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ABSTRACT 

 
 
 

Natural Product Biosynthesis:  Friend or Foe?  

 From Anti-tumor Agent to Disease Causation. (December 2010) 

Jennifer Dianne Foulke-Abel, B.A., Texas A&M University 

Chair of Advisory Committee: Dr. Coran M. H. Watanabe 
 
 
 

 Biosynthetic natural products are invaluable resources that have been gleaned from the 

environment for generations, and they play an essential role in drug development.   Natural 

product biosynthesis also possesses the latent ability to affect biological systems adversely.  This 

work implements recent advances in genomic, proteomic and microbiological technologies to 

understand further biosynthetic molecules that may influence progression of human disease. 

Azinomycin A and B are antitumor metabolites isolated from the terrestrial bacterium 

Streptomyces sahachiroi.  The azinomycins possess an unusual aziridine [1,2-a] pyrrolidine ring 

that reacts in concert with an epoxide moiety to produce DNA interstrand cross-links.  Genomic 

sequencing of S. sahachiroi revealed a putative azinomycin resistance protein (AziR).  

Overexpression of AziR in heterologous hosts demonstrated the protein increases cell viability 

and decreases DNA damage response in the presence of azinomycin.  Fluorescence titration 

indicated AziR functions as an azinomycin binding protein.  An understanding of azinomycin 

resistance is important for future engineering and drug delivery strategies.  Additionally, the S. 

sahachiroi draft genome obtained via 454 pyrosequencing and Illumina sequencing revealed 

several silent secondary metabolic pathways that may provide new natural products with 

biomedical application. 

β-lactoglobulin (BLG), the most abundant whey protein in bovine milk, has been 

observed to promote the self-condensation of retinal and similar α,β-unsaturated aldehydes.  

BLG is a possible non-genetic instigator of cycloretinal and A2E accumulation in the macula, a 

condition associated with age-related macular degeneration.  BLG-mediated terpenal 

condensation has been optimized for in vitro study with the retinal mimic citral.  In rabbits fed 

retinal and BLG or skim milk, cycloretinal formation was detected in the blood by 1H-NMR, and 

SDS-PAGE analysis indicated BLG was present in blood serum, suggesting the protein survives 
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ingestion and retains catalytic activity.  Mass spectrometry and site-directed mutagenesis 

provided mechanistic insight toward this unusual moonlighting behavior. 

The experiments described in this dissertation serve to further natural product 

biosynthesis discovery and elucidation as they relate to consequences for human health.  Efforts 

to solve azinomycin biosynthesis via enzymatic reconstitution, characterize compounds 

produced by orphan gene clusters within S. sahachiroi, and obtain a clear mechanism for BLG-

promoted cycloterpenal formation are immediate goals within the respective projects. 
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CHAPTER I 

 

INTRODUCTION: NATURAL PRODUCT BIOSYNTHESIS 

 

INTRODUCTION 

 The term natural product encompasses a staggering array of compounds produced by 

organisms at all taxonomic levels for both basic and secondary life processes.  Man has utilized 

natural products for medicinal purposes since pre-recorded history, relying on mystic 

understanding of the forces behind the physiological effects.  Time, curiosity, and creativity have 

yielded us the technical tools to probe origin, identity and activity of ancient remedies, as well as 

afforded access to the previously undiscoverable gems of therapeutic benefit literally lying 

beneath our feet.  Many medicinally-relevant natural products are borne from inessential 

secondary metabolic genes within organisms; they are biosynthetic pathways for which the 

evolutionary origin is often unknown.  Recent research is becoming increasingly 

interdisciplinary, weaving principles of chemistry, biochemistry, genomics, proteomics, and 

medicine into a complex picture of submicroscale processes known as natural product 

biosynthesis.  However, not all natural products are beneficial, and while we relentlessly search 

for new drug candidates, we must also take time to understand the effect of molecules being 

produced in our own bodies and how genes, diet and environment may play dramatic roles in 

catalyzing the very disease states we seek to treat with exogenous solutions.  Thus, natural 

products are collectively both our ally and our enemy depending upon context. 

 

THE VALUE OF NATURAL PRODUCTS 

 Historically, natural products have been directly used or been the inspiration for over 

60% of the small molecule therapeutics available today (Fig. 1).1  Beginning in the 1980s, 

interest in medicinal natural products began slowly shifting toward technology-driven drug 

development and design, employing novel techniques in combinatorial chemistry and 

computational molecular modeling to screen huge synthetic compound libraries for specific 

bioactivity in a high-throughput fashion.2  When massive high-throughput efforts failed to reap 

similarly impressive rewards, the popularity of focused, structurally-related subgroup screenings 

took  over,  harkening  back to  old  biologically-relevant  structures  given  new life by synthetic  

_____________ 
This dissertation follows the style of Nature Chemical Biology. 



 2 

manipulation in a technique termed “diversity-oriented synthesis.”3  Pharmaceutical chemists 

realized the hundred thousand-membered libraries of the high-throughput era lacked the 

structural complexity observed in natural products, embodied in characteristics such as multiple 

chiral centers, heterocycles and polycyclic motifs that ultimately lead to targeted bioactivity. 

      

 

 
Figure 1  Distribution of small molecule drug discovery sources, 1981-2006.   
n = 983, and values are expressed in percentages.  N, natural product; ND, derived from a natural product and usually 
a semisynthetic modification; S, totally synthetic drug often found by random screening/modification of an existing 
agent; S*, made by total synthesis, but the pharmacophore is/was from a natural product; NM subcategory, natural 
product mimic. 
 

 

 The potential economic windfall from discovery of blockbuster natural product drugs is 

storied in examples of the antitumor agent taxol and the “antibiotic of last resort” vancomycin 

(Fig. 2).  Isolated from bark of the Pacific yew tree4, taxol treats a range of aggressive soft tissue 

cancers by over stabilizing microtubules, thus inhibiting cytoskeleton reconstruction necessary 

for cell division.5  Vancomycin is a glycopeptide secondary metabolite produced by the soil-

dwelling Amycolatopsis orientalis, and is administered primarily against methicillin-resistant 

Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae infections.6  At the 

apex of their respective therapeutic careers, both taxol and vancomycin grossed over $1 billion 

in pharmaceutical sales annually.7,8  
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Figure 2  Examples of secondary natural product classes.  
Terpene (taxol), nonribosomal peptide (vancomycin), polyketide (tetracycline), and alkaloid (morphine). 
 

 

METABOLIC PATHWAYS, THE DRIVING FORCE OF LIFE 

 Life requires an orchestra of chemical reactions undergoing constant tempo changes.  

Broadly put, the collection of processes an organism uses for energy consumption and renewal 

comprise metabolism.  But upon more detailed molecular consideration, metabolism is the 

building up and breaking down of every biomolecule, the response to a constantly shifting 

reactant/product equilibrium, and the source of distinction between inanimate object and animate 

being.  Chemical reactions in organisms proceed primarily via catalytic macromolecules called 

enzymes; when two or more enzymes moderate chemical revisions of a single compound, they 

are said to form a biosynthetic pathway.   

 The essential compounds of life (nucleic acids, amino acids, vitamins, cofactors, 

carbohydrates, fatty acids, and hormones) are the result of primary metabolic pathways that are 

relatively conserved throughout all life forms.  Molecule classes such as polyketides, 

nonribosomal peptides, alkaloids, and terpenoids (Fig. 2) are the products of inessential or 

secondary metabolic genes specific to a particular species or group.  Only a fraction of the 

currently known secondary metabolites have a defined function, often as defense mechanisms or 

communication signals.  Additionally, secondary pathways may be silenced or activated for any 

number of unknown reasons.    
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SYNTHETIC VERSUS BIOSYNTHETIC ROUTES TO NATURAL PRODUCTS 

 For every individual touting synthetic methodology as the ultimate means to gain 

production-scale quantities of medicinally-relevant natural products, there is the emerging 

concern of sustainability.  While no doubt exists as to the utility and contributions of completely 

synthetic drugs, the exercise demands much in the way of petroleum-derived solvents and 

starting materials, often involves numerous labor-intensive steps, and generates much in the way 

of hazardous chemical waste.9  Biosynthesis, even if only employed for select steps in a largely 

synthetic approach, minimizes environmental impact on both sides of the production equation.  

Microbes and their endogenous biosynthetic pathways can be fabulously efficient and precise 

under certain circumstances, operating under conditions much more harmonious with a “green” 

initiative.  A third approach is to marry biosynthetic building blocks with conventional total 

synthesis to exploit natural reactivity, eliminating the need for multiple protection/deprotection 

steps or enzymes.10  Realistically, all three methods have equal roles in sustainable 

manufacturing, as each strategy alone cannot accomplish every synthesis one may wish to 

undertake. 

 As ideas for drug delivery evolve, biosynthesis takes on a more precious role.  In situ 

treatments, wherein the drug is biosynthesized selectively in cells or tissues requiring therapy, is 

but one application of targeted design demanding an entirely gene-encoded route for natural 

product production.  While such an approach is still in preclinical infancy, aspirations for 

“healing from within” require knowledge of biosynthetic processes much more vast than our 

current understanding. 

 

NATURAL PRODUCT AS FRIEND: THE ANTITUMOR AGENT AZINOMYCIN B 

 A push to discover new drug candidates during the mid-twentieth century resulted in a 

flood of substances exhibiting promise as anti-infective, antitumor, or disease therapeutics.11  

Among these compounds was carzinophilin A, an isolate from a new strain of soil-dwelling 

bacteria, Streptomyces sahachiroi, found to inhibit Yoshida sarcoma and extend lifespan in a rat 

model.12  Over thirty years later the metabolites azinomycin A, azinomycin B, and epoxyamide 

(Fig. 3) were isolated from Streptomyces griseofuscus S42227,13 and through advances in 

purification and spectroscopic assignments carzinophilin A was determined to be identical to 

azinomycin B.   

 



 5 

 
 
Figure 3  Structures of azinomycin A, azinomycin B, and epoxyamide. 
 

 

The azinomycins and functionally related synthetic analogs have been tested against 

myriad disease models, including the 60 cancer cell lines maintained by the National Cancer 

Institute.14  One measure of activity described by Ishizeki and coworkers showed azinomycin A 

and B exhibited similar in vitro cytotoxicity (IC50 of 0.07 µg/mL and 0.11 µg/mL, respectively) 

against the L5178Y leukemia cell line.  In a P388 murine leukemic model, azinomycin B 

provided an increase in lifespan (ILS) of 193%, comparable to that of the current clinical drug 

mitomycin C (204% ILS), but at a 60-fold lower dose.15  Azinomycin B antitumorigenicity stems 

from cross-linking of DNA via interaction of the electrophilic aziridine C10 and epoxide C21 

with purine residues two base pairs apart on complementary DNA strands (Fig. 4).16  DNA 

alkylation triggers depurination and strand breakage, an effect expressed in the observed 

upregulation of DNA synthesis/repair genes.17  Bisalkylating activity has made the azinomycins 

a popular springboard for designing synthetic molecules with similar DNA-targeting ability.14,18-

22 

 

                                           
 

Figure 4  Azinomycin B interactions with duplex DNA.   
(a) The N7 of two guanine bases attack the electrophilic epoxide and aziridine rings to form covalent cross-links.  (b)  
Molecular modeling of azinomycin B bound in the major groove of DNA.16  Azinomycin B is yellow and the DNA 
helix strands are red and blue. 

A B 
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AZINOMYCIN BIOSYNTHESIS 

 The azinomycins are interesting from a biosynthetic viewpoint due to the unprecedented 

azabicyclo[3.1.0]hexane ring.  Of the over 100,000 natural products isolated to date, only a 

handful of molecules are known to contain aziridine rings (Fig. 5).  Biosynthetic gene clusters 

have been proposed for mitomycin C23, azicemicin A24, azinomycin B25, and maduropeptin26, but 

no one has yet successfully characterized the biosynthetic reactions that transpire to form the 

three membered nitrogen heterocycle.  The aziridine functionality could arise from a number of 

reasonable β-carbon activation methods such as halogenation, adenylation, sulfonylation, or 

phosphorylation, complicating prediction of expected intermediates and associated enzymes. 

   

 
 

 

Figure 5  Aziridine-containing natural products isolated to date (2010). 
 

 

 The structures of azinomycin A and B suggested biosynthesis via a hybrid polyketide 

synthase (PKS) and nonribosomal peptide synthetase (NRPS)-containing gene cluster.  An 

analogous naphthoate structure is found in the anti-tumor enediyene neocarzinostatin, for which 

the gene cluster encodes an iterative type I PKS.27  The alternating carbonyl and amide backbone 

of the azinomycin right half was predicted to arise from amino acid-like substrate condensation 

orchestrated by modular NRPS enzymes.  A variety of biosynthetic enzymes for tailoring 
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reactions, e.g., oxidation, reduction, methylation and acetylation were also suspected to 

participate.  

 Biosynthetic origin can be traced by providing isotopically-labeled precursor compounds 

to a fermentation culture, isolating the natural product, and examining isotopic signal attenuation 

by NMR.  Corre and Lowden first used isotopically-labeled precursor compound feeding to 

monitor biosynthetic incorporation at specific atom positions in azinomycin B as detected by 

enhanced 13C-NMR resonance.  Providing [1-13C]-, [2-13C]-, or [1,2-13C]-acetate to cultures of S. 

sahachiroi resulted in label incorporation consistent with polyketide synthase-mediated 

biosynthesis of the azinomycin naphthoate from activated acetyl and malonyl-CoA units.28  

Doubly-enriched acetate served to couple adjacent carbons and supported origin of the acetyl 

decoration at C13.  Additional incorporation due to metabolic scrambling of acetate in the Krebs 

cycle showed up in C1-C4 of the keto-enol chain, which was proposed to be derived from 

threonine which was in turn derived from oxaloacetate.  Coupled labeling also appeared between 

the pairs C6-C7 and C12-C13, again attributed to scrambling of acetate to form α-ketoglutarate, 

the precursor of glutamate, glutamine, arginine, and proline, any of which are conceivable 

building blocks of the azabicyclo[3.1.0]hexane ring.  Synthetic deuterated naphthoic acids were 

fed and analyzed for incorporation by 2H-NMR to determine the extent to which the ring system 

is tailored prior to joining the right half of azinomycin.29  Significant uptake of all three C3‟ 

variants into the azinomycin structure was noted, evidence that the naphthoate is fully 

constructed prior to introduction to the rest of the molecule. 

 Determination of biosynthetic inhibitors, substrates, and cofactors for azinomycin B 

biosynthesis utilized cell-free extracts to support in vitro production of the compound.30  This 

method involved incubation with [1-14C]-malonyl-CoA as a label to track the relative amount of 

azinomycin B produced by the cell-free system.  Reactions were subjected to TLC with 

standards and appropriate regions of the TLC plate were scraped and collected for analysis by 

scintillation counting.  Cofactors NADPH and SAM were found essential for biosynthesis.  

Cerulenin, an inhibitor of FAS/PKS enzymes, slowed down naphthoate synthesis. Cytochrome 

P450 oxidases were targeted using miconazole, metyrapone, and chloramphenicol, eliciting 

decreased production of both naphthoate and azinomycin B.  Incubations with 14C-labeled amino 

acid building blocks demonstrated reasonable incorporation of ornithine, glycine, valine, and 

threonine consistent with proposed biosynthetic origins based on structure analysis. 

 A major obstacle preventing isotopic precursor feedings was erratic production of 

azinomycin B by S. sahachiroi using the current literature procedures.  Significant effort was 
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invested to determine an optimal fermentation system capable of consistent azinomycin B 

production.  Final conditions implemented dehydrated agar plates, a two stage starter culture, 

and a minimal fermentation media to achieve steady production.31  This optimized method 

allowed study of threonine-like precursors for biosynthesis of the enol right end of azinomycin 

B.  [U-13C]-threonine feeding produced azinomycin B site-specifically labeled at the C1-C4 

positions.  Additional postulated enol intermediates β-ketoamino acid, β-hydroxyamino 

aldehyde, and β-ketoaminoaldehyde were synthesized as [U-13C]-labeled compounds to evaluate 

the most advanced precursor accepted by biosynthetic enzymes.  All three of the more advanced 

precursors failed to incorporate above background, indicating threonine is the recognized 

substrate for initial incorporation, and undergoes subsequent oxidation and reduction steps, of 

which the order is unknown, to provide the final keto-enol structure. 

 In azinomycin A, the more minor metabolite produced by S. sahachiroi, the enol group 

is absent.  Thus, the origin of azinomycin A C1-C3 was suspected to arise from aminoacetone, a 

metabolic precursor derived from either glycine or threonine via action of a 2-amino-3-

ketobutyrate coenzyme A ligase or L-threonine 3-dehydrogenase, respectively, followed by 

spontaneous decarboxylation.  Cultures provided universally-labeled threonine, [1-13C]- or [2-
13C]-glycine or [2-13C]-aminoacetone were compared for relative incorporation of each 

compound into azinomycin A.32 While minimal threonine and glycine-derived labels appeared in 

azinomycin A, aminoacetone incorporated at a very significant level of 26.3%.  Genomic 

sequencing of S. sahachiroi also revealed homologs of the enzymes necessary for aminoacetone 

synthesis.  Evidence of a bifurcated pathway for azinomycin A and B biosynthesis modulated by 

the relative availability of precursors was indicated by unlabeled substrate feeding of 

aminoacetone, which provided an increased amount of azinomycin A relative to azinomycin B. 

 A series of epoxyvaline precursors were utilized to study the biosynthetic timing of 

valine incorporation in azinomycin and the related metabolite epoxyamide.  Surprisingly, much 

of the valine tailoring occurs prior to being loaded onto the NRPS machinery.  Of the nine [1-
13C]-valine derivatives examined, incorporation levels suggest a pathway that begins with 

oxidation of L-valine to γ-hydroxyvaline, followed by transamination to give an α-keto acid and 

dehydration to form 3-methyl-2-oxobutenoic acid.33  The exact timing of epoxidation is unclear 

as the instability of epoxide precursors in aqueous media may have contributed to the lack of 

observed incorporation in feeding experiments.  An illustration of precursor incorporations 

directly implicated in azinomycin biosynthesis is presented in Figure 6. 
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Figure 6  Biosynthesis of the azinomycins as indicated by isotopic tracing experiments.  
Asterisks (*) indicate isotope-labeled atom positions. 
  

 

 In 2008, Zhao and colleagues proposed the azinomycin B biosynthetic gene cluster 

based on PCR screening of genomic DNA to identify the probable type I iterative PKS 

responsible for naphthoic acid (NPA) formation (Fig. 7).25  Screening of an S. sahachiroi 

genomic library with a probe derived from the PKS sequence fragment provided a set of 

overlapping clones, and further chromosome walking yielded 80 kb of discrete sequence 

believed to constitute the azinomycin gene cluster.  Bioinformatic analysis provided annotation 

of genes encoding proteins associated with the naphthoate PKS, three NRPS modules, two multi-

domain acyl ligase modules, and additional proteins related to possible azabicycle assembly and 

molecular tailoring.  Verification of the pathway linkage to azinomycin biosynthesis was 

achieved by heterologous expression of aziB, the gene encoding the PKS, and detection of 5-

methyl-NPA secreted in the fermentation media.  Additionally, the roles of a cytochrome P450 

hydroxylase (AziB1) and a SAM-dependent O-methyltransferase (AziB2) in NPA tailoring were 

demonstrated in the Streptomyces albus heterologous expression system, producing 3-methoxy-

5-methyl-NPA as predicted.25  Subsequent in vitro reconstitution of AziB1 and AziB2 

overexpressed in E. coli presented further confirmation of hydroxylation and methyltransferase 

activities.34 
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Figure 7  Genetic map of the proposed azinomycin B biosynthetic pathway from S. sahachiroi. 
 

 

 To round out the complete set of enzymes participating in naphthoic acid biosynthesis 

and activation, the substrate specificity of a didomain NRPS (AziA1) was investigated for 

loading and activation of 3-methoxy-5-methyl-NPA.  In a standard ATP-[32P]-PPi exchange 

assay, AziA1 was found to activate 3-methoxy-5-methyl-NPA, 5-methyl-NPA, and 3-hydroxy-5-

methyl-NPA.34  A coupled PPi release experiment demonstrated AziA1 had 3-5 fold higher 

preference for the most advanced substrate 3-methoxy-5-methyl-NPA.  Additional NPA analogs 

were tolerated by AziA1 with a range of catalytic efficiencies to suggest some promiscuity, but 

failure to activate 6-methylsalicylic acid or orsellenic acid reveals the naphthalene ring may be a 

necessary structural component for substrate recognition by this type I iterative PKS.  

 The enzymology of epoxyvaline, azabicycle, and threonine/aminoacetone formation and 

incorporation remains to be explored via genetic manipulation and enzymatic reconstitution.  

Because bioinformatic analysis indicates the pathways may be quite complicated, as in the case 

of proposed mechanisms for azabicyclo[3.1.0]hexane construction, azinomycin biosynthesis 

represents a real challenge to reveal novel chemistry at work in bacterial systems.  

 

 

 



 11 

STREPTOMYCES AND NATURAL PRODUCTS 

 The genus Streptomyces provides a curious wealth of molecules ranging from antibiotic 

and cytotoxic compounds to hormone-like differentiation signals, immunosupressants, pigments, 

and metal ion scavengers.  Streptomycetes are known to colonize terrestrial ground, plant 

tissues35, marine soil36 and even arctic land, indicating prevalence over almost any environmental 

condition and hinting at immense adaptation capabilities.  With only a few exceptions, 

Streptomycetes are not pathogenic, in contrast to the behavior of phylogenetic siblings like 

Mycobacterium tuberculosis and Corynebacterium diphtheriae.  Sequencing of the 8.7 Mb S. 

coelicolor genome in 2002 revealed genes for primary metabolism and essential life functions 

centrally concentrated on the chromosome, perhaps to protect against accidental loss, and are 

strikingly similar among all complete Streptomyces genomes analyzed to date.37-39  Localization 

of secondary metabolic genes near the ends or “arms” of the linear chromosome suggests trade 

among species by horizontal gene transfer, and these arms show little similarity between 

species.40  Given the stressful conditions most Streptomycetes endure, including drought and 

nutrient deprivation,  coupled with their immobility, leads to the conclusion that these numerous 

gene-encoded small molecules were acquired as the only line of defense against encroaching 

microorganisms. Additionally, Challis and Hopwood argue that producing several metabolites at 

a time may have a synergistic effect on competing microorganisms; many low-activity 

antibiotics can converge to be as powerful as a single superdrug.41  Debate concerning the 

evolution and endogenous utility of the diverse secondary metabolic genes occupying ~5% of 

each Streptomyces genome will undoubtedly continue within the scientific literature into 

perpetuity.     

 

NONRIBOSOMAL PEPTIDE SYNTHETASES, POLYKETIDE SYNTHASES, AND 

ENGINEERED BIOSYNTHESIS OF NATURAL PRODUCTS 

 Engineered biosynthesis can refer to natural products produced by enzymes in either in 

vivo or in vitro settings.  Techniques have been proposed to manipulate pathway steps and 

subsequent products by domain swapping or DNA shuffling to create combinatorial libraries.42,43  

In addition, mixing and matching enzymes from various biosynthetic pathways in a cell-free 

system has been used to achieve in vitro engineered natural product biosynthesis.44  Modular 

enzymes such as polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) are 

particularly well-suited for swapping attempts because each synthase or megasynthase is a 
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collection of discrete domains that catalyze individual activation, condensation, tailoring, and 

cleavage steps (Fig. 8). 

 

 
 
Figure 8  NRPS and PKS domains.  
     

 

 Both NRPS and PKS assembly lines promote thioclaisen condensation of simple 

activated biological monomers.  NRPS modules mediate head-to-tail peptide bond formation of 

proteinogenic and nonproteinogenic amino acids and some carboxylic acids, requiring at 

minimum domains for adenylation, thiolation, and condensation.  PKS modules polymerize 

acetate units by employing core ketosynthase, thiolation, and acyltransferase domains.  NRPS 

and PKS products can be diversified by the presence of additional domains for oxidation, 

reduction, methylation, cyclization or other more specialized transformations, and are known to 

form hybrid systems to accomplish some syntheses.45  Covalent cleavage of the peptide or 

polyketide from the enzyme is accomplished by either thioesterase or intra-molecular cyclization 

domains.   

 Thiolation domains (or acyl carrier proteins) require post-translational 

phosphopantetheinylation of a single serine residue by a dedicated transferase to provide the 

flexible tether for aminoacyl-AMP or acyl-CoA transthiolation (Fig. 9A). NRPS chemistry 

begins with the adenylation domain, which contains specific active site residues for proper 
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substrate recognition and attachment of adenosine 5‟-monophosphate to the carboxylate end of 

the amino acid to give aminoacyl-AMP (Fig. 9B).  Finally, the phosphopantetheine arm guides 

the monomer to the condensation domain where the free amino group commences nucleophilic 

attack on the downstream peptidyl thioester, causing translocation of the growing peptide chain 

(Fig. 9C). 

 

 

 
 

 
 

 
 

Figure 9  Chemical mechanisms catalyzed by NRPS domains. 
(a) The apo-form of a thiolation domain requires phosphopantetheinylation from coenzyme A catalyzed by a 
phosphopantetheinyl transferase.  (b) Amino acid activation occurs from reaction with ATP within A domain followed 
by covalent thioester linkage in T domain.  (c) Condensation reaction mechanism in the C domain.  
 

 

 The PKS mechanism involves a thiolation step similar to that seen in NRPS systems, 

except the initial activated monomer is acetyl-CoA.  Acyltransferase domains commonly operate 

A 

C 

B 
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on malonyl- or methylmalonyl-CoA (Fig. 10A) by nucleophilic attack using a serine residue, 

forming a covalent acyl-O-AT intermediate that is subsequently transferred to the thiolation 

domain phosphopantetheine arm.  A ketosynthase domain performs chain elongation by 

catalyzing decarboxylation of malonyl- or methylmalonyl-S-T to give the enolate for 

nucleophilic attack of an upstream thioester (Fig. 10B).    

 

 

 

 
 

Figure 10  Structures and chemical mechanism of acetate unit incorporation by PKS domains. 
(a) common acyl-CoA units operated on by PKS domains, (b) KS and AT domain catalyze decarboxylation and 
Claisen condensation of each monomer unit onto the growing polyketide chain. 
 

 

 Polyketide systems closely resemble fatty acid synthases (FAS), except that PKSs do not 

necessarily contain all catalytic domains to form the fully-reduced alkyl chains produced by 

FASs.  Two principal types of PKS systems are found in most bacteria.  Type I PKSs are 

multidomain proteins encoded by a single gene, while type II PKSs function as an in trans 

protein complex in which each domain is encoded by a separate gene.   In general, the type II 

systems are iterative, meaning domains are reused multiple times for chain elongation, whereas 

type I domains are used only once per catalytic cycle.  However, in the case of systems for some 

aromatic PKS-derived structures such as orsellenic acid, 6-methylsalicylic acid and 5-

methylnaphthoic acid, type I systems have been observed to display iterative behavior.25,46,47 

A 

B 
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 The engineering potential of distinct catalytic domain architecture was initially 

investigated to generate triketide lactones using recombined 6-deoxyerythronolide B synthase 

(DEBS) modules from Saccharopolyspora erythraea (Fig. 11).48-50  Modules 1 and 2, along with 

the substrate loading module from DEBS1, were genetically fused to the TE domain from 

module 6 of DEBS3 to determine if a recombinant PKS would retain function.  Both 

heterologous expression and purified enzyme incubations provided the anticipated lactones, 

supporting the plausibility of domain swapping to generate novel natural product structures.  

  

 

 

 
 

 
 

 

Figure 11  Genetic engineering of DEBS modules. 
(a) Native DEBS1, 2, and 3 combined activity produces 6-deoxyerythronolide; (b) Recombined DEBS modules 
synthesize the predicted triketide lactones in vivo, depending upon availability of malonyl-derived substrates. 
 

 

 True combinatorial assembly was later completed using a domain linker strategy to 

guide logical assembly of domains from a mixture of multiple modules (Fig. 12).  Each module 

A 

B 
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or linker gene fragment is flanked by different restriction endonuclease recognition sites.  Once 

digested, the sticky ends ensure that only proper fragments will be ligated together to clone a 

presumably functional PKS.  Again using modules from DEBS, a proof-of-principle experiment 

showed combinatorial module swapping is a viable option for producing functional enzymes.51  

Care was taken to install the restriction endonuclease cleavage sites in the DNA sequence with 

minimal peptide sequence disturbance.  Sites requiring amino acid substitution used residues 

known not to significantly disrupt native structure and subsequent functionality.  These sequence 

limitations on module use are somewhat inhibitory of large scale combinatorial enzyme library 

applications.   

 

 

 
 

 
 

Figure 12  Combinatorial strategy for assembly of PKS modules using synthetic genes.   
(a)  Gene fragments are flanked with unique restriction sites to guide logical assembly of modules and linkers.  LM, 
loading module; LI, intrapeptide linker; LC, C-terminal interaction domain; LN, N-terminal interaction domain.  (b) 
Experimental recombination of DEBS modules yielded the predicted triketide lactone.  Figure after Menzella et al.51 
 

 

BACTERIAL DRUG RESISTANCE MECHANISMS 

 Drug resistance occurs in nature either as an intrinsic property or is acquired as a 

response to threatening bioactive compounds.  All resistance properties fall into the study of 

what has been termed the „resistome.‟52  While the evolution of resistance mechanisms is 

essential for survival and important in relation to engineered biosynthesis of natural products, it 

poses real economic and epidemiological issues when drugs begin to fail against bacterial, viral, 

or parasitic infection.  Repetitive chemical exposure in increasing concentrations exacerbates the 

A 

B 



 17 

acquired resistance phenomenon by exerting selective pressure to accelerate development of 

resistant phenotypes.  Virulent drug-resistant strains such as methicillin-resistant Staphylococcus 

aureus and multi-drug resistant Mycobacterium tuberculosis are some of the recent publicized 

consequences of overuse or misuse of antibiotic treatments.  Pathogens often employ more than 

one strategy to circumvent the effects of drug exposure, complicating efforts to develop 

alternative therapies.  Understanding the biochemical mechanisms of drug resistance keeps us 

one step ahead in the seemingly endless quest to overcome microorganismal adapations to new 

drugs. 

 The first antibiotic resistance enzyme discovered was B. coli penicillinase, a class A β-

lactamase that catalyzes penicillin β-lactam hydrolysis.  Abraham and Chain found penicillin 

incubated with B. coli cell extract was deactivated when tested against S. aureus.53  Degradative 

resistance proteins like β-lactamases can alter a functional group or cause structural 

rearrangement, rendering the compound unreactive toward the intended target.  Drug-modifying 

resistance proteins can also promote covalent transfer of phosphate, acetate, adenylate, 

glutathione, or glycosides to inactivate a drug by blocking a reactive group or creating a structure 

that no longer fits within the target active site.  An example is aminoglycoside 

phosphotransferase, which operates on aminoglycoside antibiotics such as kanamycin, 

streptomycin and neomycin, transferring the γ-phosphate of ATP to a carbohydrate hydroxyl to 

prevent drug binding to the A-site of the 30S ribosomal subunit.54   

 The resistome includes not only enzymes for chemical inactivation, but also drug target 

mutations, influx reduction mechanisms, and expression of transport proteins, binding proteins 

and efflux pumps (Fig. 13).  Bacterial genomes code for numerous small molecule transport 

proteins, some of which are non-specific toxin pumps that protect against a range of 

environmental chemicals, such as the multi-drug binding capacity of AcrB in E. coli.55  Other 

pumps are more specialized, as in the case of TetA for tetracycline resistance.56  A case of drug 

target modification is evident in Streptomyces erythraeus, in which ribosomal RNA is 

methylated by ErmE to protect against erythromycin.57  A class of drug binding proteins confer 

resistance to bleomycin, phleomycin, and tallysomycin in several actinomycetes, protecting 

genomic DNA from cleavage by oxygen radicals produced when the drugs chelate iron and 

become pseudoenzymes.58  Binding proteins do not effect chemical change, but serve to 

sequester the drug from potential targets until removed from the cell.  
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Figure 13  A summary of biochemical drug resistance mechanisms in the cell.   
(a) Membrane acts as a diffusion barrier for some small molecules.  (b) Efflux pumps remove toxic compounds from 
the cell.  (c) Genetic mutations produce proteins lacking the original drug binding site.  (d) Proteins add acetate, 
phosphate, or otherwise convert the molecule into an inactive form.  (e)  Drug binding proteins sequester the drug 
from reactive targets.  Figure after Allen et al.59  
 

 

 Efflux pump and target modifying proteins can be difficult to introduce in heterologous 

hosts, especially for purposes of natural product biosynthetic engineering, because they pose the 

possibility of biological system upset.  Pumps must be integrated in the cell membrane, and 

target modification must be tolerated by all other macromolecules dependent upon the target for 

normal cell function.  Binding proteins or chemical modifying enzymes are theoretically more 

facile resistance methods to introduce in heterologous expression hosts because less punishment 

is brandished on cellular housekeeping proteins or physical cell structure.  

 

CRYPTIC/ORPHAN BIOSYNTHETIC PATHWAYS 

 As resistance mechanisms continue to evolve, so must efforts to mine new medicinal 

natural products.  Current estimates of isolated natural products compared to the number of 

possible secondary biosynthetic gene clusters available in microorganisms suggest much 

opportunity is being missed by conventional environmental sample collection, fractionation and 

screening methods.  As little as 1% of the global microbial potential for biologically-relevant 

molecules may be represented in the archived natural product pool, in part because of our 

unawareness regarding the number of microorganisms inhabiting the planet.60   
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 Completion of the Streptomyces coelicolor A3(2) genome in 2002 was one of several 

bacterial sequencing projects to reveal natural product-like gene clusters for which the product 

was unknown.37  Prior to the disclosure of these pathways natural product drug discovery was 

deemed unsustainable, judging from the gradual decline in new natural product structures 

reported during the 1980s and 1990s and the frequent reisolation of known compounds from new 

microbes.  The clusters, termed „cryptic‟ or „orphan‟ pathways to designate not having a natural 

product pairing, offered fresh perspective on gene-encoded small molecule sources.  Cognizance 

of orphan pathways spurred specialization in the area of genome mining as a promising next-

generation technique for drug discovery. 

 Orphan biosynthetic gene clusters have unassociated natural products for a number of 

reasons.  If the compound is produced in reasonable quantity, screening methods simply may not 

be optimized to identify particular physical attributes.  However, if the compound is expressed at  

undetectably low levels, the pathway may be transcriptionally silenced or downregulated under 

normal laboratory fermentation conditions.  This case is observed for many of the secondary 

metabolic compounds produced by Streptomycetes, and requires special conditions (stress) or 

environmental cues (molecular signals from symbionts) to jumpstart clustered gene expression.  

In other cases, the pathway may have been acquired by horizontal gene transfer and lacks the 

necessary transcriptional promoters for recognition as coding sequence.  A robust resistance 

mechanism may be lacking, so a nonproducing phenotype was selected for over subsequent 

generations.  Mutations and frameshifts could silence a previously productive pathway.  The 

explanations for the presence and perceived silence of orphan biosynthetic pathways in 

microorganisms are endless, setting the stage for studies bridging evolution, transcriptional 

biology, and bioinformatic prediction. 

  Methods to uncover orphan clusters and their associated natural products focus on DNA 

sequence-based tools in the form of whole genome sequencing, degenerate PCR screening, 

genomic scanning, or metagenomics.  Whole genome sequencing and annotation, while the most 

time and labor intensive, gives a complete picture of an organism‟s metabolism and is searchable 

for favorite biosynthetic protein classes, which in turn reveal clustered pathways.  Degenerate 

PCR queries genomic DNA or genomic cosmid libraries using oligonucleotides designed from 

conserved regions of NRPS and PKS-type proteins involved in secondary metabolism, and 

resulting sequence fragments aid discovery of complete clusters.  Similar to degenerate PCR 

screening, genomic scanning uses a random gene sequence tag library to determine appropriate 

sequences, then uses the sequences to fish out longer pathway fragments from a BAC library and 
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ultimately piece together a finished pathway.  For the case of unculturable or undiscovered 

organisms, metagenomics provides the means to identify new natural product pathways via 

heterologous expression of environmental DNA samples, but is the most risky and difficult 

because host codon bias or sequence intolerance may destroy any chance of successful 

metabolite production. 

 Following genetic identification of a putative biosynthetic cluster there are several 

options for product prediction and verification.  Generally, bioinformatics provide a starting 

point for determining specific small-molecule building blocks and tailoring reactions by 

examining conserved domain motifs in encoded proteins and comparing them to pathway 

enzymes with known products.  From there, induced expression and gene inactivation or isotope 

tracer feedings are equally valuable tools to identify pathway intermediates.  Genetic knock-out 

requires disruption or deletion of a specific gene to prevent normal transcription, usually aided 

by homologous recombination with a plasmid-delivered copy of the gene interrupted by a 

selectable genetic marker to phenotypically indicate gene replacement.  Isotopically-enriched 

building blocks provided to a fermentation culture incorporate the label in the resulting natural 

product for detection by NMR signal attenuation.  If the pathway is not functional due to missing 

promoters or other lack of activation, or metabolite production is not robust, in vitro enzymatic 

reconstitution serves as a bypass for in vivo expression profiling.  Individual purified enzymes 

predicted to catalyze pathway steps are assayed for tolerance and turnover of appropriate 

substrates.  Entire multi-enzyme biosynthetic pathways and complete in vitro biosyntheses have 

been elucidated following reconstitution methodology.61-63 

  

NEXT-GENERATION GENOME SEQUENCING 

 As whole genome sequencing becomes more financially accessible and requires less 

DNA starting material, time, and effort, it reigns as an optimal technique for sequence-driven 

biosynthetic natural product discovery.  Complete genomic information is essential for detection 

of unclustered genes, fragmented pathways, and primary metabolic pathways that provide some 

of the unusual building blocks for secondary metabolite biosynthesis.  The natural process of 

polymerase-mediated DNA replication was the inspiration for both early and current sequencing-

by-synthesis (SBS) approaches, and future prospects promise to miniaturize the process to 

single-molecule imaging of base pair incorporation.  While arguably the greatest impetus for 

evolving DNA sequence acquisition has been the International Human Genome Project, the 

relevance of improved techniques for sequencing of all living organism genomes is obvious.    
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 DNA sequencing began a little over three decades ago with publication of the Sanger 

method for enzymatically incorporating chain-terminating 2‟,3‟-dideoxynucleotide triphosphates 

(ddNTPs) in strand replication.64  The ddNTPs are present in very small amounts relative to 

deoxynucleotide triphosphates (dNTPs) in a sequencing reaction, producing a stochastic 

distribution of synthesized single-strand DNA fragments.  In the original method, [32P]-end 

labeled fragments were separated by polyacrylamide gel electrophoresis and imaged by 

autoradiography to deduce the corresponding DNA sequence.  Shortly after, ddNTP-conjugated 

fluorophores and capillary electrophoresis separation with laser detection came to constitute the 

standard protocol now employed for routine sequence verification of cloned DNA in 

plasmids.65,66 

 Whole genome sequencing was once a literally insurmountable task, even for very small 

(~1Mb) single chromosome species.  While DNA sequencing methodologies had been in 

existence since the 1970s, avenues for assembly of the 25,000+ pieces of sequence data 

minimally generated in a theoretical genome sequencing application did not exist.  

Computational assembly strategies and high-throughput sequencing was until on hold until 1995 

with the reported 1.8 Mb whole genome shotgun sequence of Haemophilus influenzae Rd.67  By 

employing a randomized approach to sequence acquisition, the H. influenzae project 

circumvented the barrier imposed by direct sequencing (chromosome or primer walking).  

Primer walking can be hindered by DNA secondary structures, self-annealing sequence regions 

(hairpins) and high G+C content.  Fragmentation and subsequent reassembly overcomes this 

obstacle, provided the shotgun library is sequenced statistically deep enough for complete 

genome coverage.   Though the exact technique pioneered for the H. influenzae project is no 

longer a primary route to whole genome sequencing, the shotgun concept is present in all of the 

more advanced approaches available today.   

 Current genome sizes range from 160,000 bp (Carsonella ruddi) to over 670 Gb 

(Polychaos dubia).  The human genome sequence, reported as a draft form in 200168 and 

considered roughly complete in 2003, rests between these at 2.9 Gb.  Genome length is not a 

predictor of organism size, complexity, or encoded proteins as evidenced by a sampling of the 

1,196 fully sequenced genomes publicly available as of February 2010 (Table 1).  The European 

toad genome is three times the size of the human genome, but has yet to fully sequenced.  Some 

of the smallest single-cell eukaryotes, amoebas, have genomes 100 to 300-fold larger than that of 

humans, and will be enormous sequencing projects if they are undertaken.  Much of the mystery 
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surrounding disparate genome size and organism complexity begs to be explored by future 

whole-genome sequencing applications.  

 

 
Table 1  A sampling of the distribution of genome sizes among living creatures.   
Values are from the Database of Genome Sizes.69  

Organism Common Name or Description 
Genome 

Size 

Coding 

Genesa 

Carsonella ruddi bacterial symbiont of psyllids (sap-feeding insects) 160 kb 182 

Escherichia coli rod-shaped intestinal bacterium 4.1 Mb 4,800 

Streptomyces coelicolor terrestrial bacterium 8.9 Mb 7,825 

Saccharomyces cerevisiae fungi, baker‟s yeast 12 Mb 6, 275 

Caenorhabditis elegans roundworm 97 Mb 19,000 

Drosophila melanogaster fruit fly 120 Mb 13,601 

Boa constrictor large, heavy-bodied snake 2.1 Gb unknown 

Homo sapiens human 2.9 Gb 30,000 

Bufo bufo European or common toad 6.9 Gb unknown 

Amoeba proteus single-cell eukaryote; uses pseudopodia to move/eat 290 Gb unknown 

Polychaos dubia large freshwater amoeba 670 Gb unknown 

aEntries noted as unknown refer to genome sequencing either not yet undertaken or incomplete. 

 

 

 Because read length and throughput contribute greatly to the cost and effort invested in 

genome sequencing, the last decade has been witness to optimization attempts for three types of 

massively parallel high-throughput sequencing platforms termed „next-generation‟ applications:  

Illumina Genome Analyzer II (GAII), Applied Biosystems Sequencing by Oligonucleotide 

Ligation and Detection (ABI SOLiD) system, and Roche/454 Life Sciences Genome Sequencer 

FLX (GS FLX) platform.  All three offerings operate on the SBS premise, but implement the 

process in very different ways (Table 2).  Sequencing platforms are primarily characterized as 

next-generation because they employ not only unique approaches to DNA base incorporation 

and detection, but also because the number of simultaneous sequence fragments analyzed can 

reach into the millions.  A further advantage of these techniques is the avoidance of bacterial 

subcloning and enzymatic digestions, both of which introduce bias in representation of the 



 23 

genome if stretches of DNA are unstable in the bacterial host or lack suitable endonuclease 

recognition sequences.  

 

 
Table 2  Comparison of next-generation sequencing strategies.   
Statistics reported by Mardis.70 

 

 

 The Illumina GAII platform consists of four stages for DNA library preparation, cluster 

generation, sequencing, and base calling image analysis.  The library is generated from randomly 

sheared and size-selected genomic DNA to which oligonucleotide adapters are ligated.  The 

adapters permit PCR-guided enrichment of the library, serve to anchor the DNA fragments to the 

surface of a flow cell, and prime the bridged amplification of fragments to form ~2000-molecule 

clonal clusters necessary for fluorescent signal detection by a charge-coupled device (CCD).  

Sequencing relies on reversible terminators for each step (Fig. 14).  Once an incorporated base 

has been imaged, the fluorophore blocking the 3‟-hydroxyl end is cleaved to permit another 

round of base addition.  The process is repeated anywhere from 25-100+ times depending on the 

specific sequencing aim.  The sequencing process occurs in parallel across more than six million 

clusters per run, generating 1.5 Gb per day with an accuracy of 99.999% at three-fold or greater 

coverage.  Because each sequence generated is ~100 bp or less, specialized open-source 

sequence assembly software packages such as SSAKE, VCAKE, SHARCGS, Velvet, and Edena 

were developed to handle very short reads and some have the option for assembly of mate-paired 

end sequences.71  Also, the number of reads required for de novo genome sequencing using 

Illumina technology can be 25-fold greater than for the same data obtained from Sanger reads, 

translating to a much larger data file occupying computational memory.  The demand for 

 
Roche/454 GS FLX Illumina GAII ABI SOLiD 

Sequencing Chemistry coupled pyrophosphate release polymerase-based ligase-based  

Amplification approach emulsion PCR bridge amplification emulsion PCR 

Paired end separation 3 kb 200 bp-5 kb 600 bp-10 kb 

Bases sequenced 400-600 Mb 2-2.5 Gb 20 Gb 

Time (paired ends) 7 h 4 d 5 d 

Read length ≈250 bp  ≈25-100 bp ≈50-100 bp 

Cost per single-end run ≈$8,500  ≈$9,000  ≈$17,500 
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resources is arguably mediated by the relative ease and speed with which Illumina sequence 

permits access to genomes that fail sequencing by traditional methods. 

  

 

 
 
 
 
Figure 14  Illumina GAII sequencing method employing reversible terminator chemistry.   
A primer is annealed to the single-stranded DNA immobilized on the flow cell, and then 3‟-OH fluorescently-capped 
NTPs are introduced.  The incorporated base is imaged and the fluorophore cap is cleaved to enable the next round of 
polymerization.  Figure from Illumina corporate literature. 
 

 

 The ABI SOLiD platform carries out adapter ligation similar to Illumina GAII, but 

amplifies sheared genomic DNA fragments in emulsion PCR (ePCR) with magnetic beads 

displaying PCR primers.  ePCR creates aqueous „microreactors‟ suspended in an oil, each 

containing a single DNA template and bead.  The beads are then purified and covalently attached 

to a glass slide for sequencing by ligation (Fig. 15), in which a primer hybridizes to the adapter 

sequence and a pool of degenerate fluorescently labeled octamers compete for ligation to the 

primer.  Only octamers homologous to the first five bases of the DNA template will anneal for 

subsequent joining by a DNA ligase.  Colors correspond to the combination of bases at position 

4 + 5.  Following imaging, bases 6-8 and the tag are chemically cleaved and the pool of 
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fluorescent probes is again introduced to sequence positions 9 + 10, then 14 + 15, 19 + 20, and 

so on.  Synthesized strands are finally stripped from the template and probe annealing and 

ligation is repeated with primers offset by 1, 2, 3, or 4 bases to fill in sequence information for 

the gaps leftover from the initial round of sequencing.  The number of beads deposited on the 

glass slide is theoretically limited only by available space, but signals must have a certain degree 

of separation to be distinguishable in the captured image and thus is a parameter that limits not 

only ABI SOLiD but also the flow cell capacity of the Illumina GAII system.   

 

 

 
 

 

Figure 15  The ABI SOLiD process.   
(a) Octamer annealing and ligation, tag imaging, capping of unprimed sequences, and tag cleavage.  (b)  Completed 
synthesized strand is removed and a new sequencing primer is annealed with a 1 base offset to fill in sequence gaps in 
the same manner depicted in panel a.  Process is repeated with 2, 3, and 4 base offset primers.  Figure after Mardis.70  
 

 

 The Roche/454 Life Sciences GS FLX platform also utilizes bead-bound DNA templates  

obtained through ePCR, but arrays individual beads in unique wells of a picotiter plate (PTP) to 



 26 

provide a fixed location for sequencing, and is analogous to the flow cell or glass slide used in 

the previously detailed platforms.  DNA polymerase and beads containing ATP sulfurylase and 

firefly luciferase are added to the PTP to perform pyrosequencing, which couples the release of 

inorganic pyrophosphate (PPi) from standard nucleotide incorporation with a chemiluminescent 

reaction72 monitored by a CCD positioned at the base of each well (Fig. 16).  Nucleotides are 

sequentially admitted to the PTP for reaction, and the intensity of light emitted is directly 

proportional to the number of As, Ts, Cs, or Gs incorporated during each step.   

 

 

 
 

 

Figure 16  Roche/454 Life Sciences GS FLX bead-based pyrosequencing implementation. 
Figure from Roche corporate literature. 
 

 

 The pyrosequencing mechanism (Fig. 17) relies on a standard DNA polymerase for 

ligation of new nucleotides to a DNA strand.  This process release inorganic phosphate (PPi).  

ATP sulfurylase uses PPi to convert adenosine phosphosulfate (APS) to adenosine triphosphate 

(ATP), which serves as a cofactor for luciferin oxidation via activation with addition of 

adenosine monophosphate.  A side product of subsequent oxyluciferin formation is photon 

release, permitting detection of the coupled reaction. 
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Figure 17  Roche/454 Life Sciences pyrosequencing mechanism. 
  

 

Each of the next-generation sequence platforms has application in other areas of 

genomic science beside whole-genome sequencing.70  For eukaryotic gene expression studies, 

chromatin immunoprecipitation (ChIP) first identifies specific proteins bound to DNA using an 

antibody, then the associated DNA is extracted for sequencing to reveal DNA-protein 

interactions.  The high-throughput power of next-generation sequencing overcomes two 

obstacles encountered in low-throughput ChIP:  statistical representation of putative binding 

sites and genome-wide evaluation from a single experiment.  Quantitative approaches to 

understanding gene expression are also facilitated by whole-genome analysis of sequences from 

short-read technologies.  Additional applications of Illumina, 454, or ABI SOLiD sequencing 

include noncoding RNA discovery, ancient genome sequencing, and metagenomic analyses.  

Short reads in each of these cases are optimal because the RNA/DNA fragments are inherently 

smaller and often available in only minute quantities.  
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NATURAL PRODUCT AS FOE: RETINOID BY-PRODUCTS OF THE VISION CYCLE 

 The vision cycle is a light-dependent process involving isomerization and regeneration 

of photoresponsive vitamin A-derived molecules (Fig. 18).  The cycle is considered to begin 

with RPE65 isomerohydrolase-mediated conversion of all-trans-retinyl fatty acid ester to 11-cis-

retinol, which then undergoes dehydrogenation and translocation from the retinal pigment 

epithelium (RPE) to the rod outer segment (ROS).  Rhodopsin forms a Schiff base with 11-cis-

retinal to prepare for photoisomerization, the step during which vision occurs.  The all-trans-

retinilidine-rhodopsin conjugate is hydrolyzed to give all-trans-retinal (ATR), which must be 

reduced, removed to the RPE, and acylated to continue the cycle anew.  Because several steps of 

the vision cycle require independent enzymes with unique kinetic capabilities, pathway 

intermediates such as ATR can accumulate in the ROS.  RPE cells consume the ROS through 

phagocytosis, from which incomplete digestion results in by-products known as lipofuscins, 

autofluorescent species implicated in a number of ophthalmologic disease states including age-

related macular degeneration. 

 

 

 
 

Figure 18  The human vision cycle. 
Upper reactions take place in the rod outer segments and lower reactions take place in the retinal pigment epithelium. 
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The autofluorescent by-products of ATR include the bisretinoids A2E and ATR-dimer 

(cycloretinal), both of which have been isolated from RPE lipofuscins.73  These adducts appear 

to be biosynthesized from two molecules of ATR in the case of cycloretinal, and an additional 

molecule of phosphatidylethanolamine (PE) in the case of A2E (Fig. 19).   

 

    

 
Figure 19  Proposed biosynthesis of retinoid-derived compounds found to accumulate in lipofuscins of the RPE. 
R groups in phosphatidylethanolamine designate the long alkyl chains. 
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A number of pathway intermediates (N-retinilidine PE, dihydro-A2PE, and A2PE) have 

also been identified to support  proposed biosynthetic origins.  A2E and iso-A2E exist in a 1:4 

equilibrium, and the highly conjugated system has been shown to undergo oxidation in the 

presence of certain wavelengths of light to generate DNA damaging A2E-epoxides.74  ATR is 

the aldehyde analog of vitamin A/retinoic acid, which in instances of dietary deficiency has been 

linked to reduced RPE lipofuscin accumulation,75 and provides further evidence that A2E and 

similar product formation is tied to availability of retinoid precursors driving the vision cycle. 

 While A2E and related conjugates could conceivably arise from spontaneous chemical 

reactions, formation of cycloretinal would require enzymatic intervention (Fig. 20).  ATR and 

PE are a logical nucleophile-electrophile pair, but condensation of two molecules of ATR would 

require activation in a biological system, perhaps via Schiff base formation with lysine residues 

in a protein.  The analogous biomimetic reaction using L-proline as a catalyst is already an 

established synthetic route to cycloretinal.76  

 

 

 
Figure 20  Proposed mechanism for cycloretinal formation mediated by proteinaceous lysine residues. 
 

 

MACULAR DEGENERATION DISORDERS 

 Age-related macular degeneration (AMD) is one of several retinal diseases marked by 

angiogenesis, the proliferation of new blood vessels from existing vascular structures (Fig. 21).  

In AMD patients, angiogenesis is localized under the macula in the central region of the light-

sensing retina.  A disc less than 4 mm in diameter and 250 µm thick, the macula houses cells and 

specialized structures necessary for 20/20 vision.77  Neovascularization beneath the macula is 

often fragile and hemorrhages blood or other fluids, which displaces the macula and ultimately 

leads to loss of central vision.  While this condition adversely affects daily tasks such as reading, 
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driving, and face recognition, the disease is painless and often develops slowly, affecting either 

one or both eyes.  Retinoid-like fluorophores found in the lipofuscin of RPE cells are associated 

with AMD progression and RPE cell death.  Extracellular deposition of drusen, which are yellow 

granules composed of proteins, lipids, carbohydrates and zinc, is also often observed as a 

precursor to the development of maculopathies such as AMD.  Proteomic studies have indicated 

the presence of β-lactoglobulin in the drusen of AMD donors,78 a protein observed to catalyze in 

vitro dimerization of retinoid compounds.79   

 

 

                       
 

 

                        
 
 
Figure 21  Physiological effects of age-related macular degeneration. 
(a)  Dry AMD (early stage) is characterized by yellow drusen deposits in the macula.  (b) Wet AMD (advanced stage) 
is diagnosed when fragile, abnormal blood vessels growing beneath the macula begin to leak, raising the it from the 
normal position.  (c) Representative images of normal eyesight compared to that of an advanced AMD patient.  
Images courtesy of the National Eye Institute. 
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 Stargardt disease is an AMD-equivalent maculopathy but affects juveniles with 

mutations in both alleles of the ABCA4 (ABCR) gene, a membrane-bound flippase believed to 

transport N-retinylidene-phosphotidylethanolamine into the ROS for conversion to ATR for the 

vision cycle.80  Individuals who are heterozygous for the Stargardt mutation do not experience 

symptoms at a young age but are at high risk for developing AMD later in life.81  An Abcr null 

mutant mouse model was developed to study the Stargardt phenotype, in which lipofuscin 

accumulation occurs at an accelerated rate compared to AMD, and this model has proved useful 

in determining the identity of a number of lipofuscin fluorophores including cycloretinal.73   

 As the leading cause of vision impairment in aged populations of Western societies, 

AMD is poised to become a more frequent occurrence as human lifespans statistically increase.  

A cure for AMD is not yet available, and current treatments such as antioxidant supplements, 

vascular endothelial growth factor (VEGF) inhibitor injections, photodynamic therapy and laser 

surgery can only temporarily alleviate the symptoms of advanced stage AMD.  Thus, a method 

to block or minimize progression of the disease in the early stage is an attractive target for 

limiting vision loss. 

 

β-LACTOGLOBULIN, A PROTEIN OF UNKNOWN FUNCTION 

 As the principle whey protein in many mammalian milks, β-lactoglobulin (BLG) has 

been studied extensively over the last 70 years due to accessibility, abundance, heat and acid 

stability, and other desirable physical properties.82  BLG variants are present in the milk of many 

mammals, including cows, cats, dogs, sheep, dolphins, water buffalo, horses, goats, and baboons, 

and most exist as dimers under physiological conditions.  The 18.4 kDa (monomer mass) protein 

is a member of the lipocalin family, a diverse set of proteins known to bind hydrophilic ligands.  

Ligand dissociation constants measured for bovine BLG indicate appreciable binding of 

substrates such as retinol, palmitate, and  cholesterol (Table 3)83, and numerous x-ray crystal 

structures indicate ligand binding occurs primarily within the calyx created by the central β-

barrel structure.82  Binding data additionally indicates one molecule binds per monomer subunit.  

While these observations contribute to the postulated function of BLG being a lipophilic carrier 

protein, a definite physiological role has yet to be ascribed.83   
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Table 3  Selected ligand binding constants for  bovine BLG. 
 

Entry Ligand  Kd (M) Entry Ligand Kd (M) 

1 Lauric acid 7.0 x 10-7 5 Vitamin D2 4.91 x 10-9 

2 Palmitate 1.0 x 10-7 6 Stearate 1.2 x 10-7 

3 Retinoic Acid 2.0 x 10-7 7 Cholesterol 3.49 x 10-8 

4 Retinol 1.5 x 10-7 8 β-Ionone 6.0 x 10-7 

 

 

 

Studies on the BLG-directed photoisomerization of retinal and related compounds 

unexpectedly revealed the protein was capable of catalyzing the asymmetric self-condensation of 

α,β-unsaturated aldehydes to produce ring-fused homodimers (Fig. 22).79  This was the first 

evidence showing that BLG was capable of catalytic behavior.  No further studies on this mode 

of transformation have been reported in the literature to date. 
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Figure 22  Cyclo-β-ional generated from β-ionylideneacetaldehyde in the presence of BLG. 
  

 

Humans lack a direct homolog, but bovine BLG has been detected in blood serum at 

levels of 1-4 µg/L and thus must be entirely diet-derived.84  Whey proteins are found not only in 

dairy products, but are also added to some breads, processed meats, and convenience snack 

foods to enhance texture and nutritional protein content.  These foods must be avoided by some 

individuals because whey proteins are the major cause of human milk allergies.  Highly 

expressed human intestinal receptors for lipocalins have been shown to bind bovine BLG for 

cellular uptake,83 and as mentioned previously, BLG was among the proteins detected in drusen 

deposits of both healthy and AMD donor RPE cells.  This evidence suggests that BLG is present 

in the eye and could play a role in the formation of vision cycle by-products like cycloretinal by 

catalyzing dimer formation and contributing to the progression of age-related macular 

degeneration. 

 

STATEMENT OF PURPOSE 

 The introductory material of this chapter highlights not only the issues to be confronted 

but also illuminates the goals of our natural product biosynthetic studies.  With regard to 

azinomycin B resistance and biosynthesis, our aim is to elucidate each step in the pathway for 

purposes of future engineering and development of a site-specific drug delivery system.  The 

intended benefit of uncovering orphan biosynthetic pathways via whole genome sequencing is to 

broaden the catalog of bioactive natural products and provide avenues for implementing gene 

expression and regulation strategies.  Our study of β-lactoglobulin promoted biosynthesis of α,β-

unsaturated aldehyde dimers is a step toward identifying a non-genetic route to age-related 

macular degeneration and could contribute to methods for disease prevention and treatment.  

These efforts are a representation of the basic research necessary to fuel clinical approaches to 

therapeutics.   
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CHAPTER II 

 

AZIR, A RESISTANCE PROTEIN OF THE DNA CROSS-LINKING AGENT 

AZINOMYCIN B 

 

INTRODUCTION 

 The azinomycins (Fig. 23) are among a group of natural products known to act within 

the major groove of DNA and produce covalent interstrand cross-links.  Azinomycin B was 

initially isolated as carzinophilin A from the fermentation broth of the soil-dwelling bacterium 

Streptomyces sahachiroi,
12 and over thirty years later was reisolated, along with azinomycin A, 

from Streptomyces griseofuscus.
13  The azinomycins were found to exhibit antitumor activity in 

the submicromolar range15.  The specific activity of azinomycin towards the cell stems from 

interaction between DNA-reactive epoxide (C21) and aziridine (C10) functionalities with the N7 

centers of purines two base pairs apart on complementary DNA strands.16  DNA cross-

linking/alkylation leads to depurination and strand breakage.  As the damage escalates, cells 

cannot reliably replicate DNA for division and ultimately submit to apoptosis. 

 Biosynthesis of the azinomycins has been explored via cell-free extract systems30 and 
13C-labeled precursor compound feedings.28,29,31-33  The biosynthetic gene cluster has been 

proposed based on heterologous expression of an iterative type I polyketide synthase (PKS) 

involved in naphthoic acid production.25  Identification of the azinomycin B gene cluster has 

recently been corroborated by whole genome sequencing of S. sahachiroi.85  Recent studies have 

reconstituted all four enzymes in the pathway for 3-methoxy-5-methyl-naphthoic acid 

biosynthesis and activation in vitro, lending further support to the putative biosynthetic 

mechanisms stitching together the azinomycins.34   

 

 

 

 

Figure 23  Azinomycin A and B structures. 
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 From our experience manipulating S. sahachiroi, it is reasonable to assume a 

biosynthetic capacity for metabolites of unknown structure outside the azinomycin analog 

family.  A search for NPRS or PKS biosynthetic genes involved in downregulated or silent 

pathways could provide information toward the discovery of novel natural products.  We 

employed a screening strategy to search for cryptic/orphan biosynthetic pathways within a 

genomic library of S. sahachiroi. While a clear candidate for azinomycin resistance was not 

immediately evident from bioinformatic analysis of sequence data, a putative secondary 

metabolite resistance gene was chosen for further evaluation by virtue of nearby gene identities.  

A BLAST search indicated the resistance gene product is homologous to aminoglycoside 

phosphotransferases, a class of enzymes that mediate bacterial antibiotic resistance.  A DNA 

repair protein and non-ribosomal peptide synthetase (NRPS) domains are clustered with the 

putative resistance protein, indicating possible association with a DNA-damaging compound 

produced by the biosynthetic pathway.  

 Bacterial resistance mechanisms are not only essential to the survival of antibiotic-

producing microorganisms, but also serve purpose in bioengineering pursuits.  Significant effort 

has been invested in studying more potent or stable synthetic azinomycin analogs for DNA 

alkylation.86
  Access to an analog-tolerant resistance protein, in combination with an 

understanding of the azinomycin biosynthetic machinery, could promote eventual engineered 

biosynthesis of structures previously inaccessible by synthetic methodology.  This chapter 

explores the physical properties and protective measures the resistance protein AziR affords 

against DNA damage and cell death in the presence of the DNA cross-linking agent azinomycin 

B. 

 

RESULTS AND DISCUSSION 

Identification of a Resistance Protein  

 A genomic library of S. sahachiroi was constructed to screen for novel NRPS and PKS-

type biosynthetic pathways.  A fosmid-based library in an E. coli host was chosen to provide 

quick growth and regeneration time for downstream sequencing applications.  Library screening 

was accomplished using radiolabeled degenerate hybridization probes based on either NRPS or 

PKS conserved regions.  Positive clones were used as templates in PCR amplification of the 

hybridizing region to obtain fragments for DNA sequencing, confirming the presence of desired 

genes.  Based on sequence identity, specific clones were chosen for comprehensive sequencing.  
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Transposon mutagenesis was employed to create a library of clones, each with  randomly-

inserted primer annealing sites for bidirectional sequencing. 

 An 801 bp ORF identified in one of the sequenced fosmids translated to a 266 amino 

acid sequence with homology to the aminoglycoside 3‟-phosphotransferase (APH) and choline 

kinase (ChoK) family (cd05120, E-value 5e-9), a comparison determined using the Conserved 

Domain Database87.  APH is a member of the protein kinase superfamily, whose members 

catalyze the transfer of γ-phosphate from ATP or CTP to the hydroxyl group of the target 

substrate.  APH inactivates aminoglycosides, macrolides, and antibiotics upon phosphorylation88, 

so a similar type of mechanism was initially suspected for the protein in this study.  Protein 

BLAST homologs from other Streptomyces species showed high identity and similarity to AziR 

(Table 4 and Appendix Fig. 57), but the homologs have not been assayed for substrate 

specificity or catalytic activity beyond bioinformatic annotation.  A Ku-like non-homologous 

end-joining DNA repair protein (cd00789, E-value 6x10-78) is located 7 kb upstream and non-

ribosomal peptide synthetase (NRPS) domains are 13 kb upstream, suggesting the resistance 

protein may be associated with a type of secondary metabolite biosynthetic pathway, the product 

of which may induce DNA damage.  

 

 
Table 4  Top protein BLAST homologs using AziR as query.a 

a Date of analysis was April 2010. 

 

 

 Comparison of putative active site residues in AziR with the conserved motif determined 

for the APH family54 indicates AziR lacks two residues, Lys44 and Glu60, that form a salt bridge 

for ATP binding and coordination (Fig. 24).  Because AziR shares similarities with resistance-

GenBank 

accession no. 
Organism Protein E-value 

Identity/ 

Similarity 

(%) 

EDY58692 Streptomyces sviceus ATCC 29083 APH 4e-127 86/90 

ZP_05529454 Streptomyces viridochromogenes DSM 40736 SvirD4_03212 8e-113 76/84 

EEW71709 Streptomyces flavogriseus ATCC 33331 APH 4e-100 76/82 

BAG20810 Streptomyces griseus subsp. griseus NBRC 13350 SGR_ 3981 8e-77 60/70 

EFB82381 Streptomyces sp. ACT-1 APH 4e-73 58/69 

EFE75675 Streptomyces roseosporus NRRL 15998 APH 8e-73 69/70 
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associated proteins and is proximal to NRPS domains of a putative biosynthetic gene cluster85, 

the protein was cloned and overexpressed to determine if it would protect cells treated with a 

known DNA-damaging metabolite produced by S. sahachiroi, azinomycin B. 

 

 

 

 

Figure 24  Active site architecture of the aminoglycoside phosphotransferase (APH) family.   
AziR lacks Lys44 and Glu60 (highlighted in red)  The residue numbering system is derived from APH(3‟)-IIIa from 
Enterococcus faecalis.  
 

 

In vivo Analysis of AziR Activity in the Presence of Azinomycin B   

 Our initial attempt to assay activity of AziR was through expression in a heterologous 

host, Streptomyces lividans TK24.  The E. coli-Streptomyces shuttle vector pIJ86 was chosen to 

permit initial cloning manipulations in E. coli prior to introduction in Streptomyces.  In pIJ86, 

expression is under control of ermEp*, a constitutive mutant promoter from the erythromycin 

biosynthetic gene cluster89.  The vector was modified to include a ribosome binding site90, His10 

tag, and attB sites for use in Gateway system cloning.91  The aziR gene was introduced to yield 

the final construct pIJ86G-aziR.  Once transformed in S. lividans, expression was verified by 

immunoblot with His-tag monoclonal antibody.  We then examined the ability of the protein to 

confer resistance to azinomycin B, methyl methanesulfonate (DNA alkylating agent), or 

streptomycin sulfate (aminoglycoside antibiotic).  Relative cell density was compared to control 

cells harboring only pIJ86G (Fig. 25).  Cells expressing the putative resistance protein exhibited 

enhanced survival only in the presence of azinomycin B, suggesting the protein serves a specific 
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resistance function.  It was also observed that expression of the resistance protein promoted 

production of a red pigment indigenous to S. lividans. 

 

 
 
Figure 25  In vivo survival and resistance specificity conferred by AziR.   

Column A is plasmid pIJ86G-aziR transformed in S. lividans.  Column B is control plasmid pIJ86G transformed in S. 

lividans.  Cells are treated as follows:  Row I, azinomycin B at (1) 0, ethanol control; (2) 1; (3) 2.5; (4) 5; (5) 10; and 
(6) 15 µg/mL.  Row II, methyl methanesulfonate at (1) 0; (2) 0.01; (3) 0.025; (4) 0.05; (5) 0.075 and (6) 0.1% v/v.  
Row III, streptomycin sulfate at (1) 0; (2) 1; (3) 2.5; (4) 5; (5) 10 and (6) 20 µg/mL. 
  

 

 As AziR proved difficult to purify in appreciable quantities from S. lividans, an E. coli 

codon-optimized version of the aziR gene was introduced in the expression vector pET16b.  

Further examination of in vivo AziR behavior was also carried out using this construct.  

 In an experiment similar to that carried out previously in our lab using yeast treated with 

azinomycin17, DNA shearing effected by azinomycin B treatment in AziR-expressing E. coli was 

compared to uninduced E. coli (Fig. 26).  Despite normalizing cell density prior to DNA 

isolation, treated cultures of the control consistently contained less total DNA, suggesting that 

azinomycin induced some degree of cell death and subsequent leakage of nucleic acids.  Cells 

harboring the resistance protein contained more intact total DNA, especially evident at the 50 

µg/mL treatment (Fig. 26, lane 6). 
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Figure 26  In vivo DNA shearing induced by azinomycin B.   
(A) BL21(DE3)/pET16b-aziR, uninduced.  (B) BL21(DE3)/pET16b-aziR, induced.  Cells were treated with 
azinomycin B for 3 h.  Lane M, 1 kb DNA ladder; lane 1, ethanol control; lane 2, 1 µg/mL azinomycin B; lane 3, 5 
µg/mL azinomycin B; lane 4, 10 µg/mL azinomycin B; lane 5, 25 µg/mL azinomycin B; lane 6, 50 µg/mL azinomycin 
B; lane 7, 100 µg/mL azinomycin B. 
 

 

 To further examine the survival enhancement AziR provides during azinomycin B 

exposure, cells treated in a manner similar to the aforementioned experiment were washed and 

stained with a mixture of SYTO 9 and propidium iodide fluorescent dyes.  SYTO 9  is a green 

cell-permeable nucleic acid binding molecule and generally stains both live and dead cells in a 

sample.  Propidium iodide (PI) red fluorescence is maximized when it enters compromised cell 

membranes and intercalates within DNA.  PI fluorescence will mask the SYTO 9 stain if both 

dyes are present within the cell, and measurement of the relative fluorescent intensities thus 

gives a ratio of live and dead cells within a given population.  The results of a representative 

live/dead assay are illustrated in Figure 27.  At all treatment levels examined, AziR provided a 

survival advantage.   
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Figure 27  Comparison of percent live E. coli cell populations following treatment with azinomycin B.  
 
 
 
DNA Repair Gene Transcription Changes by RT-PCR 

 Previous investigations indicated a strong transcriptional response related to DNA 

synthesis and repair proteins in the yeast genome following treatment with azinomycin B17.   

Ribonucleotide reductase (RNR1) exhibited substantial upregulation in a yeast gene chip 

microassay, and thus the E. coli ortholog of RNR1, nrdB, was specifically chosen with the 

expectation of observing a similar effect in our resistance protein E. coli expression system.  

Semi-quantitative reverse-transcriptase (RT)-PCR was employed to monitor transcription of 

nrdB relative to unaffected expression of the metabolic protein glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) in treated cells.  The purpose of the semi-quantitative approach is 

simply to identify whether or not a transcriptional effect exists in the system.  Cells with or 

without AziR were treated with azinomycin B prior to extraction of total RNA.  Gene-specific 

oligonucleotides were used to generate the cDNA subsequently used as a template in PCR 

analysis (Fig. 28).  PCR products were gel purified, extracted, and stained with SYBR green to 

permit relative quantitation of products by fluorescence spectroscopy.  As anticipated, nrdB 

transcription increased in response to azinomycin treatment but remained virtually unchanged 

when AziR was expressed by the system. 
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Figure 28  Semi-quantitative RT-PCR analysis of nrdB in AziR-expressing cells and control cells. 
Cells were treated with azinomycin B for 2.5 h prior to RNA isolation.   
 

 

Phosphotransferase Activity Assays  

 To further assess the ability of AziR to function as a kinase despite the lack of two key 

active site residues, a standard assay coupling ADP release to pyruvate kinase/lactate 

dehydrogenase was performed with azinomycin B and also with the aminoglycoside antibiotics 

kanamycin, streptomycin, and neomycin.92  AziR did not exhibit detectable phosphorylation 

activity towards the tested substrates.  Additionally, in vitro incubation of AziR with azinomycin 

B and radiolabeled ATP or acetyl-CoA failed to indicate substrate phosphorylation or acetylation 

was facilitated by the protein (Appendix Fig. 60).  Thus, it was determined that AziR does not 

possess the phosphotransferase activity toward azinomycin that is suggested by sequence 

homology. 

 

AziR/Azinomycin B Interactions in vitro   

 AziR was expressed in an E. coli host, purified by immobilized metal affinity 

chromatography, and assayed for azinomycin B or ATP binding via equilibrium fluorescence 

titration (Fig. 29A).  AziR has seven tryptophan residues, and under 295 nm excitation 

wavelength the protein exhibits maximum fluorescence emission at 330 nm.  The dissociation 

constant (Kd) is 230 nM for azinomycin B, determined by nonlinear regression using a quadratic 

equation to express dissociation under constant enzyme concentration.93  ATP binds to AziR 

with a dissociation constant of 185 μM, representing over two-fold less substrate affinity than 

that of aminoglycoside phosphotransferase (3‟)-IIIa for ATP94 (Fig. 29B).  Azinomycin B was 
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not observed to bind to a control, 2-deoxyribose 5-phosphate aldolase (DERA), a purified E. coli 

protein not involved in resistance mechanisms (Appendix Fig. 61).  

 

               

 
 
Figure 29  Equilibrium fluorescence titration curves for AziR substrate binding. 
AziR titrated with (A) azinomycin B or (B) ATP.  Binding constants are noted above the respective curves. 
 

 

SIGNIFICANCE 

 AziR has been shown to exhibit a protective effect when expressed in cells exposed to 

azinomycin B.  In cells treated with azinomycin B, AziR expression contributes to robust cell 

growth and suppresses DNA-targeting behavior.  In vitro, the protein binds azinomycin B with 

appreciable affinity, suggesting a degree of specificity for the drug in the producing strain S. 

sahachiroi.  While AziR does exhibit ATP binding, the decreased affinity relative to that 

displayed by a true aminoglycoside phosphotransferase may be attributed to the two missing 

residues deemed necessary for ATP coordination.  Under all assayed circumstances, AziR failed 

to demonstrate phosphoryl transfer. 

 The proximity of AziR to the published azinomycin B biosynthetic cluster is unknown 

due to gaps in the draft genome of S. sahachiroi, and further manual sequence assembly is 

currently under way to address the ambiguity.  Additional proteins with hypothetical resistance 

function have been identified through genomic sequencing and will be tested for specificity 

toward the azinomycins in due course.  A probable protein partner in the resistance mechanism 

may include a membrane-bound transport protein of the major facilitator superfamily (cd06174, 

E-value 1.3x10-9) encoded by a gene immediately upstream of aziR.  Efflux pumps for 

metabolite secretion are common in bacterial cells to transport antibiotics across the cell 
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membrane and into the surrounding environment for protection against competing colonization.52  

A transporter is likely necessary to support translocation of azinomycin out of the producing cell.     

 Knowledge of a resistance mechanism directs the genetic engineering of drug analogs.  

An analog must be recognized by a resistance protein to protect the producing microorganism, 

and for the associated engineered gene cluster to be of biosynthetic use.  Resistance mechanisms 

are also important to study because they give us a better understanding of how bacterial drug 

resistance can evolve.  Molecular modifications such as phosphorylation,95 acetylation,96 

degradation,97 and oxidation98 are among a few of the techniques employed by the “resistome.”52  

Inactivation mechanisms can also lean toward more complex processes involving multiple 

biosynthetic enzymes such as that observed for vancomycin resistance.99  Alternatively, 

resistance can also be as simple as drug binding and sequestration as evidenced by bleomycin or 

mitomycin resistance proteins.100,101  Because substrate modification was not detected by 

available assays, an analogous binding mechanism appears to be at work in the azinomycin 

resistance conferred by AziR.  The resistance proteins for bleomycin and mitomycin are also 

believed to be involved in transport/delivery of the drug to the cell membrane for removal, which 

is an added function for which AziR has not yet been tested.  

 

EXPERIMENTAL PROCEDURES 

Instrumentation and General Methods   

 DNA sequencing was performed using ABI BigDye chemistry at the Gene Technologies 

Lab, Texas A&M University.  All commercially-available chemicals were obtained from Sigma-

Aldrich.  Cell density measurements were recorded in 96-well plate format on a BioTek μQuant 

microplate spectrophotometer, and fluorescence readings were determined using a BioTek 

FL800 fluorescence microplate reader.  Protein fluorescence titrations were performed on a PTI 

QuantaMaster 4 spectrofluorometer.  Protein concentrations were determined by the Bradford 

method102 employing bovine serum albumin as an absorbance standard in the linear range of 0.05 

to 0.5 μg/mL.  Azinomycin B was produced using the fermentation and purification methods 

described elsewhere.31  Strains, plasmids, and primer sequences used in this study are listed in 

Table 5.  Maps of new plasmids constructed for this study are included in Appendix Fig. 58.     
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Table 5  Strains, plasmids, and primers used in the AziR study. 

Strain, plasmid, or primer Relevant characteristic(s) or primer sequence (5'-3') 
Reference or 

source 

Strains 
  

  S. sahachiroi Wild type azinomycin A and B-producing strain ATCC 
  S. lividans TK24 Wild type strain used for heterologous expression ATCC 
  E. coli DH10B General cloning host Epicentre  
  E. coli BL21(DE3) Host strain for recombinant protein expression under T7 promoter Invitrogen 
  E. coli EPI300-T1R Host strain for fosmid library Epicentre  
  E. coli ET12567/pUZ8002 DNA methylation-deficient strain Paget et al103 
   
Plasmids   
  pCC1FOS Vector for fosmid library construction in E. coli Epicentre  
  pET-16b T7 expression vector; encodes C-terminal His6 tag Novagen 
  pET16b-aziR The codon-optimized aziR gene (801 bp) was inserted at NdeI and 

BamHI sites   
This study 

  pIJ86 Streptomyces-E. coli shuttle vector with ermEp* constitutive 
promoter 

Mervyn Bibb 

  pIJ86-RSH Streptomyces-E. coli shuttle vector with ribosome binding site and 
C-terminal His10 tag 

This study 

  pIJ86G Streptomyces-E. coli shuttle vector with ribosome binding site, C-
terminal His10 tag, and Gateway reading frame A cassette 

This study 

  pDONR-zeo Gateway system cloning entry vector Invitrogen 
  pDONR-aziR The aziR gene (801 bp) flanked by attB1 and attB2 sites was 

inserted using BP recombinase  
This study 

  pIJ86G-aziR The aziR gene from pDONR-aziR was inserted using LR 
recombinase  

This study 

   
Primers   
  NRPS-A8F TTCCGGTTCGAGCYSGGBGAGATCGA This study 
  NRPS-TR GTGVCCVCCSAGGTCGAAGAA This study 
  PKS-2F CCSCAGSAGCGCSTSCTSCTSGA This study 
  PKS-2R GTSCCSGTSCCGTGCGCCTCSA This study 
  MUKAN-1 FP-1 CTGGTCCACCTACACAAAGG This study 
  MUKAN-1 RP-1 AGAGATTTTGAGACAGGATCCG  This study 
  RSH-L TTTTAAGCTTAGGAGGCACAGTCATGAGGC This study 
  RSH-C CACAGTCATGAGGCCTCACCACCATCACCATCACCACCAC

CATC     
This study 

  RSH-CRC GATGGTGGTGGTGATGGTGATGGTGGTGAGGCCTCATGA
CTGTG 

This study 

  RSH-R CACCACCACCATCACTGAAAGCTTCCCC This study 
  attB1-aziR F  GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACCGC

GGAAGATGAAGCGC 
This study 

  attB2-aziR R  GGGGACCACTTTGTACAAGAAAGCTGGGTCGTTCAGCAG
CGCCGCGGTAAAC 

This study 

  GAPDH-F AAAGGCGCTAACTTCGACAA This study 
  GAPDH-R GCAGCTTTTTCCAGACGAAC This study 
  NRDB-F GCCAGACCAAAGATGTCGAT This study 
  NRDB-R CGAAGGCGAAACTCTTCAAC This study 
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Construction of an S. sahachiroi Genomic Library   

 A genomic library of S. sahachiroi was generated using the CopyControl Fosmid 

Library Production Kit (Epicentre, Madison, WI) with the following modifications.  S. 

sahachiroi was cultured in 250 mL YEME media including 0.5% glycine with shaking at 250 

rpm,  28°C for 2 days.  High molecular weight genomic DNA was isolated using the salting out 

procedure,104 randomly sheared by pipet aspiration, and loaded onto a CHEF gel for size 

selection (2 s initial, 8 s final switch time, 12 h, 14°C, 6 V).  Gel-embedded DNA fragments in 

the 25-75 kb size range were excised, placed in dialysis tubing with TAE buffer, and 

electroeluted (40 s switch time, 5 h, 14°C, 6V) in the CHEF apparatus.  Buffer inside the dialysis 

tubing was collected and the DNA precipitated with 70% cold isopropanol.  Following end 

repair, the DNA was ligated to the vector pCC1FOS, packaged in lambda phage, and used to 

transfect EPI300 E. coli on LB plates containing 35 µg/mL chloramphenicol.  A library of 2199 

clones with an average insert size of 40 kb was arrayed in 384-well plates. 

  

S. sahachiroi Genomic Library Screening   

 The S. sahachiroi fosmid library was screened for desired sequences by the standard 

method of hybridization with radioactive probes.  32P-end-labeled degenerate oligonucleotide 

probes NRPS-A8F, NRPS-TR, PKS-2F, and PKS-2R were based on NRPS and PKS domain 

sequences taken from NCBI databases.  Library colonies were cross-linked to a nitrocellulose 

membrane, incubated with the probe, and hybridized clones identified by autoradiography.  A set 

of 40 clones screened NRPS positive, and 13 clones of that set also screened PKS positive.  

Degenerate primer PCR and sequencing of the product confirmed the hybridization as a true 

NRPS or PKS sequence.  PCR product sequences were analyzed by the NCBI basic local 

alignment search tool (BLAST)105 and grouped by result.  Fosmids 2 and 36 were chosen for 

comprehensive sequencing based on similarity to the S. verticillus bleomycin and the S. 

chrysomallus actinomycin biosynthetic clusters containing a hybrid NRPS/PKS and an NRPS 

system, respectively.   

 

Fosmid Sequencing and Bioinformatic Analysis 

 Fosmids were sequenced using randomly introduced primer binding sites generated by 

the HyperMu <KAN-1> Insertion Kit (Epicentre).  Clones were miniprepped and sequenced 

using the primers MUKAN-1 FP-1 and MUKAN-1 RP-1.  Sequences were assembled using 
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Sequencher 4.8 (Gene Codes, Ann Arbor, MI) and open reading frames (ORFs) were defined 

with the aid of FramePlot 3.0beta106 and annotated using NCBI databases.107  

 

Cloning and Heterologus Expression of AziR (S. lividans)   

 The E. coli-Streptomyces shuttle vector pIJ86 was modified to permit use of the 

Gateway cloning system (Invitrogen, Carlsbad, CA) as follows.  A 75 bp DNA fragment 

containing a ribosome binding site, start codon, StuI restriction site, His10 tag and stop codon was 

constructed using a set of four oligos RSH-L, RSH-C, RSH-CRC, and RSH-R.  Oligo RSH-C 

and the reverse complement RSH-CRC were annealed to form a double-stranded template.  

Oligos RSH-L and RSH-R were used as PCR primers to extend the template, resulting in the 75 

bp fragment.  pIJ86 was digested with HindIII, dephosphorylated with calf alkaline phosphatase, 

and ligated to the HindIII flanked-75 bp fragment to give plasmid pIJ86-RSH. The Gateway 

reading frame cassette A was introduced at the StuI site of pIJ86-RSH to give plasmid pIJ86G.  

aziR was amplified by PCR with primers aziR-attB1 and aziR-attB2 to add attB1 and attB 

recognition sites.  The aziR gene was cloned in the Gateway vector pDONR/Zeo using BP 

recombination, and introduced to pIJ86G via LR recombination to yield plasmid pIJ86G-aziR.  

The plasmid was passed through the DNA methylation-deficient E. coli strain ET12567 and 

transformed in S. lividans TK24 protoplasts using the rapid small-scale procedure.104  

Transformants were selected with 40 µg/mL apramycin at 28°C.  Apramycin-resistant 

transformants were transferred to a fresh GYM agar plate for propagation.  A small piece (1x1 

cm) was cut from the propagated plate and used to inoculate 25 mL R2YE media containing 

30µg/mL apramycin and glass beads (~3g, 3 mm diameter).  The starter culture was incubated at 

28°C with shaking at 250 rpm.  After 48 h, the starter culture was used to inoculate 500 mL of 

R2YE media containing glass beads (~15 g) and incubated an additional 48 h to achieve a dense 

culture.  The spores were collected by centrifugation at 7000 rpm, 20 min and resuspended in 40 

mL phosphate buffer (20 mM NaH2PO4, 300 mM NaCl, 10% glycerol, 0.1 mM dithiothreitol, 1 

mM phenylmethylsulfonyl fluoride).  Spores were lysed on ice using a bead mill (BeadBeater, 

BioSpec Products Inc.,  Bartlesville, OK) containing ~25 g of 0.1 mm glass beads.  The mill was 

operated for 10-30 sec intervals with 2 min rests for cooling.  Following lysis, the lysate was 

centrifuged at 9800 rpm for 30 min to pellet cellular debris.  AziR expression was detected by 

immunoblotting using a His tag monoclonal antibody (Novagen, Gibbstown, NJ). 
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Cloning, Overexpression, and Purification of AziR (E. coli)   

 An E. coli codon-optimized version of the aziR gene was synthesized and cloned in the 

vector pET-16b at NdeI and BamHI restriction sites by GenScript (Piscataway, NJ).  The vector 

pET16b-aziR was transformed in BL21(DE3) cells for inducible expression under a T7 

promoter.  A 30 mL overnight culture in LB Miller media and 100 µg/mL ampicillin was used to 

inoculate 1 L media and grown to 0.6 OD600.  The culture was induced with 1 mM IPTG and 

transferred to 16°C for 20 h to achieve optimal soluble expression.  All remaining steps were 

performed on ice.  Cells were collected by centrifugation, resuspended in 30 mL column binding 

buffer (20 mM NaH2PO4 pH 8.0, 300 mM NaCl, 5 mM imidazole, 10% glycerol, 0.1 mM 

dithiothreitol, 1 mM phenylmethylsulfonyl fluoride), and lysed by sonication with a Branson 

Sonifier 450 (Branson Ultrasonics, Danbury, CT) fitted with a 5 mm microtip, output setting 6, 

duty cycle 50%, for 8 cycles of 30 sec each.  Cellular debris was pelleted by centrifugation, and 

the supernatant filtered with a 0.2 µm filter before applying to a pre-equilibrated HisTrap FF 5 

mL column (GE Healthcare Life Sciences, Piscataway, NJ) at 2.5 mL/min.  The column was 

washed with 100 mL column buffer containing 20 mM imidazole, and AziR was eluted with 30 

mL column buffer containing 500 mM imidazole.  The eluate was dialyzed by centrifugal 

ultrafiltration (Amicon Ultra-15 Centrifugal Filter Unit, Millipore, Billerica, MA) to a final 

concentration of 1 mg/mL in 100 mM NaH2PO4 pH 7.5, 10% glycerol, 0.1 mM dithiothreitol, 

and 10 mM MgCl2.  Representative gels of purified AziR are included in Appendix Fig. 62.  

 To determine the multimeric form of AziR, the protein was exchanged into GFC buffer 

(50 mM Tris pH 7.5, 150 mM NaCl) and applied to a pre-equilibrated Superdex 200 column (GE 

Healthcare) at 0.5 mL/min.  The column was previously calibrated with apoferritin (440 kDa), 

IgG (160 kDa), BSA (66 kDa), ovalbumin (43 kDa), lactoglobulin (35 kDa), myoglobin (16.7 

kD), and cytochrome C (12.4 kDa). AziR eluted with an apparent molecular mass of 30 kDa 

(calculated 31 kDa), indicating a monomeric quaternary structure. 

 

In vivo Characterization of AziR Activity (S. lividans) 

 A starter culture of 10 mL R2YE, 30 µg/mL apramycin, and 2 g glass beads was 

inoculated with a 1x1 cm slice of an R2YE agar plate containing S. lividans(pIJ86G-aziR) 

spores.  After growing 3 days at 28°C with shaking, 30 µL aliquots of the dense suspension were 

transferred to 10 mL fresh R2YE media for treatment with azinomycin B (in ethanol), methyl 

methanesulfonate, or streptomycin sulfate.  Treated cultures were allowed to incubate in a 28°C 
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shaker for 96 h.  The entire culture was then transferred to a 6-well plate for density 

comparisons. 

 

In vivo Characterization of AziR Activity (E. coli)   

 A flask containing 100 mL LB media was inoculated with an overnight culture of 

BL21(DE3)/pET16b-aziR and grown to 0.6 OD600 at 37°C.  A 50 mL aliquot was removed to a 

clean, sterile flask for induction with 1 mM IPTG.  Both cultures were then transferred to a 16°C 

shaker for 16 h.  Following induction, 5 mL portions were transferred to culture tubes for 

treatment with azinomycin B and an additional incubation period of 24 h at 16°C.  The optical 

density of each culture was used to normalize the cell concentration relative to untreated 

controls, and total DNA was isolated and electrophoresed on a 1% agarose gel at 100 V for 70 

min.    

 

Cell Viability Following Azinomycin B Treatment  

 A 2 mL overnight starter culture of BL21(DE3) cells harboring pET16b-aziR was used 

to inoculate two 100 mL flasks of LB Miller media at 37°C for 2.5 h.  One of the flasks was 

induced with 1 mM IPTG and growth continued for 1 h, at which time 3 mL aliquots of culture 

were divided into sterile culture tubes and treated with azinomycin B dissolved in absolute 

ethanol (5 mg/mL).  After 3 h incubation at 37°C, optical density measurements at 600 nm were 

taken to normalize the cell concentration among the cultures.  Cells from 1 mL of each 

normalized culture were pelleted and washed twice with 1 mL 0.85% NaCl, then resuspended in 

an additional 1 mL of solution.  Cells were further diluted to 0.06 OD670 and assayed with the 

LIVE/DEAD BacLight Bacterial Viability Kit (Molecular Probes, Invitrogen) in triplicate.  

Optimal staining was achieved with a 1:3 ratio of SYTO 9 dye to propidium iodide.  Stained 

cells in a 96-well plate were measured with a BioTek FL800 fluorescence microplate reader 

(filters:  485/30 for excitation, 528/20 and 645/40 for green and red emission, respectively).  

 

RT-PCR Evaluation of DNA Repair Gene Transcription 

 Relative endpoint RT-PCR employed the housekeeping gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) as an amplification standard to normalize mRNA levels.  

Ribonucleotide reductase (subunit B, nrdB) was chosen to represent the relative DNA 

damage/repair response.  Two 50 mL cultures of pET16b-AziR(BL21(DE3)) were inoculated 

from an overnight starter culture and incubated at 37°C for 1.5 h.  One of the cultures was 



 50 

induced with 1 mM IPTG at 37°C for 1 h.  Aliquots (3 mL) of culture were transferred to sterile 

tubes for treatment with azinomycin B at 37°C for 2.5 h.  Total RNA was isolated using the 

RNeasy Mini Kit (Qiagen, Valencia, CA).  cDNA template was produced from DNase I-digested 

total RNA using the SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen, 

Carlsbad, CA) and the forward-oriented gene-specific primer for GAPDH or nrdB.  The cDNA 

served as a template in PCR amplification of a 359 bp fragment of E. coli BL21 GAPDH using 

primers GAPDH-F and GAPDH-R or a 333 bp fragment of E. coli BL21 nrdB using primers 

NRDB-F and NRDB-R.  Thermal cycling was optimized so that each gene being amplified was 

in exponential phase and consisted of the conditions:  2 min at 96°C, followed by 20 iterative 

cycles of 30 sec at 96°C, 30 sec at 50°C, and 30 sec at 72°C.  The PCR reaction mixtures were 

separated on a 1.2% agarose gel and the desired bands extracted from the agarose using a 

QIAquick Gel Extraction Kit (Qiagen).  DNA was stained with SYBR Green (Invitrogen) in a 

96-well plate and measured on a fluorescence microplate reader (filters:  485/30 for excitation 

and 528/20 for emission). 

 

Aminoglycoside Phosphotransferase Activity Assay   

 Purified AziR was subjected to assay with kanamycin, streptomycin, neomycin or 

azinomycin B as described by McKay and coworkers.92  Substrate phosphorylation was to be 

detected indirectly by coupling the release of ADP to the enzymatic reactions of pyruvate kinase 

and lactic acid dehydrogenase (PK/LDH), resulting in oxidation of NADH.  Reaction progress 

was monitored at 340 nm on a Genesys 2 UV-Vis Spectrophotometer (ThermoFisher Scientific, 

Waltham, MA).  Each reaction consisted of 885 µL buffer (50 mM Tris pH 7.5, 40 mM KCl, 10 

mM MgCl2, 0.5 g/mL NADH, 2.5 mM phosphoenolpyruvate, 1 mM ATP) to which 10 µL of a 

10 mM substrate stock was added, along with 5 µL of PK/LDH solution as obtained from the 

supplier (Sigma P0294, PK/LDH from rabbit muscle).  After incubation for 20 min at 37°C, 

AziR (100 µg) was quickly added to the reaction mixture just prior to spectroscopic monitoring.  

For all substrates tested the rate of NADH oxidation was essentially zero, indicating a 

phosphorylation reaction was not facilitated by AziR. 

 

Determination of Ligand/AziR Binding Constants   

 The dissociation constant (Kd) for the binding of azinomycin B to AziR was determined 

by steady state fluorescence titration using a PTI QuantaMaster 4 Spectrofluorometer (Photon 

Technology International, Birmingham, NJ) in the Materials Characterization Facility, Texas 
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A&M University.  An excitation wavelength of 295 nm was chosen such that the focus was on 

fluorescence changes attributed to tryptophan residues.    Slit widths were set to 5 nm and spectra 

were autocorrected by the FeliX32 software package to account for variations in arc lamp 

intensity.  A solution of 1 µM protein (20 mM NaH2PO4 pH 7.5, 50 mM NaCl, 5% glycerol, 1 

mM dithiothreitol, 10 mM MgCl2) was titrated with aliquots of 100 µM azinomycin B or 100 

mM ATP, each prepared in the same phosphate buffer.  The change in protein fluorescence at 

330 nm was measured as a function of substrate concentration.  Observed fluorescence was 

corrected (Fcorr) for dilution using the following equation: 

 

          
     

  
 

 

where Fobs is the raw observed fluorescence intensity, V0 is the original sample volume, and dV is 

the change in sample volume.  Data was evaluated for a potential inner filter effect due to ligand 

absorbance but further correction was found to be unnecessary.  Each data point was taken after 

mixing and an equilibration time of 1 min.  Fluorescence data was normalized to 1 for zero 

ligand binding.  Nonlinear regression using the least-squares method was performed in the 

program GraphPad Prism 5 (GraphPad Software, La Jolla, CA) using the quadratic equation: 
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where Fobs,corr is the corrected observed fluorescence, F0 is the y-intercept, ΔF is the overall 

change in fluorescence, P0 is the protein concentration, and L0 is the ligand concentration added 

to determine the binding constant Kd.108  A control titration for a non-specific protein (E. coli 2-

deoxyribose 5-phosphate aldolase, DERA) titrated with azinomycin B is included in Appendix 

Figure 61.  Cloning, overexpression and purification of DERA is outlined elsewhere.109
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CHAPTER III 

 

ORPHAN BIOSYNTHETIC CLUSTERS REVEALED IN THE DRAFT GENOME OF 

STREPTOMYCES SAHACHIROI 

 

INTRODUCTION 

 The terrestrial bacterium Streptomyces sahachiroi harkens from a genus renowned for its 

proclivity to produce structurally interesting and medicinally valuable natural products.  

Streptomycetes and near phylogenetic neighbors are a collective gold mine for production of 

compounds with antibacterial, immunosuppressive, antitumor, and herbicidal properties.41  S. 

sahachiroi is currently best known for production of the DNA crosslinking agents azinomycin A 

and B and the structurally related metabolite epoxyamide (Fig. 30).  The azinomycins have been 

well-studied from a biomedical and synthetic standpoint,86 and are just beginning to be 

understood from a biosynthetic perspective.25,34   

 

 

 
 
Figure 30  Azinomycin A and B and the related metabolite epoxyamide. 
 

 

Our group has extensive experience with S. sahachiroi manipulation acquired in the 

course of our investigations of azinomycin A and B biosynthesis,30-33 and those studies naturally 

evolved to include a curiosity toward additional latent natural products.  Evidence of declining 

efficiency in natural product discovery plagues traditional fermentation, fractionation, and 

bioassay approaches.  Cognizance of these difficulties was especially evident to us in our S. 

sahachiroi fermentation optimization efforts, as at times production of known metabolites like 

the azinomycins was difficult to induce and control, and would translationally prove impossible 

when coaxing biosynthesis of compounds for which immediate structural information was 

unknown. 
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 The reverse approach to identification of new natural products involves genomics and 

biochemistry rather than end result-oriented fermentation and purification chemistry.  The advent 

of DNA sequencing technologies has the potential to dramatically change natural product drug 

discovery by revealing genetically-encoded pathways for products that may be below the limit of 

detection or entirely absent from a microorganism‟s metabolic profile.  Instead of being 

restricted to examining available compounds, we can peek at the overlooked potential within 

genomes to produce natural products via pathways that may be downregulated or silenced by one 

or more factors.  Since whole-genome sequencing technologies were put into practice, proposals 

to explore the realm of cryptic/orphan secondary metabolic pathways, especially in 

microorganisms with a reputation for producing medically useful compounds, are creeping in to 

supplement the unending push for new antibiotics.110,111     

 This study details our efforts to sequence and annotate the draft genome of S. sahachiroi 

using a combination of traditional genomic library screening implementations and next-

generation high-throughput methodologies with the aim of natural product biosynthetic pathway 

mining.  The undertaking has revealed at least five unknown biosynthetic pathways in S. 

sahachiroi containing NRPS or PKS-type gene sequences with the potential to produce novel 

bioactive secondary metabolites.   

 

RESULTS AND DISCUSSION 

Genomic Library Screening for Secondary Metabolic Enzymes 

 Degenerate probe-based screening of a fosmid-based S. sahachiroi genomic library 

served as an initial method to identify potential genes of secondary biosynthetic pathways.  

Armed with structural knowledge of at least one hybrid nonribosomal peptide-polyketide 

compound produced by the strain, the azinomycins, the search was focused on nonribosomal 

peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme classes.  Aside from 

structural precedence indicated by the azinomycins, modular NRPSs and PKSs are ubiquitous in 

microorganismal secondary metabolism and exhibit a high degree of sequence conservation 

among specific catalytic domains, making them a suitable target for detection with degenerate 

DNA hybridization oligomers.  A 2,199-member fosmid library in an E. coli host served as a 

repository for 35 kb DNA fragments representing the contents of the S. sahachiroi genome.  

Separate degenerate probe sets for NRPS and PKS gene sequences were constructed containing 

the sequences in Table 6.  
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Table 6  Sequences of degenerate NRPS and PKS hybridization probes. 
 
 Probe name Sequence (5’-3’) Fold-degeneracy 

 NRPS-A8F TTCCGGTTCGAGCYSGGBGAGATCGA 12 
 NRPS-TR GTGVCCVCCSAGGTCGAAGAA 18 
 PKS-2F CCSCAGSAGCGCSTSCTSCTSGA 64 
 PKS-2R GTSCCSGTSCCGTGCGCCTCSA 16 

  

 

 The arrayed library was immobilized on filter paper and probed with 32P-end labeled 

degenerate oligomers.  Hybridization screening with the respective probe sets revealed 40 clones 

containing putative NRPS-type sequences, and of that set, 13 clones also contained PKS-type 

sequences.  The degenerate primers were then used for sequencing each clone to determine if 

any sequences overlapped.  Based on sequence homologies determined in BLAST searches, two 

of the clones (fosmid2 and fosmid36) were selected for comprehensive sequencing using a 

random library of transposon-delivered primer binding sites.       

Genomic library screening with degenerate probes has inherent limitations tied to the 

heterologous host.  Certain sequences may be toxic and will fail to propagate in the host for 

library inclusion.  Other sequences may not be represented, as libraries must balance statistical 

sequence coverage with the number of members reasonable to store and screen.  With the 

evolution of whole-genome sequencing platforms occurring at the time of this study, we found it 

to be both cost-effective and more efficient to pursue genomic sequencing as an alternative to the 

library screening and Sanger sequencing approach.  

 

Next-generation Sequencing Platform Comparison 

We first attempted genomic sequencing of S. sahachiroi using the mid-range read 

capabilities of the Roche/454 GS FLX pyrosequencing platform.  Because coverage and 

assembly completion were less than optimal using this approach, we also opted to try very short 

read-based Illumina sequencing.  Each genomic sequencing run generates a basic set of statistics 

quantifying total base calls and reads, and following contig assembly, additional characteristics 

such as median contig length and contig span can be calculated.  Table 7 presents statistics to 

compare relative efficiencies of 454, Illumina single-read (SR) and paired-end (PE) sequencing 

platforms encountered in this study.   
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Table 7  Statistics for S. sahachiroi whole genome sequencing approaches. 
 

 454 Illumina SR Illumina SR + 454 Illumina PE 

Total Base Calls 147 million 360 million 500 million 1.95 billion 

Total Reads 590,000 9.5 million 9.8 million 27.9 million 

Read Length 100 bp 36 bp 36 bp 36 + 36 bp 

Contigs 5,712 4,796 4,159 8,416 

N50 Contig Size 649 bp 3,358 bp 4,280 bp 9,592 bp 

Largest Contigs 30, 29, 26 kb 33, 23, 19 kb 56, 23, 23 kb 63, 56, 54 kb 

Contigs (>1 kb) 2,055 2,521 2,195 1,859 

 

 

Illumina sequencing runs generated far larger median contig sizes in fewer total contigs 

than the 454 pyrosequencing experiment could provide.  Combining Illumina single-read 

sequencing with the data obtained from 454 pyrosequencing did not serve to greatly enhance 

contig statistics compared to the Illumina data on its own.  Even when cost was factored in, we 

obtained far better results using Illumina sequencing for our Streptomyces genome.  A 

compilation of sequence data from Sanger, 454, Illumina SR and Illumina PE runs was used to 

produce the draft genome of S. sahachiroi referenced in subsequent sections of this chapter, a 

practice with precedence in studies in which de novo genome sequencing is practiced.112  While 

Illumina sequencing can provide the bulk of sequence data with superior coverage and virtually 

complete sequence representation, other technologies are invaluable for evaluating sequence 

quality and accuracy.  The shortcomings of Illumina reads can be complemented by longer 454 

reads for scaffolding purposes in de novo genomes, and genome finishing almost always requires 

some extent of manual Sanger sequencing to close gaps and resolve multiple repeat regions.  

Unfortunately, combining these technologies is also incredibly time consuming at this point 

because computational algorithms cannot yet seamlessly integrate read data, quality scores, and 

error models from both long and short-read implementations.  Coupling the lack of a reference 

genome to the combined assembly obstacle results in cases such as the one we have encountered.  

The data has produced a fragmented draft genome that will require either more efficient 

assemblers or additional sequencing efforts to arrive at an acceptable state of completion for 

comparative genomic purposes.   
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Automated Annotation of Sequence Data 

Fortunately, genome completion is not necessary for biosynthetic pathway mining.  

Provided a draft genome agrees with certain parameters, automated annotation of multiple 

contigs is available in technologies such as batch BLAST inquiries or the SEED Rapid 

Annotation through Subsystems Technology (RAST) server.113  In the latter option, searches for 

favorite proteins by name or enzyme class identifier in the automated output are as simple as 

keyword input in a spreadsheet document.  However, the degree of genome fragmentation may 

result in identification of interesting proteins that lack full biosynthetic pathway organizational 

context.  For these cases, areas of absent sequence data can be easily acquired from chromosome 

walking or genomic library screening using specific (rather than degenerate) probes to capture 

gene clusters for Sanger sequencing.  In this study, we enlisted the aid of the SEED RAST server 

to provide searchable annotation of S. sahachiroi contigs of sizes in excess of 5 kb.  The 

resulting data included over 5,800 genes ranging from primary metabolism to cellular regulation 

and propagation to the target of our study, genes of orphan secondary biosynthetic pathways 

(Fig. 31). 

 

 

 
 

Figure 31  RAST-derived distribution of protein classes in the S. sahachiroi draft genome. 
Screenshot taken from RAST server output. 
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The Orphan Clusters in Streptomyces sahachiroi 

 Three presumably complete secondary metabolic pathways other than the reported 

azinomycin B biosynthetic gene cluster were revealed during sequence analysis, and additional 

partial clusters or genes characteristic of natural product pathways were also found.  Each cluster 

was given the arbitrary designation sahA, sahB, sahC, and so on, as the cognate natural product 

is unknown.  With the aid of specialized NRPS/PKS prediction databases and current knowledge 

of known biosynthetic pathways, one can propose the type of product expected from each 

cluster. 

 The sahA pathway was originally identified in the genomic library clone fosmid2 

through Sanger sequencing and was extended by genomic sequencing data.  Cluster sahA is an 

NRPS-type biosynthetic pathway with three apparent modules for incorporation of threonine, 

asparagine, and another unpredicted substrate (Fig. 32 and Table 8) dependent upon a type II 

thioesterase for covalent cleavage.    Tailoring enzymes include an N-methyltransferase domain 

(within sahA1), two oxygenases (sahA2 and sahA7), a carboxylate-amine ligase (sahA11), and 

various cofactor-dependent reductases.  This gene cluster is immediately upstream of the 

resistance protein (AziR, sahA20) described as having an affinity for azinomycin B in Chapter II 

of this thesis.  Genes upstream of sahA1 and downstream of sahA20 (corresponding to ~8 kb of 

known sequence not illustrated in the genetic map) do not appear to be relevant to the 

biosynthetic product of cluster sahA, but such assumptions cannot be proven by empirical 

evidence alone, which in turn lends a degree of uncertainty to all orphan pathway analyses when 

attempting to define the boundaries of an uncharacterized cluster. 

 

 

 
 
Figure 32  Orphan gene cluster sahA identified in the S. sahachiroi genome. 
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Table 8  Putative function of orfs in orphan gene cluster sahA of S. sahachiroi. 
 

Gene 
Size 

(aa) 
Homolog, Origin, and Accession Number 

Identity/ 

Similarity 

(%) 

Proposed Function 

sahA1 2824 peptide synthetase NRPS11-10, Streptomyces 

verticillus (AAG02349) 
80/86 NRPS (T-C-Athr-T-C-A?-MT-T) 

sahA2 337 clavaminic acid synthase-like protein, 
Streptomyces verticillus (AAG02347) 

88/92 Oxygenase, claviminic acid 
synthetase-like 

sahA3 248 thioesterase, Streptomyces verticillus 
(AAG02346) 

84/89 Thioesterase 

sahA4 427 putative transporter, Streptomyces verticillus 
(AAG02345) 

88/92 Transporter 

sahA5 333 hypothetical protein, Streptomyces verticillus 
(AAG02344) 

83/90 Unknown 

sahA6 578 peptide synthetase NRPS12, Streptomyces 

verticillus (AAG02343) 
85/90 NRPS (Aasn-T) 

sahA7 324 SyrP-like protein, Streptomyces verticillus 
(AAG02342) 

87/92 Oxygenase, claviminic acid 
synthetase-like 

sahA8 84 MbtH-like protein, Streptomyces avermitilis 
MA-4680 (NP_822026) 

66/79 MbtH-like 

sahA9 154 conserved hypothetical protein, Streptomyces 

sviceus ATCC 29083 (ZP_06914509) 
63/72 Unknown 

sahA10 237 hypothetical protein SCO7796, Streptomyces 

coelicolor A3(2) (NP_631827) 
84/92 Unknown 

sahA11 393 putative glutamate-cysteine ligase, Streptomyces 

sp. C (ZP_05504667) 
62/74 Carboxylate-amine ligase 

sahA12 150 stage II sporulation protein E (SpoIIE), 
Streptomyces sp. SPB74 (ZP_06827585) 

45/55 Stage II sporulation protein 

sahA13 355 putative secreted protein, Streptomyces 

ambofaciens ATCC 23877 (CAJ88362) 
67/79 dsDNA repair protein Ku 

sahA14 234 PAP2 superfamily domain-containing protein, 
Streptomyces sp. e14 (ZP_06712028) 

69/78 Phosphatase/haloperoxidase 

sahA15 237 hypothetical protein SBI_00322, Streptomyces 

bingchenggensis BCW-1 (ADI03443) 
79/88 NAD-binding protein 

sahA16 122 transcriptional regulatory protein, Streptomyces 

sp. Mg1 (ZP_04996370) 
84/91 Transcriptional regulator HxlR 

sahA17 252 short chain dehydrogenase, Yersinia rohdei 
ATCC 43380 (ZP_04613704) 

52/73 Dehydrogenase 

sahA18 224 putative transcriptional regulator, Streptomyces 

ambofaciens ATCC 23877 (CAJ88012) 
72/80 Transcriptional regulator 

tetR_N 

sahA19 408 integral membrane transport protein, 
Streptomyces hygroscopicus ATCC 53653 
(ZP_05513991) 

69/81 Membrane-bound transporter 

sahA20 266 aminoglycoside phosphotransferase, 
Streptomyces sviceus ATCC 29083 
(ZP_06915592) 

86/90 Resistance protein 

sahA21 91 hypothetical protein SalbJ_17933, Streptomyces 

albus J1074 (ZP_04703846) 
76/84 Unknown 
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Table 8 continued  

Gene 
Size 

(aa) 
Homolog, Origin, and Accession Number 

Identity/ 

Similarity 

(%) 

Proposed Function 

sahA22 849 zinc metalloprotease (elastase-like) protein, 
Streptosporangium roseum DSM43021 
(YP_003343925) 

36/49 Metallopeptidase 

sahA23 406 transcriptional regulator, TrmB, Streptomyces 
flavogriseus ATCC 33331(ZP_05805204) 

42/54 Transcriptional regulator LuxR 

sahA24 150 hypothetical protein SBI_09996, Streptomyces 

bingchenggensis BCW-1 (ADI13114) 
96/97 Transcriptional regulator 

WHTH_GntR 

sahA25 251 putative oxidoreductase, Streptomyces 

bingchenggensis BCW-1 (ADI13113) 
97/98 Dehydrogenase 

sahA26 133 hypothetical protein SAV_709, Streptomyces 

avermitilis MA-4680 (NP_821884) 
78/87 Unknown 

sahA27 237 putative hydrolase, alpha/beta fold protein, 
Mycobacterium intracellulare ATCC 13950 
(ZP_05227650) 

42/57 Hydrolase 

sahA28 227 hypothetical protein Svir_08000, 
Saccharomonospora viridis DSM 43017 
(YP_003132687) 

40/57 Unknown 

sahA29 212 hemerythrin HHE cation binding domain-
containing protein, Mycobacterium avium 104 
(YP_883244) 

43/52 Unknown 

 

 
 
 The gene cluster dubbed sahB is a hybrid NRPS-PKS cluster with modules for loading 

and incorporation of threonine, proline, glycine, and an additional unknown substrate (Fig. 33 

and Table 9).  The sahB pathway was initially elucidated during Sanger sequencing of the 

genomic library clone fosmid36 and was elaborated upon through genomic sequencing.  The 

PKS may act as an iterative type I enzyme, judging from the lack of other PKS domains in the 

immediate vicinity.  Again, the genetic map of sahB does not illustrate additional known 

upstream and downstream genes which are believed to operate independent of the pathway. 
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Figure 33  Orphan gene cluster sahB identified in the S. sahachiroi genome. 
 

 

 

 

Table 9  Putative function of orfs in orphan gene cluster sahB of S. sahachiroi. 
 

Gene 
Size 

(aa) 
Homolog, Origin, and Accession Number 

Identity/ 

Similarity 

(%) 

Proposed Function 

sahB1 1119 amino acid adenylation domain-containing protein, 
Nostoc punctiforme PCC 73102 (YP_001869919) 

39/55 NRPS (C-Athr-T) 

sahB2 428 MFS family major facilitator transporter, Bacillus 

cereus 172560W (ZP_04304889) 
32/56 Transporter, multidrug 

resistance 
sahB3 780 peptide synthetase, Cyanothece sp. CCY0110 

(ZP_01728755) 
38/59 NRPS (Apro-T) 

sahB4 422 conserved hypothetical protein, Micromonospora 

aurantiaca ATCC 27029 (ZP_06220182) 
34/48 Carboxylase 

sahB5 262 thioesterase type II, alpha proteobacterium BAL199 
(ZP_02189723) 

34/48 Thioesterase 

sahB6 1477 polyketide synthase type I, Cyanothece sp. ATCC 
51142 (YP_001804494) 

37/54 PKS (KS-AT-KR-ACP) 

sahB7 419 non-ribosomal peptide synthase, Myxococcus 

xanthus DK 1622 (YP_632700) 
50/66 Flavin-dependent 

monooxygenase 
sahB8 2379 amino acid adenylation domain protein, Haliangium 

ochraceum DSM 14365 (YP_003265814) 
43/58 NRPS (C-Agly-T-C-A?-T) 

sahB9 502 conserved hypothetical protein, Pantoea sp. At-9b 
(ZP_05729652) 

44/61 Unknown 

sahB10 287 NAD-dependent epimerase/dehydratase, Kribbella 

flavida DSM 17836 (YP_003382415) 
66/75 Epimerase/dehydratase 

sahB11 344 IclR family transcriptional regulator, 
Micromonospora sp. ATCC 39149 (ZP_04604445) 

63/75 Transcriptional regulator 

sahB12 322 putative vanillate demethylase reductase subunit, 
Rhodococcus opacus B4 (YP_002781284) 

64/74 Reductase (FMN/FAD and 
NAD binding) 
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Table 9 continued 

Gene 
Size 

(aa) 
Homolog, Origin, and Accession Number 

Identity/ 

Similarity 

(%) 

Proposed Function 

sahB13 343 oxidoreductase alpha subunit, Saccharopolyspora 

erythraea NRRL 2338 (YP_001105025) 
79/88 Non-heme Fe oxygenase 

sahB14 254 phenyl acetic acid responsive transcriptional 
repressor, Streptomyces sp. SCC 2136 (CAH10131) 

62/75 Transcriptional regulator 

sahB15 300 short-chain dehydrogenase/reductase SDR, 
Catenulispora acidiphila DSM 44928 
(YP_003115601) 

79/86 Dehydrogenase/reductase 

sahB16 351 amidohydrolase 2, Catenulispora acidiphila DSM 
44928 (YP_003115602) 

78/87 Metal-dependent hydrolase 

sahB17 500 feruloyl-CoA synthetase, Streptomyces clavuligerus 
ATCC 27064 (ZP_05006456) 

75/81 Acyl-CoA synthetase 

sahB18 154 enoyl-CoA hydratase, Streptomyces sp. e14 
(ZP_06711865) 

79/88 Acyl-CoA hydratase 

sahB19 270 AraC family transcription regulator, Streptomyces 

viridochromogenes DSM 40736 (ZP_05536279) 
54/69 Transcriptional regulator, 

AraC family 

sahB20 169 RacO protein, Streptomyces ribosidificus 
(CAG34704) 

56/75 Unknown 

sahB21 285 SriL03.9, Streptomyces rimosus subsp. 
paromomycinus (CAG44632) 

85/90 Dehydrogenase/reductase 

sahB22 244 SriL03.10, Streptomyces rimosus subsp. 
paromomycinus (CAG44631) 

86/92 Transcriptional regulator 

sahB23 556 oxidoreductase, Streptomyces lividans TK24 
(ZP_06533432) 

82/88 Oxidoreductase 

sahB24 366 transcriptional repressor protein, Streptomyces 

coelicolor A3(2) (NP_624604) 
90/93 Transcriptional regulator, 

glucokinase 

sahB25 499 alpha-galactosidase SCF8502, Streptomyces 

coelicolor A3(2) (NP_624603) 
88/92 glycosyl hydrolase 

sahB26 449 substrate binding protein, Streptomyces coelicolor 
A3(2) (NP_733496) 

73/84 ABC sugar transporter 

sahB27 233 binding-protein-dependent transport protein, 
Streptomyces coelicolor A3(2) (NP624602) 

95/99 ABC sugar transporter 
(transmembrane) 

sahB28 326 binding-protein-dependent transport protein, 
Streptomyces lividans TK24 (ZP_05528614) 

84/90 ABC transporter permease 
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Cluster sahC is anchored by a set of type II PKS domains characteristic of pathways 

known to produce fused six-membered multi-ring natural products (Fig. 34A and Table 10).  A 

number of tailoring enzymes in the sahC pathway bear resemblance to proteins in the 

tetracenomycin gene cluster,114 led by three polyketide cyclases (sahC8, 9, and 13), an acyl 

carrier protein (sahC10) and ketosynthase α and β domains (sahC11 and sahC12) to generate a 

proposed multicyclic natural product.  Tetracenomycin is an anthracycline antibiotic produced 

by Streptomyces glaucescens and has substantial antitumor activity (Fig. 34B).  An additional 

glycosyltransferase (sahC18) and aminoglycoside phosphotransferase (sahC5) suggest the 

cluster natural product may be glycosylated and uses the phosphotransferase for self-resistance 

purposes.  The genetic map of sahC in the corresponding figure includes all genes currently 

known for the contig, and thus may not represent the content of the complete pathway. 

 

 

 
 

 

Figure 34  Orphan gene cluster sahC identified in the S. sahachiroi genome. 
(A) Genetic map of the gene cluster.  (B) The structure of tetracenomycin C, an antitumor macrolide produced by 
Streptomyces glaucescens. 
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Table 10  Putative function of orfs in orphan gene cluster sahC of S. sahachiroi. 
 

Gene 
Size 

(aa) 
Homolog, Origin, and Accession Number 

Identity/ 

Similarity 

(%) 

Proposed Function 

sahC1 207a conserved hypothetical protein, Streptomyces sp. e14 
(ZP_06708591) 

86/91 Unknown 

sahC2 ~383b hypothetical protein SCO4267, Streptomyces coelicolor 
A3(2) (NP_628439) 

85/92 Unknown 

sahC3 618 drug resistance transporter, EmrB/QacA subfamily, 
Streptomyces sp. e14 (ZP_06708592) 

88/92 Membrane-bound 
transporter 

sahC4 444 glycine/D-amino acid oxidase, Streptomyces sp. e14 
(ZP_06708593) 

89/93 Oxidase 

sahC5 452b hydroxyurea phosphotransferase, Streptomyces avermitilis 
MA-4680 (NP_825138) 

69/79 Aminoglycoside 
phosphotransferase 

sahC6 352 secreted protein, Streptomyces sp. e14 (ZP_06708595) 73/84 Secreted protein 

sahC7 369 O-methyltransferase, Streptomyces sp. e14 (ZP_06708596) 92/95 SAM-dependent O-
methyltransferase 

sahC8 101 polyketide synthase CurG, Streptomyces sp. e14 
(ZP_06708597) 

93/96 PKS cyclase 

sahC9 137 conserved hypothetical protein, Streptomyces sp. e14 
(ZP_06708598) 

91/95 PKS cyclase 

sahC10 72 curamycin polyketide synthase acyl carrier protein, 
Streptomyces sp. e14 (ZP_06708599) 

94/97 ACP 

sahC11 360 polyketide beta-ketoacyl synthase 2, Streptomyces sp. e14 
(ZP_06708600) 

92/94 KS subunit β 

sahC12 410 polyketide beta-ketoacyl synthase 1, Streptomyces sp. e14 
(ZP_06708601) 

96/97 KS subunit α 

sahC13 124 tetracenomycin polyketide synthesis protein TcmJ, 
Streptomyces sp. e14 (ZP_06708602) 

96/98 Unknown 

sahC14 328 polyketide synthase CurD, Streptomyces sp. e14 
(ZP_06708603) 

87/93 Unknown 

sahC15 547 tetracenomycin polyketide synthesis hydroxylase TcmG, 
Streptomyces sp. e14 (ZP_06708604) 

85/90 PKS hydroxylase 

sahC16 400 ABC transporter ATP-binding protein, Streptomyces 

coelicolor A3(2) (NP_628414) 
95/97 ABC sugar 

transporter 

sahC17 149 small membrane protein, Streptomyces lividans TK24 
(ZP_05524727) 

80/91 Membrane protein 

sahC18 209a guanyltransferase, Streptomyces sp. e14 (ZP_06708607) 93/97 Guanyltransferase/ 
glycotransferase 

a incomplete gene 
b frameshifted 
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Cluster sahD is an apparent partial biosynthetic gene cluster containing type II PKSs, a 

type III PKS, and enzymes dedicated to sugar modification and transfer (Fig. 35 and Table 11).  

Independent enzymes in the sahD pathway do not share significant homology to known or well-

characterized proteins, preventing specific structural predictions like those presented for cluster 

sahC/tetracenomycin.  In its current state, the sequence for cluster sahD appears to have several 

frameshifts and incomplete gene sequences at both ends, and also lacks common cleavage 

domains to terminate polyketide chain elongation.  Enzymes acting on sugars are located 

between the discrete PKS domains, suggesting they participate in the biosynthetic pathway.  

However, it is also possible that the Type II PKS domains (sahD1-D6) are part of one pathway 

and the chalcone synthase, dehydratase, and PKS cyclase (sahD12-D14) are remnants of a 

separate pathway.  RAST output suggests the type II PKS domains (sahD1, D2, and D4) are β-

ketoacyl synthases I, II, and III involved in fatty acid biosynthesis, a product of primary 

metabolism.  One method for determining if an enzyme is dedicated to fatty acid or polyketide 

synthesis is to examine the CLF (chain length factor) domain for the presence or absence of an 

active site cysteine residue.115  Without extended sequence context in both directions, it is not 

entirely correct to assume the sahD enzymes belong to a single cluster. 

 

 

 
 

 

 

Figure 35  Orphan gene cluster sahD identified in the S. sahachiroi genome. 
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Table 11  Putative function of orfs in orphan gene cluster sahD of S. sahachiroi. 
 

Gene 
Size 

(aa) 
Homolog, Origin, and Accession Number 

Identity/ 

Similarity 

(%) 

Proposed Function 

sahD1 148 3-oxoacyl-[acyl-carrier-protein] synthase, Streptomyces sp. 
C (ZP_05508643) 

67/79 Ketosynthase 

sahD2 619 3-oxoacyl-[acyl-carrier-protein] synthase, Streptomyces sp. 
C (ZP_05508643) 

74/82 Ketosynthase 

sahD3 277 Beta-ketoacyl synthase, Streptomyces bingchenggensis 
BCW-1 (ADI05720) 

51/60 Chain-length factor 

sahD4 353 3-oxoacyl-(acyl-carrier-protein) synthase III, Streptomyces 

sp. C (ZP_05508645) 
76/88 Ketosynthase 

sahD5 310 aldo/keto reductase, Streptomyces sp. C (ZP_07288856)  72/84 Aldo/keto reductase 

sahD6 344 FAD-dependent oxidoreductase, Streptomyces sp. C 
(ZP_05508648) 

70/79 Hydroxylase/ 
monooxygenase 

sahD7 293 hypothetical protein StreC_23256, Streptomyces sp. C 
(ZP_05508649) 

66/75 PKS cyclase 

sahD8 179 glycosyltransferase, Streptomyces griseus subsp. griseus 
(CAE17547) 

30/42 Glycosyltransferase 

sahD9 262 SARP family pathway specific regulatory protein, 
Streptomyces bingchenggensis BCW-1] (ADI09962) 

67/79 Regulatory protein 

sahD10 208 NDP-hexose 3,5-epimerase, Streptomyces eurythermus 
(ABW91159) 

47/60 Sugar epimerase 

sahD11 490 putative dNDP-4-keto-6-deoxy-glucose-2,3-dehydratase 
SimB3, Streptomyces antibioticus (AAK06810) 

56/70 Sugar dehydratase 

sahD12 387 putative type III polyketide synthase, Saccharopolyspora 

erythraea NRRL 2338 (ZP_06563505) 
62/75 Type III (chalcone) 

PKS 

sahD13 152 MaoC domain-containing protein dehydratase, 
Micromonospora aurantiaca ATCC 27029 
(YP_003833831) 

58/76 Dehydratase 

sahD14 139 hypothetical protein StreC_23241, Streptomyces sp. C 
(ZP_05508646) 
 

53/67 PKS cyclase 

 

  

Putative cluster sahE currently consists of only a gene fragment corresponding to the C-

terminal end of a potentially large type I PKS based on sequence homology to the pladienolide 

PKS encoded by pldAI (Fig. 36A and Table 12).  Sequence data provides only seven domains in 

sahE1 resulting from the most recent assembly efforts.  PldAI is an 18-domain type I PKS within 

the genome of Streptomyces platensis Mer-11107 known to participate in the biosynthesis of at 

least seven pladienolide structural variants.116  Pladienolide B (Fig. 36B) is the variant produced 

at the highest level during fermentation and exhibits both VEGF inhibition and antitumor 

properties.117,118  Amino acid sequence similarity (49%) suggests sahE1 may work in tandem 
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with additional PKSs to produce a highly reduced macrolide.  While S. sahachiroi genomic 

sequence annotation has only afforded a partial gene sequence, such evidence provides sequence 

clues for design of gene-specific oligonucleotide probes that can be used to screen genomic 

libraries for clones containing additional sequence information.  

 

 

 
 

 

Figure 36  Orphan gene cluster fragment sahE identified in the S. sahachiroi genome. 
(A)  Genetic map of the gene fragments.  (B)  Structure of pladienolide B, one of seven metabolites in the pladienolide 
family constructed with the assistance of a large type I PKS, PldAI.  sahE1 has 49% similarity and 61% identity in 
comparison with pldAI. 
 

 
Table 12  Putative function of orfs in orphan gene cluster sahE of S. sahachiroi. 
 

Gene 
Size 

(aa) 
Homolog, Origin, and Accession Number 

Identity/ 

Similarity 

(%) 

Proposed Function 

sahE1 2427 polyketide synthase, Streptomyces platensis 
(BAH02268) 

49/61 PKS (KS-AT-DH-ER-KR-
ACP-TE) 

sahE2 150 possible transposase, Streptomyces fradiae 
(AAZ23101) 
 

91/94 transposase 
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The State of Genome Completion 

 At the conclusion of the present S. sahachiroi genome assembly effort by the author, the 

S. sahachiroi sequence information obtained from a combination of fosmid Sanger sequencing, 

454 GS FLX, and Illumina GAII exists as a set of 9,759 contigs (898 contigs are >5 kb) with the 

largest contig at 93 kb and a median contig size of 839 bp.  The project retains significant room 

for manual assembly using contig building software and human interaction to correct the often 

oversized arbitrary gaps introduced by the Velvet short-read assembler when it analyzes paired-

end sequences.  At this point it is uncertain whether further assembly would yield additional new 

orphan clusters pertinent to our group‟s interests. 

 

SIGNIFICANCE 

 Identification of orphan pathways provides the necessary genetic information to pursue 

cluster capture and perform studies related to pathway activation or upregulation.  Experiments 

to understand promoter regulation, promiscuity, and induction signaling may ultimately serve to 

support the original fermentation and fractionation practices that lead to new biosynthetic 

product isolation.  If pathway induction could be generalized as a strategy, it would further 

augment traditional methods for natural product discovery or increase production of currently 

known metabolites for human use.  

 Once the pathway is successfully activated, the product of the orphan cluster will be the 

focus of structure determination and bioassay for suitability as an antibacterial or other 

medicinally-relevant species.  Given the similarity observed in bioinformatic prediction of gene 

products to those of established bioactive compounds, S. sahachiroi has the potential to offer 

either several useful variants of compounds already included in the natural product pool, or to 

even supply entirely new structures for potential biomedical application.  Because the genome is 

still in a draft stage, there is also the possibility of as-yet assembled additional secondary 

pathways.  As gap closure and assembly closes in on a single contiguous sequence, further utility 

in comparative genomics to study aspects such as gene transfer, primary metabolic pathway 

variations, and species propagation become feasible undertakings.  In short, genomic sequence 

data opens the door to seemingly unlimited investigation possibilities.   

We are additionally interested in extending sequence information pertinent to the 

reported azinomycin B gene cluster within S. sahachiroi.25  Despite bioinformatic analysis, the 

exact steps and timing related to biosynthesis of the aziridinopyrrollidine ring remain unclear.  

Our independent efforts to assign and enzymatically reconstitute elements of the pathway reveal 
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several proteins deemed necessary to complement the existing biosynthetic model are lacking, 

either because they are beyond the published sequence data or because they act in trans from a 

distant location within the genome.  Therefore, having a draft genome facilitates the search for 

probable gene candidates to carry out undefined processes in azinomycin biosynthesis, transport, 

and resistance for future investigation. 

 

EXPERIMENTAL PROCEDURES  

Construction and Screening of the S. sahachiroi Genomic Library 

 S. sahachiroi genomic library construction and the NRPS/PKS screening method 

employing 32P-end labeled degenerate hybridization probes are outlined in the Experimental 

Procedures section of Chapter II in this thesis. 

 

454 DNA Pyrosequencing of S. sahachiroi 

 S. sahachiroi was cultured in YEME media (0.3% yeast extract, 0.5% peptone, 0.3% 

malt extract, 1% glucose, 34% sucrose, 5 mM MgCl2, 20% glycine).  Genomic DNA for all 

sequencing applications was isolated using the salting out procedure.104  Pyrosequencing with a 

read length of 100 bp was carried out by Macrogen (Seoul, Korea) using a single microwell plate 

on the Roche/454 Life Sciences 2008 version of the GS FLX platform.  Macrogen also provided 

sequence assembly services for the pyrosequencing data and delivered the final results as 5,712 

contigs of varying size. 

 

Illumina DNA Sequencing of S. sahachiroi 

 An adapter-ligated library of S. sahachiroi genomic DNA with average fragment size of 

200 bp was generated using the Illumina DNA Sample Kit (Illumina, San Diego, CA) and the 

Illumina-provided protocol.  Single-read 36 bp sequencing was carried out in a single flow cell 

lane using a Genome Analyzer II (Laboratory for Genome Technology, Norman E. Borlaug 

Center, Texas A&M University).  Data was processed within the Illumina Genome Analyzer 

pipeline by the facility housing the sequencer. 

 A paired-end adapter-ligated library of S. sahachiroi genomic DNA with average 

fragment size of 350 bp was produced using the Illumina Paired-End DNA Sample Prep Kit with 

provided procedure.  Paired-end 36 + 36 bp sequencing was carried out in a single flow cell lane 

and pipeline data processing was completed in a manner analogous to the single-read run. 
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Illumina Sequence Assembly 

 Bioinformatics specialist Serge Batalov (Andrew I. Su group, Genomics Institute of the 

Novartis Research Foundation, La Jolla, CA) performed all short-read assemblies.  Optimal 

short-read sequence assembly for the single-read Illumina sequence data was accomplished 

using Edena with a seed length of 27.119  The single read data was also combined with sequence 

from 454/pyrosequencing using Edena with an optimal seed length of 21.  The 454 data was 

arbitrarily fragmented to resemble short-read input for assembly purposes.  Paired-end sequence 

data was processed using Velvet with optimal seed length of 25.120  The author completed 

additional manual assembly aided by the software program Sequencher 4.8 (Gene Codes, Ann 

Arbor, MI) to enable internal gap filling of paired-end scaffolds using contigs generated from the 

single-read assembly. 

 

Sequence Annotation 

 Automated annotation of contigs larger than 5 kb was accomplished using the SEED 

Rapid Annotation Through Subsystems Technology (RAST) server developed and maintained 

by the National Microbial Pathogen Data Resource Center.113  Manual curation efforts combined 

FramePlot 3.0beta,106 NCBI BLAST105 and NCBI Conserved Domain Databases87 for general 

annotation.  Specialized databases such as the NRPS-PKS web-based utility121 and PKS/NRPS 

Prediction Website122 were employed to predict domain specificity of modular enzymes.  
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CHAPTER IV 

 

β-LACTOGLOBULIN, CYCLORETINAL, AND THE LINK TO AGE-RELATED 

MACULAR DEGENERATION 

 

INTRODUCTION 

 In 1992, Asato and coworkers reported an unusual and unintended reaction occurring 

between the milk whey protein β-lactoglobulin (BLG) and the retinoid-like compound β-

ionylideneacetaldehyde.79  In the course of studying photoisomerization of retinoids immobilized 

by BLG (a putative retinol-binding protein, acting as a mimic for rhodopsin),123 it was noted that 

β-ionylideneacetaldehyde, a C-15 α,β-unsaturated aldehyde, underwent conversion to a C-30 

ring-fused homodimer to a small (~11%) but measurable extent (Fig. 37).  Authentic standards 

for the C-30 homodimer, as well as a C-40 homodimer (all-trans-retinal dimer or cycloretinal) 

and other retinoid compounds were found to produce identical UV-visible absorbance traces and 

NMR spectra as products obtained from BLG incubation.  However, no further work has been 

reported regarding these transformations from either a protein chemistry viewpoint nor from the 

molecular level.  Because BLG is a protein without definite ascribed function and is prevalent in 

the diets of populations consuming dairy products, evidence of catalytic activity piqued our 

interest in this well-studied yet mysterious globular protein.   

 

 

 
 
Figure 37  BLG-promoted formation of a C-30 ring-fused dimer from β-ionylideneacetaldehyde. 
 

_____________ 
The results of this study are derived from the efforts of Dr. Bennie J. Bench and the author.  Specific 
experimental roles are denoted by the initials B.J.B, J.F.A, or C.M.H.W (Prof. Coran M. H. Watanabe) 
following each experimental description in the Experimental Procedures section of this chapter. 
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The ring-fused dimers produced by assistance from BLG are members of a class of 

natural product aldehydes we have termed cycloterpenals to reflect both their terpenoid 

biosynthetic origin and cyclohexadienal structural core.76,124  Representative cycloterpenals with 

immediate relevance to this particular study include cyclocitral, an antibiotic secondary 

metabolite produced by the North Sea bryozoan Flustra foliacea,125-127 and cycloretinal (Fig. 38), 

a vision cycle by-product isolated from the human eye that is potentially associated with age-

related macular degeneration (AMD),73,128,129 the primary cause of vision loss in Americans over 

the age of 60.77,130   AMD is characterized by loss of sharp central vision and stems from 

abnormal neovascular structures beneath the macula, the disc at the center of the retina.  These 

fragile, proliferating blood vessels often leak fluids that displace the macula, preventing focus of 

fine images necessary for routine daily tasks.  Early indicators of potential AMD include 

deposition of lipids, proteins, and other cellular elements in drusen, yellow granules outside the 

retinal pigment epithelium (RPE) that are ostensibly harmless and produce no direct 

symptoms.78,131 Also evident near RPE cells are lipofuscins, autofluorescent aggregates of 

cellular debris and the remnants of photoreceptor outer segment phagocytosis carried out to re-

isomerize retinoids for the visual cycle.  Though not definitive disease markers, both drusen and 

lipofuscins are very frequently detected in AMD patient tissue.77 

Proteomic studies indicate BLG is among the proteins crystallized in drusen.78  Coupled 

with this discovery is the accumulation of fluorophores such as cycloretinal, cycloretinal-

phosphatidylethanolamine conjugate, and A2E in nearby lipofuscins.73  The highly conjugated 

system of A2E has been implicated in oxidative damage mechanisms in RPE cells that ultimately 

lead to apoptosis and is itself of concern independent of AMD.74  The presence of BLG and 

retinoid-derived compounds near tissues susceptible to maculopathy, combined with knowledge 

of BLG‟s ability to promote cycloterpenal formation, suggest a possible correlation between 

these molecular species and disease progression.  From an AMD prevention standpoint, the 

effect of milk consumption bears scrutiny and thus we are taking a closer look at BLG chemistry 

and the biological relevance of the reaction in vivo as the first steps toward defining a protein-

based impetus for lipofuscin formation. 

This study extends the initial observation of BLG-promoted α,β-unsaturated aldehyde 

condensation and attempts to define the limits of BLG activity in both purified and naturally-

occurring milk-borne form.  The series of experiments detailed here range from in vitro to in 

vivo observations of BLG chemistry.         
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Figure 38  Molecular species relevant to the study of BLG chemistry and lipofuscin formation. 
R groups designate long alkyl chains of phosphatidylethanolamine. 
 

 

RESULTS AND DISCUSSION 

BLG-Promoted Cycloterpenal Formation 

 Purified bovine BLG was incubated with the model α,β-unsaturated aldehydes citral or 

all-trans-retinal to demonstrate the ability to catalyze self-condensation reactions.  Scouting for 

optimal conditions included varying reaction duration, buffer pH, and protein to substrate ratio to 

achieve maximum yield.  Using citral as substrate, 58% conversion to cyclocitral was observed 

under a 1:3 protein to substrate ratio at pH 7.0 and 37°C over 4 days (Fig. 39 and Appendix Fig. 

64).  The reaction proceeds quite slowly by enzymatic standards, suggesting this moonlighting 

activity is not the primary biological role of BLG, but it is a remarkable behavior nonetheless. 
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Figure 39  Optimization of BLG reaction conditions.   
Yield reported as a function of protein-to-substrate ratio, reaction duration, and buffer pH.   
 

  

Reaction progress can be monitored by examination of the aldehydic region of 1H NMR 

(Appendix Fig. 63).  The commercially available citral used as substrate is a mixture of cis and 

trans isomers whose aldehyde protons are centered at δ 10 ppm, and the signal corresponding to 

the cyclocitral aldehyde proton is shielded, shifting upfield to δ 9.45 ppm.  Thus, emergence of 

the cyclocitral aldehyde signal indicates expected product formation in the presence of BLG.  

Biomimetic dimerizations catalyzed by proline implicate aldehyde activation through formation 

of a Schiff base76 in a mechanism analogous to the capability of a lysine residue in a protein.  

This approach is precedented, as an example of biological aldehyde activation via imine 

formation includes a step in the vision cycle in which 11-cis-retinal is covalently linked to a 

lysine residue in opsin to give the visual pigment rhodopsin.132  To determine if any 

proteinaceous lysine could promote cycloterpenal formation, bovine serum albumin (BSA), a 

protein containing 60 lysine residues, was evaluated for this specific catalytic activity (Fig. 40).  

 

 
 

Figure 40  Aldehydic 1H NMR region of reaction extract from citral incubated with BLG or BSA. 
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Additional protein extracts from E. coli and retinal pigment epithelial (RPE) cells were 

also assessed for assisting conversion of citral to cyclocitral.  Product formation in all cases was 

monitored by 1H NMR.  The E. coli proteome contains over 1,000 proteins, and RPE cells are 

the obvious location for retinoid-derived dimer formation in the eye.  If a particular class of 

proteins represented in a bacterial proteome or specific proteins present in the RPE could also 

drive cycloterpenal formation, then the behavior exhibited by BLG would remain an accidental 

but inconsequential discovery.  However, because BSA, E. coli extract, and RPE extract all 

failed to produce the ring-fused dimer upon incubation with citral (Fig. 41), it was determined 

that the reaction was unique to BLG and not a general reaction promoted by proteins or peptides.   

The reaction products of a BLG solution incubated with either citral or all-trans-retinal 

were also followed by UV-visible spectroscopy (UV-vis) to demonstrate another analytical 

method for product detection.  Reaction aliquots extracted every 24 h were dried and 

resuspended in ethanol for wavelength absorbance scanning from 200-600 nm.  Scans from each 

24 h aliquot were overlaid to produce the spectra in Figure 42.  Citral and all-trans-retinal have 

respective maximum absorbance at 240 nm and 385 nm, and the products cyclocitral and 

cycloretinal absorb most strongly at 320 nm and 290 nm/432 nm, respectively.  An isobestic 

point is evident at 267 nm for citral/cyclocitral and 342 nm for retinal/cycloretinal.  While 

cycloterpenal product degradation is evident in the traces corresponding to protein-mediated 

synthesis compared to a proline-catalyzed authentic sample, absorbance wavelength scanning 

does provide a glimpse of reaction progress over the incubation period.  The reaction with all-

trans-retinal appears to proceed slightly faster than an identical trial carried out with citral when 

characterized in this manner. 
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Figure 41  Evaluation of E. coli proteome or RPE cell extract assistance in cycloterpenal formation. 
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Figure 42  UV-visible absorption wavelength scans of BLG-citral or –retinal extracts. 
It should be noted that the products from days 1-4 provide a spectrum equivalent to that of an authentic sample 
maintained at room temperature for 24 h, and thus product instability/degradation limits the utility of total sample 
analytical methods such as UV-vis.  Fortunately, such limitations do not impede the use of NMR analysis.  
  

 

 Additional analysis of reaction products was carried out by HPLC to verify 

cycloterpenal formation employing co-injection of an authentic standard sample (Fig. 43).  BLG 

incubated with all-trans-retinal in a standard four day treatment was subjected to HPLC 

separation following extraction, and the product mixture was compared to authentic cycloretinal 

and a BLG blank extract.  Co-injection of the BLG-assisted product mixture and synthetic 

cycloretinal verified formation of the predicted product. 
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Figure 43  HPLC profile of BLG-promoted cycloretinal formation. 
[1] BLG extract [2] BLG + retinal extract [3] BLG + retinal extract spiked with synthetic cycloretinal (co-injection) 
[4] synthetic cycloretinal.  Peak identification is as follows:  (A) BLG-bound metabolites (B) cycloretinal (C) retinal-
derived side products.  
  

 

 Attempts to abolish the catalytic behavior of BLG were carried out employing standard 

approaches to protein denaturation, i.e., treatment with detergent, heat, or chaotropic reagent, 

followed by incubation with citral, extraction, and 1H NMR analysis.  BLG-promoted 

cycloterpenal formation is inhibited by pretreating BLG with detergent (10% SDS) but not with 

other denaturants (7 M urea or 100°C, 2 h) (Fig. 44 and Appendix Fig. 65), providing further 

evidence that not only is BLG a robust and stable protein, but also that catalytic activity does 

depend upon tertiary structure preservation.   
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Figure 44  1H NMR of BLG catalytic inhibition in the presence of sodium dodecyl sulfate. 
Only treatment with detergent (10% w/v SDS), and not heat nor urea, caused BLG to lose activity in the standard 
assessment using citral as substrate.  The inset is an expansion of the aldehydic region to highlight lack of the 
cyclocitral aldehyde signal. 
 

 

Milk-Promoted Formation of Cycloterpenals 

 With knowledge of purified BLG catalytic activity and heat stability, we next sought to 

evaluate the ability of pasteurized cow‟s milk available from a local grocer to assist in 

cycloterpenal biosynthesis.  Reactions carried out with either whole milk (4% milk fat), 2% milk 

(2% milk fat), skim milk (fat-free), or buttermilk (4% milk fat) were assayed with excess citral 

as substrate and examined by NMR (Fig. 45).  The highest conversion was obtained using skim 

milk (14%), followed by 2% milk (7.3%), whole milk (5%), and buttermilk (1%).  The yield 

variance can be rationalized by noting BLG has a propensity to bind a number of lipophilic 

ligands with submicromolar affinity,82,133 and thus greater fat content in milk translates to a 

relative form of inhibition.  The poorest result observed with buttermilk may be further attributed 

to the lower pH (in the range of pH 4.4-4.8, due to lactic acid) in contrast to pH 6.7 for ordinary 

milk. 
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Figure 45  1H NMR evaluation of milk-assisted cyclocitral formation. 
  

 

 To ensure the milk-assisted reaction was due to protein and not small molecule 

involvement, skim milk was desalted using Sephadex G-25 medium and re-subjected to assay 

(Appendix Fig. 66).  Reaction yield was unaffected, supporting the concept that heat-treated 

BLG retains the function to promote cycloterpenal formation.   

  

Study of Cycloterpenal Formation in a Rabbit Model 

 An average person has between 1.9 and 2.5 g of BLG present in blood sera.84  As 

humans do not possess a genetically-encoded BLG homolog, the BLG detected in blood is 

derived exclusively from consumption of foods containing whey protein.  Because BLG is acid 

stable and receptors for lipocalins are present within the small intestine, the protein has 

unevaluated potential to survive ingestion and exhibit catalytic behavior in vivo.  To further 

probe the physiological relevance of BLG in promoting cycloterpenal formation in vivo, 

specifically for that of cycloretinal, we examined the ability of BLG (in purified form and in 

milk) to support cycloretinal formation in a rabbit. Eight New Zealand white rabbits were 

  10.0                    9.8                     9.6                    9.4                     9.2  ppm 
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allocated to the control (basic diet) (n=1), BLG/water control (n=1), skim milk control (n=1), 

BLG/water + retinal (n=2), and skim milk + retinal (n=2).  All of the rabbits had free access to a 

standard rabbit diet and water.  They were each administered their respective solutions by gavage 

twice daily for 7 days.  Following the feeding regimen, the rabbits were anesthetized and 

exsanguinated for subsequent analysis.  The blood was extracted with ethyl acetate, the organics 

were dried over anhydrous magnesium sulfate, and concentrated in vacuo.  The extracts were 

analyzed by 1H-NMR spectroscopy (Fig. 46A).  Cycloretinal was only detected in rabbits that 

were supplied a solution of BLG and retinal or skim milk and retinal. To verify the presence of 

BLG in blood, we analyzed rabbit blood serum by protein electrophoresis.  The serum was 

diluted (1:10) with buffer and analyzed by SDS-PAGE.  The gel (Fig. 46B) revealed that BLG 

was readily absorbed into the blood stream of rabbits with the exception of the control rabbit 

(which only received a basic diet and showed no trace of the protein.)  These results are 

consistent with studies which have shown that absorption of intact BLG into the blood stream 

proceeds by intracellular transfer through the intestinal transepithelial cells.83,134  Blood isolated 

from rabbits provided a BLG-supplemented diet promoted the formation of cycloretinal from 

retinal during subsequent in vitro incubation, while the control (basic diet) rabbit blood showed 

no signs of product formation when incubated with retinal (Appendix Fig. 68).  This indicates 

dietary BLG is uptaken and is active within blood for at least the period of time necessary to 

assist cycloterpenal biosynthesis,  and the reaction previously studied only in vitro does have 

relevance within a living system. 
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Figure 46  Analysis of cycloretinal formation in rabbit blood.   
[A]  Shows alignments of the aldehydic region of the 1H-NMR spectrum of organics extracted from rabbit blood 
samples: (1) Control (basic diet) (2) BLG control (3) skim milk (4) retinal control (5) BLG + retinal (6) skim + retinal; 
Detection of BLG in rabbit blood.  [B] SDS-PAGE analysis of blood serum: (M) molecular weight marker, kD (1) 
BLG standard (2) BLG control (3) BLG + retinal (4) skim milk (5) skim milk + retinal (6) control (basic diet).   
 

 

SIGNIFICANCE 

 The studies presented herein describe terpenal ring-fused dimer formation aided by the 

milk protein β-lactoglobulin in an unprecedented biosynthetic fashion, the products of which 

may bear physiological implication in disease states such as age-related macular degeneration.  

Because AMD is marked by retinoid dimer accumulation within lipofuscins, and we have 

demonstrated BLG is capable of milk-borne and in vivo catalysis of similar chemical species, 

there is compelling interest to further our understanding of BLG chemistry.  Moreover, 

proteomic studies performed on eye tissue of macular degeneration patients have revealed the 

presence of BLG within drusen (retinal pigment epithelium extracellular deposits containing 

assorted lipids, polysaccharides, glycosaminoglycans and proteins),78 setting up speculation of 
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BLG-assisted lipofuscin biosynthesis.  While synthetic reactions employing proline and 

triethylamine as catalysts yield cycloretinal,135 the reaction fails to proceed under standard 

physiological conditions in the presence of proline (Appendix Fig. 67).  BLG-promoted 

cycloterpenal formation is probably not the sole physiological route to molecules like 

cycloretinal given the relatively slow rate observed for this protein-catalyzed process, but 

because the reaction does not appear to be spontaneous nor does it arise from reaction with 

endogenous proline, activation of retinoids in vivo logically requires assistance from another 

biomolecule.  BLG may provide a plausible missing link in understanding the formation of 

lipofuscins from retinoids, but for the time being serves as a willing model to probe the 

mechanistic requirements for biosynthetic terpenal self-condensation reactions.   

 Focused epidemiological studies are necessary to draw more definitive links between 

dairy product consumption and the promotion of disorders characterized by accumulation of 

retinoid-derived lipofuscin fluorophores like cycloretinal and A2E.  Unfortunately, such studies 

may be increasingly difficult to organize and manage as world populations historically devoid of 

dietary dairy intake begin to adopt milk products as a nutritious protein source.  At the same 

time, increased world dairy consumption intensifies the need for investigations into the possible 

correlation between BLG and macular disease progression.  AMD is poised to become 

increasingly prevalent in societies as average life expectancies exceed 80 years or more.  

Individuals with milk protein allergies or lactose intolerance may provide a population suitable 

for cross-analysis, but ultimately human studies toward this investigation will require decades of 

pursuit to obtain the most far-reaching and meaningful results. 

 

EXPERIMENTAL PROCEDURES 

Reagents and Instrumentation   

 All solvents and reagents were used without further purification unless noted.  

Experiments were carried out using BLG from Sigma (L3908, St. Louis, MO, 90% BLG by 

PAGE) or Davisco Foods International, Inc. (JE-003-6-922, La Sueur, MN, 93.6% BLG).  NMR 

for 1H (300 MHz) and 13C (75 MHz) spectra were obtained on Varian Inova or Mercury300 

NMR instruments.  Mass data was collected on an API QSTAR PULSAR (ES) instrument.  

HPLC separations were performed using a Varian ProStar chromatography system.   
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General Procedure for BLG-Promoted Biosynthesis of Cycloterpenal Homodimers  

 In a 1000 mL Erlenmeyer flask, 500 mL of a 1% (w/v) BLG solution in phosphate 

buffered saline (PBS, 10 mM phosphate, 2.7 mM KCl, 137 mM NaCl, pH 7.0) and 3 equivalents 

of substrate (0.5 M in absolute ethanol, 1.630 mL) were combined.  This mixture was placed in a 

shaker (37 °C, 250 rpm) for 4 days.  The reaction was quenched by the addition of 500 mL of 

ethyl acetate and stirred for 30 min at room temperature to extract the product.  To avoid 

gathering precipitated protein, the mixture was centrifuged at 9,000 rpm at 4 °C for 30 min.  The 

organic layer was collected, dried over anhydrous magnesium sulfate, concentrated in vacuo, 

then purified and characterized according to Bench et. al.76,124  (B.J.B) 

 

Milk-Promoted Biosynthesis of Cycloterpenals  

  To demonstrate dimerization with processed milk, skim milk, 2% milk, whole milk and 

buttermilk were purchased from a local grocery market.  The milk contained approximately 8-9 

grams of protein according to their labels.  Initial experiments were performed with 200 mL of 

milk, which was diluted with 300 mL of PBS and incubated with aldehyde substrate (2.20 mL of 

0.5 M solution in absolute ethanol) at 37°C with shaking (250 rpm) for 4 days.  Following 

incubation, the solutions were extracted with 300 mL of ethyl acetate, concentrated in vacuo and 

the metabolites analyzed using the methods described above.  

 To ensure that there were no small metabolites responsible for the dimerization process, 

each milk was passed through a Sephadex G-25 column (GE Healthcare, Uppsala, Sweden, 

Product # 17-0033-01).  The G-25 resin (60 g) was swollen to 300 mL with PBS (pH 7.0) and 

packed into a glass column (5 x 30.5 cm).  Milk (90 mL) was passed through the column 

followed by the addition of PBS until a total volume of 250 mL was obtained.  The filtered milk 

was incubated with aldehyde substrate (1.10 mL of 0.5 M solution in absolute ethanol) and 

retested utilizing the same conditions as detailed above.  (B.J.B. and J.F.A.) 

 

In Vivo Study Utilizing New Zealand White Rabbits    

 The following protocol (AUP#2008-70) was approved by the Texas A&M University 

Institutional Animal Care and Use Committee (IACUC).  Eight adult New Zealand white rabbits 

(2.5 kg, Myrtle‟s Rabbitry, Thompsons Station, TN) were randomly allocated to the control 

(normal diet, n=1), BLG/water control (n=1), skim milk control (n=1), retinal control (n=1), 

BLG/water + retinal (n=2), and skim milk + retinal (n=2).  All rabbits had free access to a 

standard rabbit diet and water.  The rabbits were housed separately in standard cages in the 
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Laboratory Animal Resources and Research (LARR) facility at Texas A&M University and 

maintained under standard conditions.  The rabbits were provided the solutions by gavage twice 

daily for a week.  Each solution was administered in 50 mL volumes with the exception of the 

retinal control, which was supplied as a 1 mL solution (40 mg/kg; retinal was solubilized in 150 

L of ethanol). The ΒLG/water solution was supplied at 1.3 g/kg in 50 mL of water. 

 After seven days, the rabbits were anesthetized with a solution containing 10 mg/kg of 

ketamine with 3 mg/kg xylezine by intravenous injection allowing 5 min for the cocktail to take 

effect.  Depth of anesthesia was monitored prior to blood removal by squeezing the foot of the 

rabbit.  Cardiac blood was removed by opening the thorax to visualize the heart before carrying 

out cardiac puncture, which also results in exsanguination.  This process allowed us to obtain 

approximately 40-50 mL of blood from each rabbit.  The blood (40 mL) was processed by 

extraction.  Ethyl acetate (300 mL) was added and stirred for 1 h.  The suspension was 

centrifuged for 30 min. at 9,000 rpm, 4°C.  The organic layer was removed, dried with 

anhydrous magnesium sulfate, and concentrated in vacuo.   

 To assess BLG content in the samples, blood from the control (normal diet), BLG/water 

control, BLG/water + retinal, skim milk control, and skim milk + retinal were centrifuged at 

4,000 rpm for 30 min at 4°C to separate red blood cells from serum.  After centrifugation, 1 µL 

of serum was diluted with 9 μL of PBS pH 8.0 and 10 μL of SDS-PAGE Buffer (125 mM Tris 

pH 6.8, 4% SDS, 20% glycerol, 0.2 mg/ml bromophenol blue, 0.2 mM DTT).  Samples were 

heated to 90°C for 10 min and analyzed by SDS-PAGE (15%, 200V for 35 min) stained with 

Coomassie blue.  (B.J.B.)  

 

Determination of Optimal Protein to Substrate Ratio  

 To determine the optimal protein and substrate concentrations for dimer formation, a 

range of protein to substrate ratios from 1:1 to 1:10 were tested.  A 1% (w/v) BLG solution (5 g) 

was prepared in PBS (500 mL, pH 7.0).  An aliquot of 0.5 M citral in ethanol was added to the 

BLG solution to achieve the desired ratio, and the reaction was incubated at 37°C, 250 rpm for 4 

days.  The mixture was extracted, concentrated, and analyzed as outlined in the general 

procedure for BLG-promoted biosynthesis.  (B.J.B.)  

 

pH Profile Analysis  

 To examine the behavior of the BLG-promoted reaction as a function of pH, we 

evaluated the reaction at pH values of 1, 3, 5, 7, 9, and 11.  PBS was either buffered with 1 M 
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HCl or 1 M NaOH to reach the desired pH.  BLG (5 g) was dissolved in each buffered PBS 

solution to give a 1% (w/v) solution and incubated with 3 equivalents of citral (0.5 M in ethanol, 

1.630 mL) at 37°C, 250 rpm for 4 days.  The BLG mixture was extracted and analyzed by 1H-

NMR.  (B.J.B.)  

 

HPLC Profile of BLG-Promoted Biosynthesis of Cycloterpenals   

 The products of a 500 mL BLG-retinal reaction were extracted as previously described.  

An aliquot of the extract (20%) was dissolved in 40 µL dichloromethane and analyzed by HPLC 

(Phenomenex Luna silica column, 5 µm particle size, 250 x 10.00 mm) with a dichloromethane 

mobile phase, 3 mL/min flow rate, and UV absorption monitoring at 254 nm.  Additionally, an 

extract of 1% (w/v) BLG in 500 mL PBS, synthetic (proline-catalyzed) cycloretinal, and an 

aliquot of the BLG-retinal reaction extract spiked with 0.25 mg synthetic cycloretinal were 

analyzed in the same manner.  (J.F.A.) 

 

Absorbance Spectroscopy of BLG-Promoted Cycloterpenal Biosynthesis 

 Solutions of 1% (w/v) BLG in PBS pH 7.4 (5 mL) were incubated with 3 molar 

equivalents of either citral or all-trans-retinal in glass culture tubes (16 x 125 mm) with metal 

caps at 37°C with agitation at 250 rpm.  Reactions containing all-trans-retinal were protected 

from ambient light at all times to prevent photo-induced degradation.   At each time point, 

750 µL of reaction was transferred to a 1.5 mL polypropylene microcentrifuge tube and 

extracted twice with an equal volume of ethyl acetate by vortexing, centrifuging for 3 min at 

14000 rpm, and removal of the organic layer.  A stream of nitrogen was used to evaporate the 

solvent, and the residue was subsequently resuspended in absolute ethanol for UV-visible 

absorbance scanning using a quartz cuvette in a Genesys 2 UV-Vis spectrophotometer 

(ThermoFisher Scientific, Waltham, MA) with ethanol serving as the absorbance blank.  (J.F.A.)

  

Microbial Protein Crude Extract Controls   

 E. coli DH10B was cultured on agar plates using standard methods.  A single colony 

was picked and placed in 3 mL of LB medium and allowed to grow overnight before being 

transferred to 500 mL of fresh medium.  After 24 h, the culture was centrifuged and the cell 

pellet flash frozen in liquid nitrogen before being stored at -80°C.  Cells were lysed with a bead 

mill (Bead Beater, Biospec Products, Bartlesville, OK) equipped with 0.1 mm glass beads.  

Frozen cell pellets, PBS, and glass beads were added to the mill chamber on ice.  Cells were 
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lysed with ten (30 sec) pulses with 1 min cooling intervals.  The lysate was centrifuged and the 

resulting supernatant served as the crude extract. Protein concentration was measured by 

Bradford assay (Bio-Rad, Hercules, CA) and diluted to a 1% (w/v) solution with PBS. 

 Prior to carrying out the dimerization assay, a metabolite extract blank was generated. 

The protein extract (40 mL) was extracted with 200 mL of ethyl acetate, dried with anhydrous 

magnesium sulfate, and concentrated in vacuo.  A 1H-NMR spectrum was obtained to ensure that 

there were no metabolite peaks in the aldehydic region of interest.  Results were also confirmed 

by mass spectrometry.  To establish whether crude protein extracts could support cycloterpenal 

formation, protein lysates were incubated with citral at 37°C for 4 days in an orbital shaker (250 

rpm).  As detailed previously, following incubation, the suspension was extracted and analyzed.  

(B.J.B.) 

 

Evaluation of RPE Cell Extract for Cycloterpenal Formation 

  RPE cells (ARPE-19, ATCC) were subcultured to give a total of 10 plates at 95% 

confluency. Cells were propagated in ATCC-formulated Dulbecco‟s modified Eagles medium 

(DMEM:F12) supplemented with 10% fetal bovine serum (FBS) in a 5% carbon dioxide 

atmosphere at 37°C.  Cells were dislodged from the plate with 3 mL of a 0.05% (w/v) Trypsin-

EDTA solution and transferred to a 50 mL conical tube.  Cells were pelleted by centrifugation 

for 20 min. at 1,000 rpm.  To remove traces of medium, the cells were washed twice with DPBS, 

(1X without calcium or magnesium), and subsequently resuspended in 10 mL of DPBS.  The cell 

suspension was lysed with a 50 mL dounce homogenizer and the resulting lysate centrifuged at 

5,000 rpm (4 °C) for 30 min to pellet cellular debris. Protein concentration was measured by 

Bradford assay and diluted to a 1% solution with PBS buffer. 

 A metabolite control was generated by extracting the protein lysate (5 mL) with ethyl 

acetate (50 mL), which was dried over anhydrous MgSO4, concentrated in vacuo, and evaluated 

by 1H NMR spectroscopy.  To establish whether the crude protein extract (10 mL) could support 

cycloterpenal formation, the protein lysate was incubated with citral at 37 °C with shaking (250 

rpm) for 4 days, extracted and analyzed in a manner identical to the microbial cell extract.  

(B.J.B.) 

 

SDS Denaturation of BLG 

 In a 1000 mL Erlenmeyer flask, 500 mL of a 1% BLG solution (PBS, pH 7.0) was 

stirred with 10% SDS (w/v, 50 g) for 2 h.  Three equivalents of citral (0.5 M in absolute ethanol, 
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1.630 mL) was added to the SDS-protein solution.  The mixture was  placed in a 37°C shaker 

and incubated at 250 rpm for 4 days.  The BLG mixture was extracted and analyzed as detailed 

previously.  (J.F.A.)   

 

Evaluation of Cycloretinal Formation Under Physiological Conditions 

 L-proline (54.4 mg) was solubilized in 10 mL of buffer (10 mM phosphate, 2.7 mM 

KCl, 137 mM NaCl; pH 7.4) to which was added dropwise retinal (10 mg/1 mL ethanol).  The 

reaction was incubated at room temperature (in the dark) for 11 h and subsequently extracted 

with 50% ethyl ether in hexane.  The organics were dried over magnesium sulfate and 

concentrated in vacuo prior to NMR analysis.  (C.M.H.W.)   
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CHAPTER V 

 

THE MECHANISM OF β-LACTOGLOBULIN-MEDIATED CYCLOTERPENAL 

BIOSYNTHESIS 

 

INTRODUCTION 

 Our previous studies with α,β-unsaturated aldehydes and β-lactoglobulin (BLG) indicate 

catalyst involvement is necessary to mediate self-condensation to yield ring-fused dimers.  In the 

synthetic sense, L-proline, with the assistance of an organic base in some instances, provides 

activation of aldehydes via formation of a Schiff base.  An analogous mechanism to support self-

condensation by a protein scaffold would likely involve lysine residues, an enzymatic proposal 

exemplified by rhodopsin conjugated to retinilidine through an imine bond to ready for the 

photoisomerization step that invokes sight in the vision cycle (Fig. 47).  While rhodopsin 

conjugation does not directly assist in further chemical modifications to retinilidene, the 

reactivity of an amine and aldehyde in a biological context is proven. 

 

 

 
 

Figure 47  Aldehydes converted to imine conjugates in biologically relevant reactions. 
(A) L-proline synthetic activation of citral.  (B) Rhodopsin-conjugated 11-cis- and all-trans-retinilidine in the vision 
cycle. 
 

 

 Activated aldehydes, whether by proline or protein-based catalysts, may undergo 

condensation through one of two possible pathways, either via stepwise Michael-like imine 

addition or a concerted Diels-Alder-type mechanism (Fig. 48).  Current kinetic isotope 
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experiments being carried out suggest a concerted route to ring formation, but additional 

evidence is required to verify this preliminary observation. 

 

 

 
 

Figure 48  Proposed reaction mechanisms for imine-activated α,β-unsaturated aldehyde condensation. 
 

 

Given these precedents for aldehyde reactivity, we sought to determine if a pair of lysine 

residues in BLG is directly involved in promoting cycloterpenal formation.  Conceivable 

permutations to effect catalysis include participation of two different lysine residues within a 

monomer subunit or a single lysine residue acting in tandem with another residue on a separate 

subunit of a dimer configuration.  BLG contains 15 lysine residues, and while the crystal 

structure (Fig. 49) suggests certain residues may be better situated for aldehyde conjugation than 

other residues (e.g., residues that are solvent exposed versus buried), we conducted an evaluation 

of the potential role each lysine could play in assisting self-condensation using site-directed 

mutagenesis and trypsin-digest proteomic mass spectrometry. 

This chapter details cloning and expression of soluble BLG in an E. coli host, site-

directed mutagenesis rationale, and preliminary peptide mass spectrometry data to support 

involvement of lysine residues in the formation of Schiff bases to facilitate dimer condensation 

reactions.  It also documents efforts to screen lysine mutants for loss of activity using HPLC 

separation of reaction extracts and mass spectrometry or UV-visible spectroscopy.   
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Figure 49  X-ray crystal structure cartoon diagrams of bovine BLG. 
(A) PDB structure 1B8E, monomer subunit with lysine residue side chains are highlighted in red.  (B) PDB structure 
1B8E, native dimer. 
 

 

RESULTS AND DISCUSSION 

Proteomic Mass Spectrometry to Probe Catalytic Residues 

 The initial approach to detecting specific lysine residue involvement in ring-fused dimer 

formation catalyzed by BLG involved trapping the Schiff base formed between lysine and the 

aldehyde substrate citral by reducing the imine bond with sodium cyanoborohydride.  Although 

retinal is a more biologically-relevant substrate, it is also light and temperature-sensitive, so we 

employed citral as a more stable and inexpensive model substrate to study BLG chemistry.  Once 

the citral-lysine Schiff base is covalently stabilized by reduction, the protein-substrate complex 

was fragmented by trypsin digest to obtain short peptides for analysis by electrospray ionization 

mass spectrometry (ESI-MS).  An additional round of fragmentation yielded spectral signatures 

for specific peptides predicted to be obtained by trypsin digest.  MASCOT-assisted prediction of 

peptide sequences with expected mass to charge ratios, adjusted to reflect possible added mass of 

citral or cyclocitral covalently bound to a lysine residue within a peptide, were used as search 

parameters in the tandem MS/MS data set.  Mining of fragment signatures revealed peptides 

containing residues K77 and K91 with citral substrate bound, and residue K77 with the product 

cyclocitral bound (Fig. 50).   
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Figure 50  Mass spectra of peptides containing lysine residues with citral or cyclocitral bound. 
(A) K77 with citral bound, denoted by K* in the peptide sequence.  (B) K91 with citral bound, denoted by K* in the 
peptide sequence.  (C) K77 with cyclocitral bound, denoted by K** in the peptide sequence.  Figures were produced 
by Dr. B. J. Bench and Dr. William Russell. 
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 Residues K77 and K91 are situated within plausible proximity (~12 Å, based on crystal 

structure 1B8E) to guide condensation (Fig. 51A).  K91 would be considered fairly immobile on 

the outer wall of the β-barrel, but K77 resides on a flexible loop structure.  Thus, it is reasonable 

to suggest K77 could move near K91 to facilitate the intended reaction.  However, the 

participation of these residues cannot be viewed as definitive because the possibility of random 

substrate binding exists, especially considering the excess citral used to achieve target residue 

saturation.  In a standard extraction of BLG incubated with citral, the aqueous phase retains a 

deep orange color (indicative of a citral-protein Schiff base) even after exposure to organic 

solvent.  Additional fragments identified in the mass spectrometry experiment corroborate 

random covalent binding of citral to lysine residues throughout the protein.  Residues K60 and 

K69 are perhaps more optimally situated to facilitate substrate condensation, as they reside on 

anti-parallel sheets within the β-barrel interior wall within 4.8 Å of one another.  Additionally, 

K60 and K69 are members of the central calyx known to bind lipophilic species (Fig. 51B) and 

the residue pair exists in a solvent-protected environment theoretically more amenable to retinoid 

condensation.  Despite the ambiguity presented by binding studies and proteomic mass 

spectrometry, the results provide a starting point for evaluation of BLG lysine mutants to verify 

the role of specific residues in catalysis.  Mass data can be re-mined to produce evidence of 

binding should mutant studies indicate participation of other lysine residues.  

 

 

 
 
Figure 51  BLG lysine residue pairs postulated to be involved in cycloterpenal catalysis. 
(A) Residues K77 on the flexible loop and K91 on the β-barrel exterior.  (B) Residues K60 and K69 on the β-barrel 
wall interior.  Lysine side chains are highlighted in red. 
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Expressing Soluble and Active BLG in E. coli 

 A survey of recombinant BLG literature reveals significant difficulty expressing soluble 

and properly folded protein in the most common bacterial host, E. coli.136-139  For our purposes, 

we had to overcome an additional barrier of low-yielding cultures, as ring-fused dimer formation 

is slow and requires gram quantities of protein to generate sufficient product for analysis.  While 

soluble BLG expression is successful in yeast systems like Pichia pastoris,140 cloning, 

transformation, and expression is much more time consuming than in E. coli, rendering P. 

pastoris suboptimal for generating numerous lysine mutants.  In our laboratory, attempts to clone 

E. coli codon-optimized BLG in E. coli as a His6 variant in popular pET or pQE vectors 

employing T7 or lac promoters failed to produce soluble protein even at reduced temperature.  

After contemplating the variety of chaperones and fusion proteins/peptides available to mitigate 

protein solubility problems inherent in many E. coli expression systems, the maltose-binding 

protein (MBP) was chosen as a fusion candidate for BLG.  In our hands the MBP-BLG fusion 

construct dubbed pMAL-BLG proved highly rewarding, generating soluble fusion protein in 

excess of 100 mg/L under a tac promoter when induced with 0.3 mM isopropyl-

thiogalactopyranoside at 16°C for 20 h.   

 The purified fusion protein was assessed for activity comparable to wild type BLG by 

incubation with citral and subsequent HPLC analysis of the reaction extract.  Because the initial 

aim was to simply determine qualitative catalytic behavior, we opted to assay the protein as a 

fusion.  Additionally, Factor Xa cleavage of MBP-BLG was observed to be an inefficient 

process and was impractical to carry out at gram scale.  Comparison of chromatogram peaks 

confirmed the MBP-BLG fusion did not prevent formation of cyclocitral, although it was 

somewhat less efficient than wild type BLG as judged by peak area (Fig. 52).   
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Figure 52  MBP-BLG and wild type BLG activity comparisons as judged by HPLC product analysis. 
Peak (A) is cyclocitral and peak (B) is excess citral.  Due to the detector wavelength setting at 320 nm, absorbance 
attributed to cyclocitral is maximized while citral absorbance is minimal, and thus the traces do not reflect relative 
actual concentrations present in the extract mixture. 
 

 

For additional product confirmation, extracts could be derivatized with dansyl hydrazine 

(dns) (Fig. 53A) to provide a better candidate for mass spectrometry (MS).  The single aldehyde 

functionality of cyclocitral is tricky to ionize and was thus difficult to reliably detect by routine 

methods.  Addition of dns via simple acid-catalyzed aldehyde-hydrazine coupling provides 

additional functionality and the resulting dns-cyclocitral adduct can be detected by ESI-MS (Fig. 

53B and C) in the nanogram range.   
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Figure 53  Cyclocitral derivatization for MS detection. 
(A)  Reaction between cyclocitral and dansyl hydrazine.  (B)  Principal dns-cyclocitral ion, m/z 534.  (C) Subsequent 
ionization fragments of the m/z 534 species. 
 

 

Monomeric Versus Dimeric BLG 

 As bovine BLG exists in equilibrium as both monomer and dimer in solution, we also 

sought to determine if activity is contingent to multimeric status.  The BLG homolog from 

horse‟s milk (Equus caballus BLG I, accession NP_001075962, eBLG) is known to exist 

primarily as a monomer in solution,141 contrary to most other BLG orthologs studied to date.  An 

E. coli codon-optimized eBLG gene was cloned as a maltose-binding protein fusion to generate a 

highly-expressed and easily purified protein analogous to the bovine BLG-MBP fusions 

mentioned previously.  Native PAGE analysis confirmed MBP-eBLG exists primarily as a 

monomer (with two apparent isoforms), while the MBP-BLG wild type and lysine mutants adopt 

a monomer-dimer equilibrium with some degree of oligomerization (Fig. 54).  Equine BLG is 

not a perfect monomeric equivalent to bovine BLG due to lack of lysine residues at 9 of the 15 

positions (residues 8, 14, 47, 60, 77, 91, 101, 138, and 141).  However, eBLG provides one of 

the only known options for analysis of monomer behavior.  Mutants of bovine BLG at residues 

believed to support electrostatic interactions of the dimer interface have been reported to be 

monomers based on ultracentrifugation association measurements,142 but the mutants R40D (AB 

http://www.ncbi.nlm.nih.gov/protein/NP_001075962.1
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loop mutant), H146P (I strand mutant), and R40D/H146P (AB loop/I strand double mutant) 

constructed (Appendix Table 14) and tested in our MBP fusion expression system all appeared 

to maintain a monomer-dimer equilibrium similar to wild type (Appendix Fig. 71) and thus 

were not viable options for strict monomer catalytic comparison. 

 

 

 
 

Figure 54  Native PAGE analysis of purified MBP-eBLG, MBP-BLG wild type and lysine mutants. 
Lane 1, ovalbumin standard (45 kDa); lane 2, BSA standard (66 kDa monomer, 132 kDa dimer); lane 3, MBP-BLG; 
lane 4, MBP-eBLG; lane 5, MBP-BLG K69A; lane 6, MBP-BLG K77A; lane 7, MBP-BLG K91A; lane 8, MBP-BLG 
K77A/K91A double mutant. 
 

 

 MBP-eBLG is not expressed in E. coli with an efficiency equal to MBP-BLG.  Identical 

preparations yield eBLG fusion in amounts that are only 10% of that acquired from BLG fusion 

purification.  Suprisingly, incubation of citral and MBP-eBLG supported cyclocitral formation in 

quantities equivalent to that derived from incubation with MBP-BLG fusion (Fig. 55), but at a 

protein concentration of 0.1% (w/v), which is 10-fold less protein than the standard 1% (w/v) 

bovine BLG used in a routine incubation.   

 

 



 97 

 
 
Figure 55  HPLC trace comparison of reaction extracts from bovine and equine BLG. 
Peak (A) is cyclocitral and peak (B) is excess citral.  Due to the detector wavelength setting at 320 nm, absorbance 
attributed to cyclocitral is maximized while citral absorbance is minimal, and thus the traces do not reflect relative 
actual concentrations present in the extract mixture. 
 

 

BLG Lysine Mutants 

 To identify lysine residues suspected to contribute to the catalytic activity of BLG, 

standard site-directed mutagenesis was employed.143  Replacement of individual lysine residues 

with alanine within the pMAL-BLG construct conceivably eliminates the potential for Schiff 

base formation with an aldehyde substrate at a specific position.  A total of 15 individual lysine 

to alanine point mutants at positions 8, 14, 47, 60, 69, 70, 75, 77, 83, 91, 100, 101, 135, 138, and 

141 were prepared for evaluation of cyclocitral formation.  Additional double mutants at residue 

pairs K60/K69 and K77/K91 were also assayed after considering both the proteomic mass 

spectrometry results and the residues that were most likely to be involved due to retinoid binding 

site proximity.  

 

HPLC Analysis of BLG Mutant Activity 

 Reaction scale was designed to balance the need for maximum product formation with 

reasonable culture volumes and protein purification suited to laboratory scale.  Thus, a 30 mL 
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reaction volume of phosphate-buffered saline (PBS) pH 7.4 containing 1 g of MBP-BLG fusion 

protein (the molar equivalent to a 1% w/v wild type BLG solution) was deemed sensible, which 

demanded purification of a 10 L culture for each mutant to be assayed.  Following a standard 4 

day incubation with citral, the extract was analyzed by HPLC to detect the presence or absence 

of the expected product cyclocitral (Fig. 56).   

 

 

 
 

Figure 56  HPLC analysis of BLG lysine mutant activity. 
Peak (A) is cyclocitral and peak (B) is excess citral.  Due to the detector wavelength setting at 320 nm, absorbance 
attributed to cyclocitral is maximized while citral absorbance is minimal, and thus the traces do not reflect relative 
actual concentrations present in the extract mixture. 
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Each of the assayed mutants (K60A, K69A, K77A, K91A, and their respective paired 

double mutants) promoted cyclocitral formation similar to that of wild type MBP-BLG.  Judging 

from relative peak intensities, the K60A/K69A double mutant performed exceptionally well in 

catalysis.  It is plausible to suggest the removal of K60 and K69 frees up space inside the protein 

calyx for easier substrate entry and exit.  Unfortunately, these results disprove the proposed 

catalytic mechanism involving appropriately situated lysine residues.  The remaining MBP-BLG 

lysine mutants are currently being tested for activity.  We have also begun analysis using 

available crystal structures to explore the possibility of other residues in or near the calyx (such 

as residues N63, N109, D28, D33, E62, or E89) that may experience a local charge environment 

appropriate for facilitating aldehyde activation and nucleophilic attack.  

 

SIGNIFICANCE 

 The identification of specific residues involved in BLG catalysis of α,β-unsaturated 

aldehydes to form ring-fused dimers is useful in determining the greater biological implications 

of BLG present in the body from ingestion of dairy products.  Because BLG has been detected in 

the human eye proximal to tissues containing retinal-derived fluorophores linked to 

maculopathies, the importance of understanding the mechanism by which BLG promotes 

formation of cycloterpenals may lead to methods for circumventing these reactions, thus 

lowering disease risk.  The option for development of active site inhibitors requires 

investigations such as those undertaken in this study.  While a definitive correlation between 

milk consumption, BLG-promoted cycloterpenal  formation, and the progression of diseases 

such as age-related macular degeneration will likely remain unproven for some time, 

understanding this unusual activity serves as a springboard toward studies in substrate 

promiscuity, inhibitor design, and preparation for managing therapeutics to target this potential 

disease mechanism.   

As the principle whey protein in milk, BLG is expected to play a distinct role in nutrition 

although that function remains slightly ambiguous.  The catalytic actions carried out by a protein 

for which a definite role remains unassigned may provide clues toward explaining the evolution 

and presence of BLG in many mammalian milks, and spur more comparative ortholog studies 

beyond the most studied β-lactoglobulin, bovine BLG.  Furthermore, because there have not 

been protein candidates of human origin identified in promoting catalysis of retinal-derived 

dimers, the BLG model may prove useful in identifying endogenous proteins that aid formation 

of lipofuscins.  While a number of high quality crystal structures containing lipophilic species 
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within the protein calyx exist,144-147 the images do not convey covalent linkage nor do they prove 

that catalytic activity must be confined to that site.  Determination of active site architecture, 

specifically from crystal structures with covalently-bound retinoid substrates, could be used as a 

guide for such investigations.  And in combination with planned top-down proteomic mass 

spectrometry (rather than the bottom-up method described in this study), support for an 

alternative active site residue model should be within reach.    

 

EXPERIMENTAL PROCEDURES 

BLG-Citral Trapping and Protein Mass Spectrometry 

 The BLG-citral trapping described here was performed by Dr. B. J. Bench.  Trypsin 

digest and liquid chromatography-mass spectrometry (LC-MS) and the associated data mining 

procedures were carried out by Dr. William K. Russell of the Laboratory for Biological Mass 

Spectrometry at Texas A&M University.  One set of BLG solutions (1 mL, 1% w/v) were 

incubated with 4 molar equivalents of citral and 10 molar equivalents of NaCNBH3 at 37°C for 

periods of 6, 24, 48, 72, and 96 h.  A second set of BLG solutions were identical except that 

reduction with NaCNBH3 was instated after the initial incubation period indicated above.  Two 

75 μL aliquots of each time point were desalted using a Micro Bio-Spin P30 column (BioRad, 

Hercules, CA).  Protein concentration was adjusted to 0.1 mg/mL with (NH4)2HCO3 buffer and 

reduced with 5 mM dithiothreitol at 60°C for 1 h.  Subsequent protein alkylation was achieved 

using 20 mM iodoacetamide at room temperature for 10 min.  Protein samples were then 

digested with trypsin overnight (protein:enzyme ratio of 1:50) at 37°C.  Separation and mass 

spectrometry were carried out on a NanoFrontier LC-MS (Hitachi High Technologies, Dallas, 

TX) equipped with a nanospray ESI source.   A 200 ng peptide sample was separated on a Vydac 

C18 capillary column (Grace Davison Discovery Sciences, 150 x 0.075 mm) at a flow rate of 

200 nL/min under the following gradient routine employing water/acetonitrile and 0.1% formic 

acid in all conditions:  2% water/acetonitrile for 5 min, 2-10% over 0.1 min, 10-40% over 29.9 

min, 40-60% over 10 min, 60-98% over 5 min, 98% for 6 min, 98-2% over 1 min, 2% for 13 

min.  MASCOT-assisted predictions for modified lysine and carboamidomethyl groups on 

peptide fragments were used in manual examination of tandem MS/MS data.  Final spectra were 

produced by deconvolution to show the m/z +1 peaks and labeled to indicate the ion fragments 

resulting from b and y-type peptide cleavage.    
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Maltose Binding Protein-BLG Fusion Cloning, Overexpression, and Purification 

 An E. coli codon-optimized version of Bos taurus BLG variant B (accession 

CAA88303) was synthesized and ligated to the TA cloning vector pQE-30UA (Qiagen, 

Valencia, CA) by GenScript (Piscataway, NJ) to generate the plasmid pQE30-BLG.  The 

maltose binding protein-BLG fusion was produced by PCR with the primers BLG-EcoRI and 

BLG-HindIII using pQE30-BLG template with Phusion DNA Polymerase.  After agarose gel 

purification, the 504 bp PCR product was digested with EcoRI and HindIII, dephosphorylated 

with calf alkaline phosphatase, and ligated to the vector pMAL-c4x (New England Biolabs) 

using T4 DNA ligase at room temperature to give the vector pMAL-BLG (Appendix Fig. 69).  

Following transformation in E. coli DH10B, colonies were screened by PCR to identify positive 

clones and sequenced using pMALseqF and pMALseqR primers to verify no mutations had 

occurred. 

 A single colony of pMAL-BLG(DH10B) was grown 16 h at 37°C in 25 mL Luria-

Bertani (LB) Miller broth and used to inoculate 1 L LB Miller broth containing 0.2% glucose to 

suppress endogenous amylases.  The culture was shaken at 37°C to an optical density at 600 nm 

of 0.5, then cooled to 16°C and induced with 0.3 mM isopropyl β-thiogalactopyranoside for 20 

h.  The cells were pelleted (7000 rpm, 10 min), resuspended in 35 mL column buffer (20 mM 

NaH2PO4 pH 7.5, 200 mM NaCl, 1 mM EDTA, 10% glycerol, 1 mM phenylmethylsulfonyl 

fluoride), and stored frozen at -80°C. 

 The cell suspension was thawed and sonicated on ice using a Branson Sonifier 450 fitted 

with a 5 mm microtip (10-30 s pulses at 50% duty cycle, output setting 6, with 2 min cooling 

intervals).  Debris was pelleted at 9800 rpm for 30 min and the supernatant filtered to 0.2 μm and 

diluted with buffer to 180 mL before applying to 25 mL amylose resin slurry (New England 

Biolabs) packed in a gravity-flow column (Kontes Flex-Column, 2.5 x 10 cm) equilibrated with 

column buffer.  The run was conducted at ambient temperature using buffers on ice.  Following a 

wash with 12 column volumes of buffer (180 mL), MBP-BLG was eluted with column buffer 

containing 10 mM maltose (60 mL).  The eluate was ultrafiltered to a final concentration of 100 

mg/mL (Amicon Ultra-15 Centrifugal Filter Unit, Millipore, Billerica, MA) and maintained at 

4°C for short-term use or was flash-frozen in liquid nitrogen for long-term storage at -80°C.  

MBP-BLG fusions were reliably produced and isolated in excess of 100 mg/L culture under the 

described conditions. 

 Purified protein was quantitated by the Bradford method102 using wild-type bovine BLG 

(Sigma-Aldrich, >90% by PAGE) as a standard for the linear range of 500 μg/mL to 5 mg/mL in 
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a microassay.  It was noted that when the traditional Bradford assay standard bovine serum 

albumin was used the assay indicated fusion protein concentrations were ~10-fold less than that 

estimated from A280 measurements and SDS-PAGE analysis. 

 

Site-Directed Mutagenesis 

 Lysine to alanine point mutations were introduced in pMAL-BLG using the QuikChange 

II Site-Directed Mutagenesis Kit (Stratagene, Cedar Creek, TX) with slight modification.  Each 

50 µL mutagenesis PCR reaction contained 50 ng pMAL-BLG DNA, 125 ng of each mutagenic 

primer (Table 13), 1x reaction buffer, 1 µL dNTP mix, and 1 unit of Phusion High-Fidelity 

DNA Polymerase (Finnzymes Oy, Espoo, Finland).  PCR conditions consisted of 16 cycles of 

95°C for 30 s, 55°C for 1 min, and 68°C for 7 min.  DpnI digest of methylated template DNA 

was carried out overnight at 37°C.  The digestion reaction was purified using the MinElute PCR 

Purification Kit (Qiagen, Valencia, CA) and transformed in E. coli DH10B for mutant fusion 

expression.  Gene mutations were confirmed by DNA sequencing using primers pMALseqF and 

pMALseqR, which are complementary to the plasmid sequence immediately preceding or 

following the BLG gene.  Several of the site-directed mutagenesis PCR reactions and sequencing 

confirmations were carried out by Hillary C. Agbo. 

 Double point mutants of pMAL-BLG at K77A/K91A and K60A/K69A were constructed 

in an identical manner except that the template DNA consisted of one of the respective mutants 

and the primers were such that they introduced the second respective lysine-to-alanine point 

mutation. 
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Table 13  MBP-BLG cloning and site-directed mutagenesis primer sequences. 
 

Primer Sequences (5‟-3‟)a 

BLG-EcoRI TATAGAATTCCTGATTGTGACCCAGACCATGA 

BLG-HindIII TACCAAGCTTTTAAATGTGACACTGTTCTTCC 

pMALseqF TCGATGAAGCCCTGAAAGAC 

pMALseqR GTGCTGCAAGGCGATTAAGT 

K8A sense GATTGTGACCCAGACCATGGCAGGCCTGGATATTCAGAAA 

K8A antisense TTTCTGAATATCCAGGCCTGCCATGGTCTGGGTCACAATC 

K14A sense ATGAAAGGCCTGGATATTCAGGCAGTGGCGGGTACCTG 

K14A antisense CAGGTACCCGCCACTGCCTGAATATCCAGGCCTTTCAT 

K47A sense GTGTGTATGTTGAAGAACTGGCACCGACCCCGGAAGG 

K47A antisense CCTTCCGGGGTCGGTGCCAGTTCTTCAACATACACAC 

K60A sense TCTGGAAATTCTGCTGCAGGCATGGGAAAACGGCGAATGC 

K60A antisense GCATTCGCCGTTTTCCCATGCCTGCAGCAGAATTTCCAGA 

K69A sense GAAAACGGCGAATGCGCGCAGGCAAAAATTATCGCGGAAAAAACC 

K69A antisense GGTTTTTTCCGCGATAATTTTTGCCTGCGCGCATTCGCCGTTTTC 

K70A sense CGGCGAATGCGCGCAGAAAGCAATTATCGCGGAAAAAACC 

K70A antisense GGTTTTTTCCGCGATAATTGCTTTCTGCGCGCATTCGCCG 

K75A sense CGCAGAAAAAAATTATCGCGGAAGCAACCAAAATTCCGGCGGTG 

K75A antisense CACCGCCGGAATTTTGGTTGCTTCCGCGATAATTTTTTTCTGCG 

K77A sense  AGAAAAAAATTATCGCGGAAAAAACCGCAATTCCGGCGGTGTTTAAAATTG 

K77A antisense CAATTTTAAACACCGCCGGAATTGCGGTTTTTTCCGCGATAATTTTTTTCT 

K83A sense AACCAAAATTCCGGCGGTGTTTGCAATTGATGCGCTGAATGAAAAC 

K83A antisense GTTTTCATTCAGCGCATCAATTGCAAACACCGCCGGAATTTTGGTT 

K91A sense GTTTAAAATTGATGCGCTGAATGAAAACGCAGTGCTGGTGCTGGATAC 

K91A antisense GTATCCAGCACCAGCACTGCGTTTTCATTCAGCGCATCAATTTTAAAC 

K100A sense GCTGGTGCTGGATACCGATTATGCAAAATATCTGCTGTTTTGCATG 

K100A antisense CATGCAAAACAGCAGATATTTTGCATAATCGGTATCCAGCACCAGC 

K101 sense GTGCTGGTGCTGGATACCGATTATAAAGCATATCTGCTGTTTTGCA 

K101 antisense TGCAAAACAGCAGATATGCTTTATAATCGGTATCCAGCACCAGCAC 

K135 sense GTGGATGATGAAGCCCTGGAAGCATTTGATAAAGCGCTGAAAGC 

K135 antisense GCTTTCAGCGCTTTATCAAATGCTTCCAGGGCTTCATCATCCAC 

K138A sense GATGATGAAGCCCTGGAAAAATTTGATGCAGCGCTGAAAGCGC 

K138A antisense GCGCTTTCAGCGCTGCATCAAATTTTTCCAGGGCTTCATCATC 

K141A sense GAAAAATTTGATAAAGCGCTGGCAGCGCTGCCGATGCATATTCG 

K141A antisense CGAATATGCATCGGCAGCGCTGCCAGCGCTTTATCAAATTTTTC 
a restriction sites or mutations are underlined. 
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Cloning and Overexpression of Equine BLG  

 The reported monomeric protein Equus caballus (horse) BLG variant I was synthesized 

as an E. coli codon-optimized gene and ligated to pMAL-c4x by GenScript using the EcoRI and 

HindIII sites to produce vector pMAL-eBLG.  Overexpression and purification conditions were 

identical to those used for MBP-BLG to obtain milligram quantities of MBP-eBLG fusion 

protein.  The purified protein was analyzed for monomeric or dimeric states by tris-glycine 

nondenaturing discontinuous PAGE (10% gel, 0.15 mA, 55 min).  BSA was chosen as an 

appropriate standard due to similar molecular weight and pI as that of the MBP-eBLG fusion.  

 

MBP-BLG Incubations, Mass Spectrometry, and HPLC Analysis 

 To assess the catalytic capability of MBP-BLG fusions, a 30 mL reaction of 1 g protein 

in PBS pH 7.4 (10 mM phosphate, 2.7 mM KCl, 137 mM NaCl) and 3 equivalents of citral (100 

µL of 0.5 M ethanol solution) were incubated at 250 rpm and 37°C for 4 days.  This reaction 

composition is the molar equivalent of a 1% (w/v) wild type BLG solution (i.e., the amount of 

BLG is the same).  The reaction was diluted to 100 mL with PBS and stirred with 100 mL ethyl 

acetate for 30 min to extract organics.  The mixture was centrifuged for 30 min at 6000 rpm to 

settle the denatured protein, and organics were collected, dried over anhydrous magnesium 

sulfate, and concentrated in vacuo.  Crude extract was derivatized at room temperature by 

stirring with dansyl hydrazine (1 mg, Invitrogen, Carlsbad, CA) in 1% HCl in methanol (2 mL) 

for 30 min.  Following dilution to 30 mL, the mixture was extracted with 3-30 mL portions of 

dichloromethane, and organics were dried over anhydrous magnesium sulfate and concentrated 

to give a viscous orange oil.  Derivatized crude extract was stored at -80°C to prevent 

degradation of the unreduced imine bond. 

 Mass spectrometry (MS) was performed at the Protein Chemistry Laboratory within the 

Biochemistry/Biophysics Department at Texas A&M University.  Samples were directly infused 

into a DecaXP ion trap mass spectrometer (ThermoFisher, Waltham, MA) for positive mode 

electrospray ionization analysis and tandem MS/MS. 

 Normal phase HPLC was carried out on a Varian ProStar Liquid Chromatography 

system with a Luna 5 silica column (10 x 250 mm, 5 µm, 100 Å, Phenomenex) and a mobile 

phase gradient of 0-5% methanol in dichloromethane over 50 min with a 3 mL/min flow rate.  

Samples were directly injected and species elution detected by UV absorbance at 320 nm via an 

on-board photo diode array.   
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CHAPTER VI 

 

CONCLUSION 

 

 Natural products are inextricably linked to both the survival and detriment of humanity.  

The molecules produced by biosynthetic pathways may serve to protect an organism‟s interests 

by warding off predators or competition, while at the same time may promote unintended 

consequences in other living systems.  Adopting compounds manufactured by microorganisms 

and vegetation is an age-old practice which has inspired a wealth of medicinally-valuable 

chemicals, and the search for untold therapeutic opportunities will undoubtedly continue far into 

the foreseeable future.  A biochemical understanding of the processes that bring about natural 

products is one of the most valuable tools we have for control and manipulation of the world 

surrounding us, and the aim of the studies undertaken here was to contribute to that goal.  

 If biochemical transformations can truly be compartmentalized and segregated into 

modular entities, the tinkering opportunities are limitless.  Admittedly, conceptually vast options 

for drug development are currently known to be reined in by many factors, some understood and 

others not yet clear.  Within the biochemical landscape one may prefer to think small instead of 

big, and thus much of the potential for wide utility is lost in the wonder of delineating just one 

tiny detail.  If studies such as these eventually lead to greater and grander things, so much the 

better, but we should also take a moment to cull immense satisfaction with the baby steps made 

toward experiencing nature at its most fundamental, awe-inspiring and inexplicably exquisite. 

From a therapeutic engineering standpoint, studies on azinomycin biosynthesis and 

resistance provide not only a rationalization for complex synthesis to select specific biological 

targets, but also in a general sense serve the ambitions of de novo biosynthetic drug design.  As 

exact enzymatic transformations and timing of azinomycin epoxyvaline, aziridinopyrrollidine, 

and keto-enol biosynthesis are fleshed out, they will become the essential pieces upon which 

stability and specificity engineering can proceed.  When a complete captured cluster is in hand, 

efforts to develop a gene therapy approach for in situ drug delivery mediated by plasmids and 

cancer cell-specific promoters is but one idea relying on the outcome of this and other planned 

studies within our research group.    

Genomic sequencing of the azinomycin-producing Streptomyces strain has presented 

additional secondary metabolic pathways to explore, and perhaps the resistance protein and 

related information characterized herein will prove relevant to elucidation of prospective novel 
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compound structure and associated biosynthetic studies.  The S. sahachiroi draft genome 

sequence represents both a big step forward, in terms of long-awaited genetic information, as 

well as a hefty sequence finishing task.  Significant scaffolding for contig ordering using a close 

genetic relative has not yet been begun.  Because the genome only displays a roughly estimated 

60% or less overall organizational homology to completed (single contig) Streptomyces strains, 

scaffolding attempts alone may be insufficient, especially within the chromosome end regions 

where unconserved nonessential metabolic pathways typically reside.  The recently released 

genome sequences of 13 Streptomyces species by the Broad Institute may be useful if a nearer 

genetic neighbor than S. coelicolor or S. avermitilis can be identified.  We are, of course, unable 

to directly compete with the resources and manpower available to institutional groups, and our 

finishing efforts may require significantly more time than that invested elsewhere. 

Alongside the S. sahachiroi genome, we performed Illumina paired-end sequencing of 

six additional microbial strains of significant interest to our laboratory.  These strains were 

collected during various field trips within marine environments in Hawaii, Texas, and Florida.  

Assembly and analysis of the sequence data is also within the future plans of the group, as these 

strains are suspected to harbor secondary biosynthetic pathways of potentially novel natural 

products, and likely include orphan pathways like those discovered in the S. sahachiroi genome.  

Genomics is very much an accelerant for biosynthetic pathway discovery, and has the power to 

unleash a torrential overload of information as science moves ever closer to the $1,000 genome. 

The converse of promising biosynthetic natural product leads is the latent damage 

invoked by formation of detrimental biosynthetic compounds.  β-Lactoglobulin-mediated 

cycloterpenal formation is a potential example of the nefarious behavior natural product 

biosynthetic enzymes can assume.  While not catalyzed by a genetically-encoded human 

enzyme, the transformation attributed to the milk protein BLG is no less significant to medical 

conditions associated with lipofuscin formation.  Because the mechanism of retinoid-derived 

fluorophore accumulation is as unclear as the biological role of BLG, they are both at this time 

well-matched explanations for their observed deposition within macular tissue.  Conclusions 

based on human studies are not available at this time, and thus the link between whey protein 

consumption, retinoid dimer accumulation, and macular degeneration remain a plausible but 

untested hypothesis. 

The structure of a protein environment suited to α,β-unsaturated aldehyde activation via 

Schiff base and subsequent facilitation of ring-fused dimer formation is in itself an interesting 

query independent of the disease implications associated with BLG.  Experiments described in 
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this thesis mark the beginning of a long series of planned investigations to clarify the perceived 

moonlighting activity of this ubiquitous whey protein, with the aim of shedding light on possible 

strategies for blocking catalytic activity such that it would prevent disease progression.  BLG 

active site architecture would pave the way for comparative analysis of human proteins that may 

carry out identical or similar transformations, thus explaining the progression of age-related 

macular degeneration in the absence of a dietary link.  Finally, confirmation of catalytic activity 

observed by a protein previously only suspected of a carrier function suggests proteins may be 

more versatile than they are often imagined to be.  Under specific conditions, rare activities 

could be exploited for biosynthesis of previously unattainable targets.  The unfortunate requisite 

is that moonlighting behavior is often an accidental discovery, as in the case of BLG, and is not 

to be expected from all proteins and all substrates.  Even high-throughput screening for 

moonlighting activity would appear to be a blind undertaking, although de novo peptide and 

protein engineering groups are actively seeking such discoveries as biosynthetic solutions to 

synthetic problems.   
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Appendix Figure 57  Multiple alignment of AziR and Streptomyces sp. homologs. 
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Appendix Figure 58  Maps of plasmids constructed in the course of AziR studies. 
 

 

 
>aziR (S. sahachiroi), codon-optimized, 801 bp 

ATGACCGCGGAAGATGAAGCGCTGGTGGGCGGCATGATGAACGCGGGCGCGGTGTTTCGTCGTGGCGAACTGGTGGAAC

GTCCGGCGCCGCTGAACGCGCCGGCGCTGCATGCGTATCTGCTGGCGCTGCAGGAACATGGCTTTGATGCGGCGCCGGC

GCCGGTGGGCCTGACCGCGGATGGCCGTGAACAGCTGACCTTTGTGCCGGGCGATGTGGCGCTGCCGCCGTATCCGGAT

TGGGCGATGACCGAAACCGCGCTGGGCAGCGTGGGCAGCCTGCTGCGTCGTCTGCATGAAACCAGCGCGGCGGTGGCGG

TGGATCTGCATGCGGAATGGCCGCGTGATCTGGCCGATCCGGAAGGCGGCACCACCCTGTGCCATAACGATGTGTGCCC

GGAAAACGTGGTGTTTCGTGATGGCCGTGCGGCGGCGCTGATTGATTTTGATCTGGCGGCGCCGGGCCGTCCGCTGTGG

GATGTGGCGATGTGCGCGCGTTATTGGGTGCCGGTGCTGGACCCGGATAGCGCGGCGGCGGCGCATCCGAGCGCGCTGG

ATGCGCCGGCGCGTCTGCGTATTCTGGCGGATGGCTATGGCCTGAGCGCGGGCGATCGTGCGGATCTGCCGAGCGTGAT

TGAACAGGCGACCGGCGTGTGCCGTGCGTTTGTGGCGCGTCGTGTGGCGGATGGCGATCCGCTGTATCTGCGTGCGCTG

GCGGAACGTGGCGGCTGGGAACGTTGGGATCGTGTGCAGACCTGGCTGGCGGATCATCGTAAAGCGTTTACCGCGGCGC

TGCTGAACTAA 
 
 

Appendix Figure 59  Gene sequence of E. coli codon-optimized AziR. 
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Appendix Figure 60  Assessing AziR modification of azinomycin B using radiolabeled substrates.  
TLC separation and UV or phosphorimage detection of azinomycin B incubated with AziR and [γ-32P] ATP or [1-14C] 
acetyl-CoA.  Lane 1, azinomycin B; lane 2, azinomycin B + AziR; lane 3, azinomycin B + AziR + radiolabeled 
substrate; lane 4, radiolabeled substrate.  Reactions consisted of 500 µM azinomycin B and 500 µM radiolabeled 
substrate, to which 100 µM AziR in 50 mM Tris pH 7.5 and 10 mM NaCl was added.  After 1 h incubation at room 
temperature, reactions were extracted with dichloromethane and analyzed by TLC with 5% methanol in 
dichloromethane as mobile phase. 
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Appendix Figure 61  AziR control fluorescence titration curves and emission spectra.   
(A) Fluorescence emission spectrum of AziR, λex = 295 nm.  (B) DERA titrated with azinomycin B.  (C)  
Azinomycin B (1 mM) fluorescence emission spectrum, λex = 295 nm, included to show that ligand does 
not emit within a range that may interfere with the protein signal.  (D)  Azinomycin B (1 mM) absorbance 
spectrum with a local maximum at 285 nm.  The ligand does not have a significant absorbance at the 
excitation wavelength at the concentrations used for titration to necessitate correction for an inner filter 
effect; corrected data is virtually equivalent to uncorrected data. 
 
 

 
 
Appendix Figure 62  SDS-PAGE of purified AziR from heterologous hosts. 
(A) S. lividans TK24 and (B) E. coli BL21(DE3).  Ladder molecular weights are in kDa.   
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SUPPLEMENTAL FIGURES FOR CHAPTER IV 

 

 
 
Appendix Figure 63  1H NMR analysis of BLG-promoted cycloterpenal biosynthesis. 
(A)  Extract from 1% BLG incubated with 3 equivalents of citral.  (B)  Extract from 1% BLG incubated with 3 
equivalents of retinal. 
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Appendix Figure 64  Raw data for BLG-promoted reaction optimization. 
Percent yield for ranges of (A) protein to substrate ratio, (B) pH, and (C) reaction duration.  (D)  Color changes along 
with pH.  From left to right:  pH 1.0, 3.0, 5.0, 7.0, 9.0, 11.0. 
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Appendix Figure 65  1H NMR of reaction extract from BLG denaturation attempts using urea or heat. 
(A)  BLG stirred with 7 M urea for 2 h prior to substrate addition and standard incubation.  (B)  BLG heated at 100°C 
for 2 h with stirring prior to substrate addition and standard incubation.  Despite significant aggregation and 
precipitation at high temperatures, the protein retained catalytic activity (cyclocitral aldehyde signal at δ 9.45 ppm) as 
shown in the NMR spectra insets. 
 

 

 
 
Appendix Figure 66  1H NMR spectrum of extract from Sephadex G-25 filtered skim milk incubated with citral. 
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Appendix Figure 67  1H NMR spectrum of extract from L-proline in PBS pH 7.4 incubated with retinal. 
 
 
 
 
 
 

 
 

Appendix Figure 68  1H NMR spectra of rabbit blood incubated with retinal in vitro. 
(A)  Rabbit fed BLG-supplemented diet.  (B)  Rabbit fed control (basic) diet. 
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SUPPLEMENTAL FIGURES FOR CHAPTER V 

 

 

 
 

 

Appendix Figure 69  Plasmid maps of pMAL-BLG and pMAL-eBLG for expression in E. coli. 
 

 

 
>BLG variant B (Bos taurus), codon-optimized, 489 bp 

CTGATTGTGACCCAGACCATGAAAGGCCTGGATATTCAGAAAGTGGCGGGTACCTGGTATAGCCTGGCCATGGCGGCGA

GCGATATTAGCCTGCTGGATGCGCAGAGCGCGCCGCTGCGTGTGTATGTTGAAGAACTGAAACCGACCCCGGAAGGCGA

TCTGGAAATTCTGCTGCAGAAATGGGAAAACGGCGAATGCGCGCAGAAAAAAATTATCGCGGAAAAAACCAAAATTCCG

GCGGTGTTTAAAATTGATGCGCTGAATGAAAACAAAGTGCTGGTGCTGGATACCGATTATAAAAAATATCTGCTGTTTT

GCATGGAAAATAGCGCGGAACCGGAACAGAGCCTGGCGTGCCAGTGTCTGGTGCGCACCCCGGAAGTGGATGATGAAGC

CCTGGAAAAATTTGATAAAGCGCTGAAAGCGCTGCCGATGCATATTCGCCTGAGCTTTAATCCGACCCAGCTGGAAGAA

CAGTGTCACATTTAA 

 

 

>BLG I (Equus caballus), codon-optimized, 489 bp 

ACGAACATCCCGCAAACGATGCAAGACCTGGACCTGCAAGAAGTGGCTGGCAAATGGCACAGCGTGGCAATGGCGGCGA

GCGATATTAGCCTGCTGGATAGCGAATCTGCACCGCTGCGTGTCTATATTGAAAAACTGCGCCCGACCCCGGAAGACAA

CCTGGAAATTATCCTGCGTGAAGGCGAAAACAAAGGTTGCGCAGAAAAGAAAATTTTCGCTGAAAAAACGGAAAGTCCG

GCGGAATTTAAAATCAACTACCTGGATGAAGACACCGTTTTTGCCCTGGATACGGACTATAAAAACTACCTGTTCCTGT

GCATGAAAAATGCAGCAACCCCGGGCCAGTCCCTGGTGTGTCAATACCTGGCACGCACGCAGATGGTTGATGAAGAAAT

CATGGAAAAATTCCGTCGCGCTCTGCAACCGCTGCCGGGTCGTGTCCAAATCGTGCCGGATCTGACGCGCATGGCCGAA

CGCTGTCGTATCTAA 
 

 

Appendix Figure 70  Gene sequence of E. coli codon-optimized bovine BLG and equine BLG. 
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Appendix Table 14  Primers for monomeric bovine BLG site-directed mutagenesis. 
 

Primer Sequences (5‟-3‟)a 

R40D sense GCAGAGCGCGCCGCTGGATGTGTATGTTGAAGAAC 

R40D antisense GTTCTTCAACATACACATCCAGCGGCGCGCTCTGC 

H146P sense CTGAAAGCGCTGCCGATGCCGATTCGCCTGAGCTTTAATC 

H146P antisense GATTAAAGCTCAGGCGAATCGGCATCGGCAGCGCTTTCAG 
a mutations are underlined. 

 

 

 

 
 
 
 

Appendix Figure 71  PAGE analysis of proposed monomeric BLGs expressed as MBP fusions. 
(A) Native discontinuous PAGE.  Lane 1, BLG; lane 2, BSA; lane 3, ovalbumin; lane 4, MBP-BLG; lane 5, MBP-
eBLG; lane 6, MBP-BLG R40D; lane 7, MBP-BLG H146P; lane 8, MBP-BLG R40D/H146P; lane 9, MBP-BLG 
K77A.  (B) SDS-PAGE to demonstrate purity of samples used in native PAGE.  Lane 1, BSA; lane 2, ovalbumin; lane 
3, MBP-BLG; lane 4, MBP-eBLG; lane 5, MBP-BLG R40D; lane 6, MBP-BLG H146P; lane 7, MBP-BLG 
R40D/H146P; lane 8, MBP-BLG K77A.  Ladder molecular weights are in kDa. 
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