
 

 

 

 

THE INCREMENTAL BENEFITS OF THE NEAREST NEIGHBOR FORECAST OF 

U.S. ENERGY COMMODITY PRICES 

 

 

A Thesis 

by 

OLGA KUDOYAN  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
  

MASTER OF SCIENCE 

 

 

December 2010 

 

 

Major Subject: Agricultural Economics 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Incremental Benefits of the Nearest Neighbor Forecast of U.S. Energy Commodity 

Prices 

Copyright 2010 Olga Kudoyan 



 

THE INCREMENTAL BENEFITS OF THE NEAREST NEIGHBOR FORECAST OF 

U.S. ENERGY COMMODITY PRICES 

 

A Thesis 

by 

OLGA KUDOYAN  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

Approved by: 

Co-Chairs of Committee,    James W. Richardson 
                                             Henry L. Bryant 
Committee Member,           Michael F. Speed 
Head of Department,           John P. Nichols 

 

 

December 2010 

 

Major Subject: Agricultural Economics 

 

 

 



iii 
 

ABSTRACT 

The Incremental Benefits of the Nearest Neighbor Forecast of U.S. Energy Commodity 

Prices. (December 2010) 

Olga Kudoyan, B.S., Armenian State Agrarian University 

Co-Chairs of Advisory Committee: Dr. James W. Richardson,  
                                                Dr. Henry L. Bryant 

 

This thesis compares the simple Autoregressive (AR) model against the k-

Nearest Neighbor (k-NN) model to make a point forecast of five energy commodity 

prices. Those commodities are natural gas, heating oil, gasoline, ethanol, and crude oil. 

The data for the commodities are monthly and, for each commodity, two-thirds of the 

data are used for an in-sample forecast, and the remaining one-third of the data are used 

to perform an out-of-sample forecast. Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) are used to compare the two forecasts. The results showed that 

one method is superior by one measure but inferior by another.  Although the differences 

of the two models are minimal, it is up to a decision maker as to which model to choose. 

The Diebold-Mariano (DM) test was performed to test the relative accuracy of 

the models. For all five commodities, the results failed to reject the null hypothesis 

indicating that both models are equally accurate.  
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NOMENCLATURE 

 

AIC Akaike Information Criterion 

AR 

ARMA 

DKNAW 

Autoregressive 

Autoregressive Moving Average 

Dynamic K-Nearest-Neighbor Naïve Bayes With Attribute 

Weighting 

DM Diebold-Mariano 

k-NN k-Nearest-Neighbor 

MAE Mean Absolute Error 

MBR Memory-Based Reasoning 

MSE 

MSPE 

Mean Squared Error 

Mean Squared Prediction Error 

NYSE New York Stock Exchange Energy Index 
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SARIMA 

Root Mean Squared Error 
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STAR Smooth Transition Autoregressive 
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1. INTRODUCTION: THE IMPORTANCE OF RESEARCH 
 

For most people, the world is full of many opportunities to succeed. However, 

those opportunities would be more achievable if one has the ability to predict the future. 

Forecasting is the tool that makes the future more or less predictable and prepares people 

for upcoming changes.  

Forecasting has always been an important component of running businesses. 

Recently, business forecasting has been accomplished by using more scientific 

endeavors, with different theories and methods designed to forecast different types of 

data. Businesses have tried to focus on key factors in business production and 

extrapolate from available information to accurately project future costs, revenues, and 

opportunities. According to a survey by the Hudson Institute (an Ohio-based Answer 

Think Consulting Company that specializes in studies of business planning), for every 

billion dollars of revenue, the average business in the United States spends more than 

25,000 person-days on forecasting activities. 

Forecasts are very common in every industry. Even government agencies make 

predictions to support their operations. For instance, the Energy Information 

Administration (EIA) predicts that between 2008 and 2035 energy consumption will 

increase by 14%, with a 0.5% annual growth rate.  U.S. fuel consumption has 

significantly increased within the past 25 years, although the imports have decreased  

 
____________ 
This thesis follows the style of the American Journal of Agricultural Economics. 
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(EIA, 2010). In 2006, about 35% of U.S. oil and 30% of natural gas production was 

coming from Federal Lands (EIA, 2010). In contrast, over the next 10 years, it is 

projected that domestic production will increase by 47% for oil and 37% for natural gas 

(EIA, 2010). 

Certain industries are sometimes hard to predict because of their sudden changes. 

However, scientists have still found ways to deal with predicting behavior when there 

are difficult factors involved. For example, the rapid fluctuations in the price of oil in 

2008 surprised many people. However, Edward Morse (Managing Director of Louis 

Capital Markets) thinks this behavior is not unusual and that commodity markets are 

cyclical by nature, with a history filled by sudden turning points (Morse, 2009). Edward 

further comments that this behavior generally makes it difficult to forecast prices; 

however, he thinks that commodity markets will remain lower over the next few years 

than they have been over the past five years (Morse, 2009). 

According to Safavi (2000), there are three business forecasting models: cause-

and-effect, judgmental, and time series. The cause-and-effect model assumes a cause 

that determines an outcome. It shows that a similar cause in the future is likely to yield a 

similar effect. This model depends on historical data and also assumes that the cause-

and-effect relationship is more or less stable and can be quantified. On the other hand, 

the judgmental model attempts to forecast when there is no useful historical data. A 

business can use this model to project sales for a brand new product where the available 

historical data has become obsolete. 
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This thesis, however, concentrates on the third forecasting model: the time-series. 

The model makes forward projections based on the data’s historical performance. It 

utilizes the behavior of data patterns from the past and assumes it will continue similarly 

into the future. For this model, you only input the available historical data into the 

forecasting formulas, and it generates the desired predictions. This model has proven to 

be useful when forecasting based on historical data that has smooth and stable patterns. 

Even when jumps and anomalies occur, the time series model may still prove to be 

useful, as long as it is possible to account for the anomalies. 

As there is no reliable and widespread technology to utilize renewable energy 

commodities, the world market will continue to heavily depend on non-renewable 

energy commodities. Among those non-renewable commodities are natural gas, heating 

oil, gasoline, and crude oil, which have always been an important factor for the 

economy. Major newspapers cover stories about those commodity prices on a daily 

basis. Moreover, the linkage of the commodity prices to the other macroeconomic 

variables, such as stock market index and exchange rates, also draws attention by mass 

media. For example, Standard & Poor (S&P) reported in 2008 that it expected the 

average U.S. household to spend 6.7% of its income on energy that year – the same 

portion spent on average in 1971. In the early 1980s, in contrast, energy costs accounted 

for 7.9% of U.S. household income. Also, historically, increases in economic activity 

have correlated strongly with increased energy use. In recent years, there has only been a 

weak connection between economic growth and consumption of energy in the United 

States. Gross Domestic Product (GDP) has grown rapidly while energy use has grown at 
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relatively modest levels, particularly since the mid-1980s (Clausssen et al., 2001). Major 

news agencies cover stories about energy commodity prices and their corresponding 

stock markets on a daily basis. For instance, Bloomberg covers the New York Stock 

Exchange Energy Index (NYSE) on a daily basis. The NYSE Energy Index was 

introduced to give investors and issuers a more detailed summary of the energy segment 

inside the NYSE marketplace. 

In this thesis, two well-known forecasting techniques are compared: simple 

Autoregressive (AR) and k-Nearest-Neighbor (k-NN) approaches. The thesis will show 

the incremental benefits of k-NN over the AR model. More specifically, we will see how 

the k-NN forecasting approach can be used in forecasting multivariate distributions and 

how accurate the results are for a nonparametric model. The research concentrates on the 

price forecasts of five energy commodities: natural gas, crude oil, heating oil, gasoline, 

and ethanol. 

The results of this thesis can be used in real world situations in several ways. 

First, those who have investments in any of the energy commodities will be interested in 

the outcome, since the thesis will be forecasting future prices for actual commodities. 

Second, the industry representatives will be interested in the results because they can 

make adjustments to their business strategies by forecasting with better methods 

presented here. Finally, the thesis will affirm the usefulness of the k-Nearest-Neighbor 

forecasting method and generate grounds for further studies. 

In the Literature Review section, I will discuss some of the most relevant 

research related to different forecasting methods, including nearest neighbor forecasts. In 
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the Data section, I will describe the data on which my research is based and what 

software was used to make various calculations and analyses. In the Models section, I 

will describe the two types of forecasting models utilized in my thesis: AR and k-NN. In 

this section, I will further describe the specific methodologies used in each model. In the 

Analysis of Forecasting Accuracy of Models, I will describe the technique used to test 

the relative forecasting accuracy of the models. Finally, in the Results section, I will 

compare the calculation results in both AR and k-NN models and make conclusions and 

necessary recommendations. 
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2. LITERATURE REVIEW 
 

The Autoregressive (AR) model was first introduced by G. Undy Yule in 1926, 

which led to an approach of time-series investigation. According to Yule, the past 

observation of a variable can explain its movements in the present.  Since the 

introduction of this AR(p) model, the study of time-series analysis started to develop 

thoroughly. The use of AR models became more practical in the mid-1960s when 

computer technologies advanced. Nowadays, the AR(p) model is used in the analyses of 

fundamental higher econometrics. The most widely used tests, such as stationary, 

Granger causality, and cointegration, are built on the basis of the AR(p) model (Liew et 

al., 2003). 

Continuous change in energy commodity markets has raised an increasing 

interest for investigation of different econometric models that will provide trustworthy 

price forecasts. Cuaresma et al. (2004) has explored electricity spot-price predictions by 

exclusively concentrating on linear univariate models, such as autoregressive moving 

average models, models with unobserved components and with jumps. As a base model, 

the paper used the simple first order autoregressive process [AR(1)]. The second model 

concentrated on the systematic seasonal variation that was found in electricity prices.  

The intercept in the base models is changing based on the hour of the day, day of the 

week and month of the year.  The third model considered time-varying intercept using an 

autoregressive moving average model. The fourth model, which was crossed ARMA 

with time-varying intercept, was implemented to achieve more flexibility by allowing 

electricity spot-price in hour z to depend upon price realizations in hour s≠z. The fifth 
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model used in the paper is ARMA process with jumps. This model was used because 

one of the notable characteristics of electricity spot prices is the percent of price spikes. 

The last model used is an unobserved components model.  Using the above mentioned 

models, Cuaresma et al. (2004) performed 168-hour-ahead (one week) forecast. Two 

measures of forecast error Root Mean Squared Error (RMSE) and Mean Absolute Error 

(MAE) were used. The Diebold-Mariano test was applied to measure the significance of 

observed differences in forecasting power across models. The results showed that an 

hour-by-hour modeling strategy significantly improved the forecasting performance of 

linear univariate time-series models and assessing the process of arrival of price spikes 

can also result in better forecasting.  

 Staudenmayer and Buonaccorsi (2005) have addressed the estimation of the 

parameters in linear AR models in the presence of additive and uncorrelated 

measurement errors. They have established the asymptotic properties of naive estimators 

which ignore measurement error. The methods reviewed by the group included ones that 

required no information about the measurement error variances and compared the 

various estimators both theoretically and via simulations. While reviewing existing 

estimators that account for measurement error, the team has developed new estimators. 

Staudenmayer and Buonaccorsi (2005) have set the stage for two major research areas. 

First, they call for further development of procedures for valid inferences regarding the 

AR parameters in various sample sizes where measurement error exists. The current 

estimators all have substantial small-sample bias, which is an important consideration. 

The team also thought that another area for future study would be to take advantage of 
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an estimated equations-based approach in situations where the measurement errors are 

correlated. 

Pekarova and Pekar (2006) studied the analysis of natural fluctuations and long-

term trends in annual discharge time-series of the Danube River and a stochastic 

prediction of Danube River discharge at the Turnu Severin station for the next 20 years 

using linear autoregressive (AR) models. The models used included one based on 

harmonic functions (hidden periods) and linear autoregressive models (AR), 

autoregressive moving average (ARMA) and seasonal autoregressive integrated moving 

average model (SARIMA). To obtain the long-term annual discharge prediction, the 

team used the following steps: (1) take the time-series of logarithms of annual discharge 

and center it; (2) remove the harmonic component from the time-series; (3) remove the 

autoregressive component from the residuals; (4) test the correctness of the model 

specification; and (5) predict the annual discharge, to specify the appropriate confidence 

intervals. To choose the appropriate model, the team used sum of squared residuals and 

Akaike Information Criterion (AIC). 

Several authors have compared the forecasting performance of a simple AR 

model to more complex forecasting methods. Liew et al. (2003) have tested the 

adequacy of the linear autoregressive (AR) time-series model. Their study was based on 

the real exchange rates of Asian economies. The team identified two important findings. 

First, they found the research showed empirical evidence that the AR model is 

inadequate in characterizing the behavior of Asian real exchange rates. Second, they 

found that the behavior of the real exchange rates’ linearity has been formally rejected in 
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favor of the nonlinear Smooth Transition Autoregressive (STAR) model. They further 

found that, taken together, the supremacy of nonlinearity over linearity in the data 

generating process of those real exchange rates warrants the use of a linear framework in 

empirical modeling. The group thought that the statistical testing procedures in the 

context of Asian exchange rates could amount to inappropriate policy conclusions. The 

researchers found that estimating Exchange Rates Model in the form of linear 

autoregressive (AR) and disregarding the presence of nonlinearity will yield a wrong 

model, and thereby provide incorrect policy recommendations. Therefore, they 

concluded that the linear model is valid only when the formal linearity test result fails to 

provide evidence on the existence of nonlinearity. 

Christini et al. (1995) employed parametric models to determine if a more 

appropriate heart rate (HR) dynamics modeling structure existed. The linear AR, 

autoregressive moving average (ARMA), the nonlinear polynomial autoregressive 

(PAR), and bilinear (BL) models were used for an HR time-series obtained from nine 

subjects. Model orders were determined by the Akaike Information Criteria (AIC). The 

researchers found that the BL model best represented the heart rate (HR) dynamics, as its 

residual variance was significantly (p < 0.05) smaller than that of the corresponding AR 

model for nine out of nine data sets. They observed that in all cases, smaller residual 

variance than either the ARMA or PAR models were present in the BL model. 

Additionally, the team found that the BL model’s residual variance was found by the 

Priestley statistic to be significantly smaller than that of the AR model. The team 

observed that the residual variances of the ARMA and PAR models were significantly 
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smaller than those of the AR model fits for fewer subjects, and for those subjects the 

reduction in residual variance was less than that seen for the BL model. Researchers 

concluded that the apparent superiority of the nonlinear BL model suggested that future 

HR studies should put greater emphasis on nonlinear analysis. 

The k-Nearest-Neighbor method was invented six decades ago and was analyzed 

by statisticians in the early 1950. k-NN was implemented in the early 1960s and was 

widely used in the pattern recognition field for more than three decades. The whole idea 

behind k-NN is the memory-based reasoning (MBR), which is the result based on 

similar situations that occurred in the past. The model selection using k-NN method is 

based on past experience. The center of the k-NN technique is the similarity: how is the 

new situation similar to the one that occurred in the past? Another key concept related to 

the k-NN method is that it combines the information from its neighbors (Berry and 

Linoff, 2004).   

Several researchers tested the performance of a comparatively new method, k-

Nearest Neighbor forecast, with respect to widely used methods such as simple 

Autoregressive, GARCH and ARIMA. For example, Bordignon and Lisi (2001) 

presented a technique to measure prediction intervals for chaotic data that were both 

clean and noisy. Their work is based on point forecasts and employs the simple idea of 

using nearest neighbors to give an estimate of local variability. Combining the empirical 

distribution of the prediction error and the nearest neighbor forecast allowed them to 

build prediction intervals. The procedure in the paper does not take into consideration 

any distributional assumption because it is basically computational.  The authors 
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estimated local variance and percentile of the prediction error distribution using the 

nearest neighbor approach. Due to the approach used in the paper, it has become 

possible to forecast values with a given probability. The paper demonstrated the use of 

the nearest neighbor approach and the empirical distribution of the prediction error to 

estimate prediction intervals. The results were encouraging because, although the 

method was really simple, it worked very well with noise-free data and showed 

promising results for noisy data.    

Several problem areas were discovered by researchers when using k-NN 

regression and different approaches were discussed to overcome those problems. Jaditz 

and Riddick (2000) analyzed the general algorithm for a k-Nearest-Neighbor forecast. 

Their paper emphasized how useful the k-NN regression is, but at the same time 

pinpoints the major decisions that a researcher should make using the approach, as well 

as discusses several problem areas. Jaditz and Riddick (2000) estimated a multivariate 

distribution. They also provided a more flexible code for k-NN than the one which came 

with standard packages and showed numeric examples of how to use the code. 

Similarly, Jiang et al. (2009) have presented three main weaknesses of using the 

k-Nearest-Neighbor approach and have come up with three approaches for solving the 

issues. After many data comparisons, which were done in four groups, in three of the 

groups certain k-NN algorithms were compared. Lastly, in the fourth group, the hybrid 

approach was compared to each of the approaches. The three weaknesses of using the k-

NN approach that the group identified were: (1) the Euclidean distance function which 

was used to measure the difference or similarity between two instances, (2) the 
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neighborhood size being assigned as an input parameter, and (3) the simple voting being 

the base of the class probability estimation. The classification accuracy was obtained 

using cross-validation. Various k-NN algorithms were tested on the same training sets. 

They also were evaluated on the same test sets. The group also made comparisons of 

related k-NN algorithms through a two-tailed t-test with a 95% confidence level. After 

their review of some of the k-NN algorithms, the research group formulated a hybrid 

algorithm called “dynamic k-Nearest-Neighbor naïve Bayes with attribute weighting” 

(DKNAW). 

Azmi et al. (2010) in his research compared the performance of five forecasting 

models to forecast flood and drought warning with the real time operation. Based on 

several research studies that were suggesting the data fusion approach showed a better 

forecast result than using a single forecast approach, Azmi et al. studied a comparative 

measurement of data fusion including simple and weighted averaging. He did two case 

studies and in each case study used multiple linear regression, non-parametric k-Nearest-

Neighbor regression, conventional multilayer perception, and an artificial neural network 

improved for extreme value forecasting. Azmi et al. found that using a mixture of data 

could considerably improve the forecast rather than using a single model. Besides the 

fact that it is better to use fusion data, he also came to the conclusion that data fusion by 

the k-NN method outperforms common methods by improving forecasts through 

decreasing the bandwidth of combined forecast and error of point forecast in both case 

studies.  

http://p8331-polychrest.tamu.edu.lib-ezproxy.tamu.edu:2048/V/CSBJ6B29CUPPKU2L6YS9EJV3IT5CT248T58F7EE1HSB73QJT56-21468?func=quick-3&short-format=002&set_number=018846&set_entry=000001&format=999
http://p8331-polychrest.tamu.edu.lib-ezproxy.tamu.edu:2048/V/CSBJ6B29CUPPKU2L6YS9EJV3IT5CT248T58F7EE1HSB73QJT56-21468?func=quick-3&short-format=002&set_number=018846&set_entry=000001&format=999
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The k-NN method has also enjoyed a few applications in economics. Barkoulas, 

Baum, and Chakraborty (2003) employed a nonlinear, nonparametric method to model 

stochastic interest rates. They applied a nonlinear autoregression to the data series by 

using a locally weighted regression, or loess, estimation model. Locally weighted 

regression is a way to estimate regression surface using multivariate smoothing 

procedures; it is an alternative way of calculating moving averages by locally fitting the 

function of independent variables. This is a nearest neighbor method and estimates out-

of-sample forecasting performance with a measure of root mean squared error (RMSE). 

They compared the forecasting performance of the nonparametric fit to the performance 

of two linear models: the autoregressive (AR) model and the random-walk-with-drift 

model.  The paper used nonstructural and univariate approaches, letting the data 

determine the regression function. The research approach was based on the historical 

behavior of individual securities’ yield series to model nonlinearities. The paper 

provided evidence that the nonparametric fit was generated using the locally weighted 

regression was significantly improved compared to the simple linear model, which was 

chosen as a benchmark.  

Gençay (1999) applied two methods which captured the nonlinearities in the 

conditional mean in studying how to forecast the spot foreign exchange rate returns. 

Those methods were the nearest neighbor and feedforward network regressions. The 

paper study concentrates on the linear and nonlinear predictability of the daily spot 

exchange rates from the simple forms of technical trading rules, also called moving 

average rule. To analyze the predictability of spot foreign exchange rate returns, Gençay 
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(1999) looked at the simple technical analysis methods of past sell-buy signals. Here, the 

random walk and the GARCH(1,1) models were used as benchmarks.  The number of 

neighbors was chosen based on the cross-validation method which minimizes the mean 

squared error (MSE). Gençay (1999) compared two nonparametric and two parametric 

conditional mean estimators. The results showed that in contrast to feedforward, the k-

Nearest-Neighbor regression (nonparametric model) provided significantly correct signs 

and turned out to be a more accurate forecasting method. The Diebold-Mariano test was 

applied in the end to prove the statistical significance of the predictions. In contrast to k-

NN regression, the benchmark models did not generate significant sign predictions. The 

Diebold-Mariano test showed statistically insignificant results for parametric models. 

Mizrach (1992) implemented a multivariate setting for nonlinear modeling of 

exchange rates in the European Monetary System (EMS). Three European currencies 

(franc, lira, and mark) were used at a daily frequency throughout the whole floating 

exchange rate period to forecast their multivariate nonlinear model. For that purpose, 

nearest neighbor generalization was employed. He found that exchange rates were 

greatly affected by multivariate information. He also found that the multivariate model 

performed much better than a univariate model in- and out-of-sample. Mizrach saw a 4-

5% reduction in mean squared errors (MSE) from a range of about 750 returns daily. 

Using his own test statistic (from 1991), Mizrach concluded that the MSE was not 

statistically significant. Finally, to test his conclusion, the forecast was cross-validated 

by reversing the estimation and forecast samples. He saw that the model forecasting 

better into the late 1980s was predicting poorly backwards into the 1970s. Mizrach 
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concluded that the time-series representation for the 1980s was very different from the 

1970s.  

Nowadays, numerous papers investigate how accurate are the results of the 

forecasting methods that are being tested using different test statistics.  Diebold and 

Mariano (1995) proposed tests of the null hypothesis of no difference in the accuracy of 

two competing forecasts. Their approach was based on the predictive performance and 

accuracy measures that can be tailored to a particular decision-making situation. Diebold 

and Mariano (1995) emphasized that the economic loss associated with a forecast may 

be poorly assessed by the usual statistical metrics. For example, forecasts are used to 

guide decisions, and the loss associated with a forecasting error is induced directly by 

the nature of the decision problem at hand. The team has stressed that their tests are valid 

for various types of loss functions. For instance, the loss function does not need to be 

quadratic, nor symmetric or continuous. The various tests utilized by the team have been 

applied to exchange rate forecasting. The series that Diebold and Mariano (1995) 

forecasted, and measured monthly, was the three-month change in the nominal 

Dollar/Dutch guilder end-of-month spot exchange rate. They reviewed two forecasts: the 

"no change" (0) forecast associated with a random-walk model, and the forecast implicit 

in the three-month forward rate. As for the point estimates, the random-walk forecast 

was found to be more accurate. The mean absolute error of the random-walk forecast 

was observed to be lower than the forward market forecast. They concluded that forecast 

errors can be non-Gaussian, non-zero mean, and at the same time correlated. Several 
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studies consider the question of which test statistics is better and what improvements 

should be made to overcome shortcomings of each test.  

Harvey et al. (1997) studied the comparison of prediction records given two 

sources of forecasts of the same quantity. They compared the behavior of two tests and 

of modifications of those two tests to overcome the shortcomings in the original 

formulations. The two tests were Morgan-Grange-Newbold and Diebold-Mariano. They 

found that the Morgan-Granger-Newbold test was considerably less flexible than the 

Diebold-Mariano test, but it still had useful properties in one particular case: the null 

distribution of the statistics is known exactly in finite samples in the presence. However, 

as the Diebold-Mariano test showed, the Morgan-Granger-Newbold test can be quite 

over-sized in the case of two-step-ahead prediction even when the samples are really 

small and quite weak, and especially when heavy-tailed distribution of the forecast errors 

is present.  Like the Morgan-Granger-Newbold test, the Diebold-Mariano test also 

showed discouraging results, but in simulation. They analyzed the performance of the 

two tests (Diebold-Mariano vs. Morgan-Granger-Newbold), made modifications to the 

tests to overcome the shortcomings in the original formulations and found that the 

modified test had better performance than the originals. 

In the same way, Robledo and Zapata (2003) in their article provided an 

experimental evaluation of two tests: Diebold-Mariano (DM) and Stock and Watson1 

(SW), for choosing a forecasting model of quarterly data from the wheat market and 

                                                             
1 Common trends test for the possibility of cointegration among nonstationary vector processes of 
integrated order one (Robledo et al., 2003) 
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evaluated how those models perform when small samples are used in an out-of-sample 

forecast by implementing the Monte-Carlo experiment. They mention that the model 

choice is usually based on the lowest MSE. Models are updated using fixed, rolling, and 

recursive schemes.  In their paper, they used the Dickey-Fuller test to evaluate unit-

roots. They concluded that the tests of differences in MSEs showed that one model was 

not better than the other. It was especially true for wheat exports, where the assumption 

of even 15% would not warrant that a new model should be adopted. The Monte Carlo 

experiment showed that the Diebold-Mariano test has better size, but the Stock and 

Watson test has better power. The Stock and Watson test dominated over the DM test 

even at the 5% level. They advised that the DM test would be a better criterion choice 

for forecasters who want to be conservative in evaluating two alternative forecasting 

models.  
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3. DATA 

The research concentrates on five energy commodity prices. These commodities 

are natural gas, ethanol, crude oil, heating oil, and gasoline. The data for each 

commodity are monthly. Natural gas data covers January 1976 to April 2010 of U.S. 

average wellhead price, which was estimated from the New York Mercantile Exchange 

(NYMEX) futures closing price of near-month delivery of Henry Hub, and prevailing 

cash market prices (spot prices) at 5 major trading hubs: Henry Hub, LA; Carthage, TX; 

Katy, TX; Waha, TX; and Blanco, NM.  The prices are expressed in dollars per thousand 

of cubic feet. Ethanol data covers from June 1989 to March 2010. The price data used 

here is expressed in dollars per gallon and are based on the average of the prices from 33 

U.S. cities.2  Crude oil data covers January 1986 to June 2010. The data are monthly. It 

was taken from Cushing, OK WTI3 Spot Price FOB and are expressed in dollars per 

barrel. Heating oil data covers the period June 1986 to June 2010.  The data are based on 

New York Harbor No. 2 Heating Oil4 Spot Price FOB and are expressed in cents per 

gallon. Gasoline data covers December 2005 to June 2010. The data prices are based on 

                                                             
2 Phoenix, Los Angeles, San Francisco, Denver, Bettendorf, Cedar Rapids, Boise, Chicago, Decatur, 
Pekin, Indianapolis, Kansas City, Wichita, Louisville, Lexington, New Orleans, Detroit, Niles, 
Minneapolis, Fargo, Lincoln, Omaha, Albuquerque, Las Vegas, Upstate NY, Cincinnati, Portland, 
Memphis, Nashville, Houston, Richmond, Seattle, Milwaukie. (Hart’s Oxy Fuel News, 2010)   
3 West Texas Intermediate, also known as Texas Light Sweet. WTI is produced in Texas and South 
Oklahoma. Price from WTI serves as a reference for many other crude streams and is traded in Cushing, 
Oklahoma. WTI crude oil is used as a benchmark in oil pricing and is the primary commodity of 
NYMEX’s future contracts. (EIN, 2010) 
4 A distillate fuel oil for use in atomizing type burners for domestic heating or for medium capacity 
commercial-industrial burner units, with distillation temperatures between 540-640 degrees Fahrenheit at 
the 90-percent recovery point; and the kinematic viscosities between 1.9-3.4 centistokes at 100 degrees 
Fahrenheit as defined in ASTM Specification D396-92. (EIN, 2010) 
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New York Harbor Conventional Gasoline5 Regular Spot Price FOB and are expressed in 

cents per gallon.  

All the data were taken from the Energy Administration’s website except for 

ethanol, which was taken from Hart's Oxy-Fuel News. The time periods were chosen 

based on data availability. Further, within each commodity’s timeframe, the sample 

period is split into two sections. The first section accounts for two-thirds of the data and 

is used for the in-sample forecast. The second section accounts for the remaining one-

third of the data and is used for the out-of-sample forecast.  Two types of models will be 

generated to perform one-step-ahead and two-step-ahead forecasts. Those models are the 

simple Autoregressive (AR) model and the k-Nearest-Neighbor (k-NN) model.  The 

results from both models will be compared to determine which model forecasts better. 

 

 

 

 

 

 

 

 

 

 

                                                             
5 Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes 
reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. 
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4. MODELS 

The thesis analyzes the simple Autoregressive (AR) model in comparison to k-

Nearest-Neighbor (k-NN) forecast; thus two types of models are performing point 

forecast evaluation. The first model evaluated in the thesis is the simple AR model. As 

mentioned in the Data section of this thesis, for each method, twelve models will be 

evaluated. Each of these twelve models will have four sub-models. For instance, for the 

first sub-model of Model 1 (Model 1-1), we have one lag with an intercept. For Model 1-

2, we have one lag without an intercept. For Model 1-3, we have one lag with intercept 

and seasonal harmonic variables. For Model 1-4, we have one lag without an intercept 

and with a seasonal component. The mathematical formulas of these four sub-models are 

illustrated below: 

                             

                         

                                       

                                   

The same convention of intercepts and seasonality applies for Models 2 through 

12. The only difference is the number of price change lags (e.g., two lags for Models 2-

1, 2-2, 2-3, 2-4; three lags for Models 3-1, 3-2, 3-3, 3-4; and so on). 

4.1 AR Model 

After the data preparation is over, we are moving to the basic part of the research. 

The first thing we need to do is a simple OLS regression.  
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Consider Model 1-1. The regression function for the model has an intercept and 

one lag. Mathematically, the regression equation can be written as follows: 

     ̂                   

where      ̂ is the predicted price in period t,    is the intercept,    is the regression 

coefficient,          is the change in the price, and    is the error term. The primary 

purpose of regression analysis is to predict the value of dlnP, given the knowledge of its 

lags. The regression analysis returns the values for the intercept    and the coefficients 

        (which are unknown parameters). For a natural gas in-sample forecast, we 

consider a sample of 275 observations, i.e., two-thirds of the whole data. Certainly, the 

equation will not exactly fit our sample data; deviations (errors) will appear.  The 

variable    in the models is assigned as the error term where the mean value of    is zero: 

   ̂            ,       ̂       

As a result, the average difference between the observed values (ΔPt) and the 

predicted values (   ̂) will be zero.  

Certain assumptions are necessary to calculate    and   .  We can use the least 

squares method to calculate the unknown parameters if the error on the models (ε1, ε2, 

ε3,…, εt) are random and distributed independently. The Markov theorem states that    

and    are the BEST unbiased linear estimates. BEST means that the variance of the 

error terms is at minimum. 

For Model 1-1 and Model 1-2, we use simple linear regression. The formulas 

used for these models to calculate the coefficient and the parameter are similar to those 

of simple linear regression.  
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According to Brennan (1960), to find the values for    and   , we should first 

solve the following pair of normal equations:6 

(1)                       

(2) (             )                 (       )
  

Then, we multiply (1) by ∑dlnP and (2) by t and subtract (1) from (2) to eliminate    

and find the value for   , thus 

   
                                

   (       )  (        ) 
 

 
After substituting this value for dlnP_lag1 in (1), we get the value for   :  
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Dividing both sides of each equation by 2 and combining like terms gives 
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(Brennan, 1960) 
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After the value of the constant and the slope coefficient were calculated, we 

substituted them into the Model 1-1 regression formula. Given the values for     (   ) , 

this equation provides the estimated values of      ̂. 

Above was the calculation of the constant and the slope coefficient given simple 

linear regression. For the remaining of the models Model 1-3 through Model 12-4, we 

cannot use simple linear regression equations to calculate the unknown parameters; thus, 

we use the equations for multiple linear regression. 

The multiple linear regression method is different from the simple regression in 

that it can have two or more explanatory variables for calculating the predicted values. 

Consider the case of Model 2-1: 

     ̂                               

As in the case of simple linear regression, the calculated values of the constants 

      and    give the BEST unbiased linear estimates of dlnPt (Brennan, 1960). In the 

formula shown above,    is the intercept, and    and    are the regression coefficients. 

The error term (        ̂       ) is considered to be random with a mean of zero. 

As in the case of simple linear regression, here we also use the method of least squares. 

Because we are using linear functions of two variables (dlnPlag1 and dlnPlag2), we are 

dealing with three constants and three normal equations:  

( )                                     

( )                                      
                      

 ( )                                                        
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The procedure utilized to arrive at the above normal equations is the same as in Footnote 

6. 

To solve this system of equations for       and   , we first treat two of the 

equations, for instance,  (3) and (4), to eliminate one variable (  ). Next, we treat 

equations (4) and (5) together and multiply the members of equation (5), so that we 

again eliminate    (Brennan, 1960).Next, we will get two equations with two unknown 

variables.  We have already shown the procedure of solving two equations with two 

unknown variables. We then calculate the value for   , substitute the calculated value 

into either of the equations (4) or (5), and get the value for   . We can obtain values for 

   after substituting the values for    and    in any of the three equations above. As a 

result, we end up with all the values for the unknown parameters.  

Once the values for the unknown parameters are calculated, we are able to 

calculate fitted values for the in-sample portion of our forecast (    ̂). After getting the 

summaries for all 48 models, we can move forward to AIC calculations to select the best 

model. Refer to Appendix A for the R code. 

4.1.1 AIC Calculations and Model Selection 

After the regression results are obtained, we need to measure the goodness-of-fit 

of our models. Akaike Information Criterion (AIC) will be used to make the selection 

among the models. When using AIC, the model with the lowest AIC score is considered 

to be the best. So, we estimate each model and calculate the AIC score for each. These 

calculations will make use of all of the observations in the initial sample.  AIC 

calculations are based on the projected values (i.e., "    ̂") and actual observed values 
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("dlnP") of the dependent variable for all observations in the initial sample (except for 

the omitted variables due to the lags in the models). Since the most lags we considered is 

12, we calculate the AIC for all models being evaluated using observations dlnP14 

through the end of the in-sample-forecast. We lose one observation due to differencing 

and 12 observations due to AR lags. Thus, a total of 13 observations are lost. An 

important point here is that we need to use the same number of residuals across different 

models. If we use different numbers of residuals across different models, the models 

with more observations/residuals in the sum of squared residuals will look worse simply 

because they have more residuals being summed. When calculating AICs, we use actual 

observations of dlnP and the projections (    ̂). 

The formula for AIC calculation is: 

            (
   

 
)  

where p is the number of parameters and changes for each model;  n is the number of 

observations (same for each model); and RSS is the sum of squared residuals 

     ∑   
  

 

   

  
    

      
    

where         ̂        (Akaike, 1981). 

Once the AIC scores for all the 48 models are calculated, we chose the model 

with the lowest AIC score for an out-of-sample forecast.  

4.1.2 One-Step-Ahead Out-of-Sample Forecast 

Model selection does not only depend on the goodness-of-fit but also on the 

degree of objectiveness of the analyses. If a model is the best in the in-sample forecast, 
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that does not necessarily mean that the out-of-sample forecast will be accurate. Hence, 

many researchers are evaluating the performance of the best model from an in-sample 

forecast and an out-of sample forecast to help choose the best model. When we say out-

of-sample forecast, we mean that the predicted observations are not used for model 

fitting. The whole idea is that we divide the data into two sub-periods. As mentioned 

above, the first period includes only two-thirds of the data and is called estimation sub-

sample. The second period includes the remaining one-third of the data and is called 

forecasting sub-sample. Suppose we have N data points x1, x2, …, xN. The whole data 

are divided into two parts. The first part is {x1,…,xn} and the second part is {xn+1,…., 

xN}. Here, n is the initial forecast origin and n=2N/3. 

According to AIC scores, Model 3-4 was selected for natural gas, i.e., no 

constant, three lags with the seasonal component: 

                                                 

To perform one-step-ahead out-of-sample forecast, we need a rolling estimation 

window. Consider the natural gas example where the in-sample forecast ends at period 

275. To forecast observation 276, we will be using only information available through 

observation 275. Then, by incrementing the estimation period from 14 to 276, we will 

re-estimate the model and use those estimates and data trough observation 276 to 

forecast observation 277 and so forth. For the out-of-sample forecast, the same 

regression analyses are performed as for the in-sample-forecast. Refer to Appendix A for 

the R code. 
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4.1.3 Two-Step-Ahead Out-of-Sample Forecast 

Again, consider the case of natural gas. Since we are now doing a two-step-ahead 

forecast, we have prices not only for periods 14 to 275 but also for period 276. So, to 

perform a forecast, we need to take the forecasted price for period 276 and replace it 

with the actual price in period 276: 

               
̂  

The reason for the replacement is so that the next prediction, i.e., period 277, is 

based on the predicted value of the previous period instead of the actual value. The 

regression model for the natural gas two-step-ahead forecast will look like: 

       
̂           

̂                                         

where        
̂  is the two-step-ahead forecast and        

̂  is the predicted value from 

the one-step-ahead forecast. Refer to Appendix A for the R code. 

4.2 k-NN Model 

As was discussed in the Literature Review section, one of the central concepts of 

k-NN is Memory Based Reasoning (MBR). The biggest advantage of MBR is that it uses 

the data as is:  it does not account for the format of the record, which is the case in many 

other data mining techniques. The key ingredients of MBR are the distance function, the 

combination function, and the number of neighbors. The distance function is calculating 

the distance between any two records. The combination function combines results from 

several neighbors to give a prediction. 

There can be two different approaches to k-NN. In one case, the combination 

function is used, which classifies or categorizes the data into several categories by 



28 
 

assigning classification codes to the data. For example, “gender” is a categorical data. In 

another case, the data is continuous, and no classification is necessary.  

There are three ways to compute the distance function: Manhattan distance 

summation, normalized summation, and Euclidean distance. Most researchers use 

Euclidean distance, and it is used here as well. 

4.2.1 In-Sample Forecast 

As in case of the AR model and with the k-NN as well, we are using the same 

number of observations. There are two basic steps that we need to follow to calculate k-

NN: calculate the distance function and choose the number of neighbors. The minimum 

number of neighbors is 2, but more neighbors may give a more accurate result. In our 

research, we have considered the use of 5 to 40 neighbors and then decided on the best 

number of neighbors by calculating the MAE for each of the models.  Once the best 

number of neighbors is selected, we need to perform one-step-ahead and two-step-ahead 

forecasts. But before that, we need to do an in-sample k-NN forecast.  

For an in-sample forecast, the choice of RHS variables is based on the AIC 

scores for the AR model. The best model that was chosen based on the AIC scores for 

AR model was used in k-NN calculations. The AR and k-NN approaches that are being 

tested use the same information to generate forecasts. Thus, the regression function for 

the in-sample forecast is similar to the one for the AR in-sample forecast: 

                      
 
     for J=1,…,12 

Here, t=14,…, y, where y is the last in-sample forecast.  
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The fundamental part in k-NN is the selection of neighbors based on which the 

predicted values are generated.  One can always perform the analysis manually by 

gradually increasing the number of neighbors but it is a long process and using software 

would be very helpful. Before selecting the appropriate number of neighbors, we need to 

calculate the distance function. 

There are several methods that can be used to measure the distance between 

vectors but the most common distance function, which is also used in our code, is the 

Euclidian distance, which is defined as:  

(6)   ( ⃗  ⃗)  √ (     )  
       

where  ⃗ and  ⃗ are vectors of length m and xi is the ith component of vector  ⃗ (also called 

the base period). Despite its wide use, Euclidian Distance has two major weaknesses: 

(1) If one of the inputs has a wider range than the other, it can dominate the others. For 

example, if there are two vectors K and L, and K can take values from 1 to 100 and L 

can take values from 1 to 10, then K’s influence on the distance is bigger since it takes 

higher values. However, the value of 10 in L can be more influential than the values of 

100 in K (Kidron and Klein, 2007) 

(2) If the amplitude of changes in one of the attributes of each vector is significantly 

larger or smaller than that of the others, the distance function can reflect a wrong 

interpretation of changes in each attribute. For example, consider there are two different 

series: one measuring the speed of the wind, and the second the direction of the wind. 

Only when the speed of the wind is more than 40, is it considered a hurricane, while the 

wind direction can be from 0 to 360. The Euclidian Distance does not show that, 
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although 40 is a small number, it has a more important meaning than 360 (Kidron and 

Klein, 2007).  

To overcome these problems, researchers who are using Euclidian Distance need 

to use normalization. By normalization we mean that each attribute in the vector should 

be normalized based on its average and standard deviation. First, we should define: 

 ⃗  (          )          
     ̅

  
 

where   ̅ is the average of the attribute i, i=1,…,t, over all time-series elements, and    is 

the standard deviation. So, if we replace the above equation in (1), we will have the 

following:  

 ( ⃗  ⃗)  √∑(     ) 
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 √∑
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Now that we know how to calculate the distance, it is time to explain the logic 

behind the k-NN regression.  Consider natural gas data. Our in-sample forecast covers 

periods 14-275 and out-of-sample forecast covers periods 275-410. After the model 

selection, we need to decide on the number of neighbors. Assume that the base period is 

275. For the base period of 275, we are attempting to forecast the value of dlnP275 while 

the values for all the lags (3 lags for natural gas) are already available.  For each period 

before 275, we calculate the Euclidean distance from base value of each lag to each 

period’s value. Euclidean distance calculation for dlnPlag1 is:  

 (           
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗           

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  √(           
          

)  
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where f stands for periods 14 through 274.   After Euclidean Distance calculations are 

completed for all the lags in all periods, for each period, we average all the distances. 

The average Euclidean distance is:  

√(           
          

)
 

 √(           
          

)
 

 

 

 

 √(           
          

) 

 
 

where f stands for periods 14 through 275.  

Now we are ready to test and choose the appropriate number of neighbors for our 

model. To evaluate the appropriate number of neighbors, we consider possible number 

of neighbors from 5 through 40. Consider the case of 5 neighbors. Given the distances 

calculated above, we identify the periods with the 5 lowest distances. Then, for those 5 

periods, we average their corresponding dlnP values. The resulting average will be the 

predicted value of dlnP275 (the base period) or: 

    ̂  
      

 
   

 
 

where dlnPt  corresponds to the dlnPs of the 5 observations with the lowest distances and 

k is the number of neighbors considered.  Refer to Appendix A for the R code. 

By repeating the same process for neighbors 6 through 40, we end up with 36 

different predictions for dlnPt+1.  Then, we calculate MAEs for each of the 36 cases.  

The MAE is calculated using the formula:   

       
 

 
  |             | , 
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where n is the number of observations we are using for an in-sample forecast of k-NN, 

and               are the residuals from the model.  

The appropriate number of neighbors is chosen based on the lowest MAE. For 

natural gas, for example, it turned out that k-NN, which has 20 neighbors, has the lowest 

MAE. Thus, for the out-of-sample forecast, 20 neighbors were used.  

Unlike the AR model, in k-NN, the sample is rolled one observation forward and 

the second observation in the forecast sample is studied in the same manner as described 

for the first forecast observation above. Thus, new k-NN predictions are never based on 

the old ones. This procedure is repeated until all observations are covered in the forecast 

sample.  

4.2.2 Out-of-Sample Forecast 

As in the case of the AR model, and for the k-NN model, we will do the out-of-

sample forecast to compare the results later. When performing the k-NN out-of-sample 

forecast, changes need to be done to the right-hand side and left-hand side variables. In 

contrast to k-NN in-sample forecast, where the left-hand side and right-hand side 

variables were including only in-sample portions of the data, out-of-sample forecasts 

include the whole data from period 14 to t. One-step-ahead and two-step-ahead forecasts 

are performed in the same way as in the in-sample portion of the research. The only 

difference is in the periods we are using for the forecast. Assume Bt  is the vector of 

attribute values for observation t (here attributes refer to the RHS variables), then, the 

predicted values (responses) from one-step-ahead and two-step-ahead out-of-sample 

forecasts would be conditioned on the values of attributes in time t: 
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          (  ),             (  ) 

where          stands for the responses or LHS  variables in one-step-ahead forecasts 

and         stands for the responses in two-step-ahead forecasts. The process of 

calculating the predictions is the same as in the in-sample forecast section of k-NN.  

After out-of-sample one-step-ahead and two-step-ahead forecasts are calculated, we 

need to calculate MAEs for both forecasts and compare the results to the ones from the 

AR model. Refer to Appendix A for the R code. 
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5. METHODOLOGY 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) methods are 

used in the thesis to compare the results from the AR and k-NN models.  

5.1 MAE Calculations  

In statistics, Mean Absolute Error (MAE) is calculated to determine how close 

the predicted values are to the actual values. The lower the MAE, the closer the 

forecasted values are to the actual observations. MAE is calculated as: 

    
 

 
∑|     ̂|

 

   

 

where n is the number of observations, wi represents the actual values,   ̂ is the 

forecasted values from the models, and t is the periods. 

5.2 RMSE Calculations  

Usually, it is better to explain the results of the research using Root Mean 

Squared Error (RMSE) rather than MAE. The reason for this is that the RMSE results 

are expressed in the same unit as the data and can be considered as a representative of 

the error size. MAE is also measured in the same unit as the actual data, but it is smaller 

to some extent than the RMSE. For some researchers, it is easier to understand the MAE.  

RMSE is calculated using the following formula: 

     ( )  √    ( ) 

where l is the number of forecast periods and MSE is the Mean Squared Error. In 

statistics, MSE measures the average of error square. MSE is calculated by the following 

formula: 
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where n is the number of observations and SSE is the Sum of Squared Errors, which is 

calculated using the following formula: 

    ∑(   ̅) 

 

   

 

where y represents the actual observations and  ̅ is the forecasted observations. Once the 

RMSE is calculated, we are ready for the k-Nearest-Neighbor forecast. After the k-NN 

forecasting results are ready, we will compare them with the results from the simple AR 

model and, based on the comparisons, we will make our conclusions. 

5.3  Analysis of Forecasting Accuracy of Models 

After making a prediction with a specific model, one needs to determine how 

accurate the forecasting results are because people use forecasts to make important 

decisions and, if the model is not accurate, those decisions will also be inaccurate. We 

use the Diebold-Mariano test to determine the relative forecasting accuracy of our 

models. The idea behind the test is that, given forecasts from two models and the 

associated forecast errors, we can estimate the expected loss or, in other words, its 

accuracy associated with each of the forecasts.  Here, the null hypothesis is that both 

models have the same forecast accuracy: 

       (   )   [ (   )] or            

      (   )   [ (   )]  or           
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where  (   )      (   ) are the functions of forecast errors from the AR and k-NN  

models, and dt is the loss differential;    [ (   )   (   )]. 

The quality of a forecast is judged on a particular loss function. Two popular 

forms of loss function are: squared error loss:  (   )  (   )
 , and absolute error loss: 

 (   )  |   |. In the research, we will be using the squared error loss function. 

The Diebold-Mariano test statistic is based on the loss differential explained 

above and is as follows:  

  
 ̅

(    ̂( ̅))
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 ̅

(    ̂̅  )
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Where     ̂ is the asymptotic variance of  ̅. 
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where k(.) is a kernel function and k(.) = 0; j > q, j =1,2, depending on the loss function, 

and  ̂  is the jth autocovariance function estimate.  

 ̅  
 

  
∑   

 

    

 

    ̅      ∑   

 

   

             (       ) 

where LRV is the estimate of the long-run variance for √  ̅, which is used in statistics 

because of serial correlation between the sample of loss differentials when h>1.  Under 

the null hypothesis of no significant differences, the DM test statistic is distributed as 
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standard normal distribution and the two-sided test is used as a default. The null 

hypothesis of equal predictive accuracy of DM shows 

  
   (   ) 

So, at the 5% significance level, we reject the null hypothesis if 

| |       

It is also possible to compute the one-sided test. Refer to Appendix A for the R code. 
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6. ESTIMATION AND RESULTS 

The calculations performed for this research were completed in R computer 

software. However, before inputting the data into R for forecasting, Microsoft Excel was 

used to better organize the data.  

First, numbers were assigned to the periods in our monthly data starting from 

one. Second, the data were logarithmically transformed. For commodity prices, it is 

important to run them through logarithmic transformation because the transformed 

prices tend to more closely conform to the types of econometric assumptions we like to 

make (normally distributed innovations, constant variance of innovations, etc.). To use 

logarithmic transformation, we use the following formula: 

         (  )  

where P is the original level’s price observation.  We use ln(Pt) in the modeling. Third, 

the logarithmically transformed data were differenced. Because of differencing, with the 

addition of each lag, we lose one observation. For instance, when we are doing the log 

differencing, which is             –        , we are losing one observation. With the 

first differencing, which is                          we lose one more observation, 

thus eliminating a total of two observations. Losing one observation at each lag, we end 

up with 13 missing observations at the 12th lag. This is illustrated in Appendix B. For 

each of the components of our models to have equal period lengths, we need to eliminate 

the first 13 periods (months). Therefore, for natural gas, for example, we consider that 

our data starts in February 1977 instead of January 1976. Fourth, 12 lags were generated. 

After differencing the data, we need to decide how many lags our model will need to 
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have. To do that, we will test 12 different AR models estimated by Ordinary Least 

Squares (OLS). Model 1 will have one lag. Model 2 will have two lags. Model 3 will 

have three lags and each successive model will have one additional lag than the previous 

model. As a result, Model 12 will have 12 lags. 

                       
 
       for J=1,…,12 

where         is the dependent variable in period t-i,     is the intercept;    represent 

price change sensitivity in periods t-i to price changes in period t or, in other words, 

regression coefficients, and    is the vector of disturbances or the error term. For each of 

the 12 lags,                        . Lastly, seasonal harmonic variables were 

added to capture the cyclical patterns. If seasonality is not considered in the regression, 

the estimation error may increase and the coefficients of variables that are correlated 

with the seasonality may be biased. By inserting seasonal harmonic variables in the form 

of sine and cosine, we insure smoother transitions than if we were to use dummy 

variables. To add seasonal components, we need to calculate sine and cosine for each t 

period and add to the model. The formula to calculate sine and cosine in period t is as 

follows:  

Sint=Sin(2* Π*t/12), Cost=Cos(2*Π*t/12) 

where Π=3.14159 and t is the corresponding period for each commodity. 

Now that we know how the calculations were done, it is time to look at the 

results. Table 1 summarizes model selections for each of the five commodities. You can 

see from the table that, according to the AR model for natural gas, based on the lowest 

AIC score, Model 3-4 was chosen to be the best. The remaining calculations were based 
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on that model. k-NN for natural gas was also calculated based on Model 3-4. For heating 

oil, Model 2-4 had the lowest AIC score; for gasoline, again Model 2-4 turned out to be 

the best; for ethanol – Model 5-4; and for crude oil  Model 5-2. Figures 1-5 show the 

AIC scores for all five commodities. For natural gas more lags the model has, the better 

is the AIC score. This does not mean that the very last model is always the best. For each 

commodity, one can notice a pattern that is the same throughout all the models. Consider 

Figure 2. Within each model, sub-models 2 and 4 are preferred over sub-models 1 and 3. 

Sub-models 2 and 4 do not have intercepts; therefore, models without intercept are 

preferred for heating oil analysis. The same logic is used to explain the pattern for the 

AIC scores of the rest of the commodities.   

 
 
 

Table 1. Summary of Models 

Natural Gas                                                           

Heating Oil                                                

Gasoline                                                

Ethanol 
                                                 

                               

Crude Oil 
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Figure 1. Graphical illustration of AIC scores for natural gas in-sample forecast 
 
 
 

 
Figure 2. Graphical illustration of AIC scores for heating oil in-sample forecast 
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Figure 3. Graphical illustration of AIC scores for gasoline in-sample forecast 

 
 
 

 
Figure 4. Graphical illustration of AIC scores for ethanol in-sample forecast 
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Figure 5. Graphical illustration of AIC scores for crude oil in-sample forecast 

 
 
 
Figures 6-10 graphically illustrate MAEs for each commodity, based on which 

the best number of neighbors was chosen for each model. Based on the results for 

natural gas, 24 neighbors were chosen. For heating oil – 37 neighbors, for gasoline – 22, 

for ethanol – 38 and for crude oil – 28 neighbors were chosen. The in-sample and out-of-

sample portions of k-NN forecast were based on the number of neighbors with the 

lowest MAE. The graphs in Figures 11-15 demonstrate the actual vs. predicted values 

for both AR and k-NN one-step-ahead out-of-sample forecasts for each of the five 

commodities.  

 

 

  

-421

-419

-417

-415

-413

-411

-409

-407

-405

-403

1_
1

1_
2

1_
3

1_
4

2_
1

2_
2

2_
3

2_
4

3_
1

3_
2

3_
3

3_
4

4_
1

4_
2

4_
3

4_
4

5_
1

5_
2

5_
3

5_
4

6_
1

6_
2

6_
3

6_
4

7_
1

7_
2

7_
3

7_
4

8_
1

8_
2

8_
3

8_
4

9_
1

9_
2

9_
3

9_
4

10
_1

10
_2

10
_3

10
_4

11
_1

11
_2

11
_3

11
_4

12
_1

12
_2

12
_3

12
_4

V
a
lu

e
s 

Models 



44 
 

 
 
Figure 6. Graphical illustration of MAEs for natural gas 

 
 
 

 

Figure 7. Graphical illustration of MAEs for heating oil 
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Figure 8. Graphical illustration of MAEs for gasoline 
 
 

 

 
Figure 9. Graphical illustration of MAEs for ethanol 

 
 

 

 

Figure 10. Graphical illustration of MAEs for crude oil 
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Figure 11. Graphical illustration of predicted vs. actual values for natural gas one-step-
ahead out-of-sample forecast 
 
 
 

 
Figure 12. Graphical illustration of predicted vs. actual values for heating oil one-step-
ahead out-of-sample forecast 
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Figure 13. Graphical illustration of predicted vs. actual values for gasoline one-step-
ahead out-of-sample forecast 
 

 
 

 
Figure 14. Graphical illustration of predicted vs. actual values for ethanol one-step-ahead 
out-of-sample forecast 
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Figure 15. Graphical illustration of predicted vs. actual values for crude oil one-step-
ahead out-of-sample forecast 
 
 
 

Figures 16-20 graphically illustrate two-step-ahead out-of-sample forecast results 

for both AR and k-NN models vs. actual values. After the calculations of predicted 

values from the AR model and predicted values from the k-NN model are completed, it 

is time to do summary statistics for two types of models. For that purpose, we have 

calculated the MAEs and the RMSEs of out-of-sample forecast for each type of model. 
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Figure 16. Graphical illustration of predicted vs. actual values for natural gas two-step-
ahead out-of-sample forecast 
 
 
  

 
Figure 17. Graphical illustration of predicted vs. actual values for heating oil two-step-
ahead out-of-sample forecast 
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Figure 18. Graphical illustration of predicted vs. actual values for gasoline two-step-
ahead out-of-sample forecast 
 

 
 

 
Figure 19. Graphical illustration of predicted vs. actual values for ethanol two-step-
ahead out-of-sample forecast 
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Figure 20. Graphical illustration of predicted vs. actual values for crude oil two-step-
ahead out-of-sample forecast 
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between the two models is very small, it is up to the decision maker as to which model to 

choose.   

 
 
 
Table 2. MAE and RMSE Calculations for One-Step-Ahead and Two-Step-Ahead Out-
of-Sample Forecasts 

Crude Oil 

   AR k-NN 

MAE 1-Step Ahead 0.07705724 0.07164995 

MAE 2-Step Ahead 0.0768801 0.07401227 

RMSE 1-Step Ahead 0.0937631 0.09467704 

RMSE 2-Step Ahead 0.09376737 0.09714399 

Ethanol 

  AR k-NN 

MAE 1-Step Ahead 0.0739671 0.0807191 

MAE 2-Step Ahead 0.07359046 0.0812664 

RMSE 1-Step Ahead 0.09456147 0.1001802 

RMSE 2-Step Ahead 0.09411202 0.1011792 

Gasoline 

  AR k-NN 

MAE 1-Step Ahead 0.0876068 0.09409706 

MAE 2-Step Ahead 0.08730985 0.09157353 

RMSE 1-Step Ahead 0.1127708 0.1202504 

RMSE 2-Step Ahead 0.1132086 0.1190735 

Heating Oil 

  AR k-NN 

MAE 1-Step Ahead 0.07474962 0.07345258 

MAE 2-Step Ahead 0.07431657 0.07236612 

RMSE 1-Step Ahead 0.096269 0.09548149 

RMSE 2-Step Ahead 0.09616 0.09389789 

Natural Gas 

  AR k-NN 

MAE 1-Step Ahead 0.0907626 0.09201676 

MAE 2-Step Ahead 0.09141592 0.0946592 

RMSE 1-Step Ahead 0.1216967 0.1201075 

RMSE 2-Step Ahead 0.1221922 0.1216654 
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In case of heating oil results, both MAEs and RMSEs of out-of-sample forecasts 

show a better performance for the k-NN model than the AR model: MAE for AR one-

step-ahead returned 0.07474962 vs. k-NN’s 0.07345258 and 0.07431657 vs. k-NN’s 

0.07236612 for two-step-ahead forecasts. RMSEs of AR one-step-ahead returned 

0.096269 vs. k-NN’s 0.09548149 and 0.09616 vs. k-NN’s 0.09389789 for two-step-

ahead forecasts. Again, although k-NN performs better for both MAE and RMSE, the 

results are so close that it is up to the decision maker which method to choose. 

The picture is a little different for gasoline prices. Here, the AR model turned out 

to be the best for all the measurements. MAE of AR one-step-ahead returned 0.0876068 

vs. k-NN’s 0.09409706 and 0.08730985 vs. k-NN’s 0.09157353 for the two-step-ahead 

forecast, while RMSEs for AR one-step-ahead returned 0.1127708 vs. k-NN’s 

0.1202504 and 0.1132086 vs. k-NN’s 0.1190735 for two-step-ahead. 

Ethanol appeared to show the same performance as gasoline in terms of k-NN 

results being a little worse than AR results. MAE one-step-ahead for AR returned 

0.0739671 vs. 0.0807191 for k-NN, and AR two-step-ahead returned 0.07359046 vs. 

0.0812664 for k-NN. RMSEs for AR one-step-ahead forecasts returned 0.09456147 vs. 

k-NN’s 0.1011802 and 0.09411202 vs. k-NN’s 0.1011792 for the two-step-ahead 

forecast. 

Finally, results for crude oil out-of-sample forecast appeared to be inferior by the 

RMSE measure, but superior by the MAE method. MAE for AR one-step-ahead forecast 

returned 0.07705724 vs. 0.07164995 for k-NN, and for two-step-ahead AR returned 

0.0768801 vs. k-NN’s 0.07401227. RMSE for AR one-step-ahead returned 0.0937631 
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vs. k-NN’s 0.09467704 and 0.09376737 vs. 0.09714399, respectively, for two-step-

ahead. 

Now that we know the results from MAE and RMSE calculations of out-of-

sample forecasts, we are now ready to formally test predictive accuracy of the models. 

As was mentioned in the previous sections, we have used the DM test to test forecasting 

accuracy of the model. Table 3 summarizes the results for DM test statistics and also 

includes p-values. According to DM test results, the p-values for the natural gas one-

step-ahead forecast is 0.734. The interpretation of the results depends on the significance 

level that we will choose. If we assume the 5% significance level, then the p-value 

=0.734 > 0.05. Therefore, we do not reject the null hypothesis; thus, the forecasting 

models are equally accurate.  Given the 10% significance level, again we can say that the 

p-value =0.734 > 0.1. The MSE from the AR model is not significantly different than 

MSE from the k-NN model. The same would be true with the 1% significance level: p-

value= 0.0734 > 0.01. Therefore, the forecasting models are equally accurate. The p-

value for the two-step-ahead forecast is 0.918; thus, given significance levels of 1%, 5%, 

and 10%, we fail to reject the null hypothesis. 

 
 
 

Table 3. Diebold-Mariano Test Results 
  
  

One-Step-Ahead Forecast Two-Step-Ahead Forecast 

DM p-value DM p-value 

Natural Gas 0.3397 0.734 0.103 0.918 

Heating Oil 0.2067 0.8362 0.8558 0.3921 

Gasoline -1.5282 0.1265 -1.4652 0.1429 

Ethanol -1.1348 0.2565 -1.2883 0.1976 

Crude Oil -0.1449 0.8848 -0.541 0.5885 
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In the case of heating oil, the p-value for the DM test of one-step-ahead forecast 

is 0.8362, which is again not falling into the rejection region given 1%, 5%, or 10% 

significance levels.  For two-step-ahead forecasts, the p-value is 0.3921, which is also 

out of the rejections region given the significance levels chosen. Therefore, we conclude 

that the two forecasting models are equally accurate.  

For gasoline, the results are the following: the p-value for the one-step-ahead DM 

test is 0.1265, which is again, given significance levels, 1%, 5%, and 10%, is not falling 

into the rejection region. The DM test statistic is not significantly different than zero. For 

two-step-ahead forecasts, the p-value from the DM test is 0.1429, which is within the 

acceptance range; thus, we fail to reject H0. 

In terms of ethanol, the results are similar to the above models. The p-value for 

the one-step-ahead DM test is 0.2565. So we do not reject H0. For two-step-ahead 

forecasts, the p-value is 0.1976. Given the significance levels above, the two forecasting 

models are equally accurate. 

In case of crude oil, the results are similar to the ones described above. The p-

value for the one-step-ahead DM test is 0.8848. Again, we fail to reject H0 and the 

forecasting models are equally accurate. The p-value for the two-step-ahead forecast is 

0.5885. The DM test statistic is not significantly different than zero. 
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7. CONCLUSIONS 
 

The thesis concentrated on the use of two forecasting models: simple 

Autoregressive (AR) and k-Nearest-Neighbor (k-NN) models. Monthly data for five 

energy commodities were divided into two parts. The first two-thirds of the data were 

used to perform in-sample one-step-ahead and two-step-ahead forecasts and the 

remaining one-third of the data were used for out-of sample one-step-ahead and two-

step-ahead predictions. Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) were used in calculations to decide which model is better. Outcomes of those 

tests showed that one model can be superior by one measure, but inferior by another and 

vice versa.  The Diebold-Mariano (DM) test was used to test the accuracy of the AR and 

k-NN models. The test indicated that for all five commodity models, the MSE from the 

AR model is not significantly different than the MSE from the k-NN model; thus, 

forecasts are equally accurate and we do not reject the null hypothesis.  

Barkoulas et al. (2003) compared the forecasting performances of AR and 

random-walk-with drift models to the k-NN method to test the relationship of U.S. T-bill 

and bond yields. The data used in the research consisted of short- and long-term U.S. 

Treasury interest rates: monthly observations on the Federal Funds rate, 3-month, 6-

month, and 12-month U.S. Treasury bill yields, and yields on 5-year and 10-year 

Treasury bonds. Their interest was in the out-of-sample one-step-ahead forecasting of 

the non-parametric method, which was measured by RMSE. Similar to this thesis, where 

we used two-thirds of the observations in the in-sample forecast and one-third of the 

observations in the out-of-sample forecast, Barkoulas et al. (2003) used  48 observations 
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(two-thirds of the data) from each yield-change series for forecasting purposes and the 

first 24   observations (one-third of the data) for the in-sample forecast. Analogous to 

Barkoulas et al. (2003), in this thesis, I also chose the AR order for the linear model 

based on the AIC scores from 48 estimated models.  In contrast to Barkoulas et al. 

(2003), where Euclidean distance was implemented to find the nearest neighbors and 

then each of the neighbors was inversely weighted by their Euclidean distance, in this 

thesis, all the observations were assigned a zero weight and the nearest neighbors were 

determined only based on the Euclidean distance function.  

Barkoulas et al. (2003) used the Granger and Newbold test to measure the 

forecasting accuracy of the models where the null hypothesis was testing no difference 

in the forecasting accuracy of the linear and nonlinear models. To formally evaluate 

model performance, we applied the Diebold–Mariano (DM) test to evaluate the 

hypothesis that the forecasting models are equally accurate. Also, Barkoulas et al. (2003) 

used a one-sided test as an alternative, while a two-sided test was used as an alternative 

hypothesis in this thesis. On the basis of the RMSE forecasting criterion, Barkoulas et al. 

(2003) found that only in few cases AR fitted better than the LWR and for most of the 

sample series LWR model’s forecast performance was statistically superior to that of the 

AR model. LWR failed to successfully predict stock returns, but it was useful in 

prediction of conditional mean changes in interest rate series. The results of the thesis 

found that k-NN method was superior by one measure but inferior by the other measure. 

K-NN method showed little benefit over AR. In all the cases, DM test statistics failed to 
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reject the null hypothesis, stating that the MSE from the AR model was not significantly 

different than the MSE from the k-NN model. 

Gençay (1999) studied the predictability of spot foreign exchange rate returns 

from the past buy-sell signals of the simple technical trading rules by comparing the 

performance of two parametric and two non-parametric forecasting models: random-

walk and GARCH(1,1) and feedforward networks and the nearest neighbors regressions, 

respectively. Gençay (1999) used data consisting of logarithmically transformed daily 

spot rates for the British pound, Deutsche mark, French franc, Japanese yen, and the 

Swiss franc. Similar to this thesis, Gençay (1999) used one-third of the data to perform 

out-of-sample one-, five- and ten-step ahead forecasts, and the same training set was 

used to calculate forecasts for all the models. Unlike this thesis, where numbers of 

neighbors were calculated based on the Euclidean distance function and the optimal 

number of neighbors was chosen based on the smallest MAE, Gençay (1999) used a 

cross-validation method, which minimizes the MSE.  In contrast to Barkoulas et al. 

(2003) and this thesis, where RMSE was used as a measure of performance, Gençay 

(1999) used Mean Squared Prediction Error (MSPE) and sign predictions. To evaluate 

the statistical significance of the out-of-sample predictions, the DM test was applied to 

all of the currencies with a null hypothesis of equal accuracy for the two competing 

forecasts. The research by Gençay (1999) showed that the Nearest Neighbor model gave 

significant gains over not only parametric models, but also over the feedforward network 

model. For the Nearest Neighbor regression, MSPE turned out to be 12.8% smaller than 

the random-walk model across all the currencies. The average sign prediction of the 
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nearest neighbor forecast was 62% in comparison to feedforward’s 58% and 50% of 

GARCH(1,1). Dissimilar to Gençay’s (1999) findings, in this thesis, nearest neighbor 

was not performing better across all the five commodities. Instead, results showed that 

the k-NN method was superior by one measure but inferior by another, and these 

distinctions vary across all five commodities.  The reason for this could be the 

qualitative differences between the series that Gençay (1999) was using and the energy 

price series. Also, it could be that Gençay (1999) was comparing the performance of k-

NN models to non-linear models rather than to AR model. Based on the DM test results, 

Gençay (1999) findings indicated statistical significance of non-parametric models. In 

this thesis, Diebold-Mariano (DM) test statistics showed equal accuracy for both AR and 

k-NN models. 

The findings of this thesis can be extended in several ways. First, further 

investigation is needed for multiple-step-ahead forecasting horizon using the k-NN 

estimation method. Second, promising results of k-NN as a forecast generating 

mechanism give ground for the use of alternative non-parametric methods to be 

employed as a forecasting tool for U.S. energy commodity prices. Third, a cross-

validation method should be implemented to decide on the optimal number of neighbors 

since this method prevents overfitting in noisy environments and uses a certain number 

of in-sample observations rather than the entire in-sample. Also, the improved Distance 

function (as discussed in the thesis) or any other distance function can be tested in 

selection of optimal neighbors. Fourth, other test statistics should be used to compare the 

forecasting accuracies of the models (Stock and Watson, Granger-Newbold) and the 
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results could be compared to the finding of this thesis. Finally, future research of LWR 

can be applied in studying the energy commodity prices of other countries. 
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APPENDIX A 

R CODES FOR NATURAL GAS 

 

*** 

#regress dlnP[T] on the 1st, 2nd, and 3rd differences 

(dlnP_lag1,dlnP_lag2,dlnP_lag3,dlnP_lag4) with intercept, add the 

seasonal harmonic, display results 

simple_model3_3=lm(dlnP~dlnP_lag1+dlnP_lag2+dlnP_lag3+sinT+cosT,subset=

isf_start:isf_end) 

print(summary(simple_model3_3)) 

#project in-sample prices 

dlnP_hat3_3= fitted.values(simple_model3_3) 

 

#create the same model above without intercept, display results 

simple_model3_4=lm(dlnP~dlnP_lag1+dlnP_lag2+dlnP_lag3-

1+sinT+cosT,subset=isf_start:isf_end) 

print(summary(simple_model3_4)) 

#project in-sample prices 

dlnP_hat3_4= fitted.values(simple_model3_4) 

 

*** 

 

#project one-step-ahead out-of-sample forecast 

prediction1=predict.lm(mymodel,newdata=data.frame(dlnP_lag1+dlnP_lag2+d

lnP_lag3-1+sinT+cosT))[(oosf_start+1):(oosf_start+1)] 

cat("out-of-sample predicted dlnP:",prediction1,"\n") 

cat("actual observed dlnP:",dlnP[(oosf_start+1):(oosf_start+1)],"\n") 

actual1 <- dlnP[(oosf_start+1):(oosf_start+1)] 

 

#replace the actual value with the predicted value 

dlnP_lag1_alt=dlnP_lag1 

dlnP_lag1_alt[(oosf_start+2):(oosf_start+2)]=prediction1 

 

#project two step ahead out-of-sample forecast 

prediction2=predict.lm(mymodel,newdata=data.frame(dlnP_lag1_alt+dlnP_la

g2+dlnP_lag3-1+sinT+cosT))[(oosf_start+2):(oosf_start+2)] 

cat("out-of-sample predicted dlnP:",prediction2,"\n") 

cat("actual observed dlnP:",dlnP[(oosf_start+2):(oosf_start+2)],"\n") 

actual2 <- dlnP[(oosf_start+2):(oosf_start+2)] 

 

#create an empty vector to store the results 

results_prediction1=0*oosf_start:oosf_end 

results_actual1=0*oosf_start:oosf_end 

results_prediction2=0*oosf_start:oosf_end 

results_actual2=0*oosf_start:oosf_end 

 

#create a loop for periods 275:410 

for (t in oosf_start:oosf_end)  

{ 

mymodel= lm(dlnP~dlnP_lag1+dlnP_lag2+dlnP_lag3-1+sinT+cosT,subset=14:t) 

#print(summary(mymodel)) 
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#project in-sample prices 

mymodel_hat= fitted.values(mymodel) 

#project one-step-ahead out-of-sample forecast 

prediction1=predict.lm(mymodel,newdata=data.frame(dlnP_lag1

+dlnP_lag2+dlnP_lag3-1+sinT+cosT))[(t+1):(t+1)] 

#cat("out-of-sample predicted dlnP:",prediction1,"\n") 

#cat("actual observed dlnP:",dlnP[(t+1):(t+1)],"\n") 

actual1 <- dlnP[(t+1):(t+1)] 

 

#replace the actual value with the predicted value 

dlnP_lag1_alt=dlnP_lag1 

dlnP_lag1_alt[(t+2):(t+2)]=prediction1 

 

#project two step ahead out-of-sample forecast 

prediction2=predict.lm(mymodel,newdata=data.frame(dlnP_lag1

_alt+dlnP_lag2+dlnP_lag3-1+sinT+cosT))[(t+2):(t+2)] 

#cat("out-of-sample predicted dlnP:",prediction2,"\n") 

#cat("actual observed dlnP:",dlnP[(t+2):(t+2)],"\n") 

actual2 <- dlnP[(t+2):(t+2)] 

 

cat(t,",",prediction1,",",actual1,",",prediction2,",",actual2,"\n") 

 

#store the results in the empty vector created above 

results_prediction1[(t-(oosf_start-1)):(t-(oosf_start-1))]=prediction1 

results_actual1[(t-(oosf_start-1)):(t-(oosf_start-1))]=actual1 

results_prediction2[(t-(oosf_start-1)):(t-(oosf_start-1))]=prediction2 

results_actual2[(t-(oosf_start-1)):(t-(oosf_start-1))]=actual2} 

 

cbind(results_prediction1,results_actual1,results_prediction2,results_a

ctual2) 

 

*** 

 

#define in sample training (RHS) and response (LHS) data for the in-

sample kNN analysis 

RHS=cbind(dlnP_lag1[isf_start:isf_end]+dlnP_lag2

[isf_start:isf_end]+dlnP_lag3[isf_start:isf_end]-1+sinT

[isf_start:isf_end]+cosT[isf_start:isf_end]) 

LHS=dlnP[isf_start:isf_end] 

 

#create a loop for the knn out-of-sample forecast using different 

number of neighbors  

for (i in 5:40){ 

knn=knn.reg(train=RHS,test=NULL,y=LHS,k=i, algorithm="VR") 

myresiduals=knn$residuals 

MAE_knn=1/length(myresiduals)*sum(abs(myresiduals)) 

print(cbind(i,MAE_knn)) 

} 

 

#create an empty vector to store the results 

knn_results_prediction1=0*oosf_start:oosf_end 

results_actual1=0*oosf_start:oosf_end 

knn_results_prediction2=0*oosf_start:oosf_end 

results_actual2=0*oosf_start:oosf_end 



67 
 

 

#create a loop for periods 275:410 

for (t in oosf_start:oosf_end)  

{ 

#redefine LHS and RHS parts of KNN.reg function to include all 

periods 

LHS_new1=dlnP[14:t] 

RHS_new1=cbind(dlnP_lag1[14:t]+dlnP_lag2[14:t]+dlnP_lag3[14:t]-

1+sinT[14:t]+cosT[14:t]) 

 

#for out_of_sample forecast of knn add the test component to the 

function 

test_oosf1=data.frame(dlnP_lag1[(t+1):(t+1)]+dlnP_lag2[(t+1):(t+1

)]+dlnP_lag3[(t+1):(t+1)]-1+sinT[(t+1):(t+1)]+cosT[(t+1):(t+1)]) 

 

#calculate the 1 step ahead knn using the number of neighbors 

with the lowest MAE 

knn_prediction1=knn.reg(train=RHS_new1,test=test_oosf1,y=LHS_new1

,k=20,algorithm="VR") 

 

actual1=dlnP[(t+1):(t+1)] 

#redefine LHS and RHS parts of KNN.reg function for t+2 forecasts 

LHS_new2=dlnP[15:t] 

RHS_new2=cbind(dlnP_lag1[14:(t-1)]+dlnP_lag2[14:(t-

1)]+dlnP_lag3[14:(t-1)]-1+sinT[14:(t-1)]+cosT[14:(t-1)]) 

 

test_oosf2=data.frame(dlnP_lag1[(t+1):(t+1)]+dlnP_lag2[(t+1):(t+1

)]+dlnP_lag3[(t+1):(t+1)]-1+sinT[(t+1):(t+1)]+cosT[(t+1):(t+1)]) 

 

#calculate the 2 step ahead knn using the number of neighbors 

with the lowest MAE 

knn_prediction2=knn.reg(train=RHS_new2,test=test_oosf2,y=LHS_new2

,k=20,algorithm="VR") 

 

actual2=dlnP[(t+2):(t+2)] 

 

#print the prediction and actuals, check screen output against 

results that are stored above (see if the storage is working 

correctly) 

cat("pred1:",knn_prediction1[4][[1]],"actual1:",dlnP[(t+1):(t+1)]

,"pred2:",knn_prediction2[4][[1]],"actual2:",dlnP[(t+2):(t+2)],"\

n") 

 

#store the results in the empty vector created above 

knn_results_prediction1[(t-(oosf_start-1)):(t-(oosf_start-

1))]=knn_prediction1[4][[1]] 

results_actual1[(t-(oosf_start-1)):(t-(oosf_start-1))]=actual1 

knn_results_prediction2[(t-(oosf_start-1)):(t-(oosf_start-

1))]=knn_prediction2[4][[1]] 

results_actual2[(t-(oosf_start-1)):(t-(oosf_start-1))]=actual2 

} 

print(cbind(knn_results_prediction1,results_actual1,knn_results_predict

ion2,results_actual2)) 
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*** 

 

# calculate the Diebold-Mariano test to compare the forecast accuracy 

of two models 

DM_one_step_ahead=dm.test(results_prediction1-

results_actual1,knn_results_prediction1-results_actual1, h=2, power=2) 

print(DM_one_step_ahead) 

 

DM_two_step_ahead=dm.test(results_prediction2-

results_actual2,knn_results_prediction2-results_actual2, h=2, power=2) 

print(DM_two_step_ahead) 

*** 
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APPENDIX B 

ILLUSTRATION OF ELIMINATED OBSERVATIONS IN NATURAL GAS DATA 

 

Date Periods Price lnP lnP(t-1) dlnP dlnP_lag1 dlnP_lag2 dlnP_lag3 dlnP_lag4 dlnP_lag5 dlnP_lag6 dlnP_lag7 dlnP_lag8 dlnP_lag9 dlnP_lag10dlnP_lag11dlnP_lag12sinT cosT

Jan-76 1 0.54 -0.616 0.5 0.8660254

Feb-76 2 0.54 -0.616 -0.6162 0 0.866025 0.5

Mar-76 3 0.54 -0.616 -0.6162 0 0 1 6.13E-17

Apr-76 4 0.55 -0.598 -0.6162 0.018 0 0 0.866025 -0.5

May-76 5 0.55 -0.598 -0.5978 0 0.018349 0 0 0.5 -0.8660254

Jun-76 6 0.58 -0.545 -0.5978 0.053 0 0.018349 0 0 1.23E-16 -1

Jul-76 7 0.58 -0.545 -0.5447 0 0.05311 0 0.018349 0 0 -0.5 -0.8660254

Aug-76 8 0.6 -0.511 -0.5447 0.034 0 0.05311 0 0.018349 0 0 -0.866025 -0.5

Sep-76 9 0.6 -0.511 -0.5108 0 0.033902 0 0.05311 0 0.018349 0 0 -1 -1.84E-16

Oct-76 10 0.62 -0.478 -0.5108 0.033 0 0.033902 0 0.05311 0 0.018349 0 0 -0.866025 0.5

Nov-76 11 0.63 -0.462 -0.478 0.016 0.03279 0 0.033902 0 0.05311 0 0.018349 0 0 -0.5 0.8660254

Dec-76 12 0.64 -0.446 -0.462 0.016 0.016 0.03279 0 0.033902 0 0.05311 0 0.018349 0 0 -2.45E-16 1

Jan-77 13 0.67 -0.4 -0.4463 0.046 0.015748 0.016 0.03279 0 0.033902 0 0.05311 0 0.018349 0 0 0.5 0.8660254

Feb-77 14 0.71 -0.342 -0.4005 0.058 0.04581 0.015748 0.016 0.03279 0 0.033902 0 0.05311 0 0.018349 0 0 0.866025 0.5

Mar-77 15 0.75 -0.288 -0.3425 0.055 0.057987 0.04581 0.015748 0.016 0.03279 0 0.033902 0 0.05311 0 0.018349 0 1 1.19E-15

Apr-77 16 0.77 -0.261 -0.2877 0.026 0.054808 0.057987 0.04581 0.015748 0.016 0.03279 0 0.033902 0 0.05311 0 0.018349 0.866025 -0.5

May-77 17 0.77 -0.261 -0.2614 0 0.026317 0.054808 0.057987 0.04581 0.015748 0.016 0.03279 0 0.033902 0 0.05311 0 0.5 -0.8660254

Jun-77 18 0.82 -0.198 -0.2614 0.063 0 0.026317 0.054808 0.057987 0.04581 0.015748 0.016 0.03279 0 0.033902 0 0.05311 3.68E-16 -1

Jul-77 19 0.83 -0.186 -0.1985 0.012 0.062914 0 0.026317 0.054808 0.057987 0.04581 0.015748 0.016 0.03279 0 0.033902 0 -0.5 -0.8660254
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