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ABSTRACT 

 

A Benchmarking Platform For Network-On-Chip (NOC) Multiprocessor System-On-

Chips. (December 2010) 

Javier Jose Malave-Bonet, B.S., University of Puerto Rico at Mayagüez 

Chair of Advisory Committee: Dr. Rabi N. Mahapatra 

 

Network-on-Chip (NOC) based designs have garnered significant attention from both 

researchers and industry over the past several years.  The analysis of these designs has 

focused on broad topics such as NOC component micro-architecture, fault-tolerant 

communication, and system memory architecture. Nonetheless, the design of low-

latency, high-bandwidth, low-power and area-efficient NOC is extremely complex due 

to the conflicting nature of these design objectives. Benchmarks are an indispensable 

tool in the design process; providing thorough measurement and fair comparison 

between designs in order to achieve optimal results (i.e performance, cost, quality of 

service). 

This research proposes a benchmarking platform called NoCBench for evaluating 

the performance of Network-on-chip. Although previous research has proposed standard 

guidelines to develop benchmarks for Network-on-Chip, this work moves forward and 

proposes a System-C based simulation platform for system-level design exploration. It 

will provide an initial set of synthetic benchmarks for on-chip network interconnection 

validation along with an initial set of standardized processing cores, NOC components, 

and system-wide services.  

The benchmarks were constructed using synthetic applications described by Task 

Graphs For Free (TGFF) task graphs extracted from the E3S benchmark suite. Two 

benchmarks were used for characterization: Consumer and Networking. They are 

characterized based on throughput and latency. Case studies show how they can be used 

to evaluate metrics beyond throughput and latency (i.e. traffic distribution). 
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The contribution of this work is two-fold: 1) This study provides a methodology 

for benchmark creation and characterization using NoCBench that evaluates important 

metrics in NOC design (i.e. end-to-end packet delay, throughput).  2) The developed 

full-system simulation platform provides a complete environment for further benchmark 

characterization on NOC based MpSoC as well as system-level design space 

exploration. 
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CHAPTER I 

INTRODUCTION 

 

Network-on-Chip (NOC) based designs have garnered significant attention from both 

researchers and industry over the past several years.  The analysis of these designs has 

focused on broad topics such as NOC component micro-architecture [1][2][3][4], fault-

tolerant communication, system memory architecture and system level issues (i.e. task 

scheduling and mapping, real-time issues, low power noc).  Nonetheless, the design of 

low-latency, high-bandwidth, low-power and area-efficient NOC is extremely complex 

due to the conflicting nature of these design objectives. The NOC must be co-designed 

with other chip components and its design must be evaluated with a total system 

perspective.  

Benchmarks play an essential role in the process of system design exploration 

and analysis. Previously, guidelines have been proposed to develop standard benchmarks 

for NOC [5], yet this is a problem that still remains scarcely addressed. Classic 

benchmarks fall short of a solution since they are application oriented and do not exploit 

communication intensive architectures [6][7]. NOC-based systems are expected to have 

more heterogeneous workloads with respect to computation and communication.  Thus, 

to characterize a NOC benchmark a standard, well-defined, set of metrics is needed that 

measure the elements that define a NOC [5].  A benchmark designed for NOC-based 

systems needs to quantify the performances of the following: 1) functional and storage 

blocks with corresponding network interface (cores), 2) the interconnect infrastructure 

(routers and links), and 3) the fully integrated system.  

 

 

 

____________ 

This thesis follows the style of IEEE Transactions on Automatic Control. 
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Network-on Chips provide the underlying communication infrastructure that 

allows effective integration of functional, I/O, and storage blocks. Latency, throughput, 

reliability, energy dissipation, and silicon area requirements characterize such 

communication-centric interconnect fabrics. For this reason, application driven workload 

is essential to compare different designs and evaluate the system effects on performance 

characteristics of the NOC. The variability of injection rates and traffic patterns in real 

applications provide an excellent opportunity for implementing adaptive hardware in 

NOC. 

Real benchmarks are the most accurate approach for application driven work 

load, but their simulation is time intensive. Synthetic benchmarks conversely mimic real 

program workload by extracting the communication characteristics of the application 

into a communication task graph (CTG).  

Ogras et. al provide a formal definition of a CTG. A Communication Task Graph 

(CTG) G’ = G’(T, D) is a directed acyclic graph, where each vertex represents a 

computational module in the application referred to as task ti ∈ T . Each task is 

annotated with relevant information, such as execution time on each type of Processing 

Element (PE) in the network, task i energy consumption ( ) when executed on the j-th 

PE, individual task deadlines (dl(ti) ), periodicity of the task graphs, etc. Each directed 

arc di, j ∈ D between tasks ti and tj characterizes either data or control dependencies. 

Each has associated a value, which stands for the communication volume (bits) 

exchanged between tasks ti and tj [8]. 

 Synthetic benchmarks could also be reduced in scope (e.g. micro-benchmarks) 

and impose the workload on a single component, thus isolating the measurement of 

specific parameters. 

Overall a benchmarking environment should cover the following aspects in a 

NOC:  1) Packets and Transactions (Delay, bandwidth, jitter, power consumption of 

individual packets and routing, switching, buffering, flow control of the network) 2) 

Congestion (Arbitration, buffering, flow control) 3) Temporal and Spatial Distribution 
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(burst traffic scenarios, hot spot pattern detection) 4) Quality of Service (guaranteed 

throughput and latency). 5) Network Size (scalability of communication network). 

Due to the complex nature of these metrics NOC benchmarks cannot be 

composed just of a specified application and data input set or a synthetic communication 

task graph (CTG) alone. The same task set, or application mix, running on different 

system configurations may potentially generate different traffic patterns, therefore being 

characterized as distinct benchmarks. Network Size, core composition (i.e. processor, 

memory, other IP) and task mapping must be part of the benchmark configuration. It is 

necessary, then, to have a full benchmarking environment that is able to support this. 

The scope of this thesis is to provide a benchmarking platform for network-on-

chip. It serves a dual purpose: 1) provides an environment for NOC benchmark 

characterization, 2) Permits NOC based MpSoc design space exploration.  

The platform includes an initial set of standardized processing cores, NOC 

components, and system-wide services. System-C[9] is used as the main simulation 

engine. The processing cores are capable of running standard benchmark applications to 

generate network traffic.  The platform also provides for NOC and system researchers to 

easily plug-and-play existing components, or newly designed components, into a full 

SoC. This allows a system designer to easily assess the quality of their ideas and designs, 

to catch bottlenecks early in design formulation, and to study the relationship between 

NOC architecture and application performance. 

This research also addresses methodology issues in the creation of benchmarks.  

An initial set of example synthetic benchmarks will be given along with the simulator. 

They were constructed using TGFF task graphs from the E3S benchmark suite. In this 

benchmark suite task execution time, communication dependencies (i.e. payload size, 

task source and sink), application period and deadlines are extracted from execution of 

EEMBC benchmarks on a series of processor models. This brings better accuracy to 

these synthetic benchmarks in term of traffic generation compared to random traces or 

manually constructed communication task graphs. We discuss mapping techniques of the 

applications into different system configurations, in order to create distinct traffic 
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scenarios in the communication network that will evaluate important metrics in NOC 

design (i.e. end-to-end packet delay, sustainable throughput). 
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CHAPTER II 

PROBLEM 

 

In the SoC design cycle validation and verification is a process that persists throughout 

all the steps, from architectural design to physical design and the manufacturing process. 

Nonetheless, while NOC based MpSoC designs have been proposed for years; they are 

just being introduced into the market [10][11]. The research community is still facing 

obstacles to find proper validation and verification schemes for the initial design stages. 

One of the main problems associated with NOC based research and development, as 

proposed by Grecu et al [5], is the lack of suitable benchmarks. 

 Previously Grecu et. al [5] provided a general categorization of NOC 

benchmarks. In addition to real programs, micro-benchmarks and synthetic applications 

they also address definitions of benchmarks for fault tolerance and reliability. 

 For synthetic benchmarks they proposed  that a NOC benchmark has to be 

applied on more than a simple topological description, but rather on a combination of 

functional IP cores and NOC components with a certain system architecture (i.e. 

topology), and specific information of traffic patterns running on the on-chip network 

communication architecture. The superposition of these various elements creates 

different benchmark scenarios. Moreover, these scenarios are used to characterize the 

benchmark. They provide a methodology that imposes a CTG on processing elements 

and establishes an FSM for PE execution. They suggest two metrics for measurement: 

application execution time and application throughput. 

  In previous work Ogras et. al define such a mapping as an application 

characterization graph (APCG). An Application Characterization Graph (APCG) is a 

directed graph G =G(C,A), where each vertex ci C represents a selected IP/core, and 

each directed arc ai,j characterizes the communication process from core ci to core cj. 

Each ai,j can be tagged with application-specific information (e.g. communication 

volume, communication rate, etc.) and specific design constraints (e.g. communication 
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bandwidth, latency requirements, etc.). Also, the size/shape of cores ci C is assumed to 

be known [8]. 

 Overall we subdivide the problem of NOC benchmarking into three further sub-

problems: Application Selection or Modeling, Benchmark Creation and Characterization 

and Simulation Environment Development.   

 Application Selection and Modeling addresses the usage of real programs and the 

creation of CTGs for synthetic applications. There are several benchmark suites that are 

widely used and known among the research community such as: miBench, SPEC, 

Alpbench, EEMBC among others.  

 In order to create communication task graphs a widely accepted tool has been 

used among researches called Task Graphs For Free (TGFF). TGFF lets the user create 

task graphs with detailed information in terms of task definition, communication 

requirements and dependencies. Users may specify parameters for a task such as code 

size, data communication volume, task period and processor specifications (i.e. 

architecture, price). Task graphs created are directed acyclic graphs (DAG) and are 

equivalent in definition to a CTG. Each node represents a task and an arc between each 

node represents a directed dependency (source to sink) between them.  

The E3S benchmark suite has gathered information from the Embedded 

Microprocessor Benchmark Consortium (EEMBC) suite to create a benchmark suite for 

use in system synthesis research. It is particularly useful in terms of automated system 

allocation and mapping as well as scheduling research. E3S has characterized several 

well known processors from AMD, Analog Devices and Texas Instruments. Task graphs 

used for this characterization are given with realistic detailed information of EEMBC 

task’s execution time (per given target architecture), communication data volume, code 

size, deadlines and periods. TGFF was used to built the CTG and provide task 

communication dependencies. The E3S benchmark suite also provides instructions for 

creating additional CTG’s. Although, not a real substitute for real applications, this 

synthetic benchmarks model realistic application data using real world applications and 

systems. 
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 Simulation and Environment Development addresses the creation of a suitable 

platform for the creation, characterization and execution of benchmarks. Noxim is a 

flexible SystemC-based NOC Simulator that models systems organized in a 2D mesh 

topology [12]. Noxim evaluates NOC characteristics through synthetic traffic generation 

(e.g. stochastic probabilistic traffic) – injection distribution, destination distribution and 

injection rate can be specified by the user.  

Garnet [13] is a network-on-chip performance simulator which is compatible 

with the GEMS [14]  multiprocessor framework along with Simics [15]. It can be 

interfaced with the Orion [16] network-on-chip power modeler when necessary. Garnet 

provides two modes of operation: a detailed “fixed pipeline” mode, and a high-level 

“flexible-pipeline” mode. The fixed-pipeline mode models the micro-architectural 

details of the on-chip router, while the flexible-pipeline mode allows the user to 

parameterize the number of router pipeline stages, and simply delays network traffic by 

that many cycles per router.  Although Garnet is an excellent tool due to its accuracy and 

inter-operability with other system-level simulators, it does not provide full end-to-end 

models of the NOC (e.g. CNI, other infrastructure IP) within a single framework.  

Additionally, only 2D-mesh topologies can be modeled with the Garnet simulator. 

NIRGAM is a SystemC-based NOC simulator that allows a user to model a mesh 

or torus NOC [17].  Traffic is generated either synthetically or through a traffic trace.  

Like the other NOC simulators mentioned, NIRGAM also allows a user to vary certain 

NOC component parameters, such as buffer depth, number of virtual channels, and 

routing algorithm. 

Although each of the simulators discussed above are well suited for specific 

purposes, there is still a need for a simulation platform that encompasses all the needs of 

a NOC benchmarking environment. That is modeling a complete flexible system capable 

of simulating all varying types of benchmarks (i.e. real code, synthetic applications, 

micro-benchmarks). The main shortcoming of all the simulators discussed above is, they 

either simulate the network or the cores. NoCBench is the first step towards bridging the 
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gap by providing a full system simulation environment equipped with cores, network 

components and a simulated kernel.  

To the best of our knowledge there is no work addressing the creation and 

characterization of benchmarks. In this work we address synthetic applications and use 

the E3S benchmark as a starting point. We address the methodology of characterization, 

selection of metrics and their usage for studying NOC problems. 
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CHAPTER III 

NOC BENCHMARKING PLATFORM 

 

A. System Components and Architecture 

 

1. System on Chip 

 

Modern embedded systems are often composed of many IP blocks including processors, 

memory blocks, DSPs and controllers. Traditionally these blocks have been connected 

using direct wiring or on chip buses. However, with growing integration and shrinking 

device size and increased chip size, wiring delays are becoming significant. Also, as we 

pack more cores and connect with buses, contention becomes a major bottleneck. To 

address these network on chip has emerged as a solution for communication on the 

chip[18][19]. Details of the Network on Chip architecture is discussed here. 

 

2. NOC Architecture 

 

Network on Chip architecture is inspired by the asynchronous communication paradigm 

of packet switched computer networks. With increased on chip wiring delay 

synchronized communication between the far ends of a large system on chip is 

impractical. Network on Chip tries to address this issue by introducing a globally 

asynchronous locally synchronous (GALS) paradigm. In NOC, communication takes 

place between cores using information packets. Packets are generated at the source and 

carried to the destination by intermediate routers. At the destination, the packet is 

decomposed into data and processed by the receiver. Clearly NOC architecture will have 

the following components. A Core to Network interface, Routers and Links. The 

following sections discuss the functional and architectural details of these components. 
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3. Core Network Interface (CNI) 

 

The Core Network Interface, or CNI, is the functional equivalent of a network card in 

standard multi-computer systems [2]. The CNI connects the IP cores to the network. Its 

primary job is to translate the raw information generated by the core into packets to be 

transmitted through the network and the reverse process for packets coming in from the 

network. The CNI also performs address resolution to find the destination core based on 

the address in the incoming request. In addition, a CNI can also perform system 

management tasks such as power management, fault detection, core test support, and 

system reconfiguration. The block diagram of an example CNI is given in Figure 1. 

 

 

Figure 1: A Simple Core Network Interface 

 

The CNI architecture assumed in this research provides simple traffic translation 

to enable inter-core communication across the network-on-chip. For more complex 

systems, other functionality may be added to this base model as necessary.  Other 

researchers present a thorough examination of additional functionality that may be added 

[2][3].  

 

4. Router 

 

The on-chip router is the most salient component in a Network on Chip. Similar to 

standard computer networks, the router’s job is to efficiently route packets through the 
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network. A router mainly consists of the input channels to receive the packets, output 

channels for sending, a crossbar for switching and a routing logic for doing the routing. 

Generally the input and output channels are buffered. A simple router block diagram is 

illustrated in Figure 2. 

 

 

Figure 2: A Simple 5 Cycle Router Pipeline 

 

The router architecture used in this research follows the standard five stage 

pipelined, wormhole router proposed by various researchers [20][21][4]. In wormhole 

routing each packet is further split into units called flits. Each port has a set of input 

buffers, and each incoming flit is first stored in the appropriate input buffer.  If the 

incoming flit is a head flit, then a routing decision must be made so that the entire packet 

is forwarded to the appropriate output port.  Flits are then assigned an output virtual 

channel, and the crossbar switch is allocated for each flit based on utilization and 

fairness policies.  Finally, the flit traverses the crossbar switch and is sent through the 

appropriate output port. 

 

5. Links 

 

Links connect the routers and the cores via CNI. Due to the structure of NOC, the links 

are generally shorter compared to bus or dedicated wiring. Hence, often the links can be 

of higher bit width and 64, 128 even 256 bit wide links are common.  For NOC and 
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system benchmarking purposes, all data flowing through links is assumed to require one 

cycle of latency. 

 

6. NOC Topologies and Routing 

 

A NOC can have different topologies and routing algorithms depending on application 

needs and available resources. We will discuss the most common and widely used 

topologies and routing algorithms in the following sections. 

 

7. Topology 

 

The most commonly used topologies in NOC research are 2D Mesh and Torus 

topologies. However, other interesting topologies such as butterfly, fat-tree, and 

Gaussian networks have also been proposed [22]. The mesh and torus topologies are 

favored due to their regular structure and planar geometry and simplicity.  

Figure 3 illustrates the three common topologies, namely Torus, Mesh and Irregular. 

 

 

Figure 3: Common Network Topologies 

 

System designers must select the appropriate topology for their expected 

application requirements, based on topological metrics such as link density and network 

diameter. 
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8. Routing 

 

Routing in NOC depends on the topology. It can be table lookup based where each 

router has next hop information for every destination in the network or it can be 

geometry based like dimension ordered or XY routing. The third type of routing is called 

source routing, where the sender specifies all the intermediate nodes in the packet. Each 

routing technique differs in performance with respect to adaptability, average hop count, 

and flit header storage requirements. The performance of the system can vary greatly 

depending on the routing technique used. 

 

B. Platform Overview 

The proposed platform, NoCBench, consists of a flit accurate network on chip simulator. 

The simulator can be configured according to system needs and it can support a variety 

of architectures (i.e. multiple core-network interface link configuration, switching 

policies, topologies). In this section we describe the simulation environment. 

Table 1 compares the features and capabilities of the NOC simulator described in 

this research.  ISS Integration is the capability of the NOC simulator to use real 

application behavior as a basis for NOC traffic.  Our NOC platform includes the ArchC 

ISS to model core behavior, while Garnet interfaces with Virtutech Simics to provide 

core functionality.  The other simulators do not provide this capability.  Topologies is 

the allowable set of NOC topologies supported by each simulator. Flit Accurate is the 

level of accuracy supported by each simulator.  The Parameterized NOC feature means 

that the simulator supports user-configurable routing algorithms, buffer depths, number 

of VCs, etc. 
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Table 1: Simulator Feature Comparison 

 

 

1. NOC Simulator 

 

The included NOC simulator is a flit accurate network on chip simulator written in 

SystemC. It makes use of the SystemC simulation engine and behavioral level network 

component library for fast simulation. Figure 4 shows the organization of the NOC 

simulator in the platform. The Simulator consists of the following main units: the NOC 

generator, the component library, and the simulation engine. The NOC simulation 

environment is compatible with any SystemC simulation engine. In our evaluation we 

have used the OSCI SystemC simulation engine. It is capable of very fast and accurate 

simulation in any platform and it is fully open source. 

 

Features NoCBench Gems – Garnet Nirgam Noxim 

ISS Integration Yes - ArchC Yes – Simics No No 

Topologies Full Custom Full Custom Mesh, Torus Mesh 

Flit Accurate Yes Yes Yes Yes 

Power 

Measurements 
Yes – Router/CNI/Global Yes – Module Level No Yes 

Fault Injection Yes No No No 

Parameterized NOC Yes Yes Yes Yes 

Full System Yes Yes No No 

Open Source Yes Dependent on Simics Yes Yes 
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Figure 4: NoCBench Execution Overview 

 

2. Network Generator 

 

This module reads a configuration file specified in XML format and generates the NOC 

using SystemC library modules. The configuration includes the topology, specification 

of parameters for the CNI, Router and Links. It can also specify fault simulation 

parameters, and the configuration can be extended according to the need for 

specification of additional properties. An example configuration can be found in the 

Appendix. 

 

3. Network Component Library 

 

The network component library is the core of the simulation system. In this library we 

have modeled the components of the NOC using SystemC. The router and the CNI can 
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be configured to implement popular peak power management schemes like PowerHerd 

[20] and PC [21]. The system level model allows for fairly accurate and much faster 

simulation compared to detailed RTL simulation. Table 2 provides the details for the 

available modules in the network component library. 

 

Table 2: Network Components and Configurable Parameters 

Component Configuration parameters 

CNI Flit injection rate, message queue length. 

Router Number of ports, buffer lengths, number of virtual channels. 

Routing XY routing, table based routing, source routing. 

Link Bit widths. 

 

4. Configurable Core Library 

 

The configurable Core library provides SystemC models of IP cores. We have three 

types of core models in this library in the current version of the NOC platform. 

 Synthetic Cores: These cores can generate communication based on statistical 

traffic distributions. These types of cores do not generate meaningful traffic in the 

network and do not necessarily perform meaningful communication. However, these 

cores can be configured to produce network traffic that follows the expected high-level 

behavior in the network, which allows for generalized performance benchmarking of 

NOC components.  Statistical random number generators are used to mimic traffic 

distributions.  Examples of statistical traffic patterns include uniformly distributed 

network traffic and self-similar traffic models. 

 Real Cores: These are SystemC wrapped cores, typically implemented in either 

C++/C. The most common examples of these core implementations are instruction set 

simulators (ISS) for different processing cores. They also include cache and memory 

models. We have used ArchC [23] based processor models to represent real cores. 

ArchC is an open-source language written in SystemC used for processor architecture 

description. It generates functional and cycle accurate ISS using Instruction Set 

Architecture (ISA) for popular embedded processor models like MIPS, Intel8051, 
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SPARCV8 and PowerPC. The architecture chosen for integration is SparcV8 since it is 

well known and widely supported, as show in Figure 5. It has a 7-stage pipeline, separate 

configurable caches and comes with a compiler tool chain.  

 

 

Figure 5: The SPARC Core with CNI 

 

 The core has a structural, SystemC top module while the internal functions are 

implemented in a functional C++ model. We have augmented the top module to inherit 

from a generic OCP (Open Core Protocol [24]) core to act as a master providing a 

compliant port for communication with the CNI. The OCP port is connected internally to 

a soft arbiter that handles incoming/outgoing requests. This soft arbiter serves for future 

expansions (e.g. Interrupt Control). The core also implements a System C wrapper 

around the cache controller to prepare the requests to be sent to the remote memory core. 

The soft arbiter and the wrapper work together to synchronize request and responses. In 

addition to the Sparcv8, our platform includes an on-chip memory model. The on-chip 

memory model is a soft implementation of the block. The modularized nature of the 

models allow the user to readily experiment with memory and cache sizes and other 

characteristics to discover the most efficient implementation for a given system. Figure 6 

shows the block diagram of the memory model included in this version of the 

NoCBench tool. 
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Figure 6: On Chip Memory Core with CNI 

 

 TGFF Cores: These cores were used to characterize the synthetic benchmarks. 

They generate traffic based on information obtained from a DAG. Figure 7 illustrates the 

TGFF core architecture. They execute synthetic tasks which have defined 

communication dependencies, communication volume, task period and task deadline. In 

this sense, a TGFF core is an abstract representation of the intellectual property (IP) 

block the task was modeled from. Each task in the graph is a source, sink or both with 

respect to another task. The weighted arc between the two defines the communication 

dependency and volume. Figure 8 show a simple Task graph with two nodes. The core 

connects to CNI in a similar fashion than real cores. A master and a slave interface are 

connected to request and accept transactions respectively.  

 

 

 

 

 

 

 

 

 

Figure 7: The TGFF Core with CNI 
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Figure 8: Simple Two-Node CTG 

 

 

Each task is modeled by the TGFF core in two phases: Data Transmission, and 

Data Reception. A task’s job is finished when both phases have been executed. 

Data Transmission & Data Reception: Data packet transmission is simulated by 

the Data Memory Transaction Engine (DMTE) using the communication volume and 

dependencies specified by the user for the task. The entire communication volume must 

be sent for each destination task, or sink. The DMTE creates an OCP packet per cycle 

for each sync in a “best effort” fashion, and pushes it into a transmit pending queue. The 

master interface pops one packet every cycle if CNI is available. CNI then injects the 

packet into the network. The core injection rate will depend on the network parameters 

(i.e. flit size, message queue length). The theoretical rate is 1 packet per cycle. The 

maximum payload size then determines how many packets need to be sent by the core in 

order to send the entire communication volume specified by the task.  

 

 

 

Figure 9:Data Receive/Transmission Phase 

 

The Data Transmission phase starts when the first packet has been sent and ends 

when the last packet has been given to CNI. The Data Transmission phase may not start 

until Data Reception is done. The Data Reception phase ends when the last packet has 

been received from all sources. Data is received from the CNI through the slave 

interface. Figure 9 illustrates the data phases.  

SRC SINK 
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TGFF cores could be expanded to improve its modeling capabilities by the 

addition of parameters such as core size (e.g. pipeline width) and power consumption 

(i.e. ratios of instructions types and their average power consumed). Further modeling 

discussions are discussed in later sections. 

Controller and Statistics: The controller keeps track of all packets sent and 

received. It gathers transmit and receive throughput statistics per task, aggregated 

transmit and receive throughput per core as well as average core to core latency per task 

and per core. The controller also communicates with the system kernel to notify when 

the task is done. This is explained in section C.1. 

Simulation Engine: The NOC simulation environment is compatible with any 

SystemC simulation engine. In our evaluation we have used the OSCI SystemC 

simulation engine. It is capable of very fast and accurate simulation in any platform and 

it is fully open source. 

 

C. Software System Services 

 

The NOC platform includes a light kernel to provide simple system services. The kernel 

itself is a service provided by the platform and it is simulated in the host machine. It is 

modeled as a soft System-C module which provides sufficient accuracy without much 

simulation time overhead. The primary services are: scheduler, memory manager and 

system call support. The kernel provides an interface to communicate with each IP core. 

The interface is presented in detail in the following section.  

 

1. Core Interface 

 

The core interface is a pivotal part of the platform. It is the kernel’s job to support all 

indispensible system services expected by applications running on the platform. At the 

same time, this must not imply excessive modification of the core model (i.e. ISS, RTL 

module) in order to be ported. To achieve this ease of portability, the kernel centers 
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around one data structure: the process control block (PCB). All software information 

regarding system control would be communicated through the interface by the PCB. The 

PCB emulates the same features that process control blocks of real operating systems 

have: 

1. Program Address Space 

2. Local to Global Address Translation 

3. Process Id (PID) 

4. Heap and Argument pointers 

5. Process status 

Additional information for platform run-time management includes: 

1. Target Architecture (i.e. sparcv8, arm, etc.) 

2. Core Id currently running on 

3. Number of Jobs 

Of course, register information is target dependent and cannot be abstracted in a 

generic data structure. That information still remains in the ISS and its management 

remains separated from the kernel system. It is the interface job to close the gap. The 

interface consists of four control functions: Start(), Stop(), Yield() and Notify(). The first 

three are expected to be implemented by the core (i.e. ISS) and are driven by the kernel 

while Notify() is driven by the core and is provided by the system library. These 

functions, illustrated at Figure 10, are described in detail below.  

1. Start(): Takes in PCB and initializes all pertinent data (i.e. PC register, IC and 

DC invalidation). Processor is released from stall and begins (or continues) 

execution. 

2.  Stop():  Does not have any inputs. Stalls the processor. 

3. Yield(): Takes in PCB from new process. Signals context switch.  

4. Notify(): Takes in PID. Provides Kernel scheduling pertinent information (i.e. 

process status) 
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Figure 10: SPARC Core with Kernel Interface 

 

TGFF cores, however, have an interface of their own with the kernel, illustrated 

at Figure 11: 

1. Set_process(): starts the Data Reception phase and initializes all parameters 

2. Start(): starts the Code Processing and Execution Phase immediately. Data 

Transmission is triggered internally by the core when appropriate. 

3. Notify(): Takes in PID. Provides Kernel scheduling pertinent information (task 

status) 

 

 

 

 

 

 

 

 

 

Figure 11: TGFF Core with Kernel Interface 
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2. Scheduler Framework 

 

The scheduler is one of the most important modules for studying the impact task 

mapping has on overall system performance, meeting task deadlines/guarantees, on-chip 

network traffic load, and power consumption. Thus, a solid foundation was built to allow 

researchers to easily integrate their scheduling algorithms into the rest of the platform. 

Overall, the scheduler is built on top of task handlers defined as queue data structures 

and interacts with a loader and the memory manager to implement a given algorithm.  

 

3. Scheduler Setup and Architecture 

 

Setup: The scheduler framework has two programmable parameters: tick and scheduler 

type. These two parameters are passed through the XML configuration file.  

 Architecture: As shown in Figure 12, at each tick the scheduler module will start 

the scheduler algorithm specified by the user. Each algorithm uses a given set of queues 

to manage the tasks. The queues will only hold the PID of a task as information. Queues 

may be defined in terms of priority as well as task status (i.e. preempted or ready). The 

scheduler framework interfaces with the Memory Manager to ask for memory allocation 

and freeing. 

 

 

 

 

  

 

 

 

 

Figure 12: Scheduler Architecture 
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 To preempt a task the scheduler algorithm must drive the Yield() function for a 

specific core to signal a context switch. As mentioned in the previous section, register 

information and management is target dependant. Therefore, it is the core’s job to 

implement its own save context and restore context method. Having this data stored at 

the PCB structure will incur in a data and control overhead without any value added in 

terms of simulation accuracy. Also, most architectures have readily available code for 

this functions which makes them easy to port. Register information is not actually stored 

in the PCB stack in memory but at the simulator’s memory space in the host machine. 

This lowers simulation overhead in terms of memory transactions at the expense of 

application timing accuracy.  

 The system supports ELF binaries only. An ELF loader is invoked for every task 

the first time it needs to be loaded into main memory. For every task’s new job (or 

resuming of a job) the loader is not invoked unless its memory had to be freed for 

another task to run. Memory allocation/deallocation is explained in more detail in the 

next sections as it is the memory manager’s job. However, it is the scheduler’s job to 

manage resource allocation and to ensure that sufficient memory is available for the next 

task. 

 

4. Algorithms 

 

Currently two schedulers are provided with the platform: a Round Robin (RR) scheduler 

and a TGFF dedicated scheduler.   

 Round Robin: The RR scheduler manages the tasks as a typical circular list and 

serves each task in a first come first serve manner. The RR scheduler algorithm uses two 

queues: ready_tasks queue and preempted_tasks queue. The ready_tasks queue holds the 

PID’s of all tasks whose previous jobs have completed and are ready to run (i.e. all 

dependencies have been met). The prempted_tasks queue holds the PID’s of all tasks 

whose current jobs have not completed and where preempted in the previous scheduler 

invocation. This version of the RR scheduler uses the preempted tasks queue to give 
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higher priority to previously preempted tasks. At each tick each core is examined. If the 

core is free (i.e. idle) it pops a task from the preempted tasks queue and its current job is 

resumed on this core. If the core is busy then the task currently running on the core is 

preempted and is pushed into the preempted tasks queue. For each task in the ready tasks 

queue a new job is spawned only if all preempted tasks have been scheduled (i.e. 

mapped to a core) and there are cores still available. 

 TGFF Scheduler:  This is an online dedicated scheduler for the modeling of 

TGFF task graphs. It was the scheduler used for the creation of the benchmarks 

provided. The TGFF scheduler receives a series of application characterization graphs 

(APCG) from the configuration as defined in section 3.3. Section 4 explains how APCG 

are created. The scheduler must enforce all communication dependencies, therefore 

when a task is scheduled to run, all its sinks must be scheduled on their respective cores 

as well. This is because communication between tasks happens from core to core; 

therefore all tasks pertaining to the communication must be scheduled. It is important to 

note that this not a hardware-software co-design problem. In this regard, whether the 

tasks can be implemented as hardware blocks with direct communication (i.e. a video 

co-processor with a network packet accelerator) or as soft tasks communicating through 

shared objects in memory, it is of little importance to the scheduler. The main scope is to 

create benchmarks that will stress and evaluate the on-chip network communication 

infrastructure.  

 To ensure proper scheduling, the algorithm locks all cores requested by an APCG 

as soon as there are available. This has a drawback though. Since all tasks must receive 

all data and finish execution before their data is ready to be injected into the network, 

this scheme translates into very low traffic injection from each APCG.  A possible 

enhancement is to lock only the cores for a specific task and its respective sinks, leaving 

more cores available for other APCG in wait. However, due to the nature of the 

communication task graphs from E3S, this still did not stress the NOC enough and 

creates unattractive scenarios. To solve this, we schedule the tasks in a pipeline fashion. 

 The scheduler assumes, previous jobs of each tasks have already run therefore 
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the task may start its Data Transmission phase as soon as it starts; leading to appropriate 

data parallelism in the NOC. Figure 13 shows the pipeline execution model.  

 

 

 

 

 

Figure 13: TGFF Scheduler Data Transmission Phase Pipeline 

 

5. Scheduler Expansions 

 

Real-time scheduling algorithms can easily be added by adding the necessary priority 

information to the PCB such as: period, deadline and/or QoS requirements. The queues 

structure is easily expandable as well to incorporate as many priority queues are 

necessary. Since only PID needs to be tracked at the priority queues, this expansion is 

straightforward. 

 

6. Memory Manager 

 

The memory manager (MM) and the scheduler are the backbone of the kernel. It is the 

MM’s responsibility to address loading of binaries into memory by allocating and 

mapping the local address space of the task into the global address space of the entire 

system. The MM is also responsible for online bookkeeping of the memory consumed 

by each process. 

 

7. MM Setup and Architecture 

 

The MM implements a two-level paging system. The MM has the following 

programmable parameters: 

1) Page Table Size 
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2) Page Size 

 When the system is first instantiated it is given by the Network Generator the 

physical space available for memory. The MM then partitions this space into a global 

memory map consisting of the following sections:  

1) Instruction Memory 

2) Heap and Stack 

3) Shared Memory 

4) Process Arguments 

 Figure 14 shows the MM interface with the scheduler. As described above the 

ELF loader is invoked by MM when driven by the scheduler. At this point all sections of 

the process are extracted. Each process section (e.g. text, .bss, stack, heap and 

arguments) is appropriately mapped to a corresponding section in global memory. The 

granularity of a task memory view is a page. Figure 15 shows the logical view of the 

memory architecture.  

 

 

 

 

 

 

 

 

Figure 14: Memory Manager with Kernel Interface 
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Figure 15: Memory Logical View 

(Left: Process Space, Center: Global Memory, Right: Physical Core) 

 

8. Problem Explorations with MM 

 

The NoCBench kernel provides the proper framework and support for researchers to 

evaluate many NOC scheduling and memory architecture related problems.  

For example, it is important to note that the MM is oblivious to the memory architecture 

in hardware. In other words, it does not take into consideration how many RAM 

cores/banks are present in the system and their respective placement in the NOC. This 

effectively creates a fragmentation problem in global space. At allocation, the local 

address space could be spread out through the NOC depending on the amount and 

location of memory cores. Furthermore, memory bookkeeping is done in terms of pages 

released. When memory is freed the MM cannot keep track of these pages' correlation to 

the memory cores potentially creating more fragmentation. Specifically for NOC this 

creates an issue. Where a task is scheduled (e.g. in which core is it running) and how it is 

partitioned (e.g. where its memory is stored) affects tremendously the traffic load in the 

on-chip network, which ultimately affects the task's performance. Real-time analysis 

also becomes more problematic when unquantifiable fragmentation happens. 

NoCBench is also a great platform to study the potentials of Non-Uniform Cache 

Architectures as well as to explore cache-coherence designs on Network-on-Chip. 
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9. System Calls 

 

Simulation of system calls could be quite complex and take up many cycles to execute. 

In a real system implementation of system calls is target dependant. Some architectures 

provide a register to be written by software with the number of the system call to execute 

and use a software interrupt to signal the transfer to the OS. This is typical in RISC 

architectures. Others, like X86, use special instructions that identify a system call. This 

transfer mechanism alone will create quite a performance overhead. Therefore, we 

follow the trapping and host forwarding emulation mechanism implemented in the 

ArchC Sparcv8 ISS.  The ArchC project provides a cross-compiler for Sparcv8 binaries 

in which system calls are given a pre-defined address in Instruction Memory. At run-

time the PC is tracked and when it reaches on the pre-defined addresses the system call 

(i.e. srbk()) and corresponding data are forwarded to the host machine for execution. 

When required, data is read back into the memory models and execution is resumed. 

This method penalizes timing accuracy in favor of simulation speed, but it remains a 

popular system call support mechanism since the impact is small [25]. 

 In order to support any Sparcv8 cross-compiler a modification to the trapping 

mechanism could be done as done by [25]. Instead of assigning pre-defined addresses to 

the system call symbols the addresses could be fetched dynamically when the loader is 

invoked and passed to the core through the Core-System interface when the task is 

started. 
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CHAPTER IV 

BENCHMARKS 

 

The design of SoC’s is a complex iterative process where application requirements are 

an important factor in the decision of parameters, components and software used in the 

system. Although applications must conform to system limitations, the system design 

must strive to comply with the minimum expectations of the application domains it is 

being marketed for. For example, a telecommunications application to be run on a 

cellular base station implementing LTE standard requires a minimum bandwidth from 

the SoC communication architecture else the system would be useless for the application 

at hand [26]. Therefore, it is important to establish the sustainable throughput and 

minimum core to core latencies in the system. Addressing the scalability of NOC 

components, routing and load balancing schemes as well as topology selection is part of 

this process. Once this is validated an application designer can address software issues 

such as scheduling and task mapping. Nonetheless, our goal in benchmark creation is not 

to address the holistic design issues of SoC, but to create scenarios that efficiently 

validate approaches to known on-chip network problems. 

NoCBench includes a set of synthetic application benchmarks. These 

benchmarks are intended to be an initial effort. They serve to discuss the methodology of 

developing benchmarks with NoCBench. The synthetic application benchmarks have 

been created using derived information from the E3S benchmark suite. Each E3S 

benchmark has a series of applications, defined as communication task graphs (CTG). 

Hereafter we will address CTG as application. E3S follows the same organization of the 

EEMBC benchmark suite where each suite is categorized as: automotive/industrial, 

consumer, networking, office automation, and telecommunications. Before we go into 

further detail of how NoCBench benchmarks were characterized we will introduce and 

discuss important definitions used in this process. 
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We have defined a NOC benchmark as multiple application characterization 

graphs (APCG) where each APCG is a mapping of one application into a specific system 

composition. System composition is defined as number of TGFF cores. Figure 16 shows 

an example of the E3S consumer benchmark APCG mappings. By definition, the 

benchmark imposes communication characteristics to each core such as: traffic injection 

rate, bandwidth requirements and expected packet latency.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Consumer Benchmark APCG Example 

 

A different mapping to the same system composition would yield a different 

benchmark altogether. Clearly the effect of NOC topology in space (hop distance with 

communicating cores) and time (network congestion) varies the overall system 

performance. But this is exactly what we want, to isolate NOC specific parameters and 

components in order for the benchmark to properly evaluate the communication network 

design. 
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A. Characterization of Benchmarks 

 

This section discusses the methodology for creating benchmarks on NoCBench. It 

addresses the mapping of applications into APCG, metrics used in the characterization of 

our benchmarks and the experimental setup used to characterize each benchmark. 

 

1. Methodology 

 

The methodology followed in the creation of our benchmark is composed of a series of 

well defined steps. These steps are: 

1) Mapping of applications into APCGs, 

2) Metric selection for categorization of a benchmark, 

3) Measurement points selected to extract metric values 

4) NOC parameter configuration – topology, router parameters, CNI parameters 

Step 4) is tightly related to experimentation setup so it would be explained in the 

experimental setup section. Nonetheless, it is an important step in our methodology. 

Mapping Application to an APCG: When mapping an application the first step is 

to select the number of TGFF cores to be used. The number of cores gives the size of the 

benchmark and sets a lower bound on the load imposed on the NOC. Naturally an 

application with N bytes of data to communicate would stress the NOC differently when 

distributed among different number of cores. In the current version of NoCBench the 

number of cores needs to be at least the maximum number of tasks in one of the 

applications. As discussed earlier in Chapter III, due to communication dependencies all 

tasks must be allocated in order for an application to run. For example, the E3S 

benchmark “consumer” has two applications, one with 7 tasks, and another with 5 tasks. 

The minimum number of cores in a system in order to run this benchmark must be 7 

cores. 

Given a system composition the second step is to map each task to a core. There 

are two components that impact a task’s performance: one is the processing time in the 
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core itself and the second is the overhead imposed by the communication latency of the 

on-chip network that comes from communication dependencies (i.e. shared memory, 

memory miss, IP communication).  The goal of this mapping is to balance the first 

component in order to create a scenario where the second component has the most 

weight on the task’s performance. In other words, to increase the parallelism of data 

communication on the system in order to stress the communication network as much as 

possible. Our approach follows a simple heuristic.  

 

For app = 0; app < #_of_applications; app++ 

{ 

     For task = 0; task < #_of_tasks; task++ 

{    

     core = core_min_utilization(); // returns the core that has the least utilization 

         Map(task, core); // map task to core with least utilization 

} 

 

Update_utilization(); 

} 

 

 Utilization in our model is computed in terms of communication volume 

assigned to the core. Communication volume is the sum of outgoing and incoming data 

traffic to the core. The core with the least data volume mapped to it is likely to be the 

quickest available. Although the on-line scheduler has flexibility in the order of 

application execution, however the utilization and dependencies remain fixed for a given 

core throughout the entire simulation. This maintains the overall benchmark scenario 

independent from scheduling. Certainly the benchmarks will have varying phases over 

time. For example, a single core may have 3 tasks mapped with each transmitting 1KB 

each for an absolute load of 3KB.  Depending on the on-line scheduling the core may be 

transmitting the load continuously or it may do so in on and off transmission times. 

However, the overall characterization does not vary because the load is not transferable. 

 The core must transmit the 3KB as fast as possible. In this case the core is 

sensitive to throughput and it will remain that way regardless of the scheduling. The 
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scheduler provided, and described in Chapter III, is merely an example and is not meant 

to be fixed. Rather its purpose is to be a modifiable tool to aid in the process of 

benchmark creation. 

 Benchmark Metrics: The benchmarks provided in the current version of 

NoCBench are characterized as Throughput Sensitive or Latency Sensitive. 

 A benchmark is throughput sensitive if its execution time is severely impacted by 

the lack of throughput availability in the network interconnects. Benchmarks that impose 

more outgoing communication than incoming communication on the cores are more 

likely to be throughput sensitive. This is because tasks do not care when the data is 

received by their sinks so they are not impacted by network latency when transmitting, 

only when expecting data. Consider the benchmark at Figure 17. Let’s say the single 

task on C0 is the only one transmitting data and that it sends an equal amount to each of 

the three tasks on Cn-1, Cn-2 and Cn-3. Clearly this single core requires a large amount of 

throughput to inject the data into the network.  

 A benchmark is latency sensitive if its execution time is severely impacted by 

high end-to-end network delay. The idea here is similar to throughput sensitive. It is in 

fact the inverse. Let’s consider again the benchmark at Figure 17. Now we will reverse 

the communication dependency. The one task on C0 needs to receive the entire bulk of 

communication in order to finish, while the other three tasks (Cn-1, Cn-2 and Cn-3) are 

each transmitting 1/3 of the data. Certainly, the bandwidth may be divided between the 

three cores and even when throughput available per core is less than in the previous 

scenario this does not affect the benchmark’s execution time. Rather, the end-to-end 

latency between the three transmitting cores (Cn-1, Cn-2 and Cn-3)  and the receiving core 

(C0) is the determining factor to the benchmark’s performance. 

                                                 

 

 

 

 

Figure 17: Benchmark Metric Application Example 
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It is important to note that a benchmark may be both throughput sensitive and 

latency sensitive. This type of benchmarks will be useful to study the ability of a NOC 

design to cope with both requirements.   

 Measurement Points: Throughput is measured between the core and the CNI 

endpoints. This is because the CNI is limited by the buffer availability at the router; 

which is usually much larger than the maximum OCP packet size. Therefore, the CNI 

throughput with respect to the network will be closely related to the cores throughput 

with respect to the CNI. Also, measuring at the core is straightforward and fast. 

  Latency is measured as end-to-end latency from the transmitting core to the 

receiving core. Each packet transmitted by the core carries the time stamp at the starting 

point. The core who receives the packet then computes the latency of the packet. 

 

2. Experimental Setup  

 

As explained earlier, E3S was used to retrieve the CTGs for the synthetic application 

benchmarks. The benchmarks used where: consumer and networking. Each benchmark 

provides a series of applications (CTG’s). The total number of tasks per application for 

each of the benchmarks is given in Table 3. 

 

Table 3: Tasks per Application 

Benchmark App 1 App 2 App 3 

Consumer 7 5 - 

Networking 4 4 4 

 

 The benchmarks were mapped as per the Methodology section. First the system 

size was chosen. To provide an interesting scenario for these benchmarks the size 

selected was 9 cores. The absolute communication load per core for each benchmark 

after mapping is in Table 4. 
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Table 4: Communication Load per Core 

Benchmark Core0 

RX:TX 

(MB) 

Core1 

RX:TX 

(MB) 

Core2 

RX:TX 

(MB) 

Core3 

RX:TX 

(MB) 

Core4 

RX:TX 

(MB) 

Core5 

RX:TX 

(MB) 

Core6 

RX:TX 

(MB) 

Core7 

RX:TX 

(MB) 

Core8 

RX:TX 

(MB) 

Consumer 0:5.7 7.6:7.6 7.6:1.9 1.9:1.9 5.7:5.7 5.7:0.95 0.95:5.7 0:0.95 0.95:11.7 

Networking 16:20 4:4 4:4 20:16 0:8 8:8 8:8 24:0 0:16 

 

 

The importance of the absolute load per core is to get a view of the 

communication balance on the system. The utilization of the cores tells us how the 

communication network is being stressed. But how does the benchmark stress the 

network? Section 4.1.2 explains the categories for characterization: Throughput 

Sensitive (TS) and Latency Sensitive (LS).  To get a holistic view of the benchmark is 

very difficult because the mapping of applications impose different characteristics to 

each core, hence categorizing the benchmark as a whole is meaningless. Therefore, it is 

better to establish the mix of TS and LS cores to get an overall view of how the 

benchmark is behaving. The first thing to observe is that several cores either have no 

data to receive or no data to transmit. These cores are effectively TS and LS 

respectively. 

To characterize the rest of the cores it is important to look at two things: 

1) The ratio between receive and transmit data per core 

2) The total load imposed at each core 
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Table 5: TX/RX Ratio per Core 

Benchmark Core0 

 

Core1 

 

Core2 

 

Core3 

 

Core4 

 

Core5 

 

Core6 

 

Core7 

 

Core8 

 

Consumer TS 1:1 4:1 1:1 1:1 6:1 1:6 TS 1:12 

Networking 1:1.25 1:1 1:1 1:1.25 TS 1:1 1:1 LS TS 

 

  

 Table 5 presents the RX and TX ratio per core of each benchmark. It would seem 

that the ratio would be enough to categorize the core. For example, Core8 on consumer 

benchmark is expected to be sensitive to throughput but not to latency. Let’s remember 

that a core does not care when the transmitted packets arrive. But, as the ratio begin to 

equalize the effect of the load increases in the characterization. This comes straight from 

the definition of throughput and the definition of our application models. So for 

example, a ratio of 1:1 given throughput remains balanced for each core the expected 

data as well as the data to be transmitted gets fully injected in the network at the same 

time. At this time the core assumes it is done with its TX phase but it still needs to wait 

for the RX phase to finish. As the payload size increase it may be the case that by the 

time the last packet is transmitted many of the packets have already arrived therefore, the 

end-to-end latency of the last packets won’t be much of a determining factor. As well, if 

throughput decreases it will have the same weight on the execution time as end-to-end 

latency. Meaning, both throughput and latency affect equally the performance of the 

core. Conversely, for small payloads it will be the case that by the time the last packet is 

transmitted many of the packets may still be in the network. Therefore, the end-to-end 

latency for these packets will be more of a determining factor than throughput on the 

performance.  

Traditionally when studying this in SoC’s we validate the performance of the 

core with different scenarios on the path its data needs to travel (i.e. no contention, 

congested). In a NOC it is difficult to study this relationship because there are several 
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paths to the same destination. As well, each core maps several tasks, effectively 

changing the destination for the core when transmitting packets. However, the goal is not 

to characterize the system nor a given communication architecture but, to establish how 

sensitive each core is to throughput and latency given the mapping.  

To do this we simulate a linear path leading to the core under test (CUT) and a 

linear path leading out of the core. We simulate only one “tile” transmitting (ST) to the 

CUT and one “tile” receiving data from the core (RT). The two tiles at the end-points of 

the NOC could represent several architectures (i.e. a cluster of core, a simultaneous-

multi-threaded (SMT) core) that are capable of executing in parallel all tasks in the 

benchmark that send and receive from the CUT. Figure 18 shows a logical view of this 

architecture where the small squares represent the routers: 

 

 

 

 

Figure 18: Scenario PeakTL  

  

 This scenario provides peak performance information in terms of maximum 

sustainable transmit throughput and minimum end-to-end latency provided by the NOC. 

We call this scenario PeakTL. Then we increase as well as congest the ST-CUT path to 

increase the latency of packets and do the same process for CUT-RT path to decrease the 

TX throughput of the CUT. Figure 19 and Figure 20 show the logical view of the two 

scenarios respectively.  

 

                          

                         

                                                                      

 

 

 

ST RT CUT 
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Figure 19: Congested Latency Scenario 

 

 

 

 

 

 

 

Figure 20: Congested Throughput Scenario 

 

The first scenario is called congested latency (cL) and the second is called 

congested throughput (cT). The cores connected to the NOC between ST-CUT and 

CUT-RT communicate in a full-duplex mode. They transmit continuously throughout 

the entire simulation to add background traffic on the NOC. This increases latency to the 

CUT and decreases the CUT’s transmit throughput respectively. We created two cL and 

cT scenarios, one with two addition connected cores and another with four additional 

connected cores. These scenarios may also be used as micro-benchmarks. Researchers 

may use them to isolate specific router and CNI parameters (i.e. buffer size, maximum 

payload size, # of virtual channels) and evaluate peak performance as well as the 

scalability of these components.  

 The system configuration used for all experimental runs is given in Table 6. The 

ratio of Core frequency and NOC Frequency is selected equally on purpose to 

exaggerate the effects of end-to-end latency making it easier to vary. For information on 

type definitions see Appendix B. 

Linear NoC Topology 
CUT RT 

ST C0 CN 

Linear NoC Topology 
CUT ST 

RT C0 CN 
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Table 6: Experimental NOC Configuration 

Core Frequency 1 GHZ 

NOC Frequency 1 GHZ 

Flit Size (Bytes) 7  (Data) + 1  (HDR) 

Message Type Message Size (Flits) OCP 7  (Data) + 1  (HDR) 

Max Payload Size (Bytes) (Data Size – OCP HDR) = 35 

 

CNI Configuration 

Type InBuffSize OutBuffSize 
Msg Q 

Length 
OCP 8 Flits 8 Flits 4 Msgs 

Router Configuration 

Type InBuffSize OutBuffSize Generic 8 Flits 8 Flits 

 

 

3. Results 

 

We ran PeakTL, cT2, cT4, cL2 and cL4 for all cores across all benchmarks.  Average 

Transmit throughput (TXtput) and average end-to-end latency was gathered as per 

section 4.1.2. We compare variation in execution time with variation in latency and 

TXtput to derive the characterization. As expected for cT2 and cT4 end-to-end latency 

remained constant while throughput decreased and for cL2 and cL4 throughput remained 

constant while latency increased (refer to Appendix for TXtput and latency graphs).  

This was true for all benchmark experimental runs. Moreover, peak TXtput and latency 

was achieved in PeakTL. Cores that show 0 value are the ones which either had no 

receiving or transmission dependency. 
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Figure 21: Consumer Execution Time (s) 

 

When observing the graphs, Figure 21 and Figure 22, the relationship between 

ratio, throughput and latency, start to become evident.  While ratio begins to tilt towards 

the RX load, for example Core2 of Consumer with a ratio of 4:1, we see that even with a 

dramatic decrease in throughput the execution time is the same as in PeakTL. 

Conversely, the execution time in cL2 and cL4 is severely affected by the increase in 

end-to-end latency. It should seem that when throughput decreases still the execution 

time of cT2 and cT4 would be higher than PeakTL. But, by the time the TX phase is 

done RX phase is still much more far behind (most of the expected data is still either not 

injected or traversing the network). Therefore, the decrement in throughput needs to be 

much larger than the increase in latency for this task’s execution time to increase.  

While the ratio begins to tilt towards the transmit side, for example Core8 of 

Consumer with a ratio of 1:12, we see that even with a dramatic increase in latency the 

execution time is not as affected as with dramatic decrements in throughput. However, 

as discussed in the previous section when load decrements we begin to see that even 

when the task is highly sensitive to throughput still dramatic increments in latencies such 
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as in cL4 may cause an increase in execution time from the peak performance scenario. 

While Core2 receives ~7MB and transmits ~1.9MB, Core 8 only receives 977KB. 

Similar cases are those of Core5 of Consumer and Core6 of Consumer. This does not 

mean that the tasks are “equally” sensitive to both latency and throughput is just that as 

expected, scenarios that deviate from PeakTL will affect performance. The goal in these 

experiments is to quantify how much. 

 

 

 

Figure 22: Networking Execution Time (s) 

 

When we observe cores such as Core3 of Consumer with a ratio of 1:1 we see 

that execution time is equally affected by degradation in throughput and latency. 

Moreover, when ratios begin to equalize such as the case of Core0 of Networking with a 

ratio of 1:1.25 still performance is affected almost equally on the presence of network 

performance degradation. These cores are sensitive to both throughput and latency. 
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Table 7 presents the characterization of each benchmark. Refer to the Appendix A for all 

benchmark graphs. 

 

 

Table 7: Benchmark Characterization 

Benchmark 
Throughput 

Sensitive 

Latency 

Sensitive 
Both 

Consumer 4 2 3 

Networking 3 1 5 
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CHAPTER V 

CASE STUDIES 

 

This chapter addresses two case studies using NoCBench. These serve to study the 

behavior of NoCBench with execution of real and synthetic application benchmarks. 

 

A. Real Applications 

 

NoCBench is a unique NOC simulator which allows for real application benchmarks to 

be run as a network traffic source. Gaining insight into the interaction between NOC 

characteristics and application performance is valuable for any system designer who 

must consider design trade-offs between performance capacity, power and energy 

consumption, and area constraints. 

 In this case study, we show the accuracy gained when simulating real 

applications running on a NOC-based system versus generating NOC traffic through 

trace-based simulation. The goal of this exercise is to observe the effect of network load 

on application execution. 
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1. Trace vs Real Applications Results 

 

As Figure 23 shows, running a NOC simulation with trace-based traffic is not affected 

by background traffic.  This could provide misleading results to a system engineer 

attempting to determine NOC characteristics on application behavior.  With NoCBench 

running the application and NOC together, a difference in application execution time is 

observed.  As the background traffic generated by the dummy cores increases from 0% 

to 50%, we observe a 5.73% in execution time. 

 

 

 

 

 

 

 

 

Figure 23: Impact of Background Traffic 

 

2. Simulator Performance 

 

Apart from demonstrating the functional capabilities of the NoCBench platform, it is 

important to measure simulator performance in order to determine its scalability with 

system size and overall speed. 

The results for the execution of Mediabench[6] and Mibench[7] are provided in 

Table 8. This was performed using one processor core running the programs from one 

memory core connected using the NOC. 

To determine simulator speed, we executed a small program on a varying number 

of processing cores which randomly access elements in a large array.  This type of 

program was used to force a predictable L1 data cache miss rate, which would generate a 
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determinate amount of NOC traffic.  Specifically, an L1 data cache miss rate of 2% was 

observed for this simple application. 

As Figure 24 shows a  moderate performance degradation is observed as the 

number of cores increases from 2 to 16 doubling each iteration.  When a 2-core SoC is 

simulated, a simulation speed of approximately 30KIPS is achieved.  With a 16-core 

SoC, a simulation speed of approximately 20KIPS is achieved. 

 

 

 

 

 

 

 

 

 

 

Figure 24: Simulated Instructions per Second 
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Table 8: Benchmark Execution Results 

Application Simulation 

Time(sec) 

Instructions Total number of 

cycles(Millions) 

Simulation 

speed(K instr/s) 

IC miss DC miss 

MiBench 

gsm encoder 2100 23447038 32.80 20.71 13920 2020 

gsm decoder 1029 12943972 16.21 23.43 3100 11980 

qsort 1631 14137668 27.77 16.02 520 82010 

sha 1180 13254952 18.52 20.94 700 59920 

stringsearch 45 269611 0.77 11.28 2566 320 

MediaBench 

jpeg encoder 1662 14114306 25.81 15.78 5600 147630 

jpeg decoder 686 4328332 9.99 13.6 4330 58610 

pgwet encrypt 7382 30386727 115.63 8 6300 1240730 

pgwet decrypt 4410 16863037 67.10 7.43 5500 719200 

adpcm encoder 537 7404147 8.94 24.24 260 18925 

adpcm decoder 497 6408683 7.94 23.14 270 5036 

 

 

B. Synthetic Benchmarks 

 

This case study addresses a very simple scenario to demonstrate the usage of 

benchmarks created with NoCBench to study the relationship between throughput, 

latency and application performance. An important decision on SoC design is the 

placement of IP’s with relation to the communication paths. For example, processing 

cores should have high bandwidth paths to IP’s such as LCD controllers, specialized 

general purpose I/O (gpio) and external memory controllers. Paths to other IP’s such as 

network packet processing may not require this. Certainly this is a complex hardware-

software co-design problem. It requires evaluating application requirements, system 

characteristics and limitations in order to end up with a proper SoC design.  

This is where NoCBench along with the proposed benchmark creation 

methodology come in handy. Let’s revisit the benchmark definition. A NOC benchmark 

is a series of applications mapped into a given system composition that we call an 

application characterization graph (APCG). Each application mapping imposes different 

load characteristics to the system composition effectively creating a new benchmark. 
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The cores could then be interconnected with different NOC architectures to make 

comprehensive evaluations.  

The NoCBench synthetic benchmarks can be controlled per application where 

each can be run for several iterations (i.e. jobs). However, since this a simple 

demonstration we only ran one job per application. The benchmarks selected was  

Networking. Two topologies were chosen: 3X3 mesh and 3X3 torus. Figure 25 presents 

the logical placement of the cores. Links and routers are not shown for simplicity.  

 

Maximum Sustained transmit throughput was gathered using the same 

measurement points described in Chapter IV.  End-to-end latency was gathered as an 

average per core. As explained in Chapter IV each packet carries a time stamp with the 

time of injection and the receiving core computes the end-to-end latency by capturing 

the time stamp at receive time. Therefore this average represents the aggregated end-to-

end latency to reach each core from any point in the NOC. This evaluates the congestion 

on the paths of interests per core.  

 As Figure 26 shows torus improves average transmit throughput. On the other 

hand, as shown in Figure 27 end-to-end latency does not improve much ranging from 

5ns to 8µs. Also, Torus seems to improve the throughput balance on the system while it 

does not for end-to-end latency. From, the characterization we know that Networking 

C0 C1 C2 

C3 

C6 

C4 

C7 

C5 

C8 

Figure 25: NoC Topology and IP Placement 
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has 5 of 9 cores carrying loads which are equally sensitive to throughput and latency. 

Also 3 cores are sensitive to throughput. This is reflected in the application execution 

times as shown in Figure 28. Networking applications see significant performance 

improvement with the torus topology. This is due to the significant improvement in 

throughput and while latency did not improve much it did not worsen. Moreover, from 

the characterization we know that core 7 is latency sensitive and core 3, while sensitive 

to both metrics, showed the worse performance in cL4. These are the two cores that 

show improvement in latency on torus. We see this correlation in the performance 

improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Throughput Mesh vs Torus 
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Although this case study is very simple many other problems may be studied 

with NoCBench. Network traffic balance is a very important problem when doing power 

Figure 27: Latency Mesh vs Torus 

Figure 28: Execution Time per Application (s) 



 51

characterization of an SoC and studying hot-spot formation on the system. As explained 

in the previous chapter NoCBench includes power measurements as well as traffic 

measurements. NoCBench is equipped to gather these statistics for all type of 

benchmarks whether it is real applications or synthetic benchmarks.  

 For example, using the Networking benchmark we are able to see the traffic 

balance in the routers as a function of % of flits traversed per router. The sampling rate 

used was 1ms. The graphs in Figure 29 and Figure 30 present the first 10 ms of statistics. 

We can see how the Torus topology significantly improves balance in the routers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Flits Traversed per Router Over Time (%): Mesh 
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                           Figure 30: Flits Traversed per Router Over Time (%): Torus 
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CHAPTER VI 

 

CONCLUSION & FUTURE WORK 

 

The design of SoC’s is a complex process where application requirements are an 

important factor in the decision of parameters, components and software used in the 

system. Proper validation techniques are key for fast, accurate and efficient design. 

Benchmarking is one important validation technique that allows for standard comparison 

of distinct approaches. 

 This thesis addresses the lack of available platforms for creating proper 

benchmarking scenarios to validate NOC design. It has presented NoCBench, a NOC-

based SoC simulator written in SystemC, as a plausible solution. NoCBench allows fast 

and accurate simulation of Network on Chip based SoC designs and is capable of 

simulating a full system with standard application benchmarks. Hence NoCBench 

enables quick validation of design of each component of the system and overall 

performance.  

 Synthetic applications can also be modeled based on real application execution. 

These benchmarks allow faster simulation compared to real applications and create the 

same communication characteristics. Different from data traces and statistical data, the 

timing of transactions are not fixed. This allows for proper evaluation since 

communication dependencies in space drive the communication isolating the on-chip 

network as the sole component affecting traffic injection timing, thus affecting the 

application performance.  

 Clear demonstration of the NoCBench features was addressed in Chapter V with 

a series of case studies. Each respectively illustrate the ease of simulation and the 

accuracy gained by simulating application execution with the NOC  as well as the 

benchmarking capabilities of NoCBench.  

 Regarding synthetic benchmarks however, improvement on applications is 

needed. Better application models are necessary to improve the benchmarking scenarios. 
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Information on instructions could allow better timing simulation as well as power 

modeling of the cores themselves. More robust communication dependency 

specifications are needed as well as scaling of applications to address proper NOC sizes. 

Processing time at the task level could be added to the communication dependencies as 

well. Not to be confused with data traces, this information does not impose a specific 

time when transactions occur, but how much processing time must pass after 

dependency has been met for the transactions to initiate. This already is addressed by 

NoCBench at the application level, with jobs and application period. Nonetheless, 

reducing the granularity to the task level would enrich the overall benchmarking 

scenario. 
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APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Consumer Throughput Characterization (B/s) 

Figure A.2: Consumer Latency Characterization (ns) 
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Figure A.3: Networking Throughput Characterization (B/s) 

Figure A.4: Networking Latency Characterization (ns) 
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APPENDIX B 

 

This appendix provides the NoCBench user guide.  

 

B.1 About 

 

NoCBench is a benchmarking platform geared towards NOC benchmark creation and 

NOC design space exploration. 

 

B.2 Features 

 

SystemC Compatible: NoCBench is designed with a SystemC Engine 

Flexible NOC Topologies: NoCBench supports any type of topology from NXN Mesh 

and Torus to any non-uniform topologies 

ISS Plugin:  NoCBench provides a straightforward interface to the on-chip network 

architecture using OCP as the standard core-network interface. A model of SparcV8 

from the ArchC project is already provided. 

Real Benchmark: NoCBench supports popular benchmarks such as SpeC2000 , 

MediaBench and MiBench as well as many others. 

Varied Library of IP’s and Component: From several Router models, including 

PowerHerd models for power management study, to CNI’s, real processors, SRAM 

models, dummy cores and TGFF cores supporting the modeling of synthetic 

applications. 

 

B.3 Download 

 

The best way to download NoCBench is by using Subversion (SVN). You may do so by 

running the command below (provided that SVN is installed on your system): 
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svn co https://nocbench.svn.sourceforge.net/svnroot/nocbench nocbench 

 

Please refer to the SVN website for more information and usage information: 

 

http://subversion.apache.org/ 

 

B.4 Installing NoCBench 

 

Once the code is checked out using SVN follow the commands below from the directory 

the download command was executed to install NoCBench: 

 

1. cd [nocbench] 

2. make 

Where [nocbench] is the name of the top directory. 

 

B.5 Running a Benchmark and The XML Configuration 

 

NoCBench uses XML configuration scripts to input all simulator parameters. NoCBench 

parses the XML configuration script, generates the NOC system and then starts the 

simulator.  There are two main types of simulation on NoCBench: 

1)  Real Benchmark Simulation and 

2) TGFF Synthetic application benchmarking 

Simulation type is divided into these categories since at the moment they are mutually 

exclusive and the XML configuration format varies between the two. 

 

B.5.1 Real Benchmark Simulation 
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In this user guide we use the cjpeg benchmark from MediaBench to illustrate how to run 

a real application benchmark on NoCBench. To run the cjpeg benchmark you may 

follow the command below: 

 

[nocbench]/nocbench jpeg.xml 

 

The jpeg.xml contains the simulation configurations. Below is the jpeg.xml.  

<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE Simulator SYSTEM "../conf/config.dtd"> 
<Simulator cycles="0" maxresponsetime="0" quietmode="true"> 
 <PowerModel tgpb="10000" pgpb="8" ebuffread="76" ebuffwrite="80" 
ecrossbar="83" elink="6"/> 
 <Network nvcs="3" buflen="8"> 
    <CNI name="sparc-1-cni" type="ocp" infifolen="8" outfifolen="8" 
msgqlen="4" reorder="false"/> 
    <CNI name="mem-1-cni" type="ocp" infifolen="8" outfifolen="8" 
msgqlen="4" reorder="false"/> 
  <Router name="router1" type="generic" infifolen="8" 
outfifolen="8"/> 
  <Link src="sparc-1-cni" dst="router1"/> 
    <Link src="mem-1-cni" dst="router1"/> 
 </Network> 
  <CORE name="SPARC-1" type="sparcv8" interface="sparc-1-cni" 
pref_mem="MEMORY-1"/> 
  <CORE name="MEMORY-1" type="memory" interface="mem-1-cni" 
addr_range="0x2000000"/> 
  <System tick="100000.0" pagesize="4096" ptablesize="32" endian="1" 
sched="rr" heapsize="3145728" procsize="5242880" /> 
 <Task cmdline="jpeg/bin/cjpeg -dct int -progressive -opt -outfile 
rose.jpeg jpeg/input/testimg.ppm" target="sparcv8" jobs="1"/> 
</Simulator> 

 

The <Network> Section describes the NOC topology and configures the CNI and 

Routers. The <CORE> sections is used to specify how many cores, what architecture or 

type of core to use (i.e. SparcV8, Memory), and what CNI (or interface) to connect the 

core. The <System> section configures the kernel. Some configurable parameters are 

tick, page size and scheduler type (in this case Round Robin specified by “rr”).  The 

<Task> section specifies the benchmark to run. Note that we have given a relative 

address in this example and that it is assumed the jpeg benchmark directory is in the 

current directory (i.e. where the run command is executed). Also note that the <Task> 
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section provides for specifying target architecture and number of jobs for the task.  

While the latter is optional the former is critical since binaries are compiled for a specific 

target. The scheduler uses this information during simulation. A bigger system may be 

specified by adding more Cores and/or NOC components (i.e CNI, Router). Also, as 

man y tasks as the user requires can be specified. 

 

B.5.2. Synthetic Benchmark Simulation (TGFF) 

 

In this user guide we use a very simple 3-node synthetic benchmark to explain how to 

run synthetic applications based on directed-acyclic graphs (DAG). To run the synthetic 

benchmark you may run the following commad: 

 

[nocbench]/nocbench peakTL.xml 

 

The peakTL.xml contains the configuration parameters. A copy of it is show here. 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE Simulator SYSTEM "../../../conf/config.dtd"> 
<Simulator cycles="0" maxresponsetime="0" quietmode="true"> 
<PowerModel tgpb="10000" pgpb="8" ebuffread="76" ebuffwrite="80" 
ecrossbar="83" elink="6"/> 
<Network nvcs="3" buflen="8"> 
<CNI name="tgff-1-cni" type="ocp" infifolen="8" outfifolen="8" 
msgqlen="4" reorder="false"/> 
<CNI name="tgff-2-cni" type="ocp" infifolen="8" outfifolen="8" 
msgqlen="4" reorder="false"/> 
<CNI name="tgff-3-cni" type="ocp" infifolen="8" outfifolen="8" 
msgqlen="4" reorder="false"/> 
<Router name="router1" type="generic" infifolen="8" outfifolen="8"/> 
<Router name="router2" type="generic" infifolen="8" outfifolen="8"/> 
<Router name="router3" type="generic" infifolen="8" outfifolen="8"/> 
<Link src="tgff-1-cni" dst="router1"/> 
<Link src="tgff-2-cni" dst="router2"/> 
<Link src="tgff-3-cni" dst="router3"/> 
<Link src="router1" dst="router2"/> 
<Link src="router2" dst="router3"/> 
</Network> 
<CORE name="tgff-0" type="tgff" interface="tgff-1-cni" 
addr_range="0x1"/> 
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<CORE name="tgff-1" type="tgff" interface="tgff-2-cni" 
addr_range="0x1"/> 
<CORE name="tgff-2" type="tgff" interface="tgff-3-cni" 
addr_range="0x1"/> 
<System sched="tgff"/> 
<Task target="tgff" prefproc="tgff-0" sinks="1" datavol="5999616" 
appzname="appz1"/> 
<Task target="tgff" prefproc="tgff-1" srcs="0" sinks="2" 
datavol="1000448" appzname="appz1"/> 
<Task target="tgff" prefproc="tgff-2" srcs="1"  datavol="0" 
appzname="appz1"/> 
<Appz name="appz1" period="1600000" jobs="1"/> 
</Simulator> 

 

Note that the <Network> section and the <Core> section remain the same. The 

difference here is that the type of the core is specified to be “tgff” instead of “sparcv8”. 

Also notice that the scheduler specified is “tgff” the default scheduler provided by 

NoCBench for synthetic application benchmarking.  

The main difference between real benchmarks and synthetic applications is in the 

<Task> specification section. In this mode, each <Task> is considered a node of a DAG. 

To describe the links between one node and another the parameters srcs and sinksare 

used. These parameters specify the “id” of the node it is connecting too, while datavol 

specifies how much data it needs to transfer to the sinks. To know the id of each task is 

easy, since NoCBench will automatically assign the id’s in the order the tasks are 

specified starting with index 0. Since a NOC Benchmark is composed of a series of 

applications each task (i.e. node) needs to specify to which application it belongs. The 

<Appz> section is used to configure the parameters of each application.  

 

A list of all configurable parameters is explained below. You may find this also at 

[nocbench]/conf/config.dtd 

     
<!--  Simulator is the root element and contains the entire simulation 
configuration. 
      Each configuration must have a Network description and a System 
description. 
      PowerModel, CORE, Task and Appz are optional and are only 
required in certain 
      simulation modes. 
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      Note: Current version performs only a partial validation of the 
configuration 
      through DTD validation. However, to ensure successful simulation 
explicit checks 
      for ill configured XML will be nice and helps avoiding 
unnecessary debugging. --> 
<!ELEMENT Simulator (PowerModel?,Network, CORE*, System, Task*, Appz*)>      
<!ATTLIST Simulator cycles CDATA #REQUIRED>                                 
<!-- number of cycles to run - infinite if 0 --> 
<!ATTLIST Simulator maxresponsetime CDATA #IMPLIED>                         
<!-- number of cycles before reporting a possible deadlock --> 
<!ATTLIST Simulator quietmode CDATA #IMPLIED>                               
<!-- false for verbose output, true otherwise --> 
<!ATTLIST Simulator randomflitrate CDATA #IMPLIED>                          
<!-- true if flitrate is random over time - NOTE: not implemented in 
all modes --> 
<!ATTLIST Simulator trace CDATA #IMPLIED>                                   
<!-- tracefile name - used for power trace --> 
 
<!--  PowerModel element specifies the power model used in the router 
design.  
      Optional 
      should implmement sub-elements and provide more detail for 
router, cni, link etc.  
--> 
<!ELEMENT PowerModel EMPTY> 
<!ATTLIST PowerModel tgpb CDATA #REQUIRED>                                  
<!-- thermal time constant of the chip - in cycles --> 
<!ATTLIST PowerModel pgpb CDATA #REQUIRED>                                  
<!-- global power budget of the chip - in Watts --> 
<!ATTLIST PowerModel ebuffread CDATA #REQUIRED>                             
<!-- energy of buffer read in one cycle - in pJoules --> 
<!ATTLIST PowerModel ebuffwrite CDATA #REQUIRED>                            
<!-- energy of buffer write operation in one cycle - in pJoules --> 
<!ATTLIST PowerModel ecrossbar CDATA #REQUIRED>                             
<!-- energy of sending a flit through the crossbar in one cycle - in 
pJoules --> 
<!ATTLIST PowerModel elink CDATA #REQUIRED>                                 
<!-- energy of writing a flit to the link - in pJoules --> 
 
<!--  Network element contains the description of the entire NoC. The 
components 
      are as Router, CNI and Link each defined later in the document. 
Network must 
      have One or more CNI, one or more Router and Zero or more link 
and in the  
      given order. The CNIs are assigned ID based on the order of 
declaration starting 
      from 0.  
--> 
<!ELEMENT Network (CNI+,Router+,Link*)> 
<!ATTLIST Network nvcs CDATA #REQUIRED>                                     
<!-- number of virtual channels used for the wormhole communication --> 
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<!ATTLIST Network buflen CDATA #REQUIRED>                                   
<!-- number of buffers in the CNIs for incoming and outgoing messages -
-> 
<!ATTLIST Network neighborhood CDATA #IMPLIED>                              
<!-- hop distance to consider as neighrborhood in localized random 
traffic - deprecated --> 
 
<!--  Router - describes the parameters of the Router architecture.--> 
<!ELEMENT Router EMPTY> 
<!ATTLIST Router name ID #REQUIRED>                                         
<!-- name of the router - string, has to be unique --> 
<!ATTLIST Router type (generic) #REQUIRED>                                  
<!-- router type - has to be among the supported type --> 
<!ATTLIST Router ports CDATA #IMPLIED>                                      
<!-- number of ports in the router - DEPRECATED --> 
<!ATTLIST Router infifolen CDATA #REQUIRED>                                 
<!-- input fifo length in flits --> 
<!ATTLIST Router outfifolen CDATA #REQUIRED>                                
<!-- output fifo length in flits, only used if output buffering is 
implemented --> 
<!ATTLIST Router x CDATA #IMPLIED>                                          
<!-- option to specify the co-ordinates for regulal topology horizontal 
position --> 
<!ATTLIST Router y CDATA #IMPLIED>                                          
<!-- same as above - vertical position --> 
<!ATTLIST Router N CDATA #IMPLIED>                                          
<!-- powerherd scheme spefici parameter --> 
 
<!--  CNI Element configuration. 
      Each CNI element creates an interface to the NOC. 
      Specifying type is required and important to match  
      with the router it connects to. 
      Note: Should be automatically matched in future versions. 
--> 
<!ELEMENT CNI (MMAP*)>                                                       
<!ATTLIST CNI name ID #REQUIRED>                                            
<!-- name of the CNI, need to be unique, used to refer later on -->  
<!ATTLIST CNI type (ocp|pc) #REQUIRED>                                      
<!-- CNI type, required, specifies the CNI design type --> 
<!ATTLIST CNI infifolen CDATA #REQUIRED>                                    
<!-- input fifo length in flits --> 
<!ATTLIST CNI outfifolen CDATA #REQUIRED>                                   
<!-- output fifo length in flits --> 
<!ATTLIST CNI msgqlen CDATA #REQUIRED>                                      
<!-- length of the core side message queue --> 
<!ATTLIST CNI reorder (true|false) #REQUIRED>                               
<!-- if false messages are not ordered --> 
<!ATTLIST CNI flitinjectionrate CDATA #IMPLIED>                             
<!-- controls flit injection - limits if more, but increase if less is 
controlled by internal flag --> 
<!ATTLIST CNI firprofile CDATA #IMPLIED>                                    
<!-- allows to vary the injcetion over time format: "10 20 60 30" means 
at 10% simulation time FIR = 20% and so on--> 
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<!ATTLIST CNI ber CDATA #IMPLIED>                                           
<!-- bit error rate: to introduce error in the sent/received data at 
CNI --> 
 
<!--  MMAP Element  
      Was used to specify memory map as visible through the current 
interface/CNI 
      DEPRECATED 
--> 
<!ELEMENT MMAP EMPTY> 
<!ATTLIST MMAP base CDATA #REQUIRED> 
<!ATTLIST MMAP range CDATA #REQUIRED> 
<!ATTLIST MMAP target IDREF #REQUIRED> 
 
<!--  Link 
      Defines a Link 
-->      
<!ELEMENT Link EMPTY> 
<!ATTLIST Link src IDREF #REQUIRED>                                         
<!-- src node - can be a router or cni: refered by the name attribute -
-> 
<!ATTLIST Link dst IDREF #REQUIRED>                                         
<!-- dst node - same as above --> 
 
<!--  Core element 
      Contains the configuration for a CORE that will be attached to an 
interface. 
--> 
<!ELEMENT CORE EMPTY> 
<!ATTLIST CORE name ID #REQUIRED>                                           
<!-- name of the core: string has to be unique --> 
<!ATTLIST CORE type (dummy|sparcv8|memory|tgff) #REQUIRED>                  
<!-- type of the core --> 
<!ATTLIST CORE interface IDREF #REQUIRED>                                   
<!-- name of the interface (CNI) this core connects to. Not verified --
> 
<!ATTLIST CORE commandline CDATA #IMPLIED>                                  
<!-- commandline to execute in this core: used in context of ArchC 
cores --> 
<!ATTLIST CORE addr_range CDATA #IMPLIED>                                   
<!-- address range allocated to this core: just specifies the number of 
locations allocated --> 
<!ATTLIST CORE pref_mem IDREF #IMPLIED>                                     
<!-- name of the memory core where application should be loaded - 
DEPRECATED --> 
<!ATTLIST CORE bs CDATA #IMPLIED>                                           
<!-- This parameter has been deprecated. DO NOT USE --> 
 
 
 
<!--  Task element 
      Specifies a Task to be run 
--> 
<!ELEMENT Task EMPTY>  



 68

<!ATTLIST Task cmdline CDATA #IMPLIED>                    <!-- contains 
absolute or relative path of the binary along with arguments --> 
<!ATTLIST Task target (dummy|sparcv8) #REQUIRED>          <!-- 
specifies target architecture of the binary --> 
<!ATTLIST Task jobs CDATA #IMPLIED>                       <!-- # of 
jobs per task --> 
<!ATTLIST Task prefproc CDATA #IMPLIED>                   <!-- forces 
scheduler to run the task on specific core with target architecture --> 
<!ATTLIST Task prefmproc CDATA #IMPLIED>                  <!-- 
DEPRECATED --> 
 
<!--  System element 
      Contains the kernel information. All attributes are optional. 
Values given  
      in individual comments. 
   Default values below. Also available @ Constants.h 
-->       
<!ELEMENT System EMPTY> 
<!ATTLIST System procsize CDATA #IMPLIED>               <!-- This is 
the size of the local process space including .text, .data, .bss, heap, 
stack, shared mem and arguments. DEFAULTT 5MB -> 5242880 --> 
<!ATTLIST System ptablesize CDATA #IMPLIED>             <!-- Size of 
page table. Indicates # of pages per table. DEFAULT 32 -->  
<!ATTLIST System pagesize CDATA #IMPLIED>               <!-- Page Size 
in (B). DEFAULT 4KB -> 4096. --> 
<!ATTLIST System heapsize CDATA #IMPLIED>               <!-- Maximum 
Task Heap size in local address space. Metric (B). DEFAULT 3MB -> 
3145728 --> 
<!ATTLIST System tick CDATA #IMPLIED>                   <!-- Scheduerl 
period in (ns). Scheduler idle task will be run every tick. DEFAULT 
10000 ns  --> 
<!ATTLIST System endian CDATA #IMPLIED>                 <!-- Endiannes 
of the system. All memory and processor cores will be set to this. 1 
BE, 0 LE. DEFAULT BE--> 
<!ATTLIST System sched CDATA #IMPLIED>                  <!-- Scheduler 
type; values: "rr". DEFAULT Round Robin -> "rr" --> 
<!ATTLIST System hyperperiod CDATA #IMPLIED>            <!-- 
Hyperperiod of the tasks. Currently use as an expansion parameter for 
Real Time support --> 

 

B.6 Help and Support 

 

Please visit our forum located at SourceForge for support and more questions about how 

to use NoCBench.  

 

http://sourceforge.net/projects/nocbench/forums/forum/1026561 
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Thanks for your support and we look forward on NoCBench providing you the best 

NOC simulation and benchmarking experience for your research work. 
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