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ABSTRACT 

 

Assessing Invariance of Factor Structures and  

Polytomous Item Response Model Parameter Estimates.  

(December 2010) 

Jennifer McGee Reyes, B.A., Syracuse University; 

M.A., University of Houston – Clear Lake 

Chair of Advisory Committee: Dr. Bruce Thompson 

 

The purpose of the present study was to examine the 

invariance of the factor structure and item response model 

parameter estimates obtained from a set of 27 items 

selected from the 2002 and 2003 forms of Your First College 

Year (YFCY).  The first major research question of the 

present study was: How similar/invariant are the factor 

structures obtained from two datasets (i.e., identical 

items, different people)? The first research question was 

addressed in two parts: (1) Exploring factor structures 

using the YFCY02 dataset; and (2) Assessing factorial 

invariance using the YFCY02 and YFCY03 datasets.   

After using exploratory and confirmatory and factor 

analysis for ordered data, a four-factor model using 20 

items was selected based on acceptable model fit for the 
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YFCY02 and YFCY03 datasets.  The four factors (constructs) 

obtained from the final model were: Overall Satisfaction, 

Social Agency, Social Self Concept, and Academic Skills.  

To assess factorial invariance, partial and full factorial 

invariance were examined.  The four-factor model fit both 

datasets equally well, meeting the criteria for partial and 

full measurement invariance.   

The second major research question of the present 

study was: How similar/invariant are person and item 

parameter estimates obtained from two different datasets 

(i.e., identical items, different people) for the 

homogenous graded response model (Samejima, 1969) and the 

partial credit model (Masters, 1982)?  

To evaluate measurement invariance using IRT methods, 

the item discrimination and item difficulty parameters 

obtained from the GRM need to be equivalent across 

datasets.  The YFCY02 and YFCY03 GRM item discrimination 

parameters (slope) correlation was 0.828.  The YFCY02 and 

YFCY03 GRM item difficulty parameters (location) 

correlation was 0.716.  The correlations and scatter plots 

indicated that the item discrimination parameter estimates 

were more invariant than the item difficulty parameter 

estimates across the YFCY02 and YFCY03 datasets.
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CHAPTER I 

 INTRODUCTION  

 

The purpose of the present study was to examine the 

invariance of the factor structure and the item response 

model parameter estimates obtained from a set of 27 items 

selected from the 2002 and 2003 forms of Your First College 

Year (YFCY).  The YFCY is administered to college freshmen 

at the end of their first college year.  Originating in 

2000, the YFCY is coordinated by the Higher Education 

Research Institute (HERI) in the Graduate School of 

Education & Information Studies (GSE&IS) at the University 

of California, Los Angeles (UCLA). 

The property of invariance is a fundamental concept in 

measurement.  De Ayala (2009) explained invariance in 

general terms: “We would like our measurement instrument to 

be independent of what it is we are measuring.  If this is  

true, then the instrument possesses the property of 

invariance” (p. 3).  In practice, measurement invariance 

means that a test or assessment measures the same latent  

______________ 
The style of this dissertation follows that of Educational 
and Psychological Measurement. 
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trait(s) “in the same way, when administered to two or more  

qualitatively distinct groups (e.g., men and women)” 

(Reise, Widaman, & Pugh, 1993, p. 552).  Researchers can 

assess measurement invariance using confirmatory factor 

analysis (CFA) or item response theory (IRT) models (Meade 

& Lautenschlager, 2004; Reise, Widaman, & Pugh, 1993). 

To measure latent traits such as satisfaction with 

college life, YFCY items use polytomous item scales with 

ordered response categories (e.g., strongly disagree, 

disagree, agree, strongly agree).  Typically, polytomous 

scales with ordered data are analyzed by assigning integers 

and then calculating and comparing means and standard 

deviations.  However, polytomous, ordered data (e.g., 

Likert scales) are problematic for traditional item 

analysis (Bond & Fox, 2001) and factor analyses (Jöreskog & 

Moustaki, 2006).  

Bond and Fox (2001) explained the primary criticism of 

treating ordinal data as if they were interval data: 

Whenever scores are added in this manner, the ratio,  
or at least the interval nature for the data is being 
presumed.  That is, the relative value of each 
response category across all items is treated as being 
the same, and the unit increases across the rating 
scale are given equal value ….  On the one hand, the 
subjectivity of attitude data is acknowledged each 
time the data is collected.  Yet on the other hand, 
the data are subsequently analyzed in a rigidly 
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prescriptive and inappropriate statistical way (i.e., 
by failure to incorporate that subjectivity into the 
data analysis).  (p. 67) 
 

Andrich (1978a) explained, “The general approach for 

overcoming objections to the integer-scoring procedure is 

to use a response model which keeps track of the category 

in which a person responds” (p. 581).  

Probabilistic item response models keep track of the 

category in which a person responds by estimating the 

probabilities of responding in each of the ways possible on 

a given item based on the person’s standing on an 

underlying trait.  For example, an individual with a high 

standing on a latent trait such as satisfaction with 

college would be very likely to agree with an item such as 

“I am satisfied with my overall college experience.”  The 

collection of probabilistic item response models comprises 

item response theory (IRT), also known as latent trait 

theory.  Researcher use IRT to explore item properties and 

scales for tests, surveys, attitude inventories, and other 

assessment instruments.   

IRT models require assumptions governing monotonicity, 

unidimensionality, and local independence of the items on a 

scale.  Monotonicity means that the probability of passing 

or agreeing with an item stays the same or increases, but 
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never decreases, as values of the latent trait increase.  

In other words, the probability of agreeing with/passing an 

item never gets smaller as values of the latent variable 

increase (Millsap, 2008).  

Unidimensionality means that one latent trait 

underlies a set of items on a test or survey.  

Unidimensionality and local independence are related.  

Local independence means that once the appropriate number 

of latent traits is specified for a model, at a given value 

of the latent trait, item responses should be uncorrelated.  

Hambleton, Swaminathan, and Rogers (1991) explained: “Local 

independence will be obtained whenever the complete latent 

space has been specified: that is, when all the ability 

dimensions influencing performance have taken into account” 

(p. 11).  If the assumption of unidimensionality is met, 

then the complete latent space is specified and there are 

no other relationships among the items. 

In practice, researchers assess unidimensionality 

using exploratory factor analysis or confirmatory factor 

analysis (Cook, Kallen, & Amtmann, 2009).  Researchers use 

exploratory factor analysis (EFA) when they have no ideas 

or theories about the number of factors underlying a latent 

space or the relationships among the items and factor(s).  
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Using confirmatory factor analysis (CFA) is appropriate 

when a researcher has a theory about the relationship 

between items and the number of factors needed to specify 

the latent space.  For example, to test unidimensionality, 

a researcher could use a CFA model to evaluate how well a 

set of items fit a one-factor model. 

The mathematical foundation of item response theory is 

the item response function (IRF).  Item response functions  

are also called item characteristic curves (ICC), item 

characteristic functions, and item response curves.   

Parametric item response models require specified 

mathematical models, either a normal ogive or a logistic 

function, to estimate item response functions.   

Item response functions provide the probabilities of 

responding in each category as a function of the latent 

trait (Ө).  Thissen (2003) explained:  

The attribute being measured by the test is usually 
called Θ and is usually arbitrarily placed on a z-
score scale, so zero is average and Θ-values range, in 
practice, roughly from -3 to +3.  Item response theory 
is used to convert item responses into an estimate of 
Θ, as well as to examine the properties of the items 
in item analysis.  (p. 593) 
 

Because of IRT’s origins in achievement and aptitude 

testing, by convention, the latent trait is called ability.  
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However, in the context of attitude measurement, the latent 

trait is called attitude. 

Modeling an item response function requires at least 

two parameters: a slope parameter (a) and a location 

parameter (b).  The slope parameter (a), also known as the 

scale parameter or item discrimination parameter, estimates 

the steepness of the item response function.  The range for 

the slope parameter is from 0.0 to 2.0.  

Higher values of the item discrimination estimate are 

associated with steeper slopes of the item response 

functions.  Baker (2001) explained that when discrimination 

parameter estimates are greater than 1.70 they are very 

high, between 1.35 and 1.70 as high, and between 0.65 and 

1.34 as moderate.  A steeper slope function implies that 

the probability of agreeing with an item increases more 

rapidly with increases in the latent variable (Θ) (Millsap, 

2008).  

The location parameter (b) indicates where the IRF is 

centered on the latent trait’s (Θ) continuum.  The location 

parameter (b) is also known as the item difficulty 

parameter.  Ostini and Nering (2006) explained: 

The center of the function is defined as midway 
between its lower and upper asymptotes.  More 
generally, the center of the function is at the point 
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of inflection of the curve.  The letter b typically 
signifies the item’s location parameter.  (pp. 4-5) 
 

When the latent trait scale (Θ) is centered at zero, the 

item difficulty parameter estimates may be positive or 

negative, but tend to be like z-scores in range (Millsap, 

2008). 

Parameters for logistic item response models are 

estimated using logits, or log odds-units.  For dichotomous 

items, items with only two response categories (e.g., 

correct/incorrect, true/false, agree/disagree), a log odds 

is defined as the natural logarithm of the probability of 

success over the probability of failure.  

For polytomous items, items with three or more ordered 

response categories (e.g., strongly disagree, disagree, 

agree, strongly agree), the ordered nature of the data is 

honored by using adjacent categories or groups of 

categories.  Parametric, polytomous item response models 

for ordered data have been classified based on how the 

logits are constructed (Hemker, 2001; Mellenbergh, 1995; 

Thissen & Steinberg, 1986).  For example, a five-point 

scale has five response options (e.g., strongly disagree, 

disagree, neutral, agree, and strongly agree) and four 

intervals between the response options.  If someone 



 

 

8

responds Agree, there is one interval to the right and 

there are three intervals to the left of Agree.  

Cumulative probability models (Mellenbergh, 1995) 

estimate the probabilities for all of the intervals to the 

left of the selected boundary and then any remaining 

intervals to the right.  Cumulative probability models are 

also called difference models (Thissen & Steinberg, 1986), 

Thurstone models (Andrich, 1995), and Thurstone/Samejima 

models (Ostini & Nering, 2006).  Samejima’s (1969) 

homogenous graded response model (GRM) is a cumulative 

probability model. 

Adjacent category models (Mellenbergh, 1995) estimate 

the probabilities only for the intervals immediately to the 

left and the right of the selected boundary.  Less 

intuitive names for adjacent category models include: 

divide-by-total models (Thissen & Steinberg, 1986), Rasch 

models (Andrich, 1995), and partial credit models (Masters, 

1982).  Masters’ (1982) partial credit model is an adjacent 

category model. 

While there are structural differences between 

cumulative probability models (difference models; 

Thurstone/Samejima models) and adjacent category models 

(divide-by-total models; Rasch measurement models), the 
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models are algebraically equivalent.  Thissen and Steinberg 

(1986) explained: 

‘Difference’ models may be algebraically rearranged 
into ‘divide-by-total’ form…  All multiple category 
models have both ‘difference’ and ‘divide-by-total’ 
forms.  The models usually have relatively simple 
algebraic expression in their derivational form, and 
complex expressions in the alternative.  (p. 574) 

 
Furthermore, Ostini and Nering (2006) stated, “there is 

little demonstrated evidence that different polytomous IRT 

models do produce substantially different measurement 

outcomes when applied to the same data” (p. 90). 

However, comparing polytomous item response model 

outcomes has been problematic.  Ostini’s 2001 dissertation 

was a rigorous study “to determine what measurement 

implications accompany different choices of model” (p. 31).  

Ostini (2001) focused specifically on the differences 

between cumulative and adjacent category models.  One of 

Ostini’s conclusions was that model fit procedures and 

parameter estimation methods complicated comparing results 

across models.  

Maximum likelihood estimation (MLE) and maximum a 

posteriori (MAP) estimation are statistical estimation 

procedures for obtaining estimates for the latent trait, 

also known as Θ or person parameters.  Ostini explained, 
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“It is disconcerting that a program’s default setting 

(e.g., MLE or MAP) could have greater influence on Θ 

distribution characteristics than choice of model appeared 

to have” (p. 290).  Ostini (2001) recommended systematic 

investigation of the influence of parameter estimation 

procedures on both person and item parameters.  

Embretson and Reise (2000) provided a cautionary note 

regarding parameter estimation routines and IRT software: 

Although many programs use a marginal maximum 
likelihood procedure to estimate item parameters, a 
default run of the same data set through the various 
programs will generally not produce the exact same 
results. … This is important to be aware of, and 
researchers should not assume the IRT parameters 
output from these programs are like OLS [ordinary 
least squares] regression coefficients, where all 
software programs yield exactly the same results  
with the same data set.  (p. 344) 
 

Comparing measurement outcomes of item response models 

requires attention to technical details such as default 

software settings and parameter estimation procedures. 

In addition to the difficulties with comparing item 

response model results across different software packages, 

model fit statistics complicate comparing the outcomes of 

item response models.  Ostini (2001) explained: 

The current fit results undermine the search for an 
answer to the question of which model is best to use 
for a given set of data. It does not appear that 
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current fit tests can provide solid guidance in this 
matter. (p. 301) 
 

Evaluating item response model fit requires a “variety of 

procedures to be implemented, and ultimately, a scientist 

must use his or her best judgment” (Embretson & Reise, 

2000, p. 233).  Hambleton and Swaminthan (1985) recommended 

using three types of evidence to evaluate model fit: 

Validity of model assumptions; invariance of item and 

ability parameters; and accuracy of model estimates.  

Theoretically, when an item response model fits the 

data, two desirable model features are obtained: (a) item 

parameters are independent of the abilities of respondents; 

and (b) ability parameters are independent of the set of 

test items administered (Hambleton, Swaminathan, & Rogers, 

1991).  Thus, some refer to IRT person estimates as being 

“item free,” and item calibrations as being “person free.”  

These two features are called item parameter invariance and 

ability parameter invariance, respectively.  Parameter 

invariance was a major reason researchers selected item 

response models (e.g., Reise, Ainsworth, & Haviland, 2005; 

Embretson & Reise, 2000). 
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Statement of the Problem 

In practice, measurement invariance is assessed using 

factor analysis methods and IRT models (Meade & 

Lautenshlager, 2004).  However, polytomous, ordered data 

are problematic for traditional item analysis (Bond & Fox, 

2001) and factor analyses (Jöreskog & Moustaki, 2006).  

Purpose of the Study 

The purpose of the present study was to examine the 

invariance of the factor structure and the item response 

model parameter estimates obtained from two different 

datasets (i.e., identical items, different people).  

Research Questions 

The following research questions were addressed in the 

present study: 

1. How similar/invariant are the factor structures 

obtained from two different datasets (i.e., identical 

items, different people)? 

2. How similar/invariant are person and item parameter 

estimates obtained from two different datasets (i.e., 

identical items, different people) for the homogenous 

graded response model (Samejima, 1969) and the partial 

credit model (Masters, 1982)? 
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Delimitation 

The models included in the present study were 

restricted to parametric, unidimensional, item response 

models for ordered data.  

Contents of the Present Study 

The present study consists of five chapters.  Chapter 

I introduces the basics of factor analysis and item 

response models, the purpose of the present study, and the 

research questions.  Chapter II provides a review of 

origins and development of factor analysis and selected 

polytomous item response models for ordered data; 

procedures for evaluating model assumptions; and procedures 

for evaluating model fit.  Chapter III is the methods 

section and explains the present study’s data analysis and 

software procedures.  Chapter IV presents the results of 

the data analysis organized by research question.  Chapter 

V is a discussion of the results, the research questions, 

and implications for future research.  
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CHAPTER II 

LITERATURE REVIEW  

 

Chapter II provides a review of fundamental concepts 

of measurement invariance, unidimensionality, factor 

analysis, and Item Response Theory (IRT).  Furthermore, 

literature comparing polytomous item response models for 

ordered data was reviewed.  

Measurement Invariance 

The property of invariance is a fundamental concept in 

measurement.  De Ayala (2009) explained invariance in 

general terms: “We would like our measurement instrument to 

be independent of what it is we are measuring.  If this is 

true, then the instrument possesses the property of 

invariance” (p. 3).  In practice, measurement invariance 

means that a test or assessment measures the same latent 

trait(s) “in the same way, when administered to two or more 

qualitatively distinct groups (e.g., men and women)” 

(Reise, Widaman, & Pugh, 1993, p. 552).  Researchers can 

assess measurement invariance using confirmatory factor 

analysis (CFA) or item response theory (IRT) models (Meade 

& Lautenschlager, 2004; Reise, Widaman, & Pugh, 1993). 
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Jöreskog and Moustaki (2006) explained the basic 

concept of factor analysis: 

For a given set of manifest variables … one wants to 
find a set of latent variables…, fewer in number than 
the manifest variables, that contain essentially the 
same information.  The latent variables are supposed 
to account for the dependencies among the manifest 
variables in the sense that if the latent variables 
are held fixed, the manifest variables would be 
independent.  (p. 1) 
 

If a researcher has no idea or theory to determine the set 

of latent variables, exploratory factor analysis (EFA) is 

appropriate.  When a researcher has a theory or a specific 

idea about the number of factors needed to specify the 

latent space, confirmatory factor analysis (CFA) is 

appropriate. 

 Factor analyses methods require a series of decisions.  

For example, EFA requires the researcher to determine the 

number of factors to retain and make decisions about factor 

extraction and rotation method.  CFA requires the 

researcher to make decisions about parameter estimation 

routines.  Gorsuch (1983) summarized when analytic 

decisions may affect factorial invariance: 

In factor analysis, one has numerous possibilities for 
capitalizing on chance.  Most extraction procedures, 
including principal factor solutions, reach their 
criterion by such capitalization.  The same is true of 
rotational procedures, including those that rotate for 
simple structure.  Therefore, the solutions are biased 
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in the direction of the criterion used. … The effects 
of capitalization upon chance in the interpretation 
can be reduced if a suggestion by Harris and Harris 
(1971) is followed: Factor the data by several 
different analytical procedures and hold sacred only 
those factors that appear across all the procedures 
used.  (p. 330)    
 

Using multiple procedures to evaluate factor analyses 

results is good practice. 

Mathematically, CFA models the observed response as “a 

linear combination of a latent variable, an item intercept, 

a factor loading, and some residual/error score for the 

item” (Meade & Lautenschlager, 2004, p. 362).  In other 

words, CFA models the covariance between items (Reise, 

Widaman, & Pugh, 1993).  CFA is appropriate for assessing 

measurement invariance because researchers can constrain 

the pattern/structure coefficients, error scores, and other 

parameter estimates to evaluate different levels of 

measurement invariance (Thompson, 2004).  

In the context of CFA, the least restrictive level of 

measurement invariance is when the CFA model fits the 

datasets without any conditions imposed on the parameter 

estimates (Thompson, 2004).  Partial measurement invariance 

is obtained when some of the parameter estimates are the 

same across datasets (Reise, Widaman, & Pugh, 1993).  Full 

measurement invariance means that all of the parameter 
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estimates are the same across datasets (Reise et al., 

1993). 

In practice, using CFA to assess measurement 

invariance entails several considerations.  The first step 

is to run a baseline model that requires the items to load 

on the same factors but does not restrict parameter 

estimates.  Then, the fit of the baseline model needs to be 

examined using fit indices.  If the baseline model 

satisfactorily fits the data, the researcher can proceed to 

evaluate whether the partial and full measurement 

invariance models fit the data. 

To evaluate the fit of CFA models, Thompson (2004) 

recommended using several fit indices.  Specifically, for 

satisfactory model fit the normed fit index (NFI) and the 

comparative fit index (CFI) should be greater than 0.95, 

and the root-mean-square error of approximation (RMSEA) 

should be less than 0.06 (Thompson, 2004).  

 Using IRT methods for evaluating measurement 

invariance entails examining item discrimination (a) and 

item difficulty parameters (b) (Reise, Widaman, & Pugh, 

1993).  For polytomous data, Samejima’s homogenous graded 

response model (GRM; Samejima, 1969) can be used to assess 

measurement invariance.  Meade and Lautenschlager (2004) 
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explained that item discrimination parameters obtained from 

the GRM “are conceptually analogous, and mathematically 

related, to factor loadings [pattern/structure 

coefficients] in CFA methodology (McDonald, 1999)” (p. 

366).  Essentially, to evaluate measurement invariance 

using IRT methods, item discrimination and item difficulty 

parameters need to be equivalent across datasets.  

Furthermore, using IRT methods to assess measurement 

invariance usually requires evaluating dimensionality of 

latent traits.  Specifically, the GRM and most commonly 

used IRT models assume unidimensionality.  Millsap (2007) 

explained: 

Nothing in the definition of MI [measurement 
invariance] requires the intended latent variable to 
be unitary, with only one intended latent dimension. … 
It is true that some latent variable models used to 
investigate violations of MI routinely assume 
unidimensionality, examples being models based on 
unidimensional item response theory (IRT).  (p. 462-
463) 
 

Researchers routinely use exploratory factor analysis (EFA) 

and confirmatory factor analysis to assess the 

unidimensionality assumption of IRT models. 

 To determine if a set of items are unidimensional, 

Lord (1980) provided a “rough procedure” (p. 21).  Lord 

advised using latent roots (eigenvalues).  If the first 
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eigenvalue is much greater than the second and the second 

value is similar to the remaining eigenvalues, then “the 

items are “approximately unidimensional” (Lord, 1980, p. 

21).  Lord’s procedure for using eigenvalues to evaluate 

the unidimensionality assumption is used frequently in IRT 

literature (Dodd, 1984).  To assess unidimensionality, 

Ostini (2001) selected parallel analysis to determine the 

number of factors to retain and principal axis factor 

analysis for extraction with VARIMAX rotation.  

While using classical factor analyses methods (EFA and 

CFA) are popular for assessing unidimensionality of IRT 

models, factor analyses methods assume that the observed 

data and latent variables are continuous.  Embretson and 

Reise (2000) explained that violations of the assumptions 

of continuous data “can and do lead to underestimates of 

factor loadings [pattern/structure coefficients] and/or 

overestimates of the number of latent dimensions” (p. 308).  

Classical factor analyses use correlation or covariance 

matrices of the observed variables.  Using factor analysis 

methods intended for continuous data with ordinal data may 

provide misleading results. 
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 Jöreskog (2005) objected to treating ordinal variables 

as if they are continuous variables:  

Ordinal variables are not continuous variables and 
should not be treated as if they are.  It is common 
practice to treat scores 1, 2, and 3, assigned to 
categories as if they have metric properties but this 
is wrong.  Ordinal variables do not have origins or 
units of measurements.  Means, variances, and 
covariances of ordinal variables have no meaning.  (p. 
1) 
 

To overcome the objection to treating ordinal data as 

continuous data, Jöreskog and Moustaki (2006) advised using 

full information maximum likelihood estimation methods. 

 Thompson (2004) explained that the continuous versus 

ordinal data controversy depends to some extent on the 

judgment of the researcher.  Furthermore, Thompson (2004) 

recommended: 

Whenever there is some doubt regarding the scaling of 
data, or regarding the selection of matrix of 
associations to analyze, it is thoughtful practice to 
use several reasonable choices reflecting different 
premises.  When factors are invariant across analytic 
decisions, the researcher can vest greater confidence 
in a view that results are not methodological 
artifacts.  (p. 121) 
 

Using multiple approaches to assess factor structure and 

unidimensionality is good practice. 

 In summary, CFA and IRT approaches have been used to 

assess measurement invariance (Millsap., 2007; Meade & 

Lautenschlager, 2004; Reise, Widaman, & Pugh, 1993).  In 
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CFA, full measurement invariance is obtained when the 

pattern/structure coefficients are equal (Reise, Widaman, & 

Pugh, 1993).  If full measurement invariance is rejected, 

partial measurement invariance can be assessed.  Partial 

measurement invariance is when some of the non-fixed 

pattern/structure coefficients are equivalent.  CFA methods 

are desirable for exploring relationships among latent 

constructs (Meade & Lautenschlager, 2004). 

To evaluate measurement invariance using IRT methods, 

item discrimination and item difficulty parameters need to 

be equivalent across datasets.  Furthermore, if a 

unidimensional IRT model is used to evaluate measurement 

invariance, a test of dimensionality is required.  IRT 

methods are preferred when the equivalence of one scale or 

specific scale items are of interest, because the 

discrimination (a) and item difficulty parameters (b) 

“provide considerably more psychometric information at the 

item response level than do their CFA counterparts (item 

intercepts)” (Meade & Lautenschlager, 2004, p. 383). 

When comparing IRT and CFA methods for evaluating 

measurement invariance, Meade and Lautenschlager (2004) 

recommended: 
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Under ideal conditions, it would be desirable to 
consider both approaches when examining ME/I 
[measurement equivalence/invariance].  First, 
measurement equivalence could be examined using IRT 
methods at the item level within each scale or 
subscale desired.  Items that satisfy these conditions 
could then be used in CFA tests for individual scales 
and in more complex measurement models involving 
several scales simultaneously.  (p. 383) 
 

Using both IRT and CFA approaches to evaluate measurement 

invariance provides information about the latent constructs 

and item level information.  

Fundamental Concepts of IRT 

The origins of attitude measurement involved multiple 

raters sorting slips of paper into categories (Allport & 

Hartman, 1924; Thurstone, 1928).  Thurstone (1928) 

presented a method for measuring attitudes using a “more” 

and “less” comparison providing a linear scale for attitude 

measurement.  Thurstone’s (1928) method entailed measuring 

an individual’s attitude “as expressed by the acceptance or 

rejection of opinions” (p. 533).  Thurstone (1928) 

explained: 

The main argument so far has been to show that since 
in ordinary conversation we readily and understandably 
describe individuals as more and less pacifistic or 
more and less militaristic in attitude, we may frankly 
represent this linearity in the form of a 
unidimensional scale.  (p. 538)  
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Thurstone’s method for attitude scaling assumed the 

attitude being measured was normally distributed in the 

population and the set of items were unidimensional.  

Likert (1932) acknowledged Thurstone’s procedures were 

“characterized by a special endeavor to equalize the step-

intervals from one attitude to the next in the attitude 

scale” (p. 5).  Likert (1932) asked two compelling 

questions about Thurstone’s method of attitude measurement: 

The method is exceedingly laborious.  It seems 
legitimate to inquire whether it actually does its 
work better than simpler scales which may be employed, 
and in the same breath to ask also whether it is not 
possible to construct equally reliable scales without 
making unnecessary statistical assumptions.  (p. 6) 
 

Likert’s primary criticism of Thurstone’s method involved 

the statistical assumption that attitudes were normally 

distributed.  

Likert’s (1932) method for scoring attitudes assumed 

“a linear relationship between the response probability and 

the underlying trait” (Ostini & Nering, 2006, p. 7) and the 

assumption that attitudes are distributed normally in the 

population.  Likert (1932) explained: 

Assuming that attitudes are distributed normally, a 
method of measuring attitudes has been developed which 
uses sigma units.  This method not only retains most 
of the advantages present in methods now used, such as 
yielding scores the units of which are equal 
throughout the main range, but it has additional 
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advantages.  These briefly are: first, the method does 
away with the use of raters or judges and the errors 
arising therefrom; second, it is less laborious to 
construct an attitude scale by this method; and third, 
the method yields the same reliability with fewer 
items.  (p. 42)  
 

Likert (1932) concluded that his sigma method was not an 

improvement on assigning consecutive integers to response 

categories and obtaining a score for each person “by 

finding the average or sum of the numerical values of the 

alternatives that he checked” (p. 42).  Likert’s conclusion 

about averaging integers assigned to response categories 

generated 70 years of enduring controversy.  

Bond and Fox (2001) explained the primary criticism of 

treating ordinal data as if they were interval data: 

Whenever scores are added in this manner, the ratio,  
Or at least the interval nature for the data is being 
presumed.  That is, the relative value of each 
response vategory across all items is treated as being 
the same, and the unit increases across the rating 
scale are given equal value….  On the one hand, the 
subjectivity of attitude data is acknowledged each 
time the data is collected.  Yet on the other hand, 
the data are subsequently analyzed in a rigidly 
prescriptive and inappropriate statistical way (i.e., 
by failure to incorporate that subjectivity into the 
data analysis).  (p. 67) 
 

Andrich (1978a) explained, “The general approach for 

overcoming objections to the integer-scoring procedure is 

to use a response model which keeps track of the category 

in which a person responds” (p. 581).  Probabilistic item 
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response models keep track of the category in which a 

person responds by estimating the probabilities of 

responding in each of the ways possible on a given item 

based on the person’s standing on an underlying trait. 

Originally, the family of item response models was 

called latent trait theory, also known as item response 

theory (IRT).  Moustaki (2007) explained that latent trait 

models mean that the latent/underlying variable, the 

dependent variable, is a continuous and the manifest 

variables are categorical.  In contrast, factor analyses 

models have continuous latent variables and continuous 

manifest variables (Moustaki, 2007).  Item response models 

estimate the probability of a person responding in each of 

the ways possible on a given item based on the person’s 

standing on an underlying trait.  

Polytomous item response models for ordered data 

developed in two major branches: Rasch measurement models 

(Masters, 1982; Rasch, 1960/1980; Rost, 1988); and, 

Thurstone/Samejima models (Bock, 1972; Muraki, 1992; 

Samejima, 1969).  Both the Rasch and Thurstone/Samejima 

proponents credit Thurstone with the origins of 

probabilistic response models in attitude measurement.  
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While addressing concerns about validity of measures, 

Thurstone (1928) stated: 

A measuring instrument must not be seriously affected 
in its measuring function by the object of 
measurement.  To the extent that its measuring 
function is so affected, the validity of the 
instrument is impaired or limited.  If a yardstick 
measured differently because of the fact that it was a 
rug, a picture, or a piece of paper that was being 
measured, then to the extent the trustworthiness of 
that yardstick as a measuring device would be 
impaired.  Within the range of objects for which the 
measuring instrument is intended, it function must be 
independent of the  object of measurement.  (p. 547) 
 

The Rasch and IRT camps invoked the phrases “objective 

measurement” and “objective measure,” respectively, 

(Samejima, 1972; Wright & Stone, 1979) when advocating the 

benefits of probabilistic item response models yielding 

person-free and item-free statistics. 

Adjacent Category Models 

Item response functions model two distinct conditional 

probabilities: item category response functions (ICRFs) and 

category boundary response functions (CBRFs).  The item 

category response function (ICRF) models the probability of 

an individual responding a given way in a specific 

category.  The category boundary response function (CBRF) 

estimates the probability of an individual “responding 
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positively rather than negatively at a given boundary 

between two categories” (Ostini & Nering, 2006, p. 9).  

For dichotomous items, items with only two response 

categories (e.g., correct/incorrect, true/false, 

agree/disagree), the item category response function and 

the category response function are equivalent.  Ostini and 

Nering (2006) explained that “the probability of responding 

positively rather than negatively at the category boundary 

… also represents the probability of responding in the 

positive category” (p. 9).   

However, for polytomous items “the probability of 

responding positively rather than negatively at a given 

boundary between two categories” has at least two 

interpretations.  Ostini and Nering (2006) explained: 

‘Positively rather than negatively’ can refer to just 
the two categories immediately adjacent to the 
category boundary …. Alternatively, the phrase can 
refer to all of the possible response categories for 
an item above and below the category boundary 
respectively.  (p. 13)  
 

Adjacent category models (Mellenbergh, 1995) use only the 

two categories immediately adjacent to the selected 

category boundary to obtain CBRFs. Cumulative probability 

models (Mellenbergh, 1995) obtain CBRFs by using all of the 
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possible response categories to the left and to the right 

of the selected category boundary. 

 Less intuitive names for adjacent category models 

include: divide-by-total models (Thissen & Steinberg, 

1986), Rasch models (Andrich, 1995), and partial credit 

models (Masters, 1982).  Andrich’s (1978a) rating scale 

model (RSM) is an adjacent category model requiring the 

following assumptions: All items in the item set have the 

same scale and format and all items have equal item 

discrimination parameter estimates.  The partial credit 

model (Masters, 1982) can be used when the number of 

response categories is different among a set of items. 

Rasch Measurement Models 

Rasch (1960/1980) addressed item and test properties 

using probability theory and “ignored the existing 

literature on both IRT and classical test theory” (Baker & 

Kim, 2004, p. 154).  In the context of attitude 

measurement, Andrich (1978b) explained Rasch measurement 

“provides a perspective for unifying the Thurstone goal of 

item scaling and the Likert procedure for attitude 

measurement” (p. 667).  Andrich (1978b) and Wright and 

Masters (1982) extended the work of Rasch (1960/1980) to 
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develop the rating scale and partial credit models, 

respectively.   

Embretson and Reise (2000) provided a cautionary note 

about the literature on rating scale models: “The 

literature on the ‘rating scale model’ can be a little 

confusing because there are several versions of this model 

that vary in complexity and are formulated in different 

ways by different authors” (p. 115).  Andrich (2005) 

explained “that the so called rating scale and partial 

credit models, at the level of one person responding to one 

item, are identical in their structure and in the response 

process they can characterise [sic]” (p. 31).  The 

fundamental assumption of Andrich’s (1978a) rating scale 

model assumes that all of the items on a scale have the 

same discrimination (slope) parameter. 

The partial credit model (Masters, 1982) is an 

extension of Andrich’s rating scale model that preserves 

the desirable features of Rasch models.  Masters explained: 

The parameters in this ‘Partial Credit’ model appear 
additively in the exponent of the model and so can be 
separated and estimated independently of each other.  
This separability results in sufficient statistics for 
the model parameters and makes possible objective 
comparisons of persons and items from graded 
responses.  (p. 149) 
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The primary distinction between the rating scale model and 

the partial credit model is that the partial credit model 

can be used when the number of response categories is 

different among a set of items. 

The mathematical statement of the partial credit model 

is the probability of an individual responding in a 

specific category is a function of the difference between 

the individual’s trait level and a category intersection 

parameter (Embretson & Reise, 2001).  The mathematical 

expression of Master’s (1982) partial credit model (PCM) 

for the present study is:             

           exp[a ∑(Ө - bik)] 
                      k=0 

Pij(Ө) = ____________________ ,               
                                mj-1             j       

         ∑ [exp a ∑(Ө - bik)] 
                   j=0       k=0 

 
Where Pij(Ө) is the probability of selecting category j in 

item i, at a given Ө.  The item discrimination parameter, 

a, is constant across items, and the bij term is the item 

step difficulty for category j.  The greater the value of 

the item step difficulty, the more “difficult” (i.e., less 

likely) the specific step is compared to other steps in the 

item.  

 Separability.  Rasch models have a property called 

separability of person and item parameters.  
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Mathematically, item difficulty parameters are estimated 

without estimating respondents’ attitudes.  Masters (1982) 

provided an accessible explanation of the property of 

separability:  

In common with all Rasch models, the parameters … 
appear additively in the exponent of the model and so 
can be separated and estimated independently of each 
other.  This separability results in sufficient 
statistics for the model parameters and makes possible 
objective comparisons of persons and items from graded 
responses.  (p. 149) 
 

In practice, the property of separability means that if a 

Rasch model fits the data, then the sum score is a 

sufficient statistic and can be used to obtain parameter 

estimates. 

Rost (2001) explained how the property of separability 

influences the item characteristic curves (ICCs): 

Separability denotes the property that person and item 
effects on the response behavior can be isolated from 
each other.  This can be seen as an analogy to 
analysis of variance where the separation of two 
factors in a main effects model implies that there are 
no interaction effects between these factors.  It 
follows from this analogy that intersecting ICCs would 
contradict separability, since it is kind of 
interaction: intersecting ICCs means that the ‘effect 
size’ of the person factor with respect to the 
response probability varies from item to item.  (p. 
28). 
 

Separable person and item parameters allow “person 

parameters to be conditioned out of item calibration, 
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enabling sample-free calibration, and item parameters to be 

conditioned out of person measurements, enabling test-free 

measurement” (Wright & Masters, 1982, p. 59). 

Andrich (1978b) explained the practical implications 

of separability and sufficient statistics when a Rasch 

model fits the data: 

Consequently, if the model holds, the pattern of 
responses of subjects or items is immaterial for their 
respective parameter estimates.  Their respective 
total scores are sufficient.  It is of particular 
interest that in the first stage in estimating a 
person’s attitude, his scores on the items are simply 
summed as in the Likert procedure with no reference to 
the scale values of the items.  (p. 670) 
   

If a Rasch measurement model fits the data, adding integers 

is an acceptable procedure for obtaining respondent scores 

and parameter estimates. 

Cumulative Probability Models 

Cumulative probability models are also called 

difference models (Thissen & Steinberg, 1986), Thurstone 

models (Andrich, 1995), and Thurstone/Samejima models 

(Ostini & Nering, 2006).  Samejima’s (1969) homogenous 

graded response model (GRM) is a cumulative probability 

model.  Mellenbergh (1995) explained that cumulative 

probability models preserve the ordinal nature of the data 

by using pairs of categories.  Cumulative probability 
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models estimate the probabilities for all of the intervals 

to the left of the selected boundary and then any remaining 

intervals to the right.  

Samejima Models 

Samejima (1998) explained that the graded response 

model “represents a family of mathematical models that 

deals with ordered polytomous categories” (p. 85).  

Samejima (1972) presented two classes of graded response 

models: heterogeneous and homogenous graded response 

models.  Samejima (1969) developed the homogeneous response 

model using the normal ogive and logistic function.  

Samejima (1969) explained that the homogenous graded 

response models, logistic and normal ogive, are homogenous 

because “sometimes the reasoning required in solving the 

discriminating power should be almost constant throughout 

the whole thinking process required in solving the problem” 

(p. 19).  The discrimination parameter (slope) of 

homogenous graded response models must be the same for all 

categories within an item, but can vary across a set of 

items.  In other words, the category boundary response 

functions of the homogenous graded response model can 

differ across a set of items, but not within a single item 

(Ostini & Nering, 2006).  
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The mathematical statement of Samejima’s 1969 

homogenous graded response model using the logistic 

function is: 

 
       Pig = __exp[ai(Ө - big)]__    
            1 + exp[ai(Ө - big)] 
 

The ai is the item discrimination parameter and big is the 

item difficulty parameter, also known as the boundary 

location parameter.  Because the graded response model is 

homogenous, item discrimination is constant within the item 

and only one item slope parameter (a) is estimated.  Each 

between-category threshold must be estimated by item 

difficulty parameters (b).  Embretson and Reise (2000) 

explained that the difficulty parameters are interpreted as 

the value of the latent trait required to respond above 

each threshold with a 0.50 probability.  

 Ostini (2001) described Samejima’s 1969 homogenous 

graded response model as “the archetypal” cumulative 

probability model (p. 12).  For cumulative probability 

models, the categories of the ordinal variable are split 

into one less cumulative probability than the number of 

categories.  For example, four ordered categories are 

divided into three conditional probabilities.  Mellenbergh 

(1995) explained “the ordered nature of the variable is 
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preserved by using contiguous groups of categories” (p. 

94).  Cumulative probability models can be used to model 

items with different numbers of categories. 

Parameter Estimation 

 The purpose of IRT is to estimate both the value of 

the latent trait for each respondent and the item 

parameters for each item.  At the beginning of an analysis, 

the responses to the items are known, but the item 

parameters are also unknown and the respondents’ values on 

the latent trait are unknown.  Parameter estimation uses 

the observed, known responses to find the item 

characteristic curves that best fit the selected item 

response model (Baker, 2001).  Thissen (2003) explained:  

The power of IRT is associated primarily with the 
phrase ‘estimate the value of the trait’.  Loosely 
speaking, we say that a test is ‘scored’.  But 
strictly speaking the test is not scored; one does not 
simply count the positive responses, as is done in 
traditional test theory.  One ‘estimates the value of 
the trait’ using the inferred relationships between 
the item responses and the trait being measured.  (p. 
592) 
 

Essentially, parameter estimation uses known information, 

individuals’ responses to a set of items, to obtain values 

for the unknown item parameters and latent trait values. 

To obtain estimates of the person and item parameters 

(latent trait values/scores), the parametric item response 
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function requires a mathematical form such as the normal 

ogive or logistic functions.  Baker and Kim (2004) 

explained: 

Switching from a normal ogive to a logistic ogive 
model for an item’s ICC results in a significant 
decrease in the computational demands of the maximum 
likelihood estimation procedure.  Since the cumulative 
distribution of the logistic density has a closed 
form, that is, does not involve an integral, it can be 
computed easily.  This computational advantage is the 
primary reason for using logistic ogive models for the 
ICC.  (p. 38)  
 

Normal ogive and logistic item response models function 

predict nearly identical item characteristic curves with 

the greatest differences occurring at extreme levels of 

latent trait scores (Embretson & Reise, 2000).  

Parameter estimation requires assumptions about local 

independence and unidimensionality.  Lord (1980) explained:  

Local independence requires that any two items be 
uncorrelated when Ө [theta – the underlying latent 
variable] is fixed.  It definitely does not require 
that items be uncorrelated in ordinary groups, where Ө 
varies.  Note in particular that local independence 
follows automatically from unidimensionality.  It is 
not an additional assumption.  (p. 19)  
 

Mathematically, local independence means “the probability 

of success on all items is equal to the product of the 

separate probabilities of success” (Lord, 1980, p. 19).  

Embretson and Reise (2000) explained the importance of 

the local independence assumption in parameter estimation:  
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To apply an IRT model, local independence must be 
assumed because the response pattern probability is 
the simple product of the individual item 
probabilities.  If local independence is violated,  
Then the response pattern probabilities will be 
inappropriately reproduced in standard IRT models.  
(p. 188) 
 

Local independence is required to obtain estimates of 

response pattern probabilities. 

In practice, selecting a parameter estimation method 

is limited by the software package a researcher uses.  For 

example, Parscale 4.0 for Windows (Muraki & Bock, 2008) 

obtains latent trait estimates using maximum likelihood 

estimation (MLE), weighted maximum likelihood (WML), or 

expected a posteriori (EAP).  To obtain item parameter 

estimates, Parscale 4.0 uses maximum likelihood estimation 

(MLE) and marginal maximum likelihood estimation (MMLE). 

There are two major classes of parameter estimation 

theories: Maximum likelihood estimation (MLE) and Bayesian 

methods.  Wang and Vispoel (1998) explained a basic 

difference between MLE and Bayesian estimation is that 

Bayesian methods “incorporate prior information into the 

data in deriving ability estimates, whereas MLE relies on 

the data alone” (p. 110).  Weighted maximum likelihood 

estimation belongs to the maximum likelihood class.  
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Expected a posteriori and marginal maximum likelihood 

estimation (MMLE) are Bayesian procedures. 

Maximum Likelihood Estimation (MLE) 

Embretson and Reise (2000) explained that maximum 

likelihood estimation identifies the value of the 

underlying trait “that maximizes the likelihood of an 

examinee’s item response pattern” (p. 159).  Maximum 

likelihood estimation requires that the latent trait have a 

normal distribution (Woods, 2007) and “that the data have 

at least an approximately multivariate normal distribution” 

(Thompson, 2004, p. 127).  Samejima (1972) explained, “When 

the distribution of the trait is unknown, maximum 

likelihood estimation will be the most reasonable method” 

(p. 7).  

Maximum likelihood estimation is not influenced by the 

use of logistic or normal ogive functions.  Baker and Kim 

(2004) explained, “Changing from the normal ogive model to 

the logistic ogive model for the item characteristic curve 

has no impact upon the framework of the maximum likelihood 

estimation procedures” (p. 38).  The purpose of parameter 

estimation is to find the item characteristic curves, 

normal or logistic, that best fit the selected item 

response model. 
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Maximum likelihood estimation is an iterative 

procedure that repeatedly “tweaks” the estimate until some 

criterion is sufficiently optimized.  The first step uses 

start values to obtain likelihood estimates.  Optimization 

methods are used to generate start values.  The second step 

evaluates the change in the likelihood estimates.  The 

process is iterative because the first and second stages 

are repeated until there is very little change in the 

estimates or the estimates “converge.”  Millsap (2008) 

explained “the process of generating well ‘guesses’ is the 

key to the success of the method.  If guesses are ‘bad’, 

the iterations could keep going on indefinitely” (p. 3).  

When the procedure has converged, there is no promise 

that the converged solution is the most optimal solution.  

Millsap (2008) explained: “For example, in maximizing the 

likelihood, the optimization may arrive at a local optimum.  

To check this, one can re-start the procedure using a 

different initial value to see if the same converged 

solution appears” (p. 4).  Failing to converge on a 

solution indicates problems with model-data fit.  Linacre 

(1987) explained, “A data set showing lack of convergence 

can usually be rescued by setting aside for separate study 
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the person or item performances which contain these 

unexpected responses” (p. 7).  

 Another limitation of maximum likelihood estimation is 

there are no meaningful maximum likelihood estimates when 

someone responds to all of the items on a survey or test in 

the same way, or if all of the respondents answer an item 

in the same way.  While the items or individuals with 

uniform responses may be eliminated from the analysis, 

including them will not influence the estimates for the 

items and latent variables score (Lord, 1980). 

Weighted Maximum Likelihood Estimation (WMLE) 

Weighted maximum likelihood estimation is also called 

weighted likelihood estimation (WLE) and Warm’s weighted 

maximum likelihood estimation (Warm, 1989).  Warm (2007) 

explained: 

Maximum likelihood estimates are the parameter values 
which maximize the likelihood that the observed data 
would have been generated.  Thus MLE values correspond 
to the mode of the likelihood function [and] modal 
estimates are biased when viewed from the likelihood 
function as whole.  (p. 1094)  
 

Warm (1989) recommended using the mean of the likelihood 

function as opposed to the mode of the likelihood function 

and concluded that WMLE estimates for latent variable 
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scores have “a small bias and are computationally 

efficient” (p. 428). 

Expected a Posteriori (EAP) 

Expected a posteriori (EAP) estimation is a Bayesian 

estimation method.  Chen, Hou, Fitzpatrick, and Dodd (1997) 

explained “Bayesian estimation methods take a prior 

population distribution into account as prior information 

and estimate trait levels based on the posterior 

distribution (posteriori distribution α likelihood function 

x prior distribution)” (p. 423).  EAP estimates are the 

mean of the posteriori distribution (Chen et al., 1997).  

Hambleton, Swaminathan and Rogers (1991) explained one 

advantage of Bayesian methods over MLE is that Bayesian 

estimates of the latent variable “can be obtained for zero 

items correct and perfect response patterns” (p. 39). 

Marginal Maximum Likelihood Estimation (MMLE) 

Marginal maximum likelihood estimation (MMLE) is a 

Bayesian procedure to estimate item parameters.  MMLE 

assumes that the latent variable (Θ) is normally 

distributed.  Woods (2007) explained that “integration with 

respect to the continuous latent variable is done 

numerically by representing as Θ as series of discrete 

quadrature points” (p. 73).  
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Comparing Parameter Estimation Theories 

Computer adaptive testing (CAT) applications of item 

response models have generated much of the literature 

comparing parameter estimation theories (e.g., Chen, Hou, 

Dodd, 1998; Chen, Hou, Fitzpatrick, & Dodd, 1997; Yang, 

Poggio, & Glasnapp, 2006).  CAT uses item banks, large sets 

of items with known item parameters, to administer a set of 

items customized to an individual’s presumed level of the 

latent trait.  

Chen at al. (1998) used Andrich’s (1978a) rating scale 

model to investigate the differences between maximum 

likelihood estimation (MLE) compared to expected a 

posteriori estimation (EAP).  Chen et al. (1998) concluded 

that “EAP estimation with a normal prior or uniform prior 

yielded results similar to those obtained with MLE, even 

though the prior did not match the underlying Θ 

distribution” (p. 438).  

To summarize, Lord (1986) explained, “Marginal maximum 

likelihood multiplies the original likelihood by a prior on 

ability, eliminates the ability parameters by integration, 

obtains MLEs of the item parameters by maximizing the 

resulting ‘marginal’ likelihood function” (p. 157).  After 
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obtaining item parameters, Bayesian procedures can be used 

to estimate ability parameters.   

Parameter Invariance 

Theoretically, when an item response model fits the 

data, two desirable model features are obtained: (a) item 

parameters are independent of the abilities of respondents; 

and (b) ability parameters are independent of the set of 

test items administered (Hambleton, Swaminathan, & Rogers, 

1991).  Thus, some refer to IRT person estimates as being 

“item free,” and item calibrations as being “person free.”  

These two features are called item parameter invariance and 

ability parameter invariance, respectively.  

Rupp and Zumbo (2006) provided a detailed explanation 

of parameter invariance: 

In the phrase ‘parameter invariance,’ the parameters 
referred to are the set of item parameters and set of 
examinee parameters that are tied to a particular 
measurement model. … The word invariance indicates 
that parameter values are identical in separate 
examinee populations or across separate measurement 
conditions, commonly investigated through estimated 
parameter values from different calibration samples.  
(p. 64)   
 

The property of parameter invariance was the reason many 

researchers used item response models (e.g., Embretson, & 

Reise, 2000; Reise, Ainsworth, & Haviland, 2005). 
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 While parameter invariance is a feature of item 

response models, Lord (1980) presented item parameter 

invariance as a property of regression functions.  

Essentially, item response functions are the regression of 

item score on ability and “regression functions remain 

unchanged when the frequency distribution of the predictor 

is changed” (Lord, 1980, p. 34).  In the context of 

probabilistic item response models, the probability of a 

respondent endorsing an item depends mainly on the 

respondent’s level of the latent trait.  The number of 

people at the respondent’s ability or any other ability 

level has no influence on the probability of a respondent 

endorsing an item.  

Lord (1980) explained, “Since the regression is 

invariant, … its point of inflexion, and the slope at this 

point all stay the same regardless of the distribution of 

ability in the groups tested” (p. 34).  Thus, the slope 

parameter (a), also known as the item discrimination 

parameter, and the location parameter (b), the item 

difficulty parameter, “are invariant item parameters.  

According to the model, they remain the same regardless of 

the group tested” (Lord, 1980, p. 34).  Baker (2001) 

explained, “From a practical point of view, this means that 
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the parameters of the total item characteristic curve can 

be estimated from any segment of the curve” (p. 56).  In 

other words, the value of the item parameters, 

discrimination and difficulty, are properties of the item 

and not the people who responded to the item. 

Reise, Ainsworth, and Haviland (2005) explained 

parameter invariance in item response models means two 

things: 

First, an individual’s position on a latent-trait 
continuum can be estimated from his or her responses 
to any set of items with known IRFs, even items that 
come from different measures. … Second, item 
properties, as represented by the IRF, do not depend 
on the characteristics of a particular population.  
Also, the scale of the trait does not depend on any 
particular item set, but exits independently.  (p. 96) 
 

Item-parameter invariance does not mean that item-parameter 

estimates are always the same from one group of respondents 

to another (Reise, Ainsworth, Haviland, 2005).  Warm (1989) 

explained, “The parameters are invariant from test to test 

within a linear transformation” (p. 427).  While item 

parameters are group invariant, item parameter estimates 

vary because of different sample sizes and model-data fit 

(Baker, 2001).  

According to Rupp and Zumbo (2006), “parameter 

invariance is often misperceived as a ‘mysterious’ property 
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that all IRT models seem to possess by definition across as 

almost infinite range of examinee populations and 

measurement conditions” (p. 77).  The property of parameter 

invariance depends on model-data fit.  Furthermore, Rupp 

and Zumbo (2006) explained evaluating parameter invariance 

“requires at least two examinee populations or two 

measurement conditions for parameter comparisons to be 

possible and meaningful” (p. 65).  

Curtin’s (2007) dissertation explored three methods 

for assessing parameter invariance of item difficulty 

parameters in the Rasch rating scale model: Confidence 

intervals for the item parameter estimates based on pooled 

standard errors; between-fit statistics; and, a general 

linear model method using raw score residuals for the 

dependent variable with selected demographics for the 

independent variables.  Curtin (2007) provided a simple 

explanation of person and item parameter invariance: 

Item difficulty estimates should be basically the same 
regardless of the sample of examinees tested when the 
sample is taken from a population that shares the 
trait being measured.  A person’s predicted ability 
level should be the same (within a reasonable small 
margin of estimation error) for any representative 
sample of items designed to measure the trait.  (p. 2) 
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Curtin (2007) concluded the Rasch item difficulty parameter 

estimates were invariant over measurement occasions when 

the rating scale model was appropriate for the data.  

Item Information Functions 
 
 In practice, researchers use item information 

functions to decide which items to include on or eliminate 

from an assessment instrument.  For example, a survey 

designed to measure the latent trait “satisfaction with 

college” could include a proportional number of items that 

measure low, moderate, and high levels of satisfaction with 

college.  

When extended to polytomous item response models for 

ordered data, the basic concepts of item characteristic 

curves are applicable, but more complicated (Ostini & 

Nering, 2006).  Embretson and Reise (2000) explained: 

The rules regarding what factors influence item 
information are much more complex in polytomous 
models.  For example, in several of the polytomous 
models the amount of information a particular item 
provides depends on both the size of the slope 
parameter and the spread of the category thresholds or 
intersection parameters.  (p. 185)   
 

Polytomous item response models provide item information 

for each response category, thereby providing more 

information over a broader range of the latent trait than 

dichotomous items provide (Ostini & Nering, 2006).  Item 
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information functions depict the amount of psychometric 

information available at any level of the latent trait. 

Thissen (2003) explained that in the context of item 

response theory “one finds that there is no longer an idea 

of ‘reliability’ in many cases; instead, there is 

information” (p. 592).  Baker (2001) explained: 

The statistical meaning of information is credited to 
Sir R.A. Fisher, who defined information as the 
reciprocal of the precision with which a parameter 
could be estimated.  Thus, if you could estimate a 
parameter with precision you would know more about the 
value of the parameter then if you had estimated it 
with less precision.  Statistically, the precision 
with which a parameter is estimated is measured by the 
variability of the estimates around the value of the 
parameter.  (p. 107)   
 

Item information functions provide statistical information 

about the precision of estimates at different levels of the 

underlying trait.  

However, Baker (2001) explained, “the item information 

function does not depend upon the distribution of examinees 

over the ability scale” (p. 108).  Item information 

functions indicate how precisely the item response function 

estimates the latent trait.  Item information varies as a 

function of the underlying trait and is inversely related 

to measurement error (Ostini & Nering, 2006). 
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Test Information Functions 

 Test information functions depict the precision of 

parameter estimation at different values of the underlying 

trait.  Item information curves can be added together to 

obtain a test information function.  Embretson and Reise 

(2000) explained, “Once a researcher knows a test’s 

information function, which can be established as soon as 

item parameters are estimated, how precise that test is at 

various ranges of the latent trait can be determined” (p. 

185).  Test information functions are available for item 

response models because standard errors can be calculated 

at each different ability level.  

The utility of item information functions and test 

information functions depends on model fit.  Hambleton, 

Swaminathan, and Rogers (1991) explained:  

The utility of item information functions in test 
development and evaluation depends on the fit of the 
item characteristic curves (ICCs) to the test data.  
If the fit of the ICCs to the data is poor, then the 
corresponding item statistics and item information 
functions will be misleading.  (p. 92) 
 

The quality of item information and test information 

depends on how the item response model fits the data. 
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Assessing Model-Data Fit 

Assessing model-data fit requires evaluating the 

assumptions of the item response model and the model 

features.  Hambleton, Swaminathan, and Rogers (1991) 

explained:  

Too much reliance has been placed on statistical tests 
of model fit.  These tests have a well-known and 
serious flaw: their sensitivity to examinee sample 
size.  Almost any empirical departure from the model 
under consideration will lead to rejection of the null 
hypothesis of model-data fit if the sample size is 
sufficiently large.  If sample sizes are small, even 
large model data discrepancies may not be detected due 
to the low statistical power associated with 
significance tests.  (p. 53)  
 

Large sample sizes influence statistical significance tests 

and confidence intervals used to assess model-data fit 

(Curtin, 2007); therefore, their utility with item response 

models is limited.  

Evaluating item response model fit requires a “variety 

of procedures to be implemented, and ultimately, a 

scientist must use his or her best judgment” (Embretson & 

Reise, 2000, p. 233).  To assess model-data fit, 

researchers need to evaluate model assumptions and model 

features.  Hambleton and Swaminathan (1985) recommended 

using three types of evidence to evaluate model fit: 
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Validity of model assumptions; invariance of item and 

ability parameters; and accuracy of model estimates.  

De Ayala (2009) explained that “the presences of 

invariance can be used as part of a model-data fit 

investigation” (p. 61).  First, the total sample is divided 

in roughly half.  Then, the item parameter estimates are 

obtained for each subsample and compared using the Pearson 

product-moment correlation coefficient.  Finally, the item 

parameter estimates of each subsample need to be compared 

to the item parameter estimates of the main samples.  De 

Ayala (2009) explained that size of the correlation 

coefficients mean that using a “linear transformation to 

convert the estimates on one metric to that of another 

metric [can be done] without any loss of information 

concerning model-data fit or person and item location 

estimates” (p. 62). 

Rasch models assume that the discrimination parameter 

is constant in a set of items.  Birnbaum (1968) asked, “Do 

the items in a test really differ from each other in 

discriminating power?  This question is crucial to 

evaluating the validity of the models” (p. 402).  Some 

researchers (Linacre, 2007; Lumsden, 1978) argued that 

unequal item discrimination parameters indicate a violation 



 

 

52

of unidimensionality.  Assumptions governing the 

discrimination parameter and unidimensionality need to be 

evaluated to determine the appropriateness of an item 

response model for a given data set.  

Comparing Polytomous Item Response Models for Ordered Data 

In practice, the researcher’s ability to select model-

fit methods and parameter estimation procedures is largely 

determined by the software selected to analyze item 

response models.  Furthermore, software packages complicate 

comparing results from item response models.  For example, 

Linacre (2004) analyzed a data set using the default 

settings for parameter estimation with five software 

packages programs to obtain parameters for the Rasch 

partial credit model.  

Linacre (2004) observed, “On inspection of program 

output, it was seen that item difficulties and rating scale 

(partial credit) estimates were reported in such different 

ways that simple comparison was not possible” (p. 43).  

Comparing measurement outcomes of item response models 

requires attention to technical details such as default 

software settings and parameter estimation procedures. 

Ostini and Nering (2006) asked, “Considering the 

fundamental structural differences between the two major 
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types of polytomous IRT models, it is certainly a matter of 

some interest as to whether they produce demonstrable, 

meaningful differences in measurement outcome” (p. 91).  

Dodd (1984), van Engelenburg (1997), Baker, Rounds, and 

Zevon (2000), and Ostini (2001) have investigated 

differences and similarities between cumulative probability 

models and adjacent category models. 

Dodd’s (1984) dissertation used simulated data to 

compare the homogenous graded response model (Samejima, 

1969) and the partial credit model (Masters, 1982).  In 

addition, Dodd used a simplified graded response model to 

obtain category boundary and attitude trait parameter 

estimates in the same manner as the graded response model, 

while restricting the item discrimination parameters to be 

equal. 

Dodd used both simulated data and observed data.  The 

observed data were from a 25-item survey.  The simulated 

data were generated for a sample of 1,000 hypothetical 

individuals.  Dodd explained: 

The simulated data were generated to approximate 
closely the responses that would be expected of the 
items on typical, high-quality Likert scales, which in 
the author’s experience usually measure one general or 
dominant factor and several lesser common factors.  
More specifically, the responses to 30 items, each 
with five response options, were generated so that one 
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general factor and five common factors were present in 
the data.  (p. 62)  
 

The advantage of using simulated data is that the 

researcher can evaluate model attributes compared to known 

attributes of the data. 

Dodd used SAS to run principal axis factor analysis to 

determine the factor structure of the observed data.  In 

addition, Dodd used the software LOGOG and maximum 

likelihood estimation procedures to obtain category 

boundary parameters and discrimination parameters for the 

items as well as the attitude trait level for the 

respondents. 

Dodd used principal axis factor analysis to assess the 

unidimensionality assumption.  To determine whether or not 

a scale is unidimensional, Dodd invoked Lord’s (1980) 

criterion for: “According to Lord, if the first eigenvalue 

(latent root) is considerably larger than the second and 

the second eigenvalue has approximately the same magnitude 

as the other eigenvalues, then the items that comprise the 

scale can be considered unidimensional” (p. 69).   

Dodd used correlational analysis to explore the linear 

relationship among the item difficulty estimates and 

attitude trait level estimates yielded by the graded 
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response, simplified graded response, and partial credit 

latent trait models.  Dodd explained, “More specifically, 

Pearson product-moment correlation coefficients were 

calculated to determine the intercorrelations between the 

item parameter estimates yielded by the three models for 

both the real and the simulated data” (p. 72).    

Dodd concluded: “The graded response and partial 

credit models produced highly correlated estimates of the 

difficulty parameters for the items and of the attitude 

trait level parameters for the persons” (p. 142).  However, 

the partial credit model had fewer issues with parameter 

estimation because the total observed score was a 

sufficient statistic for estimating respondents’ trait 

levels (Dodd, 1984).  

Van Engelenburg’s (1997) dissertation compared item 

response models for ordered polytomous data from three 

classes of parametric models: Cumulative probability 

models, adjacent category models, and continuation ratio 

models.  Van Engelenburg used simulated data for eight 

items with five ordered categories and 300 respondents.  

Van Engelenburg (1997) explained: 

The results show that fitting the correct model (i.e. 
the fitted model and the model that generated the data 
are of the same class) resulted in a better model fit 
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than fitting the incorrect model.  Further, none of 
the three classes of models proved to be uniformly 
better.  However, if the incorrect model is used, the 
results suggest a preference for the cumulative-
probability model, although the differences are small.  
With regard to the estimation of trait values, 
incorrect models performed as well as correct models.  
(p. 7) 
 

While Dodd (1984) indicated some preference for the 

performance of the partial credit model (the adjacent 

category models), van Engelenburg (1997) preferred the 

estimation and model fit performance of the cumulative 

probability model, also known as the Samejima/Thurstone 

class of models.  

 Van Engelenburg used simulated data for eight items 

with five ordered categories and 300 respondents to compare 

item response models for ordered polytomous data from three 

classes of parametric models: Cumulative probability 

models, adjacent category models, and continuation ratio 

models.  Van Engelenburg explained: 

The results show that fitting the correct model (i.e. 
the fitted model and the model that generated the data 
are of the same class) resulted in a better model fit 
than fitting the incorrect model.  Further, none of 
the three classes of models proved to be uniformly 
better.  However, if the incorrect model is used, the 
results suggest a preference for the cumulative-
probability model, although the differences are small.  
With regard to the estimation of trait values, 
incorrect models performed as well as correct models.  
(p. 7) 
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Van Engelenburg preferred the estimation and model fit 

performance of the cumulative probability model, also known 

as the Samejima/Thurstone class of models.  

Van Engelenburg used the marginal maximum likelihood 

procedure to estimate item parameters but did not provide 

information about specific software packages.  To assess 

model fit, van Engelenburg used the ideal observer index.  

The ideal observer index was appropriate for use with 

simulated data because the index quantified “how closely 

the estimation model agrees with the simulation model” (p. 

12). 

Van Engelenburg’s research questions explored model 

choice and the consequences of choosing the wrong model for 

the data.  Van Engelenburg explained: 

Furthermore, if some models are more flexible than 
others, in the sense that less damage is done if these 
models are incorrectly used, then these models are 
preferred above others.  Finally, we are probably not 
only interested in how well the models can describe an 
arbitrary data set, but also in how well trait scores 
are estimated by an incorrect model.  (p. 8) 
 

Van Engelenburg determined that a simulation study was the 

appropriate method to assess implications of model choice. 

 Baker, Rounds, and Zevon (2000) used the homogenous 

logistic graded response model (Samejima, 1969) and the 

partial credit model (Masters, 1982) to evaluate the 
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psychometric properties of an assessment of well-being.  

Baker et al. (2000) used exploratory factor analysis to 

identify two factors.  One factor measured positive affect 

and had 21 items and the second factor measured negative 

affect and had 31 items.  Baker et al. (2000) had 713 

people in their dataset. 

Baker et al. (2000) used MULTILOG, an IRT-specific 

software package, and marginal maximum likelihood 

estimation to obtain item parameter estimates.  MULTILOG 

provides the likelihood ratio G2 to examine model data fit.  

Item parameter invariance was examined using correlations 

and graphical analysis (Baker et al., 2000). 

Baker et al. (2001) concluded that homogenous logistic 

graded response model (Samejima, 1969) fit the data better 

than the partial credit model (Masters, 1982).  Baker at 

al. explained that the graded response model was “robust to 

violation of the unidimensionality assumption for both the 

positive and negative affect terms and demonstrated item 

parameter invariance” (p. 265).  The rating scale model did 

not meet the assumption of equal slope parameters across 

items. 

 Ostini’s (2001) dissertation compared the results of 

eight polytomous item response models obtained from seven 



 

 

59

software packages.  The eight models were selected from 

cumulative and adjacent category models.  The seven 

software packages represented a variety of parameter 

estimation routines including Bayesian, joint, marginal, 

and conditional maximum likelihood procedures (Ostini, 

2001).  Ostini’s research examined 26 different 

combinations of model and parameter estimation procedures.  

Ostini used two distinct datasets of real survey data 

for model comparisons.  The first dataset was a 

unidimensional set of 12 items and the second dataset was 

multidimensional.  Ostini explained: 

The primary limitation associated with using real data 
is that ‘true’ or correct model parameters are 
unknown.  Therefore, it is not possible to identify 
the level of error associated with each modeling 
results.  It is only possible to investigate 
discrepancies among the results obtained from each 
model.  (p. 34) 
 

Ostini used two datasets because “differing datasets 

provided some initial indication of the generalizability of 

the obtained results in terms of both item and respondent 

sample size” (p. 35). 

 Ostini used eight models: graded response model, 

rating scale-graded response model, generalized partial 

credit model, partial credit model, rating scale model, 
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dispersion location model, dispersion skew location model, 

and successive intervals model.  

Ostini used seven IRT-specific software packages: 

Parscale, Multilog, Rumm, WinMira, BigSteps, ConQuest, and 

Quest.  Ostini depended on the fit statistics provide by 

each software package to evaluate model fit.  Parscale 

provided chi-square statistics and “items were selected as 

non-fitting if the chi-square test of fit gave a 

probability of less than 0.01” (p. 58).  Additionally, 

Ostini provided a table presenting the number and 

percentage of items not fitting each model/software 

combination. 

To compare ability estimates, Ostini provided a table 

describing the distributions of theta estimates for each 

model.  The table presented the range, mean, standard 

deviation, skew, and kurtosis of the distributions of theta 

estimates.  Additionally, Ostini used product-moment 

correlations for assessing parameter invariance of latent 

trait estimates and item difficulty estimates.   

When comparing results from eight polytomous item 

response models, Ostini (2001) had three general findings.  

First, evidence for measurement differences was more 

prevalent for a non-unidimensional data set.  Second, 
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Ostini (2001) explained, “The results from the analysis of 

the Θ distributions produced by the 26 different model-

estimation conditions were most striking for their 

remarkable similarities” (p. 295).  Finally, Ostini (2001) 

explained, “the lack of clear and reliable procedures for 

determining item-model fit is potentially a serious 

handicap to the successful, practical implementations of 

polytomous IRT models” (p. 304).  

Curtin’s (2007) dissertation used one model, the 

rating scale model, to explore three methods for assessing 

parameter invariance of item difficulty parameters: 

Confidence intervals for the item parameter estimates based 

on pooled standard errors; between-fit statistics; and, a 

general linear model method using raw score residuals for 

the dependent variable with selected demographics for the 

independent variables.  Curtin provided a simple 

explanation of person and item parameter invariance: 

Item difficulty estimates should be basically the same 
regardless of the sample of examinees tested when the 
sample is taken from a population that shares the 
trait being measured.  A person’s predicted ability 
level should be the same (within a reasonable small 
margin of estimation error) for any representative 
sample of items designed to measure the trait.  (p. 2) 
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Curtin concluded the Rasch item difficulty parameter 

estimates were invariant over measurement occasions when 

the rating scale model was appropriate for the data.  

Curtin used five years of survey data from the Brigham 

Young University Alumni Questionnaire from a different 

group of respondents every year.  Curtin used the rating 

scale model, Winsteps, and IPARM to obtain item difficulty 

estimates and between-fit statistics.  To assess model–data 

fit, Curtin used the between-fit statistics to discard 

items that did not fit the model. 

To compare parameter estimates, Curtin used between-

fit statistics obtained using IPARM because “the between-

fit procedure allows all groups (years) and combinations of 

groups (e.g., years, type of major and gender) to be tested 

simultaneously for differences in the item parameters” (p. 

25).  Curtin (2007) concluded that the item difficulty 

parameter estimates obtained with the rating scale model 

were invariant across samples. 

Sharkness, DeAngelo, and Pryor (2010) “embarked on a 

project … to organize and evaluate all of the latent traits 

that have been assessed using CIRP [Cooperative 

Institutional Research Program] data” (p. 2).  Since 1973, 

the Cooperative Institutional Research Program (CIRP) has 
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been administered by the Higher Education Research 

Institute (HERI).  HERI is affiliated with the Graduate 

School of Education & Information Studies (GSE&IS) at the 

University of California, Los Angeles (UCLA).  

CIRP surveys are designed to explore the impact of a 

college education.  The CIRP Freshman Survey (TFS) is 

administered to incoming college freshmen prior to their 

first day in class.  Your First College Year (YFCY) survey 

is administered at the end of the freshman year, and the 

College Senior Survey (CSS) is administered at the end of 

the senior year.  Sharkness et al. (2010) selected items 

from the TFS, YFCY, and CSS to identify latent constructs 

across the 2008 and 2009 CIRP surveys. 

Sharkness et al. (2010) used the software R 2.9.0 (R 

Development Core Team, 2009) to conduct principal axis 

factor analyses with promax rotation to align items with 

constructs and to assess local independence and 

unidimensionality.  Sharkness et al. used scree plots 

(Cattell, 1966) and compared correlation matrices from the 

observed data to the model-reproduced correlation matrices 

to determine whether a single factor fit a set of items. 

Sharkness et al. (2010) used MULTILOG 7 to obtain 

graded response model estimates.  The factor analyses and 
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item response theory analyses resulted in 10 factors using 

2008-2009 YFCY items: Habits of Mind (11 items), Academic 

Disengagement (five items), Student-Faculty Interaction 

(six items), Overall Satisfaction (five items), Pluralistic 

Orientation (five items), Positive Cross-Racial Interaction 

(six items), Negative Cross-Racial Interaction (three 

items), Social Agency (six items), Civic Awareness (three 

items), and Academic Self Concept (four items). 

In summary, Dodd (1984), van Engelenburg (1997), and 

Ostini (2001) investigated differences and similarities 

between cumulative probability models and adjacent category 

models.  Curtin’s (2007) dissertation explored three 

methods for assessing parameter invariance of item 

difficulty parameters for the Rasch rating scale model.  

Sharkness, DeAngelo, and Pryor (2010) used only the graded 

response model to explore constructs across CIRP surveys. 

The research of Dodd (1984), van Engelenburg (1997), 

Baker, Rounds, and Zevon (2000), Ostini (2001), Curtin 

(2007), and Sharkness et al. (2010) contributed to the 

research design of the present study.  Table 1 provides a 

summary of the type of data, number of items, 

software/estimation methods, and polytomous item response 

models each study addressed.  The literature review  
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Table 1.  Comparing Studies Using Two or More Types of Polytomous Item Response 
Models for Ordered Data 
 

Study Data 
Software/ 
Estimation 
Methods 

Model(s) 

Dodd (1984) Simulated 
Real LOGOG 

 
Graded response model 
Partial credit model 

Simplified graded response model 
 

van Engelenburg (1997) Simulated 
Marginal 
maximum 

likelihood 

Cumulative probability model 
Adjacent category model 
Continuation ratio model 

 

Baker, Rounds, 
and Zevon (2000) Real Multilog 

Graded response model 
Partial credit model 

 

Ostini (2001) Real 

Parscale 
Multilog 
Rumm 

WinMira 
BigSteps 
ConQuest 
Quest 

Graded response model 
Rating scale-graded response model 
Generalized partial credit model 

Partial credit model 
Rating scale model 

Dispersion location model 
Dispersion skew location model 
Successive intervals model 

 

Curtin (2007) Real 
 

Winsteps 
IPARM 

Rating scale model 

 
Sharkness, DeAngelo, 
and Pryor (2010) 

Real Multilog Graded response model 
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addressed three areas of research: research using 

longitudinal data and one or more polytomous item response 

models for ordered data; studies comparing two or more 

polytomous item response models; and, research comparing 

IRT and factor analysis to assess measurement invariance. 

The purpose of the present study was to examine the 

invariance of the factor structure and item response model 

parameter estimates obtained from two different datasets 

(i.e., identical items, different people).  The following 

research questions were addressed in the present study: 

1. How similar/invariant are the factor structures 

obtained from two different datasets (i.e., identical 

items, different people)? 

2. How similar/invariant are person and item parameter 

estimates obtained from two different datasets (i.e., 

identical items, different people) for the homogenous 

graded response model (Samejima, 1969) and the partial 

credit model (Masters, 1982)? 
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CHAPTER III 
 

METHOD 
 
 

Chapter III, the methods section, describes the 

research design for the present study.  To address concerns 

regarding ordinal versus continuous data, multiple methods 

(e.g., means, Pearson correlations, Spearman correlations, 

full-information factor analysis) were used when analyzing 

the data. The data source section described information 

about the data sets.  The first research question 

(factorial invariance) was addressed in two parts: (1) 

Exploring factor structures using the YFCY02 dataset; and, 

(2) assessing factorial invariance of the YFCY02 and YFCY03 

datasets.  Prior to obtaining item response model 

estimates, item response model assumptions and model fit 

were assessed.  Finally, methods for assessing measurement 

invariance using item response model estimates and 

confirmatory factor analyses are presented. 

Contributions of Present Study 

The structure of the data and  choice of models were 

the major distinctions between this present study and Dodd 

(1984), van Engelenburg (1997), Ostini (2001), Baker, 

Rounds, and Zevon (2000), and Curtin (2007).  The present 
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study used two datasets of survey data comprised of 27 

identical items taken by two different groups of people.  

While Curtin (2007) used seven years of survey data, he 

used one model, the rating scale model, to assess item 

parameter invariance.  The present study compared item 

parameter estimates from the homogenous graded model and 

the partial credit model across two datasets of identical 

items but different people.  

The present study addressed two research questions: 

1. How similar/invariant are the factor structures 

obtained from two different datasets (i.e., identical 

items, different people)? 

2. How similar/invariant are person and item parameter 

estimates obtained from two different datasets (i.e., 

identical items, different people) for the homogenous 

graded response model (Samejima, 1969) and the partial 

credit model (Masters, 1982)? 

Data Source 

The Higher Education Research Institute (HERI) 

provided two datasets, at no cost, with 27 identical items 

selected from the 2002 and 2003 administrations of Your 

First College Year (YFCY) survey.  The YFCY is administered 

to freshmen at the end of their first college year.  The 27 
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items selected for the two datasets used polytomous ordered 

scales.  Two datasets with identical items and different 

people were used to evaluate invariance of item response 

model parameter estimates (Rupp & Zumbo, 2006). 

Your First College Year (YFCY) Items 

The YFCY 2002 form (Appendix A) had 150 items and the 

YFCY 2003 form (Appendix B) had 173 items.  Both forms used 

dichotomous, check-all-that-apply, and polytomous response 

formats.  The two forms had 145 items in common.  A subset 

of 27 identical items was selected from the YFCY 2002 and 

2003 forms.  The 27 items were selected because they used 

polytomous scales for ordered data.  The selected items 

asked respondents to rate how they had adjusted to the 

academic, social, and personal demands of college.  

Respondents 

The first dataset (YFCY02) involved 3,652 college 

freshmen from across the United States who completed YFCY 

2002.  The second dataset (YFCY03) involved 5,081 people 

who completed YFCY 2003.  All of the students were enrolled 

full-time in U.S. public universities. 

The respondents in the YFCY02 dataset (n = 3,652) were 

57% female and 43% male.  By ethnicity, the respondents 

were 80% White/Caucasian; 7% Asian American/Asian; 5% 
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Hispanic; 2% African American/Black; 1% American 

Indian/Alaska Native/Native Hawaiian/Pacific Islander; and, 

7% Other/Bi-Racial/Multi-Racial. 

The respondents in the YFCY03 dataset (n = 5,081) were 

65% female and 35% male.  By ethnicity, the respondents 

were 74% White/Caucasian; 10% Asian American/Asian; 4% 

Hispanic; 3% African American/Black; 1% American 

Indian/Alaska Native/Native Hawaiian/Pacific Islander; and, 

8% Other/Bi-Racial/Multi-Racial. 

Research Question 1: Factorial Invariance 

The first major research question of the present study 

was: How similar/invariant are the factor structures 

obtained from two datasets (i.e., identical items, 

different people)?  The first research question was 

addressed in two parts: Exploring factor structures using 

the YFCY02 dataset and assessing factorial invariance 

across the YFCY02 and YFCY03 datasets.  

Exploring Factor Structures Using YFCY02 

SPSS 15.0 for Windows was used for the exploratory 

factor analysis.  Factors were extracted by principal axis 

factor analysis using the covariance matrix and rotated to 

the varimax criterion (e.g., Baker, Rounds, & Zevon, 2000; 

Dodd, 1984; Ostini, 2001). Scree plots (Cattell, 1966) and 
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parallel analysis (O’Conner, 2000) were used to determine 

number of factors to retain.  Items with pattern/structure 

coefficients greater than |0.30| (e.g., Ostini, 2001) were 

assigned to a factor.  

Full-information factor analysis (Jöreskog, 2006) was 

used to identify the factor structure of the 27 items in 

the YFCY02 dataset.  LISREL 8.0 for Windows was used for 

the full information factor analysis.  O’Conner (n.d.) 

recommended using full information factor analyses because 

“commonly endorsed items tend to form factors that are 

distinct from difficult or less commonly endorsed items, 

even when all of the items measure the same unidimensional 

latent variable” (Nunnaly & Bernstein, 1994, p. 318).  

Bernstein, Garbin, and Teng (1988) recommended 

examining item means to determine whether the factors were 

artifacts of response distributions as opposed to 

underlying traits.  Bernstein et al. recommended: 

When you have identified the salient items (variables) 
defining factors, compute the means and standard 
deviations of the items on each factor.  If you find 
large differences in means, e.g., if you find one 
factor includes mostly items with high response 
levels, another with intermediate response levels, and 
a third with low response levels, there is strong 
reason to attribute the factors to statistical rather 
than to substantive bases.  (p. 398)  
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Using full-information factor analyses and examining item 

means alleviated concerns regarding whether the factor 

structure was an artifact of item distributions producing 

spurious factors. 

Assessing Factorial Invariance Using YFCY02 and YFCY03 

Confirmatory factor analysis (CFA) was used to obtain 

pattern/structure coefficients and fit indices to 

facilitate determining invariance of the factor structure 

were across YFCY02 and YFCY03.  The second step of the 

first research question was evaluated using SAS 9.1 for 

Windows.  The SAS command PROC CALIS was used to assess the 

factor structure of the covariance matrix of the 27 items 

in YFCY03.  

The goodness of fit index (GFI), normed fit index 

(NFI), the comparative fit index (CFI), and root-mean-

square error of approximation (RMSEA) were used to evaluate 

model fit.  For satisfactory model fit, the GFI, NFI, and 

CFI should be greater than 0.95.  The RMSEA should be less 

than 0.06 (Thompson, 2004).  

Furthermore, confirmatory factor analyses for ordered 

data (Jöreskog, 2006) were used to identify the factor 

structure of the 27 items in the YFCY03 dataset.  LISREL 
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8.0 for Windows was used for the full information factor 

analysis.  

To determine if the factor structure of the 27 YFCY 

items was invariant across the YFCY02 and YFCY03 datasets, 

the least restrictive level of factorial invariance was of 

primary interest: the same items load on the same factors 

across the two datasets.  All levels of factorial 

invariance were examined and the results are provided in 

tables in Chapter IV. 

In CFA, full measurement invariance is obtained when 

the pattern/structure coefficients are equal (Reise, 

Widaman, & Pugh, 1993).  If full measurement invariance is 

rejected, partial measurement invariance can be assessed.  

Partial measurement invariance is when some of the non-

fixed pattern/structure coefficients are equivalent.  CFA 

methods are desirable for exploring relationships among 

latent constructs (Meade & Lautenschlager, 2004). 

Research Question 2: Assessing IRT Parameter Invariance 

The second major research question of the present 

study was how similar/invariant are person and item 

parameter estimates obtained from two different datasets 

(i.e., identical items, different people) for the 

homogenous graded response model (Samejima, 1969) and the 
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partial credit model (Masters, 1982)?  Prior to obtaining 

item response model estimates, model assumptions and model 

fit were assessed.  Finally, measurement invariance of the 

YFCY02 and YFCY03 items was assessed using item response 

model estimates.   

Assessing IRT Model Assumptions 

To assess model assumptions about unidimensionality, 

three procedures were used: Lord’s 1980 criterion using 

eigenvalues obtained from exploratory factor analysis 

(EFA), and confirmatory factor analysis (CFA) to evaluate 

fit of the one factor model.  

SPSS 15.0 for Windows was used for the exploratory 

factor analysis.  For assessing unidimensionality, factors 

were extracted by principal axis factor analysis using 

correlation matrix, and rotated to the varimax criterion 

(e.g., Baker, Rounds, & Zevon, 2000; Dodd, 1984; Ostini, 

2001).  

Scree plots (Cattell, 1966) were examined to use 

Lord’s (1980) criterion to evaluate unidimensionality:  If 

the first eigenvalue was much greater than the second and 

the second value is similar to the remaining eigenvalues, 

then the items are “approximately unidimensional” (Lord, 

1980, p. 21).  
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Software to obtain IRT parameter estimates.  To 

facilitate comparing the results from the GRM and PCM, one 

IRT-specific software package was used (Embretson & Reise, 

2000; Linacre, 2004).  PARSCALE 4 for Windows was used to 

obtain person and item parameter estimates for Samejima’s 

Graded Response Model and Master’s Partial Credit Model. 

Assessing IRT model fit.  Because of the well-known 

limitations of chi-square fit statistics with large samples 

(DeMars, 2005), Hambleton and Swaminathan (1985) 

recommended using three types of evidence to evaluate model 

fit: Validity of model assumptions; invariance of item and 

ability parameters; and accuracy of model estimates.  

To assess parameter invariance for the purposes of 

model-data fit, De Ayala (2009) recommended using cross-

validation and correlations of the person and item 

parameter estimates.  First, the total sample of each 

dataset was randomly divided in roughly half.  Then, the 

item parameter estimates were obtained for each subsample 

and compared using the Pearson product-moment correlation 

coefficient.  Finally, the item parameter estimates of each 

subsample need to be compared to the item parameter 

estimates of the main samples.  De Ayala (2009) explained 

that size of the correlation coefficients mean that using a 
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“linear transformation to convert the estimates on one 

metric to that of another metric [can be done] without any 

loss of information concerning model-data fit or person and 

item location estimates” (p. 62). 

To assess parameter invariance between the GRM and 

PCM, two major datasets (YFCY02 and YFCY03) were used.  To 

determine whether the model item parameter estimates are 

invariant, item parameter estimates were obtained from two 

groups of people.   

Ability parameter estimates were invariant if ability 

estimates do not vary in excess of the standard error 

across groups of test items (Hambleton & Swaminathan, 

1991).  In addition to correlations to assess parameter 

invariance, the present study used scatter plots of 

parameter estimates to explore additive shifts in parameter 

estimates between the two datasets (Rupp & Zumbo, 2006).   

De Ayala (2009) explained, “The presences of 

invariance can be used as part of a model-data fit 

investigation” (p. 61).  First, the total sample is divided 

in roughly half.  Then, the item parameter estimates are 

obtained for each subsample and compared using the Pearson 

Product-Moment correlation coefficient.  Finally, the item 
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parameter estimates of each subsample need to be compared 

to the item parameter estimates of the main samples.  

Assessing Measurement Invariance 

To evaluate measurement invariance using IRT methods, 

item discrimination and item difficulty parameters need to 

be equivalent across datasets.  Because unidimensional IRT 

models were used to evaluate measurement invariance, 

assessing unidimensionality was required.  IRT methods for 

evaluating measurement invariance are preferred over factor 

analyses methods when the equivalence of one scale or 

specific scale items are of interest, because the 

discrimination (a) and item difficulty parameters (b) 

“provide considerably more psychometric information at the 

item response level than do their CFA counterparts (item 

intercepts” (Meade & Lautenschlager, 2004, p. 383). 
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CHAPTER IV 

RESULTS 
 
 

Chapter IV, the results section, presents the 

descriptive statistics and frequencies for the 27 items in 

the YFCY02 and YFCY03 datasets.  The results of the first 

major research question, using factor analyses to evaluate 

factorial invariance, were presented in two parts: (1) 

Exploring factor structures using the YFCY02 dataset; and, 

(2) Assessing factorial invariance of the YFCY02 and YFCY03 

datasets using confirmatory factor analysis.   

The results of the second major research question 

addressed IRT parameter invariance for person and item 

parameter estimates obtained from the YFCY02 and YFCY03 

datasets.  The homogenous graded response model (Samejima, 

1969) and the partial credit model (Masters, 1982) were 

selected to evaluate IRT parameter invariance.   

Descriptive Statistics 

SPSS 15.0 for Windows was used to obtain frequencies 

and descriptive statistics involving the shape, spread, and 

distribution of the data.  Because the standard errors of 

skewness and kurtosis were determined by sample size, the 

standard error of skewness for the YFCY02 items was 0.041 
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and the standard error of kurtosis was 0.081 for all items 

in the YFCY02 dataset.  For the YFCY03 dataset, the 

standard error of skewness was 0.034 and the standard error 

of kurtosis was 0.069. 

Kurtosis and skewness describes the shape and symmetry 

of the observed data.  Kurtosis describes the extent to 

which the observed data hang together around a central 

point.  For a normal distribution, kurtosis equals zero.  

Positive kurtosis indicates that the observed data hang 

together more and have longer tails than data in the normal 

distribution.  Negative kurtosis indicates the observations 

hang together less and have shorter tails than the data in 

a normal distribution. 

Skewness describes the asymmetry of a distribution.  

The normal distribution is symmetric with a skewness value 

of 0.  A distribution of observed data with positive 

skewness has a long right tail.  A distribution of observed 

data with negative skewness has a long left tail.  Skewness 

values more than twice the standard error indicate 

substantial departure from symmetry (SPSS 15.0 for Windows, 

2007).  
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YFCY02 Item Descriptive Statistics and Frequencies 

Table 2 presented the descriptive statistics and 

frequencies for seven YFCY02 satisfaction items using a 

four-category ordered response scale (4 = Very satisfied, 3 

= Satisfied, 2 = Neutral, 1 = Dissatisfied).  The set of 

items asked respondents to rate their satisfaction with 

amount of instruction; overall sense of community among 

students, and, overall college experience. 

Six of the seven items in Table 2 (Amount of contact 

with faculty; relevance of coursework to everyday life; 

relevance of coursework to future career plans; overall 

quality of instruction; overall sense of community among 

Students; and, Overall college experience) were skewed to 

the left (negatively skewed).  The item “Opportunities for 
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Table 2.  Descriptive Statistics and Frequencies for YFCY02 Satisfaction Items  
(n = 3,652; v = 7) 
 

Item Mean 
(SD) 

95% CI 
for the 
Mean 

Median Skewness Kurtosis 1 = 
Dissatisfied 

2 = 
Neutral 

3 = 
Satisfied 

4 = Very 
satisfied 

 
Amount of 
Contact with 
Faculty 

2.64 
(0.81) 

(2.62, 
2.67) 3.00 -0.26 -0.39 9% 31% 48% 13% 

 
Opportunities 
for Community 
Service 

2.72 
(0.82) 

(2.69, 
2.74) 3.00 0.01 -0.72 5% 37% 39% 19% 

 
Relevance of 
Coursework to 
Life 

2.45 
(0.80) 

(2.43, 
2.48) 3.00 -0.17 -0.52 13% 37% 44% 7% 

 
Relevance of 
Coursework to  
Career 

2.74 
(0.82) 

(2.72, 
2.77) 3.00 -0.36 -0.32 8% 26% 50% 16% 

 
Overall 
Quality of 
Instruction 

2.94 
(0.75) 

(2.91, 
2.96) 3.00 -0.67 0.59 5% 15% 60% 20% 

 
Overall Sense 
of Community 
among 
Students 

2.94 
(0.90) 

(2.91, 
2.97) 3.00 -0.56 -0.42 8% 19% 44% 29% 

 
Overall 
College 
Experience 

3.14(0.
82) 

(3.12, 
3.17) 3.00 -0.85 0.38 5% 11% 47% 36% 

 
Note: The standard error of skewness was 0.041 and the standard error of kurtosis 
was 0.081 for all items in the YFCY02 dataset (n = 3,652). 
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community service” was positively skewed (skewed to the 

right).  Except for “Opportunities for community service”, 

the skewness statistics in Table 2 were more than twice the 

standard error of skewness for the YFCY02 items (standard 

error of skewness for YFCY02 items = 0.041) indicating a 

substantial departure from symmetry.  

Table 3 presents the descriptive statistics and 

frequencies for six YFCY02 goal items using a four-category 

ordered response scale: 4 = Essential, 3 = Very important, 

2 = Somewhat important, 1 = Not important.  The set of 

items asked respondents to indicate how important the 

following values were to them: Influencing social values; 

helping others who are in difficulty; developing a 

meaningful philosophy of life; helping to promote racial 

understanding; becoming a community leader; and, 

integrating spirituality into their life.  

 Four of the items in Table 3 (Influencing social 

values; helping others who are in difficulty; developing a 

meaningful philosophy of life; and, integrating 

spirituality into their life) were skewed to the left 

(negatively skewed).  Two of the items, “Developing a 

meaningful philosophy of life” and “Helping to promote  
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Table 3.  Descriptive Statistics and Frequencies for YFYC02 Goal Items  
(n = 3,652; v = 6) 
 
Item 
 

Mean 
(SD) 

95% CI 
for the 
Mean 

Median Skewness Kurtosis 1 = Not 
important 

2 = Somewhat 
important 

3 = Very 
important 

4 = 
Essential 

 
Influencing 
Social Values 
 

2.62 
(0.82) 

(2.60, 
2.65) 3.00 -0.03 -0.55 7% 37% 41% 14% 

Helping Others 
Who Are in 
Difficulty 
 

3.01 
(0.77) 

(2.98, 
3.03) 3.00 -0.30 -0.55 2% 23% 47% 28% 

Developing 
Meaningful 
Philosophy of 
Life 
 

2.68 
(0.99) 

(2.64, 
2.71) 3.00 -0.13 -1.05 13% 31% 31% 25% 

Helping Promote 
Racial 
Understanding 
 

2.39 
(0.89) 

 
(2.36, 
2.42) 

2.00 0.24 -0.66 15% 44% 29% 13% 

Becoming a 
Community Leader 
 

2.52 
(0.89) 

(2.49, 
2.54) 2.00 0.05 -0.74 12% 38% 35% 15% 

Integrating 
Spirituality into 
Life 

2.81 
(1.06) 

(2.77, 
2.84) 3.00 -0.31 -1.19 14% 26% 25% 35% 

 
Note: The standard error of skewness was 0.041 and the standard error of kurtosis 
was 0.081 for all items in the YFCY02 dataset (n = 3,652). 
 



 

 

84

racial understanding”, were skewed to the right (positively 

skewed).  Except for “Influencing social values” and 

“Becoming a community leader”, the skewness statistics in 

Table 3 were more than twice the standard error of skewness 

for the YFCY02 items (standard error of skewness for YFCY02 

items = 0.041) indicating a substantial departure from 

symmetry.  

Table 4 presents the descriptive statistics and 

frequencies for six YFCY02 rate items using a five-category 

ordered response scale: 5 = Highest 10%, 4 = Above average, 

3 = Average, 2 = Below average, 1 = Lowest 10%.  The items 

asked respondents to compare themselves to the average 

person their age on the following skills: Leadership, 

public speaking, intellectual self-confidence, social self-

confidence, self-understanding, and writing ability.  

 Six of the items in Table 4 (Leadership ability, 

public speaking ability, intellectual self-confidence, 

social self-confidence, self-understanding, and writing 

ability) were skewed to the left (negatively skewed).  

Fewer than 100 respondents selected the lowest end of the 

five-point scale, “lowest 10%”.  All of the skewness 

statistics in Table 4 were more than twice the standard 
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Table 4.  Descriptive Statistics and Frequencies for YFYC02 Rate Items  
(n = 3,652; v = 6) 
 

Item Mean 
(SD) 

95% CI 
for the 
Mean 

Median Skewness Kurtosis 
1 = 

Lowest 
10% 

2 = Below 
average 

3 = 
Average 

4 = 
Above 

average 

5 = 
Highest 

10% 
 
Leadership 
Ability 

 
3.82 

(0.84) 

 
(3.79, 
3.85) 

4.00 -0.35 -0.14 1% 5% 28% 45% 21% 

 
Public Speaking 
Ability 

 
3.36 

(0.95) 

 
(3.33, 
3.39) 

3.00 -0.13 -0.42 2% 16% 37% 33% 12% 

 
Self-confidence 
(intellectual) 

 
3.80 

(0.82) 

 
(3.78, 
3.83) 

4.00 -0.33 -0.12 1% 5% 29% 46% 20% 

 
Self-confidence 
(social) 

 
3.55 

(0.90) 

 
(3.52, 
3.58) 

4.00 -0.18 -0.40 1% 11% 35% 38% 14% 

 
Self-
understanding 

 
3.86 

(0.83) 

 
(3.83, 
3.89) 

4.00 -0.28 -0.30 0% 3% 30% 43% 23% 

Writing Ability 
 

3.65 
(0.86) 

 
(3.63, 
3.68) 

4.00 -0.31 -0.13 1% 7% 33% 43% 16% 

 
Note: The standard error of skewness was 0.041 and the standard error of kurtosis 
was 0.081 for all items in the YFCY02 dataset (n = 3,652). 
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error of skewness for the YFCY02 items (standard error of 

skewness for YFCY02 items = 0.041) indicating a substantial  

Departure from symmetry.  

Table 5 presents the descriptive statistics and 

frequencies for six YFCY02 success items using a four-

category ordered response scale: 1 = Unsuccessful, 2 = 

Somewhat successful, 3 = Fairly successful, 4 = Very 

successful.  The items asked respondents to rate how 

successfully they understood professor expectations, 

developed effective study skills, adjusted to academic 

demands, managed time effectively, got to know faculty, and 

developed close friendships w/students. 

Five of the items in Table 5 (understanding professor 

expectations, developing effective study skills, adjusting 

to academic demands, and managing time effectively) were 

skewed to the left (negatively skewed).  The item “Getting 

to know faculty” was skewed to the right (positively 

skewed).  All of the skewness statistics in Table 5 were 
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Table 5.  Descriptive Statistics and Frequencies for YFYC02 Success Items  
(n = 3,652; v = 6) 
 

Item 
 

Mean 
(SD) 

95% CI 
for the 
Mean 

Median Skewness Kurtosis 1 = 
Unsuccessful 

2 = 
Somewhat 

successful

3 = Fairly 
successful

4 = Very 
successful

 
Understanding 
What Professors 
Expect 

3.05 
(0.66) 

(3.03, 
3.07) 3.00 -0.39 0.42 2% 15% 61% 23% 

 
Developing 
Effective Study 
Skills 
 

2.74 
(0.81) 

(2.71, 
2.77) 3.00 -0.29 -0.35 7% 28% 49% 16% 

Adjusting to 
Academic Demands 
 

2.98 
(0.78) 

(2.95, 
3.01) 3.00 -0.43 -0.22 4% 21% 50% 26% 

Managing Time 
Effectively 
 

2.64 
(0.84) 

(2.61, 
2.67) 3.00 -0.20 -0.51 9% 32% 45% 14% 

Getting to Know 
Faculty 

2.21 
(0.85) 

(2.19, 
2.24) 2.00 0.27 -0.54 20% 45% 28% 7% 

 
Develop close 
friendships 
w/students 

3.36 
(0.81) 

(3.33, 
3.38) 4.00 -1.12 0.52 3% 11% 32% 54% 

 
Note: The standard error of skewness was 0.041 and the standard error of kurtosis 
was 0.081 for all items in the YFCY02 dataset (n = 3,652).
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more than twice the standard error of skewness for the 

YFCY02 items (standard error of skewness for YFCY02 items = 

0.041) indicating a substantial departure from symmetry.  

Table 6 presents the descriptive statistics and 

frequencies for two YFCY02 activity items using a three-

category ordered response scale: 1 = Not at all, 2 = 

Occasionally, 3 = Frequently.  The items asked respondents 

how frequently they attended a religious service and 

discussed religion.  Both of the YFCY02 items in Table 6 

were skewed to the left (negatively skewed).  Both of the 

items in Table 6 were more than twice the standard error of 

skewness for the YFCY02 items (standard error of skewness 

for YFCY02 items = 0.041) indicating a substantial 

departure from symmetry. 
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Table 6.  Descriptive Statistics and Frequencies for YFYC02 Activity Items  
(n = 3,652; v = 2) 
 

Item 
Mean 
(SD) 

95% CI for
the Mean Median Skewness Kurtosis 1 = Not  

at all 
2 = 

Occasionally 
3 = 

Frequently 
 
Attended a 
Religious Service 

 
2.07 

(0.83) 

 
(2.04, 
2.10) 

2.00 -0.13 -1.54 31% 31% 38% 

 
Discussed Religion 

 
2.20 

(0.62) 

 
(2.18, 
2.22) 

2.00 -0.17 -0.57 11% 57% 31% 

 
Note: The standard error of skewness was 0.041 and the standard error of kurtosis 
was 0.081 for all items in the YFCY02 dataset (n = 3,652).
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YFCY03 Item Descriptive Statistics and Frequencies 

     Table 7 presents the descriptive statistics and 

frequencies for seven YFCY03 satisfaction items using a 

four-category ordered response scale (5 = Very satisfied, 4 

= Satisfied, 3 = Neutral, 2 = Dissatisfied, 1 = Very 

Dissatisfied).  The set of items asked respondents to rate 

their satisfaction with: Amount of contact with faculty; 

opportunities for community service; relevance of 

coursework to everyday life; relevance of coursework to 

future career plans; overall quality of instruction; 

overall sense of community among students; and, overall 

college experience.      

     Six of the seven items in Table 7 (Amount of contact 

with faculty; relevance of coursework to everyday life; 

Relevance of coursework to future career plans; overall 

quality of instruction; overall sense of community among 

students; and, overall college experience) were skewed to 

the left (negatively skewed).  One of the items in the set, 

“Opportunities for community service” was positively skewed 

(skewed to the right).  Except for “Opportunities for 

community service”, the skewness statistics in Table 7 were 

more than twice the standard error of skewness for the  
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Table 7.  Descriptive Statistics and Frequencies for YFYC03 Satisfaction Items  
(n = 5,081; v = 7) 
 

Item Mean 
(SD) 

95% CI 
for the 
Mean 

Median Skewness Kurtosis 1 = Very 
dissatisfied 

2 = 
Dissatisfied

3 = 
Neutral 

4 = 
Satisfied

5 = Very 
satisfied 

 
Amount of 
Contact with 
Faculty 

3.55 
(0.87) 

(3.52, 
3.57) 4 -0.41 0.07 2% 9% 33% 45% 11% 

 
Opportunities 
for Community 
Service 

3.52 
(0.82) 

(3.50, 
3.54) 3 0.04 -0.21 1% 7% 44% 36% 12% 

 
Relevance of 
Coursework to 
Life 

3.29 
(0.88) 

(3.26, 
3.31) 3 -0.30 -0.15 3% 15% 39% 37% 6% 

 
Relevance of 
Coursework to 
Career 

3.59 
(0.90) 

(3.56, 
3.61) 4 -0.57 0.12 2% 10% 27% 49% 12% 

 
Overall Quality 
of Instruction 

3.83 
(0.77) 

(3.81, 
3.85) 4 -0.80 1.19 1% 5% 19% 59% 15% 

 
Overall Sense of 
Community among 
Students 

3.65 
(1.01) 

(3.63, 
3.68) 4 -0.66 0.00 3% 10% 23% 44% 19% 

 
Overall College 
Experience 

4.01 
(0.89) 

(3.99, 
4.03) 4 -0.96 0.98 1% 5% 15% 48% 31% 

 
Note: The standard error of skewness was 0.034 and the standard error of kurtosis 
was 0.069 for all items in the YFCY03 dataset (n = 5,081).
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YFCY03 items (standard error of skewness for YFCY03 items = 

0.034) indicating a substantial departure from symmetry. 

Table 8 presents the descriptive statistics and 

frequencies for six YFCY03 goal items using a four-category 

ordered response scale: 4 = Essential, 3 = Very important,  

2 = Somewhat important, 1 = Not important.  The set of 

items asked respondents to indicate how important the 

following values were to them: Influencing social values; 

helping others who are in difficulty; developing a 

meaningful philosophy of life; helping to promote racial 

understanding; becoming a community leader; and, 

integrating spirituality into their life.   

Four of the YFCY03 items in Table 8 (Influencing 

social values; helping others who are in difficulty; 

developing a meaningful philosophy of life; and, 

integrating spirituality into their life) were skewed to 

the left (negatively skewed).  Two of the items, 

“Developing a meaningful philosophy of life” and “Helping 

to promote racial understanding”, were skewed to the right 

(positively skewed).  All of the skewness statistics in 

Table 8 were more than twice the standard error of skewness 

for the YFCY03 items (standard error of skewness for YFCY03 
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Table 8.  Descriptive Statistics and Frequencies for YFYC03 Goal Items  
(n = 5,081; v = 6) 
 

Item Mean 
(SD) 

95% CI 
for the 
Mean 

Median Skewness Kurtosis 1 = Not 
important 

2 = Somewhat 
important 

3 = Very 
important 

4 = 
Essential 

 
Influencing 
Social Values

 
2.48 

(0.87) 

 
(2.45, 
2.50) 

2 0.05 -0.67 13% 39% 36% 12% 

 
Helping 
Others Who 
Are in 
Difficulty 

3.01 
(0.77) 

(2.99, 
3.03) 3 -0.25 -0.72 2% 24% 45% 29% 

 
Developing 
Meaningful 
Philosophy of
Life 

2.61 
(1.01) 

(2.99, 
3.03) 3 -0.07 -1.09 15% 32% 30% 24% 

 
Helping 
Promote 
Racial 
Understanding

2.35 
(0.92) 

(2.32, 
2.37) 2 0.25 -0.74 18% 42% 27% 13% 

 
Becoming a 
Community 
Leader 

2.29 
(0.91) 

(2.26, 
2.31) 2 0.28 -0.71 20% 42% 27% 11% 

 
Integrating 
Spirituality 
into Life 

2.68 
(1.07) 

(2.65, 
2.71) 3 -0.16 -1.24 17% 28% 26% 17% 

 
Note: The standard error of skewness was 0.034 and the standard error of kurtosis 
was 0.069 for all items in the YFCY03 dataset (n = 5,081).
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items = 0.034) indicating a departure from symmetry (SPSS 

15.0 for Windows, 2007).  

Table 9 presents the descriptive statistics and 

frequencies for six YFCY03 rate items using a five-category 

ordered response scale: 5 = Highest 10%, 4 = Above average, 

3 = Average, 2 = Below average, 1 = Lowest 10%.  The items 

asked respondents to compare themselves to the average 

person their age on the following skills: Leadership, 

public speaking, intellectual self-confidence, social self-

confidence, self-understanding, and writing ability.  

All six of the YFCY03 items in Table 9 (Leadership 

ability, public speaking ability, intellectual self-

confidence, social self-confidence, and self-understanding) 

were skewed to the left (negatively skewed).  All of the 

skewness statistics in Table 9 were more than twice the 

standard error of skewness for the YFCY03 items (standard 

error of skewness for YFCY03 items = 0.034) indicating a 

substantial departure from symmetry. 
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Table 9.  Descriptive Statistics and Frequencies for YFYC03 Rate Items  
(n = 5,081; v = 6) 
 

Item Mean 
(SD) 

95% CI 
for the 
Mean 

Median Skewness Kurtosis 
1 = 

Lowest 
10% 

2 = 
Below 

average 
 

3 = 
Average 

4 = 
Above 

average 

5 = 
Highest 

10% 

 
Leadership Ability 

 
3.76 

(0.90) 

 
(3.73, 
3.78) 

4 -0.32 -0.42 1% 7% 30% 40% 22% 

 
Public Speaking 
Ability 
 

3.21 
(1.00) 

(3.19, 
3.24) 3 -0.04 -0.45 4% 19% 39% 28% 10% 

Self-confidence 
(intellectual) 

3.74 
(0.83) 

(3.72, 
3.76) 4 -0.29 -0.15 1% 5% 31% 45% 18% 

 
Self-confidence 
(social) 

3.43 
(0.94) 

(3.40, 
3.46) 3 -0.16 -0.37 2% 13% 37% 35% 13% 

 
Self-understanding 

 
3.76 

(0.84) 

 
(3.74, 
3.79) 

4 -0.23 -0.24 1% 4% 33% 43% 20% 

Writing Ability 
 

3.61 
(0.87) 

 
(3.59, 
3.64) 

4 -0.24 -0.17 1% 8% 35% 41% 15% 

 
Note: The standard error of skewness was 0.034 and the standard error of kurtosis 
was 0.069 for all items in the YFCY03 dataset (n = 5,081).
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Table 10 presents the descriptive statistics and 

frequencies for six YFCY03 success items using a four-

category ordered response scale: 1 = Unsuccessful, 2 = 

somewhat successful, 3 = completely successful.  The items 

asked respondents to rate how successfully they understood 

professor expectations, developed effective study skills, 

adjusted to academic demands, managed time effectively, and 

got to know faculty, and developed close friendships with 

students. 

     Five of the YFCY03 items in Table 10 (understanding 

professor expectations, developing effective study skills, 

adjusting to academic demands, and managing time 

effectively, and developing close friendships with 

students) were skewed to the left (negatively skewed).  The 

Item, “Getting to know faculty”, was skewed to the right 

(positively skewed).  Except for “Understanding what 

professors expect”, the skewness statistics in Table 10 

were more than twice the standard error of skewness for the 

YFCY03 items (standard error of skewness for YFCY03 items = 

0.034) indicating a substantial departure from symmetry.  
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Table 10.  Descriptive Statistics and Frequencies for YFYC03 Success Items  
(n = 5,081; v = 6) 

 

Item 
 

Mean 
(SD) 

 

95% CI for
the Mean

 

Median 
 

Skewness 
 

 
Kurtosis 

 

1 =  
Unsuccessful 

 
2 = Somewhat
successful

 

3 = Completely 
successful 

 
Understanding 
What Professors 
Expect 

2.40 
(0.53) 

(2.39, 
2.42) 2 -0.03 -1.11 2% 56% 42% 

 
Developing 
Effective Study 
Skills 

2.15 
(0.60) 

(2.13, 
2.17) 2 -0.08 -0.39 12% 61% 27% 

 
Adjusting to 
Academic 
Demands 

2.35 
(0.58) 

(2.33, 
2.36) 2 -0.25 -0.68 6% 54% 40% 

 
Managing Time 
Effectively 

2.10 
(0.63) 

(2.08, 
2.12) 2 -0.08 -0.51 15% 59% 25% 

 
Getting to Know 
Faculty 

1.83 
(0.63) 

(1.81, 
1.85) 2 0.16 -0.61 30% 57% 13% 

 
Develop close 
friendships 
w/students 

2.52 
(0.64) 

(2.50, 
2.54) 3 -1.00 -0.11 8% 31% 60% 

 
Note: The standard error of skewness was 0.034 and the standard error of kurtosis 
was 0.069 for all items in the YFCY03 dataset (n = 5,081).
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Table 11 presents the descriptive statistics and 

frequencies for two YFCY03 activity items using a three-

category ordered response scale: 1 = Not at all 2 = 

Occasionally 3 = frequently.  The items asked respondents 

how frequently they attended a religious service and 

discussed religion.  The item “Attended a religious 

service” was skewed to the right (positively skewed).  The 

item “Discussed religion” was skewed to the left 

(negatively skewed).  The skewness statistic for “Attended 

a religious service” was more than twice the standard error 

of skewness for the YFCY02 items (standard error of 

skewness for YFCY03 items = 0.034) indicating a substantial 

departure from symmetry.



 

 

9
9

Table 11.  Descriptive Statistics and Frequencies for YFYC03 Activity Items  
(n = 5,081; v = 2) 

 
Item Mean 

(SD) 
95% CI for
the Mean Median Skewness Kurtosis 1 = Not at 

all 
2 = 

Occasionally 
3 = 

Frequently 
 
Attended a Religious 
Service 

1.88 
(0.82) 

(1.86, 
1.90) 2 0.22 -1.47 40% 32% 28% 

Discussed Religion 
 

2.08 
(0.63) 

(2.06, 
2.10) 2 -0.06 -0.49 16% 60% 24% 

 
Note: The standard error of skewness was 0.034 and the standard error of kurtosis 
was 0.069 for all items in the YFCY03 dataset (n = 5,081).
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Research Question 1: Factorial Invariance 

The first major research question of the present study 

was: How similar/invariant are the factor structures 

obtained from two datasets (i.e., identical items, 

different people)?  The primary purpose of exploring the 

constructs underlying the selected YFYC02 and YFCY03 items 

was to address item response models assumptions regarding 

unidimensionality.  The first research question was 

addressed in two parts: (1) Exploring factor structures 

using the YFCY02 dataset; and (2) Assessing factorial 

invariance using the YFCY02 and YFCY03 datasets.  

Exploring Factor Structures Using YFCY02 

The statistical software package SPSS 15.0 for Windows 
 

was used for the exploratory factor analysis (EFA).   
 
Principal axis factor analysis was selected and covariance 
 
matrices were used to extract factors.  Varimax rotation  
 
was used to obtain the rotated solution (e.g., Baker,  
 
Rounds, & Zevon, 2000; Dodd, 1984; Ostini, 2001).  Parallel  
 
analysis (O’Conner, 2000) and scree plots (Cattell, 1966)  
 
were used to determine the number of factors to retain.   
 
Items with pattern/structure coefficients greater than  
 
|0.30| (e.g., Ostini, 2001) were assigned to the respective  
 
factor(s).  Table 12 presents the varimax-rotated principal  
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Table 12.  Varimax-rotated Principal Axis Factor Analysis 
Pattern/Structure Coefficients and Eigenvalues for Observed 
Data for YFCY02 (n = 3,652; v = 27) 
 
 

Items Mean 
(SD) 

Factor 

I II III IV V VI VII 

 
Amount of 
Contact with 
Faculty 

 
2.64 

(0.81) 
0.595 0.102 0.181 0.054 0.021 0.075 -0.141

 
Opportunities 
for Community 
Service 

 
2.72 

(0.82) 
0.473 0.107 0.056 0.090 0.224 0.170 -0.072

 
Relevance of 
Coursework to 
Life 

 
2.45 

(0.80) 
0.741 0.034 0.154 0.102 0.017 0.071 0.065 

 
Relevance of 
Coursework to 
Career 

 
2.74 

(0.82) 
0.631 0.044 0.132 0.041 0.013 0.117 0.072 

 
Overall Quality 
of Instruction 

 
2.94 

(0.75) 
0.635 0.050 0.158 0.025 0.080 0.200 0.112 

 
Overall Sense of 
Community among 
Students 

 
2.94 

(0.90) 
0.397 0.050 0.020 0.029 0.183 0.576 0.011 

 
Overall College 
Experience 

 
3.14 

(0.82) 
0.413 0.091 0.111 0.013 0.135 0.675 0.076 

 
Influencing 
Social Values 

 
2.62 

(0.82) 
0.044 0.147 0.077 0.593 0.140 0.065 -0.067

 
Helping Others 
Who Are in 
Difficulty 

 
3.01 

(0.77) 
0.056 0.030 0.071 0.587 0.172 0.129 -0.038

 
Developing  
Meaningful 
Philosophy of 
Life 

 
2.68 

(0.99) 
0.074 0.136 0.050 0.485 0.141 -0.084 0.329 

 
Helping Promote 
Racial 
Understanding 

 
2.39 

(0.89) 
0.068 0.044 0.008 0.680 0.004 -0.011 0.110 

 
Becoming a 
Community Leader 

 
2.52 

(0.89) 
0.106 0.325 0.015 0.545 0.159 0.065 -0.264

 
Integrating 
Spirituality 
into Life 

 
2.81 

(1.06) 
0.057 0.054 0.034 0.311 0.707 0.072 0.043 
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Table 12.  Continued 
 
 
Items Mean 

(SD) 

Factor 

I II III IV V VI VII 

 
Leadership 
Ability 

 
3.82 

(0.84) 
0.072 0.683 0.051 0.149 0.089 0.078 -0.259

 
Public Speaking 
Ability 

 
3.36 

(0.95) 
0.108 0.639 0.057 0.118 0.083 -0.015 -0.107

 
Self-confidence 
(intellectual) 

 
3.80 

(0.83) 
0.101 0.667 0.251 -0.010 0.019 0.060 0.231 

 
Self-confidence 
(social) 

 
3.55 

(0.90) 
0.017 0.640 0.056 0.133 -0.017 0.294 -0.055

 
Self-
understanding 

 
3.86 

(0.83) 
0.047 0.562 0.164 0.096 0.044 0.131 0.242 

 
Writing Ability 

 
3.65 

(0.86) 
0.102 0.394 0.164 0.110 0.069 -0.096 0.276 

Understanding 
What Professors 
Expect 

 
3.05 

(0.66) 
0.321 0.139 0.511 0.036 0.020 0.039 0.074 

 
Developing 
Effective Study 
Skills 

 
2.74 

(0.81) 
0.161 0.111 0.798 0.055 0.055 0.059 -0.002

 
Adjusting to 
Academic Demands 

 
2.98 

(0.78) 
0.172 0.143 0.768 0.034 0.021 0.089 0.097 

 
Managing Time 
Effectively 

 
2.64 

(0.84) 
0.113 0.108 0.759 0.053 -0.005 0.065 -0.050

 
Getting to Know 
Faculty 

2.21 
(0.85) 0.349 0.198 0.335 0.175 -0.024 0.038 -0.215

 
Develop close 
friendships 
w/students 

3.36 
(0.81) 0.112 0.179 0.115 0.106 0.023 0.516 -0.094

 
Attended a 
Religious 
Service 

2.07 
(0.83) 0.076 0.004 0.039 0.029 0.809 0.122 -0.083

 
Discussed 
Religion 

2.20 
(0.62) 0.099 0.144 -0.013 0.217 0.448 0.025 0.103 

 
Note: Pattern/structure coefficients greater than the 
|0.30| were underlined.  
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axis factor analysis pattern/structure coefficients and  
 
eigenvalues for the observed data for YFCY02 (n = 3,652; v  
 
= 27). 

Figure 1 is the scree plot for the results of the 

initial EFA using the YFCY02 dataset (see syntax in 

Appendix C).  The eigenvalues of the observed data for the 

first seven factors were 4.24, 1.93, 1.70, 1.28, 1.07, 

0.90, and 0.80, respectively.  The random eigenvalues 

obtained from the parallel analysis (see syntax in Appendix 

D) for the first seven factors were 1.16, 1.14, 1.12, 1.11, 

1.09, 1.08, and, 1.07.  Because the random eigenvalue of 

the fifth factor was larger than the observed eigenvalue, 

the results of the parallel analysis indicated a four-

factor model. 
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Figure 1.  Scree Plot for YFCY02 Data (n = 3,652; v = 27) 
 

Because of the large eigenvalue of Factor I, full 

information factor analysis was used to evaluate a one-

factor model.  The content of the 27 items suggests one 

construct about “success in college”. 

Based on the results of the scree plot and parallel 

analysis, one-factor, four-factor, five-factor, and seven- 

factor models were selected.  The selected models were 

analyzed using factor analyses methods appropriate for 

ordinal variables (Jöreskog & Moustaki, 2006). 
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Factor analyses for ordinal variables using YFCY02.  

The statistical software package LISREL 8.0 for Windows to 

conduct factor analyses of ordinal variables with full-

information factor analysis (Jöreskog & Moustaki, 2006) 

using 27 items in the YFCY02 dataset.  In practice, LISREL 

8.0 invokes PRELIS, an application embedded in LISREL for 

exploratory factor analyses.  The logistic item response 

function and full information maximum likelihood (FIML) 

were selected for parameter estimation.  The LISREL/PRELIS 

syntax for the full information factor analysis is 

available in Appendix E. 

FIML results from LISREL/PRELIS provided information 

about response patterns in the sample called “coverage 

ratio” (Jöreskog & Moustaki, 2006).  Coverage ratio was the 

percentage of response patterns used in the sample.  Low 

coverage ratios mean many response patterns were not used.  

Jöreskog and Moustaki (2006) explained that when coverage 

ratios are low “there will not be much information lost if 

one collapses categories” (p. 3).  Datasets with large 

coverage ratios have a high “representation of the set of 

all possible response patterns” (p. 3).  The coverage ratio 

for the YFCY02 dataset was 99.4%.  
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One-factor model FIML results.  Based on one possible 

interpretation of the scree plot for YFCY02 (n = 3,652; v = 

27) (Figure 1), one factor was specified for extraction in 

the LISREL/PRELIS syntax.  The information matrix was not 

positive definite.  The YFCY02 data were not 

unidimensional. 

Four-factor model FIML results.  The results of the  
 
scree plot from the traditional exploratory factor analysis  
 
suggested a four-factor model from the YFCY02 dataset.   
 
Table 13 presents the standardized pattern/structure  
 
coefficients for the four-factor model.  Four items loaded  
 
on more than one factor: “Rate0209 - Self-confidence  
 
(intellectual)”; “Success1 - Understanding what professors  
 
expect”; “Success2 - Developing effective study skills”;  
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Table 13.  Pattern/Structure Coefficients for the Four-
Factor Model from Ordinal Factor Analysis for YFCY02 (n = 
3,652; v = 27) 
 

Item 
Mean 
(SD) 

Factor 

I II III IV 

Amount of Contact with Faculty 
 

2.64 
(0.81) 

0.630 0.000 0.000 0.000 

Opportunities for Community Service 
 

2.72 
(0.82) 

0.595 -0.032 0.000 0.000 

Relevance of Coursework to Life 
 

2.45 
(0.80) 

0.705 -0.109 0.040 0.000 

Relevance of Coursework to Career 
 

2.74 
(0.82) 

0.649 -0.064 0.000 -0.077 

Overall Quality of Instruction 
 

2.94 
(0.75) 

0.744 -0.068 -0.004 -0.065 

Overall Sense of Community among Students
 

2.94 
(0.90) 

0.684 0.005 -0.224 0.092 

Overall College Experience 
 

3.14 
(0.82) 

0.751 0.066 -0.153 0.034 

Influencing Social Values 
 

2.62 
(0.82) 

0.192 -0.020 0.273 0.572 

Helping Others Who Are in Difficulty 
 

 
3.01 

(0.77) 
0.225 -0.132 0.227 0.559 

Developing Meaningful Philosophy of Life 
 

 
2.68 

(0.99) 
0.132 -0.025 0.272 0.441 

Helping Promote Racial Understanding 
 

2.39 
(0.89) 

0.115 -0.098 0.242 0.510 

Becoming a Community Leader 
 

2.52 
(0.89) 

0.259 0.162 0.186 0.565 

Integrating Spirituality into Life 
 

2.81 
(1.06) 

0.286 -0.180 0.100 0.600 

Leadership Ability 
 

3.82 
(0.84) 

0.266 0.598 0.139 0.310 

Public Speaking Ability 
 

3.36 
(0.95) 

0.237 0.551 0.159 0.263 

Self-confidence (intellectual) 
 

3.80 
(0.83) 

0.311 0.608 0.313 0.064 

Self-confidence (social) 
 

3.55 
(0.90) 

0.289 0.664 0.074 0.246 

Self-understanding 
 

3.86 
(0.83) 

0.268 0.511 0.237 0.183 

Writing Ability 
 

3.65 
(0.86) 

0.181 0.284 0.289 0.141 
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Table 13.  Continued 
 

Item 
Mean 
(SD) 

Factor 

I II III IV 

 
Understanding What Professors Expect 

 
3.05 

(0.66) 
0.499 0.043 0.469 -0.168 

Developing Effective Study Skills 
 

2.74 
(0.81) 

0.441 0.022 0.703 -0.205 

Adjusting to Academic Demands 
 

2.98 
(0.78) 

0.460 0.066 0.692 -0.232 

Managing Time Effectively 
 

2.64 
(0.84) 

0.372 0.051 0.657 -0.213 

Getting to Know Faculty 
 

2.21 
(0.85) 

0.460 0.103 0.290 0.019 

Develop close friendships w/students 
 

3.36 
(0.81) 

0.437 0.192 -0.023 0.106 

Attended a Religious Service 
 

2.07 
(0.83) 

0.309 -0.169 -0.022 0.397 

Discussed Religion 
 

2.20 
(0.62) 

0.254 -0.041 0.063 0.468 

 
Note: Pattern/structure coefficients greater than the 
|0.300| were underlined.  
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“Success3 – Adjusting to academic demands”; and, “Success4 

– Managing time effectively”. 

The seven satisfaction items using the “satisfaction” 

scale loaded only on Factor I.  The six goal items using 

the important scale loaded exclusively on Factor IV.  The 

four-factor model indicated that the 27 YFCY02 items seem 

to be hanging together by the scales each set of items 

Used.  Item means were examined to determine whether the 

factors were artifacts of response distributions as opposed 

to underlying traits (Bernstein, 1988).  No relationships 

between means and scales were evident.      

Five-factor model FIML results.  The results of the 

scree plot from the traditional exploratory factor analysis 

suggested a five-factor model from the YFCY02 dataset.  

Table 14 presents the standardized pattern/structure 

coefficients for the five-factor model.  Seven items loaded 

on more than one factor: “Goal029 – Integrating 

spirituality into life”; “Acts0201 – Attended a religious 

service”; “Success1 – Understanding what professors 

expect”; “Success2 – Developing effective study skills”; 

“Success3 – Adjusting to academic demands”; and, “Success4 

– Managing time effectively”.  
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Table 14.  Pattern/Structure Coefficients for the Five-
Factor Model from Ordinal Factor Analysis for YFCY02  
(n = 3,652; v = 27) 
 
 Mean 

(SD) 
Factor 

Item I II III IV V 
 
Amount of Contact with 
Faculty 

2.64 
(0.81) 0.661 0.000 0.000 0.000 0.000 

 
Opportunities for 
Community Service 

2.72 
(0.82) 0.545 0.276 0.000 0.000 0.000 

 
Relevance of Coursework 
to Life 

2.45 
(0.80) 0.767 -0.003 -0.077 0.000 0.000 

 
Relevance of Coursework 
to Career 

2.74 
(0.82) 0.690 0.001 -0.056 -0.050 0.000 

 
Overall Quality of 
Instruction 

2.94 
(0.75) 0.745 0.091 -0.053 0.003 -0.077 

 
Overall Sense of 
Community among Students 

2.94 
(0.90) 0.592 0.398 -0.036 -0.080 -0.114 

 
Overall College 
Experience 

3.14 
(0.82) 0.666 0.345 0.040 -0.050 -0.160 

 
Influencing Social 
Values 

2.62 
(0.82) 0.215 0.156 0.141 0.267 0.559 

 
Helping Others Who Are 
in Difficulty 

3.01 
(0.77) 0.240 0.187 0.020 0.272 0.535 

 
Developing  Meaningful 
Philosophy of Life 

2.68 
(0.99) 0.153 0.093 0.118 0.262 0.432 

 
Helping Promote Racial 
Understanding 

2.39 
(0.89) 0.191 0.013 0.043 0.196 0.662 

 
Becoming a Community 
Leader 

2.52 
(0.89) 0.254 0.248 0.286 0.155 0.496 

 
Integrating Spirituality 
into Life 

2.81 
(1.06) 0.132 0.631 -0.088 0.470 0.228 

Leadership Ability 3.82 
(0.84) 0.208 0.259 0.646 0.022 0.126 

Public Speaking  
Ability 

 
3.36 

(0.95) 
0.191 0.204 0.600 0.038 0.108 

 
Self-confidence 
(intellectual) 

3.80 
(0.83) 0.269 0.077 0.683 0.141 -0.08 

Self-confidence (social) 
 

3.55 
(0.90) 

0.234 0.243 0.679 -0.071 0.078 

Self-understanding 
 

3.86 
(0.83) 

0.226 0.144 0.581 0.115 0.036 

Writing Ability 
 

3.65 
(0.86) 

0.169 0.037 0.379 0.194 0.070 
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Table 14.  Continued 
 
 Mean 

(SD) 
Factor 

Item I II III IV V 
 
Understanding What 
Professors Expect 

3.05 
(0.66) 0.522 -0.172 0.183 0.371 -0.149 

 
Developing Effective 
Study Skills 

2.74 
(0.81) 0.456 -0.248 0.233 0.620 -0.222 

 
Adjusting to Academic 
Demands 

2.98 
(0.78) 0.475 -0.254 0.269 0.590 -0.247 

 
Managing Time 
Effectively 

2.64 
(0.84) 0.397 -0.268 0.243 0.546 -0.200 

Getting to Know Faculty 2.21 
(0.85) 0.498 -0.081 0.201 0.181 0.063 

Develop close 
friendships w/students 

 
3.36 

(0.81) 
0.380 0.233 0.199 -0.007 -0.035 

 
Attended a Religious 
Service 

 
2.07 

(0.83) 
0.116 0.732 -0.171 0.425 -0.068 

Discussed Religion 
 

2.20 
(0.62) 

0.146 0.462 0.036 0.279 0.181 

 
Note: Pattern/structure coefficients greater than the 
|0.300| were underlined.  
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The first five satisfaction items using the 

“satisfaction” scale loaded only on Factor I.  Four of the  

Goal items loaded only on Factor V.  All six of the rate 

items loaded only on Factor III.  The five-factor model 

indicated that the 27 YFCY02 items seem to be hanging 

together by the scales each set of items used.  Item means 

were examined to determine whether the factors were 

artifacts of response distributions as opposed to 

underlying traits (Bernstein, 1988).  No relationships 

between means and scales were evident.  

Seven-factor model FIML results.  The results of the 

scree plot from the traditional exploratory factor analysis 

suggested a seven-factor model from the YFCY02 dataset.  

Table 15 presents the standardized pattern/structure 

coefficients for the seven-factor model.  Seventeen of the 

YFCY02 items loaded on more than one factor.  The first 

five CMPSAT items using the satisfaction scale loaded only 

on Factor I.  

Four of the goal items loaded only on Factor V.  All 
 

six of the rate items loaded only on Factor III.  The  
 
seven-factor model indicated that the 27 YFCY02 items seem  
 
to be hanging together by the scales each set of items  
 
used.  Item means were examined to determine whether the 
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Table 15.  Pattern/Structure Coefficients for the Seven-
Factor Model from Ordinal Factor Analysis for YFCY02  
(n = 3,652; v = 27) 

 

Items 
Factor 

I II III IV V VI VII 
 
Amount of Contact with 
Faculty 

0.748 0.000 0.000 0.000 0.000 0.000 0.000 

 
Opportunities for 
Community Service 

0.526 0.310 0.000 0.000 0.000 0.000 0.000 

 
Relevance of Coursework to 
Life 

0.728 0.128 0.302 0.000 0.000 0.000 0.000 

 
Relevance of Coursework to 
Career 

0.629 0.133 0.298 -0.012 0.000 0.000 0.000 

 
Overall Quality of 
Instruction 

0.698 0.233 0.304 -0.023 -0.039 0.000 0.000 

 
Overall Sense of Community 
among Students 

0.449 0.546 0.080 -0.135 0.131 -0.274 0.000 

 
Overall College Experience 0.484 0.570 0.165 -0.148 0.183 -0.341 0.121 

 
Influencing Social Values 0.176 0.192 -0.114 0.166 0.513 0.342 -0.031 

 
Helping Others Who Are in 
Difficulty 

0.167 0.261 -0.070 0.048 0.518 0.342 -0.079 

 
Developing  Meaningful 
Philosophy of Life 

0.060 0.212 0.244 0.268 0.282 0.428 0.008 

 
Helping Promote Racial 
Understanding 

0.108 0.106 0.111 0.169 0.543 0.390 -0.148 

 
Becoming a Community 
Leader 

0.289 0.184 -0.289 0.304 0.463 0.214 -0.023 

 
Integrating Spirituality 
into Life 

0.126 0.626 -0.208 0.044 0.030 0.477 -0.008 

 
Leadership Ability 0.281 0.139 -0.336 0.539 0.197 -0.099 0.277 

 
Public Speaking Ability 0.260 0.108 -0.205 0.551 0.098 -0.025 0.266 

 
Self-confidence 
(intellectual) 

0.209 0.157 0.135 0.530 0.041 -0.055 0.543 

 
Self-confidence (social) 0.179 0.229 -0.146 0.479 0.311 -0.272 0.319 

 
Self-understanding 0.137 0.228 0.114 0.461 0.152 -0.036 0.404 

 
Writing Ability 0.126 0.116 0.185 0.380 0.023 0.172 0.307 
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Table 15.  Continued 
 

Items 
Factor 

I II III IV V VI VII 
 
Understanding What 
Professors Expect 

0.475 0.003 0.161 -0.070 0.062 0.140 0.463 

 
Developing Effective Study 
Skills 

0.398 -0.034 0.054 -0.219 0.143 0.222 0.703 

 
Adjusting to Academic 
Demands 

0.378 0.000 0.161 -0.181 0.138 0.181 0.730 

 
Managing Time Effectively 0.348 -0.083 0.016 -0.212 0.176 0.164 0.665 

 
Getting to Know Faculty 0.572 -0.083 -0.140 0.032 0.196 0.072 0.221 

 
Develop close friendships 
w/students 

0.252 0.354 -0.081 -0.058 0.343 -0.306 0.183 

 
Attended a Religious 
Service 

0.160 0.699 -0.377 -0.105 -0.240 0.351 0.034 

 
Discussed Religion 0.133 0.470 -0.085 0.165 0.002 0.322 0.008 

 
Note: Pattern/structure coefficients greater than the 
|0.300| were underlined.  
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factors were artifacts of response distributions as opposed 

to Underlying traits (Bernstein, 1988).  No relationships 

between means and scales were evident.  

Summary of exploratory factor analyses using the 

YFCY02 dataset.  The satisfaction items and goal items 

loaded together consistently over the four-factor, five-

factor, and seven-factor models.  After reviewing the 

results in Tables 12 through 15, the four-factor model with 

27 items was selected for analysis using confirmatory 

factor analysis (CFA) to explore model fit.  

Confirmatory factor analysis using the YFCY02 dataset.  

The second part the first research question was evaluated 

using SAS 9.1 for Windows.  The SAS command PROC CALIS was 

used to assess the factor structure of the covariance 

matrix of the 27 items in YFCY02.  SAS PROC CALIS provided 

maximum likelihood estimates for pattern/structure 

coefficients.  The SAS PROC CALIS syntax for the CFA using 

the YFCY02 dataset is provided in Appendix F.  

To evaluate model fit, PROC CALIS provided the NFI, 

GFI, and RMSEA fit indices to evaluate model fit.  For 

satisfactory model fit, the normed fit index (NFI), the 

goodness of fit index (GFI), and the comparative fit index 

(CFI) should be greater than 0.95, and the root-mean-square 
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error of approximation (RMSEA) should be less than 0.06 

(Thompson, 2004).  

Table 16 presents the pattern/structure coefficients 

and fit indices for CFA results using YFCY02.  The four-

factor model with 27 items did not fit satisfactorily (GFI 

= 0.83, NFI = 0.75, CFI = 0.73, and RMSEA = 0.09).  After 

deleting five items from the analysis, the fit of the 

four-factor model improved but was still did not fit 

satisfactory (GFI = 0.88, NFI = 0.81, CFI = 0.81, RMSEA = 

0.08). 

To improve model fit and assist in model 

interpretation, the seven items loading on more than one 

factor were deleted from the analysis.  The resulting fit 

indices were improved by deleting the seven items loading 

on multiple items (GFI = 0.92, NFI = 0.88, CFI = 0.88, 

RMSEA = 0.07).  While modification indices were examined, 
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Table 16.  Pattern/Structure Coefficients for the Three CFA Models for YFCY02  
(n = 3,652) 

 

Item/ Fit Statistics 

 
4f - 27 Items 

 

  
4f - 22 Items 

 

  
4f - 20 Items 

 
 Pattern/ 

structure 
Coefficient 

Factor
 Pattern/ 

structure 
Coefficient

Factor
 Pattern/ 

structure 
Coefficient

Factor 

 
Opportunities for Community Service 

 
0.8974 

 
I

 
0.9191 

 
I

 
0.0375 

 
I

Relevance of Coursework to Life  1.1258 I  1.1441 I  1.3663 I
Relevance of Coursework to Career  1.0527 I  1.0768 I  1.2678 I
Overall Quality of Instruction  1.0427 I  1.0535 I  1.074 I
Overall Sense of Community among Students  1.0583 I  1.112 I  **** **** 
Overall College Experience  1.0661 I  1.1065 I  **** **** 
Influencing Social Values  1.00 II  1.00 II  1.00 II
Helping Others Who Are in Difficulty  0.9234 II  0.909 II  0.9015 II
Developing  Meaningful Philosophy of Life  0.9215 II  0.9059 II  0.8769 II
Helping Promote Racial Understanding  0.936 II  0.9705 II  0.9714 II
Becoming a Community Leader  1.0328 II  1.0116 II  1.0068 II
Integrating Spirituality into Life  1.2337 II  1.0064 II  0.9108 II
Leadership Ability  1.00 III  **** ****  1.00 III
Public Speaking Ability  1.077 III  1.00 III  1.0787 III
Self-confidence (intellectual)  1.0704 III  **** ****  1.0795 III
Self-confidence (social)  1.1762 III  1.3072 III  1.1745 III
Self-understanding  0.9663 III  1.0307 III  0.9696 III
Writing Ability  1.00 IV  **** ****  **** **** 
Understanding What Professors Expect  0.634 I  **** ****  1.00 IV
Developing Effective Study Skills  2.9526 III  1.00 IV  1.7074 IV
Adjusting to Academic Demands  2.7268 III  0.9099 IV  1.6112 IV
Managing Time Effectively  2.8578 III  0.9714 IV  1.632 IV
Getting to Know Faculty  0.7907 I  0.7668 I  **** **** 
Develop close friendships w/students  0.6166 I  0.6395 I  **** **** 
Attended a Religious Service  0.6647 II  **** ****  **** **** 
Discussed Religion  0.5424 II  0.4536 II  **** **** 
 
GFI 

 
0.8251 

  
0.8848  

 
0.9232  

NFI  0.7246   0.8057   0.8784  
CFI  0.7313   0.8123   0.8846  
RMSEA  0.0874   0.0781   0.0665  

 
Note: Items marked **** were excluded from the model. 



 

 

118

revising the factor structure based on modification indices 

did not appreciably improve model fit or assist in 

interpreting the factors. 

LISREL 8.80 was used to run confirmatory factor 

analysis for ordinal data: The LISREL syntax is provided in 

Appendix H. Figure 2 provides the path diagram for YFCY02, 

weighted least squares estimates for pattern/structure 

coefficients, and the RMSEA fit statistic.  The RMSEA was 

0.06 indicating acceptable model fit for the YFCY02 data.  

Figure 3 provides the weighted least squares estimates for  

The four-factor model with 20 items using the YFCY03 

dataset.  The RMSEA was 0.05 indicating acceptable model 

fit for the YFCY03 dataset. 
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Figure 2.  YFCY02 Weighted Least Squares Estimates Obtained 
from CFA for Ordinal Data (n = 3,652; v = 20)   
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Figure 3.  YFCY03 Weighted Least Squares Estimates Obtained 
from CFA for Ordinal Data (n = 5,081; v = 20)   
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Interpreting and Naming Factors 

Based on acceptable model fit for the YFCY02 and 

YFCY03 datasets, the four-factor model with 20 items was 

selected for naming and interpreting factors.  

Factor I – Overall Satisfaction 

Factor I was comprised of five items.  On YFCY02, the 

five items used a four-category scale (Dissatisfied; 

Neutral; Satisfied; and, Very Satisfied).  However, on 

YFCY03, the items used a five-category scale (Very 

dissatisfied; Dissatisfied; Neutral; Satisfied; and, Very 

satisfied).  While YFCY02 and YFCY03 used different scales, 

the items were identical between the two surveys: “Cmpsat1 

– Amount of contact with faculty”; “Cmpsat2 – Opportunities 

for community service”; “Cmpsat3 – Relevance of coursework 

to life”; “Cmpsat4 – Relevance of coursework to career”; 

and, “Cmpsat5 – Overall quality of instruction.”  

Sharkness, De Angelo, and Pryor (2010) suggested that 

a similar collection of items provided “a unified measure 

of students’ satisfaction with the college experience” (p. 

28) and called the factor “Overall Satisfaction” (p. 28).  

Therefore, in the present study, Factor I was named Overall 

Satisfaction.  
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Factor II – Social Agency 

Factor II was comprised of six items that used a four-

category scale (Not important; somewhat important; Very 

important; Essential) on YFCY02 and YFCY03: “Goal022 –

Influencing social values”; “Goal023 – Helping others who 

are in difficulty”; “Goal026 –Developing meaningful 

philosophy of life”; “Goal027 – Helping promote racial 

understanding”; “Goal028 – Becoming a community leader”; 

and, “Goal029 – Integrating spirituality into life.” 

Sharkness, De Angelo, and Pryor (2010) suggested that 

a similar collection of items provided a measure of “the 

extent to which students value political and social 

involvement as a personal goal” (p. 32) and called the 

factor “Social Agency” (p. 32).  Therefore, in the present 

study, Factor II was named Social Agency.  

Factor III – Social Self Concept 

Factor III was comprised of five items that used a 

five-category scale (Lowest 10%; below average; Average; 

above average; and, Highest 10%) on YFCY02 and YFCY03: 

“Rate0205 – Leadership Ability”; “Rate0208 - Public 

Speaking Ability”; “Rate0209 – Self-confidence 

(intellectual)”; “Rate0210 – Self-confidence (social)”; 

and, “Rate0211 – Self-understanding.” 
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Sharkness, De Angelo, and Pryor (2010) suggested that 

a similar collection of items provided a measure of 

“students’ beliefs about their abilities and confidence in 

social situations” (p. 36) and called the factor “Social 

Self-Concept” (p. 32).  Therefore, in the present study, 

Factor III was named Social Self-Concept.   

Factor IV – Academic Skills 

Factor IV was comprised of four items that, on YFCY02, 

used a four-category scale (Unsuccessful; Somewhat 

successful; Fairly successful; and, Very successful).  On 

YFCY03, three-category scale (Unsuccessful, Somewhat 

successful, and, completely successful). 

The items were identical between YFCY02 and YFCY03: 

“Success1 – Understanding what professors expect”; 

“Success2 – Developing effective study skills”; “Success3 – 

Adjusting to academic demands”; and, “Success4 – Managing 

time effectively”.  In the present study, Factor IV was 

named Academic Skills.  

Assessing Factorial Invariance 

To determine if the four-factor solution using 20 

items was invariant between the YFCY02 and YFCY03 datasets, 

the four-factor model was fit with each dataset.  SAS PROC 

CALIS was used to obtain fit indices and estimates for the 
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four-factor model using 20 items and the YFCY03 dataset 

(see Appendix I).  

SAS PROC CALIS was used to fit the YFCY02 dataset with 

the pattern/structure coefficients obtained from the YFCY03 

factor solution (see Appendix J) and to fit the YFCY03 

dataset with the pattern/structure coefficients obtained 

from the YFCY02 factor solution (see Appendix K).  Partial 

and full factorial invariance were examined and the results 

are provided in Table 17 and Table 18, respectively. 

Partial measurement invariance is obtained when some 

of the non-fixed pattern/structure coefficients are 

equivalent.  Meade and Lautenshlager (2004) explained, “In 

other words, the same items are forced to load onto the 

same factors, but parameter estimates themselves are 

allowed to vary between groups” (p. 363).  The model fit 

indices in Table 17 indicate are nearly identical 

indicating that the four-factor model meets the criteria 

for partial invariance. 

Full measurement invariance is obtained when the 

pattern/structure coefficients are equal (Reise, Widaman, & 

Pugh, 1993).  The estimated pattern/structure coefficients 

in Table 17 are very similar between the YFCY02 and YFCY03 
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Table 17.  Partial Invariance Four-Factor Model Estimates for the YFCY02 (n = 3,652) 
and YFCY03 (n = 5,081) Datasets 
 

Item/Fit Statistics 

 

Factor

 
YFCY02  
Mean 
(SD) 

YFCY03  
Mean 
(SD) 

 YFCY02 Data - 
YFCY02 Estimates 

 YFCY03 Data – 
YFCY03 Estimates 

Pattern/ 
structure 

Coefficient 

Pattern/ 
structure 

Coefficient 

Amount of Contact with Faculty 
 

I 
 2.64 

(0.81) 
3.55 

(0.86) 
1.00 
(***) 

1.00 
(***) 

Opportunities for Community Service  I  2.72 
(0.82) 

3.52 
(0.82) 

0.9028 
(0.0375) 

0.8314 
(0.0308) 

Relevance of Coursework to Life  I  2.45 
(0.80) 

3.29 
(0.88) 

1.3663 
(0.0432) 

1.4694 
(0.0402) 

Relevance of Coursework to Career  I  2.74 
(0.82) 

3.59 
(0.89) 

1.2678 
(0.0419) 

1.4213 
(0.0396) 

Overall Quality of Instruction  I  2.940 
(0.75) 

3.83 
(0.77) 

1.074 
(0.0371) 

1.0711 
(0.0320) 

Influencing Social Values  II  2.62 
(0.81) 

2.48 
(0.86) 

1.00 
(***) 

1.00 
(***) 

Helping Others Who Are in Difficulty  II  3.01 
(0.76) 

3.01 
(0.77) 

0.9015 
(0.0302) 

0.7597 
(0.0240) 

Developing  Meaningful Philosophy of Life  II  2.68 
(0.98) 

2.61 
(1.00) 

0.8769 
(0.0367) 

0.8875 
(0.0304) 

Helping Promote Racial Understanding  II  2.39 
(0.88) 

2.35 
(0.91) 

0.9714 
(0.0343) 

0.9317 
(0.0286) 

Becoming a Community Leader  II  2.52 
(0.88) 

2.29 
(0.91) 

1.0068 
(0.0345) 

1.0312 
(0.0347) 

Integrating Spirituality into Life  II  2.81 
(1.06) 

2.68 
(1.06) 

0.9108 
(0.0392) 

0.8821 
(0.0377) 

Leadership Ability  III  3.82 
(0.83) 

3.76 
(0.89) 

1.00 
(***) 

 1.00 
(***) 

Public Speaking Ability  III  3.36 
(0.95) 

3.21 
(0.99) 

 1.0787 
(0.0364) 

1.0135 
(0.0300) 

Self-confidence (intellectual)  III  3.80 
(0.82) 

3.74 
(0.83) 

1.0795 
(0.0329) 

0.9171 
(0.0256) 

Self-confidence (social)  III  3.55 
(0.89) 

3.43 
(0.93) 

1.1745 
(0.0358) 

1.120 
(0.0296) 

Self-understanding  III  3.86 
(0.82) 

3.76 
(0.83) 

0.9696 
(0.0319) 

0.9231 
(0.0257) 
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Table 17.  Continued 
 

Item/Fit Statistics 

 

Factor 

 
YFCY02  
Mean 
(SD) 

YFCY03  
Mean 
(SD) 

 YFCY02 Data - 
YFCY02 Estimates

 YFCY03 Data – 
YFCY03 Estimates 

   Pattern/ 
structure 
Coefficient 

 Pattern/ 
structure 

Coefficient  

Understanding What Professors Expect  IV  3.05 
(0.65) 

2.40 
(0.53) 

 1.00 
(***) 

 1.00 
(***) 

Developing Effective Study Skills  IV  2.74 
(0.80) 

2.15 
(0.60) 

 1.7074 
(0.0476) 

1.6655 
(0.0476) 

Adjusting to Academic Demands  IV  2.98 
(0.78) 

2.35 
(0.58) 

 1.6112 
(0.0453) 

1.595 
(0.0457) 

Managing Time Effectively  IV  2.64 
(0.83) 

2.10 
(0.62) 

 1.632 
(0.0474) 

1.6316 
(0.0477) 

GFI      0.9232  0.9242 

NFI      0.8784  0.8703 

CFI      0.8846  0.8751 

RMSEA      0.0665  0.0664 

Chi-Square (DF)      2,842 (166) 3,880(166) 

 
Note: *** indicates item was fixed during estimation.
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datasets.  The standard errors between the YFCY02 and 

YFYC03 datasets ranged from 0.0240 and 0.0477.  The largest 

difference between the YFCY02 and YFCY03 pattern/structure 

coefficients in Table 17 was 0.1624 on the item “Self-

confidence (intellectual).”  Furthermore, inspecting the 

weighted least squares estimates in Figures 2 and 3, the 

largest difference between the weighted least squares 

estimates was 0.11 on “Helping others who are in 

difficulty.” 

The model fit indices in Table 17 were obtained by 

running the YFCY02 data and the YFCY03 data with the four-

factor model.  The fit indices are nearly identical between 

the YFCY02 and YFCY03 datasets, indicating the four-factor 

model fit both datasets equally well meeting the criteria 

for partial measurement invariance.  

Finally, the fit indices in Table 18 were obtained by 

running the YFCY02 data with the YFCY03 pattern/structure 

coefficients and the YFCY03 data with the YFCY02 

pattern/structure coefficients.  Again, the fit indices 

were nearly identical, indicating that the four-factor 

model meets the criteria for full measurement invariance.
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Table 18.  Full Invariance YFCY02 Data (n = 3,652) with YFCY03 Estimates and YFCY03 
Data (n = 5,081) with YFCY02 Estimates 

 

Item/Fit Statistics 

 

Factor

 
YFCY02   
Mean 
(SD) 

YFCY03   
Mean 
(SD) 

 YFCY02 Data - 
YFCY03 Estimates 

YFCY03 Data – 
YFCY02 Estimates

   Pattern/ 
structure 
Coefficient 

 Pattern/ 
structure 
Coefficient 

Amount of Contact with Faculty I  2.64 
(0.81) 

3.55 
(0.86) 

 1.00 1.00 

Opportunities for Community Service I  2.72 
(0.82) 

3.52 
(0.82) 

 0.8314 0.9028 

Relevance of Coursework to Life I  2.45 
(0.80) 

3.29 
(0.88) 

 1.4694 1.3663 

Relevance of Coursework to Career I  2.74 
(0.82) 

3.59 
(0.89) 

 1.4213 1.2678 

Overall Quality of Instruction I  2.940 
(0.75) 

3.83 
(0.77) 

 1.0711 1.074 

Influencing Social Values II  2.62 
(0.81) 

2.48 
(0.86) 

 1.00 1.00 

Helping Others Who Are in 
Difficulty II  3.01 

(0.76) 
3.01 

(0.77) 
 0.7597 0.9015 

Developing  Meaningful Philosophy 
of Life II  2.68 

(0.98) 
2.61 

(1.00) 
 0.8875 0.8769 

Helping Promote Racial 
Understanding II  2.39 

(0.88) 
2.35 

(0.91) 
 0.9317 0.9714 

Becoming a Community Leader II  2.52 
(0.88) 

2.29 
(0.91) 

 1.0312 1.0068 

Integrating Spirituality into Life II  2.81 
(1.06) 

2.68 
(1.06) 

 0.8821 0.9108 

Leadership Ability III  3.82 
(0.83) 

3.76 
(0.89) 

 1.00 1.00 

Public Speaking Ability III  3.36 
(0.95) 

3.21 
(0.99) 

 1.0135 1.0787 

Self-confidence (intellectual) III  3.80 
(0.82) 

3.74 
(0.83) 

 0.9171 1.0795 

Self-confidence (social) III  3.55 
(0.89) 

3.43 
(0.93) 

 1.120 1.1745 

Self-understanding III  3.86 
(0.82) 

3.76 
(0.83) 

 0.9231 0.9696 
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Table 18.  Continued 
 

Item/Fit Statistics Factor

 
YFCY02   
Mean 
(SD) 

YFCY03   
Mean 
(SD) 

 YFCY02 Data - 
YFCY03 Estimates 

YFCY03 Data – 
YFCY02 Estimates

  Pattern/ 
structure 

Coefficient 

Pattern/ 
structure 

Coefficient 
Understanding What Professors 
Expect IV  3.05 

(0.65) 
2.40 

(0.53) 
 1.00 1.00 

Developing Effective Study Skills IV  2.74 
(0.80) 

2.15 
(0.60) 

 1.6655 1.7074 

Adjusting to Academic Demands IV  2.98 
(0.78) 

2.35 
(0.58) 

 1.595 1.6112 

Managing Time Effectively IV  2.64 
(0.83) 

2.10 
(0.62) 

 1.6316 1.632 

 
GFI      

0.9214 0.9212 
 
NFI      

0.8741 0.8658 
 
CFI      

0.8809 0.8711 
 
RMSEA      

0.0645 0.0644 
 
Chi-Square (DF)      

2,943 (182) 4,015 (182) 

 
Note: *** indicates item was fixed during estimation.
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Research Question 2: Assessing IRT Parameter Invariance 

The second major research question of the present 

study was: How similar/invariant are person and item 

parameter estimates obtained from two different datasets 

(i.e., identical items, different people) for the 

homogenous graded response model (Samejima, 1969) and the 

partial credit model (Masters, 1982)?  Prior to obtaining 

item response model estimates, model assumptions and model 

fit were assessed.  Finally, measurement invariance of the 

YFCY02 and YFCY03 items was assessed using item response 

model estimates.   

Assessing IRT Model Fit 

Because of the limitations of chi-square fit 

statistics with large samples (DeMars, 2005), Hambleton and 

Swaminathan (1985) recommended using three types of 

evidence to evaluate IRT model fit: Validity of model 

assumptions; invariance of item and ability parameters; and 

accuracy of model estimates.  

Unidimensionality 

To assess model assumptions about unidimensionality, 

two procedures were used.  First, Lord’s 1980 criterion was 

used to evaluate the eigenvalues obtained from exploratory 

factor analysis. Factors were extracted by principal axis 
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factor analysis using the Pearson correlation matrix and 

rotated to the varimax criterion (e.g., Baker, Rounds, & 

Zevon, 2000; Dodd, 1984; Ostini, 2001). Scree plots 

(Cattell, 1966) were used to determine if the first 

eigenvalue was much greater than the second and the second 

value is similar to the remaining eigenvalues (Lord, 1980).   

Second, confirmatory factor analysis was used to 

obtain fit indices to evaluate fit the of the one factor 

model. To evaluate model fit, PROC CALIS provided the NFI, 

GFI, and RMSEA fit indices to evaluate model fit.  For 

satisfactory model fit, the normed fit index (NFI), the 

goodness of fit index (GFI), and the comparative fit index 

(CFI) should be greater than 0.95, and the root-mean-square 

error of approximation (RMSEA) should be less than 0.06 

(Thompson, 2004).  

Overall Satisfaction construct.  The Overall 

Satisfaction construct was comprised of five items.  On 

YFCY02, the five items used a four-category scale 

(Dissatisfied; Neutral; Satisfied; and, Very Satisfied).  

However, on YFCY03, the items used a five-category scale 

(Very dissatisfied; Dissatisfied; Neutral; Satisfied; and, 

Very satisfied).  
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While YFCY02 and YFCY03 used different scales, the 

five items were identical between the two surveys: “Amount 

of contact with faculty”; “Opportunities for community 

service”; “Relevance of Coursework to Life”; “relevance of 

coursework to career”; and, “Overall quality of 

instruction.” 

Unidimensionality of the Overall Satisfaction 

construct using the YFCY02 dataset.  Figure 4 is the scree 

plot for the Overall Satisfaction construct from the YFCY02 

dataset.  The eigenvalues in Figure 4 indicate that the  

 

Figure 4.  Scree Plot for the Overall Satisfaction 
Construct from the YFCY02 Dataset (n = 3,652; v = 5) 
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first eigenvalue equals 2.694 and is much larger than the 

eigenvalues of the four remaining factors: 0.773, 0.629, 

0.528, and 0.376.  Using Lord’s criteria, the Overall 

Satisfaction construct from the YFCY02 dataset is 

unidimensional. 

Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the Overall Satisfaction 

construct from the YFCY02 dataset.  The fit indices (GFI = 

0.9786, NFI = 0.9611, CFI = 0.9618, and RMSEA = 0.1133) 

indicated satisfactory model fit of the one factor model.  

Unidimensionality of the Overall Satisfaction 

construct using the YFCY03 dataset.  Figure 5 is the scree  

 
Figure 5.  Scree Plot for the Overall Satisfaction 
Construct from the YFCY03 Dataset (n = 5,081; v = 5) 
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plot for the Overall Satisfaction construct from the  

YFCY03 dataset.  The eigenvalues in Figure 5 indicate that 

the first eigenvalue equals 2.717 and is much larger than 

the eigenvalues of the four remaining factors: 0.818, 

0.621, 0.502, and 0.342.  Using Lord’s criteria, the 

Overall Satisfaction construct from the YFCY03 dataset is 

unidimensional. 

Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the Overall Satisfaction  

construct from the YFCY03 dataset.  The fit indices (GFI = 

0.9630, NFI = 0.9347, CFI = 0.935, and RMSEA = 0.1527) 

indicated satisfactory model fit of the one factor model.  

Social Agency construct.  The Social Agency construct 

was comprised of six items that used a four-category scale 

(Not important; Somewhat important; Very important; 

Essential) on YFCY02 and YFCY03.  

The six items were: “Influencing social values”; 

“Helping others who are in difficulty”; “Developing 

meaningful philosophy of life”; “Helping promote racial 

understanding”; “Becoming a community leader”; and, 

“Integrating spirituality into life.” 

Unidimensionality of the Social Agency construct using 

the YFCY02 dataset.  Figure 6 is the scree plot for the 
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Social Agency construct from the YFCY02 dataset.  The 

eigenvalues in Figure 6 indicate that the first eigenvalue 

equals 2.688 and is much larger than the eigenvalues of the 

five remaining factors: 0.831, 0.796, 0.635, 0.561, and 

0.489.  Using Lord’s criteria, the Social Agency construct 

from the YFCY02 dataset is unidimensional. 

 
Figure 6.  Scree Plot for the Social Agency Construct from 
the YFCY02 Dataset (n = 3,652; v = 6) 

 

Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the Social Agency construct 

from the YFCY02 dataset.  The fit indices (GFI = 0.9792, 

NFI = 0.9419, CFI = 0.9438, and RMSEA = 0.085) indicated 

satisfactory model fit of the one factor model.  
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Unidimensionality of the Social Agency construct using 

the YFCY03 dataset.  Figure 7 is the scree plot for the 

Social Agency construct from the YFCY03 dataset.  The 

eigenvalues in Figure 7 indicate that the first eigenvalue 

equals 2.663 and is much larger than the eigenvalues of the 

five remaining factors: 0.805, 0.769, 0.673, 0.565, and 

0.523.  Using Lord’s criteria, the Social Agency construct 

from the YFCY03 dataset is unidimensional. 

 

Figure 7.  Scree Plot for the Social Agency Construct from 
the YFCY03 Dataset (n = 5,081; v = 6) 

 
 

Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the “Overall Satisfaction” 
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construct from the YFCY03 dataset.  The fit indices (GFI = 

0.9854, NFI = 0.9571, CFI = 0.9586, and RMSEA = 0.0714) 

indicated satisfactory model fit of the one factor model.  

Social Self-Concept construct.  The Social Self-

Concept construct was comprised of five items that used a 

five-category scale (Lowest 10%; below average; Average; 

above average; and, Highest 10%) on YFCY02 and YFCY03: 

“Leadership ability”; “Public speaking ability”; “Self-

confidence (intellectual)”; “Self-confidence (social)”; 

and, “Self-understanding.” 

Unidimensionality of the Social Self-Concept construct 

using the YFCY02 dataset.  Figure 8 is the scree plot for 

the Social Self-Concept construct from the YFCY02 dataset.  

The eigenvalues in Figure 8 indicate that the first 

eigenvalue equals 2.742 and is much larger than the 

eigenvalues of the four remaining factors: 0.816, 0.519, 

0.474, and 0.449.  Using Lord’s criteria, the Social Self-

Concept construct from the YFCY02 dataset is 

unidimensional. 
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Figure 8.  Scree Plot for the Social Self-Concept Construct 
from the YFCY02 Dataset (n = 3,652; v = 5) 

 
 
Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the Social Self-Concept 

construct from the YFCY02 dataset.  The fit indices (GFI = 

0.9563, NFI = 0.9239, CFI = 0.9245, and RMSEA = 0.1623) 

indicated satisfactory model fit of the one factor model.  

Unidimensionality of the Social Self-Concept construct 

using the YFCY03 dataset.  Figure 9 is the scree plot for 

the Social Self-Concept construct from the YFCY03 dataset.   
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Figure 9.  Scree Plot for the Social Self-Concept Construct 
from the YFCY03 Dataset (n = 5,081; v = 5) 
 

The eigenvalues in Figure 9 indicate that the first 

eigenvalue equals 2.662 and is much larger than the 

eigenvalues of the four remaining factors: 0.876, 0.535, 

0.482, and 0.442.  Using Lord’s criteria, the Social Self-

Concept construct from the YFCY03 dataset is 

unidimensional. 

Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the Social Self-Concept 

construct from the YFCY03 dataset.  The fit indices (GFI = 
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0.9429, NFI = 0.8944, CFI = 0.8949, and RMSEA = 0.1861) 

indicated satisfactory model fit of the one factor model.  

Academic Skills construct.  The Academic Skills 

construct was comprised of four items that, on YFCY02, used 

a four-category scale (Unsuccessful; Somewhat successful; 

Fairly successful; and, Very successful).  The YFCY03 used 

a three-category scale (Unsuccessful; Somewhat successful; 

and, Completely successful). 

The four items were identical between YFCY02 and 

YFCY03: “Understanding what professors expect”; “Developing 

effective study skills”; “Adjusting to academic demands”; 

and, “Managing time effectively.”  

Unidimensionality of the Academic Skills construct 

using the YFCY02 dataset.  Figure 10 is the scree plot for 

the Academic Skills construct from the YFCY02 dataset.  The 

eigenvalues in Figure 10 indicate that the first eigenvalue 

equals 2.679 and is much larger than the eigenvalues of the 

three remaining factors: 0.643, 0.352, and 0.325.  Using 

Lord’s criteria, the Academic Skills construct from the 

YFCY02 dataset is unidimensional. 

Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the Academic Skills construct  
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Figure 10.  Scree Plot for the Academic Skills Construct 
from the YFCY02 Dataset (n = 3,652; v = 4) 

 
 

From the YFCY02 dataset.  The fit indices (GFI = 0.9848, 

NFI = 0.9809, CFI = 0.9810, and RMSEA = 0.1753) indicated 

satisfactory model fit of the one factor model. 

Unidimensionality of the Academic Skills construct 

using the YFCY03 dataset.  Figure 11 is the scree plot for 

the Academic Skills construct from the YFCY03 dataset.  The 

eigenvalues in Figure 11 indicate that the first eigenvalue 

equals 2.488 and is larger than the eigenvalues of the 

three remaining factors: 0.708, .410, and 0.392.  Using 
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Lord’s criteria, the Academic Skills construct from the 

YFCY03 dataset is unidimensional. 

Figure 11.  Scree Plot for the Academic Skills Construct 
from the YFCY03 Dataset (n = 5,081; v = 4) 

 

Confirmatory factor analysis was used to evaluate fit 

of the one factor model for the Academic Skills construct 

from the YFCY03 dataset.  The fit indices (CFA results: GFI 

= 0.9877, NFI = 0.980, CFI = 0.9801, and RMSEA = 0.1581) 

indicated satisfactory model fit of the one factor model.  
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Summary of unidimensionality of the YFCY02 and YFCY03 

constructs.  In summary, to assess model assumptions about 

unidimensionality, two procedures were used: Lord’s 1980 

criterion was used to evaluate the eigenvalues obtained 

from exploratory factor analysis and confirmatory factor 

analysis was used to evaluate fit of the one factor model.  

All four constructs, Overall Satisfaction, Social 

Agency, Social Self Concept, and Academic Skills, obtained 

from the YFCY02 and YFCY03 datasets were determined to be 

unidimensional by Lord’s 1980 criterion and the fit indices 

obtained using confirmatory factor analysis. 

Using IRT Parameter Invariance to Assess Model Fit 

De Ayala (2009) explained that “The presence of 

invariance can be used as part of a model-data fit 

investigation” (p. 61).  To use IRT parameter invariance to 

assess model fit, a dataset is split roughly in half, 

randomly assigning respondents to each subsample.  Then, 

parameter estimates for the main sample and the subsamples 

are compared using the Pearson Product-Moment correlation 

coefficient.  

In the present study, the YFCY02 and YFCY03 datasets 

were split randomly into main samples and subsamples.  

PARSCALE 4 for Windows (Muraki & Bock, 2008) was used to 
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obtain GRM and PCM person parameter estimates 

(theta/attitude) and item parameter estimates (slope/item 

discrimination and location/item difficulty).  

PARSCALE 4 for Windows used expectation a priori (EAP) 

(Bayes estimation) to obtain person parameter estimates and 

maximum likelihood estimation (MLE) to obtain item 

parameter estimates.  PARSCALE’s default settings were used 

to obtain prior estimates from a uniform distribution using 

30 quadrature points.  The fixed prior distribution for 

person parameter estimates (theta) were specified to have a 

mean = 0.0 and standard deviation = 1.0.  Finally, the 

logistic version of GRM and PCM were specified and the 

constant 1.70 was used. 

Overall Satisfaction construct.  The Overall 

Satisfaction construct was comprised of five items.  On 

YFCY02, the five items used a four-category scale 

(Dissatisfied; Neutral; Satisfied; and, Very Satisfied).  

However, on YFCY03, the items used a five-category scale 

(Very dissatisfied; Dissatisfied; Neutral; Satisfied; and, 

Very satisfied).  

While YFCY02 and YFCY03 used different scales, the 

five items were identical between the two surveys: “Amount 

of contact with faculty”; “Opportunities for community 
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service”; “Relevance of coursework to life”; “Relevance of 

coursework to career”; and, “Overall quality of 

instruction.” 

GRM person parameter estimates for the Overall 

Satisfaction construct from the YFCY02 dataset.  The YFCY02 

dataset (n = 3,652) was split randomly into two subsamples: 

one subsample of 1,827 people and a second subsample of 

1,825 people.  Fifteen attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all five of the Overall Satisfaction items. 

Figure 12 is the histogram for the attitude (theta) 

scores for the main sample.  The mean score for the 

attitude (theta) scores of the main sample (n = 3,637) was 

-0.077 and the standard deviation was 1.303.  The mean 

score for the attitude (theta) scores of the first 

subsample (n = 1,822) was -0.0801 and the standard 

deviation was 1.304.  The mean score for the attitude 

(theta) scores of the second subsample (n = 1,815) was     

-0.073 and the standard deviation was 1.302. 
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Figure 12.  Histogram of GRM Attitude (Theta) Estimates: 
Overall Satisfaction Construct of YFCY02 (n = 3,637; v = 5) 

 

The correlations for the attitude (theta) scores among 

the main sample and the subsamples ranged from 0.918 to 

0.998.  The correlation between attitude (theta) scores of 

the first subsample (n = 1,822) and the second subsample (n 

= 1,815) was 0.998.  The correlation of the attitude 

(theta) scores between the main sample (n = 3,637) and the 

first subsample (n = 1,822) was 0.928.  The correlation of 

the attitude (theta) scores between the main sample (n = 

3,637) and the second subsample (n = 1,815) was 0.918. 
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GRM item parameter estimates for the Overall 

Satisfaction construct from the YFCY02 dataset.  Table 19 

provides the item discrimination (slope) parameter 

estimates and the item difficulty (location) parameter 

estimates for the five items on the Overall Satisfaction 

construct.  Furthermore, standard errors for the parameter 

estimates and item fit statistics (chi-square) are provided 

in Table 19. 

GRM item discrimination (slope) parameter estimates 

for the YFCY02 Overall Satisfaction construct.  For the 

first item, “Amount of contact with faculty”, the item 

discrimination parameter (slope) estimates ranged from 

0.936 to 1.002 with a difference of 0.066 between the 

parameter estimates.  The standard errors ranged from 0.026 

to 0.04 with a difference of 0.014 between the standard 

errors.  

For the item, “Opportunities for community service”, 

the item discrimination parameter (slope) estimates ranged 

from 0.615 to 0.710 with a difference of 0.095 between the 

parameter estimates.  The standard errors ranged from 0.017 

to 0.052 with a difference of 0.035 between the standard 

errors.  
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For the item, “Relevance of coursework to life”, the 

item discrimination parameter (slope) estimates ranged from 

1.398 to 1.409 with a difference of 0.011 between the 

parameter estimates.  The standard errors ranged from 0.035 

to 0.055 with a difference of 0.02 between the standard 

errors.  

For the item, “Relevance of coursework to career”, the 

item discrimination parameter (slope) estimates ranged from 

1.053 to 1.101 with a difference of 0.048 between the 

parameter estimates.  The standard errors ranged from 0.029 

to 0.042 with a difference of 0.013 between the standard 

errors.  

For the fifth item in the construct, “Overall quality 

of instruction”, the item discrimination parameter (slope) 

estimates ranged from 1.370 to 1.383 with a difference of 

0.013 between the parameter estimates.  The standard errors 

ranged from 0.039 to 0.056 with a difference of 0.017 

between the standard errors. 

The item discrimination (slope) estimates were 

perfectly correlated (1.00) across the main sample and the 

subsamples.  The standard errors, used to assess the 

accuracy of the estimates, were less than 0.035.  Because 

of the perfect correlations among the item discrimination 
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(slope) estimates and small standard errors of the 

estimates, the GRM item discrimination (slope) estimates 

are invariant across the YFCY02 main sample and subsamples 

for Overall Satisfaction construct.  

GRM item difficulty (location) parameter estimates for 

the YFCY02 Overall Satisfaction construct.  For the first 

item, “Amount of contact with faculty”, the item difficulty 

(location) parameter estimates ranged from 0.480 to 0.503 

with a difference of 0.023 between the parameter estimates.  

The standard errors ranged from 0.029 to 0.041 with a 

difference of 0.012 between the standard errors.  

For the item, “Opportunities for community service”, 

the item difficulty (location) parameter estimates ranged 

from 0.463 to 0.573 with a difference of 0.11 between the 

parameter estimates.  The standard errors ranged from 0.034 

to 0.052 with a difference of 0.018 between the parameter 

estimates.  

For the item, “Relevance of coursework to life”, the 

item difficulty (location) parameter estimates ranged from 

0.842 to 0.856 with a difference of 0.014 between the 

parameter estimates.  The standard errors ranged from 0.025 

to 0.035 with a difference of 0.01 between the standard 

errors.  
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For the item, “Relevance of coursework to career”, the 

item difficulty (location) parameter estimates ranged from 

0.259 to 0.314 with a difference of 0.055 between the 

parameter estimates.  The standard errors ranged from 0.027 

to 0.038 with a difference of 0.011 between the standard 

errors. 

For the fifth item in the construct, “Overall quality 

of instruction”, and the item difficulty (location) 

parameter estimates ranged from -0.047 to -0.126 with a 

difference of 0.079 between the parameter estimates.  The 

standard errors ranged from 0.025 to 0.036 with a 

difference of 0.011 between the parameter estimates. 

The correlations between the item difficulty 

(location) parameter estimates among the main sample and 

the subsamples ranged from 0.986 to 0.997.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.018 across the items.  Because of the high 

correlations among the item difficulty (location) estimates 

and small standard errors of the estimates, the GRM item 

difficulty (location) estimates are invariant across the 

YFCY02 main sample and subsamples for Overall Satisfaction 

construct.  
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Table 19.  GRM Item Parameter Estimates from the Main and Subsamples of the YFCY02 
Overall Satisfaction Construct 

 

Item/Fit 
Statistic 

 GRM – YFCY02 
(n = 3,652) 

 GRM – YFCY02 
(n = 1,827) 

 GRM – YFCY02 
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

Amount of 
Contact with 
Faculty 
 

 
0.967 

(0.026) 
0.491 

(0.029) 
160.1 
(16) 

 
0.936  

(0.035) 
0.480 

(0.041) 
80.6 
(15) 

 
1.002  

(0.040) 
0.503 

(0.040) 
91.7 
(15) 

Opportunities 
for Community 
Service 
 

 
0.658 

(0.017) 
0.516 

(0.034) 
117.8 
(17) 

 
0.615  

(0.022) 
0.573 

(0.052) 
54.9 
(16) 

 
0.710  

(0.027) 
0.463 

(0.046) 
86.3 
(16) 

Relevance of 
Coursework to 
Life 
 

 
1.403 

(0.055) 
0.849 

(0.025) 
264.9 
(14) 

 
1.409  

(0.078) 
0.856 

(0.035) 

148.0
8 

(14) 

 
1.398  

(0.077) 
0.842 

(0.035) 
156.5 
(14) 

Relevance of 
Coursework to 
Career 
 

 
1.077 

(0.029) 
0.287 

(0.027) 
291 
(15) 

 
1.053  

(0.039) 
0.259 

(0.038) 
148.1 
(14) 

 
1.101  

(0.042) 
0.314 

(0.038) 
148.8 
(15) 

Overall 
Quality of 
Instruction 
 

 
1.375 

(0.039) 
-0.086 
(0.025) 

212.8 
(13) 

 
1.370  

(0.056) 
-0.126 
(0.035) 

105.5
(12) 

 
1.383  

(0.054) 
-0.047 
(0.036) 

98.9 
(12) 

TOTAL 
Chi-Square  
(DF) 

 1046.7  
(75) 

 537.3 
(71) 

 582.4 
(72) 

 
Note: The YFCY02 Overall Satisfaction construct is comprised of five items using a 
scale with four categories.  Unless otherwise noted, all p values are less than 
0.001.
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In summary, for the YFCY02 data on the Overall 

Satisfaction construct, the GRM person and item parameter 

estimates are invariant. 

GRM person parameter estimates for the Overall 

Satisfaction construct from the YFCY03 dataset.  The YFCY03 

dataset (n = 5,081) was split randomly into two subsamples: 

one subsample of 2,451 people and a second subsample of 

2,450 people.  One attitude (theta) score was not computed 

because the respondent selected the same answers on all 

five of the Overall Satisfaction items. 

Figure 13 is the histogram for the GRM attitude 

(theta) estimates for the Overall Satisfaction construct.  

The mean score for attitude (theta) scores for the main 

sample (n = 5,080) was 0.009 and the standard deviation was 

1.155.  The mean score for attitude (theta) scores for the 

first subsample (n = 2,451) was 0.009 and the standard 

deviation was 1.156.  The mean score for attitude (theta) 

scores for the second subsample (n = 2,539) was 0.009 and 

the standard deviation was 1.154.  
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Figure 13.  Histogram of GRM Attitude (Theta) Estimates: 
Overall Satisfaction Construct of YFCY03 (n = 5,080; v = 5) 
 

 The correlations for the attitude (theta) scores among 

the main sample and the subsamples ranged from 0.924 to 

0.998.  The correlation for attitude (theta) scores between 

the first subsample (n = 2,451) and the second subsample (n 

= 2,450) was 0.998.  The correlation for the attitude 

(theta) scores for between the main sample (n = 5,081) and 

the first subsample (n = 2,450) was 0.928.  The correlation 

for the attitude (theta) scores between the main sample (n 

= 2,451) and the second subsample (n = 2,450) was 0.924. 
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GRM item parameter estimates for the Overall 

Satisfaction construct from the YFCY03 dataset.  Table 20 

provides the item discrimination (slope) parameter 

estimates and the item difficulty (location) parameter 

estimates for the five items on the Overall Satisfaction 

construct.  Furthermore, item fit statistics (chi-square) 

are provided in Table 20. 

GRM item discrimination (slope) parameter estimates 

for the YFCY03 Overall Satisfaction construct.  For the 

first item, “Amount of contact with faculty”, the item 

discrimination parameter (slope) estimates ranged from 

0.946 to 1.006 with a difference of 0.06 between the 

parameter estimates.  The standard errors ranged from 0.017 

to 0.024 with a difference of 0.007 between the standard 

errors.  

For the item, “Opportunities for community service”, 

the item discrimination parameter (slope) estimates ranged 

from 0.912 to 0.927 with a difference of 0.015 between the 

parameter estimates.  The standard errors ranged from 0.015 

to 0.022 with a difference of 0.007 between the standard 

errors.  

For the item, “Relevance of coursework to life”, the 

item discrimination parameter (slope) estimates ranged from 
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1.256 to 1.36 with a difference of 0.104 between the 

parameter estimates.  The standard errors ranged from 0.029 

to 0.046 with a difference of 0.017 between the standard 

errors.  

For the item, “Relevance of coursework to career”, the 

item discrimination parameter (slope) estimates ranged from 

1.08 to 1.107 with a difference of 0.027 between the 

parameter estimates.  The standard errors ranged from 0.03 

to 0.022 with a difference of 0.008 between the standard 

errors.  

For the fifth item in the construct, “Overall quality 

of instruction”, the item discrimination parameter (slope) 

estimates ranged from 1.184 to 1.261 with a difference of 

0.077 between the parameter estimates.  The standard errors 

ranged from 0.023 to 0.035 with a difference of 0.012 

between the standard errors. 

The correlations for the item discrimination (slope) 

estimates ranged from 0.993 to 0.998 among the main sample 

and the subsamples.  The standard errors, used to assess 

the accuracy of the estimates, were less than 0.017.  

Because of the high correlations among the item 

discrimination (slope) estimates and small standard errors 

of the estimates, the GRM item discrimination (slope) 
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estimates are invariant across the YFCY03 main sample and 

subsamples for Overall Satisfaction construct.  

GRM item difficulty (location) parameter estimates for 

the YFCY03 Overall Satisfaction construct.  For the first 

item, “Amount of contact with faculty”, and the item 

difficulty (location) parameter estimates ranged from -

0.108 to -0.143 with a difference of 0.035 between the 

parameter estimates.  The standard errors ranged from 0.023 

to 0.033 with a difference of 0.01 between the standard 

errors.  

For the item, “Opportunities for community service”, 

the item difficulty (location) parameter estimates ranged 

from -0.013 to -0.026 with a difference of 0.013 between 

the parameter estimates.  The standard errors ranged from 

0.024 to 0.035 with a difference of 0.018 between the 

parameter estimates.  

For the item, “Relevance of coursework to life”, the 

item difficulty (location) parameter estimates ranged from 

0.314 to 0.357 with a difference of 0.043 between the 

parameter estimates.  The standard errors ranged from 0.02 

to 0.029 with a difference of 0.009 between the standard 

errors.  
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For the item, “Relevance of Coursework to career”, the 

item difficulty (location) parameter estimates ranged from 

-0.160 to -0.235 with a difference of 0.075 between the 

parameter estimates.  The standard errors ranged from 0.022 

to 0.03 with a difference of 0.008 between the standard 

errors. 

For the fifth item in the construct, “Overall quality 

of instruction”, and the item difficulty (location) 

parameter estimates ranged from -0.665 to -0.566 with a 

difference of 0.079 between the parameter estimates.  The 

standard errors ranged from 0.025 to 0.036 with a 

difference of 0.099 between the parameter estimates. 

The correlations between the main samples and the 

subsamples ranged from 0.993 to 0.998.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.099 across the items.   

Because of the high correlations among the item 

difficulty (location) estimates and small standard errors 

of the estimates, the GRM item difficulty (location) 

estimates are invariant across the YFCY03 main sample and 

subsamples for Overall Satisfaction construct. 
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Table 20.  GRM Item Parameter Estimates from the Main and Subsamples of the YFCY03 
Overall Satisfaction Construct 
 

Item/Fit 
Statistic 

 GRM – YFCY03 
(n = 5,081) 

 GRM – YFCY03  
(n = 2,541) 

 GRM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

Amount of 
Contact with 
Faculty 

 0.976 
(0.017) 

-0.125 
(0.023) 

236.8 
(23) 

 0.946 
(0.023) 

-0.143 
(0.033) 

146.8 
(23) 

 1.006 
(0.024) 

-0.108 
(0.032) 

132 
(22) 

 
Opportunities 
for Community 
Service 

 
0.927 

(0.015) 
-0.019 
(0.024) 

728.1 
(24) 

 
0.912 

(0.021) 
-0.013 
(0.035) 

334.6 
(23) 

 
0.943 

(0.022) 
-0.026 
(0.034) 

380.3
(23) 

 
Relevance of 
Coursework 
to Life 

 
1.305 

(0.029) 
0.336 

(0.020) 

394.5 
(21) 

 

 
1.256 

(0.037) 
0.314 

(0.029) 
190.5 
(21) 

 1.360 
(0.046) 

 

0.357 
(0.027) 

227.9
(21) 

 
Relevance of 
Coursework 
to Career 

 
1.094 

(0.021) 
-0.197 
(0.022) 

444.1 
(23) 

 
1.080 

(0.029) 
-0.235 
(0.030) 

280.7 
(22) 

 
1.107 

(0.030) 
-0.160 
(0.030) 

235.8
(22) 

 
Overall 
Quality of  
Instruction 

 
1.222 

(0.023) 
-0.614 
(0.022) 

384.1 
21 

 
1.184 

(0.031) 
-0.665 
(0.031) 

214.8 
(20) 

 
1.261 

(0.035) 
-0.565 
(0.030) 

167.3
(20) 

 
TOTAL 
Chi-Square 
(DF) 

2187.8 
(112) 

1167.2 
(109) 

1141.5 
(108) 

 
Note: The YFCY03 Overall Satisfaction construct is comprised of five items using a 
scale with five categories.  Unless otherwise noted, all p values are less than 
0.001.
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PCM person parameter estimates for the Overall 

Satisfaction construct from the YFCY02 dataset.  The YFCY02 

dataset (n = 3,652) was split randomly into two subsamples: 

one subsample of 1,827 people and a second subsample of 

1,825 people.  Fifteen attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all five of the Overall Satisfaction items. 

Figure 14 is the histogram for the PCM attitude 

(theta) estimates for the Overall Satisfaction construct.  

The mean score for the attitude (theta) scores for the main 

sample (n = 3,637) was -0.049 and the standard deviation 

  

Figure 14.  Histogram of PCM Attitude (Theta) Estimates: 
Overall Satisfaction Construct of YFCY02 (n = 3,637; v = 5) 
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was 1.275.  The mean score for attitude (theta) scores for 

the first subsample (n = 1,822) was -0.043 and the standard 

deviation was 1.256.  The mean score for attitude (theta) 

scores for the second subsample (n = 1,815) was -0.056 and 

the standard deviation was 1.296.  

The correlations for the attitude (theta) scores among 

the main sample and the subsamples ranged from 0.918 to 

0.998.  The correlation for the attitude (theta) scores 

between the first subsample (n = 1,822) and the second 

subsample (n = 1,815) was 0.993.  The correlation for the 

attitude (theta) scores between the main sample (n = 3,637) 

and the first subsample (n = 1,822) was 0.925.  The 

correlation the attitude (theta) scores between the main 

sample (n = 3,637) and the second subsample (n = 1,815) was 

0.919. 

PCM item parameter estimates for the Overall 

Satisfaction construct from the YFCY02 dataset.  Table 21 

provides the item difficulty (location) parameter estimates 

for the five items on the Overall Satisfaction construct.  

The item discrimination (slope) parameter estimates were 

fixed to 1.0 for the partial credit model.  Furthermore, 

item fit statistics (chi-square) are provided in Table 21. 
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For the first item, “Amount of contact with faculty”, 

the item difficulty (location) parameter estimates ranged 

from 0.477 to 0.525 with a difference of 0.048 between the 

parameter estimates.  The standard errors ranged from 0.027 

to 0.038 with a difference of 0.011 between the standard 

errors.  

For the item, “Opportunities for community service”, 

the item difficulty (location) parameter estimates ranged 

from 0.486 to 0.645 with a difference of 0.159 between the 

parameter estimates.  The standard errors ranged from 0.025 

to 0.036 with a difference of 0.011 between the parameter 

estimates.  

For the item, “Relevance of coursework to life”, the 

item difficulty (location) parameter estimates ranged from 

0.314 to 0.357 with a difference of 0.043 between the 

parameter estimates.  The standard errors ranged from 0.02 

to 0.029 with a difference of 0.009 between the standard 

errors.  

For the item, “Relevance of coursework to career”, the 

item difficulty (location) parameter estimates ranged from 

0.234 to 0.320 with a difference of 0.086 between the 

parameter estimates.  The standard errors ranged from 0.027 
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to 0.038 with a difference of 0.011 between the standard 

errors. 

For the fifth item in the construct, “Overall quality 

of instruction”, and the item difficulty (location) 

parameter estimates ranged from -0.092 to -0.019 with a 

difference of 0.073 between the parameter estimates.  The 

standard errors ranged from 0.029 to 0.041 with a 

difference of 0.012 between the parameter estimates. 

The correlations between the main samples and the 

subsamples ranged from 0.965 to 0.992.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.027 across the items.  

 Because of the high correlations among the item 

difficulty (location) estimates and small standard errors 

of the estimates, the PCM item difficulty (location) 

estimates are invariant across the YFCY02 main sample and 

subsamples for Overall Satisfaction construct. 
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Table 21.  PCM Item Parameter Estimates from the Main and Subsamples of the YFCY02 
Overall Satisfaction Construct 
 

Item/Fit 
Statistics 

 PCM – YFCY02 
 (n = 3,652) 

 PCM – YFCY02  
(n = 1,827) 

 PCM – YFCY02 
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 
Amount of 
Contact with 
Faculty 

 
1.000 
(***) 

0.501 
(0.027) 

118.4 
(15) 

 
1.000 
(***) 

0.477 
(0.038) 

34.1 
(15) 

 
1.000 
(***) 

0.525 
(0.038) 

75.1 
(15) 

 
Opportunities 
for Community 
Service 

 
1.000 
(***) 

0.562 
(0.025) 

340.7 
(15) 

 
1.000 
(***) 

0.645 
(0.036) 

183.8 
(16) 

 
1.000 
(***) 

0.486 
(0.034) 

157.8 
(15) 

 
Relevance of 
Coursework 
to Life 

 
1.000 
(***) 

0.829 
(0.029) 

301.3 
(15) 

 
1.000 
(***) 

0.823 
(0.041) 

132.8 
(15) 

 
1.000 
(***) 

0.831 
(0.041) 

172.6 
(14) 

 
Relevance of 
Coursework 
to Career 

 
1.000 
(***) 

0.277 
(0.027) 

176.3 
(15) 

 

 
1.000 
(***) 

0.234 
(0.038) 

59.1 
(15) 

 
 

 
1.000 
(***) 

0.320 
(0.038) 

105.8 
(15) 

 
Overall 
Quality of 
Instruction 

 
1.000 
(***) 

-0.056 
(0.029) 

383.0 
(15) 

 
1.000 
(***) 

-0.092 
(0.041) 

171.6 
(14) 

 
1.000 
(***) 

-0.019 
(0.041) 

192.6 
(13) 

 

 
TOTAL 
Chi-Square 
(DF) 

 
1319.8 
(75) 

 
581.6 
(75) 

 
704.1 
(72) 

 
Note: The YFCY02 Overall Satisfaction construct is comprised of five items using a 
scale with four categories.  Unless otherwise noted, all p values are less than 
0.001.
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PCM person parameter estimates for the Overall 

Satisfaction construct from the YFCY03 dataset.  The YFCY03 

dataset (n = 5,081) was split randomly into two subsamples: 

one subsample of 2,451 people and a second subsample of 

2,450 people.  One attitude (theta) scores was not computed 

because one respondent selected the same answers on all 

five of the Overall Satisfaction items. 

Figure 15 is the histogram for the PCM attitude  

(Theta) estimate for the Overall Satisfaction construct.  

The mean score for the main sample (n = 5,080) was 0.033 

And the standard deviation was 1.080.  The mean score for 

the first subsample (n = 2,451) was 0.032 and the standard 

deviation was 1.063.  The mean score for the second 

subsample (n = 2,439) was 0.034 and the standard deviation 

was 1.096. 

The correlations for the attitude (theta) scores among 

the main sample and the subsamples ranged from 0.905 to 

0.993.  The correlation for the attitude (theta) scores 

between the first subsample (n = 2,451) and the second 

subsample (n = 2,450) was 0.993.  The correlation for the 

attitude (theta) scores between the main sample (n = 5,081) 

and the first subsample (n = 2,450) was 0.906.  The 

correlation for the attitude (theta) scores between the 
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main sample (n = 2,451) and the second subsample (n = 

2,450) was 0.905. 

 
 

Figure 15.  Histogram of PCM Attitude (Theta) Estimates: 
Overall Satisfaction Construct of YFCY03 (n = 5,080; v = 5) 

 

PCM item parameter estimates for the Overall 

Satisfaction construct from the YFCY03 dataset.  Table 22 

provides the item difficulty (location) parameter estimates 

for the five items on the Overall Satisfaction construct.  

The item discrimination (slope) parameter estimates were 

fixed to 1.0 for the partial credit model.  Furthermore, 

item fit statistics (chi-square) are provided in Table 22. 

For the first item, “Amount of contact with faculty”, 

and the item difficulty (location) parameter estimates 
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ranged from -0.099 to -0.076 with a difference of 0.023 

between the parameter estimates.  The standard errors 

ranged from 0.027 to 0.038 with a difference of 0.011 

between the standard errors.  

For the item, “Opportunities for community service”, 

the item difficulty (location) parameter estimates ranged 

from -0.088 to 0.010 with a difference of 0.098 between the 

parameter estimates.  The standard errors ranged from 0.021 

to 0.030 with a difference of 0.009 between the parameter 

estimates.  

For the item, “Relevance of coursework to life”, the 

item difficulty (location) parameter estimates ranged from 

0.312 to 0.374 with a difference of 0.062 between the 

parameter estimates.  The standard errors ranged from 0.021 

to 0.031 with a difference of 0.01 between the standard 

errors.  

For the item, “Relevance of coursework to career”, the 

item difficulty (location) parameter estimates ranged from 

-0.180 to -0.109 with a difference of 0.071 between the 

parameter estimates.  The standard errors ranged from 0.021 

to 0.030 with a difference of 0.009 between the standard 

errors. 
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For the fifth item in the construct, “Overall Quality 

of Instruction”, the item difficulty (location) parameter 

estimates ranged from -0.564 to -0.500 with a difference of 

0.064 between the parameter estimates.  The standard errors 

ranged from 0.023 to 0.032 with a difference of 0.009 

between the parameter estimates. 

The correlations between the main samples and the 

subsamples ranged from 0.993 to 0.998.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.03 across the items.  

Because of the high correlations among the item 

difficulty (location) estimates and small standard errors 

of the estimates, the PCM item difficulty (location) 

estimates are invariant across the YFCY03 main sample and 

subsamples for Overall Satisfaction construct. 
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Table 22.  PCM Item Parameter Estimates from the Main and Subsamples of the YFCY03 
Overall Satisfaction Construct 
 

Item/Fit 
Statistics 

 PCM – YFCY03 
(n = 5,081) 

 PCM – YFCY03 
(n = 2,541) 

 PCM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 
Amount of 
Contact with 
Faculty 

 
1.000  
(***) 

-0.088 
(0.02) 

98.7 
(22) 

 
1.000  
(***) 

-0.099 
(0.030) 

63.4 
(21) 

 
1.000  
(***) 

-0.076 
(0.030) 

63.5 
(23) 

 
Opportunities 
for Community 
Service 

 
1.000  
(***) 

0.003 
(0.021) 

440.8 
(23) 

 
1.000  
(***) 

0.010 
(0.030) 

230.8 
(21) 

 
1.000  
(***) 

-0.008 
(0.030) 

266.5 
(23) 

 
Relevance of 
Coursework to 
Life 

 
1.000  
(***) 

0.343 
(0.021) 

431.6 
(24) 

 
1.000  
(***) 

0.312 
(0.031) 

203.4 
(23) 

 
1.000  
(***) 

0.374 
(0.030) 

262.9 
(21) 

 
Relevance of 
Coursework to 
Career 

 
1.000  
(***) 

-0.146 
(0.021) 

213.2 
(22) 

 
1.000  
(***) 

-0.180 
(0.030) 

101.4 
(21) 

 
1.000  
(***) 

-0.109 
(0.030) 

166.4 
(23) 

Overall Quality 
of Instruction 

 
1.000  
(***) 

-0.532 
(0.023) 

326.4 
(22) 

 
1.000  
(***) 

-0.564 
(0.032) 

191.4 
(20) 

 
1.000  
(***) 

-0.500 
(0.032) 

153.3 
(21) 

TOTAL 
Chi-Square (DF) 

 
1510.9  
(113) 

 
790.7  
(106) 

 
912.9  
(111) 

 
Note: The YFCY03 Overall Satisfaction construct is comprised of five items using a 
scale with five categories.  Unless otherwise noted, all p values are less than 
0.001.
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Social Agency constructs.  The Social Agency construct 

was comprised of six items that used a four-category scale 

(Not important; somewhat important; Very important; 

Essential) on YFCY02 and YFCY03.  

The six items were: “Influencing social values”; 

“Helping others who are in difficulty”; “Developing 

Meaningful philosophy of life”; “Helping promote racial 

understanding”; “Becoming a community leader”; and, 

“Integrating spirituality into life.” 

GRM person parameter estimates for the Social Agency 

construct from the YFCY02 dataset.  The YFCY02 dataset (n = 

3,652) was split randomly into two subsamples: one 

subsample of 1,827 people and a second subsample of 1,825 

people.  Eighteen attitude (theta) scores were not computed 

because the respondents selected the same answers on all 

six of the Social Agency items.  

Figure 16 is the histogram for the attitude (theta) 

scores for the main sample.  The mean attitude (theta) 

score for the main sample (n = 3,634) was -0.082 and the 

standard deviation was 1.351.  The mean attitude (theta) 

score for the first subsample (n = 1,817) was -0.085 and 

the standard deviation was 1.356.  The mean attitude 
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(theta) score for the second subsample (n = 1,817) was -

0.079 and the standard deviation was 1.347. 

 
Figure 16.  Histogram of GRM Attitude (Theta) Estimates: 
Social Agency Construct of YFCY02 (n = 3,634; v = 6) 

 

 The correlations for the attitude (theta) scores among 

the main sample and the subsamples ranged from 0.944 to 

0.999.  The correlation between attitude (theta) scores for 

the first subsample (n = 1,817) and the second subsample (n 

= 1,817) was 0.999.  The correlation between attitude 

(theta) scores for the main sample (n = 3,634) and the 

first subsample (n = 1,817) was 0.946.  The correlation for 

the attitude (theta) scores between the main sample (n = 

3,634) and the second subsample (n = 1,817) was 0.944. 
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GRM item parameter estimates for the Social Agency 

construct from the YFCY02 dataset.  Table 23 provides the 

item discrimination (slope) parameter estimates and the 

item difficulty (location) parameter estimates for the six 

items on the Social Agency construct.  Furthermore, item 

fit statistics (chi-square) are provided in Table 23. 

GRM item discrimination (slope) parameter estimates 

for the YFCY02 Social Agency construct.  For the first 

item, “Influencing social values”, the item discrimination 

parameter (slope) estimates ranged from 1.069 to 1.129 with 

a difference of 0.06 between the parameter estimates.  The 

standard errors ranged from 0.038 to 0.057 with a 

difference of 0.019 between the standard errors.  

For the item, “Helping others who are in difficulty”, 

the item discrimination parameter (slope) estimates ranged 

from 1.047 to 1.079 with a difference of 0.032 between the 

parameter estimates.  The standard errors ranged from 0.030 

to 0.043 with a difference of 0.013 between the standard 

errors.  

For the item, “Developing meaningful philosophy of 

life”, the item discrimination parameter (slope) estimates 

ranged from 0.608 to 0.631 with a difference of 0.023 

between the parameter estimates.  The standard errors 
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ranged from 0.018 to 0.028 with a difference of 0.007 

between the standard errors.  

For the item, “Helping promote racial understanding”, 

the item discrimination parameter (slope) estimates ranged 

from 0.756 to 0.788 with a difference of 0.032 between the 

parameter estimates.  The standard errors ranged from 0.025 

to 0.035 with a difference of 0.01 between the standard 

errors.  

For the item, “Becoming a community leader”, the item 

discrimination parameter (slope) estimates ranged from 

0.817 to 0.818 with a difference of 0.001 between the 

parameter estimates.  The standard errors ranged from 0.024 

to 0.034 with a difference of 0.01 between the standard 

errors.  

For the sixth item in the construct, “Integrating 

spirituality into life”, the item discrimination parameter 

(slope) estimates ranged from 0.488 to 0.506 with a 

difference of 0.018 between the parameter estimates.  The 

standard errors ranged from 0.015 to 0.021 with a 

difference of 0.006 between the standard errors. 

The correlations for the item discrimination (slope) 

estimates ranged from 0.993 to 0.998 among the main sample 

and the subsamples.  The standard errors, used to assess 
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the accuracy of the estimates, were less than 0.034.  

Because of the high correlations among the item 

discrimination (slope) estimates and small standard errors 

of the estimates, the GRM item discrimination (slope) 

estimates are invariant across the YFCY02 main sample and 

subsamples for Social Agency construct.  

GRM item difficulty (location) parameter estimates for 

the YFCY02 Social Agency construct.  For the first item, 

“Influencing social values”, the item discrimination 

parameter (slope) estimates ranged from 0.503 to 0.575 with 

a difference of 0.072 between the parameter estimates.  The 

standard errors ranged from 0.026 to 0.038 with a 

difference of 0.012 between the standard errors.  

For the item, “Helping others who are in difficulty”, 

the item difficulty parameter (location) estimates ranged 

from -0.139 to -0.085 with a difference of 0.054 between 

the parameter estimates.  The standard errors ranged from 

0.027 to 0.038 with a difference of 0.011 between the 

standard errors.  

For the item, “Developing meaningful philosophy of 

life”, the item difficulty parameter (location) estimates 

ranged from 0.226 to 0.288 with a difference of 0.062 

between the parameter estimates.  The standard errors 



 

 

174

ranged from 0.038 to 0.054 with a difference of 0.016 

between the standard errors.  

For the item, “Helping promote racial understanding”, 

the item difficulty parameter (location) estimates ranged 

from 0.919 to 0.967 with a difference of 0.048 between the 

parameter estimates.  The standard errors ranged from 0.034 

to 0.049 with a difference of 0.015 between the standard 

errors.  

For the item, “Becoming a community leader”, the item 

difficulty parameter (location) estimates ranged from 0.671 

to 0.689 with a difference of 0.018 between the parameter 

estimates.  The standard errors ranged from 0.032 to 0.045 

with a difference of 0.013 between the standard errors.  

For the sixth item in the construct, “Integrating 

spirituality into life”, the item difficulty parameter 

(location) estimates ranged from -0.388 to -0.184 with a 

difference of 0.154 between the parameter estimates.  The 

standard errors ranged from 0.045 to 0.064 with a 

difference of 0.019 between the standard errors. 

The correlations for the item difficulty parameter 

(location) estimates ranged from 0.993 to 0.998 among the 

main sample and the subsamples.  The standard errors, used  
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Table 23.  GRM Item Parameter Estimates for the Social Agency Construct from the 
Main and Subsamples of the YFCY02 Dataset 

 

Item/Fit 
Statistics 

 GRM – YFCY02 
(n = 3,652) 

 GRM – YFCY02  
(n = 1,827) 

 GRM – YFCY02  
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 
Influencing 
Social Values 

 1.129 
(0.038) 

0.538 
(0.026) 

238.1 
(16) 

 1.199 
(0.057) 

0.503 
(0.036) 

109.3 
(13) 

 1.069 
(0.050) 

0.575 
(0.038) 

119.0 
(15) 

 
Helping 
Others Who 
Are in  
Difficulty 

 

1.047 
(0.030) 

-0.112 
(0.027) 

209.0 
(14) 

 

1.079 
(0.043) 

-0.085 
(0.037) 

99.6 
(13) 

 

1.016 
(0.040) 

-0.139 
(0.038) 

107.5 
(14) 

 
Developing  
Meaningful 
Philosophy of 
Life 

 

0.619 
(0.018) 

0.226 
(0.038) 

123.8 
(16) 

 

0.631 
(0.025) 

0.288 
(0.053) 

68.6 
(16) 

 

0.608 
(0.025) 

0.163 
(0.054) 

62.8 
(17) 

 
Helping 
Promote 
Racial 
Understanding 

 

0.772 
(0.025) 

0.942 
(0.034) 

148.6 
(16) 

 

0.788 
(0.035) 

0.919 
(0.047) 

80.4 
(15) 

 

0.756 
(0.035) 

0.967 
(0.049) 

87.6 
(16) 

 
Becoming a 
Community 
Leader 

 
0.818 

(0.024) 
0.680 

(0.032) 
131.0 
(16) 

 
0.817 

(0.034) 
0.689 

(0.045) 
70.7 
(16) 

 
0.818 

(0.034) 
0.671 

(0.045) 
79.2 
(16) 

 
Integrating 
Spirituality 
into Life 

 
0.497 

(0.015) 
-0.260 
(0.045) 

125.7 
(16) 

 
0.506 

(0.021) 
-0.184 
(0.062) 

68.1 
(16) 

 
0.488 

(0.021) 
-0.338 
(0.064) 

54.8 
(17) 

 
Chi-Square 
TOTAL 
(DF) 

 
976.5 
(94) 

 
496.9 
(89) 

 
511.2 
(95) 

 
Note: The YFCY02 Social Agency construct is comprised of six items using a scale 
with four categories.  Unless otherwise noted, all p values are less than 0.001.
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to assess the accuracy of the estimates were less than 

0.054.  Because of the high correlations among the item 

difficulty (location) estimates and small standard errors 

of the estimates, the GRM item difficulty (location) 

estimates are invariant across the YFCY02 main sample and 

subsamples for Social Agency construct.  

GRM person parameter estimates for the Social Agency 

construct from the YFCY03 dataset.  The YFCY03 dataset (n = 

5,081) was split randomly into two subsamples: one 

subsample of 2,451 people and a second subsample of 2,450 

people.  Twelve attitude (theta) scores were not computed 

because the respondents selected the same answers on all 

six of the Overall Satisfaction items. 

Figure 17 is the histogram for the GRM attitude 

(theta) estimates for the Social Agency construct.  The 

mean score for the attitude (theta) scores of the main 

sample (n = 5,081) was -0.116 and the standard deviation 

was 1.373.  The mean scores attitude (theta) scores for the 

first subsample (n = 2,536) was -0.117 and the standard 

deviation was 1.377.  The mean score for the second 

subsample (n = 2,433) was -0.116 and the standard deviation 

was 1.369. 
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Figure 17.  Histogram of GRM Attitude (Theta) Estimates: 
Social Agency Construct of YFCY03 (n = 5,069; v = 6) 

 

The correlations for the attitude (theta) scores among 

the main sample and the subsamples ranged from 0.952 to 

0.999.  The correlation between the first subsample (n = 

2,536) and the second subsample (n = 2,533) was 0.999.  The 

correlation between the main sample (n = 5,069) and the 

first subsample (n = 2,536) was 0.958.  The correlation 

between the main sample (n = 2,533) and the second 

subsample (n = 2,450) was 0.952. 
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GRM item parameter estimates for the Social Agency 

construct from the YFCY03 dataset.  Table 24 provides the 

item discrimination (slope) parameter estimates and the 

item difficulty (location) parameter estimates for the five 

items on the Social Agency construct.  Furthermore, item 

fit statistics (chi-square) are provided in Table 24. 

GRM item discrimination (slope) parameter estimates 

for the YFCY03 Social Agency construct.  For the first 

item, “Influencing social values”, the item discrimination 

parameter (slope) estimates ranged from 0.957 to 1.033 with 

a difference of 0.076 between the parameter estimates.  The 

standard errors ranged from 0.028 to 0.040 with a 

difference of 0.012 between the standard errors.  

For the item, “Helping others who are in difficulty”, 

the item discrimination parameter (slope) estimates ranged 

from 0.934 to 0.949 with a difference of 0.011 between the 

parameter estimates.  The standard errors ranged from 0.023 

to 0.032 with a difference of 0.009 between the standard 

errors.  

For the item, “Developing meaningful philosophy of 

life”, the item discrimination parameter (slope) estimates 

ranged from 0.634 to 0.636 with a difference of 0.002  
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Table 24.  GRM Item Parameter Estimates for the Social Agency Construct from the 
Main and Subsamples of the YFCY03 Dataset 
 

Item/Fit 
Statistics 

 GRM – YFCY03 
(n = 5,081) 

 GRM – YFCY03 
(n = 2,541) 

 GRM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

Influencing 
Social Values 
 

 0.995 
(0.028) 

0.726 
(0.024) 

220.0 
(16) 

 0.957 
(0.038) 

0.757 
(0.036) 

108.7 
(15) 

 1.033 
(0.040) 

0.697 
(0.034) 

151.9 
(15) 

Helping 
Others Who 
Are in 
Difficulty 
 

 

0.941 
(0.023) 

-0.115 
(0.024) 

354.7 
(14) 

 

0.949 
(0.032) 

-0.132 
(0.034) 

172.9 
(14) 

 

0.934 
(0.032) 

-0.098 
(0.034) 

169.1 
(14) 

Developing  
Meaningful 
Philosophy of 
Life 
 

 

0.635 
(0.016) 

0.297 
(0.032) 

161.1 
(17) 

 

0.634 
(0.022) 

0.275 
(0.045) 

91.6 
(16) 

 

0.636 
(0.022) 

0.320 
(0.045) 

81.0 
(16) 

Helping 
Promote 
Racial 
Understanding 
 

 

0.757 
(0.021) 

0.936 
(0.030) 

196.4 
(17) 

 

0.749 
(0.030) 

0.890 
(0.042) 

106.7 
(16) 

 

0.765 
(0.030) 

0.981 
(0.042) 

84.3 
(16) 

Becoming a 
Community 
Leader 
 

 
0.796 

(0.024) 
1.000 

(0.029) 
213.9 
(17) 

 
0.787 

(0.034) 
1.023 

(0.042) 
110.4 
(15) 

 
0.804 

(0.034) 
0.979 

(0.041) 
121.5 
(16) 

Integrating 
Spirituality 
into Life 
 

 
0.534 

(0.014) 
0.017 

(0.036) 
205.2 
(17) 

 
0.506 

(0.019) 
0.049 

(0.053) 
109.7 
(16) 

 
0.562 

(0.019) 
-0.013 
(0.049) 

102.0 
(16) 

TOTAL 
Chi-Square 
(DF) 

 
 1351.6 

(98)  
 

 700.3 
(92)  

 
 710.0 

(93)  

 
Note: The YFCY03 Social Agency construct is comprised of six items using a scale 
with four categories.  Unless otherwise noted, all p values are less than 0.001.
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between the parameter estimates.  The standard errors 

ranged from 0.016 to 0.022 with a difference of 0.005 

between the standard errors.  

For the item, “Helping promote racial understanding”, 

the item discrimination parameter (slope) estimates ranged 

from 0.749 to 0.765 with a difference of 0.016 between the 

parameter estimates.  The standard errors ranged from 0.021 

to 0.030 with a difference of 0.009 between the standard 

errors.  

For the item, “Becoming a community leader”, the item 

discrimination parameter (slope) estimates ranged from 

0.797 to 0.804 with a difference of 0.007 between the 

parameter estimates.  The standard errors ranged from 0.024 

to 0.034 with a difference of 0.01 between the standard 

errors.  

For the sixth item in the construct, “Integrating 

spirituality into life”, the item discrimination parameter 

(slope) estimates ranged from 0.506 to 0.562 with a 

difference of 0.056 between the parameter estimates.  The 

standard errors ranged from 0.014 to 0.019 with a 

difference of 0.005 between the standard errors. 

The correlations for the item discrimination (slope) 

estimates ranged from 0.981 to 0.995 among the main sample 
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and the subsamples.  The standard errors, used to assess 

the accuracy of the estimates, were less than 0.012.  

Because of the high correlations among the item 

discrimination (slope) estimates and small standard errors 

of the estimates, the GRM item discrimination (slope) 

estimates are invariant across the YFCY03 main sample and 

subsamples for Social Agency construct.  

GRM item difficulty (location) parameter estimates for 

the YFCY03 Social Agency construct.  For the first item, 

“Influencing social values”, the item difficulty parameter 

(location) estimates ranged from 0.503 to 0.575 with a 

difference of 0.072 between the parameter estimates.  The 

standard errors ranged from 0.026 to 0.038 with a 

difference of 0.012 between the standard errors.  

For the item, “Helping others who are in difficulty”, 

the item difficulty parameter (location) estimates ranged 

from -0.132 to -0.098 with a difference of 0.034 between 

the parameter estimates.  The standard errors ranged from 

0.024 to 0.034 with a difference of 0.01 between the 

standard errors.  

For the item, “Developing meaningful philosophy of 

life”, the item difficulty parameter (location) estimates 

ranged from 0.275 to 0.320 with a difference of 0.045 
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between the parameter estimates.  The standard errors 

ranged from 0.032 to 0.045 with a difference of 0.013 

between the standard errors.  

For the item, “Helping promote racial understanding”, 

the item difficulty parameter (location) estimates ranged 

from 0.890 to 0.981 with a difference of 0.091 between the 

parameter estimates.  The standard errors ranged from 0.030 

to 0.042 with a difference of 0.012 between the standard 

errors.  

For the item, “Becoming a community leader”, the item 

difficulty parameter (location) estimates ranged from 0.671 

to 0.689 with a difference of 0.018 between the parameter 

estimates.  The standard errors ranged from 0.032 to 0.045 

with a difference of 0.013 between the standard errors.  

For the sixth item in the construct, “Integrating 

spirituality into life”, the item difficulty parameter 

(slope) estimates ranged from -0.013 to 0.049 with a 

difference of 0.062 between the parameter estimates.  The 

standard errors ranged from 0.036 to 0.053 with a 

difference of 0.017 between the standard errors. 

The correlations for the item difficulty (location) 

estimates ranged from 0.991 to 0.998 among the main sample 

and the subsamples.  The standard errors, used to assess 
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the accuracy of the estimates, were less than 0.017.  

Because of the high correlations among the item difficulty 

(location) estimates and small standard errors of the 

estimates, the GRM item difficulty (location) estimates are 

invariant across the YFCY03 main sample and subsamples for 

Social Agency construct.  

PCM person parameter estimates for the Social Agency 

construct from the YFCY02 dataset.  The YFCY02 dataset (n = 

3,652) was split randomly into two subsamples: one 

subsample of 1,827 people and a second subsample of 1,825  

People.  Eighteen attitude (theta) scores were not computed 

because the respondents selected the same answers on all 

six of the Social Agency items. 

Figure 18 is the histogram for the PCM attitude 

(theta) estimates for the Social Agency construct.  The 

mean score for the attitude (theta) scores for the main 

sample (n = 3,634) was -0.044 and the standard deviation 

was 1.145.  The mean attitude (theta) score for the first 

subsample (n = 1,817) was -0.0503 and the standard 

deviation was 1.156.  The mean attitude (theta) score for 

the second subsample (n = 1,817) was -0.038 and the 

standard deviation was 1.134. 
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Figure 18.  Histogram of PCM Attitude (Theta) Estimates: 
Social Agency Construct of YFCY02 (n = 3,634; v = 6) 
 

 The correlations for the attitude (theta) scores 

between the main sample and the subsamples ranged from 

0.922 to 0.995.  The correlation between the attitude 

(theta) scores for first subsample (n = 1,817) and the 

second subsample (n = 1,817) was 0.995.  The correlation 

between the main sample (n = 3,652) and the first subsample 

(n = 1,827) was 0.922.  The correlation between the main 

sample (n = 3,652) and the second subsample (n = 1,825) was 

0.920. 
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PCM item parameter estimates for the Social Agency 

construct from the YFCY02 dataset.  Table 25 provides the 

item difficulty (location) parameter estimates for the six 

items on the Social Agency construct.  The item 

discrimination (slope) parameter estimates were fixed to 

1.0 for the partial credit model.  Furthermore, item fit 

statistics (chi-square) are provided in Table 25. 

For the first item, “Influencing social values”, the 

item difficulty (location) parameter estimates ranged from 

0.459 to 0.535 with a difference of 0.076 between the 

parameter estimates.  The standard errors ranged from 0.029 

to 0.041 with a difference of 0.012 between the standard 

errors.  

For the item, “Helping others who are in difficulty”, 

the item difficulty (location) parameter estimates ranged 

from -0.081 to -0.102 with a difference of 0.021 between 

the parameter estimates.  The standard errors ranged from 

0.028 to 0.040 with a difference of 0.012 between the 

parameter estimates.  

For the item, “Developing meaningful philosophy of 

life”, the item difficulty (location) parameter estimates 

ranged from 0.167 to 0.284 with a difference of 0.117 

between the parameter estimates.  The standard errors 
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ranged from 0.027 to 0.038 with a difference of 0.011 

between the standard errors.  

For the item, “Helping promote racial understanding”, 

the item difficulty (location) parameter estimates ranged 

from 0.836 to 0.898 with a difference of 0.062 between the 

parameter estimates.  The standard errors ranged from 0.031 

to 0.044 with a difference of 0.013 between the standard 

errors. 

For the item, “Becoming a community leader”, the item 

difficulty (location) parameter estimates ranged from 0.657 

to 0.676 with a difference of 0.019 between the parameter 

estimates.  The standard errors ranged from 0.029 to 0.042 

with a difference of 0.013 between the standard errors. 

For the sixth item in the construct, “Integrating 

spirituality into life”, and the item difficulty (location) 

parameter estimates ranged from -0.383 to -0.257 with a 

difference of 0.126 between the parameter estimates.  The 

standard errors ranged from 0.027 to 0.038 with a 

difference of 0.011 between the parameter estimates. 

The correlations between the main samples and the 

subsamples ranged from 0.993 to 0.999.  The standard  
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Table 25.  PCM Item Parameter Estimates for the Social Agency Construct from the 
Main and Subsamples of the YFCY02 Dataset 

 

Item/Fit 
Statistics 

 PCM – YFCY02 
 (n = 3,652) 

 PCM – YFCY02  
(n = 1,827) 

 PCM – YFCY02  
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 
 
Influencing 
Social Values 

  
1.000 
(***) 

 
0.498 

(0.029) 

 
172.8 
(17) 

  
1.000 
(***) 

 
0.459 

(0.041) 

 
87.9 
(15) 

  
1.000 
(***) 

 
0.535 

(0.041) 

 
80.9 
(15) 

 
Helping 
Others Who 
Are in 
Difficulty 

 

1.000 
(***) 

-0.081 
(0.028) 

230.9 
(16) 

 

1.000 
(***) 

-0.063 
(0.039) 

117.1 
(14) 

 

1.000 
(***) 

-0.102 
(0.040) 

120.5 
(14) 

 
Developing  
Meaningful 
Philosophy of 
Life 

 

1.000 
(***) 

0.226 
(0.027) 

99.2 
(16) 

 

1.000 
(***) 

0.284 
(0.038) 

62.5 
(15) 

 

1.000 
(***) 

0.167 
(0.038) 

51.2 
(14) 

 
Helping 
Promote 
Racial 
Understanding 

 

1.000 
(***) 

0.867 
(0.031) 

87.0 
(17) 

 

1.000 
(***) 

0.836 
(0.044) 

41.5 
(16) 

 

1.000 
(***) 

0.898 
(0.044) 

45.1 
(15) 

 
Becoming a 
Community 
Leader 

 
1.000 
(***) 

0.667 
(0.029) 

126.4 
(17) 

 
1.000 
(***) 

0.657 
(0.041) 

45.4 
(15) 

 
1.000 
(***) 

0.676 
(0.042) 

76.0 
(15) 

 
Integrating 
Spirituality 
into Life 

 
1.000 
(***) 

-0.323 
(0.027) 

285.5 
(14) 

 
1.000 
(***) 

-0.257 
(0.038) 

132.8 
(14) 

 
1.000 
(***) 

-0.383 
(0.038) 

164.4 
(14) 

 
TOTAL 
Chi-Square 
(DF) 

 

 1002.1 
(97)  

 

 487.5 
(89)  

 

 538.3 
(87)  

 
Note: The YFCY02 Social Agency construct is comprised of six items using a scale 
with four categories.  Unless otherwise noted, all p values are less than 0.001.
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errors, used to assess the accuracy of the estimates, were 

less than 0.027 across the items.  

Because of the high correlations among the item 

difficulty (location) estimates and small standard errors 

of the estimates, the PCM item difficulty (location) 

estimates are invariant across the YFCY02 main sample and 

subsamples for Social Agency construct. 

PCM person parameter estimates for the Social Agency 

construct from the YFCY03 dataset.  The YFCY03 dataset (n = 

5,081) was split randomly into two subsamples: one 

subsample of 2,451 people and a second subsample of 2,450 

people.  Twelve attitude (theta) scores were not computed 

because the respondents selected the same answers on all 

six items of the Social Agency construct.  

Figure 19 is the histogram for the PCM attitude 

(theta) estimates for the Social Agency construct.  The 

mean score for the main sample (n = 5,069) was -0.051 and 

the standard deviation was 1.162.  The mean score for the 

first subsample (n = 2,536) was -0.046 and the standard 

deviation was 1.164.  The mean score for the second 

subsample (n = 2,533) was -0.057 and the standard deviation 

was 1.162. 
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Figure 19.  Histogram of PCM Attitude (Theta) Estimates: 
Social Agency Construct of YFCY02 (n = 5,069; v = 6) 
 

The correlations among the main sample and the 

subsamples ranged from 0.916 to 0.998.  The correlation 

between the first subsample (n = 2,536) and the second 

subsample (n = 2,533) was 0.998.  The correlation between 

the main sample (n = 5,069) and the first subsample (n = 

2,536) was 0.926.  The correlation between the main sample 

(n = 5,069) and the second subsample (n = 2,533) was 0.916. 

PCM item parameter estimates for the Social Agency 

construct from the YFCY03 dataset.  Table 26 provides the 

item difficulty (location) parameter estimates for the six 

items on the Social Agency construct.  The item 
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discrimination (slope) parameter estimates were fixed to 

1.0 for the partial credit model.  Furthermore, item fit 

statistics (chi-square) are provided in Table 25. 

For the first item, “Influencing social values”, the 

item difficulty (location) parameter estimates ranged from 

0.664 to 0.762 with a difference of 0.098 between the 

parameter estimates.  The standard errors ranged from 0.026 

to 0.038 with a difference of 0.012 between the standard 

errors.  

For the item, “Helping others who are in difficulty”, 

the item difficulty (location) parameter estimates ranged 

from -0.117 to -0.094 with a difference of 0.023 between 

the parameter estimates.  The standard errors ranged from 

0.024 to 0.034 with a difference of 0.01 between the 

parameter estimates.  

For the item, “Developing meaningful philosophy of 

life”, the item difficulty (location) parameter estimates 

ranged from 0.260 to 0.309 with a difference of 0.049 

between the parameter estimates.  The standard errors 

ranged from 0.023 to 0.032 with a difference of 0.009 

between the standard errors.  

For the item, “Helping promote racial understanding”, 

the item difficulty (location) parameter estimates ranged 
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from 0.871 to 0.908 with a difference of 0.037 between the 

parameter estimates.  The standard errors ranged from 0.027 

to 0.038 with a difference of 0.011 between the standard 

errors. 

For the item, “Becoming a community leader”, the item 

difficulty (location) parameter estimates ranged from 0.926 

to 0.980 with a difference of 0.054 between the parameter 

estimates.  The standard errors ranged from 0.027 to 0.039 

with a difference of 0.012 between the standard errors. 

For the sixth item in the construct, “Integrating 

spirituality into life”, and the item difficulty (location) 

parameter estimates ranged from -0.115 to -0.074 with a 

difference of 0.041 between the parameter estimates.  The 

standard errors ranged from 0.022 to 0.032 with a 

difference of 0.01 between the parameter estimates. 

The correlations between the main samples and the 

subsamples ranged from 0.993 to 0.998.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.054 across the items.  

Because of the high correlations among the item 

difficulty (location) estimates and small standard errors 
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Table 26.  PCM Item Parameter Estimates for the Social Agency Construct from the 
Main and Subsamples of the YFCY03 Dataset 
 

Item/Fit 
Statistics 

 PCM – YFCY03 
(n = 5,081) 

 PCM – YFCY03 
(n = 2,541) 

 PCM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std 

Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

Influencing 
Social Values 
 

 1.000 
(***) 

0.709 
(0.026) 

200.3 
(17) 

 1.000 
(***) 

0.762 
(0.038) 

96.1 
(16) 

 1.000 
(***) 

0.664 
(0.036) 

113.1 
(16) 

Helping 
Others Who 
Are in 
Difficulty 
 

 

1.000 
(***) 

-0.106 
(0.024) 

321.4 
(16) 

 

1.000 
(***) 

-0.117 
(0.034) 

183.3 
(16) 

 

1.000 
(***) 

-0.094 
(0.033) 

138.3 
(16) 

Developing  
Meaningful 
Philosophy of 
Life 
 

 

1.000 
(***) 

0.282 
(0.023) 

121.6 
(16) 

 

1.000 
(***) 

0.260 
(0.032) 

50.0 
(15) 

 

1.000 
(***) 

0.309 
(0.032) 

71.2 
(15) 

Helping 
Promote 
Racial 
Understanding 
 

 

1.000 
(***) 

0.889 
(0.027) 

148.8 
(17) 

 

1.000 
(***) 

0.871 
(0.037) 

86.3 
(15) 

 

1.000 
(***) 

0.908 
(0.038) 

62.4 
(16) 

Becoming a 
Community 
Leader 
 

 
1.000 
(***) 

0.951 
(0.027) 

164.9 
(18) 

 
1.000 
(***) 

0.980 
(0.039) 

74.4 
(15) 

 
1.000 
(***) 

0.926 
(0.039) 

79.0 
(16) 

Integrating 
Spirituality 
into Life 
 

 
1.000 
(***) 

-0.091 
(0.022) 

279.0 
(16) 

 
1.000 
(***) 

-0.074 
(0.032) 

171.6 
(16) 

 
1.000 
(***) 

-0.115 
(0.032) 

125.9 
(16) 

TOTAL 
Chi-Square 
(DF) 

 
 1236.3 

(100)  
 

 661.9 
(93)  

 
 590.0 

(95)  

 
Note: The YFCY03 Social Agency construct is comprised of six items using a scale 
with four categories.  Unless otherwise noted, all p values are less than 0.001.
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of the estimates, the PCM item difficulty (location) 

estimates are invariant across the YFCY03 main sample and 

subsamples for Social Agency construct. 

Social Self-Concept constructs.  The Social Self-

Concept construct was comprised of five items that used a 

five-category scale (Lowest 10%; below average; Average; 

above average; and, Highest 10%) on YFCY02 and YFCY03: 

“Leadership ability”; “Public speaking ability”; “Self-

confidence (intellectual)”; “Self-confidence (social)”; 

and, “Self-understanding.” 

GRM person parameter estimates for the Social Self-

Concept construct from the YFCY02 dataset.  The YFCY02 

dataset (n = 3,650) was split randomly into two subsamples: 

one subsample of 1,827 people and a second subsample of 

1,825 people.  Two attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all five items of Social Self-Concept construct. 

Figure 20 is the histogram for the GRM attitude 

(theta) estimates for the Social Self-Concept construct.  

The mean score for the main sample (n = 3,650) was 0.027 

and the standard deviation was 1.217.  The mean score for 

the first subsample (n = 1,827) was 0.027 and the standard 

deviation was 1.217.  The mean score for the second  
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Figure 20.  Histogram of GRM Attitude (Theta) Estimates: 
Social Self-Concept Construct of YFCY02 (n = 3,650; v = 5) 
 

subsample (n = 1,823) was 0.027 and the standard deviation 

was 1.217. 

 The correlations for the attitude (theta) scores among 

the main sample and the subsamples ranged from 0.934 to 

0.999.  The correlation between the first subsample (n = 

1,827) and the second subsample (n = 1,823) was 0.999.  The 

correlation between the main sample (n = 3,650) and the 

first subsample (n = 1,827) was 0.935.  The correlation 

between the main sample (n = 3,650) and the second 

subsample (n = 1,823) was 0.934. 
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GRM item parameter estimates for the Social Self-

Concept construct from the YFCY02 dataset.  Table 27 

provides the item discrimination (slope) parameter 

estimates and the item difficulty (location) parameter 

estimates for the five items on the Social Self Concept 

construct.  Furthermore, item fit statistics (chi-square) 

are provided in Table 27. 

GRM item discrimination (slope) parameter estimates 

for the YFCY02 Social Self-Concept construct.  For the 

first item, “Leadership ability”, the item discrimination 

parameter (slope) estimates ranged from 1.047 to 1.058 with 

a difference of 0.011 between the parameter estimates.  The 

standard errors ranged from 0.023 to 0.034 with a 

difference of 0.011 between the standard errors.  

For the item, “Public speaking ability”, the item 

discrimination parameter (slope) estimates ranged from 

0.844 to 0.866 with a difference of 0.022 between the 

parameter estimates.  The standard errors ranged from 0.018 

to 0.026 with a difference of 0.008 between the standard 

errors.  

For the item, “Self-confidence (intellectual)”, the 

item discrimination parameter (slope) estimates ranged from 

1.153 to 1.166 with a difference of 0.013 between the 
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parameter estimates.  The standard errors ranged from 0.025 

to 0.036 with a difference of 0.011 between the standard 

errors.  

For the item, “Self-confidence (social)”, the item 

discrimination parameter (slope) estimates ranged from 

0.997 to 1.085 with a difference of 0.088 between the 

parameter estimates.  The standard errors ranged from 0.022 

to 0.035 with a difference of 0.013 between the standard 

errors.  

For the fifth item in the construct, “Self-

understanding”, the item discrimination parameter (slope) 

estimates ranged from 0.990 to 1.085 with a difference of 

0.095 between the parameter estimates.  The standard errors 

ranged from 0.022 to 0.034 with a difference of 0.012 

between the standard errors. 

The correlations for the item discrimination (slope) 

estimates ranged from 0.830 to 0.963 among the main sample 

and the subsamples.  The standard errors, used to assess 

the accuracy of the estimates, were less than 0.013.  

Because of the correlations among the item discrimination 

(slope) estimates and small standard errors of the 

estimates, the GRM item discrimination (slope) estimates 



 

 

197

are invariant across the YFCY02 main sample and subsamples 

for Social Self-Concept construct.  

GRM item difficulty (location) parameter estimates for 

the YFCY02 Social Self-Concept construct.  For the first 

item, “Leadership ability”, the item difficulty parameter 

(location) estimates ranged from -0.619 to -0.613 with a 

difference of 0.006 between the parameter estimates.  The 

standard errors ranged from 0.026 to 0.037 with a 

difference of 0.011 between the standard errors.  

For the item, “Public speaking ability”, the item 

difficulty parameter (location) estimates ranged from 0.139 

to 0.174 with a difference of 0.035 between the parameter 

estimates.  The standard errors ranged from 0.028 to 0.040 

with a difference of 0.012 between the standard errors.  

For the item, “Self-confidence (intellectual)”, the 

item difficulty parameter (location) estimates ranged from 

-0.584 to -0.575 with a difference of 0.009 between the 

parameter estimates.  The standard errors ranged from 0.025 

to 0.035 with a difference of 0.01 between the standard 

errors.  

For the item, “Self-confidence (social)”, the item 

difficulty parameter (location) estimates ranged from      

-0.193 to -0.107 with a difference of 0.086 between the 
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parameter estimates.  The standard errors ranged from 0.025 

to 0.036 with a difference of 0.011 between the standard 

errors.  

For the fifth item in the construct, “Self-

understanding”, the item difficulty parameter (location) 

estimates ranged from -0.691 to -0.150 with a difference of 

0.541 between the parameter estimates.  The standard errors 

ranged from 0.025 to 0.039 with a difference of 0.014 

between the standard errors. 

The correlations for the item difficulty parameter 

(location) estimates ranged from 0.760 to 0.991 among the 

main sample and the subsamples.  The standard errors, used 

to assess the accuracy of the estimates, were less than 

0.086.  Because of the correlations among the item 

discrimination (slope) estimates and standard errors of the 

estimates, the GRM item difficulty (location) estimates are 

invariant across the YFCY02 main sample and subsamples for 

Social Self-Concept construct. 
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Table 27.  GRM Item Parameter Estimates for the Social Self-Concept Construct from 
the Main and Subsamples of the YFCY02 Dataset 

 

Item/Fit 
Statistics 

 GRM – YFCY02 
(n = 3,652) 

 GRM – YFCY02  
(n = 1,827) 

 GRM – YFCY02  
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

Leadership 
Ability 
 

 1.052 
(0.023) 

-0.616 
(0.026) 

213.9 
(23) 

 1.047 
(0.034) 

-0.619 
(0.037) 

122.
1 

(20) 

 1.058 
(0.033) 

-0.613 
(0.037) 

106.1 
(20) 

Public 
Speaking 
Ability 
 

 
0.855 

(0.018) 
0.156 

(0.028) 
240.7 
(25) 

 
0.844 

(0.025) 
0.139 

(0.040) 

138.
0 

(23) 

 
0.866 

(0.026) 
0.174 

(0.040) 
103.1 
(23) 

Self-
confidence 
(intellectual
) 
 

 

1.153 
(0.025) 

-0.579 
(0.025) 

243.0 
(21) 

 

1.166 
(0.036) 

-0.575 
(0.034) 

135.
2 

(19) 

 

1.141 
(0.035) 

-0.584 
(0.035) 

93.7 
(20) 

Self-
confidence 
(social) 
 

 
1.037 

(0.022) 
-0.150 
(0.025) 

393.0 
(23) 

 
0.997 

(0.029) 
-0.193 
(0.036) 

173.
5 

(22) 

 
1.085 

(0.035) 
-0.107 
(0.034) 

235.6 
(21) 

Self-
understanding 
 

 1.035 
(0.022) 

-0.150 
(0.025) 

181.0 
(22) 

 1.085 
(0.034) 

-0.691 
(0.036) 

77.0 
(20) 

 0.990 
(0.029) 

-0.678 
(0.039) 

141.8 
(20) 

TOTAL 
Chi-Square  
(DF) 

 
 1271.8  

(114)  
 

 646.1  
(104)  

 
 680.4  

(104)  

 
Note: The YFCY02 Social Self Concept construct is comprised of five items using a 
scale with five categories.  Unless otherwise noted, all p values are less than 
0.001.  



 

 

200

GRM person parameter estimates for the Social Self-

Concept construct from the YFCY03 dataset.  The YFCY03 

dataset (n = 5,081) was split randomly into two subsamples: 

one subsample of 2,451 people and a second subsample of 

2,450 people.  Two attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all five of the Social Self-Concept items. 

Figure 21 is the histogram for the GRM attitude 

(theta) estimates for the Social Self-Concept construct.  

The mean score for the main sample (n = 5,079) was 0.020  

 

Figure 21.  Histogram of GRM Attitude (Theta) Estimates: 
Social Self-Concept Construct of YFCY03 (n = 5,079; v = 5) 
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and the standard deviation was 1.200.  The mean score for 

the first subsample (n = 2,439) was 0.023 and the standard 

deviation was 1.200.  The mean score for the second 

subsample (n = 2,450) was 0.017 and the standard deviation 

was 1.201. 

The correlations among the main sample and the 

subsamples ranged from 0.935 to 0.999.  The correlation 

between the first subsample (n = 2,539) and the second 

subsample (n = 2,540) was 0.999.  The correlation between 

the main sample (n = 5,081) and the first subsample (n = 

2,450) was 0.935.  The correlation between the main sample 

(n = 2,451) and the second subsample (n = 2,450) was 0.937. 

GRM item parameter estimates for the Social Self-

Concept construct from the YFCY03 dataset.  Table 28 

provides the item discrimination (slope) parameter 

estimates and the item difficulty (location) parameter 

estimates for the five items on the “Overall Satisfaction” 

construct.  Furthermore, item fit statistics (chi-square) 

are provided in Table 28. 
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Table 28.  GRM Item Parameter Estimates for the Social Self-Concept Construct from 
the Main and Subsamples of the YFCY03 Dataset 

 

Item/Fit 
Statistics 

 GRM – YFCY03 
(n = 5,081) 

 GRM – YFCY03 
(n = 2,541) 

 GRM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 
Leadership 
Ability 

 0.921 
(0.017) 

-0.507 
(0.023) 

303.4 
(23) 

 0.979 
(0.026) 

-0.489 
(0.032) 

137.9 
(23) 

 0.866 
(0.022) 

-0.526 
(0.034) 

165.9 
(23) 

 
Public 
Speaking 
Ability 

 
0.814 

(0.015) 
0.379 

(0.025) 
302.6 
(27) 

 
0.833 

(0.022) 
0.357 

(0.035) 
183.0 
(24) 

 
0.794 

(0.020) 
0.402 

(0.037) 
124.5 
(24) 

 
Self-
confidence 
(intellectual) 

 
1.131 

(0.021) 
-0.456 
(0.022) 

209.2 
(23) 

 
1.121 

(0.030) 
-0.452 
(0.031) 

110.4 
(21) 

 
1.140 

(0.029) 
-0.461 
(0.031) 

118.3 
(20) 

 
Self-
confidence 
(social) 

 
1.046 

(0.020) 
0.016 

(0.021) 
548.3 
(24) 

 
1.092 

(0.029) 
0.014 

(0.029) 
303.5 
(22) 

 
1.003 

(0.027) 
0.018 

(0.030) 
300.9 
(23) 

Self-
understanding 

 
1.144 

(0.021) 
-0.493 
(0.021) 

294.01 
(23) 

 
1.189 

(0.031) 
-0.500 
(0.030) 

139.3 
(20) 

  
1.099 

(0.028) 
 

-0.486 
(0.031) 

148.7 
(20) 

TOTAL 
Chi-Square  
(DF) 

 
 1657.6  

(120)  
 

 874.4  
(110)  

 
 858.6  

(110)  

 
Note: The YFCY02 Social Self Concept construct is comprised of five items using a 
scale with five categories.  Unless otherwise noted, all p values are less than 
0.001.
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GRM item discrimination (slope) parameter estimates 

for the YFCY03 Social Self-Concept construct.  For the 

first item, “Leadership ability”, the item discrimination 

parameter (slope) estimates ranged from 0.866 to 0.979 with 

a difference of 0.113 between the parameter estimates.  The 

standard errors ranged from 0.017 to 0.026 with a 

difference of 0.009 between the standard errors.  

For the item, “Public speaking ability”, the item 

discrimination parameter (slope) estimates ranged from 

0.794 to 0.833 with a difference of 0.039 between the 

parameter estimates.  The standard errors ranged from 0.015 

to 0.020 with a difference of 0.005 between the standard 

errors.  

For the item, “Self-confidence (intellectual)”, the 

item discrimination parameter (slope) estimates ranged from 

1.121 to 1.140 with a difference of 0.019 between the 

parameter estimates.  The standard errors ranged from 0.021 

to 0.030 with a difference of 0.009 between the standard 

errors.  

For the item, “Self-confidence (social)”, the item 

discrimination parameter (slope) estimates ranged from 

1.003 to 1.092 with a difference of 0.089 between the 

parameter estimates.  The standard errors ranged from 0.020 
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to 0.029 with a difference of 0.009 between the standard 

errors.  

For the fifth item in the construct, “Self-

understanding”, the item discrimination parameter (slope) 

estimates ranged from 1.189 to 1.099 with a difference of 

0.09 between the parameter estimates.  The standard errors 

ranged from 0.021 to 0.031 with a difference of 0.01 

between the standard errors. 

The correlations for the item discrimination (slope) 

estimates ranged from 0.934 to 0.985 among the main sample 

and the subsamples.  The standard errors, used to assess 

the accuracy of the estimates, were less than 0.09.  

Because of the correlations among the item discrimination 

(slope) estimates and the standard errors of the estimates, 

the GRM item discrimination (slope) estimates are invariant 

across the YFCY03 main sample and subsamples for Social 

Self-Concept construct.  

GRM item difficulty (location) parameter estimates for 

the YFCY03 Social Self-Concept construct.  For the first 

item, “Leadership ability”, the item difficulty parameter 

(location) estimates ranged from -0.526 to -0.489 with a 

difference of 0.037 between the parameter estimates.  The 
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standard errors ranged from 0.023 to 0.034 with a 

difference of 0.011 between the standard errors.  

For the item, “Public speaking ability”, the item 

difficulty parameter (location) estimates ranged from 0.357 

to 0.402 with a difference of 0.045 between the parameter 

estimates.  The standard errors ranged from 0.025 to 0.037 

with a difference of 0.012 between the standard errors.  

For the item, “Self-confidence (intellectual)”, the 

item difficulty parameter (location) estimates ranged from 

-0.461 to -0.452 with a difference of 0.009 between the 

parameter estimates.  The standard errors ranged from 0.022 

to 0.035 with a difference of 0.009 between the standard 

errors.  

For the item, “Self-confidence (social)”, the item 

difficulty parameter (location) estimates ranged from 0.014 

to 0.018 with a difference of 0.004 between the parameter 

estimates.  The standard errors ranged from 0.021 to 0.030 

with a difference of 0.009 between the standard errors.  

For the fifth item in the construct, “Self-

understanding”, the item difficulty parameter (location) 

estimates ranged from -0.500 to -0.486 with a difference of 

0.014 between the parameter estimates.  The standard errors 



 

 

206

ranged from 0.021 to 0.031 with a difference of 0.01 

between the standard errors. 

The correlations for the item difficulty parameter 

(location) estimates ranged from 0.999 to 1.000 among the 

main sample and the subsamples.  The standard errors, used 

to assess the accuracy of the estimates, were less than 

0.035.  Because of the high correlations among the item 

difficulty (location) estimates and standard errors of the 

estimates, the GRM item difficulty (location) estimates are 

invariant across the YFCY03 main sample and subsamples for 

Social Self-Concept construct. 

PCM person parameter estimates for the Social Self-

Concept construct from the YFCY02 dataset.  The YFCY02 

dataset (n = 3,652) was split randomly into two subsamples: 

one subsample of 1,827 people and a second subsample of 

1,825 people.  Two attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all five of the Social Self-Concept items.  

Figure 22 is the histogram for the PCM attitude 

(theta) estimates for the Social Self-Concept construct.  

The mean score for attitude (theta) scores of the main 
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Figure 22.  Histogram of PCM Attitude (Theta) Estimates: 
Social Agency Construct of YFCY02 (n = 3,650; v = 5) 
 
 
sample (n = 3,650) was 0.041 and the standard deviation was 

1.09.  The mean score for attitude (theta) scores of the 

first subsample (n = 1,827) was 0.038 and the standard 

deviation was 1.09.  The mean score for the attitude 

(theta) scores of the second subsample (n = 1,823) was 

0.043 and the standard deviation was 1.09. 

 The correlations of the (attitude) theta scores among 

the main sample and the subsamples ranged from 0.893 to 

0.995.  The correlation between the first subsample (n = 

1,827) and the second subsample (n = 1,825) was 0.995.  The 
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correlation between the main sample (n = 3,650) and the 

first subsample (n = 1,827) was 0.893.  The correlation 

between the main sample (n = 3,650) and the second 

subsample (n = 1,825) was 0.891. 

PCM item parameter estimates for the Social Self-

Concept construct from the YFCY02 dataset.  Table 29 

provides the item difficulty (location) parameter estimates 

for the five items on the Social Self-Concept construct.  

The item discrimination (slope) parameter estimates were 

fixed to 1.0 for the partial credit model.  Furthermore, 

item fit statistics (chi-square) are provided in Table 29. 

For the first item, “Leadership ability”, the item 

difficulty (location) parameter estimates ranged from -

0.518 to -0.513 with a difference of 0.005 between the 

parameter estimates.  The standard errors ranged from 0.029 

to 0.041 with a difference of 0.012 between the standard 

errors.  

For the item, “Public speaking ability”, the item 

difficulty (location) parameter estimates ranged from 0.126 

to 0.168 with a difference of 0.042 between the parameter 

estimates.  The standard errors ranged from 0.024 to 0.034 

with a difference of 0.01 between the parameter estimates.  
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For the item, “Self-confidence (intellectual)”, the 

item difficulty (location) parameter estimates ranged from 

0.167 to 0.284 with a difference of 0.117 between the 

parameter estimates.  The standard errors ranged from 0.027 

to 0.038 with a difference of 0.011 between the standard 

errors.  

For the item, “Self-confidence (social)”, the item 

difficulty (location) parameter estimates ranged from      

-0.494 to -0.486 with a difference of 0.008 between the 

parameter estimates.  The standard errors ranged from 0.025 

to 0.036 with a difference of 0.011 between the standard 

errors. 

For the fifth item in the construct, “Self-

understanding”, the item difficulty (location) parameter 

estimates equaled -0.597 for the main sample and both 

subsamples.  The standard errors ranged from 0.025 to 0.036 

with a difference of 0.011 between the standard errors. 

The correlations between the main samples and the 

subsamples ranged from 0.996 to 0.999.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.012 across the items.  Because of the high  
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Table 29.  PCM Item Parameter Estimates for the Social Self-Concept Construct from 
the Main and Subsamples of the YFCY02 Dataset 

 

Item/Fit 
Statistics 

 PCM – YFCY02 
(n = 3,652) 

 PCM – YFCY02 
(n = 1,827) 

 PCM – YFCY02 
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 
Leadership 
Ability 

 1.000 
(***) 

-0.515 
(0.025) 

144.7 
(22) 

 1.000 
(***) 

-0.513 
(0.036) 

61.3 
(19) 

 1.000 
(***) 

-0.518 
(0.036) 

65.0 
(19) 

Public 
Speaking 
Ability 

 1.000 
(***) 

0.148 
(0.024) 

101.8 
(22) 

 1.000 
(***) 

0.126 
(0.033) 

102.9 
(21) 

 1.000 
(***) 

0.168 
(0.034) 

47.3 
(21) 

p=0.001 
 
Self-
confidence 
(intellectual) 

 
1.000 
(***) 

-0.489 
(0.025) 

189.9 
(22) 

 
1.000 
(***) 

-0.486 
(0.036) 

102.4 
(20) 

 
1.000 
(***) 

-0.494 
(0.036) 

89.6 
(19) 

 
Self-
confidence 
(social) 

 
1.000 
(***) 

-0.107 
(0.024) 

204.4 
(22) 

 
1.000 
(***) 

-0.153 
(0.034) 

95.9 
(21) 

 
1.000 
(***) 

-0.061 
(0.034) 

116.1 
(22) 

 
Self-
understanding 
 

 
1.000 
(***) 

-0.597 
(0.025) 

146.2 
(22) 

 
1.000 
(***) 

-0.597 
(0.036) 

57.9 
(19) 

 
1.000 
(***) 

-0.597 
(0.036) 

93.0 
(20) 

TOTAL 
Chi-Square 
(DF) 

 
 787.3 

(110)  
 

 420.6 
(100)  

 
 411.3 

(101)  

 
Note: The YFCY02 Social Self Concept construct is comprised of five items using a 
scale with five categories.  Unless otherwise noted, all p values are less than 
0.001.  
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correlations among the item difficulty (location) estimates 

and the small standard errors of the estimates, the PCM 

item difficulty (location) estimates are invariant across 

the YFCY02 main sample and subsamples for Social Self-

Concept construct. 

PCM person parameter estimates for the Social Self-

Concept construct from the YFCY03 dataset.  The YFCY03 

dataset (n = 5,081) was split randomly into two subsamples: 

one subsample of 2,451 people and a second subsample of 

2,450 people.  Two attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all five of the Social Self-Concept items. 

Figure 23 is the histogram for the PCM attitude 

(theta) estimates for the Social Self-Concept construct.  

The mean score for the attitude (theta) scores for the main 

sample (n = 5,079) was 0.028 and the standard deviation was 

1.059.  The mean score for attitude (theta) scores of the 

first subsample (n = 2,539) was 0.035 and the standard 

deviation was 1.081.  The mean score for the attitude 

(theta) scores of the second subsample (n = 2,540) was 

0.0218 and the standard deviation was 1.035. 
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Figure 23.  Histogram of PCM Attitude (Theta) Estimates: 
Social Self-Concept Construct of YFCY03 (n = 5,079; v = 5) 
 
 

The correlations for the attitude (theta) estimates 

among the main sample and the subsamples ranged from 0.907 

to 0.994.  The correlation for the attitude (theta) 

estimates between the first subsample (n = 2,539) and the 

second subsample (n = 2,540) was 0.994.  The correlation 

between the main sample (n = 5,079) and the first subsample 

(n = 2,539) was 0.909.  The correlation between the main 

sample (n = 5,079) and the second subsample (n = 2,540) was 

0.907. 
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PCM item parameter estimates for the Social Self-

Concept construct from the YFCY03 dataset.  Table 30 

provides the item difficulty (location) parameter estimates 

for the five items on the Social Self-Concept construct.  

The item discrimination (slope) parameter estimates were 

fixed to 1.0 for the partial credit model.  Furthermore, 

item fit statistics (chi-square) are provided in Table 30. 

For the first item, “Leadership ability”, the item 

difficulty (location) parameter estimates ranged from -

0.425 to -0.404 with a difference of 0.021 between the 

parameter estimates.  The standard errors ranged from 0.021 

to 0.030 with a difference of 0.009 between the standard 

errors.  

For the item, “Public speaking ability”, the item 

difficulty (location) parameter estimates ranged from 0.330 

to 0.335 with a difference of 0.005 between the parameter 

estimates.  The standard errors ranged from 0.021 to 0.030 

with a difference of 0.009 between the parameter estimates.  

For the item, “Self-confidence (intellectual)”, the 

item difficulty (location) parameter estimates ranged from 

-0.396 to -0.385 with a difference of 0.011 between the 

parameter estimates.  The standard errors ranged from 0.022 
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to 0.032 with a difference of 0.010 between the standard 

errors.  

For the item, “Self-confidence (social)”, the item 

difficulty (location) parameter estimates ranged from      

0.028 to 0.040 with a difference of 0.012 between the 

parameter estimates.  The standard errors ranged from 0.020 

to 0.029 with a difference of 0.009 between the standard 

errors. 

For the fifth item in the construct, “Self-

understanding”, the item difficulty (location) parameter 

estimates ranged from -0.437 to -0.417 with a difference of 

0.02 between the parameter estimates.  The standard errors 

ranged from 0.022 to 0.031 with a difference of 0.009 

between the standard errors. 

The correlations between the main samples and the 

subsamples ranged from 0.999 to 1.000.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.022 across the items.  Because of the high 

correlations among the item difficulty (location) estimates 

and the small standard errors of the estimates, the PCM 

item difficulty (location) estimates are invariant across 

the YFCY03 main sample and subsamples for the Social Self-

Concept construct.  
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Table 30.  PCM Item Parameter Estimates for the Social Self-Concept Construct from 
the Main and Subsamples of the YFCY03 Dataset 

 

Item/Fit 
Statistics 

 PCM – YFCY03 
(n = 5,081) 

 PCM – YFCY03 
(n = 2,541) 

 PCM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

Leadership 
Ability 

 1.000 
(***) 

-0.416 
(0.021) 

88.4 
(22) 

 1.000 
(***) 

-0.404 
(0.029) 

42.0 
(20; 

p=0.003) 

 1.000 
(***) 

-0.425 
(0.030) 

54.3 
(19) 

 
Public 
Speaking 
Ability 

 
1.000 
(***) 

0.330 
(0.021) 

165.5 
(23) 

 
1.000 
(***) 

0.323 
(0.029) 

92.3 
(22) 

 
1.000 
(***) 

0.335 
(0.030) 

97.13 
(22) 

 
Self-
confidence 
(intellectual) 

 
1.000 
(***) 

-0.391 
(0.022) 

247.7 
(22) 

 
1.000 
(***) 

-0.396 
(0.031) 

89.5 
(20) 

 
1.000 
(***) 

-0.385 
(0.032) 

162.1 
(20) 

 
Self-
confidence 
(social) 

 
1.000 
(***) 

0.034 
(0.020) 

291.2 
(23) 

 
1.000 
(***) 

0.040 
(0.029) 

178.8 
(23) 

 
1.000 
(***) 

0.028 
(0.029) 

133.8 
(23) 

 
Self-
understanding 

 1.000 
(***) 

-0.428 
(0.022) 

245.9 
(22) 

 1.000 
(***) 

-0.437 
(0.031) 

140.2 
(19) 

 1.000 
(***) 

-0.417 
(0.031) 

111.2 
(20) 

 
TOTAL 
Chi-Square 
(DF) 

 

 1038.9 
(112)  

 

 542.9 
(104)  

 

 558.7 
(104)  

 
Note: The YFCY03 Social Self Concept construct is comprised of five items using a 
scale with five categories.  Unless otherwise noted, all p values are less than 
0.001.
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Academic Skills construct.  The Academic Skills 

construct was comprised of four items that, on YFCY02, used 

a four-category scale (Unsuccessful; somewhat successful; 

fairly successful; and, Very successful).  The YFCY03 used 

a three-category scale (Unsuccessful, Somewhat successful, 

and, completely successful). 

The four items were identical between YFCY02 and 

YFCY03: “Understanding what professors expect”; “Developing 

effective study skills”; “Adjusting to academic demands”; 

and, “Managing time effectively.”  

GRM person parameter estimates for the Academic Skills 

construct from the YFCY02 dataset.  The YFCY02 dataset (n = 

3,652) was split randomly into two subsamples: one 

subsample of 1,827 people and a second subsample of 1,825 

people.  Twenty-four attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all four of the Academic Skills items. 

Figure 24 is the histogram for the GRM attitude 

(theta) estimates for the Academic Skills construct.  The 

mean score for attitude (theta) scores for the main sample 

(n = 3,628) was -0.025 and the standard deviation was 

1.312.  The mean score for the attitude (theta) scores for 

the first subsample (n = 1,814) was -0.027 and the standard  
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Figure 24.  Histogram of GRM Attitude (Theta) Estimates: 
Academic Skills Construct of YFCY02 (n = 3,628; v = 4) 

 

deviation was 1.311.  The mean score for the second 

subsample (n = 1,814) was -0.022 and the standard deviation 

was 1.314.  

 The correlations among the main sample and the 

subsamples ranged from 0.920 to 0.997.  The correlation 

between the first subsample (n = 1,814) and the second 

subsample (n = 1,814) was 0.997.  The correlation between 

the main sample (n = 3,628) and the first subsample (n = 

1,814) was 0.927.  The correlation between the main sample 

(n = 3,628) and the second subsample (n = 1,825) was 0.920. 
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GRM item parameter estimates for the Academic Skills 

construct from the YFCY02 dataset.  Table 31 provides the 

item discrimination (slope) parameter estimates and the 

item difficulty (location) parameter estimates for the five 

items on the Academic Skills construct.  Furthermore, item 

fit statistics (chi-square) are provided in Table 31. 

GRM item discrimination (slope) parameter estimates 

for the YFCY02 Academic Skills construct.  For the first 

item, “Understanding what professors expect”, the item 

discrimination parameter (slope) estimates ranged from 1.27 

to 1.28 with a difference of 0.01 between the parameter 

estimates.  The standard errors ranged from 0.034 to 0.048 

with a difference of 0.014 between the standard errors.  

For the item, “Developing effective study skills”, the 

item discrimination parameter (slope) estimates ranged from 

1.571 to 1.659 with a difference of 0.088 between the 

parameter estimates.  The standard errors ranged from 0.057 

to 0.084 with a difference of 0.027 between the standard 

errors.  

For the item, “Adjusting to academic demands”, the 

item discrimination parameter (slope) estimates ranged from 

1.526 to 1.607 with a difference of 0.081 between the 

parameter estimates.  The standard errors ranged from 0.053 
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to 0.081 with a difference of 0.028 between the standard 

errors.  

For the fourth item in the construct, “Managing time 

effectively”, the item discrimination parameter (slope) 

estimates ranged from 1.208 to 1.240 with a difference of 

0.032 between the parameter estimates.  The standard errors 

ranged from 0.035 to 0.050 with a difference of 0.015 

between the standard errors. 

The correlations for the item discrimination (slope) 

estimates were perfectly correlated (1.00) among the main 

sample and the subsamples.  The standard errors, used to 

assess the accuracy of the estimates, were less than 0.028.  

Because of the correlations among the item discrimination 

(slope) estimates and small standard errors of the 

estimates, the GRM item discrimination (slope) estimates 

are invariant across the YFCY02 main sample and subsamples 

for the Academic Skills construct.  

GRM item difficulty (location) parameter estimates for 

the YFCY02 Academic Skills construct.  For the first item, 

“Understanding what professors expect”, the item difficulty 

parameter (location) estimates ranged from -0.174 to -0.162 

with a difference of 0.012 between the parameter estimates.  
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The standard errors ranged from 0.027 to 0.039 with a 

difference of 0.012 between the standard errors.  

For the item, “Developing effective study skills”, the 

item difficulty parameter (location) estimates ranged from 

0.302 to 0.305 with a difference of 0.003 between the 

parameter estimates.  The standard errors ranged from 0.023 

to 0.032 with a difference of 0.009 between the standard 

errors.  

For the item, “Adjusting to academic demands”, the 

item difficulty parameter (location) estimates ranged from 

-0.099 to -0.086 with a difference of 0.013 between the 

parameter estimates.  The standard errors ranged from 0.022 

to 0.031 with a difference of 0.009 between the standard 

errors.  

For the fourth item in the construct, “Managing time 

effectively”, the item difficulty parameter (location) 

estimates ranged from 0.472 to 0.475 with a difference of 

0.003 between the parameter estimates.  The standard errors 

ranged from 0.026 to 0.037 with a difference of 0.011 

between the standard errors. 

The correlations for the item difficulty parameter 

(location) estimates ranged from 0.999 to 1.000 among the 

main sample and the subsamples.  The standard errors, used  
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Table 31.  GRM Item Parameter Estimates for the Academic Skills Construct from the 
Main and Subsamples of the YFCY02 Dataset 

 

Item/Fit 
Statistics 

 GRM – YFCY02 
(n = 3,652) 

 GRM – YFCY02 
(n = 1,827) 

 GRM – YFCY02 
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 
Understanding 
What 
Professors 
Expect 

 

1.275 
(0.034) 

-0.168 
(0.027) 

493.3 
(15) 

 

1.270 
(0.047) 

-0.162 
(0.039) 

294.2 
(15) 

 

1.280 
(0.048) 

-0.174 
(0.037) 

195.8 
(14) 

 
Developing 
Effective 
Study Skills 

 
1.612 

(0.057) 
0.304 

(0.023) 
326.8 
(15) 

 
1.659 

(0.084) 
0.305 

(0.032) 
159.4 
(14) 

 
1.571 

(0.079) 
0.302 

(0.032) 
156.3 
(14) 

 
Adjusting to 
Academic 
Demands 

 
1.563 

(0.053) 
-0.092 
(0.022) 

398.8 
(14) 

 
1.607 

(0.081) 
-0.099 
(0.031) 

219.3 
(13) 

 
1.526 

(0.072) 
-0.086 
(0.031) 

177.6 
(13) 

 
Managing Time 
Effectively 

 1.223 
(0.035) 

0.473 
(0.026) 

327.2 
(16) 

 1.208 
(0.049) 

0.472 
(0.037) 

166.0 
(15) 

 1.240 
(0.050) 

0.475 
(0.036) 

173.7 
(15) 

 
TOTAL 
Chi-Square 
(DF) 

 

 1546.2 
(60)  

 

 839.1 
(57)  

 

 703.6 
(56)  

 
Note: The YFCY02 Academic Skills construct is comprised of four items using a scale 
with four categories.  Unless otherwise noted, all p values are less than 0.001.
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to assess the accuracy of the estimates were less than 

0.012.  Because of the correlations among the item 

discrimination (slope) estimates and standard errors of the 

estimates, the GRM item difficulty (location) estimates are 

invariant across the YFCY02 main sample and subsamples for 

the Academic Skills construct. 

GRM person parameter estimates for the Academic Skills 

construct from the YFCY03 dataset.  The YFCY03 dataset (n = 

5,081) was split randomly into two subsamples: one 

subsample of 2,451 people and a second subsample of 2,450 

people.  Thirty ability scores were not computed because 

the respondents selected the same answers on all four of 

the Academic Skills construct. 

Figure 25 is the histogram for the GRM attitude 

(theta) estimates for the Academic Skills construct.  The 

mean score for the attitude (theta) scores for the main 

sample (n = 5,051) was -0.369 and the standard deviation  
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Figure 25.  Histogram of GRM Attitude (Theta) Estimates: 
Academic Skills Construct of YFCY03 (n = 5,051; v = 4) 
 

was 1.712.  The mean score for the attitude (theta) scores 

for the first subsample (n = 2,523) was -0.368 and the 

standard deviation was 1.708.  The mean score for the 

attitude (theta) scores second subsample (n = 2,528) was -

0.371 and the standard deviation was 1.716. 

The correlations among the main sample and the 

subsamples ranged from 0.805 to 0.998.  The correlation 

between the first subsample (n = 2,523) and the second 

subsample (n = 2,528) was 0.998.  The correlation between 

the main sample (n = 5,051) and the first subsample (n = 
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2,523) was 0.806.  The correlation between the main sample 

(n = 5,051) and the second subsample (n = 2,528) was 0.805. 

GRM item parameter estimates for the Academic Skills 

construct from the YFCY03 dataset.  Table 32 provides the 

item discrimination (slope) parameter estimates and the 

item difficulty (location) parameter estimates for the five 

items on the Academic Skills construct.  Furthermore, item 

fit statistics (chi-square) are provided in Table 32. 

GRM item discrimination (slope) parameter estimates 

for the YFCY03 Academic Skills construct.  For the first 

item, “Understanding what professors expect”, the item 

discrimination parameter (slope) estimates ranged from 

0.856 to 0.850 with a difference of 0.006 between the 

parameter estimates.  The standard errors ranged from 0.037 

to 0.053 with a difference of 0.016 between the standard 

errors.  

For the item, “Developing effective study skills”, the 

item discrimination parameter (slope) estimates ranged from 

1.924 to 1.794 with a difference of 0.13 between the 

parameter estimates.  The standard errors ranged from 0.106 

to 0.160 with a difference of 0.054 between the standard 

errors.  
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For the item, “Adjusting to academic demands”, the 

item discrimination parameter (slope) estimates ranged from 

2.492 to 2.320 with a difference of 0.172 between the 

parameter estimates.  The standard errors ranged from 0.188 

to 0.276 with a difference of 0.088 between the standard 

errors.  

For the fourth item in the construct, “Managing time 

effectively”, the item discrimination parameter (slope) 

estimates ranged from 1.208 to 1.240 with a difference of 

0.032 between the parameter estimates.  The standard errors 

ranged from 0.035 to 0.050 with a difference of 0.015 

between the standard errors. 

The correlations for the item discrimination (slope) 

estimates ranged from 0.985 to 0.996 among the main sample 

and the subsamples.  The standard errors, used to assess 

the accuracy of the estimates, were less than 0.088.  

Because of the correlations among the item discrimination 

(slope) estimates and the size of the standard errors, the 

GRM item discrimination (slope) estimates are invariant 

across the YFCY03 main sample and subsamples for the 

Academic Skills construct.  
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GRM item difficulty (location) parameter estimates for 

the YFCY03 Academic Skills construct.  For the first item, 

“Understanding what professors expect”, all of the item 

difficulty parameter (location) estimates equaled 0.271.  

The standard errors ranged from 0.028 to 0.040 with a 

difference of 0.012 between the standard errors.  

For the item, “Developing effective study skills”, the 

item difficulty parameter (location) estimates ranged from 

0.654 to 0.669 with a difference of 0.015 between the 

parameter estimates.  The standard errors ranged from 0.024 

to 0.034 with a difference of 0.010 between the standard 

errors.  

For the item, “Adjusting to academic demands”, the 

item difficulty parameter (location) estimates ranged from 

0.198 to 0.243 with a difference of 0.045 between the 

parameter estimates.  The standard errors ranged from 0.020 

to 0.029 with a difference of 0.009 between the standard 

errors.  

For the fourth item in the construct, “Managing time 

effectively”, the item difficulty parameter (location) 

estimates ranged from 0.743 to 0.770 with a difference of 

0.027 between the parameter estimates.  The standard errors 
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ranged from 0.027 to 0.040 with a difference of 0.013 

between the standard errors. 

The correlations for the item difficulty parameter 

(location) estimates ranged from 0.998 to 1.000 among the 

main sample and the subsamples.  The standard errors, used 

to assess the accuracy of the estimates, were less than 

0.012.  Because of the correlations among the item 

discrimination (slope) estimates and standard errors of the 

estimates, the GRM item difficulty (location) estimates are 

invariant across the YFCY03 main sample and subsamples for 

the Academic Skills construct. 

PCM person parameter estimates for the Academic Skills 

construct from the YFCY02 dataset.  The YFCY02 dataset (n = 

3,652) was split randomly into two subsamples: one 

subsample of 1,827 people and a second subsample of 1,825 

people.  Twenty-four attitude (theta) scores were not 

computed because the respondents selected the same answers 

on all four of the Academic Skills items. 
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Table 32.  GRM Item Parameter Estimates for the Academic Skills Construct from the 
Main and Subsamples of the YFCY03 Dataset 

 

Item/Fit 
Statistics 

 GRM – YFCY03 
(n = 5,081) 

 GRM – YFCY03 
(n = 2,541) 

 GRM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 
Understanding 
What 
Professors 
Expect 

 

0.852 
(0.037) 

0.271 
(0.028) 

2128 
(6) 

 

0.856 
(0.053) 

0.271 
(0.040) 

1050 
(6) 

 

0.850 
(0.052) 

0.271 
(0.040) 

957.1 
(6) 

 
Developing 
Effective 
Study Skills 

 
1.854 

(0.106) 
0.654 

(0.024) 
189.3 
(6) 

 
1.924 

(0.160) 
0.669 

(0.034) 
85.8 
(6) 

 
1.794 

(0.141) 
0.638 

(0.034) 
101.1 
(6) 

 
Adjusting to 
Academic 
Demands 

 
2.395 

(0.188) 
0.221 

(0.020) 
219.0 
(4) 

 
2.320 

(0.262) 
0.198 

(0.029) 
136.6 
(4) 

 
2.492 

(0.276) 
0.243 

(0.028) 
79.1 
(4) 

 
Managing Time 
Effectively 

 1.368 
(0.065) 

0.756 
(0.027) 

513.2 
(6) 

 1.336 
(0.091) 

0.770 
(0.040) 

251.6 
(6) 

 1.397 
(0.094) 

0.743 
(0.038) 

265.4 
(6) 

 
TOTAL 
Chi-Square 
(DF) 

 

 3050.1 
(22)  

 

 1525.0 
(22)  

 

 1402.8 
(22)  

 
Note: The YFCY03 Academic Skills construct is comprised of four items using a scale 
with three categories.  Unless otherwise noted, all p values are less than 0.001. 
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Figure 26 is the histogram for the PCM attitude 

(theta) estimates for the Academic Skills construct.  The 

mean score for attitude (theta) scores for the main sample 

(n = 3,628) was -0.024 and the standard deviation was  

 

Figure 26.  Histogram of PCM Attitude (Theta) Estimates: 
Academic Skills Construct of YFCY02 (n = 3,628; v = 4) 
 

1.443. The mean score for the attitude (theta) scores of 

the first subsample (n = 1,814) was -0.026 and the standard 

deviation was 1.443.  The mean score for the attitude 

(theta) scores of the second subsample (n = 1,814) was -

0.022 and the standard deviation was 1.443. 
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 The correlations among the main sample and the 

subsamples ranged from 0.936 to 0.997.  The correlation 

between the first subsample (n = 1,814) and the second 

subsample (n = 1,814) was 0.997.  The correlation between 

the main sample (n = 3,652) and the first subsample (n = 

1,827) was 0.940.  The correlation between the main sample 

(n = 3,652) and the second subsample (n = 1,825) was 0.936. 

PCM item parameter estimates from the YFCY02 dataset.  

Table 33 provides the item difficulty (location) parameter 

estimates for the four items on the Academic Skills 

construct.  The item discrimination (slope) parameter 

estimates were fixed to 1.0 for the partial credit model.  

Furthermore, item fit statistics (chi-square) are provided 

in Table 33. 

For the first item, “Understanding what professors 

expect”, and the item difficulty (location) parameter 

estimates ranged from -0.203 to -0.189 with a difference of 

0.014 between the parameter estimates.  The standard errors 

ranged from 0.028 to 0.040 with a difference of 0.012 

between the standard errors.  

For the item, “Developing effective study skills”, the 

item difficulty (location) parameter estimates ranged from 

0.366 to 0.371 with a difference of 0.005 between the 
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parameter estimates.  The standard errors ranged from 0.027 

to 0.038 with a difference of 0.011 between the parameter 

estimates.  

For the item, “Adjusting to academic demands”, and the 

item difficulty (location) parameter estimates ranged from 

-0.107 to -0.096 with a difference of 0.011 between the 

parameter estimates.  The standard errors ranged from 0.025 

to 0.036 with a difference of 0.011 between the standard 

errors.  

For the fourth item, “Managing time effectively”, the 

item difficulty (location) parameter estimates ranged from 

0.563 to 0.574 with a difference of 0.011 between the 

parameter estimates.  The standard errors ranged from 0.027 

to 0.038 with a difference of 0.011 between the standard 

errors. 

The correlations for the PCM item difficulty 

(location) parameter estimates among the main samples and 

the subsamples ranged from 0.999 to 1.000.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.012 across all four of the items on the 
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Table 33.  PCM Item Parameter Estimates for the Academic Skills Construct from the 
Main and Subsamples of the YFCY02 Dataset 

 

Item/Fit 
Statistics 

 PCM – YFCY02 
(n = 3,652) 

 PCM – YFCY02 
(n = 1,827) 

 PCM – YFCY02 
(n = 1,825) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std 
Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 
Understanding 
What 
Professors 
Expect 

 

1.000 
(***) 

-0.196 
(0.028) 

405.9 
(15) 

 

1.000 
(***) 

-0.189 
(0.040) 

220.8 
(15) 

 

1.000 
(***) 

-0.203 
(0.039) 

198.7 
(15) 

 
Developing 
Effective 
Study Skills 

 
1.000 
(***) 

0.369 
(0.027) 

617.0 
(16) 

 
1.000 
(***) 

0.366 
(0.038) 

324.3 
(16) 

 
1.000 
(***) 

0.371 
(0.038) 

298.5 
(14) 

 
Adjusting to 
Academic 
Demands 

 
1.000 
(***) 

-0.102 
(0.025) 

860.8 
(15) 

 
1.000 
(***) 

-0.107 
(0.036) 

500.1 
(15) 

 
1.000 
(***) 

-0.096 
(0.036) 

376.8 
(15) 

 
Managing Time 
Effectively 

 1.000 
(***) 

0.569 
(0.027) 

448.7 
(16) 

 1.000 
(***) 

0.574 
(0.038) 

221.5 
(14) 

 1.000 
(***) 

0.563 
(0.038) 

231.7 
(14) 

 
TOTAL 
Chi-Square 
(DF) 

 

 2332.6 
(62)  

 

 1266.9 
(60)  

 

 1105.9 
(58)  

 
Note: The YFCY02 Academic Skills construct is comprised of four items with a scale 
with four categories.  Unless otherwise noted, all p values are less than 0.001.
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Academic Skills construct.  Because of the high 

correlations among the item difficulty (location) estimates 

and small standard errors of the estimates, the PCM item 

difficulty (location) estimates are invariant across the 

YFCY02 main sample and subsamples for Social Agency 

construct. 

PCM person parameter estimates for the Academic Skills 

construct from the YFCY03 dataset.  The YFCY03 dataset (n = 

5,081) was split randomly into two subsamples: one 

subsample of 2,451 people and a second subsample of 2,450 

people.  Thirty attitude (theta) scores were not computed 

because the respondents selected the same answers on all 

four of the Academic Success construct. 

Figure 27 is the histogram for the PCM attitude 

(Theta) estimates for the Academic Success construct.  The 

mean score for the attitude (theta) scores of the main 

sample (n = 5,081) was -0.340 and the standard deviation 

was 1.775.  The mean score for the attitude (theta) scores 

of the first subsample (n = 2,523) was -0.333 and the 

standard deviation was 1.768.  The mean score for the 
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Figure 27.  Histogram of PCM Attitude (Theta) Estimates: 
Academic Skills Construct of YFCY03 (n = 5,051; v = 4) 

 

attitude (theta) scores of the second subsample (n = 2,528) 

was -0.347 and the standard deviation was 1.784. 

The correlations among the main sample and the 

subsamples ranged from 0.801 to 0.998.  The correlation 

between the first subsample (n = 2,523) and the second 

subsample (n = 2,450) was 0.998.  The correlation between 

the main sample (n = 5,081) and the first subsample (n = 

2,523) was 0.803.  The correlation between the main sample 

(n = 5,081) and the second subsample (n = 2,450) was 0.801. 
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PCM item parameter estimates for the Academic Skills 

construct from the YFCY03 dataset.  Table 34 provides the 

item difficulty (location) parameter estimates for the four 

items on the Academic Skills construct.  The item 

discrimination (slope) parameter estimates were fixed to 

1.0 for the partial credit model.  Furthermore, item fit 

statistics (chi-square) are provided in Table 34.  

PCM item difficulty (location) parameter estimates for 

the YFCY03 Academic Skills construct.  For the first item, 

“Understanding what professors expect”, the item difficulty 

(location) parameter estimates ranged from 0.153 to 0.242 

with a difference of 0.089 between the parameter estimates.  

The standard errors ranged from 0.030 to 0.043 with a 

difference of 0.013 between the standard errors.  

For the item, “Developing effective study skills”, the 

item difficulty (location) parameter estimates ranged from 

0.507 to 0.520 with a difference of 0.013 between the 

parameter estimates.  The standard errors ranged from 0.041 

to 0.059 with a difference of 0.018 between the parameter 

estimates.  
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Table 34.  PCM Item Parameter Estimates for the Academic Skills Construct from the 
Main and Subsamples of the YFCY03 Dataset 
 

Item/Fit 
Statistics 

 PCM – YFCY03 
(n = 5,081) 

 PCM – YFCY03 
(n = 2,541) 

 PCM – YFCY03 
(n = 2,540) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

CHI-
SQUARE 
(DF) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

CHI-
SQUARE 
(DF) 

 
Understanding 
What 
Professors 
Expect 

 

1.000 
(***) 

0.198 
(0.030) 

799.4 
(5) 

 

1.000 
(***) 

0.242 
(0.043) 

325.8 
(5) 

 

1.000 
(***) 

0.153 
(0.042) 

419.1 
(5) 

 
Developing 
Effective 
Study Skills 

 
1.000 
(***) 

0.514 
(0.041) 

654.8 
(5) 

 
1.000 
(***) 

0.520 
(0.059) 

329.0 
(5) 

 
1.000 
(***) 

0.507 
(0.057) 

310.9 
(5) 

 
Adjusting to 
Academic 
Demands 

 
1.000 
(***) 

0.640 
(0.030) 

1048.3 
(5) 

 
1.000 
(***) 

0.585 
(0.042) 

513.1 
(5) 

 
1.000 
(***) 

0.703 
(0.042) 

550.5 
(5) 

 
Managing Time 
Effectively 

 1.000 
(***) 

0.783 
(0.040) 

401.7 
(5) 

 1.000 
(***) 

0.823 
(0.057) 

191.2 
(5) 

 1.000 
(***) 

0.748 
(0.057) 

207.7 
(5) 

 
TOTAL 
Chi-Square 
(DF) 

 

 2904.4 
(20)  

 

 1359.2 
(20)  

 

 1488.4 
(20)  

 
Note: The YFCY03 Academic Skills construct is comprised of four items using a scale 
with three categories.  Unless otherwise noted, all p values are less than 0.001.
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For the item, “Adjusting to academic demands”, the 

item difficulty (location) parameter estimates ranged from 

0.703 to 0.585 with a difference of 0.118 between the 

parameter estimates.  The standard errors ranged from 0.030 

to 0.042 with a difference of 0.012 between the standard 

errors.  

For the fourth item, “Managing time effectively”, the 

item difficulty (location) parameter estimates ranged from 

0.748 to 0.823 with a difference of 0.075 between the 

parameter estimates.  The standard errors ranged from 0.040 

to 0.057 with a difference of 0.017 between the standard 

errors. 

The correlations for the PCM item difficulty 

(location) parameter estimates among the main samples and 

the subsamples ranged from 0.939 to 0.986.  The standard 

errors, used to assess the accuracy of the estimates, were 

less than 0.018 across all four of the items on the 

Academic Skills construct.  

Because of the correlations among the item difficulty 

(location) estimates and small standard errors of the 

estimates, the PCM item difficulty (location) estimates are 

invariant across the YFCY03 main sample and subsamples for 

Social Agency construct. 
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Summary of GRM and PCM Model Fit Assessment 

Because of the limitations of chi-square fit 

statistics with large samples (DeMars, 2005), Hambleton and 

Swaminathan (1985) recommended using three types of 

evidence to evaluate IRT model fit: Validity of model 

assumptions; invariance of item and ability parameters; and 

accuracy of model estimates.  Standard errors were used to 

assess the accuracy of model estimates. 

Both of the graded response model (GRM) and partial 

credit model (PCM) required the assumption of 

unidimensionality.  Factor analyses were used to assess the 

dimensionality of the four constructs Overall Satisfaction, 

Social Agency, Social Self Concept, and Academic Skills.  

All four constructs were determined to be unidimensional 

based on evidence obtained from scree plots and model fit 

statistics. 



 

 

239

 One of the primary distinctions between the GRM and 

PCM are assumptions governing the item discrimination 

(slope) parameter.  For the homogenous GRM, the item 

discrimination parameter is assumed to be constant within a 

polytomous item, but can very across a set of items.  For 

the PCM, the item discrimination parameter (slope) is 

constant within and across items. 

 Table 35 provides the GRM and PCM item parameter 

estimates for the Overall Satisfaction construct.  The GRM 

item discrimination parameters estimates are not similar 

across the five items in the construct.  Because the item 

discrimination parameter estimates are not equivalent for 

the five items in the Overall Satisfaction construct, the 

GRM is a more appropriate model than the PCM for the data 

in the Overall Satisfaction construct.  
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Table 35.  GRM and PCM Item Parameter Estimates for the Overall Satisfaction 
Construct Using the YFCY02 (n = 3,652) and YFCY03 (n = 5,081) Datasets 
 
 

 YFCY02 
(n = 3,652; v = 5) 

 
YFCY03 

(n = 5,081; v = 5) 

 
 GRM Item  

Parameter Estimates 

 PCM Item  
Parameter Estimates 

 GRM Item  
Parameter Estimates 

 PCM Item  
Parameter Estimates 

Item   

SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

Amount of 
Contact with 
Faculty  
 

 0.967 
(0.026) 

0.491 
(0.029) 

 
1.000 
(***) 

0.501 
(0.027) 

 
0.976 

(0.017) 
-0.125 
(0.023) 

 
1.000  
(***) 

-0.088 
(0.02) 

Opportunities 
for Community 
Service  
 

 0.658 
(0.017) 

0.516 
(0.034) 

 
1.000 
(***) 

0.562 
(0.025) 

 
0.927 

(0.015) 
-0.019 
(0.024) 

 
1.000  
(***) 

0.003 
(0.021) 

Relevance of 
Coursework to 
Life  
 

 1.403 
(0.055) 

0.849 
(0.025) 

 
1.000 
(***) 

0.829 
(0.029) 

 
1.305 

(0.029) 
0.336 

(0.020) 

 
1.000  
(***) 

0.343 
(0.021) 

Relevance of 
Coursework to 
Career  
 

 1.077 
(0.029) 

0.287 
(0.027) 

 
1.000 
(***) 

0.277 
(0.027) 

 
1.094 

(0.021) 
-0.197 
(0.022) 

 
1.000  
(***) 

-0.146 
(0.021) 

 
Overall 
Quality of 
Instruction  
 

 1.375 
(0.039) 

-0.086 
(0.025) 

 

1.000 
(***) 

-0.056 
(0.029) 

 

1.222 
(0.023) 

-0.614 
(0.022) 

 

1.000  
(***) 

-0.532 
(0.023) 
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 Table 36 provides the GRM and PCM item parameter 

estimates for the Social Agency construct.  The GRM item 

discrimination parameters estimates are not similar across 

the five items in the construct.  Because the item 

discrimination parameter estimates are not equivalent for 

the five items in the Social Agency construct, the GRM is 

more appropriate model than the PCM for the data in the 

Social Agency construct.  

 Table 37 provides the GRM and PCM item parameter 

estimates for the Social Self-Concept construct.  The GRM 

item discrimination parameters estimates are not similar 

across the five items in the construct.  Because the item 

discrimination parameter estimates are not equivalent for 

the five items in the Social Self-Concept construct, the 

GRM is more appropriate model than the PCM for the data in 

the Social Self-Concept construct.  

 Table 38 provides the GRM and PCM item parameter 

estimates for the Academic Skills construct.  The GRM item 

discrimination parameters estimates are not similar across 

the five items in the construct.  Because the item 

discrimination parameter estimates are not equivalent for 

the five items in the Academic Skills construct, the GRM is 
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Table 36.  GRM and PCM Item Parameter Estimates for the Social Agency Construct 
Using the YFCY02 (n = 3,652) and YFCY03 (n = 5,081) Datasets 
 

 
 YFCY02 

(n = 3,652; v = 5) 

 YFCY03 
(n = 5,081; v = 5) 

 
 GRM Item  

Parameter Estimates 

 PCM Item  
Parameter Estimates 

 GRM Item  
Parameter Estimates 

 PCM Item  
Parameter Estimates 

Item   

SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

 
Influencing 
Social Values   

1.129 
(0.038) 

0.538 
(0.026) 

 1.000 
(***) 

0.498 
(0.029) 

 0.995 
(0.028) 

0.726 
(0.024) 

 1.000 
(***) 

0.709 
(0.026) 

 
Helping 
Others Who 
Are in  
Difficulty   

1.047 
(0.030) 

-0.112 
(0.027) 

 

1.000 
(***) 

-0.081 
(0.028) 

 

0.941 
(0.023) 

-0.115 
(0.024) 

 

1.000 
(***) 

-0.106 
(0.024) 

 
Developing  
Meaningful 
Philosophy of 
Life   

0.619 
(0.018) 

0.226 
(0.038) 

 

1.000 
(***) 

0.226 
(0.027) 

 

0.635 
(0.016) 

0.297 
(0.032) 

 

1.000 
(***) 

0.282 
(0.023) 

 
Helping 
Promote 
Racial 
Understanding   

0.772 
(0.025) 

0.942 
(0.034) 

 

1.000 
(***) 

0.867 
(0.031) 

 

0.757 
(0.021) 

0.936 
(0.030) 

 

1.000 
(***) 

0.889 
(0.027) 

 
Becoming a 
Community 
Leader   

0.818 
(0.024) 

0.680 
(0.032) 

 
1.000 
(***) 

0.667 
(0.029) 

 
0.796 

(0.024) 
1.000 

(0.029) 

 
1.000 
(***) 

0.951 
(0.027) 

 
Integrating 
Spirituality 
into Life   

0.497 
(0.015) 

-0.260 
(0.045) 

 
1.000 
(***) 

-0.323 
(0.027) 

 
0.534 

(0.014) 
0.017 

(0.036) 

 
1.000 
(***) 

-0.091 
(0.022) 
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Table 37.  GRM and PCM Item Parameter Estimates for the Social Self-Concept 
Construct Using the YFCY02 (n = 3,652) and YFCY03 (n = 5,081) Datasets 
 
 

 YFCY02 
(n = 3,652; v = 5) 

 YFCY03 
(n = 5,081; v = 5) 

 
 GRM Item  

Parameter Estimates 

 PCM Item  
Parameter Estimates 

 GRM Item  
Parameter Estimates 

 PCM Item  
Parameter Estimates 

Item  

SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/  
Item 

difficulty 
(Std Error) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

 
Leadership 
Ability  

 1.052 
(0.023) 

-0.616 
(0.026) 

 1.000 
(***) 

-0.515 
(0.025) 

 0.921 
(0.017) 

-0.507 
(0.023) 

 1.000 
(***) 

-0.416 
(0.021) 

 
Public 
Speaking 
Ability  

 0.855 
(0.018) 

0.156 
(0.028) 

 
1.000 
(***) 

0.148 
(0.024) 

 
0.814 

(0.015) 
0.379 

(0.025) 

 
1.000 
(***) 

0.330 
(0.021) 

 
Self-
confidence 
(intellectual) 

 1.153 
(0.025) 

-0.579 
(0.025) 

 
1.000 
(***) 

-0.489 
(0.025) 

 
1.131 

(0.021) 
-0.456 
(0.022) 

 
1.000 
(***) 

-0.391 
(0.022) 

 
Self-
confidence 
(social)  

 1.037 
(0.022) 

-0.150 
(0.025) 

 
1.000 
(***) 

-0.107 
(0.024) 

 
1.046 

(0.020) 
0.016 

(0.021) 

 
1.000 
(***) 

0.034 
(0.020) 

 
Self-
understanding 

 1.035 
(0.022) 

-0.150 
(0.025) 

 
1.000 
(***) 

-0.597 
(0.025) 

 
1.144 

(0.021) 
-0.493 
(0.021) 

 
1.000 
(***) 

-0.428 
(0.022) 
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Table 38.  GRM and PCM Item Parameter Estimates for the Academic Skills Construct 
Using the YFCY02 (n = 3,652) and YFCY03 (n = 5,081) Datasets 
 
 

 YFCY02 
(n = 3,652; v = 5) 

 YFCY03 
(n = 5,081; v = 5) 

 
 GRM Item  

Parameter Estimates 

 PCM Item  
Parameter Estimates 

 GRM Item  
Parameter Estimates 

 PCM Item  
Parameter Estimates 

Item   

SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error)

 SLOPE/ 
Item 

discrimination
(Std Error) 

LOCATION/ 
Item 

difficulty
(Std Error)

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/  
Item 

difficulty 
(Std Error) 

 SLOPE/ 
Item 

discrimination 
(Std Error) 

LOCATION/ 
Item 

difficulty 
(Std Error) 

 
Understanding 
What 
Professors 
Expect 
 

 1.275 
(0.034) 

-0.168 
(0.027) 

 

1.000 
(***) 

-0.196 
(0.028) 

 

0.852 
(0.037) 

0.271 
(0.028) 

 

1.000 
(***) 

0.198 
(0.030) 

 
Developing 
Effective 
Study Skills 
 

 1.612 
(0.057) 

0.304 
(0.023) 

 

1.000 
(***) 

0.369 
(0.027) 

 

1.854 
(0.106) 

0.654 
(0.024) 

 

1.000 
(***) 

0.514 
(0.041) 

 
Adjusting to 
Academic 
Demands  
 

 1.563 
(0.053) 

-0.092 
(0.022) 

 

1.000 
(***) 

-0.102 
(0.025) 

 

2.395 
(0.188) 

0.221 
(0.020) 

 

1.000 
(***) 

0.640 
(0.030) 

 
Managing Time 
Effectively  
 

 1.223 
(0.035) 

0.473 
(0.026) 

 
1.000 
(***) 

0.569 
(0.027) 

 
1.368 

(0.065) 
0.756 

(0.027) 

 
1.000 
(***) 

0.783 
(0.040) 
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More appropriate model than the PCM for the data in the 

Social Self-Concept construct.  

To assess invariance of item and ability parameters 

for the purpose of model fit, De Ayala (2009) explained: 

“The presence of invariance can be used as part of a model-

data fit investigation” (p. 61).  To use IRT parameter 

invariance to assess model fit, the datasets were split 

roughly in half, randomly assigning respondents to each of 

the subsamples.  Then, GRM and PCM person and item 

parameter estimates were obtained using PARSCALE 4.0.  The 

person and item parameters for the main samples and the 

subsamples were compared within each model and year by 

using the Pearson Product-Moment correlation coefficient. 

When compared by construct within the same year and 

same model (YFCY02 & GRM; YFCY02 & PCM; YFCY03 & GRM; 

YFCY03 & PCM), generally, the person and item parameter 

estimates of the main samples and subsamples had high 

correlations (greater than 0.90) and small standard errors 

(less than 0.012).  Because of the high correlations and 

small standard errors of the estimates, both the GRM and 

the PCM parameter estimates were invariant across the main 
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samples and subsamples; seem to be appropriate for the 

YFCY02 and YFCY03 data.  

Based on the assessment of model assumptions, accuracy 

of estimates, and parameter invariance, both the GRM and 

PCM were determined to fit the YFCY02 and YFCY03 data 

satisfactorily. 

Parameter Invariance of IRT Estimates 

The second major research question of the present 

study was: How similar/invariant are person and item 

parameter estimates obtained from two different datasets 

(i.e., identical items, different people) for the 

homogenous graded response model (GRM; Samejima, 1969) and 

the partial credit model (PCM; Masters, 1982)? 

To facilitate comparing the results from Samejima’s 

Graded Response Model (GRM) and Master’s Partial Credit 

Model (PCM), one IRT-specific software package, PARSCALE 4 

for Windows, was used (Embretson & Reise, 2000; Linacre, 

2004).  PARSCALE 4 for Windows used expectation a priori 

(EAP; Bayes estimation) to obtain person parameter 

estimates and maximum likelihood estimation (MLE) to obtain 

item parameter estimates.  
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PARSCALE’s default settings were used to obtain prior 

estimates from a uniform distribution using 30 quadrature 

points.  The fixed prior distribution for person parameter 

estimates (theta) were specified to have a mean = 0.0 and 

standard deviation = 1.0.  Finally, the logistic version of 

GRM and PCM were specified and the constant 1.70 was used. 

To assess parameter invariance between the graded 

response model (GRM) and partial credit model (PCM), two 

major datasets (YFCY02 and YFCY03) were used.  Pearson 

product-moment correlations and scatter plots were used to 

assess parameter invariance.  If a plot of the estimates of 

item calibrations across the groups was approximately 

linear, then the estimates can be assumed invariant. 
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Figure 28.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Overall Satisfaction Construct of YFCY02  
(n = 3,652; v = 5) 

 
 

For the YFCY02 dataset, the correlation was 0.996 

between the GRM and PCM attitude (theta) estimates for the 

Overall Satisfaction construct.  Figure 28 is the scatter 

plot of the GRM and PCM attitude (theta) estimates for the 

YFCY02 Overall Satisfaction construct.  The plot of the 



 

 

249

attitude (theta) estimates by the GRM and PCM models is 

approximately 

 

Figure 29.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Social Agency Construct of YFCY02 (n = 3,652;  
v = 6) 
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Figure 30.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Social Self-Concept Construct of YFCY02  
(n = 3,652; v = 5) 

 
 

linear, indicating that the estimates are invariant. 

For the Social Self-Concept construct, the correlation 

was 0.996 between the GRM and PCM attitude (theta) 

estimates.  Figure 30 is the scatter plot of the GRM and 

PCM attitude (theta) estimates for the YFCY02 Social Self-

Concept construct.  The plot of the attitude (theta) 

estimates by the GRM and PCM models is approximately 

linear, indicating that the estimates are invariant. 
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Figure 31.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Academic Skills Construct of YFCY02  
(n = 3,652; v = 4) 

 
 

For the Academic Skills construct, the correlation was 

0.997 between the GRM and PCM attitude (theta) estimates.  

Figure 31 is the scatter plot of the GRM and PCM attitude 

(theta) estimates for the YFCY02 Academic Skills construct.  

The plot of the attitude (theta) estimates by the GRM and 

PCM models is approximately linear, indicating that the 

estimates are invariant. 
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Figure 32.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Overall Satisfaction Construct of YFCY03  
(n = 5,082; v = 5) 

 
 

For the YFCY03 dataset, the correlation was 0.996 

between the GRM and PCM attitude (theta) estimates for the 

Overall Satisfaction construct.  Figure 32 is the scatter 

plot of the GRM and PCM attitude (theta) estimates for the 

YFCY03 Overall Satisfaction construct.  The plot of the 

attitude (theta) estimates by the GRM and PCM models is 

approximately linear, indicating that the estimates are 

invariant. 
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Figure 33.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Social Agency Construct of YFCY03 (n = 5,082; 
v = 6) 

 
 

For the Social Agency construct, the correlation was 

0.990 between the GRM and PCM attitude (theta) estimates.  

Figure 33 is the scatter plot of the GRM and PCM attitude 

(theta) estimates for the YFCY02 Social Agency construct.  

The plot of the attitude (theta) estimates by the GRM and 

PCM models is approximately linear, indicating that the 

estimates are invariant. 
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Figure 34.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Social Self-Concept Construct of YFCY03  
(n = 5,082; v = 5) 

 
 

For the Social Self-Concept construct, the correlation 

was 0.995 between the GRM and PCM attitude (theta) 

estimates.  Figure 34 is the scatter plot of the GRM and 

PCM attitude (theta) estimates for the YFCY02 Social Self-

Concept construct.  The plot of the attitude (theta) 

estimates by the GRM and PCM models is approximately 

linear, indicating that the estimates are invariant. 
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Figure 35.  Scatter Plot of GRM and PCM Attitude (Theta) 
Estimates: Academic Skills Construct of YFCY03 (n = 5,082; 
v = 4) 

 

For the Academic Skills construct, the correlation was 

0.995 between the GRM and PCM attitude (theta) estimates.  

Figure 35 is the scatter plot of the GRM and PCM attitude 

(theta) estimates for the YFCY02 Academic Skills construct.  

The plot of the attitude (theta) estimates by the GRM and 

PCM models is approximately linear, indicating that the 

estimates are invariant. 
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Pearson product-moment correlations and scatter plots 

were used to assess parameter invariance.    A plot of the 

estimates of item parameter estimates across the groups was 

approximately linear, and then the estimates can be assumed 

invariant. 

The item discrimination (slope) parameter estimates 

were fixed to 1.0 for the partial credit model, so the item 

discrimination (slope) parameter estimates were compared 

across the datasets.  The correlation was 0.828 for the 

YFCY02 and YFCY03 item (slope) parameter estimates for all 

20 items.  Figure 36 is the scatter plot of the YFCY02 and 

YFCY03 item (slope) parameter estimates. 

 For three of the constructs, Overall Satisfaction 

(cmpsat1 - cmpsat5), Social Agency (goal1 – goal6), and 

Social Self-Concept (rate1 - rate5), the item 

discrimination (slope) parameter estimates seem to be 

invariant between the YFCY02 and YFCY03 datasets.  However, 

the items on the Academic Skills (success1 - success4) do 

not appear to be invariant between the YFCY02 and YFYC03 

datasets. 
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Figure 36.  Scatter Plot of GRM Item Discrimination 
Parameter (Slope) Estimates for the YFCY02 and YFCY03 
Datasets (v = 20) 

 
 

The item difficulty (location) parameter estimates 

were compared for the GRM and PCM across datasets.  For the 

YFCY02 and YFCY03 GRM item difficulty (location) parameter 
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estimates, the correlation was 0.716.  For the YFCY02 and 

YFCY03 PCM item difficulty (location) parameter estimates, 

the correlation was 0.705.  

 
Figure 37.  Scatter Plot of GRM and PCM Item Difficulty 
Parameter (Location) Estimates for the YFCY02 and YFCY03 
Datasets (v = 20) 
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For the YFCY02, GRM and PCM item difficulty (location) 

parameter estimates, the correlation was 0.968.  For the 

YFCY03 GRM and PCM item difficulty (location) parameter 

estimates, the correlation was 0.974.  

Figure 37 is the scatter plot of the GRM and PCM item 

Difficulty parameter (location) estimates for the  

YFCY02 and YFCY03 datasets.  The scatter plot and 

correlations indicate that the item difficulty (location) 

parameter estimates were invariant across the GRM and PCM 

within the same dataset.  However, the item parameter 

estimates were not invariant across the two datasets. 

Measurement Invariance Using IRT Methods 

To evaluate measurement invariance using IRT methods, 

the item discrimination and item difficulty parameters 

obtained from the GRM need to be equivalent across 

datasets.  Figure 38 is the scatter plot of GRM item 

difficulty parameter (location) estimates and item 

discrimination (slope) parameter estimates for the YFCY02 

and YFCY03 datasets. 
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Figure 38.  Scatter Plot of GRM Item Difficulty Parameter 
(Location) and Item Discrimination (Slope) Parameter 
Estimates for the YFCY02 and YFCY03 Datasets (v = 20) 

 

The YFCY02 and YFCY03 GRM item discrimination 

parameters (slope) correlation was 0.828.  The YFCY02 and 

YFCY03 GRM item difficulty parameters (location) 

correlation was 0.716.  The correlations and Figure 38 

indicate that the item discrimination parameter estimates 
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were more invariant across the YFCY02 and YFCY03 datasets 

than the item difficulty parameter estimates. 

Ancillary Analysis 

 One of the advantages of using IRT for analyzing 

polytomous ordered data is that the method honors the scale 

of the data. In other words, ordinal data is not treated as 

if it is continuous data. To determine if the type of data 

influenced analytical decisions regarding the 

dimensionality of the four constructs, principal axis 

factor analysis was conducted using both the Pearson and 

Spearman Rho correlation matrices. The SPSS syntax is 

available in Appendix K.  Table 39 provides the eigenvalues 

obtained using Pearson and Spearman Rho correlation 

matrices to assess 
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Table 39.  Eigenvalues Obtained Using Pearson Correlation 
and Spearman Rho Correlation Matrices 
 
  

Pearson Correlation  
Matrix    

Spearman Rho Correlation 
Matrix 

Construct Eigenvalues  
% of 

Variance  Eigenvalues  
% of 

Variance 
Overall 

Satisfaction 
Construct from 

the YFCY02 
Dataset  

(n = 3,652;  
v = 5) 

2.694  54%  2.677  54% 

0.773  15%  0.774  15% 

0.629  13%  0.628  13% 

0.528  11%  0.529  11% 

0.376  8%  0.392  8% 

        
Overall 

Satisfaction 
Construct from 

the YFCY03 
Dataset  

(n = 5,081; 
 v = 5) 

2.717  54%  2.683  54% 

0.818  16%  0.810  16% 

0.621  12%  0.625  12% 

0.502  10%  0.514  10% 

0.342  7%  0.368  7% 

        

Social Agency 
Construct from 

the YFCY02 
Dataset  

(n = 3,652;  
v = 6) 

2.688  45%  2.657  44% 

0.831  14%  0.830  14% 

0.796  13%  0.798  13% 

0.635  11%  0.642  11% 

0.561  9%  0.573  10% 

0.489  8%  0.500  8% 

        

Social Agency 
Construct from 

the YFCY03 
Dataset  

(n = 5,081;  
v = 6) 

2.663  44%  2.643  44% 

0.805  13%  0.807  13% 

0.769  13%  0.770  13% 

0.674  11%  0.676  11% 

0.565  9%  0.571  10% 

0.524  9%  0.532  9% 

        
Social Self-

Concept 
Construct from 

the YFCY02 
Dataset  

(n = 3,652;  
v = 5) 

2.742  55%  2.733  55% 

0.816  16%  0.809  16% 

0.519  10%  0.518  10% 

0.474  9%  0.478  10% 

0.449  9%  0.462  9% 

        
Social Self-

Concept 
Construct from 

the YFCY03 
Dataset  

(n = 5,081;  
v = 5) 

2.662  53%  2.671  53% 

0.877  18%  0.870  17% 

0.536  11%  0.541  11% 

0.483  10%  0.469  9% 

0.443  9%  0.450  9% 

        



 

 

263

Table 39.  Continued 
 
  

Pearson Correlation  
Matrix    

Spearman Rho Correlation 
Matrix 

Construct Eigenvalues  
% of 

Variance  Eigenvalues  
% of 

Variance 
Academic Skills 
Construct from 

the YFCY02 
Dataset  

(n = 3,652;  
v = 4) 

2.680  67%  2.653  66% 

0.643  16%  0.649  16% 

0.352  9%  0.359  9% 

0.325  8%  0.338  8% 

        
Academic Skills 
Construct from 

the YFCY03 
Dataset  

(n = 5,081; 
 v = 4) 

2.488  62%  2.490  62% 

0.708  18%  0.707  18% 

0.410  10%  0.409  10% 

0.393  10%   0.393  10% 
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the dimensionality of the constructs: Overall Satisfaction, 

Social Agency, Social Self-Concept, and, Academic Skills. 

There are no substantive differences between the two sets 

of eigenvalues across all four constructs. Therefore, the 

analytical decisions were not artifacts of the type of 

matrix used to assess dimensionality. 

Summary of Results 

SPSS 15.0 for Windows was used to obtain frequencies 

and descriptive statistics involving the shape, spread, and 

distribution of the YFCY02 and YFCY03 datasets.  The 

majority of the items in both datasets were negatively 

skewed (skewed to the left) and indicated a substantial 

departure from symmetry. 

The first major research question of the present study 

was: How similar/invariant are the factor structures 

obtained from two datasets (i.e., identical items, 

different people)?  The first research question was 

addressed in two parts: (1) Exploring factor structures 

using the YFCY02 dataset; and (2) Assessing factorial 

invariance using the YFCY02 and YFCY03 datasets.  

Exploratory factor analysis (EFA) using YFCY02 was 

used to evaluate factor models.  Parallel analysis 

(O’Conner, 2000) and scree plots (Cattell, 1966) were used 
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to determine the number of factors to retain.  Based on the 

results of the scree plot and parallel analysis, one-

factor, four-factor, five-factor, and seven- factor models 

were selected for further analyses.  After removing items 

that loaded on multiple factors, a four-factor model using 

20 items was selected based on acceptable model fit for the 

YFCY02 and YFCY03 datasets.  The four factors (constructs) 

obtained from the final model were: Overall Satisfaction, 

Social Agency, Social Self Concept, and Academic Skills. 

The Overall Satisfaction construct was comprised of 

five items.  On YFCY02, the five items used a four-category 

scale (Dissatisfied; Neutral; Satisfied; and, Very 

Satisfied).  However, on YFCY03, the items used a five-

category scale (Very dissatisfied; Dissatisfied; Neutral; 

Satisfied; and, Very satisfied).  

While YFCY02 and YFCY03 used different scales, the 

five items were identical between the two surveys: “Amount 

of contact with faculty”; “Opportunities for community 

service”; “Relevance of coursework to life”; “Relevance of 

coursework to career”; and, “Overall quality of 

instruction.” 
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The Social Agency construct was comprised of six items 

that used a four-category scale (Not important; somewhat 

important; Very important; Essential) on YFCY02 and YFCY03.  

The six items were: “Influencing social values”; 

“Helping others who are in difficulty”; “Developing 

Meaningful philosophy of life”; “Helping promote racial 

understanding”; “Becoming a community leader”; and, 

“Integrating spirituality into life.” 

The Social Self-Concept construct was comprised of 

five items that used a five-category scale (Lowest 10%; 

below average; Average; above average; and, Highest 10%) on 

YFCY02 and YFCY03: “Leadership ability”; “Public speaking 

ability”; “Self-confidence (intellectual)”; “Self-

confidence (social)”; and, “Self-understanding.” 

The Academic Skills construct was comprised of four 

items that, on YFCY02, used a four-category scale 

(Unsuccessful; somewhat successful; fairly successful; and, 

Very successful).  The YFCY03 used a three-category scale 

(Unsuccessful, Somewhat successful, and, completely 

successful). 

The four items were identical between YFCY02 and 

YFCY03: “Understanding what professors expect”; “Developing 
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effective study skills”; “Adjusting to academic demands”; 

and, “Managing time effectively.”  

To assess factorial invariance, partial and full 

factorial invariance were examined.  Partial measurement 

invariance is obtained when some of the non-fixed 

pattern/structure coefficients are equivalent.  Full 

measurement invariance is obtained when the 

pattern/structure coefficients are equal (Reise, Widaman, & 

Pugh, 1993).  

The four-factor model fit both datasets equally well 

meeting the criteria for partial measurement invariance.  

When the pattern/structure coefficients for the YFCY02 data 

were run using the YFCY03 dataset and the YFCY03 

pattern/structure coefficients were run using the YFCY02 

dataset, the fit indices were nearly identical, indicating 

that the four-factor model meets the criteria for full 

measurement invariance. 

The second major research question of the present 

study was: How similar/invariant are person and item 

parameter estimates obtained from two different datasets 

(i.e., identical items, different people) for the 

homogenous graded response model (Samejima, 1969) and the 

partial credit model (Masters, 1982)?  Prior to obtaining 
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item response model estimates, model assumptions and model 

fit were assessed.  Finally, measurement invariance of the 

YFCY02 and YFCY03 items was assessed using item response 

model estimates. 

Hambleton and Swaminathan (1985) recommended using 

three types of evidence to evaluate IRT model fit: Validity 

of model assumptions; invariance of item and ability 

parameters; and accuracy of model estimates.  Because the 

homogenous graded response model (GRM) and partial credit 

model (PCM) both assume the data is unidimensional, scree 

plots and fit statistics were used to assess the 

dimensionality of the four constructs: Overall 

Satisfaction, Social Agency, Social Self Concept, and 

Academic Skills.  All four constructs were unidimensional 

for both datasets.  

 One of the primary distinctions between the GRM and 

PCM are assumptions governing the item discrimination 

(slope) parameter.  For the homogenous GRM, the item 

discrimination parameter is assumed to be constant within a 

polytomous item, but can very across a set of items.  For 

the PCM, the item discrimination parameter (slope) is 

constant within and across items.  Assessing the 

equivalence of the item discrimination (slope) parameter 
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estimates indicated that the parameters were not equivalent 

for the majority of items indicating that the homogenous 

GRM was a more appropriate model than the PCM for the both 

datasets.  

To assess parameter invariance between the graded 

response model (GRM) and partial credit model (PCM), 

Pearson product-moment correlations and scatter plots were 

used.  When a plot of the estimates of parameter estimates 

across the groups was approximately linear, then the 

estimates can be assumed invariant.  

For the attitude (theta) estimates from the GRM and 

PCM, the estimates were invariant across the YFCY02 and 

YFCY03 datasets for all four constructs: Overall 

Satisfaction, Social Agency, Social Self Concept, and 

Academic Skills.  The correlations for the GRM attitude 

(theta) estimates and the PCM attitude (theta) estimates 

ranged from 0.990 to 0.997. 

 For the GRM item discrimination (slope) parameter 

estimates, the parameter estimates were invariant across 

the YFCY02 and YFCY03 datasets for three of the constructs: 

Overall Satisfaction, Social Agency, and Social Self-

Concept.  The correlation was 0.828 for the item 

discrimination parameter estimates between the YFCY02 and 
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YFCY03 datasets.  However, the items on the Academic Skills 

do not appear to be invariant between the YFCY02 and YFYC03 

datasets. 

The item difficulty (location) parameter estimates 

were compared for the GRM and PCM across datasets.  For the 

YFCY02 and YFCY03 GRM item difficulty (location) parameter 

estimates, the correlation was 0.716.  For the YFCY02 and 

YFCY03 PCM item difficulty (location) parameter estimates, 

the correlation was 0.705. 

For the YFCY02 GRM and PCM item difficulty (location) 

parameter estimates, the correlation was 0.968.  For the 

YFCY03 GRM and PCM item difficulty (location) parameter 

estimates, the correlation was 0.974.  The item difficulty 

(location) parameter estimates were invariant across the 

GRM and PCM within the same dataset.  However, the item 

parameter estimates were not invariant across the two 

datasets. 

To evaluate measurement invariance using IRT methods, 

the item discrimination and item difficulty parameters 

obtained from the GRM need to be equivalent across 

datasets.  Figure 38 is the scatter plot of GRM item 

difficulty parameter (location) estimates and item 
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discrimination (slope) parameter estimates for the YFCY02 

and YFCY03 datasets. 

The YFCY02 and YFCY03 GRM item discrimination 

parameters (slope) correlation was 0.828.  The YFCY02 and 

YFCY03 GRM item difficulty parameters (location) 

correlation was 0.716.  The correlations and scatter plot 

indicated that the item discrimination parameter estimates 

were more invariant than the item difficulty parameter 

estimates across the YFCY02 and YFCY03 datasets. 
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CHAPTER V 

SUMMARY 
 
 

Chapter V, the discussion section, summarizes the 

results of the two major research questions of the present 

study.  The results of the first major research question, 

using confirmatory factor analysis and item response theory 

to evaluate measurement invariance, were presented in two 

parts: (1) Exploring factor structures using the YFCY02 

dataset; (2) Assessing factorial invariance of the YFCY02 

and YFCY03 datasets using confirmatory factor analysis.   

The results of the second major research question 

addressed IRT parameter invariance for person and item 

parameter estimates obtained from the YFCY02 and YFCY03 

datasets.  The homogenous graded response model (Samejima, 

1969) and the partial credit model (Masters, 1982) were 

selected to evaluate IRT parameter invariance.  Finally, 

confirmatory factor analysis and item response theory were 

used to evaluate measurement invariance.  
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Questions and Methods 

The present study used factor analysis and polytomous 

item response models to explore the invariance of factors 

and item parameter estimates.  The present study addressed 

two research questions: 

1. How similar/invariant are the factor structures 

obtained from two different datasets (i.e., identical 

items, different people)? 

2. How similar/invariant are person and item parameter 

estimates obtained from two different datasets (i.e., 

identical items, different people) for the homogenous 

graded response model (Samejima, 1969) and the partial 

credit model (Masters, 1982)? 

Summary of Major Findings 

The first major research question of the present study 

was: How similar/invariant are the factor structures 

obtained from two datasets (i.e., identical items, 

different people)?  The first research question was 

addressed in two parts: (1) Exploring factor structures 

using the YFCY02 dataset; and (2) Assessing factorial 

invariance using the YFCY02 and YFCY03 datasets.  

Based on the results of the scree plot and parallel 

analysis, four measurement models were selected for 
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evaluation: the one-factor, four-factor, five-factor, and 

seven- factor model.  After removing items that loaded on 

multiple factors, a four-factor model using 20 items was 

selected based on acceptable model fit for the YFCY02 and 

YFCY03 datasets.  The four factors (constructs) obtained 

from the final model were: Overall Satisfaction, Social 

Agency, Social Self Concept, and Academic Skills. 

To assess factorial invariance, partial and full 

factorial invariance were examined.  The four-factor model 

fit both datasets equally well thus meeting the criteria 

for partial measurement invariance.  When the 

pattern/structure coefficients for the YFCY02 data were run 

using the YFCY03 dataset and the YFCY03 pattern/structure 

coefficients were run using the YFCY02 dataset, the fit 

indices were nearly identical, indicating that the four-

factor model meets the criteria for full measurement 

invariance. 

The second major research question of the present 

study was: How similar/invariant are person and item 

parameter estimates obtained from two different datasets 

(i.e., identical items, different people) for the 

homogenous graded response model (Samejima, 1969) and the 

partial credit model (Masters, 1982)?  Prior to obtaining 
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item response model estimates, model assumptions and model 

fit were assessed.  Finally, measurement invariance of the 

YFCY02 and YFCY03 items was assessed using item response 

model estimates. 

Because the homogenous graded response model (GRM) and 

partial credit model (PCM) both assume the data are 

unidimensional, scree plots and fit statistics were used to 

assess the dimensionality of the four constructs: Overall 

Satisfaction, Social Agency, Social Self Concept, and 

Academic Skills.  All four constructs were unidimensional 

for both datasets.  

 One of the primary distinctions between the GRM and 

PCM are assumptions governing the item discrimination 

(slope) parameter.  For the homogenous GRM, the item 

discrimination parameter is assumed to be constant within a 

polytomous item, but can very across a set of items.  For 

the PCM, the item discrimination parameter (slope) is 

constant within and across items.  Assessing the 

equivalence of the item discrimination (slope) parameter 

estimates indicated that the parameters were not equivalent 

for the majority of items indicating that the homogenous 

GRM was a more appropriate model than the PCM for the both 

datasets.  
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To assess parameter invariance between the graded 

response model (GRM) and partial credit model (PCM), 

Pearson product-moment correlations and scatter plots were 

used.  When a plot of the estimates of parameter estimates 

across the groups was approximately linear, then the 

estimates can be assumed invariant.  

For the attitude (theta) estimates from the GRM and 

PCM, the estimates were invariant across the YFCY02 and 

YFCY03 datasets for all four constructs: Overall 

Satisfaction, Social Agency, Social Self Concept, and 

Academic Skills.  The correlations for the GRM attitude 

(theta) estimates and the PCM attitude (theta) estimates 

ranged from 0.990 to 0.997. 

 For the GRM item discrimination (slope) parameter 

estimates, the parameter estimates were invariant across 

the YFCY02 and YFCY03 datasets for three of the constructs: 

Overall Satisfaction, Social Agency, and Social Self-

Concept.  The correlation was 0.828 for the item 

discrimination parameter estimates between the YFCY02 and 

YFCY03 datasets.  However, the items on the Academic Skills 

did not appear to be invariant between the YFCY02 and 

YFYC03 datasets. 
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The item difficulty (location) parameter estimates 

were compared for the GRM and PCM across datasets.  For the 

YFCY02 and YFCY03 GRM item difficulty (location) parameter 

estimates, the correlation was 0.716.  For the YFCY02 and 

YFCY03 PCM item difficulty (location) parameter estimates, 

the correlation was 0.705. 

For the YFCY02 GRM and PCM item difficulty (location) 

parameter estimates, the correlation was 0.968.  For the 

YFCY03 GRM and PCM item difficulty (location) parameter 

estimates, the correlation was 0.974.  The item difficulty 

(location) parameter estimates were invariant across the 

GRM and PCM within the same dataset.  However, the item 

parameter estimates were not invariant across the two 

datasets. 

To evaluate measurement invariance using IRT methods, 

the item discrimination and item difficulty parameters 

obtained from the GRM need to be equivalent across 

datasets.  The YFCY02 and YFCY03 GRM item discrimination 

parameters (slope) correlation was 0.828.  The YFCY02 and 

YFCY03 GRM item difficulty parameters (location) 

correlation was 0.716.  The correlations and scatter plot 

indicated that the item discrimination parameter estimates 
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were more invariant than the item difficulty parameter 

estimates across the YFCY02 and YFCY03 datasets. 

Recommendations for Practice 

The purpose of the present study was to examine the 

invariance of the factor structure and the item response 

model parameter estimates obtained from two different 

datasets (i.e., identical items, different people).  

Factor analysis and IRT approaches have been used to 

assess measurement invariance (Millsap., 2007; Meade & 

Lautenschlager, 2004; Reise, Widaman, & Pugh, 1993).  To 

evaluate measurement invariance, Meade and Lautenschlager 

(2004) recommended using IRT methods first to explore item-

level information and then using factor analysis to explore 

measurement models. 

However, in practice, factor analysis is useful for 

assessing dimensionality of the data.  To use 

unidimensional IRT models, the factor structure needs to be 

assessed for dimensionality.  One recommendation for 

practice contradicts the recommendation of Meade and 

Lautenschlager (2004): Use the factor analysis results from 

addressing dimensionality to explore factorial invariance, 

and then proceed to using IRT procedures. 
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A second recommendation addresses the concerns 

analyzing ordinal data with models (latent trait models) 

intended for use with continuous data.  To measure latent 

traits such as satisfaction with college life, YFCY items 

use polytomous item scales with ordered response categories 

(e.g., strongly disagree, disagree, agree, strongly agree).  

Typically, polytomous scales with ordered data are analyzed 

by assigning integers and then calculating and comparing 

means and standard deviations.  

However, polytomous, ordered data (e.g., Likert 

scales) are problematic for traditional item analysis (Bond 

& Fox, 2001) and factor analyses (Jöreskog & Moustaki, 

2006).  Furthermore, O’Conner (n.d.) recommended using full 

information factor analyses because “commonly endorsed 

items tend to form factors that are distinct from difficult 

or less commonly endorsed items, even when all of the items 

measure the same unidimensional latent variable” (Nunnaly & 

Bernstein, 1994, p. 318).  

In practice, for the present study, using factor 

analysis methods for ordinal data resulted in a smaller 

RMSEA fit statistics, indicating satisfactory model fit, 

than the results from the traditional factor analysis.  

Thompson (2004) recommended using multiple approaches to 
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assess factor structure and unidimensionality, a good 

recommendation for practice. 

Directions for Future Research 

 The present study was limited to examining invariance 

of GRM and PCM person and items parameters across two 

datasets.  For future research, the item-level information 

provided by IRT models needs to be examined. 

A second direction for research is to compare the IRT 

parameter estimates to item discrimination statistics 

obtained from classical test theory analysis.  

Another recommendation for future research is to 

analyze the invariance of factor models and item response 

parameter estimates using hierarchical linear modeling 

software.   

Finally, while one IRT-specific software package 

(PARSCALE 4.0) was used to facilitate comparing GRM and PCM 

parameter estimates, conducting additional analysis using 

Rasch measurement software to obtain PCM and RSM parameter 

estimates would be interesting in the future. 

Conclusions 

In summary, the purpose of the present study was to 

examine the measurement invariance of the factor structure 

and the item response model parameter estimates obtained 
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from a set of items selected from the 2002 and 2003 forms 

of Your First College Year (YFCY).  The selected YFCY items 

used polytomous item scales with ordered response 

categories (e.g., strongly disagree, disagree, agree, 

strongly agree).  However, polytomous, ordered data (e.g., 

Likert scales) are problematic for traditional item 

analysis (Bond & Fox, 2001) and factor analyses (Jöreskog & 

Moustaki, 2006).   

Measurement invariance means that a test or assessment 

measures the same latent trait(s) “in the same way, when 

administered to two or more qualitatively distinct groups 

(e.g., men and women)” (Reise, Widaman, & Pugh, 1993, p. 

552).  To explore the invariance of factor and item 

parameter estimates, the present study used factor analysis 

for ordered data and two different classes of polytomous 

item response models.   

Traditional exploratory, confirmatory, factor analysis 

for ordered data was used to evaluate partial and full 

factorial invariance.  In conclusion, the four-factor model 

fit both the YFCY02 and YFCY03 datasets and met the 

criteria for full and partial measurement invariance.   

The homogeneous graded response model (GRM) and 

partial credit model (PCM) were used to evaluate 
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measurement invariance.  One of the primary distinctions 

between the GRM and PCM are assumptions governing the item 

discrimination (slope) parameter.  For the homogenous GRM, 

the item discrimination parameter is assumed to be constant 

within a polytomous item, but can very across a set of 

items.  For the PCM, the item discrimination parameter 

(slope) is constant within and across items.   

To assess parameter invariance between the graded 

response model (GRM) and partial credit model (PCM), 

Pearson product-moment correlations and scatter plots were 

used.  The correlations and scatter plots of the IRT 

parameter estimates indicated that the item discrimination 

parameter estimates were more invariant than the item 

difficulty parameter estimates across the YFCY02 and YFCY03 

datasets. 

 In summary, using both factor analysis and IRT 

approaches to assess measurement invariance provided two 

fundamental levels of information about survey items.  

Using factor analysis methods provided information about 

full factorial invariance between the two datasets.  Using 

IRT methods to evaluate measurement invariance provided 

information about the parameter invariance of the 

discrimination (a) and item difficulty parameter (b) 
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estimates. Using both factor analysis and IRT approaches to 

evaluate measurement invariance provides information about 

the latent constructs and item level information.  
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APPENDIX A 

YOUR FIRST COLLEGE YEAR 2002 SURVEY (YFYC02)  
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APPENDIX B 

YOUR FIRST COLLEGE YEAR 2003 SURVEY (YFYC03)  
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APPENDIX C 

SPSS SYNTAX FOR EXPLORATORY FACTOR ANALYSIS OF YFCY02 
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FACTOR 
  /VARIABLES cmpsat1 cmpsat2 cmpsat3 cmpsat4 cmpsat5 cmpsat6 cmpsat7 
goal022 goal023 goal026 goal027 goal028 goal029 rate0205 rate0208 
rate0209 rate0210 rate0211 rate0212 success1 success2 success3 success4 
success5 success6 acts0201 acts0211/MISSING LISTWISE /ANALYSIS cmpsat1 
cmpsat2 cmpsat3 cmpsat4 cmpsat5 cmpsat6 cmpsat7 goal022 goal023 goal026 
goal027 goal028 goal029 rate0205 rate0208 rate0209 rate0210 rate0211 
rate0212 success1 success2 success3 success4 success5 success6 acts0201 
acts0211 
  /PRINT INITIAL ROTATION 
  /PLOT EIGEN ROTATION 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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APPENDIX D 

SPSS SYNTAX FOR PARALLEL ANALYSIS  

ADAPTED FROM O’CONNER 2000 
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* Parallel Analysis program. 
 
set mxloops=9000 printback=off width=80  seed = 1953125. 
matrix. 
 
* enter your specifications here. 
compute ncases   = 3652.  
compute nvars    = 27. 
compute ndatsets = 100. 
compute percent  = 95. 
 
* Specify the desired kind of parallel analysis, where: 
  1 = principal components analysis 
  2 = principal axis/common factor analysis. 
compute kind = 2 . 
 
****************** End of user specifications. ****************** 
 
* principal components analysis. 
do if (kind = 1). 
compute evals = make(nvars,ndatsets,-9999). 
compute nm1 = 1 / (ncases-1). 
loop #nds = 1 to ndatsets. 
compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &* 
            cos(6.283185 * uniform(ncases,nvars) ). 
compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)). 
compute d = inv(mdiag(sqrt(diag(vcv)))). 
compute evals(:,#nds) = eval(d * vcv * d). 
end loop. 
end if. 
 
* principal axis / common factor analysis with SMCs on the diagonal. 
do if (kind = 2). 
compute evals = make(nvars,ndatsets,-9999). 
compute nm1 = 1 / (ncases-1). 
loop #nds = 1 to ndatsets. 
compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &* 
            cos(6.283185 * uniform(ncases,nvars) ). 
compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)). 
compute d = inv(mdiag(sqrt(diag(vcv)))). 
compute r = d * vcv * d. 
compute smc = 1 - (1 &/ diag(inv(r)) ). 
call setdiag(r,smc). 
compute evals(:,#nds) = eval(r). 
end loop. 
end if. 
 
* identifying the eigenvalues corresponding to the desired percentile. 
compute num = rnd((percent*ndatsets)/100). 
compute results = { t(1:nvars), t(1:nvars), t(1:nvars) }. 
loop #root = 1 to nvars. 
compute ranks = rnkorder(evals(#root,:)). 
loop #col = 1 to ndatsets. 
do if (ranks(1,#col) = num). 
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compute results(#root,3) = evals(#root,#col). 
break. 
end if. 
end loop. 
end loop. 
compute results(:,2) = rsum(evals) / ndatsets. 
 
print /title="PARALLEL ANALYSIS:". 
do if   (kind = 1). 
print /title="Principal Components". 
else if (kind = 2). 
print /title="Principal Axis / Common Factor Analysis". 
end if. 
compute specifs = {ncases; nvars; ndatsets; percent}. 
print specifs /title="Specifications for this Run:" 
 /rlabels="Ncases" "Nvars" "Ndatsets" "Percent". 
print results /title="Random Data Eigenvalues" 
 /clabels="Root" "Means" "Prcntyle"  /format "f12.6". 
 
do if   (kind = 2). 
print / space = 1. 
print /title="Compare the random data eigenvalues to the". 
print /title="real-data eigenvalues that are obtained from a". 
print /title="Common Factor Analysis in which the # of factors". 
print /title="extracted equals the # of variables/items, and the". 
print /title="number of iterations is fixed at zero;". 
print /title="To obtain these real-data values using SPSS, see the". 
print /title="sample commands at the end of the parallel.sps program,". 
print /title="or use the rawpar.sps program.". 
print / space = 1. 
print /title="Warning: Parallel analyses of adjusted correlation 
matrices". 
print /title="eg, with SMCs on the diagonal, tend to indicate more 
factors". 
print /title="than warranted (Buja, A., & Eyuboglu, N., 1992, Remarks 
on parallel". 
print /title="analysis. Multivariate Behavioral Research, 27, 509-
540.).". 
print /title="The eigenvalues for trivial, negligible factors in the 
real". 
print /title="data commonly surpass corresponding random data 
eigenvalues". 
print /title="for the same roots. The eigenvalues from parallel 
analyses". 
print /title="can be used to determine the real data eigenvalues that 
are". 
print /title="beyond chance, but additional procedures should then be 
used". 
print /title="to trim trivial factors.". 
print / space = 1. 
print /title="Principal components eigenvalues are often used to 
determine". 
print /title="the number of common factors. This is the default in 
most". 
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print /title="statistical software packages, and it is the primary 
practice". 
print /title="in the literature. It is also the method used by many 
factor". 
print /title="analysis experts, including Cattell, who often examined". 
print /title="principal components eigenvalues in his scree plots to 
determine". 
print /title="the number of common factors. But others believe this 
common". 
print /title="practice is wrong. Principal components eigenvalues are 
based". 
print /title="on all of the variance in correlation matrices, including 
both". 
print /title="the variance that is shared among variables and the 
variances". 
print /title="that are unique to the variables. In contrast, 
principal". 
print /title="axis eigenvalues are based solely on the shared 
variance". 
print /title="among the variables. The two procedures are 
qualitatively". 
print /title="different. Some therefore claim that the eigenvalues from 
one". 
print /title="extraction method should not be used to determine". 
print /title="the number of factors for the other extraction method.". 
print /title="The issue remains neglected and unsettled.". 
 
end if. 
 
end matrix. 
 
 
*Commands for obtaining the necessary real-data eigenvalues for 
  principal axis / common factor analysis using SPSS; 
  make sure to insert valid filenames/locations, and 
  remove the '*' from the first columns. 
corr var1 to var27 / matrix out ('filename') / missing = listwise. 
matrix. 
MGET /type= corr /file='filename' . 
compute smc = 1 - (1 &/ diag(inv(cr)) ). 
call setdiag(cr,smc). 
compute evals = eval(cr). 
print { t(1:nrow(cr)) , evals } 
/title="Raw Data Eigenvalues" 
/clabels="Root" "Eigen."  /format "f12.6". 
end matrix. 
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APPENDIX E 

LISREL 8.0 SYNTAX FOR FULL INFORMATION FACTOR ANALYSIS  
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---ONE FACTOR MODEL ----!PRELIS SYNTAX: Can be edited  
SY='C:\Documents and Settings\Jennifer\Desktop\Final Dissertation Draft 
E\Final Dissertation Draft\Data Analysis\DATA\yfcy02r.PSF' 
SE 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35  
SE 36 37  
OFA POM NF=1 
OU MA=CM XT XM  

------ FOUR FACTOR MODEL ----!PRELIS SYNTAX: Can be edited  

SY='C:\Documents and Settings\Jennifer\Desktop\Final Dissertation Draft 
E\Final Dissertation Draft\Data Analysis\DATA\yfcy02r.PSF' 
SE 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35  
SE 36 37  
OFA POM NF=4 
OU MA=CM XT XM  

------ FIVE FACTOR MODEL ----!PRELIS SYNTAX: Can be edited  

SY='C:\Documents and Settings\Jennifer\Desktop\Final Dissertation Draft 
E\Final Dissertation Draft\Data Analysis\DATA\yfcy02r.PSF' 
SE 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35  
SE 36 37  
OFA POM NF=5 
OU MA=CM XT XM  
 

------ SEVEN FACTOR MODEL ----!PRELIS SYNTAX: Can be edited  

SY='C:\Documents and Settings\Jennifer\Desktop\Final Dissertation Draft 
E\Final Dissertation Draft\Data Analysis\DATA\yfcy02r.PSF' 
SE 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35  
SE 36 37  
OFA POM NF=7 
OU MA=CM XT XM  
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SAS SYNTAX FOR CONFIRMATORY FACTOR ANALYSIS  
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****Title ‘4 factors – 27 items – YFCY02’**** 
 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 
y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23 y24 y25 y26 y27; 
cards; 
N 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 
3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 
3652 
cov y1  0.659 . . . . . . . . . . . . . . . . . . . . . . . . . . 
cov y2  0.252 0.680 . . . . . . . . . . . . . . . . . . . . . . . . . 
cov y3  0.280 0.259 0.641 . . . . . . . . . . . . . . . . . . . . . . . 
. 
cov y4  0.230 0.209 0.402 0.676 . . . . . . . . . . . . . . . . . . . . 
. . . 
cov y5  0.254 0.207 0.299 0.298 0.562 . . . . . . . . . . . . . . . . . 
. . . . . 
cov y6  0.218 0.269 0.234 0.222 0.266 0.810 . . . . . . . . . . . . . . 
. . . . . . . 
cov y7  0.211 0.220 0.240 0.234 0.284 0.457 0.666 . . . . . . . . . . . 
. . . . . . . . . 
cov y8  0.069 0.086 0.087 0.049 0.050 0.077 0.061 0.667 . . . . . . . . 
. . . . . . . . . . . 
cov y9  0.061 0.116 0.072 0.064 0.057 0.089 0.086 0.293 0.591 . . . . . 
. . . . . . . . . . . . . 
cov y10 0.048 0.072 0.093 0.059 0.081 0.041 0.035 0.235 0.198 0.980 . . 
. . . . . . . . . . . . . . . 
cov y11 0.051 0.057 0.094 0.051 0.045 0.042 0.035 0.272 0.269 0.353 
0.791 . . . . . . . . . . . . . . . . 
cov y12 0.086 0.154 0.100 0.084 0.077 0.119 0.102 0.307 0.254 0.214 
0.298 0.787 . . . . . . . . . . . . . . . 
cov y13 0.071 0.192 0.091 0.077 0.100 0.184 0.164 0.258 0.256 0.299 
0.205 0.289 1.132 . . . . . . . . . . . . . . 
cov y14 0.095 0.120 0.056 0.062 0.062 0.105 0.110 0.140 0.089 0.091 
0.066 0.335 0.128 0.697 . . . . . . . . . . . . . 
cov y15 0.120 0.116 0.077 0.065 0.076 0.086 0.107 0.141 0.065 0.130 
0.097 0.283 0.125 0.425 0.906 . . . . . . . . . . . . 
cov y16 0.100 0.089 0.107 0.110 0.110 0.090 0.114 0.078 0.034 0.131 
0.041 0.131 0.064 0.277 0.314 0.680 . . . . . . . . . . . 
cov y17 0.090 0.099 0.076 0.078 0.068 0.146 0.162 0.161 0.095 0.083 
0.098 0.235 0.094 0.351 0.353 0.364 0.807 . . . . . . . . . . 
cov y18 0.091 0.079 0.078 0.085 0.079 0.082 0.127 0.119 0.091 0.162 
0.075 0.112 0.121 0.233 0.243 0.347 0.359 0.683 . . . . . . . . . 
cov y19 0.056 0.083 0.080 0.055 0.082 0.036 0.064 0.084 0.058 0.222 
0.099 0.095 0.086 0.170 0.273 0.255 0.119 0.224 0.743 . . . . . . . . 
cov y20 0.169 0.113 0.163 0.137 0.166 0.100 0.131 0.052 0.048 0.070 
0.032 0.059 0.053 0.074 0.091 0.153 0.069 0.109 0.119 0.435 . . . . . . 
. 
cov y21 0.163 0.117 0.172 0.154 0.147 0.096 0.142 0.084 0.073 0.077 
0.040 0.083 0.089 0.102 0.112 0.190 0.106 0.143 0.139 0.257 0.656 . . . 
. . . 
cov y22 0.144 0.094 0.166 0.150 0.167 0.108 0.159 0.066 0.056 0.089 
0.041 0.067 0.064 0.102 0.115 0.223 0.099 0.142 0.156 0.269 0.415 0.609 
. . . . . 
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cov y23 0.134 0.085 0.150 0.140 0.128 0.084 0.124 0.078 0.061 0.054 
0.039 0.078 0.049 0.108 0.110 0.183 0.104 0.136 0.112 0.215 0.449 0.406 
0.702 . . . . 
cov y24 0.329 0.145 0.199 0.154 0.159 0.121 0.132 0.132 0.099 0.071 
0.110 0.164 0.065 0.156 0.179 0.132 0.166 0.126 0.093 0.178 0.228 0.209 
0.247 0.715 . . . 
cov y25 0.105 0.131 0.097 0.106 0.100 0.253 0.281 0.084 0.100 0.028 
0.050 0.119 0.084 0.144 0.105 0.090 0.248 0.115 0.036 0.077 0.107 0.113 
0.104 0.150 0.658 . . 
cov y26 0.062 0.171 0.060 0.047 0.086 0.189 0.137 0.105 0.121 0.064 
0.023 0.123 0.529 0.069 0.069 0.024 0.039 0.030 0.031 0.030 0.062 0.040 
0.034 0.046 0.076 0.690 . 
cov y27 0.040 0.095 0.051 0.052 0.055 0.079 0.068 0.106 0.099 0.148 
0.098 0.108 0.264 0.079 0.098 0.066 0.054 0.081 0.080 0.025 0.027 0.026 
0.009 0.052 0.059 0.197 0.387 
proc print; 
proc calis cov mod; 
lineqs 
y1 =  1.0 f1 + e1, 
y2 =   l2 f1 + e2, 
y3 =   l3 f1 + e3,  
y4 =   l4 f1 + e4, 
y5 =   l5 f1 + e5, 
y6 =   l6 f1 + e6 , 
y7 =   l7 f1 + e7, 
y8 =  1.0 f2 + e8, 
y9 =   l9 f2 + e9, 
y10 = l10 f2 + e10, 
y11 = l11 f2 + e11, 
y12 = l12 f2 + e12, 
y13 = l13 f2 + e13, 
y14 = 1.0 f3 + e14, 
y15 = l15 f3 + e15, 
y16 = l16 f3 + e16, 
y17 = l17 f3 + e17, 
y18 = l18 f3 + e18, 
y19 = 1.0 f4 + e19, 
y20 = l20 f1 + e20,  
y21 = l21 f4 + e21, 
y22 = l22 f4 + e22, 
y23 = l23 f4 + e23, 
y24 = l24 f1 + e24, 
y25 = l25 f1 + e25, 
y26 = l26 f2 + e26, 
y27 = l27 f2 + e27, 
  f1 = 1 f5 + d1, 
   f2 = be2 f5 + d2, 
  f3 = be3 f5 + d3, 
  f4 = be4 f5 + d4; 
std e1-e27=theta1-theta27, 
d1-d4=u1-u4, 
f5=phi1; 
run; 
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******* TITLE ‘FOUR FACTORS – 22 items – YFCY02’ ********* 

data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 
y13 y15 y17 y18  y21 y22 y23 y24 y25 y27; 
cards; 
N 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 
3652 3652 3652 3652 3652 3652 3652 3652 3652 3652  
cov y1  0.659 . . . . . . . . . . . . . . . . . . . . . 
cov y2  0.252 0.680 . . . . . . . . . . . . . . . . . . . . 
cov y3  0.280 0.259 0.641 . . . . . . . . . . . . . . . . . . . 
cov y4  0.230 0.209 0.402 0.676 . . . . . . . . . . . . . . . . . . 
cov y5  0.254 0.207 0.299 0.298 0.562 . . . . . . . . . . . . . . . . . 
cov y6  0.218 0.269 0.234 0.222 0.266 0.810 . . . . . . . . . . . . . . 
. . 
cov y7  0.211 0.220 0.240 0.234 0.284 0.457 0.666 . . . . . . . . . . . 
. . . . 
cov y8  0.069 0.086 0.087 0.049 0.050 0.077 0.061 0.667 . . . . . . . . 
. . . . . . 
cov y9  0.061 0.116 0.072 0.064 0.057 0.089 0.086 0.293 0.591 . . . . . 
. . . . . . . . 
cov y10 0.048 0.072 0.093 0.059 0.081 0.041 0.035 0.235 0.198 0.980 . . 
. . . . . . . . . . 
cov y11 0.051 0.057 0.094 0.051 0.045 0.042 0.035 0.272 0.269 0.353 
0.791 . . . . . . . . . . . 
cov y12 0.086 0.154 0.100 0.084 0.077 0.119 0.102 0.307 0.254 0.214 
0.298 0.787 . . . . . . . . . . 
cov y13 0.071 0.192 0.091 0.077 0.100 0.184 0.164 0.258 0.256 0.299 
0.205 0.289 1.132 . . . . . . . . . 
cov y15 0.120 0.116 0.077 0.065 0.076 0.086 0.107 0.141 0.065 0.130 
0.097 0.283 0.125 0.906 . . . . . . . . 
cov y17 0.090 0.099 0.076 0.078 0.068 0.146 0.162 0.161 0.095 0.083 
0.098 0.235 0.094 0.353 0.807 . . . . . . . 
cov y18 0.091 0.079 0.078 0.085 0.079 0.082 0.127 0.119 0.091 0.162 
0.075 0.112 0.121 0.243 0.359 0.683 . . . . . . 
cov y21 0.163 0.117 0.172 0.154 0.147 0.096 0.142 0.084 0.073 0.077 
0.040 0.083 0.089 0.112 0.106 0.143 0.656 . . . . . 
cov y22 0.144 0.094 0.166 0.150 0.167 0.108 0.159 0.066 0.056 0.089 
0.041 0.067 0.064 0.115 0.099 0.142 0.415 0.609 . . . . 
cov y23 0.134 0.085 0.150 0.140 0.128 0.084 0.124 0.078 0.061 0.054 
0.039 0.078 0.049 0.110 0.104 0.136 0.449 0.406 0.702 . . . 
cov y24 0.329 0.145 0.199 0.154 0.159 0.121 0.132 0.132 0.099 0.071 
0.110 0.164 0.065 0.179 0.166 0.126 0.228 0.209 0.247 0.715 . . 
cov y25 0.105 0.131 0.097 0.106 0.100 0.253 0.281 0.084 0.100 0.028 
0.050 0.119 0.084 0.105 0.248 0.115 0.107 0.113 0.104 0.150 0.658 . 
cov y27 0.040 0.095 0.051 0.052 0.055 0.079 0.068 0.106 0.099 0.148 
0.098 0.108 0.264 0.098 0.054 0.081 0.027 0.026 0.009 0.052 0.059 0.387 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  l2 f1 + e2, 
y3 =  l3 f1 + e3,  
y4 =  l4 f1 + e4, 
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y5 =  l5 f1 + e5 , 
y6 =  l6 f1 + e6, 
y7 =  l7 f1 + e7, 
y8 =  1.0 f2 + e8, 
y9 =  l9 f2 + e9, 
y10 = l10 f2 + e10, 
y11 = l11 f2 + e11, 
y12 = l12 f2 + e12, 
y13 =  l13 f2 + e13, 
y15 =  1.0 f3 + e14, 
y17 =  l15 f3 +  e15, 
y18 =  l16 f3 + e16, 
y21 =  1.0 f4 + e17, 
y22 =  l18 f4 + e18, 
y23 =  l19 f4 + e19,  
y24 =  l20 f1 + e20, 
y25 =  l21 f1 + e21, 
y27 =  l22 f2 + e22, 
  f1 = 1 f5 + d1, 
   f2 = be2 f5 + d2, 
  f3 = be3 f5 + d3, 
  f4 = be4 f5 + d4; 
std e1-e22=theta1-theta22, 
d1-d4=u1-u4, 
f5=phi1; 
run; 
 

******** title ‘4 factors – 20 items – YFCY02’ ********** 

data covmat (type=cov); 

input _type_ $ 1-4 _name_$ 5-8 y1  y2  y3  y4  y5  y8  y9  y10  y11  
y12  y13  y14  y15  y16  y17  y18  y20  y21  y22  y23 ; 
cards; 
N 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 
3652 3652 3652 3652 3652 3652 3652 3652 
cov y1   0.6593 . . . . . . . . . . . . . . . . . . . 
cov y2   0.2517 0.6796 . . . . . . . . . . . . . . . . . . 
cov y3   0.2804 0.2591 0.6410 . . . . . . . . . . . . . . . . . 
cov y4   0.2296 0.2086 0.4018 0.6757 . . . . . . . . . . . . . . . . 
cov y5   0.2542 0.2067 0.2987 0.2983 0.5618 . . . . . . . . . . . . . . 
. 
cov y8   0.0693 0.0864 0.0868 0.0489 0.0497 0.6668 . . . . . . . . . . 
. . . . 
cov y9   0.0605 0.1156 0.0720 0.0639 0.0571 0.2935 0.5913 . . . . . . . 
. . . . . . 
cov y10  0.0477 0.0725 0.0927 0.0595 0.0814 0.2354 0.1978 0.9799 . . . 
. . . . . . . . . 
cov y11  0.0513 0.0568 0.0941 0.0507 0.0450 0.2716 0.2688 0.3529 0.7909 
. . . . . . . . . . . 
cov y12  0.0858 0.1542 0.1003 0.0835 0.0767 0.3067 0.2539 0.2140 0.2979 
0.7872 . . . . . . . . . . 
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cov y13  0.0710 0.1924 0.0906 0.0767 0.0996 0.2581 0.2560 0.2990 0.2048 
0.2894 1.1320 . . . . . . . . . 
cov y14  0.0947 0.1197 0.0564 0.0623 0.0615 0.1401 0.0886 0.0911 0.0662 
0.3351 0.1280 0.6974 . . . . . . . . 
cov y15  0.1202 0.1164 0.0774 0.0651 0.0764 0.1409 0.0654 0.1295 0.0969 
0.2833 0.1249 0.4249 0.9063 . . . . . . . 
cov y16  0.0997 0.0890 0.1075 0.1095 0.1098 0.0782 0.0345 0.1311 0.0412 
0.1312 0.0637 0.2772 0.3140 0.6804 . . . . . . 
cov y17  0.0904 0.0992 0.0760 0.0782 0.0680 0.1605 0.0946 0.0829 0.0977 
0.2352 0.0939 0.3506 0.3527 0.3639 0.8066 . . . . . 
cov y18  0.0908 0.0787 0.0784 0.0852 0.0790 0.1189 0.0913 0.1616 0.0751 
0.1119 0.1211 0.2328 0.2431 0.3466 0.3588 0.6828 . . . . 
cov y20  0.1694 0.1133 0.1631 0.1367 0.1662 0.0523 0.0476 0.0704 0.0320 
0.0595 0.0529 0.0741 0.0907 0.1530 0.0687 0.1092 0.4354 . . . 
cov y21  0.1630 0.1168 0.1724 0.1545 0.1467 0.0836 0.0727 0.0770 0.0400 
0.0833 0.0889 0.1023 0.1121 0.1905 0.1057 0.1426 0.2569 0.6560 . . 
cov y22  0.1436 0.0941 0.1664 0.1500 0.1667 0.0657 0.0557 0.0889 0.0411 
0.0671 0.0636 0.1016 0.1145 0.2232 0.0993 0.1424 0.2685 0.4153 0.6088 . 
cov y23  0.1342 0.0848 0.1502 0.1398 0.1280 0.0778 0.0611 0.0539 0.0393 
0.0779 0.0487 0.1080 0.1104 0.1831 0.1042 0.1360 0.2153 0.4495 0.4063 
0.7015 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  l2 f1 + e2, 
y3 =  l3 f1 + e3,  
y4 =  l4 f1 + e4, 
y5 =  l5 f1 + e5 , 
y8 =  1.0 f2 + e6, 
y9 =  l7 f2 + e7, 
y10 = l8 f2 + e8, 
y11 = l9 f2 + e9, 
y12 = l10 f2 + e10, 
y13 = l11 f2 + e11, 
y14 = 1.0 f3 + e12, 
y15 = l13 f3 + e13, 
y16 = l14 f3 +  e14, 
y17 = l15 f3 + e15, 
y18 = l16 f3 + e16, 
y20 = 1.0 f4 + e17, 
y21 = l18 f4 + e18,  
y22 = l19 f4 + e19, 
Y23 = l20 f4 + e20, 
  f1 = 1 f5 + d1, 
   f2 = be2 f5 + d2, 
  f3 = be3 f5 + d3, 
  f4 = be4 f5 + d4; 
std e1-e20=theta1-theta20, 
d1-d4=u1-u4, 
f5=phi1; 
run; 
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********** title YFCY03 - 4f_20 items ********** 

data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1  y2  y3  y4  y5  y8  y9  y10  y11  
y12  y13  y14  y15  y16  y17  y18  y20  y21  y22  y23 ; 
cards; 
N 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 
5081 5081 5081 5081 5081 5081 5081 5081 
cov y1   0.749 . . . . . . . . . . . . . . . . . . . 
cov y2   0.289 0.678 . . . . . . . . . . . . . . . . . . 
cov y3   0.315 0.282 0.776 . . . . . . . . . . . . . . . . . 
cov y4   0.276 0.218 0.509 0.801 . . . . . . . . . . . . . . . . 
cov y5   0.288 0.195 0.334 0.356 0.597 . . . . . . . . . . . . . . . 
cov y8   0.042 0.084 0.076 0.042 0.044 0.754 . . . . . . . . . . . . . 
. 
cov y9   0.036 0.088 0.045 0.026 0.042 0.260 0.602 . . . . . . . . . . 
. . . 
cov y10  0.002 0.042 0.058 0.046 0.063 0.278 0.197 1.011 . . . . . . . 
. . . . . 
cov y11  0.040 0.072 0.062 0.048 0.039 0.298 0.264 0.349 0.843 . . . . 
. . . . . . . 
cov y12  0.054 0.141 0.095 0.083 0.069 0.354 0.240 0.265 0.321 0.834 . 
. . . . . . . . . 
cov y13  0.075 0.127 0.092 0.082 0.097 0.295 0.258 0.306 0.206 0.288 
1.138 . . . . . . . . . 
cov y14  0.053 0.105 0.061 0.070 0.076 0.191 0.114 0.116 0.081 0.374 
0.164 0.809 . . . . . . . . 
cov y15  0.068 0.085 0.059 0.055 0.067 0.188 0.093 0.163 0.123 0.343 
0.160 0.494 0.990 . . . . . . . 
cov y16  0.077 0.044 0.090 0.105 0.105 0.094 0.021 0.137 0.046 0.147 
0.059 0.262 0.267 0.690 . . . . . . 
cov y17  0.061 0.074 0.074 0.066 0.071 0.171 0.099 0.076 0.089 0.231 
0.117 0.371 0.370 0.356 0.879 . . . . . 
cov y18  0.066 0.059 0.080 0.079 0.085 0.141 0.078 0.174 0.082 0.143 
0.140 0.261 0.247 0.340 0.387 0.697 . . . . 
cov y20  0.113 0.069 0.120 0.118 0.118 0.018 0.011 0.039 0.010 0.037 
0.048 0.056 0.046 0.098 0.039 0.068 0.283 . . . 
cov y21  0.102 0.074 0.138 0.136 0.114 0.051 0.034 0.050 0.029 0.070 
0.056 0.086 0.061 0.131 0.084 0.099 0.132 0.366 . . 
cov y22  0.103 0.069 0.121 0.122 0.114 0.035 0.019 0.058 0.022 0.057 
0.047 0.086 0.077 0.151 0.073 0.103 0.142 0.207 0.340 . 
cov y23  0.101 0.073 0.111 0.118 0.100 0.046 0.029 0.037 0.006 0.066 
0.048 0.109 0.084 0.139 0.091 0.108 0.109 0.227 0.209 0.395 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  l2 f1 + e2, 
y3 =  l3 f1 + e3,  
y4 =  l4 f1 + e4, 
y5 =  l5 f1 + e5 , 
y8 =  1.0 f2 + e6, 
y9 =  l7 f2 + e7, 
y10 = l8 f2 + e8, 
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y11 = l9 f2 + e9, 
y12 = l10 f2 + e10, 
y13 = l11 f2 + e11, 
y14 = 1.0 f3 + e12, 
y15 = l13 f3 + e13, 
y16 = l14 f3 +  e14, 
y17 = l15 f3 + e15, 
y18 = l16 f3 + e16, 
y20 = 1.0 f4 + e17, 
y21 = l18 f4 + e18,  
y22 = l19 f4 + e19, 
Y23 = l20 f4 + e20, 
  f1 = 1 f5 + d1, 
   f2 = be2 f5 + d2, 
  f3 = be3 f5 + d3, 
  f4 = be4 f5 + d4; 
std e1-e20=theta1-theta20, 
d1-d4=u1-u4, 
f5=phi1; 
run; 
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APPENDIX G 

PRELIS/LISREL SYNTAX FOR CONFIRMATORY FACTOR ANALYSIS  

FOR ORDINAL DATA   
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CFA Model - WLS YFCY02_20 
Observed Variables: 
success1 success2 success3 success4 
rate0205 rate0208 rate0209 rate0210 rate0211 
goal022 goal023 goal026 goal027 goal028 goal029 
cmpsat1 cmpsat2 cmpsat3 cmpsat4 cmpsat5 
Correlation Matrix from File yfcy02.pcm 
Asymptotic covariance matrix from file yfcy02.acc 
Sample Size: 3652 
Latent variables: success rate goal cmpsat 
Relationships: 
success1 success2 success3 success4 = success  
rate0205 rate0208 rate0209 rate0210 rate0211  = rate  
goal022 goal023 goal026 goal027 goal028 goal029 = goal 
cmpsat1 cmpsat2 cmpsat3 cmpsat4 cmpsat5 = cmpsat 
LISREL output: ND=3 SC ME=WLS 
Path Diagram 
End of Problem 
 
 
 
CFA Model - WLS YFCY03_20 
Observed Variables: 
cmpsat1 cmpsat2 cmpsat3 cmpsat4 cmpsat5 
goal0305 goal0309 goal0315 goal0317 goal0319 goal0320 
rate0308 rate0313 rate0316 rate0317 rate0318 
success1 success2 success3 success4 
Correlation Matrix from File yfcy0320.pcm 
Asymptotic covariance matrix from file yfcy0320.acc 
Sample Size: 3652 
Latent variables: cmpsat goal rate success    
Relationships: 
cmpsat1 cmpsat2 cmpsat3 cmpsat4 cmpsat5 = cmpsat 
goal0305 goal0309 goal0315 goal0317 goal0319 goal0320 = goal 
rate0308 rate0313 rate0316 rate0317 rate0318  = rate  
success1 success2 success3 success4 = success  
LISREL output: ND=3 SC ME=WLS 
Path Diagram 
End of Problem 
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 APPENDIX H 

SAS PROC CALIS SYNTAX FOR CONFIRMATORY FACTOR ANALYSIS  

FOUR FACTOR MODEL USING THE YFCY03 DATASET  
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********** title YFCY03 - 4f_20 items ********** 

data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1  y2  y3  y4  y5  y8  y9  y10  y11  
y12  y13  y14  y15  y16  y17  y18  y20  y21  y22  y23 ; 
cards; 
N 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 
5081 5081 5081 5081 5081 5081 5081 5081 
cov y1   0.749 . . . . . . . . . . . . . . . . . . . 
cov y2   0.289 0.678 . . . . . . . . . . . . . . . . . . 
cov y3   0.315 0.282 0.776 . . . . . . . . . . . . . . . . . 
cov y4   0.276 0.218 0.509 0.801 . . . . . . . . . . . . . . . . 
cov y5   0.288 0.195 0.334 0.356 0.597 . . . . . . . . . . . . . . . 
cov y8   0.042 0.084 0.076 0.042 0.044 0.754 . . . . . . . . . . . . . 
. 
cov y9   0.036 0.088 0.045 0.026 0.042 0.260 0.602 . . . . . . . . . . 
. . . 
cov y10  0.002 0.042 0.058 0.046 0.063 0.278 0.197 1.011 . . . . . . . 
. . . . . 
cov y11  0.040 0.072 0.062 0.048 0.039 0.298 0.264 0.349 0.843 . . . . 
. . . . . . . 
cov y12  0.054 0.141 0.095 0.083 0.069 0.354 0.240 0.265 0.321 0.834 . 
. . . . . . . . . 
cov y13  0.075 0.127 0.092 0.082 0.097 0.295 0.258 0.306 0.206 0.288 
1.138 . . . . . . . . . 
cov y14  0.053 0.105 0.061 0.070 0.076 0.191 0.114 0.116 0.081 0.374 
0.164 0.809 . . . . . . . . 
cov y15  0.068 0.085 0.059 0.055 0.067 0.188 0.093 0.163 0.123 0.343 
0.160 0.494 0.990 . . . . . . . 
cov y16  0.077 0.044 0.090 0.105 0.105 0.094 0.021 0.137 0.046 0.147 
0.059 0.262 0.267 0.690 . . . . . . 
cov y17  0.061 0.074 0.074 0.066 0.071 0.171 0.099 0.076 0.089 0.231 
0.117 0.371 0.370 0.356 0.879 . . . . . 
cov y18  0.066 0.059 0.080 0.079 0.085 0.141 0.078 0.174 0.082 0.143 
0.140 0.261 0.247 0.340 0.387 0.697 . . . . 
cov y20  0.113 0.069 0.120 0.118 0.118 0.018 0.011 0.039 0.010 0.037 
0.048 0.056 0.046 0.098 0.039 0.068 0.283 . . . 
cov y21  0.102 0.074 0.138 0.136 0.114 0.051 0.034 0.050 0.029 0.070 
0.056 0.086 0.061 0.131 0.084 0.099 0.132 0.366 . . 
cov y22  0.103 0.069 0.121 0.122 0.114 0.035 0.019 0.058 0.022 0.057 
0.047 0.086 0.077 0.151 0.073 0.103 0.142 0.207 0.340 . 
cov y23  0.101 0.073 0.111 0.118 0.100 0.046 0.029 0.037 0.006 0.066 
0.048 0.109 0.084 0.139 0.091 0.108 0.109 0.227 0.209 0.395 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  l2 f1 + e2, 
y3 =  l3 f1 + e3,  
y4 =  l4 f1 + e4, 
y5 =  l5 f1 + e5 , 
y8 =  1.0 f2 + e6, 
y9 =  l7 f2 + e7, 
y10 = l8 f2 + e8, 
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y11 = l9 f2 + e9, 
y12 = l10 f2 + e10, 
y13 = l11 f2 + e11, 
y14 = 1.0 f3 + e12, 
y15 = l13 f3 + e13, 
y16 = l14 f3 +  e14, 
y17 = l15 f3 + e15, 
y18 = l16 f3 + e16, 
y20 = 1.0 f4 + e17, 
y21 = l18 f4 + e18,  
y22 = l19 f4 + e19, 
Y23 = l20 f4 + e20, 
  f1 = 1 f5 + d1, 
   f2 = be2 f5 + d2, 
  f3 = be3 f5 + d3, 
  f4 = be4 f5 + d4; 
std e1-e20=theta1-theta20, 
d1-d4=u1-u4, 
f5=phi1; 
run; 
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APPENDIX I 

SAS SYNTAX FOR ASSESSING FACTORIAL INVARIANCE -  

YFCY02 DATASET, YFCY03 ESTIMATES 
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data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1  y2  y3  y4  y5  y8  y9  y10  y11  
y12  y13  y14  y15  y16  y17  y18  y20  y21  y22  y23 ; 
cards; 
N 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 3652 
3652 3652 3652 3652 3652 3652 3652 3652 
cov y1   0.6593 . . . . . . . . . . . . . . . . . . . 
cov y2   0.2517 0.6796 . . . . . . . . . . . . . . . . . . 
cov y3   0.2804 0.2591 0.6410 . . . . . . . . . . . . . . . . . 
cov y4   0.2296 0.2086 0.4018 0.6757 . . . . . . . . . . . . . . . . 
cov y5   0.2542 0.2067 0.2987 0.2983 0.5618 . . . . . . . . . . . . . . 
. 
cov y8   0.0693 0.0864 0.0868 0.0489 0.0497 0.6668 . . . . . . . . . . 
. . . . 
cov y9   0.0605 0.1156 0.0720 0.0639 0.0571 0.2935 0.5913 . . . . . . . 
. . . . . . 
cov y10  0.0477 0.0725 0.0927 0.0595 0.0814 0.2354 0.1978 0.9799 . . . 
. . . . . . . . . 
cov y11  0.0513 0.0568 0.0941 0.0507 0.0450 0.2716 0.2688 0.3529 0.7909 
. . . . . . . . . . . 
cov y12  0.0858 0.1542 0.1003 0.0835 0.0767 0.3067 0.2539 0.2140 0.2979 
0.7872 . . . . . . . . . . 
cov y13  0.0710 0.1924 0.0906 0.0767 0.0996 0.2581 0.2560 0.2990 0.2048 
0.2894 1.1320 . . . . . . . . . 
cov y14  0.0947 0.1197 0.0564 0.0623 0.0615 0.1401 0.0886 0.0911 0.0662 
0.3351 0.1280 0.6974 . . . . . . . . 
cov y15  0.1202 0.1164 0.0774 0.0651 0.0764 0.1409 0.0654 0.1295 0.0969 
0.2833 0.1249 0.4249 0.9063 . . . . . . . 
cov y16  0.0997 0.0890 0.1075 0.1095 0.1098 0.0782 0.0345 0.1311 0.0412 
0.1312 0.0637 0.2772 0.3140 0.6804 . . . . . . 
cov y17  0.0904 0.0992 0.0760 0.0782 0.0680 0.1605 0.0946 0.0829 0.0977 
0.2352 0.0939 0.3506 0.3527 0.3639 0.8066 . . . . . 
cov y18  0.0908 0.0787 0.0784 0.0852 0.0790 0.1189 0.0913 0.1616 0.0751 
0.1119 0.1211 0.2328 0.2431 0.3466 0.3588 0.6828 . . . . 
cov y20  0.1694 0.1133 0.1631 0.1367 0.1662 0.0523 0.0476 0.0704 0.0320 
0.0595 0.0529 0.0741 0.0907 0.1530 0.0687 0.1092 0.4354 . . . 
cov y21  0.1630 0.1168 0.1724 0.1545 0.1467 0.0836 0.0727 0.0770 0.0400 
0.0833 0.0889 0.1023 0.1121 0.1905 0.1057 0.1426 0.2569 0.6560 . . 
cov y22  0.1436 0.0941 0.1664 0.1500 0.1667 0.0657 0.0557 0.0889 0.0411 
0.0671 0.0636 0.1016 0.1145 0.2232 0.0993 0.1424 0.2685 0.4153 0.6088 . 
cov y23  0.1342 0.0848 0.1502 0.1398 0.1280 0.0778 0.0611 0.0539 0.0393 
0.0779 0.0487 0.1080 0.1104 0.1831 0.1042 0.1360 0.2153 0.4495 0.4063 
0.7015 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  0.8314 f1 + e2, 
y3 =  1.4694 f1 + e3,  
y4 =  1.4213 f1 + e4, 
y5 =  1.0711 f1 + e5 , 
y8 =  1.0 f2 + e6, 
y9 =  0.7597 f2 + e7, 
y10 = 0.8875 f2 + e8, 
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y11 = 0.9317 f2 + e9, 
y12 = 1.0312 f2 + e10, 
y13 = 0.8821 f2 + e11, 
y14 = 1.0 f3 + e12, 
y15 = 1.0135 f3 + e13, 
y16 = 0.9171 f3 +  e14, 
y17 = 1.120 f3 + e15, 
y18 = 0.9231 f3 + e16, 
y20 = 1.0 f4 + e17, 
y21 = 1.6655 f4 + e18,  
y22 = 1.595 f4 + e19, 
Y23 = 1.6316 f4 + e20, 
  f1 = 1 f5 + d1, 
   f2 = be2 f5 + d2, 
  f3 = be3 f5 + d3, 
  f4 = be4 f5 + d4; 
std e1-e20=theta1-theta20, 
d1-d4=u1-u4, 
f5=phi1; 
run; 
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APPENDIX J 

SAS SYNTAX FOR ASSESSING FACTORIAL INVARIANCE -  

YFCY03 DATASET, YFCY02 ESTIMATES 
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data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1  y2  y3  y4  y5  y8  y9  y10  y11  
y12  y13  y14  y15  y16  y17  y18  y20  y21  y22  y23 ; 
cards; 
N 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 5081 
5081 5081 5081 5081 5081 5081 5081 5081 
cov y1   0.749 . . . . . . . . . . . . . . . . . . . 
cov y2   0.289 0.678 . . . . . . . . . . . . . . . . . . 
cov y3   0.315 0.282 0.776 . . . . . . . . . . . . . . . . . 
cov y4   0.276 0.218 0.509 0.801 . . . . . . . . . . . . . . . . 
cov y5   0.288 0.195 0.334 0.356 0.597 . . . . . . . . . . . . . . . 
cov y8   0.042 0.084 0.076 0.042 0.044 0.754 . . . . . . . . . . . . . 
. 
cov y9   0.036 0.088 0.045 0.026 0.042 0.260 0.602 . . . . . . . . . . 
. . . 
cov y10  0.002 0.042 0.058 0.046 0.063 0.278 0.197 1.011 . . . . . . . 
. . . . . 
cov y11  0.040 0.072 0.062 0.048 0.039 0.298 0.264 0.349 0.843 . . . . 
. . . . . . . 
cov y12  0.054 0.141 0.095 0.083 0.069 0.354 0.240 0.265 0.321 0.834 . 
. . . . . . . . . 
cov y13  0.075 0.127 0.092 0.082 0.097 0.295 0.258 0.306 0.206 0.288 
1.138 . . . . . . . . . 
cov y14  0.053 0.105 0.061 0.070 0.076 0.191 0.114 0.116 0.081 0.374 
0.164 0.809 . . . . . . . . 
cov y15  0.068 0.085 0.059 0.055 0.067 0.188 0.093 0.163 0.123 0.343 
0.160 0.494 0.990 . . . . . . . 
cov y16  0.077 0.044 0.090 0.105 0.105 0.094 0.021 0.137 0.046 0.147 
0.059 0.262 0.267 0.690 . . . . . . 
cov y17  0.061 0.074 0.074 0.066 0.071 0.171 0.099 0.076 0.089 0.231 
0.117 0.371 0.370 0.356 0.879 . . . . . 
cov y18  0.066 0.059 0.080 0.079 0.085 0.141 0.078 0.174 0.082 0.143 
0.140 0.261 0.247 0.340 0.387 0.697 . . . . 
cov y20  0.113 0.069 0.120 0.118 0.118 0.018 0.011 0.039 0.010 0.037 
0.048 0.056 0.046 0.098 0.039 0.068 0.283 . . . 
cov y21  0.102 0.074 0.138 0.136 0.114 0.051 0.034 0.050 0.029 0.070 
0.056 0.086 0.061 0.131 0.084 0.099 0.132 0.366 . . 
cov y22  0.103 0.069 0.121 0.122 0.114 0.035 0.019 0.058 0.022 0.057 
0.047 0.086 0.077 0.151 0.073 0.103 0.142 0.207 0.340 . 
cov y23  0.101 0.073 0.111 0.118 0.100 0.046 0.029 0.037 0.006 0.066 
0.048 0.109 0.084 0.139 0.091 0.108 0.109 0.227 0.209 0.395 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  0.9028 f1 + e2, 
y3 =  1.3663 f1 + e3,  
y4 =  1.2678 f1 + e4, 
y5 =  1.074 f1 + e5 , 
y8 =  1.0 f2 + e6, 
y9 =  0.9015 f2 + e7, 
y10 = 0.8769 f2 + e8, 
y11 = 0.9714 f2 + e9, 
y12 = 1.0068 f2 + e10, 
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y13 = 0.9108 f2 + e11, 
y14 = 1.0 f3 + e12, 
y15 = 1.0787 f3 + e13, 
y16 = 1.0795 f3 +  e14, 
y17 =1.1745 f3 + e15, 
y18 = 0.9696 f3 + e16, 
y20 = 1.0 f4 + e17, 
y21 = 1.7074 f4 + e18,  
y22 = 1.6112 f4 + e19, 
Y23 = 1.632 f4 + e20, 
  f1 = 1 f5 + d1, 
   f2 = be2 f5 + d2, 
  f3 = be3 f5 + d3, 
  f4 = be4 f5 + d4; 
std e1-e20=theta1-theta20, 
d1-d4=u1-u4, 
f5=phi1; 
run; 
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APPENDIX K 

SPSS SYNTAX FOR ASSESSING UNIDIMENSIONALITY 
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title 'Unidimensionality – CMPSAT02 scale'. 
 
SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=cmpsat2_y1 
cmpsat2_y2 
cmpsat2_y3 
cmpsat2_y4 
cmpsat2_y5/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES cmpsat2_y1 cmpsat2_y2 cmpsat2_y3 cmpsat2_y4 cmpsat2_y5  
/MISSING 
  LISTWISE /ANALYSIS cmpsat2_y1 cmpsat2_y2 cmpsat2_y3 cmpsat2_y4 
cmpsat2_y5 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES cmpsat2_y1 cmpsat2_y2 cmpsat2_y3 cmpsat2_y4 cmpsat2_y5  
/MISSING 
  LISTWISE /ANALYSIS cmpsat2_y1 cmpsat2_y2 cmpsat2_y3 cmpsat2_y4 
cmpsat2_y5 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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title 'Unidimensionality – CMPSAT03 scale'. 
 
SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=cmpsat3_y1 
cmpsat3_y2 
cmpsat3_y3 
cmpsat3_y4 
cmpsat3_y5/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES cmpsat3_y1 cmpsat3_y2 cmpsat3_y3 cmpsat3_y4 cmpsat3_y5  
/MISSING 
  LISTWISE /ANALYSIS cmpsat3_y1 cmpsat3_y2 cmpsat3_y3 cmpsat3_y4 
cmpsat3_y5 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES cmpsat3_y1 cmpsat3_y2 cmpsat3_y3 cmpsat3_y4 cmpsat3_y5  
/MISSING 
  LISTWISE /ANALYSIS cmpsat3_y1 cmpsat3_y2 cmpsat3_y3 cmpsat3_y4 
cmpsat3_y5 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=goal2_y8 
goal2_y9 
goal2_y10 
goal2_y11 
goal2_y12 
goal2_y13/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES goal2_y8 goal2_y9 goal2_y10 goal2_y11 goal2_y12 
goal2_y13/MISSING 
  LISTWISE /ANALYSIS goal2_y8 goal2_y9 goal2_y10 goal2_y11 goal2_y12 
goal2_y13 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES  goal2_y8 goal2_y9 goal2_y10 goal2_y11 goal2_y12 
goal2_y13/MISSING 
  LISTWISE /ANALYSIS goal2_y8 goal2_y9 goal2_y10 goal2_y11 goal2_y12 
goal2_y13 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=goal3_y8 
goal3_y9 
goal3_y10 
goal3_y11 
goal3_y12 
goal3_y13/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES goal3_y8 goal3_y9 goal3_y10 goal3_y11 goal3_y12 
goal3_y13/MISSING 
  LISTWISE /ANALYSIS goal3_y8 goal3_y9 goal3_y10 goal3_y11 goal3_y12 
goal3_y13 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES  goal3_y8 goal3_y9 goal3_y10 goal3_y11 goal3_y12 
goal3_y13/MISSING 
  LISTWISE /ANALYSIS goal3_y8 goal3_y9 goal3_y10 goal3_y11 goal3_y12 
goal3_y13 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=rate2_y14 rate2_y15 rate2_y16 rate2_y17 
rate2_y18/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES rate2_y14 rate2_y15 rate2_y16 rate2_y17 rate2_y18/MISSING 
  LISTWISE /ANALYSIS rate2_y14 rate2_y15 rate2_y16 rate2_y17 rate2_y18 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES  rate2_y14 rate2_y15 rate2_y16 rate2_y17 rate2_y18/MISSING 
  LISTWISE /ANALYSIS rate2_y14 rate2_y15 rate2_y16 rate2_y17 rate2_y18 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=rate3_y14 rate3_y15 rate3_y16 rate3_y17 
rate3_y18/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES rate3_y14 rate3_y15 rate3_y16 rate3_y17 rate3_y18/MISSING 
  LISTWISE /ANALYSIS rate3_y14 rate3_y15 rate3_y16 rate3_y17 rate3_y18 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES  rate3_y14 rate3_y15 rate3_y16 rate3_y17 rate3_y18/MISSING 
  LISTWISE /ANALYSIS rate3_y14 rate3_y15 rate3_y16 rate3_y17 rate3_y18 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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title 'Unidimensionality – SUCCESS02 scale'. 
 
SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=success2_y20 success2_y21 success2_y22 
success2_y23/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES success2_y20 success2_y21 success2_y22 
success2_y23/MISSING 
  LISTWISE /ANALYSIS success2_y20 success2_y21 success2_y22 
success2_y23 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES  success2_y20 success2_y21 success2_y22 
success2_y23/MISSING 
  LISTWISE /ANALYSIS success2_y20 success2_y21 success2_y22 
success2_y23 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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SUBTITLE 'CREATE & SAVE THE SPEARMAN rho MATRIX $$$$$$$'. 
execute.  
nonpar corr variables=success3_y20 success3_y21 success3_y22 
success3_y23/matrix=out(*). 
 
SUBTITLE 'TRICK SPSS INTO THINKING rho^s are Pearson r^s'. 
execute.  
if (ROWTYPE_ eq 'RHO')ROWTYPE_ = 'CORR' . 
execute.  
 
SUBTITLE 'ANALYZE THE SPEARMAN rho^s *************************'. 
execute. 
FACTOR 
  matrix=in(cor = *)/print=ALL/PLOT=EIGEN/ 
  CRITERIA=MINEIGEN(1) ITERATE(25)/EXTRACTION=PAF/ROTATION=VARIMAX . 
 
title 'Pearson Correlation matrix'. 
FACTOR 
  /VARIABLES success3_y20 success3_y21 success3_y22 
success3_y23/MISSING 
  LISTWISE /ANALYSIS success3_y20 success3_y21 success3_y22 
success3_y23 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 
 
title 'CoVariance matrix'. 
FACTOR 
  /VARIABLES  success3_y20 success3_y21 success3_y22 
success3_y23/MISSING 
  LISTWISE /ANALYSIS success3_y20 success3_y21 success3_y22 
success3_y23 
  /PRINT INITIAL EXTRACTION ROTATION 
  /PLOT EIGEN 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=COVARIANCE . 
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APPENDIX L 

SAS SYNTAX FOR CONFIRMATORY FACTOR ANALYSIS TO ASSESS 

UNIDIMENSIONALITY 
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CMPSAT02 – 1f, 5 items 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1  y2  y3  y4  y5 ; 
cards; 
N 3652 3652 3652 3652 3652 3652 
cov y1  0.659 . . . . 
cov y2  0.252 0.680 . . . 
cov y3  0.280 0.259 0.641 . . 
cov y4  0.230 0.209 0.402 0.676 . 
cov y5  0.254 0.207 0.299 0.298 0.562 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  l2 f1 + e2, 
y3 =  l3 f1 + e3,  
y4 =  l4 f1 + e4, 
y5 =  l5 f1 + e5 , 
  f1 = 1 f2 + d1 
  ; 
std e1-e5=theta1-theta5, 
d1=u1, 
f2=phi1; 
run; 
 
 
CMPSAT03 – 1f, 5 items 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y1  y2  y3  y4  y5 ; 
cards; 
N 5081 5081 5081 5081 5081 5081 
cov y1  0.749 . . . . 
cov y2  0.289 0.678 . . . 
cov y3  0.315 0.282 0.776 . . 
cov y4  0.276 0.218 0.509 0.801 . 
cov y5  0.288 0.195 0.334 0.356 0.597 
proc print; 
proc calis cov mod; 
lineqs 
y1 = 1.0 f1 + e1, 
y2 =  l2 f1 + e2, 
y3 =  l3 f1 + e3,  
y4 =  l4 f1 + e4, 
y5 =  l5 f1 + e5 , 
  f1 = 1 f2 + d1 
  ; 
std e1-e5=theta1-theta5, 
d1=u1, 
f2=phi1; 
run; 
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Goal02 – 1f, 6 items 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y8 y9 y10 y11 y12 y13 ; 
cards; 
N 3652 3652 3652 3652 3652 3652 3652 
cov y8  0.667 . . . . . 
cov y9  0.293 0.591 . . . . 
cov y10 0.235 0.198 0.980 . . . 
cov y11 0.272 0.269 0.353 0.791 . . 
cov y12 0.307 0.254 0.214 0.298 0.787 . 
cov y13 0.258 0.256 0.299 0.205 0.289 1.132 
proc print; 
proc calis cov mod; 
lineqs 
y8 = 1.0 f1 + e1, 
y9 =  l2 f1 + e2, 
y10 =  l3 f1 + e3,  
y11 =  l4 f1 + e4, 
y12 =  l5 f1 + e5 , 
y13 =  l5 f1 + e6 , 
  f1 = 1 f2 + d1 
  ; 
std e1-e6=theta1-theta6, 
d1=u1, 
f2=phi1; 
run; 
 
Goal03 – 1f, 6 items 
 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y8 y9 y10 y11 y12 y13 ; 
cards; 
N 5081 5081 5081 5081 5081 5081 5081 
cov  y8  0.754 . . . . . 
cov  y9  0.260 0.602 . . . . 
cov  y10 0.278 0.197 1.011 . . . 
cov  y11 0.298 0.264 0.349 0.843 . . 
cov  y12 0.354 0.240 0.265 0.321 0.834 . 
cov  y13 0.295 0.258 0.306 0.206 0.288 1.138 
proc print; 
proc calis cov mod; 
lineqs 
y8 = 1.0 f1 + e1, 
y9 =  l2 f1 + e2, 
y10 =  l3 f1 + e3,  
y11 =  l4 f1 + e4, 
y12 =  l5 f1 + e5 , 
y13 =  l5 f1 + e6 , 
  f1 = 1 f2 + d1 
  ; 
std e1-e6=theta1-theta6, 
d1=u1, 
f2=phi1; 
run; 
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Rate02 – 1f, 5 items 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y14 y15 y16 y17 y18 ; 
cards; 
N 3652 3652 3652 3652 3652 3652 
cov  y14 0.697 . . . . 
cov  y15 0.425 0.906 . . . 
cov  y16 0.277 0.314 0.680 . . 
cov  y17 0.351 0.353 0.364 0.807 . 
cov  y18 0.233 0.243 0.347 0.359 0.683 
proc print; 
proc calis cov mod; 
lineqs 
y14 = 1.0 f1 + e1, 
y15 =  l2 f1 + e2, 
y16 =  l3 f1 + e3,  
y17 =  l4 f1 + e4, 
y18 =  l5 f1 + e5 , 
  f1 = 1 f2 + d1 
  ; 
std e1-e5=theta1-theta5, 
d1=u1, 
f2=phi1; 
run; 
  

Rate03 – 1f, 5 items 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y14 y15 y16 y17 y18 ; 
cards; 
N 5081 5081 5081 5081 5081 5081 
cov y14 0.809 . . . . 
cov y15 0.494 0.990 . . . 
cov y16 0.262 0.267 0.690 . . 
cov y17 0.371 0.370 0.356 0.879 . 
cov y18 0.261 0.247 0.340 0.387 0.697 
proc print; 
proc calis cov mod; 
lineqs 
y14 = 1.0 f1 + e1, 
y15 =  l2 f1 + e2, 
y16 =  l3 f1 + e3,  
y17 =  l4 f1 + e4, 
y18 =  l5 f1 + e5 , 
  f1 = 1 f2 + d1 
  ; 
std e1-e5=theta1-theta5, 
d1=u1, 
f2=phi1; 
run; 
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Succes02 – 1f, 4 items 
 
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y20 y21 y22 y23 ; 
cards; 
N 3652 3652 3652 3652 3652  
cov y20 0.435 . . . 
cov y21 0.257 0.656 . . 
cov y22 0.269 0.415 0.609 . 
cov y23 0.215 0.449 0.406 0.702 
proc print; 
proc calis cov mod; 
lineqs 
y20 = 1.0 f1 + e1, 
y21 =  l2 f1 + e2, 
y22 =  l3 f1 + e3,  
y23 =  l4 f1 + e4, 
  f1 = 1 f2 + d1 
  ; 
std e1-e4=theta1-theta4, 
d1=u1, 
f2=phi1; 
run; 
 
 
Succes03 – 1f, 4 items 
  
data covmat (type=cov); 
input _type_ $ 1-4 _name_$ 5-8 y20 y21 y22 y23 ; 
cards; 
N 5081 5081 5081 5081 5081  
cov y20 0.283 . . . 
cov y21 0.132 0.366 . . 
cov y22 0.142 0.207 0.340 . 
cov y23 0.109 0.227 0.209 0.395 
proc print; 
proc calis cov mod; 
lineqs 
y20 = 1.0 f1 + e1, 
y21 =  l2 f1 + e2, 
y22 =  l3 f1 + e3,  
y23 =  l4 f1 + e4, 
  f1 = 1 f2 + d1 
  ; 
std e1-e4=theta1-theta4, 
d1=u1, 
f2=phi1; 
run; 
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PARSCALE SYNTAX  
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>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                             
>FILES     DFNAME='cmpsat02_3652.dat', SAVE;                                          
>SAVE      PARM='cmpsat02_3652grm.PAR', SCORE='cmpsat02_3652grm.SCO';                
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                          
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=cmpsat02, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;  
 
>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='cmpsat02_1827.dat', SAVE;                                          
>SAVE      PARM='cmpsat02_1827grm.PAR', SCORE='cmpsat02_1827grm.SCO';                 
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                          
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=cmpsat02, NBLOCK=1;                                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                            
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                             
>SCORE  DIST=1, PRINT;                                                                
                                                                                     
>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                             
>FILES     DFNAME='cmpsat02_1825.dat', SAVE;                                          
>SAVE      PARM='cmpsat02_1825grm.PAR', SCORE='cmpsat02_1825grm.SCO';                 
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=cmpsat02, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                             
>SCORE  DIST=1, PRINT;   
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>TITLE  Parscale using the PCM with YFCY02 scale;                                     
>COMMENT                                                                             
>FILES     DFNAME=' cmpsat02_3652.dat', SAVE;                                         
>SAVE      PARM=' cmpsat02_3652PCM.PAR', SCORE=' cmpsat02_3652PCM.SCO';               
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                          
(4A1,1X,5(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;  

>TITLE  Parscale using the PCM with YFCY02 scale;                                     
>COMMENT                                                                              
>FILES     DFNAME=' cmpsat02_1827.dat', SAVE;                                         
>SAVE      PARM=' cmpsat02_1827PCM.PAR', SCORE='cmpsat02_1827PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,5(1A1))                                                                      
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                
>SCORE  DIST=1, PRINT;    
 
>TITLE  Parscale using the PCM with YFCY02 scale;                                     
>COMMENT                                                                             
>FILES     DFNAME=' cmpsat02_1825.dat', SAVE;                                         
>SAVE      PARM=' cmpsat02_1825PCM.PAR', SCORE='cmpsat02_1825PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,5(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;    
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>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='goal02_3652.dat', SAVE;                                            
>SAVE      PARM='goal02_3652GRM.PAR', SCORE='goal02_3652GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=goal02, NBLOCK=1;                                                         
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT; 
 
>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='goal02_1827.dat', SAVE;                                            
>SAVE      PARM='goal02_1827GRM.PAR', SCORE='goal02_1827GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=goal02, NBLOCK=1;                                                         
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;   
 
>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='goal02_1825.dat', SAVE;                                            
>SAVE      PARM='goal02_1825GRM.PAR', SCORE='goal02_1825GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=goal02, NBLOCK=1;                                                         
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;                                                               
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>TITLE  Parscale using the PCM with YFCY02 - cmpsat 6 item, 4 category 
scale;                                                    
>COMMENT                                                                              
>FILES     DFNAME=' goal02_3652.dat', SAVE;                                           
>SAVE      PARM=' goal02_3652PCM.PAR', SCORE=' goal02_3652PCM.SCO';                   
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                  
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                      
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                
>SCORE  DIST=1, PRINT;                                                                
 

>TITLE  Parscale using the PCM with YFCY02 - cmpsat 6 item, 4 category 
scale;                                                    
>COMMENT                                                                              
>FILES     DFNAME=' goal02_1827.dat', SAVE;                                           
>SAVE      PARM=' goal02_1827PCM.PAR', SCORE=' goal02_1827PCM.SCO';                   
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                      
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                
>SCORE  DIST=1, PRINT;   

>TITLE  Parscale using the PCM with YFCY02 - cmpsat 6 item, 4 category 
scale;                                                    
>COMMENT                                                                              
>FILES     DFNAME=' goal02_1825.dat', SAVE;                                           
>SAVE      PARM=' goal02_1825pcm.PAR', SCORE=' goal02_1825pcm.SCO';                   
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT; 
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>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='rate02_3652.dat', SAVE;                                            
>SAVE      PARM='rate02_3652GRM.PAR', SCORE='rate02_3652GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=rate02_5, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT; 

>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='rate02_1827.dat', SAVE;  
>SAVE      PARM='rate02_1827GRM.PAR', SCORE='rate02_1827GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                  
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                      
>TEST TNAME=rate02_5, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                 
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;   

>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='rate02_1825.dat', SAVE;                                           
>SAVE      PARM='rate02_1825GRM.PAR', SCORE='rate02_1825GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                  
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=rate02_5, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;    
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>TITLE  Parscale using the PCM with YFCY02;                                           
>COMMENT                                                                              
>FILES     DFNAME='rate02_3652.dat', SAVE;                                            
>SAVE      PARM='rate02_3652PCM.PAR', SCORE='rate02_3652PCM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                      
>TEST TNAME=YFCY02, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                
>SCORE  DIST=1, PRINT;    

>TITLE  Parscale using the PCM with YFCY02;                                           
>COMMENT                                                                              
>FILES     DFNAME='rate02_1827.dat', SAVE;                                            
>SAVE      PARM='rate02_1827PCM.PAR', SCORE='rate02_1827PCM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                          
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT; 

>TITLE  Parscale using the PCM with YFCY02;                                           
>COMMENT                                                                              
>FILES     DFNAME='rate02_1825.dat', SAVE;                                           
>SAVE      PARM='rate02_1825PCM.PAR', SCORE='rate02_1825PCM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                  
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                      
>TEST TNAME=YFCY02, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                   
;                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT; 



 

 

350

>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='succes02_3652.dat', SAVE;                                          
>SAVE      PARM='succes02_3652GRM.PAR', SCORE='succes02_3652GRM.SCO';                 
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=success, NBLOCK=1;                                                        
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT; 

>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='succes02_1827.dat', SAVE;                                          
>SAVE      PARM='succes02_1827GRM.PAR', SCORE='succes02_1827GRM.SCO';                 
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=success, NBLOCK=1;                                                        
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;                                                                
    

>TITLE  Example of Parscale using the GRM with YFCY02;                                
>COMMENT                                                                              
>FILES     DFNAME='succes02_1825.dat', SAVE;                                          
>SAVE      PARM='succes02_1825GRM.PAR', SCORE='succes02_1825GRM.SCO';                 
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=success, NBLOCK=1;                                                        
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;  
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>TITLE  Parscale using the PCM with YFCY02;                                           
>COMMENT                                                                              
>FILES     DFNAME=' succes02_3652.dat', SAVE;                                         
>SAVE      PARM=' succes02_3652PCM.PAR', SCORE='succes02_3652PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;                                                                
 

>TITLE  Parscale using the PCM with YFCY02;                                           
>COMMENT                                                                              
>FILES     DFNAME=' succes02_1827.dat', SAVE;                                         
>SAVE      PARM=' succes02_1827PCM.PAR', SCORE='succes02_1827PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;                                                                
 

>TITLE  Parscale using the PCM with YFCY02;                                           
>COMMENT                                                                              
>FILES     DFNAME=' succes02_1825.dat', SAVE;                                         
>SAVE      PARM=' succes02_1825PCM.PAR', SCORE='succes02_1825PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;  
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>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                              
>FILES     DFNAME=' cmpsat03_5081.dat ', SAVE;                                        
>SAVE      PARM=' cmpsat03_5081GRM.PAR ', SCORE=' cmpsat03_5081GRM.SCO 
';                                                              
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=cmpsat03, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;   

>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                              
>FILES     DFNAME=' cmpsat03_2541.dat ', SAVE;                                        
>SAVE      PARM=' cmpsat03_2541GRM.PAR ', SCORE=' cmpsat03_2541GRM.SCO 
';                                                              
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=cmpsat03, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT; 

                                                                                      
>TITLE  Example of Parscale using the GRM with YFCY03;                               
>COMMENT                                                                              
>FILES     DFNAME=' cmpsat03_2540.dat ', SAVE;                                        
>SAVE      PARM=' cmpsat03_2540GRM.PAR ', SCORE=' cmpsat03_2540GRM.SCO 
';                                                              
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=cmpsat03, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                 
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;        



 

 

353

>TITLE  Parscale using the PCM with YFCY03;                                          
>COMMENT                                                                              
>FILES     DFNAME=' cmpsat03_5081.dat', SAVE;                                        
>SAVE      PARM=' cmpsat03_5081PCM.PAR', SCORE=' cmpsat03_5081PCM.SCO';               
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                  
   NTEST=1;                                                                           
(4A1,1X,5(1A1))                                                                      
>TEST TNAME=YFCY03, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                
>SCORE  DIST=1, PRINT;  

>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                             
>FILES     DFNAME=' cmpsat03_2541.dat', SAVE;                                         
>SAVE      PARM=' cmpsat03_2541PCM.PAR', SCORE=' cmpsat03_2541PCM.SCO';              
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                          
(4A1,1X,5(1A1))                                                                       
>TEST TNAME=YFCY03, SLOPES=(1.0(0)5),  NBLOCK=1;                                     
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;  

>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME=' cmpsat03_2540.dat', SAVE;                                        
>SAVE      PARM=' cmpsat03_2540PCM.PAR', SCORE=' cmpsat03_2540PCM.SCO';               
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,5(1A1))                                                                       
>TEST TNAME=YFCY03, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;  
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>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                              
>FILES     DFNAME='goal03_5081.dat', SAVE;                                            
>SAVE      PARM='goal03_5081GRM.PAR', SCORE='goal03_5081GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                          
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=goal02, NBLOCK=1;                                                        
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                            
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                             
>SCORE  DIST=1, PRINT; 

>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                             
>FILES     DFNAME='goal03_2541.dat', SAVE;                                            
>SAVE      PARM='goal03_2541GRM.PAR', SCORE='goal03_2541GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                          
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=goal02, NBLOCK=1;                                                        
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                            
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                             
>SCORE  DIST=1, PRINT;  

>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                             
>FILES     DFNAME='goal03_2540.dat', SAVE;                                            
>SAVE      PARM='goal03_2540GRM.PAR', SCORE='goal03_2540GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=goal02, NBLOCK=1;                                                         
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4,ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;    
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>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME=' goal03_5081.dat', SAVE;                                           
>SAVE      PARM=' goal02_5081PCM.PAR', SCORE=' goal02_5081PCM.SCO';                   
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                   ;              
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT; 

>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME=' goal03_2541.dat', SAVE;                                           
>SAVE      PARM=' goal02_2541PCM.PAR', SCORE=' goal02_2541PCM.SCO';                   
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                   ;               
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;  

>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME=' goal03_2540.dat', SAVE;                                          
>SAVE      PARM=' goal02_2540PCM.PAR', SCORE=' goal02_2540PCM.SCO';                   
>INPUT NIDCHAR=4, NTOT=6, LENGTH=6,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)4),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=6, NCAT=4, ORIGINAL=(1,2,3,4), 
MODIFIED=(0,1,2,3), SKIP=(1,0,0,0);                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;  
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>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                              
>FILES     DFNAME='rate03_5081.dat', SAVE;  
>SAVE      PARM='rate03_5081GRM.PAR', SCORE='rate03_5081GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                  
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                      
>TEST TNAME=rate02_5, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                 
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;                                                               
                            

>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                             
>FILES     DFNAME='rate03_2541.dat', SAVE;                                            
>SAVE      PARM='rate03_2541GRM.PAR', SCORE='rate03_2541GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=rate02_5, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;  

>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                              
>FILES     DFNAME='rate03_2540.dat', SAVE;                                            
>SAVE      PARM='rate03_2540GRM.PAR', SCORE='rate03_2540GRM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=rate02_5, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5,ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4);                                                 
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;  
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>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME='rate03_5081.dat', SAVE;                                            
>SAVE      PARM='rate03_5081PCM.PAR', SCORE='rate03_5081PCM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;   
 
>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME='rate03_2541.dat', SAVE;                                            
>SAVE      PARM='rate03_2541PCM.PAR', SCORE='rate03_2541PCM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                   
;                                    
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;   
 
>TITLE  Parscale using the PCM with YFCY03;                                          
>COMMENT                                                                              
>FILES     DFNAME='rate03_2540.dat', SAVE;                                           
>SAVE      PARM='rate03_2540PCM.PAR', SCORE='rate03_2540PCM.SCO';                     
>INPUT NIDCHAR=4, NTOT=5, LENGTH=5,                                                  
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                      
>TEST TNAME=YFCY02, SLOPES=(1.0(0)5),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=5, NCAT=5, ORIGINAL=(1,2,3,4,5), 
MODIFIED=(0,1,2,3,4), SKIP=(1,0,0,0);                                
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                
>SCORE  DIST=1, PRINT;  
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>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                             
>FILES     DFNAME='succes03_5081.dat', SAVE;                                          
>SAVE      PARM='succes03_5081GRM.PAR', SCORE='succes03_5081GRM.SCO';                 
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                          
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=success, NBLOCK=1;                                                       
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=3,ORIGINAL=(1,2,3), 
MODIFIED=(0,1,2);                                                         
>CALIB SCALE=1.7, DIST=2,                                                            
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                             
>SCORE  DIST=1, PRINT;   
 
>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                             
>FILES     DFNAME='succes03_2541.dat', SAVE;                                          
>SAVE      PARM='succes03_2541GRM.PAR', SCORE='succes03_2541GRM.SCO';                 
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=success, NBLOCK=1;                                                        
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=3,ORIGINAL=(1,2,3), 
MODIFIED=(0,1,2);                                                         
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;   
 
>TITLE  Example of Parscale using the GRM with YFCY03;                                
>COMMENT                                                                              
>FILES     DFNAME='succes03_2540.dat', SAVE;                                          
>SAVE      PARM='succes03_2540GRM.PAR', SCORE='succes03_2540GRM.SCO';                 
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=success, NBLOCK=1;                                                        
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=3,ORIGINAL=(1,2,3), 
MODIFIED=(0,1,2);                                                     
>CALIB SCALE=1.7, DIST=2,                                                             
   GRADED, LOGISTIC,                                                                  
   ITEMFIT=10, NEWTON=3;                                                              
>SCORE  DIST=1, PRINT;  
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>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME=' succes03_5081.dat', SAVE;                                         
>SAVE      PARM=' succes03_5081PCM.PAR', SCORE='succes03_5081PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)3),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=3, ORIGINAL=(1,2,3), 
MODIFIED=(0,1,2), SKIP=(1,0,0,0);                                        
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;                                                                
 
>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                              
>FILES     DFNAME=' succes03_5081.dat', SAVE;                                         
>SAVE      PARM=' succes03_5081PCM.PAR', SCORE='succes03_5081PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)3),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=3, ORIGINAL=(1,2,3), 
MODIFIED=(0,1,2), SKIP=(1,0,0,0);                                        
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;                                                                
 
>TITLE  Parscale using the PCM with YFCY03;                                           
>COMMENT                                                                             
>FILES     DFNAME=' succes03_2540.dat', SAVE;                                         
>SAVE      PARM=' succes03_2540PCM.PAR', SCORE='succes03_2540PCM.SCO';                
>INPUT NIDCHAR=4, NTOT=4, LENGTH=4,                                                   
   NTEST=1;                                                                           
(4A1,1X,6(1A1))                                                                       
>TEST TNAME=YFCY02, SLOPES=(1.0(0)3),  NBLOCK=1;                                      
>BLOCK  BNAME=SURV, NITEMS=4, NCAT=3, ORIGINAL=(1,2,3), 
MODIFIED=(0,1,2), SKIP=(1,0,0,0);                                        
>CALIB LOGISTIC, PARTIAL, NQPT=25, CYCLES=(100,1,1,1,1,1), ITEMFIT=10, 
NEWTON=20,                                                
CRIT=0.01, POSTERIOR;                                                                 
>SCORE  DIST=1, PRINT;                                                                
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