

A BENCHMARKING PLATFORM FOR NETWORK-ON-CHIP (NOC)

MULTIPROCESSOR SYSTEM-ON-CHIPS

A Thesis

by

JAVIER JOSE MALAVE-BONET

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2010

Major Subject: Computer Engineering

A BENCHMARKING PLATFORM FOR NETWORK-ON-CHIP (NOC)

MULTIPROCESSOR SYSTEM-ON-CHIPS

A Thesis

by

JAVIER JOSE MALAVE-BONET

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Rabi N. Mahapatra

Committee Members, Riccardo Bettati

 Paul Gratz

Head of Department, Valerie E. Taylor

December 2010

Major Subject: Computer Engineering

 iii

ABSTRACT

A Benchmarking Platform For Network-On-Chip (NOC) Multiprocessor System-On-

Chips. (December 2010)

Javier Jose Malave-Bonet, B.S., University of Puerto Rico at Mayagüez

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

Network-on-Chip (NOC) based designs have garnered significant attention from both

researchers and industry over the past several years. The analysis of these designs has

focused on broad topics such as NOC component micro-architecture, fault-tolerant

communication, and system memory architecture. Nonetheless, the design of low-

latency, high-bandwidth, low-power and area-efficient NOC is extremely complex due

to the conflicting nature of these design objectives. Benchmarks are an indispensable

tool in the design process; providing thorough measurement and fair comparison

between designs in order to achieve optimal results (i.e performance, cost, quality of

service).

This research proposes a benchmarking platform called NoCBench for evaluating

the performance of Network-on-chip. Although previous research has proposed standard

guidelines to develop benchmarks for Network-on-Chip, this work moves forward and

proposes a System-C based simulation platform for system-level design exploration. It

will provide an initial set of synthetic benchmarks for on-chip network interconnection

validation along with an initial set of standardized processing cores, NOC components,

and system-wide services.

The benchmarks were constructed using synthetic applications described by Task

Graphs For Free (TGFF) task graphs extracted from the E3S benchmark suite. Two

benchmarks were used for characterization: Consumer and Networking. They are

characterized based on throughput and latency. Case studies show how they can be used

to evaluate metrics beyond throughput and latency (i.e. traffic distribution).

 iv

The contribution of this work is two-fold: 1) This study provides a methodology

for benchmark creation and characterization using NoCBench that evaluates important

metrics in NOC design (i.e. end-to-end packet delay, throughput). 2) The developed

full-system simulation platform provides a complete environment for further benchmark

characterization on NOC based MpSoC as well as system-level design space

exploration.

 v

Para toda mi familia por su apoyo y paciencia incondicional. En especial a mis padres

Nydia y Ricarter, mis abuelas Maria Luisa y Aracelia, mi hermano Carlos, todos mis tíos

y primos, en especial a mi tío Luis por ayudarme con su mentoría profesional, mis

suegros Vicente y Juanita, mis cuñados Tito y Nadgie y su esposo Tomás y mi sobrino

Fernando Enrique.

Finalmente, muy espcialmente para mi esposa, Geydie. Gracias por creer en mi,

por tu paciencia y amor durante el arduo trayecto que hemos recogido juntos. Sin tu

amor y apoyo jamás lo hubiera logrado. Te amo.

 vi

ACKNOWLEDGEMENTS

 I would like to thank my committee chair and advisor, Dr. Rabi Mahapatra for his

guidance and support throughout the course of this research.

 Thanks also go to my friends and teammates of the Embedded Co-design team,

Suman, Ayan, Jason and Nikhil, as well as my wife, Geydie, for all the hands-on work

during this research. Their help was key to the completion of this work.

 vii

NOMENCLATURE

APCG Application Characterization Graph

CNI Core Network Interface

CTG Communication Task Graph

CUT Core Under Test

DAG Directed Acyclic Graph

DMTE Data Memory Transaction Engine

EEMBC Embedded Microprocessor Benchmark Consortium

FSM Finite State Machine

GALS Global Asynchronous Locally Synchronous

LS Latency Sensitive

MM Memory Manager

NOC Network on Chip

OCP Open Core Protocol

PE Processing Element

PID Process ID

PCB Process Control Block

SOC System on Chip

TGFF Task Graphs For Free

TS Throughput Sensitive

 viii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

NOMENCLATURE .. vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES ... x

LIST OF TABLES .. xii

CHAPTER

 I INTRODUCTION .. 1

 II PROBLEM ... 5

 III NOC BENCHMARKING PLATFORM ... 9

A. System Components and Architecture 9

B. Platform Overview ... 13

C. Software System Services .. 20

 IV BENCHMARKS .. 30

A. Characterization of Benchmarks .. 32

 V CASE STUDIES .. 44

A. Real Applications ... 44

B. Synthetic Benchmarks .. 47

 ix

 CHAPTER Page

 VI CONCLUSION & FUTURE WORK .. 53

REFERENCES .. 55

APPENDIX A ... 58

APPENDIX B ... 60

VITA ... 70

 x

LIST OF FIGURES

 Page

Figure 1 A Simple Core Network Interface ... 10

Figure 2 A Simple 5 Cycle Router Pipeline .. 11

Figure 3 Common Network Topologies .. 12

Figure 4 NoCBench Execution Overview ... 15

Figure 5 The SPARC Core with CNI .. 17

Figure 6 On Chip Memory Core with CNI .. 18

Figure 7 The TGFF Core with CNI ... 18

Figure 8 Simple Two-Node CTG .. 19

Figure 9 Data Receive/Transmission Phase .. 19

Figure 10 SPARC Core with Kernel Interface .. 22

Figure 11 TGFF Core with Kernel Interface ... 22

Figure 12 Scheduler Architecture .. 23

Figure 13 TGFF Scheduler Data Transmission Phase Pipeline 26

Figure 14 Memory Manager with Kernel Interface ... 27

Figure 15 Memory Logical View .. 28

Figure 16 Consumer Benchmark APCG Example .. 31

Figure 17 Benchmark Metric Application Example .. 34

Figure 18 Scenario PeakTL ... 38

 xi

Page

Figure 19 Congested Latency Scenario ... 39

Figure 20 Congested Throughput Scenario ... 39

Figure 21 Consumer Execution Time (s) ... 41

Figure 22 Networking Execution Time (s) .. 42

Figure 23 Impact of Background Traffic ... 45

Figure 24 Simulated Instructions per Second .. 46

Figure 25 NOC Topology and IP Placement ... 48

Figure 26 Throughput Mesh vs Torus ... 49

Figure 27 Latency Mesh vs Torus ... 50

Figure 28 Execution Time per Application (s) .. 50

Figure 29 Flits Traversed per Router over Time (%): Mesh 51

Figure 30 Flits Traversed per Router over Time (%): Torus 52

Figure A.1 Consumer Throughput Characterization (B/s) 58

Figure A.2 Consumer Latency Characterization (ns) .. 58

Figure A.3 Networking Throughput Characterization (B/s) 59

Figure A.4 Networking Latency Characterization (ns) 59

 xii

LIST OF TABLES

 Page

Table 1 Simulator Feature Comparison .. 14

Table 2 Network Components and Configurable Parameters 16

Table 3 Tasks per Application .. 35

Table 4 Communication Load per Core ... 36

Table 5 TX/RX Ratio per Core .. 37

Table 6 Experimental NOC Configuration .. 40

Table 7 Benchmark Characterization ... 43

Table 8 Benchmark Execution Results .. 47

 1

CHAPTER I

INTRODUCTION

Network-on-Chip (NOC) based designs have garnered significant attention from both

researchers and industry over the past several years. The analysis of these designs has

focused on broad topics such as NOC component micro-architecture [1][2][3][4], fault-

tolerant communication, system memory architecture and system level issues (i.e. task

scheduling and mapping, real-time issues, low power noc). Nonetheless, the design of

low-latency, high-bandwidth, low-power and area-efficient NOC is extremely complex

due to the conflicting nature of these design objectives. The NOC must be co-designed

with other chip components and its design must be evaluated with a total system

perspective.

Benchmarks play an essential role in the process of system design exploration

and analysis. Previously, guidelines have been proposed to develop standard benchmarks

for NOC [5], yet this is a problem that still remains scarcely addressed. Classic

benchmarks fall short of a solution since they are application oriented and do not exploit

communication intensive architectures [6][7]. NOC-based systems are expected to have

more heterogeneous workloads with respect to computation and communication. Thus,

to characterize a NOC benchmark a standard, well-defined, set of metrics is needed that

measure the elements that define a NOC [5]. A benchmark designed for NOC-based

systems needs to quantify the performances of the following: 1) functional and storage

blocks with corresponding network interface (cores), 2) the interconnect infrastructure

(routers and links), and 3) the fully integrated system.

This thesis follows the style of IEEE Transactions on Automatic Control.

 2

Network-on Chips provide the underlying communication infrastructure that

allows effective integration of functional, I/O, and storage blocks. Latency, throughput,

reliability, energy dissipation, and silicon area requirements characterize such

communication-centric interconnect fabrics. For this reason, application driven workload

is essential to compare different designs and evaluate the system effects on performance

characteristics of the NOC. The variability of injection rates and traffic patterns in real

applications provide an excellent opportunity for implementing adaptive hardware in

NOC.

Real benchmarks are the most accurate approach for application driven work

load, but their simulation is time intensive. Synthetic benchmarks conversely mimic real

program workload by extracting the communication characteristics of the application

into a communication task graph (CTG).

Ogras et. al provide a formal definition of a CTG. A Communication Task Graph

(CTG) G’ = G’(T, D) is a directed acyclic graph, where each vertex represents a

computational module in the application referred to as task ti ∈ T . Each task is

annotated with relevant information, such as execution time on each type of Processing

Element (PE) in the network, task i energy consumption () when executed on the j-th

PE, individual task deadlines (dl(ti)), periodicity of the task graphs, etc. Each directed

arc di, j ∈ D between tasks ti and tj characterizes either data or control dependencies.

Each has associated a value, which stands for the communication volume (bits)

exchanged between tasks ti and tj [8].

 Synthetic benchmarks could also be reduced in scope (e.g. micro-benchmarks)

and impose the workload on a single component, thus isolating the measurement of

specific parameters.

Overall a benchmarking environment should cover the following aspects in a

NOC: 1) Packets and Transactions (Delay, bandwidth, jitter, power consumption of

individual packets and routing, switching, buffering, flow control of the network) 2)

Congestion (Arbitration, buffering, flow control) 3) Temporal and Spatial Distribution

 3

(burst traffic scenarios, hot spot pattern detection) 4) Quality of Service (guaranteed

throughput and latency). 5) Network Size (scalability of communication network).

Due to the complex nature of these metrics NOC benchmarks cannot be

composed just of a specified application and data input set or a synthetic communication

task graph (CTG) alone. The same task set, or application mix, running on different

system configurations may potentially generate different traffic patterns, therefore being

characterized as distinct benchmarks. Network Size, core composition (i.e. processor,

memory, other IP) and task mapping must be part of the benchmark configuration. It is

necessary, then, to have a full benchmarking environment that is able to support this.

The scope of this thesis is to provide a benchmarking platform for network-on-

chip. It serves a dual purpose: 1) provides an environment for NOC benchmark

characterization, 2) Permits NOC based MpSoc design space exploration.

The platform includes an initial set of standardized processing cores, NOC

components, and system-wide services. System-C[9] is used as the main simulation

engine. The processing cores are capable of running standard benchmark applications to

generate network traffic. The platform also provides for NOC and system researchers to

easily plug-and-play existing components, or newly designed components, into a full

SoC. This allows a system designer to easily assess the quality of their ideas and designs,

to catch bottlenecks early in design formulation, and to study the relationship between

NOC architecture and application performance.

This research also addresses methodology issues in the creation of benchmarks.

An initial set of example synthetic benchmarks will be given along with the simulator.

They were constructed using TGFF task graphs from the E3S benchmark suite. In this

benchmark suite task execution time, communication dependencies (i.e. payload size,

task source and sink), application period and deadlines are extracted from execution of

EEMBC benchmarks on a series of processor models. This brings better accuracy to

these synthetic benchmarks in term of traffic generation compared to random traces or

manually constructed communication task graphs. We discuss mapping techniques of the

applications into different system configurations, in order to create distinct traffic

 4

scenarios in the communication network that will evaluate important metrics in NOC

design (i.e. end-to-end packet delay, sustainable throughput).

 5

CHAPTER II

PROBLEM

In the SoC design cycle validation and verification is a process that persists throughout

all the steps, from architectural design to physical design and the manufacturing process.

Nonetheless, while NOC based MpSoC designs have been proposed for years; they are

just being introduced into the market [10][11]. The research community is still facing

obstacles to find proper validation and verification schemes for the initial design stages.

One of the main problems associated with NOC based research and development, as

proposed by Grecu et al [5], is the lack of suitable benchmarks.

 Previously Grecu et. al [5] provided a general categorization of NOC

benchmarks. In addition to real programs, micro-benchmarks and synthetic applications

they also address definitions of benchmarks for fault tolerance and reliability.

 For synthetic benchmarks they proposed that a NOC benchmark has to be

applied on more than a simple topological description, but rather on a combination of

functional IP cores and NOC components with a certain system architecture (i.e.

topology), and specific information of traffic patterns running on the on-chip network

communication architecture. The superposition of these various elements creates

different benchmark scenarios. Moreover, these scenarios are used to characterize the

benchmark. They provide a methodology that imposes a CTG on processing elements

and establishes an FSM for PE execution. They suggest two metrics for measurement:

application execution time and application throughput.

 In previous work Ogras et. al define such a mapping as an application

characterization graph (APCG). An Application Characterization Graph (APCG) is a

directed graph G =G(C,A), where each vertex ci C represents a selected IP/core, and

each directed arc ai,j characterizes the communication process from core ci to core cj.

Each ai,j can be tagged with application-specific information (e.g. communication

volume, communication rate, etc.) and specific design constraints (e.g. communication

 6

bandwidth, latency requirements, etc.). Also, the size/shape of cores ci C is assumed to

be known [8].

 Overall we subdivide the problem of NOC benchmarking into three further sub-

problems: Application Selection or Modeling, Benchmark Creation and Characterization

and Simulation Environment Development.

 Application Selection and Modeling addresses the usage of real programs and the

creation of CTGs for synthetic applications. There are several benchmark suites that are

widely used and known among the research community such as: miBench, SPEC,

Alpbench, EEMBC among others.

 In order to create communication task graphs a widely accepted tool has been

used among researches called Task Graphs For Free (TGFF). TGFF lets the user create

task graphs with detailed information in terms of task definition, communication

requirements and dependencies. Users may specify parameters for a task such as code

size, data communication volume, task period and processor specifications (i.e.

architecture, price). Task graphs created are directed acyclic graphs (DAG) and are

equivalent in definition to a CTG. Each node represents a task and an arc between each

node represents a directed dependency (source to sink) between them.

The E3S benchmark suite has gathered information from the Embedded

Microprocessor Benchmark Consortium (EEMBC) suite to create a benchmark suite for

use in system synthesis research. It is particularly useful in terms of automated system

allocation and mapping as well as scheduling research. E3S has characterized several

well known processors from AMD, Analog Devices and Texas Instruments. Task graphs

used for this characterization are given with realistic detailed information of EEMBC

task’s execution time (per given target architecture), communication data volume, code

size, deadlines and periods. TGFF was used to built the CTG and provide task

communication dependencies. The E3S benchmark suite also provides instructions for

creating additional CTG’s. Although, not a real substitute for real applications, this

synthetic benchmarks model realistic application data using real world applications and

systems.

 7

 Simulation and Environment Development addresses the creation of a suitable

platform for the creation, characterization and execution of benchmarks. Noxim is a

flexible SystemC-based NOC Simulator that models systems organized in a 2D mesh

topology [12]. Noxim evaluates NOC characteristics through synthetic traffic generation

(e.g. stochastic probabilistic traffic) – injection distribution, destination distribution and

injection rate can be specified by the user.

Garnet [13] is a network-on-chip performance simulator which is compatible

with the GEMS [14] multiprocessor framework along with Simics [15]. It can be

interfaced with the Orion [16] network-on-chip power modeler when necessary. Garnet

provides two modes of operation: a detailed “fixed pipeline” mode, and a high-level

“flexible-pipeline” mode. The fixed-pipeline mode models the micro-architectural

details of the on-chip router, while the flexible-pipeline mode allows the user to

parameterize the number of router pipeline stages, and simply delays network traffic by

that many cycles per router. Although Garnet is an excellent tool due to its accuracy and

inter-operability with other system-level simulators, it does not provide full end-to-end

models of the NOC (e.g. CNI, other infrastructure IP) within a single framework.

Additionally, only 2D-mesh topologies can be modeled with the Garnet simulator.

NIRGAM is a SystemC-based NOC simulator that allows a user to model a mesh

or torus NOC [17]. Traffic is generated either synthetically or through a traffic trace.

Like the other NOC simulators mentioned, NIRGAM also allows a user to vary certain

NOC component parameters, such as buffer depth, number of virtual channels, and

routing algorithm.

Although each of the simulators discussed above are well suited for specific

purposes, there is still a need for a simulation platform that encompasses all the needs of

a NOC benchmarking environment. That is modeling a complete flexible system capable

of simulating all varying types of benchmarks (i.e. real code, synthetic applications,

micro-benchmarks). The main shortcoming of all the simulators discussed above is, they

either simulate the network or the cores. NoCBench is the first step towards bridging the

 8

gap by providing a full system simulation environment equipped with cores, network

components and a simulated kernel.

To the best of our knowledge there is no work addressing the creation and

characterization of benchmarks. In this work we address synthetic applications and use

the E3S benchmark as a starting point. We address the methodology of characterization,

selection of metrics and their usage for studying NOC problems.

 9

CHAPTER III

NOC BENCHMARKING PLATFORM

A. System Components and Architecture

1. System on Chip

Modern embedded systems are often composed of many IP blocks including processors,

memory blocks, DSPs and controllers. Traditionally these blocks have been connected

using direct wiring or on chip buses. However, with growing integration and shrinking

device size and increased chip size, wiring delays are becoming significant. Also, as we

pack more cores and connect with buses, contention becomes a major bottleneck. To

address these network on chip has emerged as a solution for communication on the

chip[18][19]. Details of the Network on Chip architecture is discussed here.

2. NOC Architecture

Network on Chip architecture is inspired by the asynchronous communication paradigm

of packet switched computer networks. With increased on chip wiring delay

synchronized communication between the far ends of a large system on chip is

impractical. Network on Chip tries to address this issue by introducing a globally

asynchronous locally synchronous (GALS) paradigm. In NOC, communication takes

place between cores using information packets. Packets are generated at the source and

carried to the destination by intermediate routers. At the destination, the packet is

decomposed into data and processed by the receiver. Clearly NOC architecture will have

the following components. A Core to Network interface, Routers and Links. The

following sections discuss the functional and architectural details of these components.

 10

3. Core Network Interface (CNI)

The Core Network Interface, or CNI, is the functional equivalent of a network card in

standard multi-computer systems [2]. The CNI connects the IP cores to the network. Its

primary job is to translate the raw information generated by the core into packets to be

transmitted through the network and the reverse process for packets coming in from the

network. The CNI also performs address resolution to find the destination core based on

the address in the incoming request. In addition, a CNI can also perform system

management tasks such as power management, fault detection, core test support, and

system reconfiguration. The block diagram of an example CNI is given in Figure 1.

Figure 1: A Simple Core Network Interface

The CNI architecture assumed in this research provides simple traffic translation

to enable inter-core communication across the network-on-chip. For more complex

systems, other functionality may be added to this base model as necessary. Other

researchers present a thorough examination of additional functionality that may be added

[2][3].

4. Router

The on-chip router is the most salient component in a Network on Chip. Similar to

standard computer networks, the router’s job is to efficiently route packets through the

 11

network. A router mainly consists of the input channels to receive the packets, output

channels for sending, a crossbar for switching and a routing logic for doing the routing.

Generally the input and output channels are buffered. A simple router block diagram is

illustrated in Figure 2.

Figure 2: A Simple 5 Cycle Router Pipeline

The router architecture used in this research follows the standard five stage

pipelined, wormhole router proposed by various researchers [20][21][4]. In wormhole

routing each packet is further split into units called flits. Each port has a set of input

buffers, and each incoming flit is first stored in the appropriate input buffer. If the

incoming flit is a head flit, then a routing decision must be made so that the entire packet

is forwarded to the appropriate output port. Flits are then assigned an output virtual

channel, and the crossbar switch is allocated for each flit based on utilization and

fairness policies. Finally, the flit traverses the crossbar switch and is sent through the

appropriate output port.

5. Links

Links connect the routers and the cores via CNI. Due to the structure of NOC, the links

are generally shorter compared to bus or dedicated wiring. Hence, often the links can be

of higher bit width and 64, 128 even 256 bit wide links are common. For NOC and

 12

system benchmarking purposes, all data flowing through links is assumed to require one

cycle of latency.

6. NOC Topologies and Routing

A NOC can have different topologies and routing algorithms depending on application

needs and available resources. We will discuss the most common and widely used

topologies and routing algorithms in the following sections.

7. Topology

The most commonly used topologies in NOC research are 2D Mesh and Torus

topologies. However, other interesting topologies such as butterfly, fat-tree, and

Gaussian networks have also been proposed [22]. The mesh and torus topologies are

favored due to their regular structure and planar geometry and simplicity.

Figure 3 illustrates the three common topologies, namely Torus, Mesh and Irregular.

Figure 3: Common Network Topologies

System designers must select the appropriate topology for their expected

application requirements, based on topological metrics such as link density and network

diameter.

 13

8. Routing

Routing in NOC depends on the topology. It can be table lookup based where each

router has next hop information for every destination in the network or it can be

geometry based like dimension ordered or XY routing. The third type of routing is called

source routing, where the sender specifies all the intermediate nodes in the packet. Each

routing technique differs in performance with respect to adaptability, average hop count,

and flit header storage requirements. The performance of the system can vary greatly

depending on the routing technique used.

B. Platform Overview

The proposed platform, NoCBench, consists of a flit accurate network on chip simulator.

The simulator can be configured according to system needs and it can support a variety

of architectures (i.e. multiple core-network interface link configuration, switching

policies, topologies). In this section we describe the simulation environment.

Table 1 compares the features and capabilities of the NOC simulator described in

this research. ISS Integration is the capability of the NOC simulator to use real

application behavior as a basis for NOC traffic. Our NOC platform includes the ArchC

ISS to model core behavior, while Garnet interfaces with Virtutech Simics to provide

core functionality. The other simulators do not provide this capability. Topologies is

the allowable set of NOC topologies supported by each simulator. Flit Accurate is the

level of accuracy supported by each simulator. The Parameterized NOC feature means

that the simulator supports user-configurable routing algorithms, buffer depths, number

of VCs, etc.

 14

Table 1: Simulator Feature Comparison

1. NOC Simulator

The included NOC simulator is a flit accurate network on chip simulator written in

SystemC. It makes use of the SystemC simulation engine and behavioral level network

component library for fast simulation. Figure 4 shows the organization of the NOC

simulator in the platform. The Simulator consists of the following main units: the NOC

generator, the component library, and the simulation engine. The NOC simulation

environment is compatible with any SystemC simulation engine. In our evaluation we

have used the OSCI SystemC simulation engine. It is capable of very fast and accurate

simulation in any platform and it is fully open source.

Features NoCBench Gems – Garnet Nirgam Noxim

ISS Integration Yes - ArchC Yes – Simics No No

Topologies Full Custom Full Custom Mesh, Torus Mesh

Flit Accurate Yes Yes Yes Yes

Power

Measurements
Yes – Router/CNI/Global Yes – Module Level No Yes

Fault Injection Yes No No No

Parameterized NOC Yes Yes Yes Yes

Full System Yes Yes No No

Open Source Yes Dependent on Simics Yes Yes

 15

Figure 4: NoCBench Execution Overview

2. Network Generator

This module reads a configuration file specified in XML format and generates the NOC

using SystemC library modules. The configuration includes the topology, specification

of parameters for the CNI, Router and Links. It can also specify fault simulation

parameters, and the configuration can be extended according to the need for

specification of additional properties. An example configuration can be found in the

Appendix.

3. Network Component Library

The network component library is the core of the simulation system. In this library we

have modeled the components of the NOC using SystemC. The router and the CNI can

 16

be configured to implement popular peak power management schemes like PowerHerd

[20] and PC [21]. The system level model allows for fairly accurate and much faster

simulation compared to detailed RTL simulation. Table 2 provides the details for the

available modules in the network component library.

Table 2: Network Components and Configurable Parameters

Component Configuration parameters

CNI Flit injection rate, message queue length.

Router Number of ports, buffer lengths, number of virtual channels.

Routing XY routing, table based routing, source routing.

Link Bit widths.

4. Configurable Core Library

The configurable Core library provides SystemC models of IP cores. We have three

types of core models in this library in the current version of the NOC platform.

 Synthetic Cores: These cores can generate communication based on statistical

traffic distributions. These types of cores do not generate meaningful traffic in the

network and do not necessarily perform meaningful communication. However, these

cores can be configured to produce network traffic that follows the expected high-level

behavior in the network, which allows for generalized performance benchmarking of

NOC components. Statistical random number generators are used to mimic traffic

distributions. Examples of statistical traffic patterns include uniformly distributed

network traffic and self-similar traffic models.

 Real Cores: These are SystemC wrapped cores, typically implemented in either

C++/C. The most common examples of these core implementations are instruction set

simulators (ISS) for different processing cores. They also include cache and memory

models. We have used ArchC [23] based processor models to represent real cores.

ArchC is an open-source language written in SystemC used for processor architecture

description. It generates functional and cycle accurate ISS using Instruction Set

Architecture (ISA) for popular embedded processor models like MIPS, Intel8051,

 17

SPARCV8 and PowerPC. The architecture chosen for integration is SparcV8 since it is

well known and widely supported, as show in Figure 5. It has a 7-stage pipeline, separate

configurable caches and comes with a compiler tool chain.

Figure 5: The SPARC Core with CNI

 The core has a structural, SystemC top module while the internal functions are

implemented in a functional C++ model. We have augmented the top module to inherit

from a generic OCP (Open Core Protocol [24]) core to act as a master providing a

compliant port for communication with the CNI. The OCP port is connected internally to

a soft arbiter that handles incoming/outgoing requests. This soft arbiter serves for future

expansions (e.g. Interrupt Control). The core also implements a System C wrapper

around the cache controller to prepare the requests to be sent to the remote memory core.

The soft arbiter and the wrapper work together to synchronize request and responses. In

addition to the Sparcv8, our platform includes an on-chip memory model. The on-chip

memory model is a soft implementation of the block. The modularized nature of the

models allow the user to readily experiment with memory and cache sizes and other

characteristics to discover the most efficient implementation for a given system. Figure 6

shows the block diagram of the memory model included in this version of the

NoCBench tool.

 18

Figure 6: On Chip Memory Core with CNI

 TGFF Cores: These cores were used to characterize the synthetic benchmarks.

They generate traffic based on information obtained from a DAG. Figure 7 illustrates the

TGFF core architecture. They execute synthetic tasks which have defined

communication dependencies, communication volume, task period and task deadline. In

this sense, a TGFF core is an abstract representation of the intellectual property (IP)

block the task was modeled from. Each task in the graph is a source, sink or both with

respect to another task. The weighted arc between the two defines the communication

dependency and volume. Figure 8 show a simple Task graph with two nodes. The core

connects to CNI in a similar fashion than real cores. A master and a slave interface are

connected to request and accept transactions respectively.

Figure 7: The TGFF Core with CNI

TGFF CORE

CNI

O

C

P

Control

DMTE

O
C

P
 W

ra
p

p
er

 f
o

r

T
G

F
F

 19

Figure 8: Simple Two-Node CTG

Each task is modeled by the TGFF core in two phases: Data Transmission, and

Data Reception. A task’s job is finished when both phases have been executed.

Data Transmission & Data Reception: Data packet transmission is simulated by

the Data Memory Transaction Engine (DMTE) using the communication volume and

dependencies specified by the user for the task. The entire communication volume must

be sent for each destination task, or sink. The DMTE creates an OCP packet per cycle

for each sync in a “best effort” fashion, and pushes it into a transmit pending queue. The

master interface pops one packet every cycle if CNI is available. CNI then injects the

packet into the network. The core injection rate will depend on the network parameters

(i.e. flit size, message queue length). The theoretical rate is 1 packet per cycle. The

maximum payload size then determines how many packets need to be sent by the core in

order to send the entire communication volume specified by the task.

Figure 9:Data Receive/Transmission Phase

The Data Transmission phase starts when the first packet has been sent and ends

when the last packet has been given to CNI. The Data Transmission phase may not start

until Data Reception is done. The Data Reception phase ends when the last packet has

been received from all sources. Data is received from the CNI through the slave

interface. Figure 9 illustrates the data phases.

SRC SINK

Data Volume

DATA RX DATA TX

 20

TGFF cores could be expanded to improve its modeling capabilities by the

addition of parameters such as core size (e.g. pipeline width) and power consumption

(i.e. ratios of instructions types and their average power consumed). Further modeling

discussions are discussed in later sections.

Controller and Statistics: The controller keeps track of all packets sent and

received. It gathers transmit and receive throughput statistics per task, aggregated

transmit and receive throughput per core as well as average core to core latency per task

and per core. The controller also communicates with the system kernel to notify when

the task is done. This is explained in section C.1.

Simulation Engine: The NOC simulation environment is compatible with any

SystemC simulation engine. In our evaluation we have used the OSCI SystemC

simulation engine. It is capable of very fast and accurate simulation in any platform and

it is fully open source.

C. Software System Services

The NOC platform includes a light kernel to provide simple system services. The kernel

itself is a service provided by the platform and it is simulated in the host machine. It is

modeled as a soft System-C module which provides sufficient accuracy without much

simulation time overhead. The primary services are: scheduler, memory manager and

system call support. The kernel provides an interface to communicate with each IP core.

The interface is presented in detail in the following section.

1. Core Interface

The core interface is a pivotal part of the platform. It is the kernel’s job to support all

indispensible system services expected by applications running on the platform. At the

same time, this must not imply excessive modification of the core model (i.e. ISS, RTL

module) in order to be ported. To achieve this ease of portability, the kernel centers

 21

around one data structure: the process control block (PCB). All software information

regarding system control would be communicated through the interface by the PCB. The

PCB emulates the same features that process control blocks of real operating systems

have:

1. Program Address Space

2. Local to Global Address Translation

3. Process Id (PID)

4. Heap and Argument pointers

5. Process status

Additional information for platform run-time management includes:

1. Target Architecture (i.e. sparcv8, arm, etc.)

2. Core Id currently running on

3. Number of Jobs

Of course, register information is target dependent and cannot be abstracted in a

generic data structure. That information still remains in the ISS and its management

remains separated from the kernel system. It is the interface job to close the gap. The

interface consists of four control functions: Start(), Stop(), Yield() and Notify(). The first

three are expected to be implemented by the core (i.e. ISS) and are driven by the kernel

while Notify() is driven by the core and is provided by the system library. These

functions, illustrated at Figure 10, are described in detail below.

1. Start(): Takes in PCB and initializes all pertinent data (i.e. PC register, IC and

DC invalidation). Processor is released from stall and begins (or continues)

execution.

2. Stop(): Does not have any inputs. Stalls the processor.

3. Yield(): Takes in PCB from new process. Signals context switch.

4. Notify(): Takes in PID. Provides Kernel scheduling pertinent information (i.e.

process status)

 22

Figure 10: SPARC Core with Kernel Interface

TGFF cores, however, have an interface of their own with the kernel, illustrated

at Figure 11:

1. Set_process(): starts the Data Reception phase and initializes all parameters

2. Start(): starts the Code Processing and Execution Phase immediately. Data

Transmission is triggered internally by the core when appropriate.

3. Notify(): Takes in PID. Provides Kernel scheduling pertinent information (task

status)

Figure 11: TGFF Core with Kernel Interface

T
G

F
F

 C
O

R
E

Control

T
G

F
F

 S
Y

S
T

E
M

 I
N

T
E

R
F

A
C

E
 System

Kernel

+

TGFF

Scheduler start()

set_process()

stop()

DMTE

notify()

data volume

notify_done

sources

sinks

CORE

C
o

re
-K

er
n

el
 I

n
te

rf
ac

e

System

Kernel

stop()

start(PCB)

yield(PCB)

notify(PCB)

Sparcv8 Instance

 23

2. Scheduler Framework

The scheduler is one of the most important modules for studying the impact task

mapping has on overall system performance, meeting task deadlines/guarantees, on-chip

network traffic load, and power consumption. Thus, a solid foundation was built to allow

researchers to easily integrate their scheduling algorithms into the rest of the platform.

Overall, the scheduler is built on top of task handlers defined as queue data structures

and interacts with a loader and the memory manager to implement a given algorithm.

3. Scheduler Setup and Architecture

Setup: The scheduler framework has two programmable parameters: tick and scheduler

type. These two parameters are passed through the XML configuration file.

 Architecture: As shown in Figure 12, at each tick the scheduler module will start

the scheduler algorithm specified by the user. Each algorithm uses a given set of queues

to manage the tasks. The queues will only hold the PID of a task as information. Queues

may be defined in terms of priority as well as task status (i.e. preempted or ready). The

scheduler framework interfaces with the Memory Manager to ask for memory allocation

and freeing.

Figure 12: Scheduler Architecture

Scheduler Algorithm

@tick

Task Queues

Memory Manager

P
o

p
()

A
ll

o
c

F
ree()

-Insufficient

Memory
-Task Done

-Task Not Ready

 24

 To preempt a task the scheduler algorithm must drive the Yield() function for a

specific core to signal a context switch. As mentioned in the previous section, register

information and management is target dependant. Therefore, it is the core’s job to

implement its own save context and restore context method. Having this data stored at

the PCB structure will incur in a data and control overhead without any value added in

terms of simulation accuracy. Also, most architectures have readily available code for

this functions which makes them easy to port. Register information is not actually stored

in the PCB stack in memory but at the simulator’s memory space in the host machine.

This lowers simulation overhead in terms of memory transactions at the expense of

application timing accuracy.

 The system supports ELF binaries only. An ELF loader is invoked for every task

the first time it needs to be loaded into main memory. For every task’s new job (or

resuming of a job) the loader is not invoked unless its memory had to be freed for

another task to run. Memory allocation/deallocation is explained in more detail in the

next sections as it is the memory manager’s job. However, it is the scheduler’s job to

manage resource allocation and to ensure that sufficient memory is available for the next

task.

4. Algorithms

Currently two schedulers are provided with the platform: a Round Robin (RR) scheduler

and a TGFF dedicated scheduler.

 Round Robin: The RR scheduler manages the tasks as a typical circular list and

serves each task in a first come first serve manner. The RR scheduler algorithm uses two

queues: ready_tasks queue and preempted_tasks queue. The ready_tasks queue holds the

PID’s of all tasks whose previous jobs have completed and are ready to run (i.e. all

dependencies have been met). The prempted_tasks queue holds the PID’s of all tasks

whose current jobs have not completed and where preempted in the previous scheduler

invocation. This version of the RR scheduler uses the preempted tasks queue to give

 25

higher priority to previously preempted tasks. At each tick each core is examined. If the

core is free (i.e. idle) it pops a task from the preempted tasks queue and its current job is

resumed on this core. If the core is busy then the task currently running on the core is

preempted and is pushed into the preempted tasks queue. For each task in the ready tasks

queue a new job is spawned only if all preempted tasks have been scheduled (i.e.

mapped to a core) and there are cores still available.

 TGFF Scheduler: This is an online dedicated scheduler for the modeling of

TGFF task graphs. It was the scheduler used for the creation of the benchmarks

provided. The TGFF scheduler receives a series of application characterization graphs

(APCG) from the configuration as defined in section 3.3. Section 4 explains how APCG

are created. The scheduler must enforce all communication dependencies, therefore

when a task is scheduled to run, all its sinks must be scheduled on their respective cores

as well. This is because communication between tasks happens from core to core;

therefore all tasks pertaining to the communication must be scheduled. It is important to

note that this not a hardware-software co-design problem. In this regard, whether the

tasks can be implemented as hardware blocks with direct communication (i.e. a video

co-processor with a network packet accelerator) or as soft tasks communicating through

shared objects in memory, it is of little importance to the scheduler. The main scope is to

create benchmarks that will stress and evaluate the on-chip network communication

infrastructure.

 To ensure proper scheduling, the algorithm locks all cores requested by an APCG

as soon as there are available. This has a drawback though. Since all tasks must receive

all data and finish execution before their data is ready to be injected into the network,

this scheme translates into very low traffic injection from each APCG. A possible

enhancement is to lock only the cores for a specific task and its respective sinks, leaving

more cores available for other APCG in wait. However, due to the nature of the

communication task graphs from E3S, this still did not stress the NOC enough and

creates unattractive scenarios. To solve this, we schedule the tasks in a pipeline fashion.

 The scheduler assumes, previous jobs of each tasks have already run therefore

 26

the task may start its Data Transmission phase as soon as it starts; leading to appropriate

data parallelism in the NOC. Figure 13 shows the pipeline execution model.

Figure 13: TGFF Scheduler Data Transmission Phase Pipeline

5. Scheduler Expansions

Real-time scheduling algorithms can easily be added by adding the necessary priority

information to the PCB such as: period, deadline and/or QoS requirements. The queues

structure is easily expandable as well to incorporate as many priority queues are

necessary. Since only PID needs to be tracked at the priority queues, this expansion is

straightforward.

6. Memory Manager

The memory manager (MM) and the scheduler are the backbone of the kernel. It is the

MM’s responsibility to address loading of binaries into memory by allocating and

mapping the local address space of the task into the global address space of the entire

system. The MM is also responsible for online bookkeeping of the memory consumed

by each process.

7. MM Setup and Architecture

The MM implements a two-level paging system. The MM has the following

programmable parameters:

1) Page Table Size

DATA RX DATA TX

DATA RX DATA TX

DATA RX DATA TX

Job1

Job2

Job N

 27

2) Page Size

 When the system is first instantiated it is given by the Network Generator the

physical space available for memory. The MM then partitions this space into a global

memory map consisting of the following sections:

1) Instruction Memory

2) Heap and Stack

3) Shared Memory

4) Process Arguments

 Figure 14 shows the MM interface with the scheduler. As described above the

ELF loader is invoked by MM when driven by the scheduler. At this point all sections of

the process are extracted. Each process section (e.g. text, .bss, stack, heap and

arguments) is appropriately mapped to a corresponding section in global memory. The

granularity of a task memory view is a page. Figure 15 shows the logical view of the

memory architecture.

Figure 14: Memory Manager with Kernel Interface

Mem Manager

System

Kernel

allocMem(PCB)

freeMem(PCB)

M
em

-K
er

n
el

 I
n

te
rf

ac
e

ELF Loader

Invoke Loader

 28

Figure 15: Memory Logical View

(Left: Process Space, Center: Global Memory, Right: Physical Core)

8. Problem Explorations with MM

The NoCBench kernel provides the proper framework and support for researchers to

evaluate many NOC scheduling and memory architecture related problems.

For example, it is important to note that the MM is oblivious to the memory architecture

in hardware. In other words, it does not take into consideration how many RAM

cores/banks are present in the system and their respective placement in the NOC. This

effectively creates a fragmentation problem in global space. At allocation, the local

address space could be spread out through the NOC depending on the amount and

location of memory cores. Furthermore, memory bookkeeping is done in terms of pages

released. When memory is freed the MM cannot keep track of these pages' correlation to

the memory cores potentially creating more fragmentation. Specifically for NOC this

creates an issue. Where a task is scheduled (e.g. in which core is it running) and how it is

partitioned (e.g. where its memory is stored) affects tremendously the traffic load in the

on-chip network, which ultimately affects the task's performance. Real-time analysis

also becomes more problematic when unquantifiable fragmentation happens.

NoCBench is also a great platform to study the potentials of Non-Uniform Cache

Architectures as well as to explore cache-coherence designs on Network-on-Chip.

Proc N Global M

Proc 1

.text

.data

.bss

.heap + .stack

.shrd mem

.args space

Prog.

Mem

Heaps +

Stacks

Shared

Mem

Args.

Space

Mem C0

Mem C1

Mem C2

Mem CN

 29

9. System Calls

Simulation of system calls could be quite complex and take up many cycles to execute.

In a real system implementation of system calls is target dependant. Some architectures

provide a register to be written by software with the number of the system call to execute

and use a software interrupt to signal the transfer to the OS. This is typical in RISC

architectures. Others, like X86, use special instructions that identify a system call. This

transfer mechanism alone will create quite a performance overhead. Therefore, we

follow the trapping and host forwarding emulation mechanism implemented in the

ArchC Sparcv8 ISS. The ArchC project provides a cross-compiler for Sparcv8 binaries

in which system calls are given a pre-defined address in Instruction Memory. At run-

time the PC is tracked and when it reaches on the pre-defined addresses the system call

(i.e. srbk()) and corresponding data are forwarded to the host machine for execution.

When required, data is read back into the memory models and execution is resumed.

This method penalizes timing accuracy in favor of simulation speed, but it remains a

popular system call support mechanism since the impact is small [25].

 In order to support any Sparcv8 cross-compiler a modification to the trapping

mechanism could be done as done by [25]. Instead of assigning pre-defined addresses to

the system call symbols the addresses could be fetched dynamically when the loader is

invoked and passed to the core through the Core-System interface when the task is

started.

 30

CHAPTER IV

BENCHMARKS

The design of SoC’s is a complex iterative process where application requirements are

an important factor in the decision of parameters, components and software used in the

system. Although applications must conform to system limitations, the system design

must strive to comply with the minimum expectations of the application domains it is

being marketed for. For example, a telecommunications application to be run on a

cellular base station implementing LTE standard requires a minimum bandwidth from

the SoC communication architecture else the system would be useless for the application

at hand [26]. Therefore, it is important to establish the sustainable throughput and

minimum core to core latencies in the system. Addressing the scalability of NOC

components, routing and load balancing schemes as well as topology selection is part of

this process. Once this is validated an application designer can address software issues

such as scheduling and task mapping. Nonetheless, our goal in benchmark creation is not

to address the holistic design issues of SoC, but to create scenarios that efficiently

validate approaches to known on-chip network problems.

NoCBench includes a set of synthetic application benchmarks. These

benchmarks are intended to be an initial effort. They serve to discuss the methodology of

developing benchmarks with NoCBench. The synthetic application benchmarks have

been created using derived information from the E3S benchmark suite. Each E3S

benchmark has a series of applications, defined as communication task graphs (CTG).

Hereafter we will address CTG as application. E3S follows the same organization of the

EEMBC benchmark suite where each suite is categorized as: automotive/industrial,

consumer, networking, office automation, and telecommunications. Before we go into

further detail of how NoCBench benchmarks were characterized we will introduce and

discuss important definitions used in this process.

 31

We have defined a NOC benchmark as multiple application characterization

graphs (APCG) where each APCG is a mapping of one application into a specific system

composition. System composition is defined as number of TGFF cores. Figure 16 shows

an example of the E3S consumer benchmark APCG mappings. By definition, the

benchmark imposes communication characteristics to each core such as: traffic injection

rate, bandwidth requirements and expected packet latency.

Figure 16: Consumer Benchmark APCG Example

A different mapping to the same system composition would yield a different

benchmark altogether. Clearly the effect of NOC topology in space (hop distance with

communicating cores) and time (network congestion) varies the overall system

performance. But this is exactly what we want, to isolate NOC specific parameters and

components in order for the benchmark to properly evaluate the communication network

design.

T0

T1 T2 T3

T4

T5

T6

 Appz1

T0

T1

T2

T3

T4

Appz2

T1,0 T1,1

T2,3

T1,2

T2,4

T1,3

T1,4

T1,5

T1,6

T2,2

T2,0

T2,1

 APCGs

 32

A. Characterization of Benchmarks

This section discusses the methodology for creating benchmarks on NoCBench. It

addresses the mapping of applications into APCG, metrics used in the characterization of

our benchmarks and the experimental setup used to characterize each benchmark.

1. Methodology

The methodology followed in the creation of our benchmark is composed of a series of

well defined steps. These steps are:

1) Mapping of applications into APCGs,

2) Metric selection for categorization of a benchmark,

3) Measurement points selected to extract metric values

4) NOC parameter configuration – topology, router parameters, CNI parameters

Step 4) is tightly related to experimentation setup so it would be explained in the

experimental setup section. Nonetheless, it is an important step in our methodology.

Mapping Application to an APCG: When mapping an application the first step is

to select the number of TGFF cores to be used. The number of cores gives the size of the

benchmark and sets a lower bound on the load imposed on the NOC. Naturally an

application with N bytes of data to communicate would stress the NOC differently when

distributed among different number of cores. In the current version of NoCBench the

number of cores needs to be at least the maximum number of tasks in one of the

applications. As discussed earlier in Chapter III, due to communication dependencies all

tasks must be allocated in order for an application to run. For example, the E3S

benchmark “consumer” has two applications, one with 7 tasks, and another with 5 tasks.

The minimum number of cores in a system in order to run this benchmark must be 7

cores.

Given a system composition the second step is to map each task to a core. There

are two components that impact a task’s performance: one is the processing time in the

 33

core itself and the second is the overhead imposed by the communication latency of the

on-chip network that comes from communication dependencies (i.e. shared memory,

memory miss, IP communication). The goal of this mapping is to balance the first

component in order to create a scenario where the second component has the most

weight on the task’s performance. In other words, to increase the parallelism of data

communication on the system in order to stress the communication network as much as

possible. Our approach follows a simple heuristic.

For app = 0; app < #_of_applications; app++

{

 For task = 0; task < #_of_tasks; task++

{

 core = core_min_utilization(); // returns the core that has the least utilization

 Map(task, core); // map task to core with least utilization

}

Update_utilization();

}

 Utilization in our model is computed in terms of communication volume

assigned to the core. Communication volume is the sum of outgoing and incoming data

traffic to the core. The core with the least data volume mapped to it is likely to be the

quickest available. Although the on-line scheduler has flexibility in the order of

application execution, however the utilization and dependencies remain fixed for a given

core throughout the entire simulation. This maintains the overall benchmark scenario

independent from scheduling. Certainly the benchmarks will have varying phases over

time. For example, a single core may have 3 tasks mapped with each transmitting 1KB

each for an absolute load of 3KB. Depending on the on-line scheduling the core may be

transmitting the load continuously or it may do so in on and off transmission times.

However, the overall characterization does not vary because the load is not transferable.

 The core must transmit the 3KB as fast as possible. In this case the core is

sensitive to throughput and it will remain that way regardless of the scheduling. The

 34

scheduler provided, and described in Chapter III, is merely an example and is not meant

to be fixed. Rather its purpose is to be a modifiable tool to aid in the process of

benchmark creation.

 Benchmark Metrics: The benchmarks provided in the current version of

NoCBench are characterized as Throughput Sensitive or Latency Sensitive.

 A benchmark is throughput sensitive if its execution time is severely impacted by

the lack of throughput availability in the network interconnects. Benchmarks that impose

more outgoing communication than incoming communication on the cores are more

likely to be throughput sensitive. This is because tasks do not care when the data is

received by their sinks so they are not impacted by network latency when transmitting,

only when expecting data. Consider the benchmark at Figure 17. Let’s say the single

task on C0 is the only one transmitting data and that it sends an equal amount to each of

the three tasks on Cn-1, Cn-2 and Cn-3. Clearly this single core requires a large amount of

throughput to inject the data into the network.

 A benchmark is latency sensitive if its execution time is severely impacted by

high end-to-end network delay. The idea here is similar to throughput sensitive. It is in

fact the inverse. Let’s consider again the benchmark at Figure 17. Now we will reverse

the communication dependency. The one task on C0 needs to receive the entire bulk of

communication in order to finish, while the other three tasks (Cn-1, Cn-2 and Cn-3) are

each transmitting 1/3 of the data. Certainly, the bandwidth may be divided between the

three cores and even when throughput available per core is less than in the previous

scenario this does not affect the benchmark’s execution time. Rather, the end-to-end

latency between the three transmitting cores (Cn-1, Cn-2 and Cn-3) and the receiving core

(C0) is the determining factor to the benchmark’s performance.

Figure 17: Benchmark Metric Application Example

C0 C1

Cn-1

Cn-2

Cn-3

C2 CN
………..

 35

It is important to note that a benchmark may be both throughput sensitive and

latency sensitive. This type of benchmarks will be useful to study the ability of a NOC

design to cope with both requirements.

 Measurement Points: Throughput is measured between the core and the CNI

endpoints. This is because the CNI is limited by the buffer availability at the router;

which is usually much larger than the maximum OCP packet size. Therefore, the CNI

throughput with respect to the network will be closely related to the cores throughput

with respect to the CNI. Also, measuring at the core is straightforward and fast.

 Latency is measured as end-to-end latency from the transmitting core to the

receiving core. Each packet transmitted by the core carries the time stamp at the starting

point. The core who receives the packet then computes the latency of the packet.

2. Experimental Setup

As explained earlier, E3S was used to retrieve the CTGs for the synthetic application

benchmarks. The benchmarks used where: consumer and networking. Each benchmark

provides a series of applications (CTG’s). The total number of tasks per application for

each of the benchmarks is given in Table 3.

Table 3: Tasks per Application

Benchmark App 1 App 2 App 3

Consumer 7 5 -

Networking 4 4 4

 The benchmarks were mapped as per the Methodology section. First the system

size was chosen. To provide an interesting scenario for these benchmarks the size

selected was 9 cores. The absolute communication load per core for each benchmark

after mapping is in Table 4.

 36

Table 4: Communication Load per Core

Benchmark Core0

RX:TX

(MB)

Core1

RX:TX

(MB)

Core2

RX:TX

(MB)

Core3

RX:TX

(MB)

Core4

RX:TX

(MB)

Core5

RX:TX

(MB)

Core6

RX:TX

(MB)

Core7

RX:TX

(MB)

Core8

RX:TX

(MB)

Consumer 0:5.7 7.6:7.6 7.6:1.9 1.9:1.9 5.7:5.7 5.7:0.95 0.95:5.7 0:0.95 0.95:11.7

Networking 16:20 4:4 4:4 20:16 0:8 8:8 8:8 24:0 0:16

The importance of the absolute load per core is to get a view of the

communication balance on the system. The utilization of the cores tells us how the

communication network is being stressed. But how does the benchmark stress the

network? Section 4.1.2 explains the categories for characterization: Throughput

Sensitive (TS) and Latency Sensitive (LS). To get a holistic view of the benchmark is

very difficult because the mapping of applications impose different characteristics to

each core, hence categorizing the benchmark as a whole is meaningless. Therefore, it is

better to establish the mix of TS and LS cores to get an overall view of how the

benchmark is behaving. The first thing to observe is that several cores either have no

data to receive or no data to transmit. These cores are effectively TS and LS

respectively.

To characterize the rest of the cores it is important to look at two things:

1) The ratio between receive and transmit data per core

2) The total load imposed at each core

 37

Table 5: TX/RX Ratio per Core

Benchmark Core0

Core1

Core2

Core3

Core4

Core5

Core6

Core7

Core8

Consumer TS 1:1 4:1 1:1 1:1 6:1 1:6 TS 1:12

Networking 1:1.25 1:1 1:1 1:1.25 TS 1:1 1:1 LS TS

 Table 5 presents the RX and TX ratio per core of each benchmark. It would seem

that the ratio would be enough to categorize the core. For example, Core8 on consumer

benchmark is expected to be sensitive to throughput but not to latency. Let’s remember

that a core does not care when the transmitted packets arrive. But, as the ratio begin to

equalize the effect of the load increases in the characterization. This comes straight from

the definition of throughput and the definition of our application models. So for

example, a ratio of 1:1 given throughput remains balanced for each core the expected

data as well as the data to be transmitted gets fully injected in the network at the same

time. At this time the core assumes it is done with its TX phase but it still needs to wait

for the RX phase to finish. As the payload size increase it may be the case that by the

time the last packet is transmitted many of the packets have already arrived therefore, the

end-to-end latency of the last packets won’t be much of a determining factor. As well, if

throughput decreases it will have the same weight on the execution time as end-to-end

latency. Meaning, both throughput and latency affect equally the performance of the

core. Conversely, for small payloads it will be the case that by the time the last packet is

transmitted many of the packets may still be in the network. Therefore, the end-to-end

latency for these packets will be more of a determining factor than throughput on the

performance.

Traditionally when studying this in SoC’s we validate the performance of the

core with different scenarios on the path its data needs to travel (i.e. no contention,

congested). In a NOC it is difficult to study this relationship because there are several

 38

paths to the same destination. As well, each core maps several tasks, effectively

changing the destination for the core when transmitting packets. However, the goal is not

to characterize the system nor a given communication architecture but, to establish how

sensitive each core is to throughput and latency given the mapping.

To do this we simulate a linear path leading to the core under test (CUT) and a

linear path leading out of the core. We simulate only one “tile” transmitting (ST) to the

CUT and one “tile” receiving data from the core (RT). The two tiles at the end-points of

the NOC could represent several architectures (i.e. a cluster of core, a simultaneous-

multi-threaded (SMT) core) that are capable of executing in parallel all tasks in the

benchmark that send and receive from the CUT. Figure 18 shows a logical view of this

architecture where the small squares represent the routers:

Figure 18: Scenario PeakTL

 This scenario provides peak performance information in terms of maximum

sustainable transmit throughput and minimum end-to-end latency provided by the NOC.

We call this scenario PeakTL. Then we increase as well as congest the ST-CUT path to

increase the latency of packets and do the same process for CUT-RT path to decrease the

TX throughput of the CUT. Figure 19 and Figure 20 show the logical view of the two

scenarios respectively.

ST RT CUT

 39

Figure 19: Congested Latency Scenario

Figure 20: Congested Throughput Scenario

The first scenario is called congested latency (cL) and the second is called

congested throughput (cT). The cores connected to the NOC between ST-CUT and

CUT-RT communicate in a full-duplex mode. They transmit continuously throughout

the entire simulation to add background traffic on the NOC. This increases latency to the

CUT and decreases the CUT’s transmit throughput respectively. We created two cL and

cT scenarios, one with two addition connected cores and another with four additional

connected cores. These scenarios may also be used as micro-benchmarks. Researchers

may use them to isolate specific router and CNI parameters (i.e. buffer size, maximum

payload size, # of virtual channels) and evaluate peak performance as well as the

scalability of these components.

 The system configuration used for all experimental runs is given in Table 6. The

ratio of Core frequency and NOC Frequency is selected equally on purpose to

exaggerate the effects of end-to-end latency making it easier to vary. For information on

type definitions see Appendix B.

Linear NoC Topology
CUT RT

ST C0 CN

Linear NoC Topology
CUT ST

RT C0 CN

 40

Table 6: Experimental NOC Configuration

Core Frequency 1 GHZ

NOC Frequency 1 GHZ

Flit Size (Bytes) 7 (Data) + 1 (HDR)

Message Type Message Size (Flits) OCP 7 (Data) + 1 (HDR)

Max Payload Size (Bytes) (Data Size – OCP HDR) = 35

CNI Configuration

Type InBuffSize OutBuffSize
Msg Q

Length
OCP 8 Flits 8 Flits 4 Msgs

Router Configuration

Type InBuffSize OutBuffSize Generic 8 Flits 8 Flits

3. Results

We ran PeakTL, cT2, cT4, cL2 and cL4 for all cores across all benchmarks. Average

Transmit throughput (TXtput) and average end-to-end latency was gathered as per

section 4.1.2. We compare variation in execution time with variation in latency and

TXtput to derive the characterization. As expected for cT2 and cT4 end-to-end latency

remained constant while throughput decreased and for cL2 and cL4 throughput remained

constant while latency increased (refer to Appendix for TXtput and latency graphs).

This was true for all benchmark experimental runs. Moreover, peak TXtput and latency

was achieved in PeakTL. Cores that show 0 value are the ones which either had no

receiving or transmission dependency.

 41

Figure 21: Consumer Execution Time (s)

When observing the graphs, Figure 21 and Figure 22, the relationship between

ratio, throughput and latency, start to become evident. While ratio begins to tilt towards

the RX load, for example Core2 of Consumer with a ratio of 4:1, we see that even with a

dramatic decrease in throughput the execution time is the same as in PeakTL.

Conversely, the execution time in cL2 and cL4 is severely affected by the increase in

end-to-end latency. It should seem that when throughput decreases still the execution

time of cT2 and cT4 would be higher than PeakTL. But, by the time the TX phase is

done RX phase is still much more far behind (most of the expected data is still either not

injected or traversing the network). Therefore, the decrement in throughput needs to be

much larger than the increase in latency for this task’s execution time to increase.

While the ratio begins to tilt towards the transmit side, for example Core8 of

Consumer with a ratio of 1:12, we see that even with a dramatic increase in latency the

execution time is not as affected as with dramatic decrements in throughput. However,

as discussed in the previous section when load decrements we begin to see that even

when the task is highly sensitive to throughput still dramatic increments in latencies such

 42

as in cL4 may cause an increase in execution time from the peak performance scenario.

While Core2 receives ~7MB and transmits ~1.9MB, Core 8 only receives 977KB.

Similar cases are those of Core5 of Consumer and Core6 of Consumer. This does not

mean that the tasks are “equally” sensitive to both latency and throughput is just that as

expected, scenarios that deviate from PeakTL will affect performance. The goal in these

experiments is to quantify how much.

Figure 22: Networking Execution Time (s)

When we observe cores such as Core3 of Consumer with a ratio of 1:1 we see

that execution time is equally affected by degradation in throughput and latency.

Moreover, when ratios begin to equalize such as the case of Core0 of Networking with a

ratio of 1:1.25 still performance is affected almost equally on the presence of network

performance degradation. These cores are sensitive to both throughput and latency.

 43

Table 7 presents the characterization of each benchmark. Refer to the Appendix A for all

benchmark graphs.

Table 7: Benchmark Characterization

Benchmark
Throughput

Sensitive

Latency

Sensitive
Both

Consumer 4 2 3

Networking 3 1 5

 44

CHAPTER V

CASE STUDIES

This chapter addresses two case studies using NoCBench. These serve to study the

behavior of NoCBench with execution of real and synthetic application benchmarks.

A. Real Applications

NoCBench is a unique NOC simulator which allows for real application benchmarks to

be run as a network traffic source. Gaining insight into the interaction between NOC

characteristics and application performance is valuable for any system designer who

must consider design trade-offs between performance capacity, power and energy

consumption, and area constraints.

 In this case study, we show the accuracy gained when simulating real

applications running on a NOC-based system versus generating NOC traffic through

trace-based simulation. The goal of this exercise is to observe the effect of network load

on application execution.

 45

1. Trace vs Real Applications Results

As Figure 23 shows, running a NOC simulation with trace-based traffic is not affected

by background traffic. This could provide misleading results to a system engineer

attempting to determine NOC characteristics on application behavior. With NoCBench

running the application and NOC together, a difference in application execution time is

observed. As the background traffic generated by the dummy cores increases from 0%

to 50%, we observe a 5.73% in execution time.

Figure 23: Impact of Background Traffic

2. Simulator Performance

Apart from demonstrating the functional capabilities of the NoCBench platform, it is

important to measure simulator performance in order to determine its scalability with

system size and overall speed.

The results for the execution of Mediabench[6] and Mibench[7] are provided in

Table 8. This was performed using one processor core running the programs from one

memory core connected using the NOC.

To determine simulator speed, we executed a small program on a varying number

of processing cores which randomly access elements in a large array. This type of

program was used to force a predictable L1 data cache miss rate, which would generate a

460

470

480

490

500

0 20 40 60 80

E
x

ec
u

ti
o

n
 T

im
e

(M
ill

is
ec

o
n

d
s)

Background Traffic (Flit Injection Rate)

Trace Based
Real

 46

determinate amount of NOC traffic. Specifically, an L1 data cache miss rate of 2% was

observed for this simple application.

As Figure 24 shows a moderate performance degradation is observed as the

number of cores increases from 2 to 16 doubling each iteration. When a 2-core SoC is

simulated, a simulation speed of approximately 30KIPS is achieved. With a 16-core

SoC, a simulation speed of approximately 20KIPS is achieved.

Figure 24: Simulated Instructions per Second

0
5

10
15
20
25
30
35

2 4 8 16

E
x
cu

ti
o
n

 S
p

ee
d

(K
 I
n
st

r/
se

co
n
d

)

Number of Cores

Simulation Speed (Instructions)

 47

Table 8: Benchmark Execution Results

Application Simulation

Time(sec)

Instructions Total number of

cycles(Millions)

Simulation

speed(K instr/s)

IC miss DC miss

MiBench

gsm encoder 2100 23447038 32.80 20.71 13920 2020

gsm decoder 1029 12943972 16.21 23.43 3100 11980

qsort 1631 14137668 27.77 16.02 520 82010

sha 1180 13254952 18.52 20.94 700 59920

stringsearch 45 269611 0.77 11.28 2566 320

MediaBench

jpeg encoder 1662 14114306 25.81 15.78 5600 147630

jpeg decoder 686 4328332 9.99 13.6 4330 58610

pgwet encrypt 7382 30386727 115.63 8 6300 1240730

pgwet decrypt 4410 16863037 67.10 7.43 5500 719200

adpcm encoder 537 7404147 8.94 24.24 260 18925

adpcm decoder 497 6408683 7.94 23.14 270 5036

B. Synthetic Benchmarks

This case study addresses a very simple scenario to demonstrate the usage of

benchmarks created with NoCBench to study the relationship between throughput,

latency and application performance. An important decision on SoC design is the

placement of IP’s with relation to the communication paths. For example, processing

cores should have high bandwidth paths to IP’s such as LCD controllers, specialized

general purpose I/O (gpio) and external memory controllers. Paths to other IP’s such as

network packet processing may not require this. Certainly this is a complex hardware-

software co-design problem. It requires evaluating application requirements, system

characteristics and limitations in order to end up with a proper SoC design.

This is where NoCBench along with the proposed benchmark creation

methodology come in handy. Let’s revisit the benchmark definition. A NOC benchmark

is a series of applications mapped into a given system composition that we call an

application characterization graph (APCG). Each application mapping imposes different

load characteristics to the system composition effectively creating a new benchmark.

 48

The cores could then be interconnected with different NOC architectures to make

comprehensive evaluations.

The NoCBench synthetic benchmarks can be controlled per application where

each can be run for several iterations (i.e. jobs). However, since this a simple

demonstration we only ran one job per application. The benchmarks selected was

Networking. Two topologies were chosen: 3X3 mesh and 3X3 torus. Figure 25 presents

the logical placement of the cores. Links and routers are not shown for simplicity.

Maximum Sustained transmit throughput was gathered using the same

measurement points described in Chapter IV. End-to-end latency was gathered as an

average per core. As explained in Chapter IV each packet carries a time stamp with the

time of injection and the receiving core computes the end-to-end latency by capturing

the time stamp at receive time. Therefore this average represents the aggregated end-to-

end latency to reach each core from any point in the NOC. This evaluates the congestion

on the paths of interests per core.

 As Figure 26 shows torus improves average transmit throughput. On the other

hand, as shown in Figure 27 end-to-end latency does not improve much ranging from

5ns to 8µs. Also, Torus seems to improve the throughput balance on the system while it

does not for end-to-end latency. From, the characterization we know that Networking

C0 C1 C2

C3

C6

C4

C7

C5

C8

Figure 25: NoC Topology and IP Placement

 49

has 5 of 9 cores carrying loads which are equally sensitive to throughput and latency.

Also 3 cores are sensitive to throughput. This is reflected in the application execution

times as shown in Figure 28. Networking applications see significant performance

improvement with the torus topology. This is due to the significant improvement in

throughput and while latency did not improve much it did not worsen. Moreover, from

the characterization we know that core 7 is latency sensitive and core 3, while sensitive

to both metrics, showed the worse performance in cL4. These are the two cores that

show improvement in latency on torus. We see this correlation in the performance

improvement.

Figure 26: Throughput Mesh vs Torus

 50

Although this case study is very simple many other problems may be studied

with NoCBench. Network traffic balance is a very important problem when doing power

Figure 27: Latency Mesh vs Torus

Figure 28: Execution Time per Application (s)

 51

characterization of an SoC and studying hot-spot formation on the system. As explained

in the previous chapter NoCBench includes power measurements as well as traffic

measurements. NoCBench is equipped to gather these statistics for all type of

benchmarks whether it is real applications or synthetic benchmarks.

 For example, using the Networking benchmark we are able to see the traffic

balance in the routers as a function of % of flits traversed per router. The sampling rate

used was 1ms. The graphs in Figure 29 and Figure 30 present the first 10 ms of statistics.

We can see how the Torus topology significantly improves balance in the routers.

Figure 29: Flits Traversed per Router Over Time (%): Mesh

 52

 Figure 30: Flits Traversed per Router Over Time (%): Torus

 53

CHAPTER VI

CONCLUSION & FUTURE WORK

The design of SoC’s is a complex process where application requirements are an

important factor in the decision of parameters, components and software used in the

system. Proper validation techniques are key for fast, accurate and efficient design.

Benchmarking is one important validation technique that allows for standard comparison

of distinct approaches.

 This thesis addresses the lack of available platforms for creating proper

benchmarking scenarios to validate NOC design. It has presented NoCBench, a NOC-

based SoC simulator written in SystemC, as a plausible solution. NoCBench allows fast

and accurate simulation of Network on Chip based SoC designs and is capable of

simulating a full system with standard application benchmarks. Hence NoCBench

enables quick validation of design of each component of the system and overall

performance.

 Synthetic applications can also be modeled based on real application execution.

These benchmarks allow faster simulation compared to real applications and create the

same communication characteristics. Different from data traces and statistical data, the

timing of transactions are not fixed. This allows for proper evaluation since

communication dependencies in space drive the communication isolating the on-chip

network as the sole component affecting traffic injection timing, thus affecting the

application performance.

 Clear demonstration of the NoCBench features was addressed in Chapter V with

a series of case studies. Each respectively illustrate the ease of simulation and the

accuracy gained by simulating application execution with the NOC as well as the

benchmarking capabilities of NoCBench.

 Regarding synthetic benchmarks however, improvement on applications is

needed. Better application models are necessary to improve the benchmarking scenarios.

 54

Information on instructions could allow better timing simulation as well as power

modeling of the cores themselves. More robust communication dependency

specifications are needed as well as scaling of applications to address proper NOC sizes.

Processing time at the task level could be added to the communication dependencies as

well. Not to be confused with data traces, this information does not impose a specific

time when transactions occur, but how much processing time must pass after

dependency has been met for the transactions to initiate. This already is addressed by

NoCBench at the application level, with jobs and application period. Nonetheless,

reducing the granularity to the task level would enrich the overall benchmarking

scenario.

 55

REFERENCES

[1] P. Guerrier and A. Greiner, "A generic architecture for on-chip packet-switched

interconnections," in Proc. of the 2000 Design, Automation and Test in Europe

Conference and Exhibition, Paris, France, 2000, pp. 250-256.

[2] P. Bhojwani and R. Mahapatra, "Core network interface architecture and latency

constrained on-chip communication," in Proc.of the 7th IEEE Intl Symposium on

Quality Electronic Devices, San Jose, California , 2006, pp. 358-363.

[3] P. Bhojwani, J.D. Lee, and R.N. Mahapatra, “SAPP: Scalable and adaptable peak

power management in NoCs,” in Proc. of the 2007 Intl. Symposium on Low

Power Electronics and Design, Portland, Oregon, 2007, pp. 340-345.

[4] L.-S. Peh and W.J. Dally, "A delay model and speculative architecture for

pipelined routers," in Proc. of the 7th International Symposium on High-

Performance Computer Architecture, Monterrey, Mexico, 2001, pp.255-266.

[5] C. Grecu, A. Ivanov, R. Pande, A. Jantsch, E. Salminen, U. Ogras, and R.

Marculescu, "Towards open network-on-chip benchmarks," in Proc of the 1st

International Symposium on Networks-on-Chip, Princeton, New Jersey , 2007,

pp.205-205.

[6] L. Chunho, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: A tool for

evaluating and synthesizing multimedia and communications systems," in Proc.

of the 30th Annual IEEE/ACM International Symposium on Microarchitecture,

Research Triangle Park, North Carolina, 1997, pp. 330-335.

[7] Guthaus A., Ringerberg J., Austin T., Mudge T., and Brown. R, 2010, MiBench,

http://www.eecs.umich.edu/mibench/

[8] U. Y. Ogras, J. Hu, and R. Marculescu, “Key research problems in NoC design:

A holistic perspective,” in Proc. of the 3rd IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis, Jersey City,

New Jersey, 2005, pp. 69-74.

 56

[9] P.R. Panda, "SystemC: A modeling platform supporting multiple design

abstractions," in Proc. of the 14th International Symposium on System Synthesis,

Montréal, P.Q., Canada, 2001, pp. 75-80.

[10] Texas Instruments, 2010, Multicore SoC,

http://focus.ti.com/lit/ml/sprt548/sprt548.pdf

[11] Freescale, 2008, QorIQ,

http://cache.freescale.com/files/netcomm/doc/fact_sheet/QorIQ_P4080.pdf

[12] Palesi M., Patti D., and Fazzino F., 2010, Noxim, http://noxim.sourceforge.net/

[13] A. Kumar, N. Agarwal, L.-S. Peh, and N.K. Jha, "A system-level perspective for

efficient NoC design," in Proc. of the 2008 IEEE International Symposium on

Parallel and Distributed Processing, Miami, Florida, 2008, pp. 1-5.

[14] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, "Multifacet's general

execution-driven multiprocessor simulator (gems) toolset," SIGARCH Comput.

Archit. News, vol. 33, no. 4, pp. 92-99, 2005.

[15] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.

Hogberg, F. Larsson, A. Moestedt and B. Werner, "Simics: A full system

simulation platform," Computer, vol.35, no.2, pp.50-58, 2002.

[16] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, "Orion: a power-performance

simulator for interconnection networks," in Proc. 35th Annual IEEE/ACM

International Symposium on Microarchitecture, Istanbul, Turkey, 2002, pp. 294-

305.

[17] Lavina J., 2010, Nirgam, http://nirgam.ecs.soton.ac.uk

[18] B. Towles and W. J. Dally, "Route packets, not wires: On-chip interconnection

networks," in Proc. of the 38th Annual ACM/IEEE Design Automation

Conference, Las Vegas, Nevada, 2001, pp. 684-689.

 57

[19] S. Borkar, “Thousand core chips: A technology perspective.” in Proc. of the 44th

Annual Conference on Design Automation, San Diego, California, 2007, pp. 746-

749.

[20] L. Shang, L.-S. Peh, and N. K. Jha, "PowerHerd: A distributed scheme for

dynamically satisfying peak-power constraints in interconnection networks,"

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Designs, vol.

25, no. 1, pp. 92-110, 2006.

[21] Y. Jin, E. J. Kim, and K. H. Yum, "Peak power control for a QoS capable on-

chip network," in Proc. of the 2005 Intl. Conf. on Parallel Processing, Oslo,

Norway, 2005, pp. 585-592.

[22] P.P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. De Micheli, "Design,

synthesis, and test of networks on chips," IEEE Design & Test of Computers, vol.

22, no.5, pp. 404-413, 2005.

[23] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo, "ArchC: A systemC-based

architecture description language," in Proc. of the 16th Symposium on Computer

Architecture and High Performance Computing, Foz do Iguacu, Brazil, 2004, pp.

66-73.

[24] Open core protocol specification, OCP International Partnership, 2007.

[25] G. Beltrame, L. Fossati, and D. Sciuto, “ReSP: A nonintrusive transaction-level

reflective MPSoC simulation platform for design space exploration” Trans.

Comp.-Aided Des. Integ, vol. 28, no. 12, pp 1857-1869, 2009.

[26] Motorola, 2007, Long term evolution (LTE): A technical overview,

http://www.motorola.com/staticfiles/Business/Solutions/Industry%20Solutions/S

ervice%20Providers/Wireless%20Operators/LTE/_Document/Static%20Files/68

34_MotDoc_New.pdf

 58

APPENDIX A

Figure A.1: Consumer Throughput Characterization (B/s)

Figure A.2: Consumer Latency Characterization (ns)

 59

Figure A.3: Networking Throughput Characterization (B/s)

Figure A.4: Networking Latency Characterization (ns)

 60

APPENDIX B

This appendix provides the NoCBench user guide.

B.1 About

NoCBench is a benchmarking platform geared towards NOC benchmark creation and

NOC design space exploration.

B.2 Features

SystemC Compatible: NoCBench is designed with a SystemC Engine

Flexible NOC Topologies: NoCBench supports any type of topology from NXN Mesh

and Torus to any non-uniform topologies

ISS Plugin: NoCBench provides a straightforward interface to the on-chip network

architecture using OCP as the standard core-network interface. A model of SparcV8

from the ArchC project is already provided.

Real Benchmark: NoCBench supports popular benchmarks such as SpeC2000 ,

MediaBench and MiBench as well as many others.

Varied Library of IP’s and Component: From several Router models, including

PowerHerd models for power management study, to CNI’s, real processors, SRAM

models, dummy cores and TGFF cores supporting the modeling of synthetic

applications.

B.3 Download

The best way to download NoCBench is by using Subversion (SVN). You may do so by

running the command below (provided that SVN is installed on your system):

 61

svn co https://nocbench.svn.sourceforge.net/svnroot/nocbench nocbench

Please refer to the SVN website for more information and usage information:

http://subversion.apache.org/

B.4 Installing NoCBench

Once the code is checked out using SVN follow the commands below from the directory

the download command was executed to install NoCBench:

1. cd [nocbench]

2. make

Where [nocbench] is the name of the top directory.

B.5 Running a Benchmark and The XML Configuration

NoCBench uses XML configuration scripts to input all simulator parameters. NoCBench

parses the XML configuration script, generates the NOC system and then starts the

simulator. There are two main types of simulation on NoCBench:

1) Real Benchmark Simulation and

2) TGFF Synthetic application benchmarking

Simulation type is divided into these categories since at the moment they are mutually

exclusive and the XML configuration format varies between the two.

B.5.1 Real Benchmark Simulation

 62

In this user guide we use the cjpeg benchmark from MediaBench to illustrate how to run

a real application benchmark on NoCBench. To run the cjpeg benchmark you may

follow the command below:

[nocbench]/nocbench jpeg.xml

The jpeg.xml contains the simulation configurations. Below is the jpeg.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Simulator SYSTEM "../conf/config.dtd">
<Simulator cycles="0" maxresponsetime="0" quietmode="true">
 <PowerModel tgpb="10000" pgpb="8" ebuffread="76" ebuffwrite="80"
ecrossbar="83" elink="6"/>
 <Network nvcs="3" buflen="8">
 <CNI name="sparc-1-cni" type="ocp" infifolen="8" outfifolen="8"
msgqlen="4" reorder="false"/>
 <CNI name="mem-1-cni" type="ocp" infifolen="8" outfifolen="8"
msgqlen="4" reorder="false"/>
 <Router name="router1" type="generic" infifolen="8"
outfifolen="8"/>
 <Link src="sparc-1-cni" dst="router1"/>
 <Link src="mem-1-cni" dst="router1"/>
 </Network>
 <CORE name="SPARC-1" type="sparcv8" interface="sparc-1-cni"
pref_mem="MEMORY-1"/>
 <CORE name="MEMORY-1" type="memory" interface="mem-1-cni"
addr_range="0x2000000"/>
 <System tick="100000.0" pagesize="4096" ptablesize="32" endian="1"
sched="rr" heapsize="3145728" procsize="5242880" />
 <Task cmdline="jpeg/bin/cjpeg -dct int -progressive -opt -outfile
rose.jpeg jpeg/input/testimg.ppm" target="sparcv8" jobs="1"/>
</Simulator>

The <Network> Section describes the NOC topology and configures the CNI and

Routers. The <CORE> sections is used to specify how many cores, what architecture or

type of core to use (i.e. SparcV8, Memory), and what CNI (or interface) to connect the

core. The <System> section configures the kernel. Some configurable parameters are

tick, page size and scheduler type (in this case Round Robin specified by “rr”). The

<Task> section specifies the benchmark to run. Note that we have given a relative

address in this example and that it is assumed the jpeg benchmark directory is in the

current directory (i.e. where the run command is executed). Also note that the <Task>

 63

section provides for specifying target architecture and number of jobs for the task.

While the latter is optional the former is critical since binaries are compiled for a specific

target. The scheduler uses this information during simulation. A bigger system may be

specified by adding more Cores and/or NOC components (i.e CNI, Router). Also, as

man y tasks as the user requires can be specified.

B.5.2. Synthetic Benchmark Simulation (TGFF)

In this user guide we use a very simple 3-node synthetic benchmark to explain how to

run synthetic applications based on directed-acyclic graphs (DAG). To run the synthetic

benchmark you may run the following commad:

[nocbench]/nocbench peakTL.xml

The peakTL.xml contains the configuration parameters. A copy of it is show here.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Simulator SYSTEM "../../../conf/config.dtd">
<Simulator cycles="0" maxresponsetime="0" quietmode="true">
<PowerModel tgpb="10000" pgpb="8" ebuffread="76" ebuffwrite="80"
ecrossbar="83" elink="6"/>
<Network nvcs="3" buflen="8">
<CNI name="tgff-1-cni" type="ocp" infifolen="8" outfifolen="8"
msgqlen="4" reorder="false"/>
<CNI name="tgff-2-cni" type="ocp" infifolen="8" outfifolen="8"
msgqlen="4" reorder="false"/>
<CNI name="tgff-3-cni" type="ocp" infifolen="8" outfifolen="8"
msgqlen="4" reorder="false"/>
<Router name="router1" type="generic" infifolen="8" outfifolen="8"/>
<Router name="router2" type="generic" infifolen="8" outfifolen="8"/>
<Router name="router3" type="generic" infifolen="8" outfifolen="8"/>
<Link src="tgff-1-cni" dst="router1"/>
<Link src="tgff-2-cni" dst="router2"/>
<Link src="tgff-3-cni" dst="router3"/>
<Link src="router1" dst="router2"/>
<Link src="router2" dst="router3"/>
</Network>
<CORE name="tgff-0" type="tgff" interface="tgff-1-cni"
addr_range="0x1"/>

 64

<CORE name="tgff-1" type="tgff" interface="tgff-2-cni"
addr_range="0x1"/>
<CORE name="tgff-2" type="tgff" interface="tgff-3-cni"
addr_range="0x1"/>
<System sched="tgff"/>
<Task target="tgff" prefproc="tgff-0" sinks="1" datavol="5999616"
appzname="appz1"/>
<Task target="tgff" prefproc="tgff-1" srcs="0" sinks="2"
datavol="1000448" appzname="appz1"/>
<Task target="tgff" prefproc="tgff-2" srcs="1" datavol="0"
appzname="appz1"/>
<Appz name="appz1" period="1600000" jobs="1"/>
</Simulator>

Note that the <Network> section and the <Core> section remain the same. The

difference here is that the type of the core is specified to be “tgff” instead of “sparcv8”.

Also notice that the scheduler specified is “tgff” the default scheduler provided by

NoCBench for synthetic application benchmarking.

The main difference between real benchmarks and synthetic applications is in the

<Task> specification section. In this mode, each <Task> is considered a node of a DAG.

To describe the links between one node and another the parameters srcs and sinksare

used. These parameters specify the “id” of the node it is connecting too, while datavol

specifies how much data it needs to transfer to the sinks. To know the id of each task is

easy, since NoCBench will automatically assign the id’s in the order the tasks are

specified starting with index 0. Since a NOC Benchmark is composed of a series of

applications each task (i.e. node) needs to specify to which application it belongs. The

<Appz> section is used to configure the parameters of each application.

A list of all configurable parameters is explained below. You may find this also at

[nocbench]/conf/config.dtd

<!-- Simulator is the root element and contains the entire simulation
configuration.
 Each configuration must have a Network description and a System
description.
 PowerModel, CORE, Task and Appz are optional and are only
required in certain
 simulation modes.

 65

 Note: Current version performs only a partial validation of the
configuration
 through DTD validation. However, to ensure successful simulation
explicit checks
 for ill configured XML will be nice and helps avoiding
unnecessary debugging. -->
<!ELEMENT Simulator (PowerModel?,Network, CORE*, System, Task*, Appz*)>
<!ATTLIST Simulator cycles CDATA #REQUIRED>
<!-- number of cycles to run - infinite if 0 -->
<!ATTLIST Simulator maxresponsetime CDATA #IMPLIED>
<!-- number of cycles before reporting a possible deadlock -->
<!ATTLIST Simulator quietmode CDATA #IMPLIED>
<!-- false for verbose output, true otherwise -->
<!ATTLIST Simulator randomflitrate CDATA #IMPLIED>
<!-- true if flitrate is random over time - NOTE: not implemented in
all modes -->
<!ATTLIST Simulator trace CDATA #IMPLIED>
<!-- tracefile name - used for power trace -->

<!-- PowerModel element specifies the power model used in the router
design.
 Optional
 should implmement sub-elements and provide more detail for
router, cni, link etc.
-->
<!ELEMENT PowerModel EMPTY>
<!ATTLIST PowerModel tgpb CDATA #REQUIRED>
<!-- thermal time constant of the chip - in cycles -->
<!ATTLIST PowerModel pgpb CDATA #REQUIRED>
<!-- global power budget of the chip - in Watts -->
<!ATTLIST PowerModel ebuffread CDATA #REQUIRED>
<!-- energy of buffer read in one cycle - in pJoules -->
<!ATTLIST PowerModel ebuffwrite CDATA #REQUIRED>
<!-- energy of buffer write operation in one cycle - in pJoules -->
<!ATTLIST PowerModel ecrossbar CDATA #REQUIRED>
<!-- energy of sending a flit through the crossbar in one cycle - in
pJoules -->
<!ATTLIST PowerModel elink CDATA #REQUIRED>
<!-- energy of writing a flit to the link - in pJoules -->

<!-- Network element contains the description of the entire NoC. The
components
 are as Router, CNI and Link each defined later in the document.
Network must
 have One or more CNI, one or more Router and Zero or more link
and in the
 given order. The CNIs are assigned ID based on the order of
declaration starting
 from 0.
-->
<!ELEMENT Network (CNI+,Router+,Link*)>
<!ATTLIST Network nvcs CDATA #REQUIRED>
<!-- number of virtual channels used for the wormhole communication -->

 66

<!ATTLIST Network buflen CDATA #REQUIRED>
<!-- number of buffers in the CNIs for incoming and outgoing messages -
->
<!ATTLIST Network neighborhood CDATA #IMPLIED>
<!-- hop distance to consider as neighrborhood in localized random
traffic - deprecated -->

<!-- Router - describes the parameters of the Router architecture.-->
<!ELEMENT Router EMPTY>
<!ATTLIST Router name ID #REQUIRED>
<!-- name of the router - string, has to be unique -->
<!ATTLIST Router type (generic) #REQUIRED>
<!-- router type - has to be among the supported type -->
<!ATTLIST Router ports CDATA #IMPLIED>
<!-- number of ports in the router - DEPRECATED -->
<!ATTLIST Router infifolen CDATA #REQUIRED>
<!-- input fifo length in flits -->
<!ATTLIST Router outfifolen CDATA #REQUIRED>
<!-- output fifo length in flits, only used if output buffering is
implemented -->
<!ATTLIST Router x CDATA #IMPLIED>
<!-- option to specify the co-ordinates for regulal topology horizontal
position -->
<!ATTLIST Router y CDATA #IMPLIED>
<!-- same as above - vertical position -->
<!ATTLIST Router N CDATA #IMPLIED>
<!-- powerherd scheme spefici parameter -->

<!-- CNI Element configuration.
 Each CNI element creates an interface to the NOC.
 Specifying type is required and important to match
 with the router it connects to.
 Note: Should be automatically matched in future versions.
-->
<!ELEMENT CNI (MMAP*)>
<!ATTLIST CNI name ID #REQUIRED>
<!-- name of the CNI, need to be unique, used to refer later on -->
<!ATTLIST CNI type (ocp|pc) #REQUIRED>
<!-- CNI type, required, specifies the CNI design type -->
<!ATTLIST CNI infifolen CDATA #REQUIRED>
<!-- input fifo length in flits -->
<!ATTLIST CNI outfifolen CDATA #REQUIRED>
<!-- output fifo length in flits -->
<!ATTLIST CNI msgqlen CDATA #REQUIRED>
<!-- length of the core side message queue -->
<!ATTLIST CNI reorder (true|false) #REQUIRED>
<!-- if false messages are not ordered -->
<!ATTLIST CNI flitinjectionrate CDATA #IMPLIED>
<!-- controls flit injection - limits if more, but increase if less is
controlled by internal flag -->
<!ATTLIST CNI firprofile CDATA #IMPLIED>
<!-- allows to vary the injcetion over time format: "10 20 60 30" means
at 10% simulation time FIR = 20% and so on-->

 67

<!ATTLIST CNI ber CDATA #IMPLIED>
<!-- bit error rate: to introduce error in the sent/received data at
CNI -->

<!-- MMAP Element
 Was used to specify memory map as visible through the current
interface/CNI
 DEPRECATED
-->
<!ELEMENT MMAP EMPTY>
<!ATTLIST MMAP base CDATA #REQUIRED>
<!ATTLIST MMAP range CDATA #REQUIRED>
<!ATTLIST MMAP target IDREF #REQUIRED>

<!-- Link
 Defines a Link
-->
<!ELEMENT Link EMPTY>
<!ATTLIST Link src IDREF #REQUIRED>
<!-- src node - can be a router or cni: refered by the name attribute -
->
<!ATTLIST Link dst IDREF #REQUIRED>
<!-- dst node - same as above -->

<!-- Core element
 Contains the configuration for a CORE that will be attached to an
interface.
-->
<!ELEMENT CORE EMPTY>
<!ATTLIST CORE name ID #REQUIRED>
<!-- name of the core: string has to be unique -->
<!ATTLIST CORE type (dummy|sparcv8|memory|tgff) #REQUIRED>
<!-- type of the core -->
<!ATTLIST CORE interface IDREF #REQUIRED>
<!-- name of the interface (CNI) this core connects to. Not verified --
>
<!ATTLIST CORE commandline CDATA #IMPLIED>
<!-- commandline to execute in this core: used in context of ArchC
cores -->
<!ATTLIST CORE addr_range CDATA #IMPLIED>
<!-- address range allocated to this core: just specifies the number of
locations allocated -->
<!ATTLIST CORE pref_mem IDREF #IMPLIED>
<!-- name of the memory core where application should be loaded -
DEPRECATED -->
<!ATTLIST CORE bs CDATA #IMPLIED>
<!-- This parameter has been deprecated. DO NOT USE -->

<!-- Task element
 Specifies a Task to be run
-->
<!ELEMENT Task EMPTY>

 68

<!ATTLIST Task cmdline CDATA #IMPLIED> <!-- contains
absolute or relative path of the binary along with arguments -->
<!ATTLIST Task target (dummy|sparcv8) #REQUIRED> <!--
specifies target architecture of the binary -->
<!ATTLIST Task jobs CDATA #IMPLIED> <!-- # of
jobs per task -->
<!ATTLIST Task prefproc CDATA #IMPLIED> <!-- forces
scheduler to run the task on specific core with target architecture -->
<!ATTLIST Task prefmproc CDATA #IMPLIED> <!--
DEPRECATED -->

<!-- System element
 Contains the kernel information. All attributes are optional.
Values given
 in individual comments.
 Default values below. Also available @ Constants.h
-->
<!ELEMENT System EMPTY>
<!ATTLIST System procsize CDATA #IMPLIED> <!-- This is
the size of the local process space including .text, .data, .bss, heap,
stack, shared mem and arguments. DEFAULTT 5MB -> 5242880 -->
<!ATTLIST System ptablesize CDATA #IMPLIED> <!-- Size of
page table. Indicates # of pages per table. DEFAULT 32 -->
<!ATTLIST System pagesize CDATA #IMPLIED> <!-- Page Size
in (B). DEFAULT 4KB -> 4096. -->
<!ATTLIST System heapsize CDATA #IMPLIED> <!-- Maximum
Task Heap size in local address space. Metric (B). DEFAULT 3MB ->
3145728 -->
<!ATTLIST System tick CDATA #IMPLIED> <!-- Scheduerl
period in (ns). Scheduler idle task will be run every tick. DEFAULT
10000 ns -->
<!ATTLIST System endian CDATA #IMPLIED> <!-- Endiannes
of the system. All memory and processor cores will be set to this. 1
BE, 0 LE. DEFAULT BE-->
<!ATTLIST System sched CDATA #IMPLIED> <!-- Scheduler
type; values: "rr". DEFAULT Round Robin -> "rr" -->
<!ATTLIST System hyperperiod CDATA #IMPLIED> <!--
Hyperperiod of the tasks. Currently use as an expansion parameter for
Real Time support -->

B.6 Help and Support

Please visit our forum located at SourceForge for support and more questions about how

to use NoCBench.

http://sourceforge.net/projects/nocbench/forums/forum/1026561

 69

Thanks for your support and we look forward on NoCBench providing you the best

NOC simulation and benchmarking experience for your research work.

 70

VITA

Name: Javier Jose Malave-Bonet

Address: Department of Electrical and Computer Engineering,

 Texas A&M University,

 214 Zachry Engineering Center,

 TAMU 3128

 College Station, Texas 77843-3128

Email Address: javier.jose@gmail.com

Education: B.S., Computer Engineering, University of Puerto Rico at Mayagüez,

2007

 M.S., Computer Engineering, Texas A&M University, 2010

