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ABSTRACT 

 

Sensing Applications of Fluctuations and Noise. 

(December 2010) 

Hung-Chih Chang, B.S., National Central University, Taoyuan, Taiwan; 

M.S., National Chiao Tung University, Hsinchu, Taiwan  

Chair of Advisory Committee: Dr. Laszlo Kish 

 

Noise and time-dependent fluctuations are usually undesirable signals. However, 

they have many applications. This dissertation deals with two kinds of sensing 

applications of fluctuation and noise: soil bulk density assessment and bacterium sensing.  

The measurement of Vibration-Induced Conductivity Fluctuations (VICOF) 

provides information about the bulk density and other parameters of soils. Bulk density 

is the physical property of soils that is important to both the agriculture and construction 

industries. The traditional measurements of soil bulk density are often time-consuming, 

expensive or destructive. To determine the soil bulk density without the above 

drawbacks, the VICOF measurement scheme was proposed. The research of VICOF in 

this dissertation includes two parts: the initial phase of study and the new methods and 

their theory. In the initial phase of study, the simple experiments, theory, and simulations 

of VICOF were tested for relations between the soil bulk density, wetness, salinity, and 

the VICOF data. Then, new measurement arrangements and their theoretical models 

were proposed to improve the weaknesses of the initial approach (such as large 
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scattering of data due to loose and heavy contacts) and to calculate the relationship 

between the measured signals and the electromechanical transport parameters of the soils. 

The bacterium sensing study in this dissertation was proposed to explore simple, 

practical, rapid, sensitive, specific, portable, and inexpensive ways to detect and 

recognize bacteria by Fluctuation-Enhanced Sensing (FES). One such potential way of 

bacterium sensing is to analyze their odor. The research of bacterium sensing also 

includes two parts: the initial phase of study and the new methods and their theory. The 

initial phase study was proposed to explore the possibility of detecting and identifying 

bacteria by sensing their odor via FES with commercial Taguchi sensors. Then the 

subsequently developed new methods and their theory provide a simple way to generate 

binary patterns with perfect reproducibility based on the spectral slopes in different 

frequency ranges at FES. This new type of signal processing and pattern recognition is 

implemented at the block diagram level using the building elements of analog circuitries 

and a few logic gates with total power consumption in the microWatts range. 
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NOMENCLATURE 

 

VICOF Vibration-Induced Conductivity Fluctuation 

FES Fluctuation-Enhanced Sensing 

ECa Apparent Electrical Conductivity 

TDR Time-Domain Reflectometry 

DC Direct Current 

AC Alternating Current 

EN Electronic Nose 

ET Electronic Tongue 

DSP Digital Signal Processor 

TSA Tryptic Soy Agar 

E. coli Escherichia Coli 

Anthrax Anthrax Surrogate Bacillus Subtilis 
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1. INTRODUCTION* 

 

Noise and fluctuations are usually undesirable signals disturbing the accuracy of 

information and are ubiquitous in life. Everywhere, people who try to deal with signals 

need to overcome the background noise by arriving at a lower limit set by this noise. If 

people use voltage or current as electrical signals, they need to use signals larger than the 

electrical noise of the fluctuating voltage or current. Noise can be observed in various 

circumstances such as the hissing sound in a telephone, the snowy in a television and 

unknown pulses in an oscilloscope. 

 

 

 

 

 

_____________ 
This dissertation follows the style of Sensors and Actuators B. 
*Reprinted with permission from “Vibration-induced conductivity fluctuation 
measurement for soil bulk density analysis” by A.Sz. Kishné et al, 2007, Fluctuation and 
Noise Letters, 7(4), L473-L481, Copyright 2007 by World Scientific Publishing 
Company. 
*Reprinted with permission from ” Theory and techniques for vibration-induced 
conductivity fluctuation testing of soils” by H.C. Chang, et al, 2008, Fluctuation and 
Noise Letters, 8(2), L125-L140, Copyright 2008 by World Scientific Publishing 
Company. 
*Reprinted with permission from ” Fluctuation-enhanced sensing of bacterium odors” by 
H.C. Chang, et al, 2009, Sens. Actuators, B, 142, 429-434, Copyright 2009 by Elsevier 
B.V. 
*Reprinted with permission from ” Binary fingerprints at fluctuation-enhanced sensing” 
by H.C. Chang, et al, 2010, Sensors, 10(1), 361-373, Copyright 2010 by MDPI 
Publishing. 
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On the other hand, noise and fluctuations have many applications. Noise can be 

used as encryptions of signals and image; the drain current flicker noise can be a good 

monitor for the MOSFET Si-SiO2 interface quality [1, 2]; resistor noise can be used in 

various sensor applications.   

This dissertation includes two kinds of sensing applications of fluctuation and 

noise: soil bulk density assessment [3, 4] and bacterium sensing [5, 6]. 

 

1.1 Vibration-Induced Conductivity Fluctuation (VICOF) for Soil Bulk Density 

Extraction  

 

Soil bulk density is the physical property of soils that has many applications in 

soil studies such as water budgets, nutrient availability, and soil carbon sequestration in 

plant root zone. These factors involve the growth of plants. However, it is time 

consuming and difficult to measuring soil bulk density (or porosity) in field conditions. 

In addition, there are some means to measuring soil bulk density such as volumetric ring, 

paraffin sealed clod, gamma ray attenuation techniques [7, 8], and Time-Domain 

Reflectometry (TDR) [9]. However, they are time-consuming, expensive or destructive 

measurements.   To avoid these drawbacks and be available in field conditions, the 

measurement of Vibration-Induced Conductivity Fluctuation (VICOF) [10] was 

proposed.  

Vibration-Induced Conductivity Fluctuation measures the resistance variation 

modulated by the vibrations in direct contact with the soil, and provides new information 
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on soil structure and porosity in addition to electrical conductivity [3, 10]. The advantage 

of VICOF is the reduced effect of salinity and moisture on the interpretation of Apparent 

Electrical Conductivity (ECa) applied to other soil properties. 

 

1.1.1 Measurement Setup 

 

 

 

Figure 1.1 Measurement setup 

 

To measure VICOF, the original setup and principles of VICOF were designed. 

The measurement setup based on the voltage divider circuit is shown in Figure 1.1; “soil 

sample, sample holder, and electrodes” are shown in Figure 1.2; and vibration method is 

shown in Figure 1.3. It was the same arrangement as the one used by [10].  
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This measurement setup was a voltage divider including a AC voltage generator, 

a driving resistor, a soil resistance, and a lock-in amplifier. The AC voltage generator 

has AC amplitude of U1 at frequency f1 connected with the series resistances (driving 

resistor R1 and soil resistance Rs).  Due to the applied vibration of the soil samples at 

frequency f2, the output voltage across the soil resistance has three major tunes:  ac 

voltage amplitude U2,1 at frequency f1 and AC voltage amplitude U2,2, at frequency f1+ 

2f2 and f1- 2f2. Then this output signal is amplified by the lock-in amplifier.  

The equations for the AC resistance sR  of the soil sample are shown in the 

following. The AC resistance of the soil sample ( sR ) was calculated from the 

measurement 2,2U  in the classical way according to (1).  

 

 
1,21

1,2
1 UU

U
RRs 

   (1) 

 

Supposing the vibration of the soil sample is small, the conductance modulation (dRs) 

induced by the periodic vibration and the normalized dRs/Rs can be estimated from the 

voltage modulation ( 2,2U ) according to the following equations (2) and (3).  The detailed 

deliverance of these equations can be found at [3].  
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and 

 













1,21

1,2

1,2

2,2 12  
UU

U

U

U

R

dR

s

s   . (3) 

The voltage modulation ( 2,2U ) is the difference of the signal vU ,2,2  signal induced by the 

vibration and the background voltage ( 0,2,2U ) measured without vibration. The 

magnitude of 0,2,2U  and VU ,2,2  is in the order of V . For the calculation of 2,2U , the 

simple difference of 0,2,2U  and VU ,2,2  was used in [10, 11], but in the current study, a 

more precise expression can be obtained from equation (4). 

 

 
2

0,2,2
2

,2,22,2   UUU v    . (4) 

 

In the setup of the soil sample, sample holder, and electrodes, the current flow of 

the electrodes was positioned longitudinally and transversally to the direction of 

vibration. The sample holder was placed on the floating top of the antivibration table 

providing that the vibration was horizontal in a well-defined direction. 
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Figure 1.2 Soil sample, sample holder, and electrodes. 
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Figure 1.3 Vibration method 

 

In experiments, the soil sample and holder were vibrated by the vibrator at 

Hzf 602   and generate the first harmonic of )(t and resistance fluctuation 

at Hzf 1202 2  . This harmonic will be up-converted by the AC current to 

21 ff  (880Hz and 1.12 kHz). At each longitudinal and transversal position, 1U and 1,2U  

were measured at 1 kHz and the background 0,2,2U  and vibration-induced VU ,2,2 signal 

were measured at 880Hz and 1.12 kHz. The AC resistance of the soil sample can be 

obtained from the measurement of 2,2U . The output measured voltage signal spectrum of 

VICOF is as shown in Figure 1.4. Both transversal and longitudinal VICOF resistance 

fluctuations ( LsTs dRdR ,, & ) were measured.  
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Figure 1.4 Output measured voltage signal spectrum of VICOF 

 

To realize the measurement setup, the block diagram of  VICOF measurement 

was designed, see Figure 1.5. The picture of all VICOF measurement components is 

shown in Figure 1.6. The details of initial phase of the VICOF study are in A.Sz. Kishné 

et al, 2007 [3] and the details of the new methods and their theory of VICOF are in 

Chang et al, 2008 [4]. 
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Figure 1.5 Experiment system block diagram of VICOF 

 

 

 

Figure 1.6 Experiment equipment pictures of VICOF 

Vibrator 

Soil Sample & 
Sample 
Holder 

Lockin Amplifier

AC Voltage 
Source

AV Table 
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1.2 Fluctuation-Enhanced Sensing (FES) and Binary Pattern for Bacteria  

 

Bacteria detection is an important topic for many areas such as medical science, 

agriculture, and bio-defense. For medical science and agriculture, bacteria detection can 

be used to recognize the cause of diseases and identify bacterial contamination. For bio-

defense, bacteria detection can keep life from the exposure of biological warfare and 

prevent damage potential on societies and economies. The rapid evaluation and 

identification of airborne microorganisms are crucial, especially in case of epidemic 

preventions and bioterrorist threats.  

The ideal bacterial detection method should be fast, sensitive, portable, simple, 

cheap, practical, and specific. However, the recently available bacterial detection 

methods often require long culturing periods, expensive and bulky equipment, and 

trained personnel. One potential way of bacterium sensing is to analyze their odor [12, 

13]. Taguchi sensors, meeting the above requirements, could be such candidates of 

biological sensors.  

 

1.2.1 Fluctuation-Enhanced Sensing (FES) for Bacteria  

 

1.2.1.1 Fluctuation-Enhanced Sensing (FES)  

 

To enhance the sensitivity and selectivity of gas sensors, Fluctuation-Enhanced 

Sensing (FES) [5, 14, 15-29] was used.  Fluctuation-Enhanced Sensing is a method to 
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amplify, measure, and analyze the small stochastic component of the sensor signal 

(stochastic fluctuations) influenced by chemical environment. The gas molecule 

fragments move randomly along the grain boundary; therefore, their conductance 

modulation effect is time dependent with a stochastic nature. Because the doping 

properties and the diffusion constant of the fragments are specific for each chemical 

agent, the induced conductance noise has the fingerprint of the chemical agent.  

The most conventional way of using FES is to measure the power density 

spectrum (noise spectrum) of the stochastic signal components. In this study, this 

conventional way of FES was used to improve the sensitivity, selectivity, and 

reproducibility of Taguchi sensors.  

Taguchi sensors, which are commercially available, are heated semiconductor 

oxide films (usually SnO2) with broad applications, including safety monitors for 

detecting combustible, pollution, and toxic gases. The operation principle of Taguchi 

sensors is based on the change of the sensor resistance because the gaseous agent 

diffuses into the film, breaks into molecular fragments, and at the grain boundaries, it 

changes the conductivity of intergrain junctions by acting as an electron donor or 

acceptor. Multiple gas identification can be done with single sensors [5, 30-34] with 

temperature modulation but with limited selectivity [35, 36]. To get a better selectivity to 

identify gas mixtures, arrays of different sensors are used. The typical devices are sensor 

systems combined with a pattern recognition unit, so-called "Electronic Nose [37-40]" 

(EN, for odors) or "Electronic Tongue" (ET, for liquid phase). Recently, ENs and ETs 

have been applied in various fields including environmental, agricultural, and medical 
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applications, and also in the food, beverage, and automotive industries. The test 

personnel can use these devices instead of their own noses and tongues. They can also be 

used as quantitative tools to detect and identify of bacteria and to prevent the test 

personnel from exposure to the agents. 

For Taguchi sensors, two ways of FES are used:  

i. Regular sensing (RS) method. In this case, the sensors are heated constantly during the 

measurement. To avoid excess noises from temperature fluctuations caused by the air 

flow turbulence, there is no air flow during the data collection. 

ii. Sampling-and-hold (SH) method. In this case, the sensor is heated for several minutes. 

During the heating process, air flow is optional. Then the heater (and gas flow) is/are 

turned off. After the sensor cooled down, the stochastic signal is recorded. In this case, 

the gas fragments are trapped in the film and escape slowly. Consequently, the 

measurement can also be taken later. Another advantage of this method is that the noise 

induced by temperature fluctuations due to microscopic turbulence in the hot air 

convection can be avoided. 

 

1.2.1.2 Sensors and Samples  

 

In this dissertation, the power density spectra of three commercial Taguchi gas 

sensors: Sensors SP32, SP11, TGS2611 (see Figure 1.12) were used to identify four 

biological samples composed of the combination of two types of bacteria: Escherichia 

Coli (E. coli) and Anthrax-surrogate Bacillus subtilis (Anthrax) (see Figure 1.13) and 
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their culture medium Tryptic Soy Agar (TSA).  In the following content of the 

dissertation, the alias "E. coli", "Anthrax", and “TSA” stand for Escherichia Coli, 

Anthrax Surrogate Bacillus Subtilis, and Tryptic Soy Agar respectively. These four 

biological samples were TSA, TSA+ E.coli, TSA+ Anthrax, and TSA+ E.coli + Anthrax. 

The details of the sample preparation are shown in Chang et al, 2009 [5].  

 

1.2.2. Measurement Setup of Fluctuation-Enhanced Sensing  

 

Two devices were used in this study: non-portable and portable devices. Section 

1.2.2.1 shows the measurement setup of the non-portable device and Section 1.2.2.2 

shows the measurement setup of the portable device. On one hand, the non-portable 

device was heavy and expensive, and it can only be used in the laboratory. On the other 

hand, the portable device was light and cheap, and it can be used anywhere with a laptop. 

 

1.2.2.1 Non-Portable Device 

 

This section demonstrates the fluctuation-enhanced odor sensing system, which 

is the non-portable device used only in a laboratory for its heavy and expensive 

equipments. The concept of this device is that the sensors and samples are put in the 

same chamber and the sensor can detect the odor of the samples that accumulate in the 

chamber.  
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The measurement circuitry is a voltage divider (see Figure 1.7), where 0U  is the 

driving DC voltage, sU  is the measured DC voltage of sensor, RL  36k is the serial 

resistor and sR  is the actual resistance of the measured sensor. The normalized power 

density spectrum Sr ( f ) / Rs
2  can be derived from the equations below.  

 

 

Figure 1.7 Measurement circuitry 

 

The relationship between the applied DC voltage 0U and measured sensor voltage sU can 

be obtained from the relationship of the voltage divider: 

 

Us U0

Rs

RL  Rs

  .                (5) 

 

Then the evaluation formula for the actual resistance of the measured sensor is  

Rs  RL

Us

U0 Us

  .                (6) 
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Furthermore, a parameter  is defined: 
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sL

L
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s

RR

R
U
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   .               (7) 

 

Therefore, the relationship between Sr ( f ) , the mean-square resistance fluctuations dRs

2
 

of the sensor in an infinitesimally small df  bandwidth, the measured mean-square 

voltage fluctuations in df  bandwidth, and the measured Su ( f ) (raw power spectra) are as 

follow: 
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Consequently: 
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             (9) 

 

In conclusion, the normalized power density spectrum can be determined from the 

measured voltage spectrum Su ( f )  with the following equation: 

Sr ( f )

Rs
2


Su ( f )

U0
2

 
RL  Rs 2

RL Rs















2

             (10) 
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This normalization do not influence the pattern generation in Section 3.4 and in Chang et 

al, 2008 [6]. 

To realize the measurement setup, the measurement system block diagram was 

established, see Figure 1.2.2. The system included the following components: a power 

supply, a low noise current generator, a preamplifier, a power spectrum analyzer, a 

grounded stainless steel sensor chamber, Taguchi sensors, and test samples. The pictures 

of all components are shown in Figures 1.9~13. The following are the setup of this 

device. 

The sensors were placed in the grounded stainless steel sensor chamber (volume 

700 cm3) where the odors generated by the samples could accumulate. These sensors 

were heated by the stable power supply (XP650) and the low noise current generator 

drove the sensors’ resistors with low-noise DC current. The induced voltage fluctuations 

were amplified by the preamplifier (SR560 Low Noise Preamplifier). The power spectra 

of the amplified voltage noise across the sensors were measured by the power spectrum 

analyzer (SR785 Dynamic Signal Analyzer) or by the DSP system (DSP Data 

Acquisition System (DAS 1614SD)) and the software written by Labview. The power 

spectrum of the voltage fluctuation was measured in the frequency range 

100Hz~100kHz.  
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Figure 1.8 Fluctuation-enhanced odor sensing system 

  

 

 

Figure 1.9 Filter and amplifier 
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Figure 1.10 Power spectrum analyzer 

 

 

 

Figure 1.11 Grounded stainless steel sensor chamber 

 



 19

 

 

Figure 1.12 Taguchi sensors 

 

 

 

Figure 1.13 Test samples 

TGS2611  SP32  SP11
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1.2.2.2 Portable Device 

 

The former section described the non-portable device that can be used in a 

laboratory only. In the research project (army research project), a portable device was 

designed and built (in an international collaboration mainly by the University of Szeged, 

Hungary) to be used anywhere with a laptop. The concept of the portable device is that 

the device can inhale gas and odors, detect odors by its sensors and then transfer the data 

to a computer. 

 

 

Figure 1.14 Circuitry of portable device 

 

The circuitry of the portable device shown in Figure 1.14 is a current source 0I  

(controlled by the GSA software for windows) connected with a Taguchi sensor. The 

measured sensor voltage and resistance of the Taguchi sensor is sU and sR . This current 

source is assumed to be ideal and constant; therefore, the measured sensor resistance can 

be obtained directly from the following equation. 
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0I

U
R s

s                 (11) 

 

Similarly, the relationship between the measured voltage spectrum Su ( f )  and measured 

resistance spectrum )( fSr  can be obtained from (12). 

 

2
0

)(
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I

fS
fS u

r                (12) 

 

The picture of the portable device and additional components are shown in 

Figure 1.15 and the block diagram of the portable device is shown in Figure 1.16. This 

device includes the following components: pumps, a diffuser, an air inlet, sensors, a 

preamplifier, and sensor drivers.  The following are the functions of these components.  

The pumps were used to generate the air flow to inhale the odor generated by the 

sample. The diffuser and the air inlet constructed a tunnel for the gas to enter the 

chamber of the portable device.  The sensors were the same Taguchi sensors used in the 

non-portable device. The sensor drivers were used to control the heater voltage and 

current generator. The preamp was used to amplify the fluctuation signals generated by 

the sensors. A computer could control the portable device via the “GSA” software 

including the following functions: the pumps’ on/off switches, the bias current of the 

sensors, and the amplification of the preamp. This software could also transfer the 
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fluctuation signals to a computer and convert the time data into power spectra ( Su ( f )  

or )( fSr ). 

However, this device had poor sensitivity and needed additional components to 

enhance its sensitivity. The odor of sample could not accumulate, because this device 

had no chamber. Therefore, a bag was needed to contain the sample inside and 

accumulate the odors generated by the samples, which worked the same as the grounded 

stainless steel sensor chamber in the non-portable device. After several minutes, the bag 

accumulated enough odor generated by the sample, the device could inhale the gas of the 

bag to its chamber. Also, the device could leak the inhaled gas from the pump side and 

reduce the odor concentration of the chamber. To prevent this leakage, a shutter was 

needed in the pump side. After the device inhaled the gas in the bag, the shutter had to 

seal the pump side immediately.  

 

 

Figure 1.15 Portable device and additional components 
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Figure 1.16 Block diagram of portable device 

 

Even with these modifications, the portable device still has deficiencies. The 

distance between the sensors is distant (~40cm) from the samples that reduce the 

sensitivity and selectivity of the device. Further, the portable device cannot measure in 

sampling-and-hold mode. In sampling-and-hold mode, the sensor resistance is large 

(~500kohm). Even though the minimum current source ( A3.8 ) is used in this portable 

device, the measured voltages of the sensors are still overloaded. In contrast, the non-

portable device uses a voltage source; therefore, the measured voltage cannot be 

overloaded. The results of the portable device are shown in Section 3.3.2. 

 

 

 

 

Drivers: 
Current Generator and 
Power Supply

Preamp Computer AND Software GSA

Test Sample 

Opening 
and Inlet Sensor in the 

Sensor Chamber 
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1.2.3 Binary Pattern for Bacteria  

 

To design a system for bacterium recognition with ultra-low power consumption, 

the usage of microprocessors and extensive data processing must be avoided. The sensor 

signals must be processed in the simplest possible way, presumably with analog 

circuitries, and the pattern recognition must be a deterministic process based on a few 

simple logic decisions. Consequently, the new method to generate binary patterns was 

proposed. In order to demonstrate the feasibility of the method and the nature of binary 

patterns, relevant experimental tests and evaluations were conducted and results are 

shown in Sections 3.3~4.  
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2. SUMMARY OF VIBRATION-INDUCED CONDUCTIVITY FLUCTUATION 

(VICOF) RESULTS*  

 

This section summarizes the results of Vibration-Induced Conductivity 

Fluctuation (VICOF) study, including two sections: Original Developments in Kishné et 

al, 2007 [3] and New Methods and Their Theory in Chang et al, 2008 [4]. 

 

2.1 Original Developments  

 

Kishn é  et al, 2007 [3] demonstrates the original developments of VICOF 

including the methodology, simulation, samples and their treatments, and experiment 

results of VICOF. In summary, the blade electrodes have better performance than the 

cylindrical electrode, because the blade electrodes have less set-up noise in the 

measurement of normalized vibration-induce conductivity (VICOF).  

 

 

          

____________                   
*Reprinted with permission from “Vibration-induced conductivity fluctuation 
measurement for soil bulk density analysis” by A.Sz. Kishné et al, 2007, Fluctuation and 
Noise Letters, 7(4), L473-L481, Copyright 2007 by World Scientific Publishing 
Company. 
*Reprinted with permission from ” Theory and techniques for vibration-induced 
conductivity fluctuation testing of soils” by H.C. Chang, et al, 2008, Fluctuation and 
Noise Letters, 8(2), L125-L140, Copyright 2008 by World Scientific Publishing 
Company. 
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In addition, the theory, computer simulations, and measurement results in this 

dissertation elucidate that the ratio of transversal/longitudinal normalized VICOF is 

independent of moisture and salinity affects. In other words, soil moisture and soil 

salinity do not affect the normalized VICOF signal. However, these experimental data 

have large scattering [3] due to the loose and heavy contacts. Therefore, the new 

methods and schemes are proposed in Chang et al, 2008 to solve the effect of the poor 

contacts. 

 

2.2 New Methods and Their Theory 

 

Chang et al, 2008 [4] presents new VICOF methods, arrangements, and schemes 

of VICOF. The new VICOF methods of electromechanical response illustrate the 

relationship between applied vibrations, stress and strain, resistance, and resistance 

variation.  Based on the methods, arrangements, and schemes of VICOF for both 

laboratory and field measurements were invented.  

The following is the comparison between the original and the new developments. 

The original arrangement [3] is a two-point measurement; and the new arrangement  is a 

four-electrode measurement with line or plate contacts. The original VICOF schemes [3] 

have only horizontal vibration in the transversal and the longitudinal directions of the 

current flow; and the new schemes  have additional vertical vibration and compression 

VICOF in the transversal directions of the current flow. 
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 The new schemes and arrangements provide two advantages; the applied force 

can be perpendicular to the current, and the exact value of the soil resistivity can be 

derived directly. Besides the former advantage, the vertical vibration and compression 

can minimize the loose electrode impacts on the measurement in accuracy and 

reproducibility. 
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3. RESULTS OF FLUCTUATION-ENHANCED SENSING* 

 

This section demonstrates both the published and unpublished results of the 

bacterial sensing study, including the non-portable and the portable device measurement 

procedures, measurement results, and the method to generate continuous pattern and 

binary pattern extracted from experiment results.  To enhance the sensitivity, selectivity, 

and reproducibility of sensors, two devices (non-portable and portable device) and two 

methods of analysis (power spectra obtained by the power spectrum analyzer and power 

spectra converted from the time data by the software written by Matlab) were used. 

 After that, the study to generate the continuous pattern and the binary pattern 

was designed to find a way to generate patterns with perfect reproducibility based on the 

spectral slopes in different frequency ranges at FES. The obtained binary patterns can be 

used at a microprocessor-free system using building elements of analog circuitries and a 

few logic gates with ultra low power consumption in Chang et al, 2010 [6]. 

 

 

 

 

 
_____________ 
*Reprinted with permission from ” Fluctuation-enhanced sensing of bacterium odors” by 
H.C. Chang, et al, 2009, Sens. Actuators, B, 142, 429-434, Copyright 2009 by Elsevier 
B.V. 
*Reprinted with permission from ” Binary fingerprints at fluctuation-enhanced sensing” 
by H.C. Chang, et al, 2010, Sensors, 10(1), 361-373, Copyright 2010 by MDPI 
Publishing. 
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3.1 Measurement Procedures  

 

This section illustrates the measurement procedures for two devices: non-

portable and portable device. 

 

3.1.1 Non-Portable Device 

 

For all test samples, the power spectra of all the sensors over the measured 

frequency range were roughly as 1/f. The sensor resistance was ohmic in the observed 

range of DC voltage (0.3-6V). The measured power density spectrum of the output 

voltage is proportional to the square of the DC voltage which confirms the resistance 

fluctuations origin of the voltage fluctuations [41, 42]. 

To enhance the selectivity and sensitivity of sensors, all sensors were measured 

both by the constantly heated (heated) FES [14, 31] and the sampling-and-hold [32, 33] 

FES methods. In the heated case, the nominal heating voltage (5V) was applied during 

the whole measurement. After the sample was placed in the chamber and the chamber 

was closed, the chamber was flushed with synthetic air for 3 minutes. After a stable odor 

was obtained (typically 5 minutes), the corresponding stable spectrum was developed. 

The measurements often take 3 minutes. 

Each sampling-and-hold measurement [32, 33] was preceded by a heated FES 

measurement sequence with stationary heating. Then, to execute the sampling-and-hold 

FES measurement, the heating was turned off while the spectrum was monitored. After 5 
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minutes, if the spectrum was stable, the spectrum was recorded, which was the output 

pattern of the sampling-and-hold measurement [32, 33]. The measurements also took 3 

minutes. 

Because the sensitivity of the system against resistance fluctuation depends on 

the value of the series resistance providing the battery-driven DC current drive for the 

sensor bias, whenever the measured voltage fluctuation were too small and close to the 

baseline, these resistors were changed for a proper one yielding sufficiently large FES 

signals.  

Five conditions were tested in non-portable device experiments: empty chamber, 

TSA only, TSA + E. coli, TSA + Anthrax, and TSA + E. coli + Anthrax. After removing 

the sample, the sensor was heated clean for 10 minutes and the chamber was flushed 

with synthetic air for 3 minutes. To see the reproducibility of the spectra, after 

completing the whole sequence of the experiments with all the different samples, the 

whole sequence of tests with all the samples was repeated. In a few cases, the samples 

were re-tested two or four times. The following is the example of the non-portable 

device experiment schedule. 
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Table 3.1 Example of the schedule of non-portable device experiment 
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3.1.2 Portable Device 

 

The observed frequency range of measured power spectra and observed 

resistance range were 1/f (100~100KHz for the power spectrum analyzer) and ohmic, 

which is the same as these of the non-portable device.  Unlike the non-portable device, 

the sensors in this portable device can only measure in constantly heated (heated) FES 

mode. 

The nominal heating voltage (3V) was applied during the whole measurement. 

After the sample was placed in the plastic bag for 3 minutes and the bag accumulated 

enough sample odor, the device pumped the gas inside the bag, turned off the pump, the 

shutter sealed pump side. Until a stable odor inside the device (typically 1 minute), the 

corresponding stable spectrum was developed. After that, the spectrum was recorded. 

Because the sensitivity of the system against resistance fluctuation depends on 

the driven DC current drive for the sensor bias, whenever the measured voltage 

fluctuation were too small and close to the baseline, the driving current was changed for 

a proper one yielding sufficient large FES signals.  

As with non-portable device, five conditions were tested in these experiments: 

empty chamber, TSA only, TSA + E. coli, TSA + Anthrax, and TSA + E. coli + Anthrax. 

After removing the bag and sample, the shutter opened. To clean the device, the sensors 

were heated, and the chamber of the portable device was flushed with air for 3 minutes. 

To see the reproducibility of the spectra, the whole sequence of the experiments was 

repeated. The following is the example of the portable device experiment procedure. 
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Table 3.2 Example of the schedule of portable device experiment 

 

 

 

3.2 Measurement Results  

 

This section presents the measurement results of the raw power spectra of 

Fluctuation-Enhanced Sensing with the non-portable device and the portable device. The 

raw power spectra of the non-portable device are )/( 2 HzVSu and the raw power spectra 

of the non-portable device are )/( 2 HzSr  . 

 

3.2.1 Non-Portable Device 

 

Two methods were used to obtain the experiment results: spectral data from the 

power spectrum analyzer and spectral data converted from time data by the software 

written by Matlab. The time data are the raw data of voltage fluctuation of the sensor 
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resistance, which can be obtained by DSP Data Acquisition System. The spectral data 

are the Fourier transform of the time data, which can be directly obtained by the power 

spectrum analyzer or obtained by the software written by Matlab. This software can 

convert the time data (from DSP Data Acquisition System) into spectral data.  

 

3.2.1.1 Results from Spectra Analyzer 

 

The following are the results of the spectral data from the power spectrum 

analyzer. The raw power spectra of SP32, TGS 2611, and SP11 for both the heated and 

sampling-and-hold sensor measurements are shown in Figures 3.1 to 3.6 Good 

reproducibility and negligible memory effects are indicated by the fact that the spectra 

obtained with the same sensor in the empty chamber, before and after measurements 

with the samples in the chamber, practically overlap each other. Similarly, the spectra of 

the same sample measured by the same sensor also show good reproducibility.  

In Figure 3.1, the raw spectra measured with the sensor SP32 in the heated mode 

are shown. The power spectra can be clearly divided into three groups: Empty; TSA; 

TSA + Anthrax, and TSA + E. coli, which means TSA + Anthrax and TSA + E. coli are 

indistinguishable. Although in this figure the spectra of these two bacteria sample can 

split a little bit, they often overlap each other in other experiments. 
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Figure 3.1 Raw power spectra of the heated sensor SP32 (non-portable device) 

obtained by the power spectrum analyzer 

 

In the sampling-and-hold working mode, most of the spectra obtained with the 

sensor SP32 are also well distinguishable, see Figure 3.2, except the measurements with 

the two bacteria (E. coli and Anthrax) yielding similar patterns.  
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Figure 3.2 Raw power spectra of the sampling-and-hold sensor SP32 (non-portable 

device) obtained by the power spectrum analyzer 

 

In Figure 3.3, the raw spectra measured with the sensor TGS 2611 in the heated 

mode are shown. The spectra cannot be clearly differentiated due to large variations and 

overlaps.  

In the sampling-and-hold mode (see Figure 3.4), the plot of the raw spectra of the 

sensor TGS2611 can clearly be divided into two groups: Empty and TSA; and TSA + 

Anthrax and TSA + E. coli, respectively. That means, the empty chamber and the 

chamber with the TSA, bacterium types are indistinguishable. Compared with the result 
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of the heated sensor, the sampling-and-hold method can enhance the selectivity and 

sensitivity of this sensor.  

 

 

 

Figure 3.3 Raw power spectra of the heated sensor TGS 2611 (non-portable device) 

obtained by the power spectrum analyzer 
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Figure 3.4 Raw power spectra of the sampling-and-hold sensor TGS 2611 (non-

portable device) obtained by the power spectrum analyzer 

  

In Figure 3.5, the raw spectra measured with the sensor SP11 in the heated mode 

are shown. The spectra can be clearly divided into two groups: Empty and TSA; and 

TSA + Anthrax and TSA + E. coli. The empty chamber and the chamber with the TSA 

are indistinguishable just like the two bacteria from each other. This is fine for the 

detection of the presence of bacteria but not for their separate identification.  

In Figure 3.6, the spectra measured with the sensor SP11 in the sampling-and-

hold mode are shown. The shapes of the raw spectral patterns, even though they overlap 

in several ranges, can clearly be divided into three groups: Empty; TSA; and TSA + 

Anthrax and TSA + E. coli. 
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Figure 3.5 Raw power spectra of the heated sensor SP11 (non-portable device) 

obtained by the power spectrum analyzer 

 

Figure 3.6 Raw power spectra of the sampling-and-hold sensor SP11 (non-portable 

device) obtained by the power spectrum analyzer 
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The conclusions of this exploratory study about the feasibility and reproducibility 

of using Fluctuation-Enhanced Sensing with single Taguchi gas sensors to detect and 

identify different bacteria are summarized in Table 3.3. Sensors in sampling-and-hold 

mode have better detectability than in heated mode. In addition, advanced stochastic 

signal analysis at the time data level [28] is a powerful tool and has potentials to further 

enhance the detectability of this type of sensing, which is discussed in Section 3.2.1.1.  

 

Table 3.3 Summary of raw power spectra (non-portable device) obtained by the 

power spectrum analyzer: + well detected/identified/repeatable; x unrecognizable/non-

repeatable 

 

 

Sensor FES Mode w/o Bacteria empty/TSA Bacteria Type

 

SP 32 Heated + + x 

 

SP 32 Sampling-and-hold + + x 

 

TGS 2611 Heated x x x 

 

TGS 2611 Sampling-and-hold + x x 

 

SP 11 Heated + x x 

 

SP 11 Sampling-and-hold + + x 
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3.2.1.2 Results from DSP Data Acquisition System and the Software Written by 

Matlab 

 

This method is used to analyze the results of sensors in sampling-and-hold mode 

only because sensors operated in this mode can yield good selectivity. The results of 

spectral data converted from the time data by the software written by Matlab are shown 

in Figures 3.7 to 3.9.  The amplitudes of the power spectra are amplified by gain square 

(5002 = 250000).  

The spectra of all the sensors: SP32, TGS 2611, and SP11 can be divided into 

three groups Empty; TSA; and TSA + Anthrax, TSA + E. coli, and TSA + Anthrax + E. 

coli. The results are summarized in Table 3.4. The results of sensors SP32 and SP11 

obtained by this method are as well as these obtained by the power spectrum analyzer. 

However, the results of the sensor TGS 2611 obtained with this method are better than 

those obtained with the power spectrum analyzer (only two groups Empty and TSA; 

TSA + Anthrax and TSA + E. coli). 

This method can enhance the sensitivity and selectivity more than the former 

method (spectra obtained by the power spectrum analyzer). However, this method is 

very time consuming because obtaining time-data measurements takes a lot of time. It 

took 1 minute to measure a spectrum with the former method; and it took 5 minutes to 

measure a spectrum with latter method. Therefore, the power spectrum analyzer was 

used in most of the experiments in this dissertation.  
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Figure 3.7 Raw power spectra of the sampling-and-hold sensor SP32 (non-portable 

device) converted by the software written by Matlab 

 

 

 

Figure 3.8 Raw power spectra of the sampling-and-hold sensor TGS2611 (non-

portable device) converted by the software written by Matlab 
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Figure 3.9 Raw power spectra of the sampling-and-hold sensor SP11 (non-portable 

device) converted by the software written by Matlab 

 

Table 3.4 Summary of raw power spectra (non-portable device) converted by the 

software written by Matlab: + well detected/identified/repeatable; x unrecognizable/non-

repeatable 

 

 

Sensor FES Mode w/o Bacteria empty/TSA Bacteria Type

 

SP 32 Sampling-and-hold + + x 

 

TGS 2611 Sampling-and-hold + + x 

 

SP 11 Sampling-and-hold + + x 
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3.2.2 Portable Device 

 

As mentioned in the introduction (1.2.2.2), this device can only measure bacteria 

in heated mode. The raw power spectra )/( 2 HzSr  of portable device of two sensors 

SP11 and TGS 2611 in the heated mode are as shown in Figures 3.10 and 3.11. The 

amplitudes of the power spectra are amplified by gain square (102 = 100). The results are 

the same as these of non-portable device. The spectra of SP 11 in heated mode can be 

clearly divided by two groups: Empty/TSA and TSA with bacteria. The spectra of TGS 

2611 in heated mode cannot be clearly differentiated due to large variations and overlaps 

of the spectra. As a result summarized in Table 3.5, only SP11 in heated mode can 

recognize samples with or without bacteria.  

The sensitivity and selectivity of the portable device compared poorly with these 

of the non-portable device because this portable device can be operated in heated mode 

only. The results of non-portable device show that the sensors in sampling-and-hold 

yield better sensitivity and selectivity. To improve its sensitivity and selectivity, the 

portable device has to have a sampling-and-hold mode by using voltage source or 

smaller current source. 
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Figure 3.10 Raw power spectra of sensor SP11 in heated mode (portable device) 

 

 

 

Figure 3.11 Raw power spectra of sensor TGS2611 in heated mode (portable device) 
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Table 3.5 Summary of raw power spectra of portable device: + well 

detected/identified/repeatable; x unrecognizable/non-repeatable 

 

 

Sensor FES Mode w/o Bacteria empty/TSA Bacteria Type

 

TGS 2611 Heated x x x 

 

SP 11 Heated + x x 

 

 

3.3 Continuous Pattern and Binary Pattern 

 

In this section, the following normalization of the power density spectrum of 

resistance fluctuations from the non-portable device (some from Section 2.2.1) was used 

to obtain the continuous and binary patterns: 

 

( f )  f
Sr ( f )

Rs
2

 ,        (13) 

 

where f  is the frequency, Sr ( f )  is the power density spectrum of measured resistance 

fluctuations, and Rs  is the measured sensor resistance, and the unit of ( f ) is 1. The 

( f ) for sensors SP32, TGS 2611, and SP11, with the tested bacterium samples, for both 
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the heated and sampling-and-hold sensor measurements, are given in Published Paper 3 

and Section 2.2.1.1, and their amplitudes and slopes have good reproducibility. 

The first step of generating a highly distinguishable pattern is used to quantify 

the average slopes of ( f ) in distinct frequency ranges. The average slopes of ( f ) are 

measured in six frequency bands with logarithmically equidistant widths: 100~333Hz, 

0.333~1kHz, 1~3.3kHz, 3.3~10kHz, 10~33kHz, and 33~100kHz. 

Let us make the following notations: n   is the average slope in each frequency 

sub-bands (local slope) and   is the average slope over the entire measurement band 

(100Hz~100KHz), see Figure 3.12.  

 

 

 

Figure 3.12 Definition of n  and   

 

The deviation n  of the local slope is defined for each sub-band as the difference 

between n   and    in the following equation 
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nn                  (14) 

  

Finally, the highly distinguishable patterns will be given by the following quantities, the 

sign n  and the normalized local deviation n  , respectively, see the following 

definitions:   

 

)signum( nn                (15) 

 

 n  log



               (16) 

 

Notably, the units of both n  and n  quantities are one. The quantity n  is a 

binary pattern that indicates if   is larger or smaller than    for each sub-bands of the 

spectrum. The advantage of the quantity n  is that it provides a very quick way of 

quantified decision if two spectral patterns are identical or not. By using a simple 

Boolean logic rule to evaluate these binary patterns with 6-bit values, a Boolean logic 

circuit can act as a pattern recognizer and distinguish each situation where the pattern is 

different from the others. On the other hand, n  is a continuum variable and offers more 

information when it is needed; however, the quantitative pattern recognition requires 

more advanced tools. 



 49

By using the n  histograms to represent these measurement results [5], the 

binary patterns can be categorized into three classes of the four available possibilities, 

see Figures 3.13 to 3.18. The situations inside the chamber were the empty, TSA, TSA+ 

E. coli or TSA+ Anthrax. Empty means no sample in the chamber. The criteria of the 

identification and reproducibility are defined by the bit error percentage. The bit errors 

smaller than 30% are well detected, identified, and repeatable; and the bit errors are 

larger than 30% are unrecognizable and non-repeatable. The experiments are repeated 

with numerous samples multiple times over numerous days. Most patterns obtained in 

the sequential experiments are similar to the patterns obtained in the first experiment. 

Therefore, the bit error percentage can be obtained by the patterns in the subsequent 

experiments compared to the pattern in the first experiment. The conclusions of using 

binary pattern  n  are summarized in Table 3.6. Consequently, the simple binary pattern 

recognition can be used to distinguish the bacteria from the no-bacteria situations with 

good reproducibility with each sensor in both the heated and the sampling-and-hold 

working modes except the heated sensor TGS 2611. Only the binary pattern of SP32 in 

sampling-and-hold mode can differentiate samples with or without bacteria and TSA 

with perfect reproducibility except the 6th bit of the empty condition. 

Figures 3.19 to 3.24 show the plots of the n  continuum patterns for all the 

different cases. The repeatability of all the continuum patterns is poor for the large 

variations in the sequential experiments. Besides, the continuum patterns are far more 

complicated than the binary patterns and advanced pattern recognitions are needed to 
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analyze them. Consequently, it is difficult for a microprocessor-free system to 

implement the continuum patterns. 

 

 
 

Figure 3.13 The binary pattern n  of the heated sensor SP32 

 
 

Figure 3.14 The binary pattern n  of the sampling-and-hold sensor SP32 



 51

 

 

Figure 3.15 The binary pattern n  of the heated sensor TGS2611 

 

 

Figure 3.16 The binary pattern n  of the sampling-and-hold sensor TGS2611 
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Figure 3.17 The binary pattern n  of the heated sensor SP11 

 

 
 
 

Figure 3.18 The binary pattern n  of the sampling-and-hold sensor SP11 
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Table 3.6 Summary of distinguished samples by using the binary pattern n . 

Notations: O perfect identified/repeatable; + well identified/repeatable (<30% bit error); 

x unrecognizable/non-repeatable (>30% bit error) 

 

Sensor FES Mode  w/o Bacteria empty/TSA Bacteria Type 

SP 32 Heated + + x 

SP 32 Sampling-and-hold O O x 

TGS 2611 Heated x x x 

TGS 2611 Sampling-and-hold + x x 

SP 11 Heated + x x 

SP 11 Sampling-and-hold + + x 

 

 
 

Figure 3.19 The continuum pattern n  of the heated sensor SP32 
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Figure 3.20 The continuum pattern n  of the sampling-and-hold sensor SP32 

 
 

Figure 3.21 The continuum pattern n  of the heated sensor TGS2611 
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Figure 3.22 The continuum pattern n  of the sampling-and-hold sensor TGS2611 

 

 
 

Figure 3.23 The continuum pattern n  of the heated sensor SP11 
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Figure 3.24 The continuum pattern n  of the sampling-and-hold sensor SP11 

 

 On one hand, the continuum patterns have poor reproducibility. Moreover, the 

continuum patterns are complicate; therefore, advanced pattern recognitions are needed 

to analyze the continuum patterns. On the other hand, the binary patterns can simply 

differentiate samples with or without bacteria and TSA in sampling and hold mode with 

good reproducibility except the sensor TGS2611. In addition, only the binary pattern of 

SP 32 in sampling-and-hold mode yielded perfect repeatability except the 6th bit of the 

empty condition as shown in Section 3.4. Besides, only the binary pattern can be used 

directly to design a microprocessor-free pattern recognition system. Therefore, only the 

binary pattern of SP 32 in sampling-and-hold mode can be used to design the 

microprocessor-free pattern recognition system in Chang et al, 2010 [6]. 
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3.4 Characteristics of Patterns Extracted from Experiment Results 

 

This section illustrates the characteristics of the extracted binary patterns of SP 

32 in sampling-and-hold mode. For simplicity, the sub-bands were defined: 100−333 Hz 

for bit B1, 0.333–1 kHz for bit B2, 1−3.3 kHz for bit B3, 3.3−10 kHz for bit B4, 10−33 

kHz for bit B5, and 33–100 kHz for bit B6. The binary pattern used for driving the logic 

circuit in Published Paper 4 was found to have the following characteristics: 

 

(i) Good Reproducibility: The examples are shown in Figures 3.25 to 3.27: 

measurement data obtained with the independently prepared samples at different dates. 

However, the spectra in Figures 3.25 to 3.27 yield the identical patterns except Bit B6 of 

Empty condition shown in Figure 3.28. Therefore, Bit B6 of Empty condition should not 

be used in the Boolean logic for pattern recognition. However, the rest of the bits 

provide sufficient information to identify the different types of samples 
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Figure 3.25 Normalized power density spectra of the resistance fluctuations of the sensor 

SP32 measured in the sampling-and-hold [8, 10] working mode. Each sample had one 

million bacteria. 

 

Figure 3.26 Reproducibility of the experimental data shown in Figure 3.25 with new 

samples 
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Figure 3.27 Reproducibility of the experimental data shown in Figures 3.25 to 3.26 with 

new samples 

 

 

Figure 3.28 The spectra in Figures 3.25 to 3.27 yield the same 6-bits pattern except Bit 

B6 of Empty condition 
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(ii) Inability to Differentiate between the Two Types of Bacteria: 

 

The applied sensor and the simple 6-bit pattern generation used for these tests 

were unable to differentiate between the two bacteria, while they were able to 

differentiate between all the other cases (empty, TSA, bacteria). This fact originates 

from the particular settings of the pattern generation because the differences between the 

spectra of the different types of bacteria could be distinguished by naked eye. However, 

this situation is satisfactory because the goal of this study was not to present a fully 

featured/optimized system but to show how much can be achieved with just the simple, 

ad-hoc, demo version of a 6-bits system. 

 

(iii) Mixture of Two Types of Bacteria: 

 

In addition, the following experiment was designed to observe the pattern of the 

mixture of two types of bacteria. Former section (i) and (ii) show that two types of 

bacteria have the same pattern. Therefore, the mixture of them can also be expected to 

have the same pattern as individual type of bacteria. 

The measurement conditions were empty chamber, TSA only, TSA + E. coli, 

TSA + Anthrax, and TSA + E. coli + Anthrax. All the samples with bacteria are with the 

bacterium number of one million except for TSA + E. coli + Anthrax (one million E. coli 

+ one million Anthrax). As a result, the spectra of the mixed type bacteria show the same 
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binary pattern as the individual type bacteria. The normalized power spectra are shown 

in Figure 3.29, and the binary pattern is shown in Figure 3.30.  

The binary pattern in Figure 3.30 is the same as this in Figure 3.28, which can 

also recognize three conditions: empty, TSA, and TSA+ bacteria. Similar to the former 

result, all the samples with bacteria have the same binary pattern in all bits excluding the 

bit B5. Other bits are reliable enough to recognize the types of samples. 

 

  

 

Figure 3.29 Normalized power spectra of the sampling-and-hold sensor SP32. The 

samples with bacteria have a population of one million except the sample with a mixture 

of the two bacteria with a population of one million E. coli and one million Anthrax 
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Figure 3.30 The binary pattern   of the sampling-and-hold sensor SP32. The samples 

with bacteria are with the number of one million except the sample with mixture of the 

two bacteria with one million E coli and Anthrax 

 

(iv) Robustness against Variations of the Bacterium Number:  

 

This linear characteristic was unexpected with Taguchi sensors, which are 

nonlinear devices, but they could be expected with linear sensors. The linear response of 

nonlinear sensors against small perturbations was tested in the following. 

The measurement conditions to test the impact of bacterium numbers were as 

follows. Six different bacterium numbers of E. coli were used: 2.5 × 104, 5 × 104, 105, 

2.5 × 105, 5 × 105, and 106. The normalized power density spectra and the binary 

patterns are shown in Figures 2.4.7 and 2.4.8, respectively. 
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Figure 3.31 Variations of the normalized power density spectrum at different 

bacterium numbers 

 

 

Figure 3.32 Variations of the binary pattern at different bacterium numbers. Bit B5 is 

not reliable therefore that bit should not be used for pattern recognition 
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The binary pattern in Figure 3.32 can also identify three conditions: empty, TSA, 

and TSA + bacteria (E. coli). When the bacterium number decreases from 106 to 2.5 × 

104, the bits remained the same except bit B5 (relevant to sub-band 10 k~33 kHz). 

Consequently, bit B5 should not be used in the Boolean logic for pattern recognition, 

except perhaps as extra information about the bacterium number. However, the rest of 

the bits provide sufficient information to identify the different types of samples: empty, 

TSA, and TSA + bacteria (E. coli). 

In Chang et al, 2010 [6], this new type of signal processing and pattern 

recognition can be implemented with a microprocessor-free system using building 

elements of analog circuitries and a few logic gates with ultra low power consumption. 
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4. CONCLUDING REMARKS* 

 

This dissertation presents two kinds of sensing applications of fluctuation and 

noise: soil bulk density assessment and bacterium sensing.  

In order to obtain the information of soil bulk density, the measurement of 

Vibration-Induced Conductivity Fluctuations (VICOF) was proposed. In the initial phase 

of study [3], the relations between the soil bulk density, wetness, salinity, and VICOF 

data were found through simple theory, simulations, and experiments. In the subsequent 

phase [4], the new methods and their theory were designed to improve the weaknesses of 

the initial approach, such as large data scattering due to loose contacts and two electrode 

resistance measurements.  

 

 

 

 
_____________ 
*Reprinted with permission from “Vibration-induced conductivity fluctuation 
measurement for soil bulk density analysis” by A.Sz. Kishné et al, 2007, Fluctuation and 
Noise Letters, 7(4), L473-L481, Copyright 2007 by World Scientific Publishing 
Company. 
*Reprinted with permission from ” Theory and techniques for vibration-induced 
conductivity fluctuation testing of soils” by H.C. Chang, et al, 2008, Fluctuation and 
Noise Letters, 8(2), L125-L140, Copyright 2008 by World Scientific Publishing 
Company. 
*Reprinted with permission from ” Fluctuation-enhanced sensing of bacterium odors” by 
H.C. Chang, et al, 2009, Sens. Actuators, B, 142, 429-434, Copyright 2009 by Elsevier 
B.V. 
*Reprinted with permission from ” Binary fingerprints at fluctuation-enhanced sensing” 
by H.C. Chang, et al, 2010, Sensors, 10(1), 361-373, Copyright 2010 by MDPI 
Publishing. 
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The new theory was proposed to obtain the relationship between the measured 

signal and the electromechanical transport parameters of the soils. The new methods 

include the new four-electrode measurements and the new schemes. By using the four-

electrode measurement with line or plane contacts cooperated with the vertical 

compression or the vertical vibration method, the applied force can be perpendicular to 

the current, and the exact value of soil resistivity can be derived directly. Besides the 

former advantage, the vertical compression and vibration methods can minimize the 

loose electrode impacts on the measurement in accuracy and reproducibility. 

In the bacterium sensing study, Fluctuation-Enhanced Sensing (FES) with 

commercial Taguchi sensors was used to detect and identify bacteria by sensing their 

odor. In the initial phase of the study [5], the possibility of detecting bacteria by sensing 

their odor via two FES modes (Regular sensing (RS) and Sampling-and-hold (SH)) with 

commercial Taguchi sensors was verified.  

In this study, two devices (non-portable and portable devices) and two methods 

of analysis (spectral data obtained by the power spectrum analyzer and spectral data 

converted from the time data) were used. As a result, the non-portable device in 

sampling-and-hold mode and the spectral data converted from time data can improve the 

sensitivity, selectivity and reproducibility of sensors. 

Lastly, the simple method to generate continuous and binary patterns extracted 

from measurement data based on the spectral slopes in different frequency ranges at 

Fluctuation-Enhanced Sensing was proposed in Chang et al, 2010 [6]. As a result, only 

the binary pattern of sensor SP 32 in sampling-and-hold mode performs perfect 
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repeatability. This new type of signal processing and binary pattern recognition can be 

implemented with a microprocessor-free system using building elements of analog 

circuitries and a few logic gates with ultra low power consumption. 
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 APPENDIX 

 

Published Paper 1: Vibration-Induced Conductivity Fluctuation Measurement for 

Soil Bulk Density Analysis 

 

The measurement of Vibration-Induced Conductivity Fluctuations (VICOF) was 

proposed to obtain the information about the bulk density and other parameters of soils. 

The measurement setup, based on mechano-electrical-transport method, can measure soil 

porosity and bulk density non-destructively, which is demonstrated on clay and fine sand 

soils using blade and cylindrical electrodes. 

 

 

 

 

 
_____________ 
*Reprinted with permission from “Vibration-induced conductivity fluctuation 
measurement for soil bulk density analysis” by A.Sz. Kishné et al, 2007, Fluctuation and 
Noise Letters, 7(4), L473-L481, Copyright 2007 by World Scientific Publishing 
Company. 
*Reprinted with permission from ” Theory and techniques for vibration-induced 
conductivity fluctuation testing of soils” by H.C. Chang, et al, 2008, Fluctuation and 
Noise Letters, 8(2), L125-L140, Copyright 2008 by World Scientific Publishing 
Company. 
*Reprinted with permission from ” Fluctuation-enhanced sensing of bacterium odors” by 
H.C. Chang, et al, 2009, Sens. Actuators, B, 142, 429-434, Copyright 2009 by Elsevier 
B.V. 
*Reprinted with permission from ” Binary fingerprints at fluctuation-enhanced sensing” 
by H.C. Chang, et al, 2010, Sensors, 10(1), 361-373, Copyright 2010 by MDPI 
Publishing. 
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This paper [3] demonstrates the methodology and measurement setup and results 

of VICOF experiments and obtained the following conclusions. On one hand, the blade 

electrodes have better performance than the cylindrical electrode, because the blade 

electrodes have less set-up noise in the measurement of normalized vibration-induce 

conductivity (VICOF) On the other hand, the theory, computer simulations and 

measurement results in this paper elucidated that the ratio of transversal/longitudinal 

normalized VICOF is independent of moisture and salinity affects. Therefore, the 

moisture and salinity of soil samples do not affect the normalized VICOF signals. 

However, these experimental data have large scattering due to the loose and 

heavy contacts Therefore, the new methods and schemes were proposed in Chang et al, 

2008 [4] to improve the effect of the poor contacts  
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Published Paper 2: Theory and Techniques for Vibration-Induced Conductivity 

Fluctuation Testing of Soils 

 

This paper [4] presents the new methods, arrangements, and schemes of VICOF. 

The new VICOF model of electromechanical response illustrates the relationship 

between applied vibrations, stress and strain, resistance and resistance variation.  Based 

on the model, the new arrangements and schemes of VICOF for both the laboratory and 

field measurements were invented.  

The new arrangements are the four-electrode measurement with line or plate 

contacts; and the new schemes have vertical vibration and compression VICOF in the 

transversal directions of the current. The new arrangements and schemes provide two 

advantages. The applied force can be perpendicular to the current, and the exact value of 

the soil resistivity can be derived directly. Also, the vertical vibration and compression 

methods can minimize the loose electrode impacts on the measurement in accuracy and 

reproducibility. 
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Published Paper 3: Fluctuation-Enhanced Sensing of Bacterium Odors 

 

This paper [5] reveals the possibility of detecting and identifying bacteria by 

sensing their odor via of Fluctuation-Enhanced Sensing (FES) with commercial Taguchi 

sensors. Two FES modes were used in this study: the heated and the sampling-and-hold 

working modes.   

The simplest method and the measurement and analysis of power density spectra 

were used. The fluctuations of the electrical resistance of these sensors working in two 

FES modes during exposure to different bacterial odors, Escherichia Coli and Anthrax 

Bacillus subtilis, were measured and analyzed. The results indicate that the Taguchi 

sensors used in these fluctuation-enhanced modes can be effective tools of bacterium 

detection and identification even when they are utilizing only the power density 

spectrum of the stochastic sensor signal. 

The advanced stochastic signal analysis at the time data level [27] is a powerful 

tool and has potentials to further enhance the detectability of this type of sensing and 

will be the subject of subsequent studies. 
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Published Paper 4: Binary Fingerprints at Fluctuation-Enhanced Sensing 

 

This paper [6] presents the method to generate and test the highly distinguishable 

and robust types of the binary patterns from the power density spectra based on the 

spectral slopes in different frequency ranges obtained at Fluctuation-Enhanced Sensing 

of bacterial odors. These binary patterns can be considered as the binary "fingerprints" of 

odors. These findings were demonstrated by single-sensor (commercial semiconducting 

metal oxide (Taguchi) sensor) experiments recognizing the situations of empty chamber, 

Tryptic Soy Agar (TSA) medium, or TSA with bacteria with 100% success rate and 0% 

false alarm rate. A microprocessor-free pattern recognizer was also designed to generate 

these binary patterns, including analog circuitries of ultra-low power consumption and a 

Boolean logic based pattern recognizer with negligible power consumption.  
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