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ABSTRACT

Bayesian Semiparametric Models for Heterogeneous

Cross-platform Differential Gene Expression. (December 2010)

Soma Sekhar Dhavala, B.S., Andhra University;

M.S., Indian Institute of Technology, Madras

Chair of Advisory Committee: Dr. Bani K. Mallick

We are concerned with testing for differential expression and consider three dif-

ferent aspects of such testing procedures. First, we develop an exact ANOVA type

model for discrete gene expression data, produced by technologies such as a Massively

Parallel Signature Sequencing (MPSS), Serial Analysis of Gene Expression (SAGE)

or other next generation sequencing technologies. We adopt two Bayesian hierarchi-

cal models—one parametric and the other semiparametric with a Dirichlet process

prior that has the ability to borrow strength across related signatures, where a sig-

nature is a specific arrangement of the nucleotides. We utilize the discreteness of the

Dirichlet process prior to cluster signatures that exhibit similar differential expres-

sion profiles. Tests for differential expression are carried out using non-parametric

approaches, while controlling the false discovery rate. Next, we consider ways to

combine expression data from different studies, possibly produced by different tech-

nologies resulting in mixed type responses, such as Microarrays and MPSS. Depending

on the technology, the expression data can be continuous or discrete and can have dif-

ferent technology dependent noise characteristics. Adding to the difficulty, genes can

have an arbitrary correlation structure both within and across studies. Performing

several hypothesis tests for differential expression could also lead to false discoveries.

We propose to address all the above challenges using a Hierarchical Dirichlet process

with a spike-and-slab base prior on the random effects, while smoothing splines model
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the unknown link functions that map different technology dependent manifestations

to latent processes upon which inference is based. Finally, we propose an algorithm

for controlling different error measures in a Bayesian multiple testing under generic

loss functions, including the widely used uniform loss function. We do not make

any specific assumptions about the underlying probability model but require that

indicator variables for the individual hypotheses are available as a component of the

inference. Given this information, we recast multiple hypothesis testing as a com-

binatorial optimization problem and in particular, the 0-1 knapsack problem which

can be solved efficiently using a variety of algorithms, both approximate and exact in

nature.
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CHAPTER I

INTRODUCTION

A. Problem Formulation

The perpetual endeavor of mankind perambulates around the quest to understand

itself and the surroundings. How life lives? is the fundamental question we have

been asking ourselves in that process. The simplicity of the question is, perhaps, an

indication of the magnitude of the complexity of the undertaking. The discoveries

made in the life sciences in the 20th century, together with the technological inventions

being made in the 21st century, now present a unique & challenging opportunity

to understand life better than ever before. The implications of such an endeavor

can result in improving the quality of life. For example, understanding how life is

encoded in DNA and how it regulates the functional aspects of life can help personalize

medicine, develop new cost-effective drugs to combat various infectious diseases such

as HIV, Malaria, Hepatitis-B, Tuberculosis etc..(Hofmann, 2006). However, such an

opportunity also poses many challenges to be overcome. In particular, vast amounts

of data produced by the next generation high-throughput sequencing technologies

have to be mined to uncover meaningful information encoded by the generic make-

up and efficient methodologies have to be developed to leverage information that is

already available in several heterogeneous formats.

Multitude of high-throughput technologies are currently used to simultaneously

analyze thousands of genes of an organism, or its constituents. They can be broadly

classified into analog and digital techniques based on the type of data they produce.

Microarrays and its many variations produce images that can be regarded as con-

The journal model is Journal of the American Statistical Association.
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tinuous data, while Serial Analysis of Gene Expression (SAGE), Massively Parallel

Signature Sequencing (MPSS) can be considered as digital technologies (Bloksberg,

2008). Digital techniques directly measure the number of cDNA or mRNA molecules

present,o whereas in the case of Microarrays the image intensity is proportional to the

abundance of the particular gene in the DNA sample (Seidel, 2008). Microarrays are

comparatively inexpensive and as a result, they are widely used and many statistical

methods have been developed to analyze them. For analyzing digital or discrete gene

expression data, most of the existing methods apply some kind of transform and treat

it as continuous data, thereby making the analog gene expression analysis techniques

readily applicable. In this dissertation, we propose statistical methods and models to

explicitly address the discrete nature of the data produced by digital technologies and

attempt to develop a unified framework which allows fusion between cross-platform

data. An underlying theme in our contributions to the literature is concerned with

performing multiple hypothesis tests for differential expression of genes between dif-

ferent experimental conditions.

B. Organization

More specifically, in Chapter II, we apply Generalized Linear Model (GLM) to analyze

count data obtained using Massively Parallel Signature Sequencing (MPSS). Over

dispersion due to the presence of large number of zeros, as is the case with count-

based technologies, is accounted by using a zero-inflated Poission likelihood. The goal

is to study differential expression between different strains of Salmonella bacteria in

Bovines. We show that the suggested Bayesian hierarchical model performs better

than off-the-shelve techniques which model each gene independently. This is due

to the hierarchical specification of the model, which borrows strength across related



3

genes. We flag genes that are found to be differentially expressed based on Kullback-

Leibler distance based hypothesis tests and we control the False Discovery Rate (FDR)

to account for the large of number of simultaneous hypothesis being carried out. we

extend this hierarchical model to account for dependency among genes by eliciting a

Dirichlet process (DP) for the random effects. Relaxing the parametric assumption

to model dependency often improves the estimates of the effects parameters in terms

of variance, as will be shown. As a consequence to using DP, genes having similar

expression profiles will be clustered together. This information is useful in exploring

the functional relationship between genes in a given cluster.

In Chapter III, we consider methods for combining gene expression data and

infer differential expression based on the combined data. We propose semiparametric

methods to jointly model data arising from different studies or different technologies

or a combination of the two, but assume that both studies are trying to measure

the same biological tissue or organism under two experimental conditions. We treat

the observed data as a manifestation of a latent process which explains the differ-

ential expression in the genes both witn-in and across studies. The observed data

is linked to the latent process through a non-parametric function. An ANOVA like

structure, similar in spirit to GLM in previous chapter, for the latent process forms

the backbone on which inference is carried-out. More specifically, we use zero-inflated

Poisson likelihood to model count data as discussed in Chapter II. Continuous data

arising from Microarrays or similar technological platforms is modeled using a Normal

likelihood. Canonical link functions of these exponential families link the expected

means of the observed data to a transformed latent process. The transformation

is accomplished using penalized cubic splines and we suppose that this monotonic

transformation captures the technological differences between different platforms or

studies, leaving the biological information to the latent process. We model the la-
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tent process as having an ANOVA like structure. We elicit Hierarchical Dirichlet

process prior for the random effects but instead of using a normal base prior, we

use a spike-n-slab base prior. The advantage of using the spike-n-slab prior is that

hypothesis testing is embedded into the model and therefore, separate tests based on

the Kullback-Leibler distances or related methods are not needed. The HDP allows

the clusters to be shared across studies or data-sets, which means that a cluster in a

study can have completely different membership in a different study, thereby allowing

the genes to have discordant expression profile across studies. This is quite a relaxed

assumption to considering that a gene in a study must correspond to the same cluster

in a different study, referred to as concordance.

Both Chapter II and III are devoted to developing methods from a modeling

point of view. A critical component in inference after modeling is, how one controls

FDR or other error measures, as we are dealing with numerous multiple hypothesis

tests. It is customary to assume uniform loss functions, in which case, closed-form

solutions exist for controlling FDR. In Chapter IV, using coherent decision theoretic

framework, we develop algorithms that optimize a chosen error measure, like FDR,

under generic loss functions. Finally, in Chapter V, we summarize our findings and

suggest future research directions.
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CHAPTER II

SEMIPARAMETRIC MODEL FOR DISCRETE EXPRESSION DATA

A. Introduction

Transcription profiling techniques measure the expression of a gene in a biological

sample by quantifying mRNA. DNA Microarray technology has dominated the fields

of molecular biology and genomics by allowing researchers to measure the expression

levels of thousands of genes simultaneously. However, it is now well known that the

microarray technology has its own limitations. Microarray users are limited only to

the probes printed on commercial/custom manufactured slides and one must have

knowledge of the nucleotide sequences of the genes that are being investigated in

order to create the probes. This may be a problem for genome-wide studies of higher

organisms. In addition, Microarray studies are subject to variability relating to probe

hybridization differences and cross-reactivity, element-to-element differences within

Microarrays during spotting, and Microarray-to-Microarray differences (Audic and

Claveries, 1997, Wittes and Friedman, 1999, Richmond et al, 1999).

Recently, alternative technologies such as Serial Analysis of Gene Expression

(SAGE) and Massively Parallel Signature Sequencing (MPSS) have emerged that are

capable of addressing some of the issues described above. Both SAGE and MPSS

produce similar output: a list of short sequences (tags) and a frequency for each tag.

However, the method of obtaining the tag list is dramatically different. SAGE uses

concatenated tags that are sequenced using a traditional automated DNA sequencing

method (Velculesu et al. 1995). A SAGE library may contain as few as 20,000 tags

or as many as over 100,000 tags . In contrast, MPSS uses a cloning and sequencing

method whereby hundreds of thousands of sequences are obtained simultaneously by
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sequencing off of beads using enzymatic digestion and hybridization (Brenner et al.

2000). An MPSS library may contain more than 1,200,000 tags . Both methods are

capable of uniformly analyzing gene expression irrespective of mRNA abundance and

without a priori knowledge of the transcript sequence. The data generated by these

methods are count data, as opposed to the log signal intensity or log red/green ratio

obtained from Microarrays.

In this chapter, we focus on gene expression of bovine ileal Peyer’s patch infected

with Salmonella enterica serovar Typhimurium as analyzed by MPSS. In Section B,

we briefly explain the MPSS technology. In Section C, we explain the data collection

process and provide a brief literature survey of the existing statistical techniques for

analyzing MPSS and SAGE data. In Section D, we explain our statistical models and

methodology. Section E provides some of the computational details associated with

the models introduced here, as well as our analysis of the data. In Section F, we discuss

the results of our analysis and Section G discusses their biological interpretation. We

end with a few concluding remarks in Section H. The MCMC computational details

can be found in Appendix A.

B. Review of MPSS Technology

MPSS is based on transcript counting and as a result, depends heavily on the abil-

ity to uniquely identify every mRNA in a sample. For this purpose, first a cDNA

signature/tag conjugate library is constructed. Poly(A)+ mRNA is extracted from

the tissue of interest and from it, cDNA is synthesized. The 20 bases adjacent to a

specific site upstream from the poly-A tail of each cDNA (a site that reads GATC)

are captured. The 17 nucleotides including the GATC and its contiguous 13-mer form

a signature for the mRNA they came from. These signatures are then amplified by
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PCR and a unique identification tag is added to each of them. Subsequently, multi-

ple pools of several hundred thousand signature/tag conjugates are amplified and the

tags are hybridized with microbeads, each of which has on it several thousand copies

of one of the anti-tags. The microbeads loaded with the signature/tag conjugates are

isolated by using a florescence-activated cell sorter. A million to a million-and-a-half

loaded microbeads are assembled in a flow cell and the signature sequences on those

beads are determined. This process involves the parallel identification of four bases

by means of hybridization to fluorescently labeled encoders, followed by the removal

of those 4 bases via digestion with an endonuclease enzyme and the exposure of the

next four bases, and so on.

Two separate sets of microbeads containing the same signature library are used

along with two different initiating adapters for the endonuclease digestion process and

for each of these, the signature identification process is independently carried out k

times (k = 2, 3 or 4). The purpose behind these is to ensure that fewer signatures are

missed, thereby increasing the resolution. The two separate runs of the endonuclease

digestion process mentioned above are called a two-stepper process and a four-stepper

process respectively. The k independent runs of the signature identification process

within each stepper process are called replicates. The signatures corresponding to

every mRNA in the tissue-sample are, therefore, identified and counted 2k times

during MPSS. So, for every signature involved, we end up getting two sets of k

counts. These counts are actually reported after standardization to a million, that

is, a signature having a count of 72 among 1.5 million microbeads will be reported

as having 48 TPM (transcripts per million). For example, if a two-stepper process

is used along with a four-stepper and each has 4 replicates, the TPM values for a

particular signature might be (5,0,9,13) and (0,3,12,20). The maximum TPM value

for a signature is often called its ‘selected mean’. Once the TPM values are available,
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each 17-nucleotide signature, which typically matches with only one position in a

complex genome, is associated with a proximal gene. Based on the position of the

signature relative to its associated gene, each signature is categorized according to

the quality of the association. For more on the MPSS technology and the associated

biological details, see Reinartz et al. (2002), Stolovitzky et al. (2005), Crawford et

al. (2006) and Brenner et al. (2000), among others.

C. Data Collection and Analysis

The dataset was generated by Khare et al. (2006) at the Department of Veteri-

nary Pathobiology, Texas A & M University. Their goal was to compare the in vivo

global gene expression responses in tissue-samples from bovine ligated ileal loops

that are infected with a wild strain of the bacterium Salmonella enterica serovar

Typhimurium (WT) or with a mutant strain of the bacterium (MUT) or are unin-

fected (LB). Salmonella is an enteric pathogen and is a major concern in food safety.

Salmonella enterica serovar Typhimurium (S. Typhimurium) is among the most com-

mon Salmonella varieties causing salmonellosis in the U.S.A. Various animal models

have been studied to understand the virulence mechanism of S. Typhimurium. In-

fection of calves, natural or experimental, with S. Typhimurium results in an enteric

disease with clinical and pathological features that parallel the disease in humans.

The invasion associated with type III secretion system encoded by Pathogenicity Is-

land I (SPI-1) in the pathogen is required for S. Typhimurium colonization of the

bovine small intestine and translocates various Salmonella effector proteins including

SipA, SopA, SopB, SopD, and SopE2 to the host epithelial cell cytoplasm. These

various effector molecules act in a coordinated way to induce fluid secretion and tran-

scription of various genes associated with the pathophysiology of the disease. The
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mutation in the wild type strain of Salmonella was the deletion of the Type 3 Secretion

System (T3SS) genes SipASopABDE/E2 (ZA21), which, according to recent studies,

renders the bacterium defective in invasion, fluid accumulation, production of inflam-

matory cytokines/chemokines and transmigration of neutrophils. In this chapter, we

compare the hosts’ responses to the WT associated with the pathophysiology of the

disease to understand the detailed effect of these virulent factors in the pathogenesis

of the infection. The detailed analysis of the host response will lead us to identify

gene targets for therapeutic intervention of this disease. The MPSS technique with

a two-stepper procedure was used along with a three-stepper procedure, each having

two replicates. The experimenters initially ran the MPSS, as described below, with

more than 43000 signatures, but subsequently screened the dataset to eliminate all

of the rows that did not contain a count of four or more transcripts per million in at

least two of the three tissue-samples. This reduced the number of rows (signatures)

to about 24000 and our analysis is based on this reduced dataset. All the replicates

we obtained in this data-set are technical replicates as obtaining biological replicates

was cost prohibitive.

1. Review of MPSS Data Analysis Methods

From a statistical point of view, an MPSS experiment involving m signatures pro-

duces a dataset with m rows, each containing two sets of k transcripts per million

values. Suppose we have two tissue-samples, one healthy and the other diseased

and we intend to discover signatures that are differentially expressed between these

two samples. Reinartz et al. (2002) suggest the following procedure, in case there

is only one count per signature. Let the counts be x1 and x2 in the two samples

for a particular signature. Since a certain microbead may or may not contain that

signature and a million microbeads are examined for the presence of that signature
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in each sample, this is like a repeating a million coin-tosses twice. Let p1 be the

expression level of this signature in sample 1 and p2 be the level in sample 2. Then,

clearly, x1 ∼ Binomial(106, p1) and x2 ∼ Binomial(106, p2) and the null hypothesis

of no differential expression boils down to H0 : p1 = p2. Of course, p̂1 = x1/106,

p̂2 = x2/106 and in order to test this null hypothesis against the two-sided alterna-

tive, a normal approximation is appropriate. In other words, use the test statistic

z = (p̂1−p̂2)/{p̂(1−p̂)(10−6+10−6)}0.5, where p̂ = (x1+x2)/(106+106). One problem

with this approach is that it does not clarify what data are being used. If the single

count per signature that is being used is actually the selected mean, i.e., the largest

of all the counts for that signature, it would be better modeled by the maximum

of binomial random variables. On the other hand, a normal-approximated binomial

testing procedure might be appropriate when the sum of the counts for a signature

is considered. Even then, such signature-by-signature testing methods incorrectly

assume that the signatures are independent of each other, especially signatures corre-

sponding to the same gene. Another drawback to this is the lack of protection against

false discoveries; such protection is essential as thousands of hypothesis tests have to

performed simultaneously.

Stolovitzky et al. (2005) put forth another testing procedure based on empirical

modeling. Their dataset was generated by a two-stepper process along with a four-

stepper, each with 4 replicates. Instead of using the TPM values directly, they use

log10(TPM). For the first tissue-sample, let θij be the log-transformed TPM for the

ith signature in the jth replicate of a stepper process, θi be the mean of the θij’s within

a stepper process and si be their standard deviation. For the other tissue-sample, let

the corresponding quantities be θ∗ij, θ
∗

i and s∗i . By plotting the si’s against the θi’s,

Stolovitzky et al. (2005) noticed that the variation decreases as the mean increases,

a phenomenon typically observed in log-transformed Poisson data, and it does so
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at different rates for the following three scenarios:(i) when none of the eight TPM

counts is zero; (ii) when some of them are zeros but neither the sum of the four TPM

counts from the two-stepper process nor that from the four-stepper process is zero;

(iii) when exactly one of the two sums mentioned above is zero but not both.

Typically, the rate of decrease in replicate-variation as the mean increases is the

highest in case (i), while the other two cases are similar to each other. In view of

this, they decided to standardize the replicate θij’s for each signature in each sample

by their standard deviation and model the standardized data by the curve f(x) =

1
2
exp{−x2/(0.5 + 0.6 | x |)}, which has slightly heavier tails than a Gaussian curve.

For the ith signature, they reject the null hypothesis of no differential expression

against the two-sided alternative if the conditional probability of observing a greater

absolute difference between the means of the standardized θij’s from the two samples

is “small”, given that the average of those two means is some value Θ (say).

Although this seems to be a more sophisticated approach than the normal-

approximated binomial test, it has its own drawbacks. The authors’ decision to

work with log-transformed counts means that they had to eliminate all of the zero

counts from their analysis, except for acknowledging the effect of zero counts on the

inter-replicate variations and adjusting for them. In addition, the authors do not

mention false discovery rate (FDR) control despite the fact that simultaneous test-

ing for the differential expression of several thousand signatures necessitates some

protection against false discoveries.

2. Review of SAGE Data Analysis Methods

From a data-centric view point, MPSS and SAGE technologies produce similar out-

put: the frequency of occurrence of signatures/tags. As a result, it might be possible

to use the methods developed for SAGE data analysis in order to analyze MPSS data
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and vice versa, as suggested in Vencio et al. (2004). For this reason, we review SAGE

data analysis methods that could be applied to MPSS data as well.

Most of the off-the-shelf SAGE analysis techniques for testing differential ex-

pression use simple chi-square tests for equality of proportions or perform t-tests

after transforming the data (Man, 2000). Even though such simplistic assumptions

are easy-to-use, they do not adequately model the complexity of biological processes

or account for the interdependencies among genes. Alternative approaches use hier-

archical models to address these issues. Vencio et al. (2004) suggest mixture model

distributions to account for within-class variability and in particular use a Beta-

Binomial model. Testing differential expression is accomplished by computing the

Bayes error rate, which is the area of the overlapped region of the posterior distribu-

tions. A similar approach can be found in Thygesen and Zwinderman (2006), where

a gamma-Poisson model is used for analyzing the SAGE libraries, where library is a

collection of expression levels of signatures/tags from a particular biological sample.

They suggest that a Poisson likelihood with either a gamma prior or a log-normal prior

is suitable for modeling SAGE data. A mixture Dirichlet prior is used for analyzing

SAGE libraries in Morris et al. (2006). They demonstrate that such a specification

leads to improved estimates of the expression levels of the signatures/tags. A key

feature in the above methods is the mixture model approach to account within-class

variability. However, they do not model the complex dependency among the genes

or explicitly incorporate tests for differential expression across multiple samples into

the model. Rather, these methods assume just exchangeability as is the case with

our parametric hierarchical model and analyze one library at a time. In this article,

we adopt a new approach to analyzing MPSS data that addresses these issues. In our

Bayesian hierarchical model, we:
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• model each signature-count by a zero-inflated Poisson (ZIP) distribution and

assume a normal density for the log-transformed mean parameter of the Poisson

part.

• assume the mean of the above-mentioned normal density to have a linear model

structure with parameters capturing the signature effect and the treatment

effect.

• start with a parametric model where these parameters are given the usual con-

jugate prior distributions (i.e., normal and inverse gamma).

• proceed to fit a semiparametric model where the ‘treatment effect’ parameter

is given a Dirichlet process prior with a normal baseline distribution.

• borrow strength within each cluster of signatures, since the semiparametric

model results in automatic clustering.

• use the deviance information criterion (DIC) for choosing between these two

models.

• draw inference on differential expression of signatures based on the posteriors

of the ‘treatment effect’ parameters, using symmetrized Kullback-Leibler (KL)

divergences with bootstrapped cut-off values, as well as the Kruskal-Wallis test

for the equality of medians. A somewhat similar modeling idea can be found in

Carota and Parmigiani (2002) in the regression context. But to our knowledge,

we are the first to modify and adopt it for MPSS-type count-data.

Even though our analysis and application is for the MPSS data analysis, we believe

that the methods are equally applicable for analyzing SAGE data, owing to the

similarities between the nature of the data.
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D. Bayesian Hierarchical Model

1. Parametric Model

Let Yijk be the kth replicate count observed for the ith signature under the jth

treatment, i = 1, . . . , I; j = 1, . . . , J and k = 1, . . . , K. We assume that condi-

tional on the parameters (p, λijk), Yijk are independently distributed ZIP (p, λijk) for

i = 1, . . . , I; j = 1, . . . , J and k = 1, . . . , K. In other words,

P(Yijk = y|p, λijk) = pI(y = 0) + (1− p)P (Y ∗
ijk = y) (2.1)

for some 0 < p < 1, where Y ∗
ijk ∼ Poisson(λijk). In the next stage, we model log(λijk)

as

log(λijk) = ηi + βij + ǫijk , (2.2)

where ǫijk is the random residual component with Normal(0, σ2
ǫ ) distribution. Hence,

we assume that conditional on the parameters (ηi, βij), the λijk are independent,

each with a lognormal density. The use of a residual component in the link-function

specification is consistent with the belief that there may be unexplained sources of

variation in the data, perhaps due to explanatory variables that were not recorded in

the original study. This is particularly appropriate for Poisson data sets where over-

dispersion is commonly observed. The use of residual effects within GLMs is discussed

in Sun et al. (2000) and is a special case of the class of generalized linear mixed

models (Zeger and Karim, 1991; Breslow and Clayton, 1993). Here, we assume that

conditional on the parameters (ηi, βij), the λijk are independent each with lognormal

density so equation (2) can now be re-written as:

log(λijk) ∼ Normal(ηi + βij, σ
2
ǫ ) (2.3)



15

where ηi is the effect of the ith signature and βij is the effect of the jth treatment

nested within the ith signature. We elicit conjugate priors in the hierarchical model

and partially center the parameters for efficient MCMC sampling (Gelfand et al,

1995). Let NIG be the Normal-Inverse Gamma family of conjugate distributions in

which the mean has a Normal distribution conditional on the variance and the variance

marginally follows an Inverse-Gamma distribution with hyper-prior parameters u and

v having the appropriate subscripts. In other words,

θ, σ2 ∼ NIG(θ0, σ
2, u, v) implies that

θ|σ2 ∼ N (θ0, σ
2) and

σ2 ∼ IG(u, v).

With this notation in mind, we specify the priors as:

βij, σ
2
β ∼ NIG(0, σ2

β, u
pr
β , v

pr
β )

ηi, σ
2
η ∼ NIG(µ, σ2

η, u
pr
η , v

pr
η )

µ, σ2
µ ∼ NIG(µ0, σ

2
µ, u

pr
µ , v

pr
µ ).

However, the specification of the zero-inflation parameter makes the sampling from

the (conditional) posterior distribution extremely difficult. Agarwal et al. (2002),

Ghosh et al. (2006) cleverly handle the problem by introducing a latent variable. In

the context of our dataset, denoting the latent variable corresponding to yijk by ζijk,

the complete likelihood of the data is

L(y, z | p, λ) =
∏

i

∏

j

∏

k

pζijk

{
(1− p)

e−λijkλ
yijk

ijk

yijk!

}1−ζijk

(2.4)
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or, equivalently,

L(y, ζ | p, λ) = pn0(1− p)n−n0

∏

yijk>0

e−λijkλ
yijk

ijk

yijk!

∏

yijk=0

(e−λijk)1−ζijk , (2.5)

where n0 =
∑

i

∑
j

∑
k ζijk and n = IJK. Here, ζijk = 1 implies that the kth replicate

in the jth treatment for the ith gene was not sampled. We elicit Beta(a, b) prior on

p and conjugate priors for all the variance parameters.

2. Semiparametric Model

We extend the model in Section C.1 to a semiparametric setup where simultaneously

we can infer the clustering of the signatures such that signatures within a cluster

share a common value for their regression coefficients. Thus, similar signatures will

borrow strength or shrink their regression coefficients locally rather than shrinking

towards the global mean. Furthermore, clustering of the data offers insight about

signatures that behave similarly in the experiment. By comparing signatures of un-

known function with profiles that are similar to signatures of known functions, clues

to biological function may be obtained.

We exploit the Dirichlet Process (Ferguson, 1973) prior for the regression coef-

ficients to obtain the clusters. Assigning a Dirichlet process on the regression co-

efficients induce ties among them. That is, for every pair of objects i 6= j, there

will be a positive probability that βi = βj. The clustering of the signatures encoded

by the ties of the regression coefficients will simply be referred to as the clustering

of the regression coefficients and, hence, clustering of the corresponding signatures.

The semiparametric model is obtained by replacing prior for the treatment effect’s
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parameter in the parametric model as:

βij ∼ DP{τN(0, σ2
β)}

σ2
β ∼ IG(upr

β , v
pr
β )

where τ is the tuning parameter and the baseline distribution is Normal(0, σ2
β). Pos-

terior inference based on a Dirichlet process (DP) prior has been widely discussed in

the literature. Ferguson (1973) introduced the Dirichlet process and Antoniak (1974)

extended it to a DP mixing framework. Except in simple cases with few observations

(Kuo, 1986), DP mixing was computationally intractable until Escobar and West

(1995 and earlier reference therein) developed a convenient version of the Gibbs sam-

pler (Gelfand and Smith, 1990) to handle this problem. Recent work of MacEachern

and Mueller (1994), Neal (2000), Jain and Neal (2004), and Dahl (2005), among

other supplied alternative simulation strategies to accommodate nonconjugate struc-

tures. All of these methods are suitable to model continuous responses; although see

Mukopadhyay and Gelfand (1997) and Carota and Parmigiani (2002) for extensions to

the linear model frame work. Both of these approaches obtain a nonconjugate struc-

ture and use a more complex MCMC algorithm successfully to handle that problem.

In our case, the number of regression parameters is large and so these algorithms may

not be very efficient.

In our modeling scheme, the introduction of the residual component ǫ makes our

computation much more efficient. By adopting this Gaussian residual effect, many

of the conditional distributions for the model parameters are now in the standard

form, thus greatly aiding computation. To be specific, conditional on the λ-values,

the model (2) is independent of y and can be written as a standard Bayes linear

regression with log(λ) as the response and β as the regression parameters. Now using
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a DP prior over the β-values, this can be transformed to a conjugate problem, with

the analytical form of the marginal distribution available. Hence our method enables

us to use the efficient sampling scheme of Escobar and West (1998) to draw the β-

values and other parameters. The details of the MCMC computation scheme are

provided in the next Section. Graphical representation of both the models are shown

in Fig. 1(a) and (b), respectively.

(a) parametric GLM (b) semiparametric GLM

Fig. 1.: Graphical representation of the (a) parametric and (b) semiparametric mod-

els.

E. Details of The MCMC Computations

1. Prior Selection and Cluster Initialization

We elicited conjugate priors for all the variance parameters and set the correspond-

ing hyper-parameters such that they are diffuse. As a result, posterior inference is

insensitive to the choice of these hyper-priors. Nevertheless, a good initialization of

the MCMC chain ensures stability and quicker convergence. It might also help an

average user to use the algorithm in a fairly automatic manner. Further, initializing
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the cluster memberships greatly affects the simulation time required during burn-in

period. For this reason, we suggest the following procedure:

• log transform the data

• get the least-squared estimates of the treatment and signature effects parameters

and their standard errors

• use k-Means or other non-parametric clustering methods to cluster the treat-

ment effects parameters

Optionally, information obtained in the above steps can also be used to set the hyper-

prior parameters as well.

2. Posterior Sampling

Sampling from the posterior in the parametric case was performed using a block

Gibbs sampler. All the conditional distributions except for the λ-values and the p’s

have conjugate forms. Using latent variables leads to sampling from the conditional

distribution of the zero-inflation parameters, also from its conjugate distribution. A

Metropolis-Hastings step with log-Normal proposal was used for drawing λ’s. In the

semiparametric case, successive sample observations are drawn using Escobar and

West’s (1995, 1998) Polya urn scheme. A total of 150,000 samples were drawn from

the joint posterior. Of them, 30,000 were discarded as burn-in and the remaining

samples were thinned down by a factor of 30 to give us reasonably less-dependent

posterior samples. The DP precision parameter, τ was estimated empirically using
∑N

n=1 τ/(τ + n − 1) ≈ B−1
∑B

b=1Nb where Nb is the number of clusters in the bth

simulation and N is the maximum number of clusters possible (McAuliffe et al. 2006).

In Figure 2, the MCMC chain of the number of clusters and its histogram are shown.
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We can see that chain converged and is mixing well. A discussion on the prior

elicitation on the precision parameter can be found in West (1992). Certain choices

in model specification allow us to efficiently simulate the draws from the joint posterior

distribution of the parameters, such as modeling log(λ) with a normal distribution.

The full conditionals required in the MCMC simulation are given in the Appendix

for both the parametric and the semiparametric models.

(a) MCMC chain (b) Histogram

Fig. 2.: MCMC chain and histogram of Nb, the number of clusters.

3. Clustering

At each iteration of the MCMC, we obtain cluster membership information, i.e.,

which signatures belong to the same cluster. We can form a pairwise association

or probability matrix δ based on this information, as follows: The (i, i′)th cell is 1

if {βi1, βi2, βi3} and {βi′1, βi′2, βi′3} belong to the same cluster and is 0 otherwise.

Clearly, δ(i, i) = 1 for each i. After M iterations in the MCMC, we can estimate the

pairwise probability matrix as δ̂(i, i′) = M−1
∑M

n=1 δ(i, i
′). Medvedovic et al (2002)

used the estimated pairwise probability matrix to form the cluster structure by using

(1 − δ) as a distance measure. We followed this approach to form an agglomerative

hierarchical cluster with complete linkage. Among the other alternatives to determine
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the cluster configuration, Dahl and Newton (2007) used a least-squares approach to

find the best cluster within the MCMC framework. This has the advantage that

the number of clusters is not needed a priori. Then, it is less reliable, because

it is based on a single realization in MCMC. The advantage of using agglomerative

hierarchical clustering, as opposed to choosing a cluster realization, is that the clusters

are nested. As a result, the cluster membership does not change significantly even

when the number of clusters changes. In the Bayesian framework, we can estimate the

number of clusters either empirically or otherwise, as discussed before. In our case,

the distribution of the number of clusters is unimodal and approximately symmetric

with mode around 69, as shown in Fig. 2(b). We used this information to cut the

tree to form the clusters in an objective manner, utilizing the cluster size information

available within the MCMC.

In Figure 3, the profile plots of the treatment effects in seven representative

clusters are shown. The plots in a column correspond to a specific treatment and plots

in a row correspond to a particular cluster. For example, the profile plot in the 2nd row

and 1st column corresponds to the kernel density estimates of the treatment effects

parameters in the LB strain for all the signatures in the 19th cluster (βi,LB i ∈ S19).

The cardinality of the cluster is also shown in the plot (34 in this case). We can tell

from the profile plots that the distributions of the treatment effects’ parameters are

very similar when they are in the same cluster. This enables us to identify genes that

are likely to be co-expressed, which may eventually lead to the discovery of pathways.

As the cardinality increases, the profiles tend to be dissimilar due to the nature of

the agglomerative clustering. This allows the biologists to look at different cluster

configurations by cutting the dendrogram at different levels. In the present case, we

chose to cut the tree by using the mean of Nb, though other subjective choices may

possibly be justified too.
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Fig. 3.: Hierarchical clustering profiles of treatments effects.
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4. Model Selection

We used the Deviance Information Criteria (DIC) of Spiegelhalter et al. (2002) for

model comparison. We have four models to begin with: the parametric and the semi-

parametric models with either regular Poisson or zero-inflated Poisson (ZIP) likeli-

hood. We ran all four models on a small number of signatures and found that the

parametric and semiparametric with ZIP likelihood were competitive and the models

with ZIP likelihood have smaller deviance compared to the models based on the Pois-

son likelihood. In our analysis on the full dataset, the DIC for the parametric model

was 29221 and it was 29091 for the semiparametric model and thus the semiparamet-

ric model was selected. The semiparametric model also leads to improved estimates,

for example treatment effects and signatures effects have a smaller MSE compared to

their counter-parts in the parametric model. In Figure 4(a), we plot the 95% credible

intervals for some signatures ηi’s, the signature effects parameters. As can be seen,

the semiparametric model produced tighter intervals. We also fit the simple Poisson

regression for each signature independently and plotted the corresponding credible

intervals for those signatures in Fig. 4(b). It is clear that these intervals are much

wider compared to the intervals corresponding to both parametric and semiparamet-

ric models. Furthermore, the remaining three models can be considered as special

cases of the semiparametric model with the ZIP likelihood. It becomes evident if we

note that the Poisson is a special case of ZIP with p = 0 and the parametric model

can be obtained setting by τ =∞ in the semiparametric model.

5. Simulation Details

We have developed the software in MATLAB. We exploited the matrix representation

and vector processing capabilities of MATLAB for accelerating the simulation time,
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Fig. 4.: Comparison of 95% CIs for selected ηis (signature effects)’ parameters under

different models.

particularly in implementing the block-Gibbs sampler. We ran the algorithms on our

shared-memory heterogeneous 64-bit Linux cluster with more than six nodes and at

least one dedicated node. Typical configuration of the nodes in our cluster has 16GB

RAM and eight dual core processors clocking 2.46GHz. It took nearly two-three three

days to complete the simulation for 189,000 draws and for 23,000 signatures. From a

computational point of view, reducing the number of genes cuts down the simulation

time dramatically. For example, a simulation involving 5000 genes selected using an

initial filtering method takes about 4 hours for the same number of MCMC samples.

F. Results

Here we present a summary and interpretation of the results we obtained by fitting the

semiparametric ZIP model to our MPSS dataset. After obtaining the samples from the

posterior densities of the β-values for the ith signature, inference regarding differential

expression can be drawn in a number of different ways. For example, we could use the
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‘area of overlap’ method of Vencio et al. (2005) or the threshold-based approach of

Newton et al. (2004) and Lewin et al. (2006). Other choices are Ishwaran and Rao’s

(2005) asymptotic approach, the marginal posterior-based method of Gottardo et al.

(2006) and the posterior tail probability-based approach of Bochkina and Richardson

(2006). All these approaches require that the asymptotic distribution of the test

statistic be known or one has to choose the rejection region of the hypothesis test

in an adhoc fashion. To avoid these difficulties, we use two nonparametric methods,

one based on symmetrized Kullback-Leibler (KL) divergences and the other on the

nonparametric Kruskal-Wallis test.

For computing the KL divergences for each signature, we simulated 5000 sample-

observations from the posterior of each βij (j = 1, 2, 3). Then we computed three

pairwise KL divergences (LB vs. MUT, LB vs. WT and MUT vs. WT). We de-

clared the signature differentially expressed if at least one of these three is ‘signif-

icantly large’. In order to identify the cut-off values beyond which we will call a

KL distance ‘significantly large’, we resorted to the bootstrapped distribution of KL

divergences. For each pairwise comparison (say, between LB and MUT), recall that

we have 5000 observations from each of the two corresponding posteriors. From these

5000 observation-pairs, we selected a bootstrap sample size of 1000 and computed the

KL divergence between the two posteriors based on them. We repeated this process

500 times, thereby ending up with 500 bootstrapped KL divergences between those

two posteriors, and computed the p-value based these bootstrapped KL-divergences.

We have plotted the histograms of the p-values of tests for differential expression

among all treatment pairs in Fig. 5. An examination of the histogram indicates that

the distribution of the p-values in MUT vs. WT are different from the rest of the

pairwise comparisons. We also note that the distributions of the posterior distribu-

tions of the treatment effects are non-normal. Thus we used a nonparametric n-way
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ANOVA, the Kruskal-Wallis test for equality of the medians (KW). However, as dis-

cussed in earlier sections, there can be many false discoveries due to the I >> K

problem. Controlling false discoveries within the Bayesian framework is possible by

eliciting a mixture distribution under the null and the alternate hypotheses for the

effects parameters (see Gottardo et al. 2006). However, such a set-up depends on

the number of treatments and specific hypothesis tests that are being considered. To

control the false discovery rate, we used the pFDR approach developed by Storey

(2002,2003), which has a Bayesian interpretation. We used the qvalue R-package de-

veloped by Alan Dabney and John Storey that is availble for download from the URL

http://genomics.princeton.edu/storeylab/qvalue/. The significance decisions

were based on these q-values at the α = 0.05 level.
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Fig. 5.: Histogram of p-values of the tests for pair-wise differential expression.

Among the numerous signatures that were detected to be differentially expressed

by our inference methodology, we summarize the results for a few that spread across

five important Gene Ontology categories described in the next section. Figure 6
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provides the posterior densities of the treatment effects, i.e., the βij values, based

on samples from those posteriors for signatures associated with genes that code for

the proteins L-selectin, Ferritin, cAMP, Beta-actin, Laminin receptor, Rho-GTP,

Cytokeratin-18 and MMPs. These signatures were found to be differentially expressed

among the three tissue-samples by our Bayesian semiparametric method. Finally, in

Table I, we show the q-values for pairwise differential expression across all pairs, along

with the clustering information.

G. Biological Significance of Discoveries

We now scrutinize the lists of differentially expressed signatures obtained through our

Bayesian semiparametric analysis and discuss the biological significance of some of the

corresponding genes. There are many important gene ontology (GO) groups based on

the biological functions of the genes associated with the differentially expressed signa-

tures detected by our semiparametric model, For example, we found representatives

of the functional categories “actin cytoskeleton and extracellular matrix”, “adhesion

molecules”, “ferritin-heavy polypeptide 1”, “signal transduction” and “matrix met-

alloproteins and tissue inhibitors of metalloproteins”. The detection of signatures

corresponding to genes in these categories is consistent with the existing literature on

the interactions between Salmonella typhimurium and the host-tissue proteins. What

follows is a brief discussion on each of these functional categories.

Actin Cytoskeleton and Extracellular Matrix: The Type III secretion system

(T3SS) encoded at Salmonella Pathogenicity Island I secretes effector proteins into

the host intestinal/epithelial cell which bind to the actin cytoskeleton and induce

the formation of ruffles in the cell membrane and Salmonella internalization (Guiney

and Lesnick, 2005; Patel and Galan, 2005). The statistical methodology described
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GenBank/ Cluster net-DE LB vs MUT LB vs WT MUT vs WT
EST Number KW KLD KW KLD KW KLD KW Annotation

BM105853 1 2.96e-05 4.18e-04 2.71e-03 1.27e-03 8.92e-04 4.70e-04 4.70e-04 telomerase associated protein
NM174379 1 2.96e-05 4.18e-04 1.01e-02 1.27e-03 8.92e-04 4.70e-04 4.70e-04 laminin receptor
X62882 16 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 1.48e-01 1.48e-01 L-selectin
NM174069 19 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 1.49e-01 1.49e-01 gap junction protein
AY156928 19 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 1.23e-01 1.23e-01 lectin-like receptor

...
...

...
...

...
...

...
...

BM435212 21 2.96e-05 1.32e-02 5.28e-03 1.42e-01 3.68e-02 4.7e-04 4.7e-04 ferritin
Be664796 21 2.96e-05 1.25e-02 2.84e-04 1.85e-03 8.92e-04 1.96e-02 1.96e-02 ATP synthase
NM176613 21 1.24e-02 4.18e-04 6.86e-02 2.73e-02 2.52e-01 1.51e-01 1.51e-01 ATP synthase
CB453188 21 2.96e-05 1.43e-02 6.54e-02 1.32e-03 8.92e-04 4.70e-04 4.70e-04 actin, beta

...
...

...
...

...
...

...
...

CB446386 22 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 1.75e-01 1.75e-01 immunoglobulin lambda chain
CB428925 22 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 3.14e-02 3.14e-02 cytokeratin 18
NM174641 22 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 1.18e-01 1.18e-01 guanylate cyclase

...
...

...
...

...
...

...
...

NM174471 36 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 1.66e-01 1.66e-01 metalloproteinase inhibitor
BF776620 36 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 4.70e-04 4.70e-04 epithelial transmembrane
BM432434 39 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 9.57e-3 9.57e-3 gelsolin
AW311904 54 2.96e-05 4.18e-04 2.84e-04 2.42e-01 6.28e-02 4.70e-04 4.70e-04 cAMP-regulated phosphoprotein
AY181987 54 2.96e-05 4.18e-04 2.84e-04 1.27e-03 8.92e-04 4.70e-04 4.70e-04 colony stimulating (macrophage)
X54183 54 2.96e-05 4.18e-04 2.84e-04 2.42e-01 2.32e-01 4.70e-04 4.70e-04 macrophage scavenger receptor

...
...

...
...

...
...

...
...

Table I.: q-values of tests for pair-wise differential expression (LB-vs-Mut, LB-vs-WT and MUT-vs-WT) based on

Kullback-Leibler distance (KLD) and Kruska-Wallis nonparametric test (KW). Reported also are the q-values for testing

the hypothesis at least one treatment has differential expression (net-DE).
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here identified MPSS signatures representing beta-actin, cytokeratin 18, Rho-GTP

and laminin receptor 1 as differentially expressed between the LB and WT infected

tissues; see Figures 6(a)-6(d).
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(b) Cytokeratin-18
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Fig. 6.: Smoothed histograms of treatments effects (βij’s)for selected signatures: LB

(solid), MUT (dots) and WT (dashes).
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Fig. 6.: Continued.

Adhesion Molecules: L-selectin (lymphocyte adhesion molecule-1, CD62E, ELAM-

1) is a transmembrane glycoprotein member of the selectin family of adhesion molecules

expressed on the surface of activated leukocytes (Worthylake and Burridge, 2001).

Expression of L-selectin is essential for the initial contact between leukocytes and

endothelial cells required for extravasation of inflammatory cells into sites of inflam-

mation (Barkhausen et al. 2005). Differential regulation of L-selectin in the MT

infected tissue compared to LB suggests that L-selectin activation contributes to the

mild tissue inflamation, see Figure 6(e).
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Ferritin, Heavy Polypeptide 1: Our methodology identified MPSS signatures for

heavy polypeptide 1 ferritin to be significantly differentially regulated in WT and

MUT tissues compared to LB loops of ileum having Peyer’s patch, see Figure (6(f).

This is a biologically significant observation, because ferritins are ubiquitous iron

storage proteins in plants, microorganisms and animals that play fundamental roles

in soluble and cellular Fe homeostasis (Boughammoura et al. 2007). Ferritins also

have a profound influence on inflammation and host resistance to pathogens (Ghio et

al. 1997).

Matrix Metalloproteins: Matrix metalloproteinase (MMPs) are a group of en-

zymes that are capable of cleaving all components of the extracellular matrix that

are involved in tissue invasion, extracellular matrix remodeling, angiogenesis and in-

flammation (Malemud 2006). In the present case, our methodology discovered down-

regulation of MMPs in the MT infected tissue compared to the WT infected and LB

tissues; see Figure 6(g).

Signal Transduction: The cAMP-regulated phosphoproteins (ARPP-16, ARPP-

19, ARPP21 and DARPP32) modulate signal transduction, linking infection to host

immunity, see Horiuchi et al. (1990) and Rakhilin et al. (2004). The increased ex-

pression of signal transduction molecules observed in S. typhimurium-infected tissues

compared to LB, as discovered by our methodology, suggests that these molecules

play a role in mediating some of the actions of vasoactive intestinal peptide (VIP)

and cAMP-dependent protein kinases such as PKA in the intestine; see Figure 6(h).

Among the clusters detected by our semiparametric model, there are a few with

special biological significance. In Table 1, we show selected signatures that were dif-

ferentially expressed. Annotation information was obtained by using the Expressed

Sequence Tags (ESTs) EST/ GenBank IDs at the NCBI repository. The q-values for

the overall differential expression based on KW test and pairwise differential expres-
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sion test across all pairs (LB Vs. MUT, LB vs WT and MUT Vs WT ) using both

KW and KLD are reported. The cluster number they belong to is also tabulated.

Most of the genes associated with the differentially expressed signatures in cluster

#19 have functions related to the immune-defense of the host tissue. Similarly, in

cluster #21, most of the signatures have similar expression profiles (see Figure 3,

row 3). Among the co-regulated signatures in this cluster are zinc-finger protein (not

shown), ferritin and ATP-synthase related signatures. It is interesting that a colony

stimulating protein and scavenger receptor are co-expressed. As is often the case,

clustering in our analysis is also exploratory in nature. We have verified, though not

comprehensively, the clustering information against the reference clusters available at

NCBI GEO repository. We looked at the signatures that belong to a specific cluster

produced by our method and searched for a cluster to which this particular signature

belongs by looking at the UniGene IDs. Even though the cluster memberships are

not identical, we observed similarities in terms of their biological functions and GO

categories. Other clusters that we detected will be the subjects of future biological

investigations.

H. Conclusion

Expression profiling techniques based on transcript counting offer a powerful alterna-

tive to conventional microarray technology and address some of its shortcomings. In

the existing literature, MPSS data, or some transformation thereof, have been mod-

eled by continuous densities. We have proposed two Bayesian hierarchical models

for such count data and developed inference methodology for detecting the differen-

tial expression of a signature among the three tissue-samples. We adopted a flexible

semiparametric modeling approach that enables automatic clustering and strength-
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borrowing within the clusters, thereby eliminating the unrealistic independence as-

sumption among the signatures that has been exploited in the existing literature.

These methods will be particularly useful when the sample size is small, because the

hierarchical setup allows one to borrow strength among correlated signatures. Our

model can also handle any number of experimental conditions and any number of

replicates. Therefore, we believe that our method is useful in wide variety of situa-

tions.

Filtering the signatures with low counts is not necessary but it would positively

impact the simulation time. Therefore, we recommend filtering the low-frequency,

noisy, uninteresting signatures. In the future we shall investigate more efficient, op-

timal initial filtering which will accelerate the computing time.

Finally, our proposed methods can be used to analyze SAGE data, as has been

discussed in section C.2. Hence, the proposed methods will be useful to analyze

count data generated by deep sequencing technology which is becoming mainstream

in recent biological studies.
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CHAPTER III

SEMIPARAMETRIC MODEL FOR COMBINING

HETEROGENEOUS GENE EXPRESSION DATA

A. Introduction

Microarrays have dominated the high-throughput genome-wide studies mainly due

to cost when compared with their digital counterpart technologies such as SAGE,

MPSS or other next generation sequencing technologies. More over, developing sta-

tistical methods to analyze them is relatively straightforward, owing to the normality

assumption made. Consequently, there is a vast amount of literature available to

analyze data-sets produced by Microarrays. For a collection of these methods, see

monographs Parmigiani et al. (2003), Do et al. (2006), Mallick et al. (2009). For an

exposition of analyzing digital technologies, see Chapter II of this dissertation. Of-

ten times, similar experiments are performed or similar transcript are studied, albeit

at different laboratories. As complex as it gets, genome-wide studies are inherently

multi-disciplinary and collaborative in nature and a logical proposition is to gain ad-

ditional insights by pooling the information/knowledge available in disparate forms.

Meta-analysis is a method for combining information from multiple sources (Nor-

mand, 1999, Hedge et al. 1985). Its potential to improve the efficiency and reliability

of biological investigations is being recognized; for example, meta-analysis is used to

validate differential expression analysis (Daniel et al., 2000). SAGE and Microar-

ray data were combined to discover potential biomarkers and improved detection in

Nacht et al 1999. Combining data across multiple arrays can be found in Rhodes et

al. 2002. A recent application of meta-analysis in Phylogenic studies can be found

in Liang and Weiss (2007). Conlon et al. (2006) proposed a Bayesian hierarchical
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model for combining Microrray data, possibly arising from different platforms. How-

ever, many of them assume or require that genes or transcripts have similar expression

profiles across studies. In other words, to apply these methods, the studies have to

be reproducible. However, when considering multiple studies, the variations in the

expression profiles of the genome can be both biological and technological (Irizarry

et al. 2005; Consortium et al. 2006; Kerr 2007). Shcharpf et al. (2009) considered a

Bayesian hierarchical model, called XDE, where genes can have either concordant or

discordant differential expression across studies, accounting these differences. They

have provided quite substantial evidence that their modeling framework offers better

performance than many methods, see references there-in, for combining Microarray

data-sets and indeed pooling can improve reliability of the biological discoveries. How-

ever, a major drawback of XDE is how strength is borrowed from different studies.

They elicit multivariate normal distribution on the random effects which are of in-

terest. While discordance/concordance is a desirable feature in modeling the random

effects, it can potentially render the correlation structure non-identifiable, leading to

poor mixing in the MCMC. Indeed, they also report poor mixing of these parameters,

an indication that such a prior elicitation is less realistic. Further more, many of the

above methods are mainly focused on combining continuous data-sets and occasion-

ally heterogeneous data-sets but in which case, they just combine p-values, which are

inefficient. In this chapter, we address the above mentioned challenges.

We let the data sources to be produced either by analog technologies like Mi-

croarrays or digital technologies like MPSS, SAGE, etc., and essentially this is Gen-

eralized linear model. Non-parametric link functions model the latent covariates with

an ANOVA like structure, that is specific to each study. A Hierarchical Dirichlet

process prior is elicited for the random effects, which induces ties among the genes

both with-in and across studies, thereby modeling the correlation in a non-parametric
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fashion. In order to integrate multiple hypothesis right into the model, we employ a

spike-and-slab selection prior (Ishwaran and Rao, 2005) as the base prior in the HDP.

This provides a fully Bayesian approach to both modeling and hypothesis testing. As

in Scharpf et al. (2009), we restrict our attention to two sample comparisons. The

organization of the chapter is as follows: In Section B, we formulate the problem and

develop the model. Details of prior elicitation are provided in Section C and imple-

mentation details using Markov Chain Monte Carlo are given in Section D. Several

features of the model are demonstrated through simulated examples in Section E. We

apply the modeling framework to analyze Salmonella infection in Bovine Illeal loop

with data from MPSS and Microarrays in Section F. We conclude the chapter with

a summary and discussion in Section F. Details of the MCMC computations and full

conditionals are provided in Appendix B.

B. Model Formulation

Let Yhijk be the kth replicate observed for the ith signature under the jth treatment

in study h. We assume exponential family for the likelihood.

Yhijk ∼ Fh(xhijk) (3.1)

We emphasize the likelihood with subscript h to explicitly suggest that it can be dif-

ferent for different studies, though belonging to the exponential family. More specifi-

cally, we elicit zero-inflated Poisson likelihood for discrete expression data like SAGE,

MPSS, next-generation sequencing (Dhavala et al., 2010) and Normal likelihood for

microarrays (Gottardo et al., 2006). That is,

Yhijk ∼ ZIP (ph, λhijk), h = 1, 2, ..., nd (3.2)
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where nd is the number of discrete data-sets, ph is the study-specific zero-inflation

parameter and λhijk is the Poisson mean parameter. We use canonical link functions

for linking the latent random variables which different technologies measure. For

discrete-data sets,

logλhijk ≡ yhijk h = 1, 2, ..., nd (3.3)

and for continous data-sets, we use identity link function, i.e.,

Yhijk ≡ yhijk, h = nd + 1, nd + 2, ..., nd + nc (3.4)

where nc is the number of continuous data-sets.

Now, each study measures study specific random effects. We use a non-parametric

function to model this manifestation which is different for each study/data-set. It is

typical to model unknown link functions in GLMs using non-parametric functions:

Mallick and Gelfand (1999), and in measurement error models (Berry et al., 2002).

That is:

yhijk ∼ N (fh(zhijk), σ
2
f,h), h = 1, 2, ..., nd + nc (3.5)

fh(.) =
L∑

l=1

αhlΨhl(.), (3.6)

where zhijk is the latent process which captures the differential gene-expression profiles

in the h-th study and fh is the function that maps the latent process which is then

measured by which ever technology being used. Using cubic B-splines as the basis

functions, Ψhl, offers flexibility and ease of implementation (Brezger and Steiner,

2008) and σ2
f,h is the study specific variance.

We model the latent random effects using an ANOVA like structure:

zhijk ∼ N (ηhi + (2ψhik − 1)βhi, σ
2
z, hψhiki

) (3.7)
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where where ηhi is the effect of the i-th signature/gene in the h-th study and βhi is

the effects parameter of the i-th signature in h-th study. ψi ∈ [0, 1] indicates which

of the two experimental conditional the observation belongs to. Notice that we have

made the variance dependent on gene, study, and sample specific, essentially making

it a heteroscadastic variance model. That completes model specification except the

priors.

C. Prior Elicitation

For the zero-inflation parameter, we use a Beta with aprp,h and bprp,h as hyper-parameters.

phd
∼ Beta(aprp,h, b

pr
p,h), h = 1, . . . , nd (3.8)

We exploit the Hierarchical Dirichlet Process (Teh et al., 2005) prior for the regression

coefficients to obtain the clusters. Assigning a HDP on the regression coefficients

induce ties among them. That is, for every pair of objects i 6= j, there will be a

positive probability that βhi = βhj. However, we do not require that βhi = βh∗i which

is typically assumed in many earlier meta-analysis approaches. If we consider the

regression coefficients in a study as customers in a restaurant, then these customers

will be a served a unique dish at a table. Thus, customers sitting at a table share

the same dish. In regular meta-analysis models, a customer will be served the same

dish in all and any restaurant. In HDP framework, a customer in a restaurant can

share a different table in some other restaurant. In other words, dishes are shared

across restaurants. Sharing tables across restaurants is possible because the base

distribution Gh is discrete with probability one. Correlation structure and sharing of

atoms is shown in Figure 7, where we consider 10 genes. Unique atoms are represented

by θ, whereas α and β are the atoms in the two studies. In this example, genes 8, 9, 10
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in study-A share the same atom α4 = θ2, inducing with-in correlation. Genes 1, 2, 3

in study-B also share the atom β1 = θ2, thereby inducing both with-in and across

study correlation.

Fig. 7.: Correlation structure induced by HDP.

This is quite helpful in the context of meta-analysis because, this allows discor-

dance between genes across studies. That is, a gene might be up-regulated in one

study and can be down-regulated in some other study. If it is not done, discordant

genes can wrongly borrow information and may induce false negatives or false posi-

tives depending how a gene is disagreeing across studies. We elicit Inverse-Gamma

priors for the precision parameters of the HDP.

The semiparametric model is obtained by placing the HDP prior for the treatment

effect’s parameters:

βhi ∼ DP{τGh} (3.9)

Gh ∼ DP{τ0G0} (3.10)

G0 =
[
πδ(0) + (1− π)N (0, σ2

β)
]

(3.11)
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Notice that the base distribution Go is two component mixture with a spike at

with mixing probability π. The other component of the mixture is the normal distri-

bution. Together, this is referred to as spike and slab prior. The advantage of such

a specification is, multiple hypothesis testing is integrated into the modeling frame-

work. Kim et al. (2009) used spike and slab prior as the base distribution in Dirichlet

process for analyzing Microarray data-sets. Posterior inference based MCMC depends

on how we interpret HDP. Just the the way DP can be represented either using Stick-

breaking construction, Poly urn scheme or Chinese restaurant process, HDP can be

represented with corresponding extensions. In particular, we resort to the Chinese

Franchise Representation, which is simple to interpret and implement (Gerber et al.,

2007). A priori, we set the probability of null hypothesis being true to π and elicit a

Beta distribution to ascertain uncertainty about this parameter.

Let NIG be the Normal-Inverse Gamma family of conjugate distributions in

which the mean has a Normal distribution conditional on the variance and the variance

marginally follows an Inverse-Gamma distribution with hyper-prior parameters u and

v having the appropriate subscripts. With this notation in mind, we specify the priors

as:

σ2
β ∼ IG(upr

β , v
pr
β )

All variance parameters are given Inverse-Gamma priors for conjugacy reasons.

ηhi, σ
2
η ∼ NIG(µh, σ

2
η, u

pr
η , v

pr
η ) (3.12)

µh, σ
2
µ ∼ NIG(µ0, σ

2
µ, u

pr
µ , v

pr
µ ) (3.13)

σ2
f,h ∼ IG(upr

f,h, v
pr
f,h) (3.14)

(3.15)
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Fig. 8.: Graphical representation of the model.

A graphical representation of the model is shown in Fig. 8. Coming to the semi-

parametric function, we assume that the function is smooth and can be represented

by cubic B-splines (Brezger and Steiner, 2008):

αh ∼ N (0, σ2
α,h∆)I(−∞≤αh,1≤...≤αh,L≤+∞) (3.16)

∆−1
L×L ≡





1 −1

−1 2 1

−1 2 1

. . . . . .

−1 2 −1

−1 1





(3.17)

σ2
α,h ∼ IG(upr

α,h, v
pr
α,h) (3.18)
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The coefficients of the basis function are constrained to be in the increasing order.

This, ensures that the function is monotonically non-decreasing. While this is not

required in principle, it retains interpretability of the effects parameters.

We are using the semiparametric functions to model non-linear transformation

that explain-away the technology/study specific effects and let us focus only the

biological processes. However, these functions are not identifiable, by specification.

For example, by scaling and shifting the latent variable, we can still obtain some other

function, i.e.,

f(z) = f ′(z′)

This is the case because we do not observe z directly, which leads to non-identifiability

of the function. Lack of identifiability in a Bayesian setting results in poor mixing

and induces correlations among parameters. This can be resolved by constraining the

functions. There are many ways to constrain the functions to make them identifiable.

We constrain all the functions to be linear around the respective marginal means of

the data-sets. This essentially implies that we are using the Taylor series expansion

around the mean and leave the functions unconstrained at the knots far from the

central knot. With out loss of generality, let us assume that the number of knots is

odd. Then, we set, for all studies,

αh,(L+1)/2 = ȳh... (3.19)

αh,(L+1)/2 − αh,(L+1)/2−l = d
√

Var(yh...), l = 1, 2, . . . , ℓ (3.20)

where d is the spacing between the equi-spaced spline knots, ȳh...,Var(yh...) marginal

sample mean and variance of the data-set, respectively. These arbitrary constraints

ensure that the latent process (zhijk) has approximately zero mean and unit variance.



43

Here ℓ is the number of knots at which the function is constrained to be linear.

Typically, we can choose ℓ such that the function is linear for about one-two standard

deviations on the zh scale. In practice, we find that the mean constraint alone is quite

good enough. This completes model and prior specifications.

D. Posterior Inference

1. Prior Selection and Cluster Initialization

We elicited conjugate priors for all the variance parameters and set the correspond-

ing hyper-parameters such that they are diffuse. As a result, posterior inference is

insensitive to the choice of these hyper-priors. Nevertheless, a good initialization of

the MCMC chain ensures stability and quicker convergence. As in Chapter II, we ini-

tialize the chains with empirical estimates to speed burn-in. We suggest the following

procedure:

• log transform discrete data-sets and standardize all the data-sets.

• initialize the splines so that the link functions have slope corresponding to the

marginal standard deviations and are centered at zero, with corresponding func-

tional values equal to the marginal mean of the study.

• get the least-squared estimates of the treatment and signature effects parameters

and their standard errors.

• use k-Means or other non-parametric clustering methods to cluster the treat-

ment effects parameters.

• set all the random effects below a certain threshold (say, its 50th quantile) to

zero, and set the latent indicator variables pointing to the null hypothesis, i.e.,

these genes are not differentially expressed.



44

Optionally, information obtained in the above steps can also be used to set the hyper-

prior parameters as well.

2. Sampling

We use the Gibbs sampling to approximate the posterior distribution as it is an-

alytically intractable. Wherever the parameter sets are conditionally independent,

we employ a block Gibbs sampler. Conditional distributions for λ-values and the

p’s, many variance parameters and the gene-specific effects are similar in form to

the conditionals in Chapter II. A major difference is, we have as many sets of pa-

rameters as the number of data-sets. Specifically, a Metropolis-Hastings step with

log-Normal proposal was used for drawing λ’s. The smoothing spline parameters are

drawn from truncated multivariate normal distributions whose truncation points en-

sure monotonicity of the link function. Latent process variables for each of the studies

are drawn using a Metropolis-Hastings step. To sample the random effects that are

given the HDP prior, augmented sampler based on Chinese Franchise representation

is used. Precision parameters of the base distributions are sampled by augmenting

the states so that they all have conjugate distributions. Complete details are given

in Appendix B.

3. Test for Differential Expression

The MCMC sampler generates the samples for βhi, the effects parameter and γhi =

I(βhi 6= 0) from the posterior distribution. The indicator variables γ’s can be

readily used to estimate the posterior probability of differential expression. Let

vhi = 1
B

∑B
t=1 γ

t
hi, where t is the t-th sample, and B samples are available from

MCMC. Since we are testing many hypotheses simultaneously, it is necessary to con-

trol false discoveries. Under the uniform loss function, the optimal decision rule to
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declare a gene as differentially expressed is, given as follows:

maxκ s.t
1

κ

κ∑

j=1

v(j) ≤ α

Reject κ many genes with the smallest v′is

where α is FDR set by the experimenter, typically chosen as 0.05 or 0.1 and v(j) is

j-th ordered statistics when arranged in increasing order. In above method of testing,

we have treated a gene across studies as a different entity. A much more appealing

way to test for differential expression is to indicate how a particular gene is behaving

across studies. For example, if a gene is up-regulated in all the studies, then we call

the gene as having concordant differential expression. On the other hand, if a gene

is differentially expressed in at least one study, and it is different at least some other

study, we call the gene as having discordant differential expression. We define them

formally as follows (Scharpf et al, 2009):

Concordant differential expression: Let Ci be the indicator for concordant differential

expression of the i-th gene, defined as,

Ci =






1 if N+
i ×N

−
i = 0 and N+

i +N−
i = m

0 otherwise

whereN+
i is the number of times the i-th gene is up-regulated, defined as

∑N
h=1 γhiI(βhi >

0). Similarly, N+
i is the number of times the i-th gene is down-regulated, defined as

∑N
h=1 γhiI(βhi < 0) and m is the minimum number of studies for which the gene is

differentially expressed.

Discordant differential expression: Let Di be the indicator for discordant differential
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expression of the i-th gene, defined as,

Di =






1 if N+
i ×N

−
i 6= 0

0 otherwise.

Sample posterior means of the above indicator variables can be used in the place of γ’s

to control the FDR of the respective quantities. We can use these quantities to obtain

the Receiver Operating Characteristic (RoC) curves to asses the performacen of the

model. Area-under-RoC curve (AUC) can be used as a measure of goodness-of-fit.

4. Simulation Details

We have developed the software in MATLAB. We exploited the matrix representation

and vector processing capabilities of MATLAB for accelerating the simulation time,

particularly in implementing the block-Gibbs sampler. The current implementation

is intended for small scale applications, for upto 500 genes and below 5 studies. The

simulation time for 200 genes and 2 studies is 0.25s per MCMC iteration. As there

many parameters involved, memory needed to store the intermediate results and

writing them to the disk have to be carefully balanced. Holding all the parameters

in chain could lead to out-of-memory problems, while writing the results to disk

slows down the simulation, and potentially corrupting the disk. We devise a simple

algorithm that effectively uses the memory or temporary place-holding registers. A

graphical representation of updating the chains is shown in Fig. 9. Circles represent

the registers that hold the states, dashed arrows show the progress of the MCMC

chain and numbers in the circles show the iteration number. Contents in the dark

circles are written to the file during the flush operation. In this Figure, there are four

registers, and the MCMC chain is thinned by a factor of four, i.e., every fifth sample

is retained excluding the boundary samples.
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Fig. 9.: MCMC updating scheme.

E. Numerical Example

We demonstrate several features of the model using simulated a data-set, where we

one study has discrete expression data and the other a continuous responses expres-

sion data, i.e., Nd = 1 and Nc = 1. While majority of the genes have concordant

differential expression, some genes have discordant differential expression.

1. Simulation Settings

We generate 200 genes with 4 replicates for each gene in both of the experimental con-

ditionals, i.e., I = 200, K = 4 and J = 2. In the first study, the true random effects are

generated as follows: β1i is 0 if 1 ≤ i ≤ 120, 4 if 121 ≤ i ≤ 130, 2 if 131 ≤ i ≤ 140 ,

0.5 if 141 ≤ i ≤ 150, −4 if 151 ≤ i ≤ 160, −2 if 161 ≤ i ≤ 170,−0.5 if 171 ≤ i ≤ 180

and β1i ∼ N (0, 1) if 181 ≤ i ≤ 200. In effect, we have 120 genes that belong to the

null hypothesis and there are total 27 clusters. Of which, 120 genes belong to the
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cluster corresponding to null hypothesis. The last twenty genes are singleton clusters

and the remaining six clusters are of size 10 each. For the second study, we retain

the same random effects except that we swap 120th-130th effects with 150th-160th

parameters. As a result, theses genes will have discordant differential expression.

The gene effects ηhi are generated from N (0, 1), study specific latent process, zhijk

from N (η[h]i + (2ψhik − 1)βhi, 1). Identity transformation is used for fh’s to generate

continuous responses data yhijk ∼ N (fh(zhijk), 0.01). All the remaining variances are

set to 1. At this level, we observe both continuous expression data. In Fig. 10(a), we
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Fig. 10.: Posterior means of the (a) link function and the (b) random effects of the

genes, if both studies have continuous expression data (Nc = 2).

show the posterior estimate of the smoothing functions and in Fig. 10(b), we show

the estimated random effects after transformation. The smoothing functions are ap-

proximately piecewise linear and the change points are approximately located where

the true random effects are differing greatly (for example, near 4 and 8). We can

also see that the discordant behavior in the posterior means of the random effects.

In study-1, the genes 120-130 are up-regulated, while the same genes in study-2 are
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down-regulated. It is also important to note that, genes are sharing the clusters

across studies. For example, genes 120-130 in study-1, share the same random effects

with genes 150-160 in study-2. This demonstrates the how the Hierarchical Dirichlet

process lets the studies share the random effects across studies and thus introduces

correlation between the studies. The first study has an additional layer in the hi-

erarchy and we generate discrete expression data as: Y1,ijk ∼ ZIP (p1, λ1,ijk), where

logλh,ijk ≡ yh,ijk and we set p1 = 0.
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Fig. 11.: Posterior means of the (a) link function and the (b) random effects of the

genes, for mixed type expression data(Nc = 1, Nd = 1).

2. Analysis

For this data-set with mixed-type responses, the observed responses appear at differ-

ent levels in the hierarchy in the model specification. For example, if the expression

data is discrete, there is an additional sampling variation compared to its continuous

study counter part. As a result, there will be more variation in the posterior estimates

of the random effects for the discrete data set. We plot the smoothing functions in
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Fig. 11(a) and the estimated random effects in 11(b). It is interesting to note that

the transformation function for the study-2 (continuous expression data) has lower

slope compared to study-1 (discrete expression data). In other words, the random

effects are shrunk so that they are shared across studies. Genes numbered 150-160 in

study-1 have random effects shared with genes 160-170 in study-2. In the data-set,

the true random effects are specified as integer multiples ±(2, 4, 8). Due to additional

sampling variability in study-1, two-fold-changes are less likely to be detected and as

a result, genes in study-1 shared random effects with genes in study-2 that are simi-

lar after transformation. Posterior mean of the random effects are transformation are

shown in Fig. 12.
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Fig. 12.: Posterior means of the random effects of the genes after transformation, for

mixed type expression data (Nc = 1, Nd = 1).

A gene is differentially expressed either if it has discordant or concordant differ-

ential expression. The posterior probability of overall differential expression is shown

in Fig. 13(a) for this example.

The posterior probability is relatively large for the genes that are simulated under
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Fig. 13.: Score functions to be used in Multiple hypothesis testing: (a) Probability

of differential expression (b) Ratio of Posterior mean over Probability of differential

expression.

the null hypothesis. This phenomena is observed in Kim et al. (2009) and Dunson et

al. (2008) when using a spike-and-slab prior as a base-prior in the Dirichlet Process.

They circumvent the problem by specifying informative priors, which the former term

as super sparse prior to reduce bias in estimating FDR. However, we believe that this

problem can be addressed by using the posterior means or other summaries in the loss

function, while performing hypothesis testing in coherent decision theoretic set-up.

For example, an approximate algorithm uses the posterior odds ratio of profits to costs

(weight/value) to control FDR, shown in Fig. 13(b). Posterior mean of the random

effects is the reward for discovering a gene while probability of overall differential

expression is the cost (weight) in declaring the gene as differentially expressed. We

pursue this problem in the next chapter in more detail. We provide several summaries

of the decision process using the 0-1 loss function. As shown in Fig. 14(a) and (b),

FDR and MDR (Mean Discovery Rate, defined similar to FDR; see Scharphf et al.,
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2009) are improved when the both studies are combined. The AUC for the combined

data is marginally better than the AUCs of the individual studies, as evidenced

in Fig. 15(a). We also report another non-parametrc method for meta-analysis in

the literature, the RankProd (Breitling, 2004) and our method marginally performs

better than the existing method; see Fig. 15(b). We point that, our estimates can

be improved if we consider the generic loss functions (Fig. 13(b)). However, we are

not aware of any algorithms whihc can accomplish this task and we undertake this

challenge in the next chapter.
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Fig. 14.: Hypothesis testing performance summaries (a) Number of discoveries vs

FDR (b) Number of discoveries vs MDR.
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Fig. 15.: Receiver operating Characteristics.

F. Bovine Salmonella Microarray Data-set

The data-set was generated by Lawhon et al at Texas A&M university. Same bac-

terial strains and culture discussed in the previous chapter were considered, that is,

derivatives of Salmonella enterica serotype Typhimurium strain ATCC 14028, IR715

and ZA21, were used in this study. Subjects were matched and the same biological

samples were collected. At each of seven time points (15 min, 30 min, 1, 2, 4, 8, and

12 hours) three loops (one LB inoculated control loop, one wild type inoculated loop

and one mutant inoculated loop) were excised. From each of these loops, samples were

collected for histopathology, bacteriology, electron microscopy, frozen sections, and

RNA extraction. Total RNA was extracted after dissection of the ileal loops obtained

at 15 min and 30 min and at 1, 2, 4, 8, and 12 hours post-infection. A custom, bovine

cDNA array consisting of 13,257 unique 70-mer oligonucleotides representing 12,220

cattle ORFs was designed from normalized and subtracted cattle cDNA libraries.

Microarrays were used to examine the transcriptional profiles of bovine intesti-

nal epithelia (control and wild type or mutant infected) across seven time points (15
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min, 30 min, 1, 2, 4, 8, and 12 hours). Experiments were performed in quadruplicate,

generating a total of 84 arrays. cDNA from bovine experimental samples (i.e. from in-

fected and control loops) and cDNA generated from the bovine reference RNA sample

were co-hybridized to the previously described custom 13K bovine 70-mer oligoarray.

The cDNA was reverse-transcribed using Superscript III reverse transcriptase and are

labeled with amino-allyl-UTP. The slides were scanned using a commercial laser scan-

ner (GenePix 4100; Axon Instruments Inc., Foster City, CA). The spots representing

genes on the arrays were adjusted for background and normalized to internal controls

using image analysis software (GenePixPro 4.0; Axon Instruments Inc.). Spots with

fluorescent signal values below background were disregarded in all analyses. Samples

were normalized against the bovine reference RNA signals across slides and within

each slide (across duplicate spots). Lowess print-tip normalization was performed
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Fig. 16.: Lowess print-tip normalization followed by quantile normalization.

followed by quantile normalization (Bolsted, 2006). The effect of normalization for a

specific slide is shown in Fig. 16.
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1. Merging the MPSS and Microarray data-sets

A critical step in the integrated analysis of cross-platform data-sets is to merge the

data-sets and in general there is no consensus as to how to merge data-sets (Water

et al 2006). For example, each platform will have different annotation updation

schedules leading to discrepancy in the annotations and each manufacturer may have

a different reference identifiers and sequence data bases. Adding to the complexity,

in our case, both MPSS and Microarray measured mRNA much differently. In the

MPSS data-set, mRNA was pooled at 30min, 1h and 4h, whereas Microarray data was

collected at seven different time points including 30min, 1h and 4h. Upon consulting

our collaborating biologists, we have aggregated the Microarray data 30min, 1h and

4h after appropriate normalization. Thus, a major difference between the two data

sets is, MPSS measured pooled mRNA for abundance, while Microarray has pooled

measurements at different time-points but not the mRNA. We conjecture that, this

allows us for merging the data sets than considering individual time points. Further,

Microarray probes are 70 base-pairs long, while MPSS is only 17 bp long. In order

to match the tags in both the data-sets, we have used a two-level approach. First,

we selected the tags (genes) that have the same probe annotation information. We

subsequently performed a sequence alignment of the tags using BLAST, a sequence

alignment search algorithm (Altschul et al., 1990). We selected the subset genes

whose tags are perfectly aligned (matched). That is, the 17bp of a tag in MPSS has

to appear exactly in the Microarray data-set. After this merging process, we have

a matched data set that has 200 tags, under two experimental conditions with four

replicates in each gene, under each experimental condition. Our analysis is based on

this new merged data-set. Profiling the two studies in this merged data revealed that

none of the genes in the Microarray are differentially expressed, while some genes are
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differentially expressed in the MPSS data-set. This indicates that we have discordant

differential expression and both the studies are not reproducible. Nevertheless, we

caution that, both studies use different technologies and we can not rule out the

sensitivity of the technologies for this lack of agreement, besides many biological

reasons.

2. Analysis

It is typical of MPSS data to have large number of zeros and this is the reason a

zero inflation model is used for the likelihood. Marginally, the proportion of zeros in

study-1 is approximately 40% and MCMC chain for the zero-inflation parameter in

Fig. 17(a) is reflective of this observation. As mentioned before, Mcroarry data has

no differentiallly expressed genes. In Fig. 17(b), we plot the MCMC chain for the

prortion of the null hypothesises. Around 50% of genes belong to the null hypothesis

and we can safely say that all of them are from the Microarray data-set (study-2). The

effect of the Metropolis update step for this parameter, described in the Appendix

B, can also be seen from the Figure. Occassionally, the state moves to alternate

hypothesis, even though the posterior means of the random effects are practially not

different from zero.

The estimated link functions are shown in Fig. 18(a). A flat segment can be seen

(study-1) which is indicative of the large number of zeros in the data. Most of the

interesting genes which are expressed correspond to the piecewise linear component

with slope different from zero. Compared to the MPSS, the link function for the

Microarray data-set is smooth. Posterior means of the random effects are shown in

Fig. 18(b). It suggests that MPSS is more responsive than Microarray. It is reflected

in the probability differential expression for both the studies shown in Fig. 19. While,

there are no differentially expressed genes in study-1, most of the genes in Study-2
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Fig. 18.: Posterior means of the (a) link function and the (b) random effects of the

genes, for the Bovine Salmonella mixted-type data.



58

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Prob. of Diff. Expression

 

 
study−1
study−2
combined

Fig. 19.: Posterior means of Probability of differential expression.

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
No. of discoveries vs FDR

 

 
RnkProd
HDP

Fig. 20.: No. of Discoveries Vs FDR.



59

are differentially expressed. We compare the FDR using our proposed method and

using the RankProd in Fig. 20. Our method produces more number of discoveries for

a given FDR. However, we caution that there could be severe bias in the estimation

procedure (Dudoit and van der Laan, 2008).

G. Summary

We addressed the problem of detecting differentially expressed genes from combined

expression data produced by different technologies such as next-generation sequenc-

ing, SAGE, MPSS, Microarrays etc.. We had several challenges in developing a model

for fusing the information from cross-platform data. Depending on the technology,

the expression data can be continuous or discrete and can have different technology

dependent noise characteristics. Adding to the difficulty, gene expression analysis

alone poses several challenges. Notable among them is the dependency of the genes

among themselves, having arbitrary correlation structure with-in and across studies.

Performing several hypothesis tests for differential expression could also lead to false

discoveries. Our model proposes to address all the above challenges.

We modeled the observed data using either a Poisson likelihood for count data

(number of mRNA molecules) or Normal likelihood for continuous data (image inten-

sities). Canonical link functions modeled the manifestation of latent random effects.

The platform/study specific manifestation is modeled using smoothing splines. A

Hierarchical Dirichlet process with Spike and Slab prior is elicited for the random

effects, which models the correlation among the genes in a non-parametric fashion.

Inference is carried-out based on the MCMC. Gibbs sampling forms the back-bone of

the computation. We applied the model to analyze matched MPSS and Microarray

data-sets obtained for understanding Bovine Salmonella infection.



60

CHAPTER IV

DYNAMIC PROGRAMMING APPROACH TO

FALSE DISCOVERY RATE CONTROL

A. Introduction

Recent advances microarrays and other genomics technologies have spurred the in-

terest in multiple testing procedures. Due to the nature of the problem, one has

to perform potentially thousands of test simultaneously with relatively small sample

sizes, often referred to as the large p, small n problem. It is imperative that, un-

der these settings, having control on the number of incorrect decisions being made

is of paramount importance. Naturally, many methods have been proposed to con-

trol different errors measures such as the Family-Wise Error Rate (FWER), False

Discovery Rate (FDR) and positive FDR (pFDR) among others. In large-scale mul-

tiple hypothesis testing problems, the FWER is severely conservative. Benjamani

and Hotcheberg, in their seminal paper (Benjamini and Hochberg, 1995), introduced

FDR, defined as the expected proportion of false positives among the rejected hy-

pothesis, which offered a practical alternative to controlling decision errors that is

less conservative than FWER. Following this work, many attempts have been made

to improve/extend/generalize FDR under different conditions; see for example; Gen-

ovese and Wasserman (2002), Storey (2002, 2003), Sun and Cai (2007), Tang and

Zhang (2007), Effron (2007, 2008), , Ferkingstad et al. (2008), Sarkar et al (2008),

Roquain and van de Wiel (2009), Chen et al. (2009). An an optimal decision pro-

cess (SODP ) was proposed in (Storey, 2007), which maximizes expected true positives

counts while minimizing expected false positives counts, emphasizing the need to

consider compound decision processes as opposed considering individual tests in iso-
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lation to others. Decision theoretic approach were also used in Mueller et al. (2004,

2007), Scott and Berger (2003), and Pena et al. (2010) to offer different insights into

controlling FDR.

Guindani et al. (2009) showed that their Bayesian version of the ODP (BODP )

approximates SODP closely, under a non-parametric set-up. Based on this observa-

tion, they determine the optimal decision rules by using the procedures developed for

SODP in Storey (2007). They also suggest several extensions to the models by con-

sidering different loss functions, motivated from biological studies. However, while

the probability model is set-up in the Bayesian framework, inference is carried in the

frequentest framework. In particular, they use cluster configuration induced by the

Dirichlet Process as a part of the Markov Chain Monte-Carlo (MCMC), and plug-in

pooled maximum likelihood estimates in SODP . It is unclear what their motivation is

to follow this circuitous route, but we suspect that, unavailability of efficient solutions

to determine optimal decision rules could be a reason. This is one of the motivations

for us to suggest algorithms to find optimal decision rules in a fully Bayesian way with-

out having to bootstrap or perform grid-based searches as described in Mueller et al.

(2004). Secondly, as demonstrated in Mueller et al . (2007), loss functions provide

flexibility in controlling FDR, with the possibility of improving FDR in specific cases,

similar in spirit to test-specific power-functions being used in the Neyman-Pearson

schema of Pena et al. (2010) and Foster and Stine (2008). However, we believe

that lack of efficient algorithms for completing the inference in Bayesian multiple

hypothesis testing is a hurdle to be overcome, which we attempt in this chapter.

The rest of the chapter is organized as follows: In Section B, we lay down the

inferential goals for multiple hypothesis testing from a Bayesian standpoint, utiliz-

ing decision theoretic framework. In the next section, we discuss the 0-1 knapsack

problem, one of the well-studied combinatorial optimization problems. We recast
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the multiple hypothesis testing problem as an the 0-1 knapsack problem by making

suitable modifications in Section D. We provide simulation examples along with a

discussion in the next section. We conclude with a discussion of the proposed algo-

rithms in Section F. Pseduocode for the FDR control is provided in the Appendix

C.

B. Bayesian Multiple Hypothesis Testing

Let γi be the indicator variable associated with the i-th gene, with γi = 0 when the

null hypothesis is true (for example, a gene is not differentially expressed). We use

the term gene purely for historical reasons. The set-up is equally applicable to other

scenarios such as testing edges in graphical models. We do not make any specific

assumptions about the underlying probablity model. For example, the indicator

variable used could be specified in the product form as in Scharpf et al. (2009) or

as a familiar two-component mixture model under parametric setting as in Gottardo

et al. (2006), or under semiparametric settings as in Kim et al. (2009). We only

require some mild requirements described in Sec. 3 of Mueller et al. (2007) to carry

out inferences from the posterior distribution. Our goal is to test the P hypothesis

of the following form:

H0i : γi = 0 Vs H1i : γi = 1 ∀i = 1, 2, . . . , P

Let di = 1 (di = 0) be decition to reject (fail to reject) the null. Then the outcomes

from the above hypothesis test can be summarized in the following table:
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Null true Alternate true Total

Accept null U T P-R

Reject null V S R =
∑
di

Total P −m1 m1 =
∑
γi P

Clearly, we need to control the number of incorrect decisions. Some commonly used

measures are:

FWER = E(V > 1) (4.1)

FDR = E(V/R|R > 1) (4.2)

pFDR = E(V/R)E(R > 1) (4.3)

FNR = E(T/P −R) (4.4)

among others and the overall goal is to simultaneously minimize a function of V

and T, and maximize a function of U and S. A reasonable way to trade-off these

conflicting goals is to, maximize U( or S) while keeping V(or T) within manageable

limits specified in terms of the error measures defined above. Of course, we do not

know them in reality, so we work with their expected values instead. In the above

error measures, we penalized incorrect decisions and rewarded correct decisions in

every test the same way, without regard to the type of decision or the test-specific

marginal posterior summaries. This implies that, we assumed a uniform loss/reward

function for the decisions. In the Bayesian context, we can formalize these ideas using

the decision theoretic approaches. Under general settings,

L0(.|di = 0) =






f00(.) if Null true

f01(.) if Alternative true

(4.5)
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L1(.|di = 1) =






f10(.) if Null true

f11(.) if Alternative true

(4.6)

where L0 is the loss when the decision is to fail to reject the null and L1 is the loss

incurred when the null is rejected. The specification of the loss functions gives the

flexibility in rewarding some genes differently than others. Typically, one assumes a

uniform loss function in the absence of any specific information. That is, if we choose,

f00 = f01 = 0 and f10 = λ, f11 = −1, we are essentially maximizing the true positives,

while keeping the false negatives below certain value. The expected posterior loss in

this case is given as:

−
I∑

i=1

divi + λ
I∑

i=1

di(1− vi) (4.7)

where vi = E[γi]. The optimal decision sequence d∗ minimizes the expected posterior

loss and λ shall be caliberated so that the estimated FDR is below the user-specified

bound. Under the above settings, one can find optimal solution easily, given by:

maxκ s.t
1

κ

κ∑

j=1

(1− v(j)) ≤ α (4.8)

Reject κ many genes with the largest v′is (4.9)

The solution can determined easily because, the odds ratio vi

1−vi
is monotonic in the

weights. That is, if vi > vi′ , then vi

1−vi
>

vi′

1−vi′
. Instead, if one chooses gene dependent

loss functions which reward true positives in a non-uniform fashion, then the posterior

expected loss is given by:

−
I∑

i=1

divif
∗
i + λ

I∑

i=1

di(1− vi) (4.10)
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where f ∗
i = Ei(f11), is the expectation with respect to the posterior marginal distri-

bution of the i-th gene. We can make the dependence of the decisions on the false

discovery rate (or some other measure) explicit by re-expressing the above objective

function as:

arg max
d∗

I∑

i=1

divif
∗
i (4.11)

s.t

I∑

i=1

di(1− vi) ≤
I∑

i=1

diα (4.12)

where,
∑I

i=1 di(1− vi) is the expected false positives and
∑I

i=1 divi is the expected

true positives and α is the desired FDR. By the way, we still did not specify what

f ∗
i should be but just said that f ∗

i is not a constant anymore. Consequently, we

may loose monotonicity of the odds ratio, which in this case is,
vif

∗
i

1−vi
. As a result,

the solution for the uniform loss function is no longer optimal. One could perform

grid-based searches Mueller et al. (2004) or choose the thresholds Scott and Berger

(2003). Our question is, can we obtain the optimal solutions in this case? What

we mean by a solution is, finding the optimal decision sequence without resorting to

bootstrapping or grid-searches or such approximation techniques. One could pretend

that the odds ratio is monotonic and employ the global thresholding techniques which

are greedy, but we only find a suboptimal solution. In the next section, we briefly

discuss the knapsack problem that has striking similarities to the problem at hand.

C. The 0-1 Knapsack Problem

Consider again P genes with the i-th gene having a cost wi (a positive integer) and

profit vi(a non-negative number). Let C (a non-negative integer) be the capacity of

the knapsack. Our goal is to fill a knapsack with as many genes as possible maximizing

profit but not fill the knapsack beyond its capacity, thus keeping the cost below a
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threshold. Stated formally, the objective is to ( Kellerer et al. (2004):

arg max
d∗

I∑

i=1

divi (4.13)

s.t
I∑

i=1

diwi ≤ C (4.14)

The formulation above is, in spirit, the same as α-investing in Foster and Stine (2008)

and ideas in Pena et al. (2010), who consider multiple hypothesis testing as a resource

allocation problem. We want to maximize profits (true positives) while keeping the

costs (false positives) down. These ideas have lead us to consider multiple hypothesis

testing from an Operations Research (OR) perspective. Since our decision (or action)

space is the collection of all P-tuples, it is essentially a combinatorial optimization

problem (Korte and Vygen, 2008). For large P, obtaining the optimal solution by

enumerating 2P possible solutions is NP-hard and therefore is non-trivial. In the

above problem, suppose that

v1

w1

<
v2

w2

< ... <
vP
wP

. (4.15)

That is, the profit/cost is an increasing function w.r.t the cost, then the optimal

strategy to fill the knapsack is to simply pack all genes with the lowest cost first, until

the capacity is reached . This is in fact the same solution we got in the previous section

for the multiple hypothesis testing problem with uniform loss function, where we have

monotonicity for the odds ratio. This version of the solution is called a greedy method

in the OR literature. Even when the profit/cost does not have any specific pattern,

the knapsack problem has some recurring substructures whose optimal solutions can

obtained efficiently. Key features of the knapsack problem are:

• optimal substructure: an optimal solution to the problem contains within it

optimal solutions to subproblem.
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• overlapping substructures: some subproblems will be visited again and again.

More specifically, let KP(i,c) denote the optimal solution for the above problem.

Then,

• If dP = 0, that is if we do not place P-th gene in the knapsack, then, d1, d2, . . . , dP−1

must be the optimal solution for the problem KP(P-1,c)

• If dP = 1, then, d1, d2, . . . , dP−1 must be the optimal solution for the problem

KP(P-1,c-wM)

More specifically,

KP[i,c] = max(KP[i-1,c], KP[i-1,c-wi] + vi) (4.16)

The table KP[,] contains all the information to determine the optimal decisions for

any given capacity not exceeding C. Pseudo code for the completing the table is given

in the Appendix C. Optimal state with the maximum profit for the given capacity is

obtained by traversing the table in a specific manner. Suppose we set i=P and c=C-1

in Algorithm-2 given in the Appendix, we would get the optimal decision sequence

with capacity bounded by C-1. Dynamic Programming (DP) principles help us to

generate uniformly optimal sequential decisions for all capacities. In other words, if

we we have the table KP computed for KP(P,C-1), we only need to update the table

by adding a column to it, without changing the first C − 1 columns. This version

of the knapsack is known as all-capacity knapsack and DP solves the all-capacity

knapsack using the same resources (time and memory) as it takes for the knapsack

with the largest capacity among them. This feature is particularly helpful to report

decisions, profits and costs for a range of capacities. For a comprehensive review of

knapsack problems, refer Kellerer et al. (2004), Korte and Vygen (2008). In the next

section, we apply the above principles to the Bayesian multiple hypothesis testing.
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D. Multiple Hypothesis Testing as a 0-1 Knapsack Problem

For illustration purposes, consider the uniform loss case. By setting

vi = P (γi = 1)

wi = P (γi = 0) = 1− vi

in the knapsack problem, we can obtain the optimal decision region but there is

technical difficulty. First, we do not know P (γi = 1), so we replace it by its posterior

estimate, i.e.

vi = P̂ (γi = 1)

wi = P̂ (γi = 0) = 1− vi

However, we require the costs to be positive integers and profits be non-negative. If

we have genes with zero costs, the optimal strategy is to always pack them. Therefore,

we will declare all genes with zero costs, irrespective of the profits, as differentially

expressed. To apply the knapsack framework for the remaining genes, recognize that

these estimated proportions (P̂ (γi = 0)) are rational numbers because we use B

number of samples obtained using MCMC or some other inference engine. In other

words, P̂ (γi = 0) = 1
B

∑
b γ

(b)
i and we actually have the costs specified as positive

integers by construction:

Null true Alternate true

B −Xi Xi =
∑

b γ
(b)
i B

Therefore, if we set,

vi = Xi, wi = B −Xi
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we can use DP to find the optimal decisions. False discovery rate can be estimated

at the optimal decisions as:

α̂ =
1∑
i di

∑

i

di(1− vi) =
1

B
∑

i di

∑

i

diwi (4.17)

It is nothing but the average cost of the genes in the knapsack scaled by the num-

ber of posterior samples used. We state the connection between Bayesian multiple

hypothesis with generic loss functions and the 0-1 knapsack problem as follows:

Proposition:. For any loss functions f01, f10 with non-negative integer valued pos-

terior expectations penalizing incorrect decisions and for any loss functions f00, f11

with non-negative posterior expectations rewarding correct decisions, an optimal de-

cision sequence can be obtained that maximizes the profts not the exceeding given loss

bounded by C, using dynamic programming, with worst case complexity O(CP ).

The requirements layed out in the above proposition are not as restrictive as they

appear to be. One could simply set f00 = 0, f01 = 0, f10 = 1 and bring flexibility be

altering f11 > 0. This allows one to control an aspect of the true positives but keeps

a bound on the false positives. It is based on the same reasoning for constraining

the costs and profits in the knapsack problem to be non-negative. For example, if

both are negative, we can consider them as positive but invert the decisions. These

technical requirements ensure that the algorithm is simple to manage and maintain.

It does not take away flexibility in designing sensible loss functions. By no means, the

framework is restricted to controlling FDR. For example, consider f00 = −λ, f01 =

1, f10 = 0, f11 = 0, then we would be maximizing true negatives while keeping a

bound on the false negatives. A complete algorithm in the form of pseudo code is

given in Appendix C which reports the optimal decision for a given FDR.
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E. Simulation Examples and Discussion

Example-1: Let us begin with a version of the simple example considered in pp. 16,

Kellerer et al. (2004). We have seven genes and the knapsack’s capacity is 0.9. Costs

and profits of the genes are given below:

i 1 2 3 4 5 6 7

vi 0.6 0.5 0.3 0.6 0.8 0.9 0.7

wi 0.2 0.3 0.4 0.5 0.6 0.7 0.9

vi

wi
3 1.67 0.75 1.2 1.33 1.29 0.78

When using the greedy approach, we pick the gene with largest profit/cost first and

repeat this until the knapsack reaches its capacity or we exhaust the genes. If a gene

does not fit into knapsack, we simply skip and go to the next gene. So, we pick the

1st, 2nd and the 3rd genes that exactly fill the knapsack. Using DP, we pick the 1st

and the 6th genes. For the given capacity, the optimal solution had total value 1.5,

while the greedy had 1.4. The greedy solution would have been the optimal solution,

had the weights been ordered according to profit/cost.

Example-2: We simulate P=100 genes. To avoid any model specific assumptions

and inferential goals, we generate γi i.i.d Beta(3, 1) with mean 0.75. Then, for each

gene i, we generate B=100 Bernouli random variables with success probability γi,

i.e., γ
(b)
i i.i.d Bin(1, γi). The costs assigned to the genes in the knapsack are wi =

B − Xi = B −
∑

b γ
(b)
i with corresponding profits vi = Xi

B
. In this case, the greedy

solution and the dynamic approach should produce identical results because the odds

ratio or profit/cost is monotonic as shown in Fig. 21 (solid).

We plot FDR vs the number of discoveries made (total number genes in the

knapsack) in Fig. 22(a),. Both DP and greedy algorithms produce identical results.

Estimated FDR is plotted against the estimated TDR (true discovery rate, which is
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Fig. 21.: Profit/cost in Example-2 (solid), Example-3(dashed).

the average profit of genes in the knapsack) in Fig. 22(b). It is a decreasing function

of FDR because as we increase the capacity, we add more genes having smaller profits

which bring down the average profit. If profit/cost is monotonically decreasing with

cost, then we expect TDR to drop down monotonically as well. Total capacity vs

total profit of the genes in the knapsack is shown in Fig. 23(a) and as expected profit

increases with capacity. We see from Fig. 23(b) that number of genes in the knapsack

increase as a the capacity is increased.

Example-3: To simulate a more complex scenario that could be applicable with

generic loss functions, we break the monotonicity of profit/cost by perturbing the

profits randomly. The new profits are generated by multiplying the previously as-

signed profits with random weights drawn from U(0,1), i.e., v∗i = ui ∗ vi, ui ∼ U(0, 1).

The resulting profit/cost ratio is shown Fig. 21 (dotted). We again run the greedy

algorithm and DP algorithms with v∗i and wis. In Fig. 24(a), FDR vs the number of

discoveries is plotted. Both DP and Greedy algorithms produce similar results. But

looking at the estimated FDR vs the estimated TDR plot in Fig. 24(b), it is clear

that greedy algorithm has lower TDR for a given FDR than the DP solution. That

is, the DP knapsack has higher average profit than the greedy knapsack. It is worth
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Fig. 22.: FDR, TDR summaries for genes in Example-2 using DP(o) and Greedy(+)

algorithms.
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Fig. 23.: Cost, Capacity and Profit summaries of genes the knapsack for Example-2

using DP(o) and Greedy(+) algorithms.
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Fig. 24.: FDR, TDR summaries for genes in Example-3 using DP(o) and Greedy(+)

algorithms.
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Fig. 25.: Cost, Capacity and Profit summaries of genes the knapsack for Example-3

using DP(o) and Greedy(+) algorithms.
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noting that, TDR increases in the beginning with FDR and then falls-off. This is a

consequence of breaking the profit/cost ordering. Total capacity vs total profit of the

genes in the knapsack is shown in Fig. 25(a), which exhibits characteristics similar

to Example-2. Likewise, Total capacity increases with as the number of genes in the

knapsack increase, as shown Fig. 25(b). Both the simulation examples show that DP

framework can be used to solve multiple hypothesis testing problems under different

scenarios.

Discussion: An important component of these combinatorial optimization problems

is the time and space complexity. The 0-1 knapsack problem is a psedu-polynomial

time algorithm in the sense that the complexity depends on capacity and it not

bounded asymptotically. In the multiple hypothesis testing framework, this translates

to how many posterior are samples needed to compute the optimal solution in a

reasonable amount of time. A conservative estimate for B can be
⌈√

1
4e

⌉
, where e

is the Monte-Carlo standard error for estimating the posterior probabilities P (γi)

assuming i.i.d samples. A loose bound for the capacity can now be given as C ≤

P
∑
Xi (note that Xi ≤ B) and the worst case complexity for the computing the

table KP is O(P 2B). Often in practice, the desired FDR will be attained at a much

lower capacity and finding tighter bounds is a topic for future research (Martello et al.

1999). We point that computing the table has lower complexity than determining the

optimal decision sequence. This makes computing the FDR at every capacity, which is

based optimal decision sequence at that capacity, impractical. However, it is possible

to reduce this time by employing a leap-and-bound strategy (not implemented). That

is, we estimate the FDRs at certain increments of the capacity and periodically check

if the FDR has exceeded. While we are not recommending any particular strategies,

there are many choices for customizing the algorithm for the problem at hand and

this is an active area of research on it own (Martello et al., 2000). Several hard to
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solve knapsack problems are discussed in Pisinger, (2003).

F. Conclusion

We considered multiple hypothesis in the Bayesian context without making any spe-

cific assumptions about the underlying probability model. Assuming that there is an

efficient mechanism to generate posterior samples for the indicator variables for the

individual tests, we showed how the knapsack problem, a combinatorial optimization

framework, can be adopted for the problem at hand. We provided an algorithm for

maximizing true discoveries while keeping the FDR below the bound. Our approach

solves the problem in the cohesive decision theoretic setup. We believe that discrete

optimization is a feasible solution in a variety of multiple hypothesis testing scenar-

ios, which can be solved exactly. We highlighted several features of the knapsack

framework that could lend insights into the multiple hypothesis testing problem. In

the event that capacity bounds are enormously large, we can leverage several approx-

imate algorithms available in the knapsack problem literature. We hope that our

contribution stimulates research to find better solutions.
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CHAPTER V

CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH

A. Summary

We have considered several models for analyzing mixed type expression data. Our

primary goal in all the approaches is to discover differentially expressed genes. There

exist numerous statistical methods for analyzing Microarray data. Partly because,

Microarray is inexpensive relative to next generation sequencing technologies. In the

first two chapters, we focused on developing methods for analyzing count data.

In Chapter II, we reviewed literature for analyzing discrete expression data and

demonstrated that Bayesian hierarchical models work better than traditional tests

which model each gene individually. We extend the idea by relaxing the parametric

assumptions for the random effects by using Dirichlet process prior which clusters

genes that share similar differential expression profiles. We assumed homoscedastic

variance for the measurement error for all genes. Over dispersion, typically in discrete

expression data due the presence of large number of zeros, is addressed by using

a zero-inflated Poisson likelihood. We used the q-value approach to control false

discovery rate on the p-values obtained by performing Kullback-Liebler distance based

hypothesis test for differential expression of the random effects.

In the next chapter, we focused on developing methods for combining data from

a multitude of sources. The goal is to fuse information to make better predictions

or estimate the parameters more accurately. Meta-analysis in genome-wide studies

is still a nascent area and there do not exist any methods that combine mixed-type

expression data. We devised a model that combines mixed type data. We do not

require that the studies being pooled are are reproducible. In other words, if a gene is
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up-regulated in one study, we do not expect it to be up-regulated with similar mag-

nitude in the remaining studies as well. We use non-parametric functions to account

for technological differences and/or study dependent normalizations. Model devel-

oped in Chapter II forms the backbone of the inference engine but instead of using a

Dirichlet process with normal base prior, we use hierarchical Dirichlet process prior

with spike-n-slab base prior. Thereby testing for differential expression is integrated

into the model. We also allow the variance to be gene dependent to make the model

more flexible.

In Chapter IV, we formulated multiple hypothesis testing as a resource allocation

problem. When indicator variables denoting the state of the hypothesis are available

as component of the inference, multiple hypothesis testing is akin to a combinatorial

optimization problem. This formulation provides optimal solutions for generic loss

functions including the widely used uniform loss function. We give several pointers

which could be helpful in expanding this new approach to FDR control. Due to the

coherent decision theoretic set-up used, the same formulation can be used to control

not just FDR but similar error measures.

B. Future Research

In all the models we developed, we assumed that the sample size is the same across

experimental conditions and across studies. The models can be easily extended to

handle unbalanced case, but with some involved algebra. We did not use any covariate

information in the ANOVA specification. The proposed models can be extended to in-

corporate covariate information with out much difficulty. Another extension possible

is to cluster variances as well. So far in our models, we either assumed homoscedastic

variance or considered them to be different for each gene/study/sample. However,
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they can also estimated accurately by using Dirichlet Process prior. The above men-

tioned extensions do not involve methodological research but just extensions to suit

the real world problems.

In Chapter II, we considered saturate ANOVA representation to primarily con-

sider pairwise comparisons when two or more experimental conditions exist. The

model can be simplified and can design efficient samplers if there are only two ex-

perimental conditions or if one knows that one of the experimental condition is a

reference/control treatment group. Further, it would not be very difficult place a

spike-n-slab prior in place of the normal base prior. We used partial hierarchical

centering for prior specification. The sampling efficiency can be improved by using

more complex algorithms like adaptive MCMC type algorithms or covariance adjusted

sampler to reduce posterior correlation and improve mixing.

On the contrary, we have considered two-sample comparisons in Chapter III

mainly to expose the features of the model. It would be interesting to extend the

model to handle more than two treatment groups, but nevertheless, the algebra is

little more involved. A main relaxation we made in this model is that studies need

not be reproducible. But in cases where studies are reproducible, our modeling looses

power compared to a method which coerces positive correlation among the random

effects across studies. The following modeling might help in this situation:

Let Yhijk be the kth replicate observed for the ith signature under the jth treatment

in study h. We assume exponential family for the likelihood.

Yhijk ∼ F[h](xhijk)

We elicit zero-inflated Poisson likelihood for discrete expression data like SAGE,

MPSS, next-generation sequencing etc.. and Normal likelhood for microarrays. That
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is,

Y[h],ijk ∼ ZIP (ph, λh,ijk), h = 1, 2, ..., nd

where nd is the number of discrete data-sets, ph is the study-specific zero-inflation

parameter and λh,ijk is the Poisson mean parameter. We use canonical link functions

for linking the latent random variables which different technologies measure. For

discrete-data sets,

logλh,ijk ≡ yh,ijk h = 1, 2, ..., nd

and for continous data-sets, we use identity link function, i.e.,

Yhijk ≡ yhijk, h = nd + 1, nd + 2, ..., nd + nc

where nc is the number of continous data-sets.

Now, each study measures a version of the latent random effects. We use

a semiparametric function to model this manifestation which is different for each

study/data-set.

yhijk ∼ N (f[h](zijk), σ
2
f,h), h = 1, 2, ..., nd + nc

f[h](.) =
L∑

l=1

αh,lΨh,l(.)

Here, zijk is the latent process which captures the differential gene-expression profiles

and f[h] is the function that maps the latent process which is then measured by

different technologies, Ψh,l are the basis functions which we choose as cubic B-splines

in this case and σ2
f,h is the study specific variance.

We model the latent random effects in the following fashion,

zijk ∼ N (ηi + βij, σ
2
z,i)
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Fig. 26.: Graphical Representation of the model.

where where ηi is the effect of the ith signature and βij is the effect of the jth treatment

nested within the ith signature. That completes model specification except the priors.

A graphical representation is given the following Fig. 26.

We elicit Dirichlet process for on the random effects which are common for all

studies as:

βij ∼ DP{τG0}

where τ is the tuning parameter and the baseline distribution is G0 with

G0 =

[
πδ∀j(βij = βnull)N (0, σ2

β,null) + (1− π)
J∏

j=1

N (0, σ2
β,j)

]

This means that, under the null hypothesis, all treatment effect parameters are iden-

tical. Apriori, we set the probability of null hypothesis being true to π and elicit

a Beta distribution to ascertain uncertainty about this parameter. Note that here
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we did not restrict ourselves to two sample case, but more than two experimental

conditions. We are working on this model.

In Chapter IV, we established the connection between Bayesian multiple hy-

pothesis testing and the 0-1 knapsack problem, but have not taken advantage of this

approach. It would be interesting to consider, gene specific loss functions in the hope

to offer better control over FDR or other error measures.
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APPENDIX A

MCMC SAMPLER: FULL CONDITIONALS FOR THE PARAMETRIC AND

THE SEMIPARAMETRIC MODELS (CHAPTER I)

In the parametric model, Gibbs sampling has standard conditionals given by:

• ζijk, the latent variables as Bernoulli trials:

ζijk,/Yijk=0,λijk
∼ Bernouli

{
p

p+ (1− p) exp(−λijk)

}
.

• p from its conjugate posterior (using the latent variables):

p ∼ Beta(a+ n0, b+ n− n0), where n = IJK and n0 =
∑

ζijk

• λijk using a Metropolis-Hastings step with a random-walk log-N proposal den-

sity:

P (λijk) ∝

[
I(yijk = 0){p+ (1− p)e−λijk}+ I(yijk 6= 0)

{
(1− p)

e−λijkλ
yijk

ijk

y!ijk

}]
.

log-Nλijk
(ηi + βij, σ

2
ǫ )

• σ2
ǫ from its conjugate posterior σ2

ǫ ∼ IG(uǫ,p, vǫ,p) where νǫ,p = νǫ,π + 1
2
IJK,

vǫ,p = vǫ,π + 1
2

∑
ijk γ

2
ijk and γijk = log λijk − (ηi + βij).

• βi ≡ {βi1, βi2, βi3} and σβ from

βi ∼
J∏

j=1

Nβij

{
θij, (τ1 + τ2)

−1
}

and σ2
β ∼ IG(uβ,p, vβ,p) where

θij = (τ1 + τ2)
−1(γijτ1 + 0τ2), γij = K−1

∑
k (log λijk − ηi), uβ,p = uβ,π + 1

2
IJ

and vβ,p = vβ,π + 1
2

∑
ij (βij − 0)2
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• ηi and ση from ηi ∼ Nηi
{θi, (τ1 + τ2)

−1} and σ2
η ∼ IG(uη,p, vη,p) where

θi = (τ1 + τ2)
−1(γiτ1 + µτ2), γi = (JK)−1

∑
jk(log λijk − βij), τ1 = JK/σ2

ǫ , τ2 =

1/σ2
η, uη,p = uη,π + 1

2
I and vη,p = vη,π + 1

2

∑
i (ηi − µ)2

• µ and σµ from µ ∼ Nµ {θ, (τ1 + τ2)
−1} and σ2

µ ∼ IG(uµ,p, vµ,p) where

θ = (τ1 + τ2)
−1(γτ1 + 0τ2), γ = I−1

∑
i ηi, τ1 = I/σ2

η, τ2 = 1/σ2
µ, uµ,p = uµ,π + 1

2

and vµ,p = vµ,π + 1
2
(µ− µ0)

2

In the semiparametric case, all of the above conditional distributions remain the

same except for the βs. The polya-urn scheme based method gives us the following

conditionals (Escobar and West 1998):

• sample βi ≡ {βi1, βi2, βi3} as vector using the Polya-urn scheme:

P (βi) ∼ q0Gb +
∑

qkIβi
(βk), where

q0 ∝ τ
J∏

j=1

φ



 γij√
σ2
ǫ/K + σ2

β





qk ∝
J∏

j=1

φ

(
γij − βij√
σ2
ǫ/K

)
such that Σkqk + q0 = 1

Gb ∼
J∏

j=1

Nβij

{
θij, (τ1 + τ2)

−1
}

,

and where θij = (τ1 + τ2)
−1(γijτ1 + 0τ2), γij = K−1

∑
k (log λijk − ηi) and τ1 =

K/σ2
ǫ , τ2 = 1/σ2

β.

• draw cluster representatives as: β∗
i ∼

∏J
j=1Nβ∗

ij
{θij, (τ1 + τ2)

−1} where

θ = (τ1 + τ2)
−1(γ̄ijτ1 + 0τ2), γ̄ij = (niK)−1

∑
i′∈S〉

∑
k (log λi′jk − ηi′) τ1 = niK/σ

2
ǫ ,

τ2 = 1/σ2
β. Here Si is the set of all (signature) indexes in cluster i and ni is |Si|,

the cardinality of the set Si. After drawing the cluster representatives, update

the cluster membership, number of clusters and τ .
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APPENDIX B

MCMC SAMPLER: FULL CONDITIONALS FOR THE SEMIPARAMETRIC

MODEL (CHAPTER II)

Let g = hd = 1, 2, ..., nd for simplicity. For each of g (discrete data-set)

• Sample ζg,ijk, the latent variables as Bernoulli trials:

ζg,ijk|xg,ijk = 0, λg,ijk ∼ Bernouli

(
pg

pg + (1− pg) exp(−λg,ijk)

)
.

• Using the latent variables drawn above, sample pg from its conjugate posterior:

pg ∼ Beta(apst
p,g , b

pst
p,g) where apst

p,g = apr
p,g +n0,g, b

pst
p,g = bpr

p,g +n−n0,g n0,g =
∑
ζg,ijk

and n = IJK.

• Using a Metropolis-Hastings step with a random-walk log-N proposal density,

sample λg,ijk from:

P (λg,ijk) ∝

[
I(Yg,ijk=0)(pg + (1− pg)e

−λg,ijk) + I(Yg,ijk 6=0)

(
(1− pg)

e−λg,ijkλ
xg,ijk

g,ijk

xg,ijk

)]

log-Nλg,ijk
(fg(zijk), σ

2
f,g)

• The link function measurement error variances σ2
f,h, h = 1, 2, ..., nc + nd can be

sampled from:

σ2
f,h ∼ IG(u

pst
f,h, v

pst
f,h) where upst

g,h = upr
f,h+

1
2
IJK, vpst

f,h = vpr
f,h+

1
2

∑
ijk [yh,ijk − fh(zhijk)]

2

• Genes/signature effects and their variances, ηhi and σ2
η,h, have the following

conditional distributions:

– draw ηhi

ηhi ∼ N
(
θhi, (

∑
j τhij,1 + τh,2)

−1
)
, where θhi =

∑
j z̄hijτhij,1+µhτh,2∑

j τhij,1+τ2
, z̄hij =

K−1
∑

k(zhijk − (2ψhij − 1)βhi) τhij,1 = (σ2
z,hij/K)−1, τh,2 = (σ2

η,h)
−1
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– draw σ2
η,h

σ2
η,h ∼ IG(u

pst
η,h, v

pst
η,h), where upst

η,h = upr
η,h + 1

2
I, vpst

η,h = vpr
η,h + 1

2

∑
i (ηhi − µh)

2

• Study specific means and the corresponding variances, conditional for µh and

σ2
µ, can be sampled from:

– draw µh

µh ∼ N (θ, (τ1 + τ2)
−1), where θ = (τ1 + τ2)

−1(γτ1 + µ0τ2) γ = S−1
∑

i ηhi

τ1 = (σ2
η,h/S)−1, τ2 = (σ2

µ)
−1

– draw σ2
µ

σ2
µ ∼ IG(u

pst
µ , vpst

µ ) where upst
µ = upr

µ + S
2
vpst
µ = vpr

µ + 1
2

∑
h (µh − µ0)

2

• The posterior distribution of the spline parameters αh and σ2
α,h takes the form

of constrained multivariate normal distribution whose conditional are truncated

univariate normal densities, i.e.,

– draw αh, the spline coefficients

[αh] ∝ N (θ,Σ)|−∞≤αh,1≤...≤αh,L≤+∞ where θ = Σ−1XTY/σ2
y,l and Σ−1 =

1
σ2

f,h

XTX + 1
σ2

α,h

∆−1. And X is the design matrix obtained by evaluating

the splines at zhijk’s and YIJK×1 is the vectorized yh,ijk . The number and

locations of the knots is fixed across all simulations. There is additional

Gibbs sampling which involves univariate truncated normal distributions

(Robert, 1995).

– draw σ2
α,h

σ2
α,h ∼ IG(u

pst
δ,p , v

pst
δ,p ), where upst

α,h = upr
α,h + 1

2
L and vpst

α,h = vpr
α,h + 1

2
αTh∆−1αh

• Conditional distribution for σ2
z,hij (j = 0, 1) is given by:

σ2
z,hij ∼ IG(u

pst
z,hij, v

pst
z,hij) where upst

z,hij = upr
z,hij+

1
2
K and vpst

z,hij = vpr
z,hij+

1
2

∑
k[zhijk−

(ηhi + (2ψhij − 1)βhi)]
2
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• Conditional distribution for zhijk is given as:

zhijk ∝ N (ηhi + (2ψhij − 1)βhi, σ
2
z,hiψhi

) exp[−
1

2σ2
f,h

{yh,ijk − fh(zhijk)}
2]

• The random effects βhi are sampled based on Chinese Franchise representation

(CFR) with augmented sampling (Teh et al., 2006; Gerber et al, 2006). Gath-

ering the terms involving βhi in the hierarchical model, excluding the prior part

and expressing them in terms of the sufficient statistics, we:

xhi ∝ N (βhi, τ
−1
hi )

where xhi = τ−1
hi

∑
j z̄hijτhij, z̄hij = K−1

∑
k(zhijk − ηhi)(2ψhij − 1) τhij =

(σ2
z,hij/K)−1, τhi =

∑
j τhij Let β0

q be the q-th unique cluster representative.

There can, at most be, SI many clusters. In the CFR parlance, β0
q is the q-th

dish being served with probability w0
q , h- indexes the restaurant and i- indexes

the customer and βhi is the dish being served to the i-th customer in the j-

th restaurant. Further, let nhq represent the number of customers in the h-th

restaurant being served the dish β0
q . In the same vein, n−i

hq excludes the i-th

customer in the h-th restaurant from counting.

– Sample the cluster configuration:

P (βhi = β0
q ) ∝ (τw0

q + n−i
hq)φ([xhi − β

0
q ]/τhi)

P (βhi 6= β0
q ∀q) ∝ τw0

∗ [πφ(xhi/τhi,1) + (1− π)φ(xhi/τhi,2)]

where φ(x) is the standard normal probability density evaluated at x,

τhi,1 = τhi, τhi,2 = τhi + (σ2
β)

−1 and w0
∗ = 1 −

∑Q
q=1w

0
q , Q is the exist-

ing number of unique dishes. When a new dish is created (or new cluster

is created), ζhi = 0 if βhi is drawn from point mass at 0 with proba-
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bility
πφ(xhi/τhi,1)

πφ(xhi/τhi,1)+(1−π)φ(xhi/τhi,2)
and 1 otherwise. In the event that the

current customer is served an existing dish, then γhi is inherited. Thus, γ

is the indicator variable which denotes whether the effects belong to the

null or the alternate. When indeed ζhi = 1, a new β0
Q+1 is drawn from

N (τhi,2
−1τhi,1xhi, τhi,2

−1) and set Q ← Q + 1. A Metropolis-Hasting up-

date step can often improve mixing of the latent indicator variables γhi. Let

pbirth be the probability of switching γhi = 0 to γhi = 1 and the posterior

odds defined as:

r =
φ(xhi/τhi,2)pbirth

φ(xhi/τhi,1)(1− pbirth)
.

When γ = 0, with probability pbirth, we propose γ = 1 and accept this

proposal with probability r.

– Sample the auxiliary variable, mhq, the number of customers eating dish q

in restaurant h:

P (mhq = m) ∝ Stirling(nhq,m)(τw0
q)
m

where Stirling(n,m) are the unsigned Stirling numbers of first kind, that

count the permutations of n objects having m permutations.

– Sample the unique dish weights w0
q

P (w0) ∝ Dirichlet(
∑

h

mh1, . . . ,
∑

h

mhQ, τ0)

where Dirichlet(a1, . . . , aQ+1) is a Q+ 1-variate Dirichlet distribution.

– Sample the precision parameter τ in the bottom hierarchy of the Dirichlet

Process (based on Auxiliary sampling)
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(a) Draw wh an auxiliary variable

P (wh) ∝ wτh(1− wh)
Nh−1

where Nh = I is the total number of customers in the h-th restaurant.

(b) Draw bh another auxiliary variable

P (bh) ∝

(
Nh

τ

)bh

(c) Draw τ , the precision parameter

P (τ) ∝ Gamma(upst
τ , vpst

τ )

vpst
τ = vpr

τ +
∑

h(Mh − bh),u
pst
τ = upr

τ −
∑

h logwh

where Mh =
∑

imhi and repeat the process for 10-20 iterations for local

convergence.

• Sample the precision parameter τ0 in the top hierarchy of the Dirichlet Process,

from:

P (τ) ∝ Stirling(
∑

h

Mh, Q)τQ
Γ(τ)

Γ(τ +
∑

hMh)

as in Escobar and West (1995).

• Conditional distribution for σ2
β is given by:

σ2
β ∼ IG(u

pst
β , vpst

β ) where upst
β = upr

β + 1
2
Q∗ and vpst

β = vpr
β + 1

2

∑
q[β

0
q − 0]2 where

Q∗ is the unique number of dishes that are different from zero.

• The null hypothesis proportion π is sampled from:

π ∼ Beta(upst
π , upst

π ) where upst
π = upr

p,g + n0, v
pst
π = vpr

π + n− n0 n0 =
∑

1− γhi

and n = SI.
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APPENDIX C

ALGORITHM FOR FDR CONTROL BASED ON DYNAMIC PROGRAMMING

Algorithm 1: Computing the table

for c = 0 to C, K[0, c] = 0

for i = 0 to I, K[i, 0] = 0

for i = 1 to I

for c = 1 to C

if wi > c

K[i,c]=K[i-1,c]

else

if vi+K[i-1 ,c-wi] > K[i-1,c], K[i,c] = vi + K[i-1,c-wi]

else K[i,c] = K[i-1,c]

end

end

end

Algorithm 2: Finding items in the knapsack

set i=I,c=C.

do untill i=0

if K[i,c] 6= K[i-1,c]

mark the i-th item as in the knapsack
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i=i-1, c= c-wi

else

i=i-1

end

end

Algorithm 3: FDR control

for c = 0 to C, K[0, c] = 0

for i = 0 to I, K[i, 0] = 0

set c = 1, fdr[0] = 0

do until fdr[c] > α or c = C+1

for i = 1 to I

if wi > c

K[i,c]=K[i-1,c]

else

if vi+K[i-1 ,c-wi] > K[i-1,c], K[i,c] = vi + K[i-1,c-wi]

else K[i,c] = K[i-1,c]

end

set j = c, di = 0∀i

do until i=0

if K[i,j] 6= K[i-1,j]

set di = 1

i=i-1, j= j-wi
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else

i=i-1

end

end

fdr[c] = (B
∑

i di)
−1
∑

i diwi

M[c,i] = di∀i

c = c+1

end

report fdr[c-1] and the decisions d∗i = M [c− 1, i] ∀i
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