 grid points for the uniform grid, and a circular cylinder is located at the 

center of the domain. To check the effect of grid size on the solution efficiently, a 

refined grid near the cylinder is also used. For the refined grid, the grid refinement 

technique for the LBE developed by Rohde et al. [88] is adopted. Figure 14 shows the 

grid distribution with the refined grid around a cylinder. Here, one large lattice 

corresponds to 20 actual coarse lattices, and one small lattice corresponds to 20 actual 

refined lattices. In the refined grid, 40 grid points are used across the cylinder. For inlet 

and far-field boundaries, the Dirichlet boundary condition is used and for the outlet 

boundary, the homogeneous Neumann boundary condition is used. For the diffuse 

interface schemes, forcing points are uniformly distributed on the cylinder surface with a 

spacing of /1.5s h  .  
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Figure 14. Grid refinement for steady flow past a circular cylinder. 

 

  The drag coefficient (CD) and the recirculation length (Lw) are computed in the 

steady flows. The drag coefficient is defined as 

2 / 2

D
D

F
C

u D

            (75) 

where FD is the drag force and can be easily obtained by using Equation (69a). Since the 

boundary point velocity is zero, the boundary-error to evaluate the no-slip error on the 

boundary point for the explicit and implicit diffuse interface schemes is redefined as 

2 2boundary-error (1/ ) ( ) ( )c a c a

b x x y yN u u u u         (76) 

where the summation is over the boundary points on the cylinder surface, and thus, Nb is 

the number of the nodes. 
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For unsteady flows with Re=100 and 150, the refined grid is used, and the 

downstream part is extended by 10D; thus, the domain size changes from 40D×40D to 

50D×40D. For unsteady flows, lift coefficients (CL) and Strouhal numbers (St) as well as 

drag coefficients (CD) are compared with other experimental and numerical data. The lift 

coefficient is defined as 

2 / 2

L
L

F
C

u D

            (77) 

where FL is the lift force and is easily obtained by Equation (69a). The Strouhal number 

is defined as 

/qSt f D u           (78) 

where fq is the vortex shedding frequency and can be obtained from the time evolution of 

lift coefficients. 

Figure 15 shows the streamlines near the circular cylinder resulting from the 

exterior sharp interface scheme in the refined grid. The symmetric vortices are clearly 

observed in the wake region.  

 

Figure 15. Streamlines at (a) Re=20 and (b) Re=40 resulting from the exterior sharp 

interface scheme in the refined grid (D=40Δx). 
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Table 1. The effect of the number of forcing on drag coefficients and recirculation 

lengths at Re=40 in the implicit multi-direct-forcing scheme with 2-point and 4-

point discrete delta functions. 
The number of forcing (NF) 1  

(Explicit forcing) 
2 5 10 20 

With 4-point 
discrete delta 

function 

CD 1.597 1.589 1.585 1.584 1.584 

Lw 2.525 2.501 2.487 2.485 2.486 

boundary-error 1.6105×10-3 4.5004×10-4 8.5795×10-5 4.4316×10-5 4.3167×10-5 

With 2-point 
discrete delta 

function 

CD 1.576 1.573 1.574 1.575 1.577 

Lw 2.435 2.431 2.435 2.438 2.441 

boundary-error 7.4550×10-4 4.5476×10-4 3.2953×10-4 2.5711×10-4 1.8260×10-4 

 
 

Table 1 shows the effect of the number of forcing on drag coefficients, 

recirculation lengths, and boundary-errors at Re=40 in the coarse grid (D=20Δx). As the 

number of forcing increases, the boundary error decreases clearly. For the 4-point 

discrete delta function, the boundary-error is steeply reduced until 5 forcing times, and 

little change is observed at 10 and 20 forcing times. For the 2-point discrete delta 

function, the boundary-error is steeply reduced at 2 forcing times, and then it decreases 

slowly. In addition, by comparing boundary-errors between 2- and 4-point discrete delta 

functions for each forcing time, it is observed that the effect of implicit forcing iterations 

on the decrease in boundary-error is larger in the 4-point discrete delta function than in 

the 2-point discrete delta function. The reduction of the boundary-error leads to a better 

satisfaction of the no-slip condition inside the flow fields reconstructed by the discrete 

delta function interpolation. This can also be confirmed in the comparison of streamlines 

in Figure 16, where streamlines in the explicit diffuse interface schemes penetrate the 
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boundary of the cylinder, while those in the implicit diffuse interface schemes do not, 

which was also observed in [41]. For the 4-point discrete delta function, the drag 

coefficient and the recirculation length decrease similarly with the change of boundary-

error as the number of forcing increases, although their reduction magnitudes are small, 

below 1% and 1.5 %, respectively. However, for the 2-point discrete delta function, 

inconsistent results are observed. 

 

 

Figure 16. Streamlines when using (a) explicit diffuse forcing and (b) implicit diffuse 

forcing at Re=40 and (c) explicit diffuse forcing and (d) implicit diffuse 

forcing at Re=20. For all results, 4-point discrete delta functions were used in 

the coarse grid, and for implicit forcing methods, the number of forcing was 

20. 

 

Table 2 shows the effect of grid refinement on the drag coefficient and the 

recirculation length for each direct-forcing scheme. For the diffuse interface schemes, 
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the drag coefficient and the recirculation length decrease by 1% to 2% and 3% to 7%, 

respectively, as the grid size around the cylinder is halved. It is also observed that at 

Re=20, even for 4-point discrete delta function, the recirculation length is increased very 

slightly by the implicit forcing, while the drag coefficient still decreases. This result is 

consistent with the Taylor-Green vortex in that the implicit forcing increases the 

accuracy on the boundary points but does not ensure an increase in accuracy of the flow 

field, even for 4-point discrete delta functions. In contrast to the coarse grid, in the 

refined grid, the drag coefficient and the recirculation length are decreased by the 

implicit forcing for the 2-point discrete delta function at Re=40. Also, in this steady 

flow, the reduction of the drag coefficient obtained by adopting the sharper discrete delta 

function is larger than that obtained by adopting the implicit interface scheme instead of 

the explicit interface scheme. 

 
Table 2. The effect of the grid refinement on the drag coefficient and the recirculation 

length at Re=20 and 40. 
CD / Lw Explicit diffuse Implicit diffuse 

(NF=20) 
Explicit diffuse Implicit diffuse 

(NF=20) 
 (4-point delta)  (4-point delta) (2 point-delta) (2 point-delta) 

Re=20 Uniform (D=20Δx) 2.125 / 1.021 2.119 / 1.033 2.098 / 0.981 2.102 / 0.999 

 Refined (D=40Δx) 2.090 / 0.951 2.084 / 0.962 2.076 / 0.935 2.075 / 0.951 

Re=40 Uniform (D=20Δx) 1.597 / 2.525 1.584 / 2.486 1.576 / 2.435 1.577 / 2.441 

 Refined (D=40Δx) 1.572 / 2.398 1.560 / 2.360 1.560 / 2.352 1.555 / 2.340 

 
 

From Tables 1 and 2, we find that at steady flows of Re=20 and 40, the implicit 

scheme enhances the accuracy on the boundary in the diffuse flow field reconstructed by 
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the discrete delta function as compared with the explicit scheme. However, it does not 

fundamentally improve the accuracy of the surface force (from the results of drag 

coefficients) and the neighboring flow field (from the results of recirculation lengths). 

  Table 3 shows the comparison of drag coefficients and recirculation lengths at 

Re=20 and 40 with other numerical results [9, 26, 38, 41, 89-92]. The explicit and 

implicit diffuse interface schemes have larger drag coefficients and recirculation lengths 

than the sharp interface scheme. This can be attributed to their diffuse nature. The results 

are consistent with those of previous diffuse forcing methods based on the NSE [26, 91] 

and the LBE [38, 41]. For the sharp interface scheme, the recirculation length lies within 

the range of data obtained from other body-fitted grid and sharp methods based on the 

NSE [89-90, 92], and the drag coefficient is slightly larger but within 1.3% of [92]. 

 

Table 3. Comparison of drag coefficients and recirculation lengths at Re=20 and 40. 

Present results were computed in the refined grid. The number of forcing in the 

implicit multi-direct-forcing methods is 20. 
 Year Characteristics Re=20   Re=40  
   CD Lw  CD Lw 

Niu et al. [38]  2006 Explicit diffuse forcing, LBE 2.144 0.95  1.589 2.26 
Le et al. [25] 2008 Implicit diffuse direct-forcing, NSE 2.07 0.98  1.58 2.49 
Wang et al. [19] 2009 Implicit diffuse direct-forcing, NSE 2.25 0.98  1.66 2.35 
Wu and Shu [41] 2009 Implicit diffuse direct-forcing, LBE 2.091 0.93  1.565 2.31 
Fornberg [89] 1980 Body-fitted grid, NSE 2.0 0.91  1.5 2.24 
Park et al. [90] 1998 Body-fitted grid, NSE 2.01 -  1.51 - 
Ye et al. [92] 1999 Cut cell method (sharp method), NSE 2.03 0.92  1.52 2.27 
Kim et al. [9] 2001 Exterior sharp direct-forcing, NSE - -  1.51 - 
Present  2009 Explicit diffuse direct-forcing (4-point), LBE 2.090 0.95  1.572 2.40 
Present 2009 Explicit diffuse direct-forcing (2-point), LBE 2.076 0.94  1.560 2.35 
Present 2009 Implicit diffuse direct-forcing (4-point), LBE 2.084 0.96  1.560 2.36 
Present 2009 Implicit diffuse direct-forcing (2-point), LBE 2.075 0.95  1.555 2.34 
Present 2009 Exterior sharp direct forcing, LBE 2.057 0.91  1.538 2.25 
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Figure 17 presents streamline and vorticity contours at Re=100 and 150 at a time 

instant resulting from the sharp interface scheme in the refined grid. It is clearly 

observed that each flow has vortex shedding in the wake. Figure 18 shows the time 

evolution of drag and lift coefficients. The periodicity of the vortex shedding is clearly 

revealed for each scheme, although its value is different depending on the interface 

scheme adopted. 

 Table 4 presents average drag coefficients, lift coefficients, and Strouhal 

numbers at Re=100 for the present method and other experiments and numerical 

methods [3, 9, 12, 25-26, 41, 84, 90, 92-94]. Regarding the effect that the choice of 

discrete delta functions has in the present diffuse interface schemes, 2-point delta 

functions reduce the drag coefficient by 1% from that of 4-point delta functions for the 

explicit diffuse interface schemes, while the drag coefficients change little for the 

implicit diffuse interface schemes. In addition, the effect of the implicit forcing begins to 

be clearly revealed in this flow. The drag coefficients in the implicit diffuse interface 

schemes decrease by 2.2% and 1.2% for the 4- and 2-point discrete delta functions, 

respectively, becoming closer to those of the sharp scheme than those in the explicit 

diffuse interface schemes. This is in contrast to the results of the steady flows given in 

Table 2, where the reduction of drag coefficients was small, below 0.5%, in the refined 

grid. However, even the implicit diffuse interface schemes show higher average drag 

coefficients than the exterior sharp interface scheme does. This trend is also observed in 

other diffuse and sharp numerical methods given in this table. However, the present 

explicit and implicit diffuse interface direct-forcing schemes show slightly lower drag 
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coefficients (but closer to those of sharp schemes) (2% to 5%) than other explicit diffuse 

forcing methods [3, 84] and implicit diffuse forcing methods do [25-26, 41]. Results 

from the present exterior sharp direct-forcing IB-LBM show a good agreement with the 

body-fitted methods [90, 93], other sharp direct-forcing methods [9, 12], and 

experiments [93-94] for the Strouhal number. 

 

 

Figure 17. The instantaneous streamline and vorticity contours at (a) Re=100 and (b) 150 

resulting from the sharp direct-forcing method in the refined grid (D=40Δx). 

 

Table 4. Comparison of drag and lift coefficients and Strouhal number at Re=100. 

Present results were computed in the refined grid. The number of forcing in the 

implicit multi-direct-forcing methods is 20. 
 Year Characteristics Avg. CD CL St 
Roshko [93] 1953 Experiment - - 0.164 
Williamson [94] 1989 Experiment - - 0.166 
Lai and Peskin [3] 2000 Explicit diffuse Feedback-forcing, NSE 1.447 ±0.330 0.165 
Sui et al. [84] 2007 Explicit diffuse direct-forcing, LBE 1.438 ±0.344 0.166 
Su et al. [24] 2007 Implicit diffuse direct-forcing, NSE 1.40 ±0.33 0.166 
Le et al. [25] 2008 Implicit diffuse direct-forcing, NSE 1.39 ±0.346 0.16 
Wu and Shu [41] 2009 Implicit diffuse direct-forcing, LBE 1.364 ±0.344 0.163 
Kim et al. [9] 2000 Exterior sharp direct-forcing, NSE 1.33 ±0.32 0.165 
Choi et al. [12] 2007 Interior sharp direct-forcing, NSE 1.34 ±0.315 0.164 
Park et al. [90] 1998 Body-fitted method, NSE 1.33 ±0.33 0.165 
Liu et al. [93] 1998 Body-fitted method, NSE 1.35 ±0.339 0.164 
Present 2009 Explicit diffuse direct-forcing (4-point) , LBE 1.399 ±0.343 0.162 
Present 2009 Explicit diffuse direct-forcing (2-point), LBE 1.385 ±0.345 0.163 
Present 2009 Implicit diffuse direct-forcing (4-point), LBE 1.368 ±0.346 0.162 
Present 2009 Implicit diffuse direct-forcing (2-point), LBE 1.368 ±0.346 0.163 
Present 2009 Exterior sharp direct-forcing, LBE 1.336 ±0.329 0.165 
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Figure 18. Time evolution of (a) drag and (b) lift coefficients at Re=100 and (c) drag and 

(d) lift coefficients at Re=150. 

 

As can be seen in Table 5, the implicit forcing becomes more effective at Re=150 

than at Re=100. The drag coefficients obtained from the implicit forcing schemes 

decrease by 2.9% and 1.7% for the 4- and 2-point discrete delta functions, respectively 

from those obtained from explicit forcing schemes. The present IB-LBMs also follow 

the trend that diffuse methods [3, 24] have higher average drag coefficients than sharp 
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methods do [90, 93]. The present explicit and implicit diffuse direct-forcing schemes 

also show slightly lower drag coefficients and Strouhal numbers (2% to 4%) than other 

explicit diffuse forcing schemes [3] and implicit diffuse forcing schemes do [24], 

respectively. The sharp direct-forcing method shows comparable results (within 2%) 

with other body-fitted grid methods [90, 93] and experiments [93-94]. 

 

Table 5. Comparison of drag and lift coefficients and Strouhal numbers at Re=150. 

Present results were computed in the refined grid. The number of forcing in the 

implicit multi-direct-forcing methods is. 
 Year Characteristics Avg. CD CL St 
Roshko [93] 1953 Experiment - - 0.182 
Williamson [94] 1989 Experiment - - 0.183 
Lai and Peskin [3] 2000 Explicit diffuse feedback-forcing, NSE 1.44 - 0.184 
Su et al. [24] 2007 Implicit diffuse direct-forcing, NSE 1.39 - 0.187 
Park et al. [90] 1998 Body-fitted grid, NSE 1.32  

(Re=140) 
1.32 
 (Re=160) 

±0.482  
(Re=140) 
±0.550 
 (Re=160) 

- 
- 

Liu et al. [93] 1998 Body-fitted grid, NSE 1.334 ±0.530 0.182 
Present 2009 Explicit diffuse direct-forcing (4-point), LBE 1.392 ±0.540 0.182 
Present 2009 Explicit diffuse direct-forcing (2-point), LBE 1.379 ±0.544 0.182 
Present 2009 Implicit diffuse direct-forcing (4-point), LBE 1.351 ±0.542 0.181 
Present 2009 Implicit diffuse direct-forcing (2-point), LBE 1.355 ±0.543 0.181 
Present 2009 Exterior sharp direct forcing, LBE 1.312 ±0.513 0.184 

 

3. Flow past a sphere 

To test the applicability of the immersed boundary method in the D3Q19 MRT-LBE, we 

consider flow past a sphere. Many studies on this problem have been implemented 

through experiments and numerical simulations [8-9, 12, 95-101]. Flow past a sphere is 

steady and axisymmetric at very low Reynolds numbers (steady axisymmetric regime 

where Re<200). With increasing Reynolds number, the flow loses the axisymmetry first 

(steady planar-symmetric regime, where 210 Re 270  ) and then the steadiness 
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(unsteady planar-symmetric regime, where 280 Re 375  ). It should be pointed out 

that the Reynolds numbers indicating the range of each regime slightly differ for 

different researchers. 

We simulate various laminar flows past a sphere with Re=100, 150, 200, 250, 

and 300 belonging to the regimes mentioned above. A sphere of diameter D is located in 

the center of the computational domain of 10D×10D×20D. To reduce the number of 

nodes used in the calculation, we also consider the local grid refinement method [88]. As 

presented in Figure 19, two-level grid refinements are used in this simulation. In the 

figure, the region outside the red block consists of cubic cells with grid sizes of ∆x=0.2D 

for Re=100, ∆x=0.1D for Re=150 and 200, and ∆x=0.0625 D for Re=250 and 300. The 

red block (3D×3D×6.5D), excluding the blue block, (level 1) has the halved grid size of 

the original size, and the blue block (2D×2D×5D) (level 2) has the halved grid size of 

the size in the level 1 block.  

 

 

Figure 19. Two-level local grid refinement adopted in the simulation (Unit: D). 
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From the calculations, we obtained the steady results for Re=100, 150, 200, and 

250 and the unsteady result for Re=300. Figure 20 presents steady streamlines past a 

sphere at Re=100, 150, 200, and 250 on yz-plane. The streamlines at Re=100, 150, and 

200 show axisymmetric vortices behind a sphere with a larger size at a higher Reynolds 

number; however the axisymmetry of vortices is broken in the streamline at Re=250, 

although the flow remains steady. 

 

 

Figure 20. Streamlines past a sphere on the yz-plane at (a) Re=100, (b) Re=150, (c) 

Re=200, and (d) Re=250. 

 

Figure 21 shows the vortical structure past a sphere at Re=300 at an instant time. 

Here, the vortical surfaces are obtained using the method of Jeong and Hussain [102]. It 

is observed that hairpin-like vortices are periodically shed in a fixed orientation, which is 

a characteristic of the unsteady planar-symmetric regime. 
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Figure 21. Vortical structure past a sphere at Re=300. 

 

Table 6 presents drag coefficients, lift coefficients (for Re=250 and 300 only), 

and Strouhal numbers (for Re=300 only) from the present and other numerical 

calculations. They show a good agreement. 

 

Table 6. Comparison of drag and lift coefficients and Strouhal numbers with other 

numerical experimental results for flow past a sphere. 
Re 100 150 200 250 300 
 CD CD CD CD CL CD CL St 

Apte et al. [95] 1.10 0.90 -  -  - 0.686 -  - 

Mittal [96] 1.09 -  -  -  - -  -  - 

Mittal et al. [97] 1.08 0.88 -  - - 0.68 -  - 

Clift et al. [99] 1.09 0.89 -  - - 0.684 - - 

Johnson and Patel [100] 1.09  0.9 -  0.70 0.062 0.656 0.069 0.137 

Marella et al. [101] 1.06  -  -  -  - 0.621 -  - 

Kim et al. [9] 1.087 -  0.815 0.701 0.059 0.657 0.067 0.134 

Fadlun et al. [8] 1.0794 -  -  -  - - -  - 

Constantinescu and 
Squires [98]  -  -  0.7683 0.70 0.062 0.655 0.065 0.136 

Choi et al. [12] 1.09 - - 0.70 0.052 0.658 -  - 

Present 1.0802 0.889 0.7695 0.7048 0.0582 0.6577 0.0654 0.1336 
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In this section, we validated the IB-LBM based on the split-forcing D3Q19 

MRT-LBE with the sharp interface scheme. Thus, it is expected that with the suitable 

turbulence models the present IB-LBM can be extended to various 3D applications 

including high-Reynolds-number flows. 

 

4. Flow in the pebble channel 

The packed (or pebble) bed has been broadly used in chemical catalytic reactors due to 

its high potential for the enhancement of heat and mass transfer [103-106]. In the nuclear 

engineering field, the pebble bed reactor (PBR) has been considered as a type of very 

high temperature reactor (VHTR) [107]. In the PBR, the helium gas is used as coolant 

and the flow has a relatively high Reynolds number under high pressure and temperature 

conditions. From the viewpoint of nuclear safety, the heat transfer in the reactor core, 

especially the maximum fuel temperature and its location should be predicted. 

Therefore, the local flow field analysis in the reactor is required.  

One of the issues of CFD calculation in the PBR geometry is mesh generation 

near the contacting point between pebbles because meshes with high resolution and 

quality are required in the region. To circumvent this problem, many researchers 

assumed narrow gaps between adjacent pebbles [108-111]. However, Lee et al. [111] 

showed that the assumption of a narrow gap could distort the flow and heat transfer 

phenomena. They also showed that point or area contacts have similar flow and heat 

transfer. Here, it needs to be pointed out that the concept of the area contact is physically 
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reasonable because the real pebbles are touching with some area, not a point, due to their 

weights. 

In this section, we apply the direct-forcing IB-LBM based on the split-forcing 

MRT-LBE with the sharp interface scheme to the flow in a pebble channel where 

pebble-pebble and pebble-wall contacts exist as shown in Figure 22. Calis et al. [108] 

measured pressure drop for this case. This is a preliminary study for the simulation of 

real flow through a pebble bed in PBR, where the flow is turbulent and pebbles are 

randomly distributed. 

 

z

y

x

 

Figure 22. Geometry of the pebble channel. 

 

In the application of the current method to this problem, we also face the problem 

of treatment of the region near the contacting point. However, this is now not a mesh 

generation problem but an interpolation problem in the IB-LBM. 

When we applied the sharp interface scheme to the external flow past a sphere in 

Section D.3, the forcing node inside the solid had at least a neighboring node outside the 

boundary in a certain direction for the interpolation because all computational nodes just 

outside the solid boundary are fluid nodes. The selection of tri-linear, bilinear, and linear 

interpolations depended on the number of available neighboring nodes outside the solid 

boundary. However, in this pebble-channel problem, some of such nodes outside the 
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solid boundary may be no longer fluid nodes because other solid objects such as wall or 

pebbles are toughing at some region. Therefore, the level of interpolation of forcing 

nodes may degenerate. For example, the forcing node with a tri-linear interpolation 

available without contacts may become only possible for the bi-linear or linear 

interpolations with contacts. Especially, the forcing node with only a linear-interpolation 

available can be no longer a forcing node around the solid contacts. In this case, no 

forcing is imposed in the region around the contacting point, thus automatically having 

area contacts. 

With this methodology, we simulate the laminar flows in a pebble channel with 

Reynolds numbers of 100, 200, and 300. We consider the case that aligned eight 

contacting pebbles with diameters of 12.7 mm located in the square channel with a 

channel-to-pebble diameter ratio of 1, i.e., with a simple cubic (SC) structure, as shown 

in Figure 22. The porosity (ɛ) in this geometry is 0.4764. The channel length is set to 200 

mm. Uniform velocity and pressure boundary conditions are imposed at inlet and outlet, 

respectively. The halfway bounce-back scheme [39] is adopted for the channel wall, and 

the immersed boundary method is used for the pebble boundary. The grid size is set to 

∆x=D/80. 

We first compare the friction factors. The friction factor, i.e., pressure drop, is 

also very important parameter in the PBR design. In the PBR design calculation, the 

friction factor based on superficial velocity (u0) and pebble diameter Dp, which is 

defined by 
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is usually adopted. Many correlations are developed for this friction coefficient. Among 

them, the following correlations are prevalently used [112-113]: 
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where Reɛ is the modified Reynolds number defined by 
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In contrast, the friction factor provided in the Calis et al.’s experiment is defined by 
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where Dh is a hydraulic diameter considering not only pebble surfaces but also channel 

walls, and u is not a superficial velocity (u0) but a mean velocity in the pebble channel 

with the relation of 0 /u u  . The following relations between two correlations and their 

parameters hold: 

1
h pD k D







,          (83a) 

0 0( / ) /(1 )
Re Re

(1 )

p ph
h

u kD u Du D
k k

v


  

  


   


,    (83b) 

3

, 2 2 2

0 0

/(1 )1 1
2

/ 2 ( / ) / 2 1

2

p ph
D Calis

D

kD DD P
f P P k

L u L u L u

k f

  

    

  
     

 



 (83c) 



75 
 

 
 

where k changes depending on whether the channel walls are considered in the hydraulic 

diameter calculation, as in the following: 
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As a result, the above correlations (80a) and (80b) can be written for the friction factor 

adopted in Calis et al.’s experiment as 
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where h1 and h2 indicate the hydraulic diameter without and with considering the 

channel walls, respectively.  

Figure 23 presents the comparison of friction factors between the present 

method, experiment [108], and correlations (84a) and (84b). The results from the present 

method and the experiment show a good agreement. However, the results from the 

correlations (with and without considering wall channel in the calculation of hydraulic 

diameter) show big differences. This may be because the correlations were derived from 

the experiment with large channel-to-particle diameter ratio, and the particles were 

randomly distributed. 
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Figure 24 presents velocity vector field in the yz-plane with x=D/4 at Re=200. 

Symmetric vortices behind each pebble are clearly captured. Similar symmetric vortices 

are also observed at Re=100 and 300. 

Figures 25 and 26 present streamwise and lateral velocities, respectively, in the 

xy-planes at the center of the 4-th pebble (z4), the right-end (z4+r), and the middle of two 

points (z4+0.5r) where r is the radius of the pebble. In Figure 25, we can observe that the 

steamwise velocity contours at Re=300 have distorted shape compared with those at 

Re=100. Here, the center circles in Figure 25(e) and (f) indicate the area contact regions 

generated by using the sharp interface scheme without modification. In Figure 26, we 

consider only the quarter section of the entire area to see the details. It is observed that 

more vortices are generated at higher Reynolds numbers. The existence of these vortices 

also explains the distorted shapes of the streamwise velocity contours at Re=300 in 

Figure 25. 

Figure 27 shows the comparison of the lateral velocity vector field at Re=100 

between the current calculation with area contact and the narrow gap approach, where 

pebbles with diameter of 0.98D were considered under the same other conditions. Two 

lateral velocity fields are similar, but the vortex center obtained from the narrow gap 

approach is slightly closer to the center region. The penetration of vortices can be 

attributed to no blockage at the center region in the narrow gap approach. It should be 

noted that, as discussed above [111], in the turbulent case, the narrow gap approach 

could produce quite different results from the contacting approach unlike these laminar 

flow results. 
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Figure 23. Comparison of friction factors in the pebble channel. 

 

 

Figure 24. Velocity vector field on the yz-plane with x=D/4 at Re=200. 
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Figure 25. Streamwise velocity contours in the xy-plane: (a) Re=100 and (b) Re=300 

z=z4, (c) Re=100 and (d) Re=300 at z=z4+0.5r, and (e) Re=100 and Re=300 at 

z=z4+r. The velocity normalized by inlet velocity was used. 
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Figure 26. Lateral velocity vector fields in the quarter section of the xy-plane: (a) 

Re=100 and (b) Re=300 z=z4, (c) Re=100 and (d) Re=300 at z=z4+0.5r, and 

(e) Re=100 and Re=300 at z=z4+r. Circles indicate the vortices. 
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Figure 27. Comparison of lateral velocity vector fields between (a) area contacting due 

to the immersed boundary method and (b) the narrow gap approach. 

 

E. Conclusions 

In this chapter, the direct-forcing formula based on the explicit-type split-forcing LBE 

[42, 114] was derived, and under the formula, various interface schemes were assessed 

through flow problems with stationary complex boundaries. 

By simulating the Taylor-Green decaying vortex, the direct-forcing IB-LBM 

with diffuse and sharp interface schemes turned out to have a second-order overall 

accuracy. In the problem, by comparing the diffuse interface schemes with 2-point and 

4-point discrete delta functions and the exterior sharp interface scheme, we found that 

better accuracy is attained as a narrower interface of forced points is adopted. In the 

simulation of flows past a circular cylinder with various Reynolds numbers, the present 

IB-LBM with each interface scheme showed comparable results with other experiments 
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and numerical methods. For the implicit forcing effect, the boundary accuracy was 

consistently enhanced as the number of forcing increased in both problems, whereas the 

flow field accuracy did not show enhancement of the accuracy; this could be explained 

by the fact that the scheme still has the diffuse nature due to the adoption of discrete 

delta functions. Thus, the IB-LBM with a sharp interface scheme is recommended for 

the complex boundary problem in order to obtain more accurate results.  

The direct-forcing IB-LBM based on the D3Q19 MRT-LBE with the sharp 

interface scheme was validated through the flow past a sphere and then successfully 

applied to the laminar flow in a pebble channel, which is a preliminary study for real 

flows in the PBR. 
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CHAPTER IV 

IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD FOR MOVING 

BOUNDARY PROBLEMS 

 

A. Introduction 

The suitable treatment of moving boundary problems is one of challenging issues in the 

computational fluid dynamics (CFD) field. Various numerical methods have been 

developed for these problems. The methods for describing complex moving solid 

boundaries can be classified into three major groups depending on the “grid structure” 

used [115]: body-conformal grid approach, overset grid approach (or chimera method), 

and non-body-conformal grid approach.  

In the body-conformal grid approach, the no-slip boundary condition is easily 

satisfied. However, as a solid boundary moves, the mesh should be deformed and 

adapted to the fluid-solid boundary. The Arbitrary Lagrangian Eulerian (ALE) method 

[116-117] is an example of this concept. The ALE method is based on a moving 

unstructured mesh. This technique has a relatively good accuracy if care is taken during 

the mesh adaptation. However, frequent re-meshing requires a considerable 

computational cost. 

In the overset grid approach, we use a combination of moving and stationary 

grids, where the surroundings are described on a stationary grid and a moving grid is 

attached to the object. In this approach, boundary conditions on the object can be set 

easily; however, a major disadvantage is associated with numerical problems in the 
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information transport between the grids, i.e., the interpolation procedure implies reduced 

computational efficiency and, potentially, accuracy of the numerical scheme as 

compared with a single (stationary) grid approach. In addition, this approach would be 

unsuited when considering particles or deformable objects [115]. 

In the non-body-conformal grid approach, including the immersed boundary 

method, we usually use the fixed Cartesian grid. Instead of adapting the mesh to the 

boundary, the momentum source term is adopted to describe the boundary effect. This 

approach avoids the inefficiency of frequent re-meshing in body-fitted grid approach and 

broader applications to moving boundary problems compared with the overset grid 

approach. Besides, the forces acting on the object will be directly available; therefore, 

studies of fluid-structure or fluid-particle interactions are more straightforward. 

To properly describe the moving solid boundary problems, two-way interactions 

from solid to fluid and from fluid to solid should be considered. The effect of the solid to 

fluid is realized by the no-slip boundary condition, which is attained by the boundary 

forcing term in the IBM, and the effect of the fluid to solid is represented by the surface 

force exerted on the solid by the fluid. The surface force usually plays a role as a source 

term of movement of solid objects. For example, the surface force exerted on the particle 

is a source term of the governing equation of particle motion (Newton’s equation of 

motion) in particle-fluid two-phase flows, and the surface force on the cylinder is a 

source term of the equation governing flow-induced-vibration (FIV) of elastically 

mounted cylinders (e.g., the mass-spring-damper equation). 
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In this chapter, we apply the present IB-LBM to various moving boundary 

problems. In many cases, we compare both the sharp and diffuse interface schemes 

simultaneously to understand the advantages and disadvantages of each scheme and find 

suitable combinations of the direct-forcing formula and the interface scheme for moving 

boundary problem simulations. In the validation and application processes, we are 

required to evaluate the surface force and solve additional equations of solid motions. 

Therefore, we begin with a discussion of the calculation models related to surface force 

evaluation, Newton’s equation of motions, particle-particle and particle-wall collision 

models in Section B. Then, in Section C, we simulate various moving boundary 

problems. We first consider a problem of flow induced by inline oscillation of a circular 

cylinder (Section C.1) since both experimental and body-conformal grid method results 

are available for this problem [118]. Then, to check the applicability of the present IB-

LBM to moving boundary problems, we consider the following problems in this chapter: 

 Sedimentation of 2D (single, double, and multiple) particles (Sections C.2, C.3, 

C.4, and C.5); 

 Particle behaviours in the channel with holes (Section C.6); 

 Sedimentation of spherical particles (Sections C.7); 

 Flow-induced vibration of the cylinder (Section C.8). 

 

B. Calculation Models 

To realize the two-way coupling of solid-fluid interactions, an accurate surface force 

evaluation, as well as an accurate application of the no-slip condition, is very important 
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because the surface force determines the displacement of moving solid objects 

(structures or particles). In the context of the IBM, the surface force exerted on the 

object by the fluid is directly evaluated by the summation of the boundary force with 

added mass force. This is shown in Section B.1. Also, to simulate the particle motion in 

the particle-fluid flows, Newton’s equations of (translational and angular) motions are 

required. The surface force exerted on the particle surface by the fluid is coupled with 

the Newton’s equation of motions as a source term. This is discussed in Section B.2. In 

addition, since particles not only interact with the fluid but also collide with the wall and 

other particles in usual multiple particle-fluid flows, we need particle-particle and 

particle-wall collision models. We adopt simple repulsive models based on the distance 

between particles or between particle and wall in this study. The details are given in 

Section B.3. 

 

1. Surface force evaluation in the immersed boundary method 

In the IBM, the surface force exerted on the solid can be easily evaluated. As depicted in 

Figure 28, we can consider two control surfaces (Ss and Sf), which can vary with time, 

and the resulting control volumes surrounded by the two control surfaces (V, Vs, and Vf) 

in the fluid field. For the control surface Ss, the force from the fluid outside the surface 

(Vf) to the surface (Ss) can be expressed as: 

[ ( )] ]
s

f s s s
S

dS     F u u u σ n         (85) 

where su is a boundary velocity of the control surface Ss, σ is the viscous stress tensor, 
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and ns is its outward surface vector. If the Ss is an impermeable surface, i.e., no flow 

passes through the surface, then su u , so that Equation (85) becomes 

s
f s s

S
dS   F σ n .          (86)  

For the control volume Vf surrounded by the control surfaces Ss and Sf, from the 

Cauchy’s stress principle, the linear momentum balance can be written as: 

[ ( ) ] [ ( ) ] ( )
f f s

f f s s
V S S

dV dS dS
t

  


         
   u u u u σ n u u u σ n   (87) 

where nf is the outward surface vector of Sf. Using Equation (86), we can rewrite 

Equation (87) as: 

[ ( ) ]
f f

f s f f
V S

dV dS
t

 


     

  u F u u u σ n .      (88) 

For the control volume V covering both Vf and Vs, when boundary forces exist, the linear 

momentum balance can be expressed as: 

[ ( ) ]
f s f f s

f f
V V S V V

dV dS dV
t

 


     
   u u u u σ n F     (89) 

 

 

Figure 28. Two time-varying control surfaces (Ss and Sf) and corresponding control 

volumes (V, Vs, and Vf) in fluid domain. 
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Subtracting Equation (88) from Equation (89), we can obtain the following surface force 

formula: 

s f s
f s

V V V
dV dV

t



 
  F u F        (90) 

where the first term in the left-hand side indicates the added mass effect. If the volume 

Vs is a rigid solid body with a center-of-mass velocity of Uc, the first term in Equation 

(90) can be replaced by /s cV t  U  [23, 119-120], and thus Equation (90) becomes 

f s

c
f s s

V V
V dV

t



 

 
U

F F ,        (91) 

which will be used in this chapter for the surface force evaluation of the solid body with 

acceleration. For reference, if the rigid solid body is fixed or moving with a constant 

velocity, Equation (91) simply becomes 

f s
f s

V V
dV  F F .          (92) 

From Equations (90), (91), and (92), we can find that if the immersed boundary force is 

exact, the surface force on the solid body can be directly calculated by integrating (or 

summing in a discrete sense) the boundary force terms regardless of the positions (inside 

or outside the boundary). This is one of the advantages of using the IBM. Specifically, 

for the sharp interface schemes, since dV directly matches with cubic cell volume (area 

in 2D), the term can be evaluated using [3, 9]: 

2

,

,f s
i j

V V
i j

dV x  F F  in 2D       (93a) 

3

, ,

, ,f s
i j k

V V
i j k

dV x  F F  in 3D       (93b) 
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In contrast, for diffuse interface schemes, the term can be calculated by [20] 

f s
b b

V V
b

dV S x   F F         (94) 

where ΔSb is the area (arc length in 2D) of the surface boundary at a forcing point b. 

 

2. Newton’s equation of motion for moving particle 

For the simulation of a moving particle, we have to consider the motion equations of the 

particle. The Newton’s equation of translational particle motion is 

( )c
s s f s

S

d
M d V

dt
     

U
σ S g        (95) 

where Uc is the center-of-mass velocity of the particle; M, S, V, and ρ are mass, surface, 

volume, and density, respectively; and subscripts f and s indicate the fluid and the solid, 

respectively. The first term in the right-hand side of Equation (95) indicates the force 

from fluid to solid, which consists of stationary surface force and added mass force due 

to acceleration. From Equations (91), (92), (93), and (94), the stationary surface force 

can be expressed in terms of the boundary forcing based on Equation (65). Hence, 

s
b f b f

S V V V

d
d dV dV dV M

t dt



       

   
U

σ S F u F .    (96) 

On the other hand, Newton’s equation of angular particle motion is 

( )c
s w c

S

d
I d

dt
    

Ω
X X σ S        (97) 

where Ωc is the angular velocity of the particle, Is is the moment of inertia, and Xw and 

Xc are position vectors of a wall surface and the center. Equation (97) can be rewritten in 
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terms of boundary forcing as 

( ) ( )

( )

c
s b c b w s f

V V

c
b c b f

V

d
I dV dV

dt t

dV I
t




      



    



 



Ω
x X F X X u

Ω
x X F

    (98) 

where 2

f f sI M R  in 2D and 22 / 5f f sI M R  in 3D. As a result, the discretized Newton’s 

equations of motion corresponding to Equations (96) and (98) can be written as 

1 1(1/ )[ ( ) ] ( / )( )n n n n n

c c s b b s f f s c c

b

M V M M t M M         U U F g U U   (99) 

and 

1 1(1/ )[ ( ) ] ( / )( )n n n n n

c c s b c b b f s c c

b

I V t I I         Ω Ω x X F Ω Ω ,   (100) 

respectively. Here, translational and angular acceleration terms are discretized based on 

current (n) and previous time steps (n-1), as in [120]. The center position at n+1 time 

step can be expressed as: 

1 10.5( )n n n n

c c c c t    X X U U .       (101) 

Thus, the wall velocity on the forcing point Xw  at the next time step can be evaluated as 

1 1 1 ( )n n n

w s s w c

     U U Ω X X ,       (102) 

and using this velocity and the direct-forcing formula, we can obtain the next time step 

boundary force 1n

b


F  at forcing nodes.  

 

3. Particle-particle and particle-wall collision models 

In the simulation of particles in the fluid, collision models are required to prevent 

particles from penetrating into other particles or wall. Following the repulsive force 
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model for particle-particle collisions in [20], the repulsive force on the i-th particle from 

the j-th particle  is 

2

2

0, || ||

|| ||
, || ||

|| ||

|| ||

,|| ||
|| |||| ||

i j i j

ij i j i j i jp
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 


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    
 
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x x
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F x x

x x

x x

x x
x x

x xx x

 (103) 

where x is the particle center position vector; the parameter cij is the force scale which is 

chosen to be the buoyancy force on the body; εB is the stiffness parameter for particle-

particle collisions; EB is also the stiffness parameter but has the higher value than εB; R is 

the radius of particle; and ζ is the range of the repulsive force. Here, subscripts i and j, 

except those in cij, indicate i-th and j-th particles.  

For particle-wall collisions, the repulsive force on the i-th particle by the wall 

collision is similarly given as [20]: 

,

2

, ,

,

,

2

,

,

,

,,

0, || || 2

|| || 2
, 2 || || 2

|| ||

|| || 2

, ||
|| ||2 || ||

i i j i

ij i i j i i i jw

i i i i j i

W i i j

ij i i j i

i i jW

i i j

i i jij i i i j
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c R
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(104) 

where xi,j is the position of a fictitious particle Pi,j, which is located symmetrically on the 
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other side of the wall, and εW and EW are stiffness parameters for wall-particle collisions.  

Then, the total collision repulsive force exerted on the i-th particle by other particles and 

the wall, c

iF , can be expressed as: 

1,

c p w

i ij i

j j i 

 F F F .         (105) 

This force is additionally included as a source term in the right-hand side of Newton’s 

equation of motion (Equation (99)) of the i-th particle. 

 

C. Simulation Results 

1. Fluid induced by an inline-oscillating 2D circular cylinder 

In this section, we investigate the flow induced by an inline-oscillating cylinder in the 

fluid initially at rest as depicted in Figure 29. The inline-oscillation of the cylinder is 

governed by the following harmonic oscillation: 

sin(2 )cX A f t           (106) 

where Xc is the position of the cylinder center, and A and f are the amplitude and the 

frequency of the oscillation, respectively. This flow is characterized by Reynolds (Re) 

and Keulegan-Carpenter (KC) numbers, which are defined as: 

,max
Re

cU D


           (107) 

and 

,max
KC

cU

f D
           (108) 

respectively. Here, Uc,max is the maximum velocity of the cylinder during oscillation, D 
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is the cylinder diameter, and ν is kinematic viscosity. In this study, the computation is 

implemented at Re=100 and KC=5, at which the experimental (LDV) and numerical 

(body-fitted method) data by Dütsch et al. [118] are available. Hence, we can 

quantitatively compare the sharp and diffuse interface schemes with those. 

  

 

Figure 29. Geometry, computational domain, coordinates, and boundary conditions of 

the inline-oscillating cylinder problem. 

 

The computational domain size is 30D×20D, and Neumann boundary conditions 

are imposed on four outer sides of the domain, as shown in Figure 29. For the cylinder 

surface boundary treatments, the IBMs with the sharp and implicit diffuse interface 

schemes are used. In the implicit diffuse interface scheme, forcing points are uniformly 

distributed on the cylinder boundary with the spacing of Δsb=Δx. We first performed the 

sensitivity study on time step and grid sizes. The implicit diffuse interface schemes were 

used for the sensitivity study. As a target variable, we considered the streamwise force 

coefficient, which is defined as: 
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21
,max2

x
x

c

F
C

U D
              (109) 

where Fx is the streamwise surface force and is directly obtained from the immersed 

boundary method using Equation (91) with Equations (93a) or (94) depending on the 

interface scheme employed. 

First, for the sensitivity of time step size, in the domain of 30D×20D with 

D=40Δx, we considered Δt=T/2000, T/3000, and T/4000. Figure 30 shows the resulting 

streamwise force coefficients. At Δt=T/2000, it shows a slight discrepancy, whereas at 

Δt=T/3000 and T/4000, similar results are displayed. Thus, we take Δt=T/3000 in the 

later calculations. 

For the sensitivity of the grid size, we considered Δx= D/20, D/30, D/40, D/50, 

and D/60. Figure 31 presents the resulting streamwise force coefficients. It is observed 

that almost converged results are reached from D=40Δx. 

 

Figure 30. The effect of time step size on the streamwise force coefficient. 
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Figure 31. The effect of grid size on the streamwise force coefficient. 
 

Figure 32 presents the vorticity fields at four phase angles of 0o, 96o, 192o, and 

288o. Both the sharp and implicit diffuse interface schemes show qualitatively similar 

vorticity fields observed by body-fitted grid methods in Dütsch et al. [118]. However, 

the pressure field (not given here) from the sharp interface scheme has some wiggles, 

which may be due to the spurious oscillation. This oscillation is later shown during the 

variation of streamwise force coefficients. 

Next, to quantitatively assess the two schemes, we compare the velocity data at 

locations x = -0.6, 0, 0.6, and 1.2D at the phase angle 330o. Figures 33 and 34 present the 

horizontal and the vertical velocities at the phase angle 330o obtained from the sharp 

interface scheme and the implicit diffuse interface scheme, respectively. Both figures 
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include experimental and numerical data of Dütsch et al. [118]. We can observe that 

both schemes display a good agreement with Dütsch et al.’s results. 

 

 

Figure 32. Vorticity fields obtained from (a) the sharp interface scheme and (b) the 

implicit diffuse interface scheme. 
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Figure 33. Comparison of (a) horizontal and (b) vertical velocities at the phase angle of 

330o at x = -0.6, 0, 0.6, and 1.2D between the sharp interface scheme and 

Dütsch et al. (1998). 
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Figure 34. Comparison of (a) horizontal and (b) vertical velocities at the phase angle of 

330o at x = -0.6, 0, 0.6, and 1.2D between the implicit diffuse interface 

scheme and Dütsch et al. (1998). 

 

Figure 35 presents the streamwise force coefficient variation obtained from the 

exterior sharp interface scheme with Δx=D/40. The gray line shows spurious oscillations 

due to discontinuous change of nodes used in the interpolation. However, if we adopt the 

filtering (for example, low-pass FFT filtering) or smoothing, as Miller and Peskin [121] 

and Shen et al. [122] recommended, it shows a good agreement with Dütsch et al.’s data. 
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It should be pointed out that we also tested the sharp interface schemes, which had been 

developed for reducing such spurious oscillations by Yang and Balaras [28] and Liao et 

al. [119], but only minor improvements were obtained under the IB-LBM based on split-

forcing LBE. This may be due to the difference between the Navier-Stokes equations 

and the lattice Boltzmann equations. 

 

Figure 35. Streamwise force coefficients obtained from the sharp interface scheme 

before and after low-pass FFT filtering. 

 

When the grid sensitivity study with Δx=D/20, D/30, D/40, D/50, and D/60 was 

performed for the exterior scheme with filtering, despite not being given here, the results 

almost converged from Δx=D/30. In contrast, as presented in Figure 31, when adopting 

the diffuse interface schemes, the streamwise force coefficients show a bigger 
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discrepancy with the measure data. Particularly, the largest discrepancies occurred near 

phase angles of 90o and 270o (where the magnitude of acceleration is the maximum) and 

the least discrepancies occurred at angle phases of 0 and 180o (where the magnitude of 

acceleration is zero). In other words, the larger the magnitude of acceleration the 

cylinder has, the larger the discrepancy in the surface force coefficient is. It should also 

be noted that to the best of our knowledge, no direct-forcing IBM with diffuse interface 

schemes except [91] was documented for this problem. In [91], the multi-direct-forcing 

IBM with the diffuse interface scheme was used but the governing equations were based 

on vorticity equations, not pressure equations. In their calculation results of the force 

coefficient for the comparison, they also provided the results from the direct-forcing 

IBM with the diffuse interface schemes based on the pressure equation, which showed 

large discrepancies near phase angles of 90o and 270o as in this study. On the other hand, 

from the results of flow past a stationary circular cylinder in Chapter III, we can observe 

that the diffuse interface schemes can have maximum 5% larger drag coefficients than 

body-fitted methods can at Δx=D/40. However, the largest discrepancy for the 

oscillating cylinder in this study is about 8% under Δx=D/40.  

To mitigate the over-prediction, we can adopt the concept of the effective radius 

as in [123], which corrects over-estimation of the drag coefficient due to the effect of 

diffuse boundary. From the stationary results in Chapter III, we can approximate the 

effective radius (reff) as 

0.5eff sr r x   .         (110) 

Thus, we retract the surface on which the forcing points are distributed by an amount of 
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0.5∆x from the geometric surface. The resulting surface coefficient variation at ∆x=D/40 

is given in Figure 36, which shows a good agreement with Dütsch et al.’s data. Using the 

reduced radius can be interpreted as locating the forcing node at the center of the cell 

with a surface boundary instead of putting the forcing node on the surface boundary. It 

should also be noted that the radius for the evaluation of Vs in the added mass term is the 

geometric radius (rs), not the corrected radius.  

 

Figure 36. The streamwise force coefficients with and without considering the diffuse 

boundary effect. 

 

In summary, velocity results (vorticity, horizontal and vertical velocities) from 

both schemes showed overall a good agreement with experimental and body-fitted 

calculation data of Dütsch et al. [118]. However, the sharp interface scheme showed 
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spurious oscillations in the streamwise surface force coefficient, although after filtering 

or smoothing, it showed a good agreement with the experiment. In contrast, the diffuse 

interface scheme produced smooth variations in the surface force coefficient due to the 

use of discrete delta function, which involves the information of interior nodes inside the 

solid boundary, thus smoothing the discontinuous change of nodes. However, such a 

property of the discrete delta function reduced the accuracy. Specifically, the reduction 

of accuracy was larger in the oscillating cylinder in this study than in the fixed cylinder. 

This discrepancy could be mitigated by considering the effective radius. 

 

2. Sedimentation of single 2D circular particle 

As a starting point of the application of the present IB-LBM to particle-fluid two-phase 

flows, we perform the numerical simulation of the motion of a 2D circular cylinder 

particle falling in the channel. The channel is [0,2]×[0,6] in cm and the circular particle 

with diameter Dp=0.25 cm is initially located at (1,4). The fluid and the particle are 

initially at rest. The density (ρf) and dynamic viscosity (μ) of the fluid are 1 g/cm3 and 

0.1g/cm-s, respectively, and the density of the particle (ρp) is 1.25 g/cm3. Calculations 

are implemented for two different lattice sizes of 0.01 and 0.005 cm. 

For the validation of the present IB-LBM, we adopt the sharp interface scheme 

and the explicit diffuse interface scheme with 4-point discrete delta function. 

Figure 37 shows velocities, pressures, and vorticities of the fluid affected by a 

moving particle at a time instant. Here, two vortices are clearly captured in the wake 

region of the falling particle with low pressure. 
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Figure 37. (a) Velocity vector field and (b) pressure and (c) vorticity contours at 0.7 s 

obtained from the standard diffuse scheme. 

 

To quantitatively validate our simulations, the maximum particle Reynolds 

number is considered. The maximum particle Reynolds number is defined as 

2 2

max

( ) ( )
Re max

p p p p

t

D u t v t



 
 
 
 

       (111) 

where up and vp are x- and y-velocities of the falling particle. Table 7 presents the 

maximum Reynolds numbers obtained from the present calculations and the Lagrange 

multiplier fictitious domain method by Glowinski et al. [124]. The results from the sharp 

interface scheme and the diffuse interface scheme with the corrected radius show an 

excellent agreement with those from the Lagrange multiplier fictitious domain method. 

However, the results from the standard diffuse interface scheme with the actual radius 
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and added mass force show under-prediction. Without considering the added mass force, 

the results are more under-predicted. 

 

Table 7. Comparison of the maximum Reynolds numbers in single particle 

sedimentation. 

Sharp interface 
scheme 

Diffuse interface scheme Glowinski et al. 
[124] Standard Without added mass force With corrected radius 

17.44 (1/100 cm) 
17.46 (1/200 cm) 

17.06 (1/100 cm) 
17.28 (1/200 cm) 

17.02 (1/100 cm) 
17.20 (1/200 cm) 

17.44 (1/100 cm) 
17.47 (1/200 cm) 

17.44 (1/192 cm) 
17.51 (1/256 cm) 

 

To investigate this in greater detail, we compare time histories of particle vertical 

position and velocity in Figures 38 and 39, respectively. The particle starts to move 

downward because the gravitational force is greater than the buoyancy force. As the 

particle falls down, its velocity increases, and accordingly, the drag force also does. The 

drag force becomes close to the difference between gravitational and buoyant forces, and 

accordingly, its velocity becomes constant. In Figure 38, the vertical particle velocities 

from the present calculation are compared with those from the Lagrange multiplier 

fictitious domain method [124]. We can find that consideration of the added mass force 

is important because without it, the vertical velocity and position show quite large 

discrepancies with other cases. The effect of the corrected radius is relatively small 

compared with that of the added mass effect. However, as will be shown in Section C.7, 

the effect of the corrected radius is more dominant in the sedimentation of a 3D spherical 

particle because more forcing nodes are involved in the evaluation of the surface force. 
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Figure 38. Vertical position of a circular particle falling in the channel with time. 

 
Figure 39. Vertical particle velocity variations. 
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The sharp interface scheme and the diffuse interface scheme with the corrected 

radius show almost the same vertical variation of position and velocity. However, as 

presented in Figure 40, the diffuse and sharp interface schemes have different surface 

force variation although the average behavior is similar. This may be because, as 

discussed in Section C.1, the sharp interface scheme has the spurious oscillation due to 

the discontinuous change of neighboring nodes for the force interpolation, while the 

diffuse interface scheme has the smooth variation. Hence, we can expect that as particle 

Reynolds numbers become higher, this oscillation can increase, thus resulting in an 

unreasonable solution.  

To support this prediction, we simulated another case with a higher particle 

Reynolds number by changing the density ratio from 1.25 to 1.5 and the viscosity from 

0.1g/cm-s to 0.01 g/cm-s, with other conditions being the same. Figure 41 presents the 

 

Figure 40. Variation of vertical component of non-dimensional surface force density. 
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Figure 41. Variation of (a) vertical component of non-dimensional surface force and (b) 

vertical particle velocities under the higher Reynolds condition. 
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variations of the non-dimensional vertical surface force density and vertical particle 

velocity with ∆x=1/300cm. The surface force oscillation in the sharp interface scheme is 

steeply amplified after 0.85 sec, thus causing vertical velocity variation different from 

those of the diffuse interface scheme and the fictitious boundary and moving mesh 

method of Wan and Turek [125]. Thus, the use of the sharp interface scheme in a 

moving particle simulation should be limited in relatively low Reynolds number. 

 

3. Sedimentation of double 2D circular particles 

To test the capability to simulate solid-solid interactions as well as solid-fluid 

interactions, two circular cylinder particles falling in the channel are considered. We 

consider two cases with relatively low and high particle Reynolds numbers. Physical 

conditions and numerical parameters adopted in the calculation of two cases are 

summarized in Tables 8 and 9, respectively. 

 

Table 8. Physical conditions of sedimentation of two circular cylinder particles. 
Case Channel size 

(cm) 
Particle  Fluid 
Diameter 
(cm) 

Density 
(g/cm3) 

Initial positions of particles 
(cm) 

 Density 
(g/cm3) 

Viscosity 
(g/cm-s) 

1 8 × 2 0.2 1.01 (0.999, 7.2), (1, 6.8)  1.0 0.01 

2 6 × 2 0.25 1.50 IP1: (5, 1.001), (4.5, 0.999)  
IP2: (5, 1), (4.5, 1)  1.0 0.01 

 

Table 9. Numerical conditions of sedimentation of two circular cylinder particles. 

Case 
 

Conversion factors  Lattice Boltzmann parameters  Solid collision parameters 

Lattice size, 
Δx (m) 

Time step, 
Δt (s)  Domain size Relaxation 

time, τ  Force 
range, ζ 

Stiffness 
parameter, εp 

1 1×10-4 5×10-4  800×200 0.65  2 0.1 

2 5×10-5 2.5×10-5   1200×400 0.53  2 0.1 
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We adopt the explicit diffuse interface scheme with the 4-point discrete delta 

function and the sharp interface scheme for this simulation.  

As shown in Figure 42, this simulation captures the well-known drafting-kissing-

tumbling (DKT) phenomenon. Due to the wake of low pressure, which the leading 

particle creates, the trailing particle falls faster than the leading one (drafting) (t=1s). The 

increased speed of the trailing particle makes the gap between two disks narrower, 

resulting in contact with each other (kissing) (t=1.5s). After kissing, the two particles fall 

together as an elongated body. This state is unstable, and as a result, the elongated body 

rotates and becomes perpendicular to the flow direction so as to be more stable 

(tumbling) (t=2.5s). The two particles are finally separated because they are not a body 

(t=3.5s).  

Calculated vertical velocities of two particles are compared with those from the 

feedback-forcing IB-LBM by Feng and Michaelides [6] and the implicit diffuse direct-

forcing IBM (based on the NSE) by Wang et al. [19], as shown in Figure 43, and show 

an overall good agreement. Different vertical velocity variations after kissing between 

the present diffuse interface scheme and other numerical schemes may be due to the 

difference of particle collision models, and the early start of tumbling in the sharp 

interface scheme can be attributed to the instability from the oscillating surface force. 

However, it should be noted that in these calculations, the added mass force was 

not considered. If the added mass force is included in the equation of particle motion, the 

vertical velocity variation changes as shown in Figure 44. Here, the diffuse interface 

scheme was used. 
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Figure 42. Velocity vector fields and particle positions. 

 

Figure 43. Comparison of vertical particle velocities in Case 1. 
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Figure 44. Variation of vertical velocities with and without considering the added mass 

force. 

 

In Case 2, two different initial particle positions – vertically off-centered initial 

particle positions (IP1) and vertically aligned initial particle positions (IP2) – are 

considered as shown in Table 8. 

Figure 45 shows the vertical position and velocity variations in Case 2 with 

vertically off-centered initial positions (IP1) calculated from the diffuse interface 

scheme. In Case 2 with vertically aligned initial particle positions (IP2), only drafting 

and kissing are observed. Before tumbling, particles collide with the bottom of the wall. 

This is because at the kissing state, the elongated body composed of two particles with 

the aligned initial positions (IP2) is more stable than that composed of two particles with 
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slightly off-centered initial positions (IP1), thus keeping the kissing state longer. This 

also means that the diffuse scheme maintains the symmetry well. 

 

Figure 45. Variations of (a) vertical positions and (b) vertical velocities of particles when 

using the diffuse interface scheme under different initial particle positions. 
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Figure 46 presents vertical velocities of two particles under the present diffuse 

interface scheme and the explicit diffuse direct-forcing scheme based on the Navier-

Stokes equation by Uhlmann [23]. Compared with Case 1, the kissing state is short 

(0.175~0.2 sec). The results from the current diffuse interface scheme show a good 

agreement with those from Uhlmann’s direct-forcing IBM. Different vertical velocity 

variations after kissing may also be due to the difference of particle collision models. 

 

Figure 46. Comparison of vertical velocities of particles in Case 2. 
 

On the other hand, the results from the sharp interface scheme show different 

behaviors from those above, as demonstrated in Figure 47. The reason could be found 

from the fact that the physical conditions in Case 2 are the same as those in Figure 41 in 
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Section C.2. In other words, the spurious force oscillation due to the discontinuous node 

change misleads the velocities. Besides, it is observed that around 0.3 sec, the solution 

diverges.  

 

Figure 47. Comparison of vertical particle velocities between different initial positions. 

 

In addition, as presented in Figure 48, without considering the added mass force 

the results show very different behaviors from those shown with considering the added 

mass force, similar to Uhlmann’s results. This reaffirms the importance of considering 

the added mass effect. Here, the diffuse interface scheme with off-centered initial 

positions (IP1) was used. 
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Figure 48. Variation of vertical particle velocities with and without considering the 

added mass force in Case 2. 

 

4. Sedimentation of six 2D particles in channel 

In this section, we consider various cases of sedimentation of six particles in the channel. 

Six particles of the diameter D=0.2 cm with the density of 1.01g/cm3 are initially located 

at three different initial positions, given in Table 10, in the channel of 2 cm×8 cm. The 

density and viscosity of the fluid are 1.0 g/cm3 and 0.001 cm2/s. Figure 49 presents the 

geometry and parameters for the six-particle sedimentation in Case 1.The difference 

from Case 1 in Section C.3 is the channel is open. We adopt the explicit diffuse interface 

scheme with 4-point discrete delta functions in this simulation.  
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Table 10. Initial positions of six particles. 

Case Array Initial positions (cm) 

1 3 by 2 (-0.2, 7.2), (+0.2,7.2); (-0.2, 6.8), (+0.2, 6.8); (-0.2, 6.4), (+0.2, 6.4) 

2-1 2 by 3 (-0.4, 7.2) (0, 7.2), (+0.4,7.2); (-0.4, 6.8), (0, 6.8), (+0.4, 6.8) 

2-2 2 by 3 (-0.399, 7.2) (-0.001, 7.2), (+0.399,7.2); (-0.4, 6.8), (0, 6.8), (+0.4, 6.8) 

 

 

 

Figure 49. Geometry and physical conditions in Case 1 of six-particle sedimentation. 
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Figure 50 shows the velocity vector fields at different time instants. Particles 3 

and 4 are first drafted by the wake of low pressure behind particles 5 and 6 (at t=1 sec) 

and kiss (at t=1.5 sec). Then, tumbling (clockwise for particles 3 and 5 and 

counterclockwise for particles 4 and 6) occurs, and thus particles 5 and 6 are located 

above Particles 3 and 4 (at t=2.0 sec). While particles 5 and 6 are away from Particles 3 

and 4 due to rotational force, particles 1 and 2 kiss particles 3 and 4, respectively. Then, 

particles 1 and 3 rotate in clockwise and particles 2 and 4 rotate in counterclockwise. 

During the tumbling, particles 1 and 2 experience the collision, so that the repulsive 

force is exerted (at t=3 sec). As a result of the tumbling, vertical position changes of the 

particles occur again (t= 4sec). While particles 3 and 4 are under upward rotational 

force, particles 5 and 6 approach particles 1 and 2 (at t=5 sec). 

Figure 51 presents the velocity vector fields in Cases 2-1 and 2-2. Both cases 

show similar behaviors before kissing. However, the kissing state remains longer in Case 

2-1 than in Case 2-2 because the aligned initial positions in Case 2-1 keep the elongated 

body consisting of two kissing particles more stable. In addition, it is observed that the 

elongated bodies near the wall start tumbling earlier than that in the middle in each case 

due to the wall effect. As a result, after 4 sec, both cases have entirely different particle 

behaviors.  
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Figure 50. Velocity vector plots of sedimentation of six particles at different time 

instants (Case 1). 
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Figure 51. Transient behaviors of six particles in two different initial positions (Cases 2-1 and 2-2). 



119 
 

 
 

5. Sedimentation of a large number of 2D particles 

Now, the sedimentation of 504 circular particles is simulated to test the capability of the 

present method to deal with a large number of particles. Here, we use the explicit diffuse 

interfaces scheme with 4-point discrete delta functions. The 504 circular particles of the 

diameter Dp=0.0625 cm are in a closed square cavity of [0,2]×[0,2] in cm. Density (ρf) 

and dynamic viscosity (μ) of the fluid are 1 g/cm3 and 0.01g/cm-s, respectively, and the 

density of each disk (ρd) is 1.01 g/cm3. Initially, 18 lines of particles with each line 

having 28 particles are located as shown in Figure 51(a). The lattice size is 0.00390625 

cm.  

Snapshots for the evolution of the fluid vector field with the 504 circular particles 

are presented in Figure 52. These results show the Rayleigh-Taylor instability. Two 

eddies near the sidewalls are created, as depicted in Figures 52(b) and 52(c), and each 

eddy penetrates into the inner part along the sidewall and bifurcates into upward and 

downward eddies, as shown in Figures 52(d) and 52(e). Then, two downward eddies 

from each sidewall grow and become dominant, beginning to pull particles, as seen in 

Figures 52(f) and 52(g). Finally, the particles start to settle at the bottom of the cavity, 

and the large eddies disappear, as depicted in Figures 52(h) and 52(i). These behaviors 

are comparable to those reported by Feng and Michaelides [6]. 
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Figure 52. Sedimentation of 504 particles in the closed square cavity.
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6. Particle behaviors in the 2D channel with leakage 

In this section, we simulate particle behaviors in a 2D pipe with holes. This case is 

expected to be applied to ball sealer performance optimization in petroleum engineering 

and any pipes with leakage smaller than the particle size in general engineering fields. 

In petroleum engineering, ball sealers are injected into well treating fluids for the 

purpose of contacting and sealing those perforations that are accepting the fluid flow 

[126], thereby diverting reservoir treatments to other portions of the target zone. 

Important ball sealer behaviors are seating and unseating. Seating efficiency is primarily 

influenced by the velocity of balls down the pipe and the fluid velocity through the 

perforations. To divert the sealer to the perforation, the inertial force of the ball must be 

overcome by the drag force created by the fluid velocity through the perforation [126].  

To simulate the seating behavior of ball sealers, we adopt the explicit diffuse 

scheme with 4-point discrete delta functions and particle-particle and particle-wall 

collision models given in Section B.3. For stability, we assume that once the particle is 

seated on the hole, it does not move until the net force of the particle in the opposite 

direction to wall is greater than zero.  

As a preliminary case, we consider a single particle in the fluid channel with a 

hole. Physical conditions and numerical parameters in the present calculation are 

summarized in Table 11. In this calculation, we investigate the effects of (i) initial 

positions of particles, (ii) particle-fluid density ratios, and (iii) hole outlet pressures on 

the particle behavior. Figure 53(a) shows different trajectories of particles with different 

initial horizontal positions (x=-1.1D, 0, and +1.1D). In Figure 53(b), the particle with 



122 
 

 
 

particle-fluid density ratio of 1.00005 has a flatter trajectory than that with particle-

density ratio of 0.99995 because of stronger downward inertial force. In Figure 53(c), it 

is observed that as the pressure difference becomes large, the trajectory approaches the 

wall side with a hole. 

 

Table 11. Physical and numerical conditions for the preliminary calculation. 

Particle 
size, D 

Channel 
size Hole size Hole position Initial vertical 

positions, y 

LBM parameters 
Relaxation 
time, τ* 

Gravitational 
constant, g* 

20∆x 5D×25D 0.4 D (2.5D, 7.5D) 19D 0.6 0.05 

  

 

Figure 53. Effects of (a) initial position (left, center, right), (b) particle-fluid density ratio 

(ρs/ρf=0.99995 and 1.00005), and (c) hole outlet pressure: 0.95, 096, and 0.97 

P0 where P0 is the inlet pressure. 
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Next, we consider two cases with three particles in the channel with six holes. 

Geometry and boundary conditions are presented in Figure 54. The fluid flows out 

through side holes by pressure difference, and flow is being supplied from the upper 

part. The bottom of the channel is closed and six holes are located at the side of the 

channel. The flow enters at mass flow rate of 1.27 kg/s. The density and viscosity of the 

fluid are 1 g/cm3 and 0.01 cm2/sec, respectively. Three circular buoyant particles with 

the density of 0.99995 of fluid density are released. A particle with diameter D=2.2 cm 

is larger than the hole with width Dh=0.9 cm.  

 

Figure 54. Geometry and initial and boundary conditions in (a) Case 1 and (b) Case 2. 
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To see the sensitivity of pressure differences, pressures outside the channel are 

subdivided into two parts. In Case 1, the pressure difference in the upper part (0.05 P0) is 

higher than that in lower part (0.02 P0), whereas the pressure difference in the lower part 

(0.02 P0) is higher than that in the upper part (0.05 P0)  in Case 2. 

Figure 55 presents the velocity vector field at certain time instants and the 

trajectory of three particles for each case. From velocity vector fields, we can see that the 

flow fluctuates due to solid particle movement. Also, from the particle trajectories, it is 

observed that the final seating positions of particles are different between the two cases. 

This is because the pressure difference changes affected the timing of collision of two 

particles (yellow and pink ones). In this simulation, the present IB-LBM reasonably 

captured the complex interactions of fluid-particle, particle-particle, and particle-wall. 

 

Figure 55. Velocity vector fields and particle trajectories in (a) Case 1 and (b) Case 2. 
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7. Sedimentation of single 3D particle 

In this section, a spherical particle falling in the three-dimensional channel is simulated. 

In 2D particle problems, the results from the present IB-LBMs were only compared with 

those from other numerical schemes. Here, the results from our IB-LBM are compared 

with experimental data measured using PIV by ten Cate et al. [127].  

As shown in Figure 56, the channel size is 100×100×160 mm3, and a spherical 

particle of 15 mm in diameter and 1120 kg/m3 in density is released at a height of 120 

mm from the bottom. The fluids have densities ranging from 960 to 970 kg/m3 and 

kinematic viscosities ranging from 0.058 to 0.373 Ns/m2. The lattice size is set to Δx=1 

mm. The simulation is performed for four different Reynolds numbers. Physical and 

numerical conditions for this simulation are summarized in Table 12. 

 

 
Figure 56. Schematic diagram of a single spherical particle settling in the channel. 
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Table 12. Physical (experimental) and numerical conditions for single spherical particle 

sedimentation. 

Condition Re Fluid density, ρf  
(kg/m3) 

Fluid viscosity, μf  
(Ns/m2) 

Relaxation time, τ 
 Δt (s) 

1 1.5 970  0.373  0.9 3.46738×10-4  

2 4.1 965  0.212  0.9 6.06918×10-4  

3 11.6 962  0.113  0.8 8.51327×10-4  

4 32.2 960  0.058  0.65 8.27586×10-4  

 

Both the diffuse and sharp interface schemes are tested under the D3Q19 SRT-

LBE. In the diffuse scheme, we use the 4-point discrete delta function. One practical 

issue when using the diffuse scheme for sphere geometry is the distribution of forcing 

points on the sphere surface because it is theoretically impossible to evenly distribute 

points on the sphere. Therefore, some approximate methods [20, 23, 120] were 

proposed. Among them, we adopt Feng and Michaelides’ method [120] in this 

calculation. In addition, they assigned forcing points at the volume-based midway of the 

spherical shell, not on the actual surface. For a particle with radius r, the forcing points 

resided on a sphere surface with radius 3 33 ( ( ) ) / 2br r r x   , which is similar to the 

corrected (reduced) radius discussed in the simulation of flow induced by an inline-

oscillating cylinder. We consider both the actual and corrected radius in the calculation.  

Figure 57 shows the pressure contours and velocity vector fields on the vertical 

plane passing through the center of the particle in two time instants at Re=4.1. Vortices 

due to the low pressure in the wake region of the sphere are observed.  
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(a ) t = 0. 68 s (b ) t = 1. 02 s  
Figure 57. Pressure contours and velocity vector fields on the vertical plane passing 

through the center of a spherical particle at some time instants in Case 2. 

 

Figure 58 shows the vertical particle velocity variations. Here, we used the 

corrected radius in the diffuse scheme calculation. Both results from the sharp and 

diffuse schemes show a good agreement and are comparable to experimental data. If the 

actual radius is adopted instead of the corrected radius in the diffuse scheme calculation, 

as shown in Figure 59, vertical particle velocities are under-predicted in magnitude, and 

the discrepancies become larger at higher Reynolds numbers. This result may justify the 

adoption of the corrected radius again, as in the simulation of flow induced by an inline-

oscillating cylinder. 

In this simulation, we validated that the present IB-LBMs with the sharp 

interface scheme and the diffuse interface scheme with the corrected radius are 

applicable to 3D moving boundary problems. 
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Figure 58. Vertical particle velocity in a spherical particle sedimentation. 

 
Figure 59. Comparison of vertical particle velocities between the diffuse schemes with 

actual and corrected radii. 
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8. Flow-induced vibration of the cylinder 

The fluid-structure interaction (FSI) is an important safety issue of nuclear reactor 

components [128-129]. For example, when continuous repetitive flow is rapidly exerted 

on immersed long cylinders such as steam generator tube bundles, the resulting flow-

induced vibration (FIV) may cause fretting wear on the contact surface with supporting 

plates. 

In this section, we consider an elastically mounted cylinder subjected to a 

uniform inlet flow. In this problem, oscillating submerged solid objects are treated as a 

second order mass-spring-damper system. The equation governing the motion of an 

elastically mounted cylinder that is allowed to move in y-direction can be written as 

,f s ymy cy ky F             (112) 

where y is the displacement from the equilibrium position,  m is the cylinder mass, c is 

the damping coefficient, k is the spring constant, and ,f s yF   is the transverse force 

acting on the cylinder by the fluid. Figure 60 presents the schematic of the mass-spring-

damper system adopted here. 

The governing equations can be easily coupled with the immersed boundary 

method. From Equation (90), we can write 

,
s f s f s

f s y y y f y
V V V V V

F u dV F dV m y F dV
t




   
        (113) 

where mf is the fluid mass inside the cylinder. Then Equation (112) becomes 

( )
f s

f y
V V

m m y cy ky F dV            (114) 

where the term in the right-hand side is directly given by the IBM calculation. By 
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solving the second-order ordinary differential equation (114), we can obtain the velocity 

and the position of the cylinder. 

D

m

k

c

U∞

y

x

 

Figure 60. Schematic of an elastically mounted cylinder in y-direction. 

 

For the validation, the flow and structural parameters are chosen according to 

Ahn and Kallinderis [130], in which the unstructured, finite-element ALE scheme was 

used, and Borazjani et al. [131] , in which the curvilinear immersed boundary method 

was used,  as follows: 

2
Re 150, 4, 3,4,5,6,7,8red red

n

U D m U
M U

D f D 
          (115) 

where fn is the natural frequency of the cylinder structure and is determined by 

(1/ 2 ) /nf k m . 
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The computational domain is set to 40D×20D with D=50∆x and the cylinder is 

initially located in (10D, 10D). The uniform velocity is imposed on inlet boundary, and 

Neumann boundary conditions are given on other boundaries. The explicit diffuse 

scheme with 4-point discrete delta function is adopted for this simulation. 

Figure 61 presents the variation of the maximum displacement of the cylinder 

with changing the reduced velocity (Ured). In this figure, we can observe the “lock-in” 

phenomenon in [4,7]redU  . The present results show a good agreement with those from 

other numerical calculations [130-131]. Figures 62 and 63 show the wake patterns at 

some instants and the amplitude variation as a function of time and under Ured=5.  

 

Figure 61. The variation of the maximum displacement of the cylinder as a function of 

reduced velocity (Ured). 

 



132 
 

 
 

 

 

 
Figure 62. Vorticity contours in the vicinity of the cylinder at (a) t*=200 and (b) t*=240 

under Re=150, Ured=5, and Mred=2. 
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Figure 63. Time variation of the amplitude of the oscillating cylinder under Re=150, 

Ured=5 and Mred=2. 

 

D. Conclusions 

In this chapter, the direct-forcing IB-LBMs based on the split-forcing LBE with the 

sharp and/or diffuse interface schemes were applied to various moving boundary 

problems. The inferences from these applications are as follows: 

 The present IB-LBM can be easily coupled with equations governing solid 

motions, such as particle motion or an elastically mounted cylinder’s vibration. 

 Both the sharp and diffuse interface schemes can be applied to moving boundary 

problems.  

 However, the sharp interface scheme generates spurious oscillation in the 

boundary force. This can be due to the discontinuous change of nodes adopted in 

the interpolation at each time step. Therefore, filtering or smoothing may be 
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required. Also, when it is applied to moving particle problems with relatively 

high Reynolds numbers, strange particle behaviors or divergence can occur due 

to the spurious oscillation. Thus, the sharp interface scheme is recommended to 

use for mildly moving boundary problems. 

 In contrast, the diffuse interface schemes produce smooth variation of the 

boundary forces. This may be attributed to the use of the discrete delta functions. 

However, the discrete delta function reduces the accuracy. It is found that in the 

simulation of moving cylinders or spheres, the adoption of the reduced radius, 

i.e., assigning forcing points not on the boundary surface (line in 2D) but in the 

center of the boundary volume (area in 2D), can mitigate the over-prediction of 

the surface force. 

 For moving boundary problems with acceleration, not only the boundary force 

directly obtained from the immersed boundary method, but also the added mass 

force should be considered in the surface force evaluation.  

 The present IB-LBM with diffuse schemes can be successfully applied to 

problems with a large number of particles. 
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CHAPTER V 

THERMAL IMMERSED BOUNDARY-LATTICE BOLTZMANN METHODS 

 

A. Introduction 

Although numerous IB-LBMs have been applied to isothermal flows, the coupling 

between the IBM and thermal lattice Boltzmann equation (TLBE) for non-isothermal 

flows was not documented until the recent work of Jeong et al. [132]. They called the 

method the immersed boundary-thermal lattice Boltzmann method (IB-TLBM). 

However, they adopted the feedback-forcing method to evaluate the momentum and 

energy forcing, thus causing the stability problem and arbitrariness in selecting the 

parameter. In addition, their method is based on the double-population model with a 

complex TLBE [63]. 

The objective of this chapter is to extend the direct-forcing IBM for the 

isothermal LBM to the thermal LBM. Our strategy is as follows. We consider two 

thermal LBM models: (i) the double-population model with a simplified thermal LBE 

and (ii) the hybrid model with an advection-diffusion equation of temperature. We 

introduce the energy source term for each thermal equation and then derive the direct-

forcing IBM formula for both equations, as done in the isothermal IBM. To obtain more 

accurate boundary effects, we adopt the sharp interface scheme based on bilinear and 

linear interpolations instead of the diffuse interface scheme based on discrete delta 

functions. The proposed methods are tested through convective heat transfer problems 

with not only stationary but also moving boundaries. 
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The remaining part of this chapter is organized as follows. The direct-forcing 

method is derived from a simplified internal energy LBE with an energy source term 

under the double-population TLBM model in Section B.1 and then from an advection-

diffusion equation of temperature under the framework of the hybrid TLBM model in 

Section B.2.  To validate the LBM code for these TLBM models, the natural convection 

in a square cavity is first considered in Section C.1. Then, the present IBM is applied to 

a fixed-boundary heat transfer problem (the natural convection in a square cavity with an 

eccentrically located cylinder) in Section C.2, and, subsequently, to a moving-boundary 

heat transfer problem (a cold particle sedimentation in a hot infinite channel) in Section 

C.3. In Section D, the summary and conclusions are addressed. 

 

B. Thermal Immersed Boundary-Lattice Boltzmann Methods 

The direct-forcing IB-LBM based on the SRT-LBE, derived in Chapter III, is directly 

adopted for the momentum equation. Instead, for the simulation of the non-isothermal 

flows with a significant buoyancy force effect, we adopt the Boussinesq approximation, 

so that the body force term in the SRT-LBE becomes 

0( )T T  F g          (116) 

where T0 is the average temperature and β is the thermal expansion coefficient at T0. 

To extend the direct-forcing formula to energy equations, we consider a 

simplified thermal LBE (Equation (38)) under the double population model and a finite 

difference energy equation under the hybrid model.  
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1. Immersed boundary method for the thermal lattice Boltzmann equation 

In the IBM, we use the energy source term to model the thermal boundary effect. Thus, 

we need to additionally consider the energy source term in the simplified TLBE. The 

TLBE with an energy source term can be expressed as [68]: 

( )1 1
( , ) ( , ) ( , ) ( , ) 1

2

eq

g

g t t t g t g t g t t Q     

 

 
            

 

x e x x x   (117) 

where the discrete energy source function is 

Q w Q  ,          (118) 

and Q is the energy source density term. Here, the macroscopic internal energy can be 

calculated by 

/ 2e g tQ



   .         (119) 

Applying the Chapman-Enskog multi-scale analysis, we can show that Equation (117) 

recovers the following energy equation: 

2( ) ( ) ( )e e e Q
t
   


   


u        (120) 

It should be noted that in Equations (117) and (120), the compressible work and the 

viscous heat dissipation terms are neglected as in Equations (38) and (41). 

In the same manner as with the IB-LBM, we can apply the IBM to the non-

isothermal lattice Boltzmann equation. After the streaming step, the temperature under 

no external energy source, TnoE, at (x,t+Δt) can be expressed as: 

2

0

( , ) ( , ) ( , )
3

noEc
t t T t t g t t

T




    x x x .     (121) 



138 
 

 
 

If the desired temperature, Td, which satisfies the thermal boundary condition on the 

boundary, is given, then from Equation (119), we can obtain 

2

0

( , ) ( , ) ( , )
2

d

b

c t
t t T g t t Q t t

T







    x x x .    (122) 

Subtracting Equation (121) from Equation (122), we can obtain the following direct-

forcing formula for the boundary energy-forcing term: 

2

0

( , )
( , ) 2 ( , )

3

d noE

b

c T T t t
Q t t t t

T t


 
  



x
x x .     (123) 

To evaluate Td on the energy-forcing node in complex boundary problems, where the 

boundary does not match computational nodes, we can directly use the same interface 

scheme as in the isothermal IB-LBM in case the Dirichlet-type boundary condition is 

imposed. Although we only consider the Dirichlet-type boundary condition in this study, 

if the Neumann-type boundary condition is imposed, we can adopt the procedure of 

transferring it into the Dirichlet-type boundary condition [29-30] and then apply direct-

energy-forcing formula (123). 

 

2. Immersed boundary method for the finite difference energy equation 

In the hybrid lattice-Boltzmann finite-difference method (LB FDM), the non-isothermal 

LBE is solved for velocities and pressures and the finite difference advection-diffusion 

equation for temperature. For the boundary conditions of the momentum equation – i.e., 

for no-slip boundary conditions – we adopt the IB-LBM, while for the thermal boundary 

conditions, we utilize the IBM for the advection-diffusion equation instead of the 

simplified thermal LBE in the previous section. The energy equation neglecting the 
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viscous dissipation and the compression work done by the pressure can be expressed as: 

 2( )
T

T T q
t




   


u         (124) 

with  

p

Q
q

c
           (125) 

where cp is the specific heat. We explicitly discretize Equation (124) using the first-order 

forward difference scheme in time and the second-order central difference scheme in 

space as in [133]. The resulting discretized equation (Model 2) can be expressed as: 

1

, , ,+(RHS )n n n n

i j i j i jT T q t            (126) 

with  

n

, 1, 1,
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RHS 4 ( 0.5 )

( 0.5 ) ( 0.5 ) ( 0.5 )

n n n
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 

  

 

     

   

     
.  (127) 

Here, ∆x=∆y=1 as in the standard LBM, and T is the normalized temperature by the 

temperature difference. A von Neumann stability analysis of this discretized equation 

provides the following stability constraint of Model 2  [134]:  

2 2

0.25
2

u v



  .         (128) 

The direct-forcing IBM can be easily applied to this equation. If there were no energy 

forcing, the temperature at the next time step would become 

1

, , +RHSn n n

i j i jT T t   .         (129) 

Using ,

noF

i jT  to discern the temperature from that under external force, we can rewrite 
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Equation (126) as 

1

, , ,

n noF n

i j i j i jT T q t             (130) 

From Equations (129) and (130), the energy-forcing term can be evaluated as: 

, ,

,

d noE

i j i jn

i j

T T
q

t





         (131) 

It should be pointed out that in the actual calculation, there is no need to explicitly 

evaluate the energy-forcing term because the explicit time-advancement scheme is 

adopted [28]. For the interface scheme, we adopt the same method as in the IB-LBM. 

 

C. Simulation Results 

1. Natural convection in the square cavity 

At first, to test the present LBM code, we considered the natural convection in a square 

cavity, which has been used as a typical benchmark problem for the validation of the 

code capability to simulate the natural convection. The square cavity has hot and cold 

isothermal boundary conditions at left and right vertical sides, respectively, and adiabatic 

boundary conditions at top and bottom horizontal sides, as shown in Figure 64. 

This natural convection is characterized by two non-dimensional numbers: the Rayleigh 

number (Ra) and the Prandtl number (Pr), which are defined by 

3

Ra , Pr
g TL 

 


          (132) 

where g is the gravitational constant, L is the height or the width of the square cavity, 

and  ∆T is the temperature difference between hot and cold walls, i.e., ∆T =Thot-Tcold. 
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Figure 64. Geometry and boundary conditions for the simulation of the natural 

convection in a square cavity. 

 

Therefore, viscosity and the corresponding non-dimensional relaxation time, and thermal 

diffusivity and the corresponding non-dimensional thermal relaxation time, can be 

written as 

Pr Pr 1
; 3

Ra Ra 2
c cU L U L    ,       (133a) 

3 1
;

2Ra Pr 2 Ra Pr

c c
g

U L U L
           (133b) 

where Uc is the characteristic velocity, which is defined by 

cU g TL  .         (134) 

The characteristic velocity should be selected to be small so that the compressibility 

error remains small. 



142 
 

 
 

For the athermal and thermal boundary conditions, the following non-equilibrium 

bounce-back scheme [63] was adopted  

neq neqf f            (135a) 

neq neqg g             (135b) 

where   e e . Here, to apply this scheme to the adiabatic boundary, the temperature 

on the wall, T(y0), should be predetermined. For this, the following second-order 

accurate discretization was adopted: 

0

2

0 0 0

1
[4 ( ) ( 2 ) 3 ( )] ( ) 0

2
y

T
T y y T y y T y O y

y y


        

 
.   (136) 

Simulations were implemented for Ra=103, 104, 105, and 106 with the present 

method, and in all simulations, the Prandtl number (Pr) was set to be 0.71. The following 

convergence criteria [64] were used: 

1 2 1 2 2 2 9max(| ( ) ( ) ( ) ( ) |) 10 ,n n n nu v u v           (137a) 

1 9max(| |) 10n nT T           (137b) 

where n and n+1 indicate the old and the new time steps, respectively. 

Quantitative comparisons of the maximum horizontal velocity (umax) and its 

vertical position (ymax) on the vertical centerline (x=L/2), the maximum vertical velocity 

(vmax) and its horizontal position (xmax) on the horizontal centerline (y=L/2), and the 

average Nusselt number were performed. The average Nusselt number is defined by 

2 0 0

1
Nu ( , )

L L

avg x

L
q x y dxdy

T L


          (138) 
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with the local heat flux in horizontal direction 

( , )
( , ) ( , )x

T x y
q x y uT x y

x



 


       (139) 

where u is x-direction velocity.  

Table 13 displays the effect of the characteristic velocity on the results from both 

thermal LBM models under Ra=104 and the grid size of L/150. It is observed that as the 

characteristic velocity decreases, the calculation results approach the reference data 

[135]. Under the condition of Uc ≤ 0.1, the calculated Nusselt numbers do not show 

much improvement. Thus, in the remaining calculations, we selected the characteristic 

velocity as Uc=0.05.  

Figure 65 presents errors of the average Nusselt numbers when changing grid 

sizes from L/50 to L/200 under Ra=104 and Uc=0.05. The error is defined by 

/ 400L

avg avgError Nu Nu          (140) 

where / 400L

avgNu  indicates the average Nusselt number under the grid size of L/400, which 

is adopted as an exact solution because the analytical solution does not exist. It was 

observed that the two models have the second-order accuracy in space. Based on such 

grid sensitivity studies, the grid sizes were selected as L/100, L/150, L/200, and L/250 

for Ra=103, 104, 105, and 106, respectively. 
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Table 13. The effect of the characteristic velocity. 

Model Uc Nuavg umax vmax 
Model 1 0.01 2.243 16.164 19.610 

0.05 2.243 16.161 19.604 
0.1 2.242 16.157 19.620 
0.2 2.242 16.114 19.565 
0.5 2.215 15.842 19.355 

Model 2 0.01 2.243 16.168 19.613 
0.05 2.243 16.165 19.614 
0.1 2.243 16.152 19.596 

0.12 2.242 16.152 19.624 
0.14 2.241 16.147 19.628 

Reference - 2.243 16.178 19.617 

 

 

Figure 65. Accuracy of the two thermal LBM models. 
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Table 14 presents the results for Ra=103, 104, 105, and 106. In terms of accuracy, 

all results showed a good agreement between the two models and the reference 

calculation [135] within 1%. However, in terms of efficiency, the two models showed 

some differences. Although the simplified thermal LBE model (Model 1) greatly 

reduced the CPU time, compared with He et al.’s original double-population thermal 

LBE model [63], it still spends about 50% more CPU time than the hybrid thermal LBE 

model (Model 2), as shown in Table 14. This can be attributed to the use of a larger 

number of energy distribution functions at collision and streaming steps, and the 

complicated boundary condition calculation in Model 1. 

 

Table 14. Comparison of velocities and Nusselt numbers. 

  Ra=103 Ra=104 Ra=105 Ra=106 

umax Model 1 3.645 16.161 34.679 64.553 

 Model 2 3.646 16.165 34.680 64.596 

 Reference 3.649 16.178 34.73 64.63 

ymax Model 1 0.810 0.820 0.855 0.848 

 Model 2 0.810 0.820 0.855 0.848 

 Reference 0.813 0.823 0.855 0.850 

vmax Model 1 3.694 19.604 68.527 219.670 

 Model 2 3.695 19.614 68.545 219.593 

 Reference 3.697 19.617 68.59 219.36 

xmax Model 1 0.180 0.120 0.065 0.036 

 Model 2 0.180 0.120 0.065 0.036 

 Reference 0.178 0.119 0.066 0.0379 

Nuavg Model 1 1.118 2.243 4.514 8.798 

 Model 2 1.118 2.243 4.514 8.794 

 Reference 1.118 2.243 4.519 8.800 

CPU time (sec) Model 1 396 2539 16182 47741 
Model 2 263 1733 11096 27151 
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It should be also pointed out that according to Equation (128), Model 2 has the 

stability constraint of 

2 2

0.25
2 Ra Pr

cU Lu v
  .        (141) 

For low Rayleigh number conditions, for example, under Ra=103 and grid size of L/100 

and Ra=104 and grid size of L/150, Equation (145) provides Uc ≤ 0.0666 and Uc ≤ 

0.140435, respectively. Therefore, when we selected Uc > 0.0666 under the former 

condition and Uc > 0.140435 under the latter condition, we could not obtain the 

converged solution, and thus this range was not included in Table 13.  

 

2. Natural convection in the square cavity with an eccentric cylinder inside 

To check the applicability of the present IBM to complex, fixed boundary, we 

considered the natural convection of the fluid in a square cavity with an eccentric 

circular cylinder. In a square cavity with a width of L, a circular cylinder with a diameter 

of D=0.4L is eccentrically located in the cavity by 0.1 L upward from the center, as 

shown in Figure 66. Hot and cold temperatures were imposed on the circular cylinder 

boundary and vertical sidewalls of the cavity boundary, respectively, and adiabatic 

conditions are imposed on the horizontal top and bottom walls. This problem has been 

simulated by various numerical methods under Ra=106 and Pr=10 [30-31, 136-137]. 

In the present simulation, the direct-forcing IBMs based on Model 1 and Model 2 

were adopted for the boundary conditions on the circular cylinder wall. For the square 
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cavity boundary conditions, the non-equilibrium bounce-back scheme was used as in the 

previous section. The characteristic velocity of 0.2 was adopted.  

 

 

Figure 66. Geometry and boundary conditions of the natural convection in a square 

cavity with an eccentric cylinder. 

 

Figures 67 and 68 present the isotherms and the streamlines from the IBM based 

on Model 1 and Model 2 under the grid size of L/200. Due to the buoyancy force, the 

heated flows around the hot cylinder move upward and the flows cooled by the cold 

walls move downward along the cold side walls, thus forming the two symmetric free 

circulations. The isotherms and streamlines show a very good agreement with those in 

[30]. To quantitatively validate the present method, we compared the local Nusselt 

numbers along one of the cold sidewalls with different grid sizes of L/100 and L/200 

with those in other numerical methods [136-137] as shown in Figure 69. It was observed 

that the results from the IBM based on both models – even under the grid size of L/100 – 
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showed a good agreement with those under high resolution although there were some 

discrepancies near the top wall, which are removed under the grid size of L/200. In terms 

of numerical efficiency, the IBM based on Model 1 spent 50% more time than the IBM 

based on Model 2. 

 

 

Figure 67. Isotherms obtained from the IBM based on (a) Model 1 and (b) Model 2. 

 

 

Figure 68. Streamlines obtained from the IBM based on (a) Model 1 and (b) Model 2. 
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Figure 69. Local Nusselt number variation along the cold wall for L=200Δx from the 

IBM based on (a) Model 1 and (b) Model 2. 
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3. Cold particle sedimentation 

One of great advantages of the IBM is that it can be easily applied to the moving-

boundary problem without re-meshing. To validate the applicability of the present IBM 

to the heat transfer problem involving moving, complex boundaries, we considered a 

cold-particle sedimentation in a hot, infinite channel. This problem is challenging 

because it involves complicated mechanisms between the forced and natural thermal 

convections and a strong wall confinement effect [137]. First, Gan et al. [138] used the 

Arbitrary Lagrangian-Eulerian (ALE) method to simulate this problem where the 

particle had been initially released at the centerline. They suggested the five flow 

regimes according to different Grashof numbers based on the particle equilibrium 

positions and the wake structures. Subsequently, Yu et al. [137] used the fictitious 

domain method to simulate the problem. However, they initially located the particle off 

the centerline by one particle radius, because the trajectories in some regimes where the 

particle migrates away from the centerline are not deterministic, since the migrations 

depend on the random numerical disturbances. They also found the different regimes 

from Gan et al.’s at high Grashof numbers over Gr>4000. Especially at Gr=4500, it was 

observed that flows become turbulent-like, and the particle oscillates violently but still 

regularly. They attributed the difference to the use of fine meshes only for the region in 

the vicinity of the particle boundary, resulting in a lack of description of the far field in 

the ALE method. This modified Grashof regime at high Grashof numbers was confirmed 

by the IBM based on the NSE [31]. In the present simulation, we followed the conditions 

in [137] so that the direct comparison is possible. As shown in Figure 70, a circular 
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cylinder with a diameter of D was initially located off the centerline by D/2. The Prandtl 

number was 0.7, and the density ratio of the solid particle to the fluid (ρr) was 1.00232. 

The cylinder had the constant cold temperature, and the sidewalls had the constant hot 

temperature. The fluid is initially at rest with the hot temperature. 

 

 

Figure 70. Geometry and boundary conditions in a cold particle sedimentation problem. 

 

The characteristic velocity as adopted in previous sections is no longer valid in 

this problem because the flow involves forced convection due to particle movement. The 

relaxation time was selected as 0.65, as in [70]. To determine the gravitation constant in 

the LBM frame, we used the reference Reynolds number of 40.5, as in [31, 137]. Here, 

the reference Reynolds number is defined by [137]: 
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ref

ref

U D


           (142) 

where the reference velocity Uref is defined by 

( / 2)( 1)ref rU D g   .        (143) 

To simulate the infinite channel, the computational domain of 4D×160D was 

adopted. The present IBMs based on Model 1 and Model 2 were applied to the cold wall 

particle boundary. The motion of the particle was calculated using Equations (99) and 

(100).  

For isothermal case (i.e. Gr=0), the terminal Reynolds number (ReT=uTD/ν) with 

the terminal velocity (uT) obtained from the IB-LBM based on both models was 21.2, 

which is the same as that in [137]. 

Figure 71 presents the time evolution of the particle horizontal positions under 

different Grashof numbers and Figure 72 isotherms and vorticity contours at time t*= 

129.6, where the time t* is defined as t*= D/Uref. The results follow the modified flow 

regimes well. At Gr=100 (Regime A in [138]), the particle settles steadily along the 

centerline, and the wake vortices are steady and symmetric (Figures 71 and 72(a)). At 

Gr=564 (Regime B in [138]), vortex shedding occurs from the particle and the particle 

oscillates regularly about the centerline (Figures 71 and 72(b)). At Gr=1000 and 2000 

(Regime C in [138]), two types of migrations are observed: one with oscillation as a 

natural extension of Regime B (Figures 71 and 72(c)), and the other without oscillation 

(Figures 71 and 72(d)). At Gr=2500 (Regime D in [138]), the centerline regains a stable 

equilibrium position and vortex shedding is absent (Figures 71 and 72(e)). At Gr=4500 
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(Regime F in [137]), the flows become turbulent-like, and the particle oscillates 

violently but still regularly (Figures 71 and 72(f)).  

 

Figure 71. Horizontal position evolutions obtained from the IBM based on (a) Model 1 

and (b) Model 2. 
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Figure 72. Isotherms (left) and vorticity contours (right) at time t*=129.6 under (a) 

Gr=100, (b) Gr=564, (c) Gr=1000, (d) Gr=2000, (e) Gr=2500, and (f) 

Gr=4500. 

 

For the quantitative comparison, we compared the particle horizontal positions 

between the present results and the previous results. Table 15 presents a comparison of 

equilibrium positions at Gr=1000 and 2000, and the amplitude at Gr=4500 between the 

present scheme, the fictitious domain method of [137] and the IBM based on Naiver-

Stokes equation of [31]. Results from both models show a good agreement with others. 
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Table 15. Comparison of equilibrium positions at Gr=1000 and 2000 and amplitudes at 

Gr=4500. 

Gr Present 
(Model 1) 

Present 
(Model 2) 

Yu et al. 
[137] 

Feng and 
Michaelides [31] 

1000 2.89 2.91 2.89 2.90 

2000 2.74 2.74 2.74 2.73 

4500 1.32 1.32 1.33 1.35 

 

From this simulation, it is confirmed that the present direct-forcing IBM based on 

the two thermal LBM models can produce accurate results even for the heat transfer 

problem with moving boundaries. Again, the IBM based on Model 2 is numerically 50% 

more efficient than that based on Model 1.  

 

D. Conclusions 

In this chapter, we proposed the direct-forcing IBMs coupled with two thermal LBM 

models: the double-population model with simplified internal energy distribution 

functions (Model 1) and the hybrid model with a finite difference advection-diffusion 

equation (Model 2). We showed that the IBMs based on both models had a good 

accuracy for heat transfer problems with not only stationary but also moving complex 

boundaries where the Boussinesq approximation is valid, and that the viscous heat 

dissipation and the compression work done by the pressure was negligible. However, the 

IBM based on Model 2 was faster than that based on Model 1 by 50%. Therefore, the 
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IBM based on the hybrid thermal LBM model is recommended for the actual calculation 

in terms of efficiency as well as accuracy. 

In this study, we only considered the SRT lattice Boltzmann equation for velocity 

and pressure. However, the multiple-relaxation-time (MRT) lattice Boltzmann equation 

could be adopted for improved stability. In addition, the MRT model could also consider 

temperature-dependent transport coefficients without explicitly using the Boussinesq 

approximation [55].  

We predict that the direct-forcing formula can be coupled with other simplified 

TLBE models [65-66]. In addition, it is expected that we can easily extend the present 

method to 3D problems by adopting the D3Q19 thermal LBE and the interface scheme 

based on tri-linear, bi-linear, and linear interpolations. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

In this dissertation, we presented results from applications of the immersed boundary-

lattice Boltzmann method (IB-LBM) to isothermal and non-isothermal flows with 

stationary and moving boundaries. For this, the direct-forcing formulas based on the 

split-forcing LBE and TLBE were derived and various interface schemes were coupled 

with the formulas. 

To evaluate and benchmark the effectiveness and applicability of the IB-LBM, 

we considered the following problems: 

 2D Taylor-Green decaying vortex; 

 Flow past a 2D circular cylinder; 

 Flow past a sphere; 

 Flow in the pebble channel; 

 Flow induced by an inline-oscillating cylinder; 

 Fluid-induced vibration (FIV) of the cylinder; 

 Sedimentation of 2D and 3D particles; 

 Natural convection in 2D geometry; 

 Particle sedimentation with heat transfer. 

We implemented detailed comparisons with other numerical calculations and 

experimental data if available. Our inferences are as follows: 
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 The derived IB-LBMs with interface schemes have the second-order accuracy. 

However, the sharper the adopted interface schemes, the more accurate the 

results will be. Thus, for complex stationary boundary problems requiring high 

accuracy, the IB-LBM with the sharp interface scheme is desirable. 

 Both the sharp and diffuse interface schemes can be applied to moving boundary 

problems. However, the sharp interface scheme induces spurious oscillation in 

the boundary force due to the discontinuous change of nodes adopted in the 

interpolation, so that filtering or smoothing may be required. Also, when it is 

applied to moving particle problems with relatively high Reynolds numbers, the 

spurious oscillation may cause strange particle behaviors or divergence. Thus, 

the sharp interface scheme is recommended to use for mildly moving boundary 

problems. 

 On the other hand, the diffuse interface schemes produce a smooth variation of 

the boundary forces because of the discrete delta functions. However, the discrete 

delta function makes the interface diffuse, thus producing less accurate results. It 

was found that in the simulation of moving cylinders or spheres, the adoption of 

the reduced radius, i.e., assigning forcing points not on the boundary surface 

(line) but the center of the boundary volume (area), can relieve the over-

prediction of the surface force. 

 The natural convection phenomena with stationary and moving boundaries were 

well reproduced by the derived direct-forcing thermal immersed boundary-lattice 

Boltzmann methods based on the thermal LBE and the finite-difference energy 
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equation. However, in terms of efficiency, the thermal IB-LBM with finite 

difference energy equation is recommended. 

 

For the future work, we plan to parallelize the present code using the Message 

Passing Interface (MPI). As mentioned in Chapter II, one of the great advantage of the 

LBM is that it is very suitable for the MPI parallel computation because the collision 

step is local and the streaming step is almost local, i.e., just related to the neighboring 

node information. Hence, information communication between decomposed domains 

occurs at only the interface at each time step. It should be noted that we implemented the 

OpenMP parallel computations for some 3D simulations such as flow past a 3D sphere 

and flow in the pebble channel. However, the parallelization in the OpenMP is mostly 

performed for loop calculations and based on the shared memory concept, thus limiting 

the number of CPUs available. Hence, the MPI programming, where a parallel program 

is running on a distributed memory system, is desirable.  

In the MPI code, we will apply the present IB-LBM to turbulent flow simulation 

using the large eddy simulation (LES) turbulence model [56-58, 139-142] for actual 

nuclear engineering applications. These applications could include, for example, flow in 

a rod bundle with mixing vanes [143-145] and flow in a pebble bed [109-111] as 

stationary complex boundary problems, flow-induced vibration in steam generator tube 

bundles [146] and pebble defueling process in liquid-salt-cooled pebble bed 

reactors[147] as moving boundary problems, and T-junction mixing [148-150] as a 
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thermal complex boundary problem. In this dissertation, we have conducted preliminary 

research in some of these areas. 

Other possible applications are two-phase bubbly flow by coupling the surface 

tension force, which can be obtained from other methods such as the Moving Particle 

Semi-implicit (MPS) method [151], with the present IB-LBM, non-Newtonian fluid flow 

induced by a rotating cylinder [152] by applying the current IBM to non-Newtonian 

LBE, and other fluid mechanics problems involving complex or moving boundaries. 
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APPENDIX A 

DERIVATION OF EXPLICIT-TYPE FROM IMPLICIT-TYPE  

SPLIT-FORCING SRT-LBEs 

 

Here, we derive the SRT-LBE with an explicit discrete forcing term (Equation (43) with 

Equations (48) and (49)) [42] from the SRT-LBE with an implicit discrete forcing term 

SRT-LBE (Equation (53) with Equations (16) and (44b)) [79].  

From Equation (53), the implicit-type split-forcing LBE is 

( )

( , ) ( , )
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.   (A.1) 

This equation is time-implicit due to the last discrete forcing term. The Equation (A.1) 

can be changed into time-explicit form by introducing the following substitution: 

1
( , ) ( , ) ( , )

2
f t f t tF t    x x x .       (A.2) 

Then, Equation (A.1) changes to: 

( )

( , ) ( , )

1 1
[ ( , ) ( ( , ), ( , ))] 1 ( , )

2

eq

f t t t f t

f t f t x t tF t

  

  
 

    

 
      

 

x e x

x x u x
.    (A.3) 

It should be noted that in the equilibrium density function of Equation (A.3), the velocity 

is defined as: 

1
( , ) ( , ) ( , )

2
t f t t t 



   u x e x F x        (A.4) 

because taking 1st hydrodynamic moments of Equation (A.2), i.e., summing Equation 
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(A.2) e  over α, we can get 

1 1
( , ) ( , ) ( , ) ( , ) ( , )

2 2
f t f t t x t t t x t   

 

      e x e x F u x F .   (A.5) 

Also, defining 

2 4

( , ) ( , )1 1
( , ) 1 ( , ) 1 3 9 ( , )

2 2

t t
F t F t w t

c c

 
   

 

     
          
     

e u x e u x
x x e F x , (A.6) 

Equation (A.3) becomes 

( )1
( , ) ( , ) [ ( , ) ( ( , ), ( , ))] ( , )eqf t t t f t f t f t x t tF t     


       x e x x x u x  (A.7) 

Dropping the overbars in Equations (A.4), (A.6), and (A.7), we can obtain Guo et al.’s 

LBE: 

( )1
( , ) ( , ) [ ( , ) ( , )] ( , )eqf t t t f t f t f t F t t     


       x e x x x x    (43) 

with 

1
( , ) ( , ) ( , )

2
t f t t t 



   u x e x F x        (48) 

2 4

( , ) ( , )1
( , ) 1 3 9 ( , )

2

t t
F t w t

c c

 
  



   
      
   

e u x e u x
x e F x .   (49) 

Thus, it is confirmed that explicit and implicit split-forcing SRT-LBEs are equivalent. It 

can also be shown in the same manner that the explicit and implicit split-forcing MRT-

LBEs are equivalent.  
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APPENDIX B 

DERIVATION OF THE DIRECT-FORCING FORMULA 

FROM THE LUMPED-FORCING SRT-LBE 

 

From Equation (43), on the node x at time t+Δt, forced particle distribution functions can 

be written as 

( )

( , )

1
( , ) [ ( , ) ( , )] ( , )eq

f t t

f t t f t t f t t t F t t



       


 

           

x

x e x e x e x e
.  (B.1) 

The particle distribution functions under no external force can be written as 

( )1
( , ) ( , ) [ ( , ) ( , )]noF eqf t t f t t f t t f t t      


         x x e x e x e .  (B.2) 

Subtracting Equation (B.2) from Equation (B.1), we obtain 

( , ) ( , ) ( , )noFf t t f t t t F t t         x x x e .     (B.3) 

Summing Equation (B.3) e and using Equation (16), we can obtain 

( , ) ( , ) ( , ) ( , ) ( , )noFt t t t t t t t t F t t  



         x u x x u x e x e .  (B.4) 

where we used the definition of 

( , ) ( , ) ( , )noF noFt t t t f t t 



    x u x e x .     (B.5) 

We can rewrite Equation (B.4) as 

( , ) ( , )
( , ) ( , )

noFt t t t
F t t t t

t
  




  

   



u x u x

e x e x    (B.6) 

If, as in the direct-forcing IBM based on the NSE, the desired velocity which satisfies 
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the no-slip condition on the boundary is given, that is, ( , )d t t U u x , then, 

( , )
( , )

d noF t t
F t t

t
  




 

  



U u x

e x e .      (63) 
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APPENDIX C 

DERIVATION OF THE DIRECT-FORCING FORMULA  

FROM THE SPLIT-FORCING SRT-LBE 

 

From implicit split-forcing SRT-LBE (53), the particle distribution function at (x,t+Δt) is 

determined by 

( )1
( , ) ( , ) [ ( , ) ( , )]

[ ( , ) ( , )]
2

eqf t t f t t f t t f t t

t
F t t F t t

      

  


          


     

x x e x e x e

x e x

   (C.1) 

The unforced particle distribution function under no external force at (x,t+Δt) can be 

written as 

( )1
( , ) ( , ) [ ( , ) ( , )]

( , )
2

noF eqf t t f t t f t t f t t

t
F t t

      

 


          


  

x x e x e x e

x e

  (C.2) 

Subtracting Equation (C.2) from Equation (C.1), we obtain 

( , ) ( , ) ( , )
2

noF t
f t t f t t F t t  


    x x x .     (C.3) 

Summing Equation (C.3) e and using Equation (46), we can obtain 

( , ) ( , ) ( , ) ( , ) ( , )
2

( , )
2

noF t
t t t t t t t t F t t

t
t t

 



 


          


  

x u x x u x e x

F x

.  (C.4) 

where we used the definition of 
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( , ) ( , ) ( , )noF noFt t t t f t t 



    x u x e x .     (C.5) 

We can rewrite Equation (C.4) as 

( , ) ( , )
( , ) 2 ( , )

noFt t t t
t t t t

t


  
  



u x u x
F x x     (C.6) 

If the desired velocity which satisfies the no-slip condition on the boundary is given, that 

is, ( , )d t t U u x , then, 

( , )
( , ) 2 ( , )

d noF t t
t t t t

t


 
  



U u x
F x x      (65) 

We can start from the explicit split-forcing SRT-LBE (43). The unforced particle 

distribution function under no external force at (x,t+Δt) can be written as 

( , ) ( , ) ( , )noFt t t t f t t 



    x u x e x .     (C.8) 

If the desired velocity at the next time step, dU , which satisfies the no-slip condition on 

the boundary, is given, then from Equation (48) 

( , ) ( , ) ( , )
2

d t
t t f t t t t 






    x U e x F x      (C.9) 

Subtracting Equation (C.8) from Equation (C.9), we obtain 

( , )
( , ) 2 ( , )

d noF t t
t t t t

t


 
  



U u x
F x x .     (65) 
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