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ABSTRACT 

 

Mineralogical and Microbial Controls on Iron Reduction in a Contaminated Aquifer-

Wetland System.  (December 2010) 

Andrea Melissa Howson, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Anne Raymond 

 

Iron reduction is an important redox reaction in anaerobic environments for both 

biological and chemical cycling of elements such as carbon.  However, the controls on the 

rate and extent of iron reduction are poorly understood and unlike other major terminal 

electron accepting processes, iron reduction has the added complexity that its oxidized form 

(ferric iron) exists primarily as one of several solid phases in environments with pH greater 

than 3.  Thus, the distribution and form of ferric iron minerals are important controls on iron 

reduction in natural systems.  For the first phase of this research a series of sequential 

chemical extractions was performed on a core taken from a landfill-leachate-contaminated 

wetland-aquifer system at the Norman Landfill, Norman, OK.  The phases targeted by the 

sequential extractions consist of easily water soluble salts and ions present in the soil 

solution; weakly acid soluble iron (such as siderite and ankerite); easily reducible iron (such 

as ferrihydrite and lepidocrocite); moderately reducible iron (such as goethite, akageneite, 

and hematite); organically bound iron; magnetite; and pyrite.  The second phase of this 

research involved creating in situ microcosm experiments that exposed native microbial 

communities to a test solution amended with 2-line ferrihydrite (Fe5HO8∙4H2O), electron 
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donor (lactate and acetate), and a conservative tracer for a period of eleven days.  The 

kinetics of iron reduction were then evaluated over time and the resulting changes in 

microbial community structure documented through DNA and RNA analysis. 

Results document the spatial distribution of iron phases at the contaminated wetland-

aquifer interface.  Results of the sequential extractions indicate that ferrihydrite was present 

throughout the core.  Accordingly, ferrihydrite was used in subsequent experiments on in 

situ microcosms to evaluate the kinetic controls on the microbial reduction of ferrihydrite.  

The results of these experiments show that microbial communities actively responded to the 

introduction of the amended ferrihydrite solution by increasing their community size and 

reducing ferrihydrite to an iron (II) phase in increasing amounts over an eleven day period.    
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1.  INTRODUCTION 

 

A fundamental issue in understanding chemical fate and transport in natural 

systems is understanding the mineralogical and microbial controls on iron cycling.  In 

contaminated systems, one of the main driving forces behind natural attenuation is the 

reduction-oxidation cycle or redox cycle.  Redox processes are suggested to occur in a 

sequential pattern of redox zones dominated by terminal electron accepting processes 

(TEAPs) (Baun et al., 2003; Christensen et al., 2000; McGuire et al., 2002; McGuire et 

al., 2000; Scrow and Hicks, 2005; Vroblesky and Chapelle, 1994).  Terminal electron 

acceptors (TEAs) are compounds that are accepted or utilized by microbes to obtain 

energy during the metabolism of an electron donor or carbon source.  Studies have 

shown that through microbially mediated biological processes, as well as other processes 

such as physical and chemical cycles, natural attenuation of a contaminant plume can 

occur through sorption, dispersion, volatilization, dilution, abiotic degradation and 

biodegradation (Crapse et al., 2005; Wilson et al., 2004).  Microbial communities are 

able to facilitate biodegradation of contaminants in freshwater systems through the use 

of the carbon cycle in conjunction with other cycles such as the sulfur cycle, iron cycle, 

nitrogen cycle, etc.  In this study, the focus will be on the interactions of the carbon 

cycle with the iron cycle.  The integration of these two cycles via the reduction that 

occurs through microbially mediated processes provides an important method by which 

contaminants are degraded. 

  
This thesis follows the style of Geochemica et Cosmochimica Acta. 
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When a microbe reduces iron (III) in conjunction with a carbon source, the 

carbon becomes oxidized into CO2, which is then utilized by the surrounding plants.  

Through this process, microbes are able to facilitate bioremediation of contaminated 

sites.  Contaminated wetland-aquifer systems present complex interfaces that have a 

high potential for iron cycling.  However, the spatial and temporal dynamics of iron 

reduction are not well understood.  Fortunately, these types of systems are opportune for 

the study and observation of iron cycling.    

It is known that iron redox processes play a highly important role in influencing 

the geochemistry of subsurface environments (Hyacinthe et al., 2006; Lovley, 1997).  

The process of reducing iron yields a large amount of energy; microbes harness that 

release of energy, resulting in microbially mediated iron reduction.  However, some 

ferric iron phases provide a much higher energy yield than others, (Table 1).  

Accordingly, it is important to consider the redox potential of the different ferric iron 

phases, as it appears likely that phases with higher energy yields will be consumed first 

and more rapidly than other phases.  

 

Table 1.  Energy yield of iron oxide minerals. 
 

Mineral Name Formula ΔG° (kJ mol-1)
Lepidocrocite γ-FeOOH -477.7

Goethite α-FeOOH -488.6
Ferrihydrite FeOOH -699
Maghemite γ-Fe2O3 -711.14
Hematite α-Fe2O3 -742.8
Magnetite Fe3O4 -1012.6  

(Cornell and Schwertmann, 2003) 
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However, the specific phases of ferric iron that are preferred by microbial 

colonies have yet to be studied within this system due to the many complexities 

associated with iron.  These complexities include the wide variety of ferric iron phases 

existing at a pH greater than 3 (Thamdrup, 2000).  For example, iron (III) may occur in 

phases of varying mineralogy and crystallinity.  These differences between iron (III) 

phases can affect their chemical reactivity as well as the availability of iron phases to 

iron reducing microorganisms (Hyacinthe et al., 2006).  An additional complexity is the 

ability of iron (III) to move from a solid state to a dissolved state upon reduction 

(Thamdrup, 2000).  When ferrous iron becomes oxidized its initial product is iron (III), 

generally ferrihydrite (Thamdrup, 2000).  Over time, ferrihydrite will change into a more 

stable crystalline form and will likely end up as goethite, hematite, or magnetite (Cornell 

and Schwertmann, 2003). 

This project aims to discover where, vertically, the different phases of iron 

oxides are dominant.  In a simple (homogeneous system), it is suspected that the most 

amorphous phases of ferric iron will be located near the surface sediments, while the 

more stable crystalline forms of ferric iron will be found deeper in the wetland 

sediments.  It is also suspected that the more reduced iron forms (Fe II) will exist deeper 

in the core, in the anoxic layers.  However, at the Norman Landfill Slough, heterogeneity 

in sediment type (silt, fine sand, coarse sand), and the presence of the leachate plume at 

depth may alter the ideal distribution of the iron phases with depth.  The overall 

objective of this research is to understand the key mineralogical and microbiological 

controls on iron cycling in the linked wetland-aquifer system.   
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The goal of this research is to discover the spatial distribution with depth of a 

series of terminal electron accepting iron phases that may be utilized by microbial 

communities, as well as to understand the rate at which microbial communities are able 

to adapt and respond to the geochemical perturbation of ferrihydrite solution.  This 

research has the potential to be used in numerical models to understand the overall rate 

at which a contaminant plume can be naturally attenuated.   

There are two main approaches used to perform this research.  The first is to 

analyze a core taken from the research site by performing sequential extractions, 

followed by Atomic Absorption analysis to evaluate the abundance of the predominant 

iron phases located in each of the different sections of the core.  The second phase of this 

research is to investigate the microbial kinetics by which a common iron phase, 

ferrihydrite, is reduced.   
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2. STUDY SITE 

 

The Norman Landfill research site in Norman, OK is a closed municipal landfill 

located near the Canadian River, which was in operation from the early 1920’s until 

1985.  During this time, the landfill received unrestricted waste in two unlined landfill 

cells.  In 1985 the cells of the landfill were closed with an earthen cap, and are now of 

particular interest due to a plume that has developed down-gradient from the landfill 

(Christenson et al., 1999).  The plume contains elevated concentrations of dissolved 

organic carbon (DOC), chloride, ammonia, and methane (Christenson and Cozzarelli, 

1999).  An old channel of the Canadian river has created a wetland, which is also down-

gradient from the landfill and overlies the plume (Figure 1).  In addition to the plume 

and wetland, an aquifer exists a few feet below the surface of the wetland, creating a 

dynamic and unique interface.  Biogeochemical cycling across this interface is the 

primary focus of this research. 
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Figure 1.  Map showing the study site location, Norman Landfill Research Site, 
Norman, OK, USA.  Circle with cross hairs (right) represents actual location of 
study site. 
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3.  PERFORM A SERIES OF SEQUENTIAL EXTRACTIONS ON SECTIONS OF  

A CORE FROM THE NORMAN LANDFILL RESEARCH SITE, NORMAN, OK 

 

Iron reduction is an important redox reaction in anaerobic environments in terms 

of both biological and chemical cycling of elements such as carbon.  However, the 

controls on the rate and extent of iron reduction are poorly understood.  Unlike other 

major terminal electron accepting processes, iron reduction has the added complexity 

that its oxidized form (ferric iron) exists primarily as one of several solid phases in 

environments with pH greater than 3.  Thus, the distribution and form of ferric iron 

minerals are important controls on iron reduction in natural systems.   

Several studies have used sequential extractions as a method to evaluate the 

speciation of trace metals that exist in various sediments (Ahnstrom and Parker, 1999; 

Heron et al., 1994; Lovley and Phillips, 1986; Poulton and Canfield, 2005; Raiswell et 

al., 1993; Rapin et al., 1986; Sorensen, 1982; Stookey, 1970; Tessier et al., 1979; 

Tokalioglu et al., 2003; Van Bodegom et al., 2003).  The procedure is among the most 

commonly used due to the ability to gather data about the origin, occurrence, and 

availability of trace metal phases being assessed within the sedimentary conditions of 

interest (Peltier et al., 2005; Tessier et al., 1979).   

To execute phase 1 of this project, a series of sequential extractions was 

performed on a section of core removed from the wetland-aquifer interface.  After 

analysis, these extractions served to indicate where, spatially, different phases of ferric 

iron exist in the core.  These extractions also indicated, quantitatively, how much of each 



 

 

8 

phase is available.  The exact phases extracted by each reagent are operationally defined.  

This is a limitation of sequential extractions in that most extractant reagents are unable 

to specify specific iron phases as perfectly as intended, and often other phases may also 

be extracted at the same time.  The iron oxide phases that were targeted for each 

sequential extraction step in the experiment are listed in Table 2. 

One of the main objectives of this study was to describe the iron phases that exist 

with depth in the wetland-aquifer system.  Therefore, it is important to know the solid 

phase mineralogical make up of the soils of the column.  Accordingly, each section of 

the column was subjected to XRD analysis to determine solid phase mineralogies with 

depth within the sediments of the wetland.   

 

Table 2.  Iron oxide phases targeted for each sequential extraction step. 
 

Phase Targeted

Water Easily soluble salts and
ions present in soil 

Exchangeable Ion-Exchangeable Fe (II) 

Weakly Acid Soluble Siderite                                 
Ankerite

Easily Reduced Ferrihydrite                            
Lepidocrocite

Moderately Reducible Maghemite
Akageneite
Magnetite

Organic Organic matter

Iron Oxides Goethite

Pyrite Pyrite

Iron Oxide
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3.1 METHODS 

Task 1: Extract a Core From Wetland Sediments and Evaluate the Spatial 

Distribution of Iron Phase 

A 76.2 X 1.76 cm tenite butyrate core liner was divided into six sections (each 

section had one port drilled prior to the coring), which were used to extract porewater 

from the cored sediments.  The ports were located in the middle of each section at 10.16 

cm intervals (Figure 2).  Each port was covered with black electrical tape to prevent 

leakage.   

 

 

Sampling Area / 
Sections

PlugPort

Acetate Core Liner

 
 
Figure 2.  Schematic of core sections and port placement.  
 
 

The core liner was hand-driven into the wetland sediments to a depth of 

approximately 76 cm.  Coring took place in the subsurface of the wetland, as indicated in 

Figure 1.  Upon retrieval, the ends of the core were immediately wrapped in a layer of 

saran wrap to maintain the anaerobic state of the core.  The total length of sediment 

collected in the core was then measured and found to be 76.84 cm.  The larger length 

occurred because of a small length of soil attached to and extending beyond the bottom 
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of the core liner.  The core was then carried back to the work site where the electrical 

tape was removed and syringes were immediately inserted in to each port.  The syringes 

were used to extract porewater from the sediment in the core.  Samples were collected 

for the geochemical parameters summarized in Table 3.  Preservation techniques for the 

anion samples involved using 10 µl formaldehyde stored at 4oc.  The ammonium and 

organic acid samples were preserved with flash freezing by being placed in a cooler 

containing dry ice.  Cation samples were preserved with HCl and analyzed by capillary 

electrophoresis (Agilent Technologies, Wilmington, DE).  Precision for capillary 

electrophoresis analyses is better than 0.1 mg/L.  Trace metal grade concentrated HCl 

(Optima, 10 µl) and 0.5 ml of 2N zinc acetate was used to preserve the iron (II) and H2S 

samples.  The analysis for these samples was done using a Spectronic20D+ 

spectrophotometer (Thermo Spectronic, Rochester, NY), while in the field.  Precision for 

iron (II) analyses were better than that of 0.1 mg/L and 0.001 mg/L for H2S.  

Unfortunately, there was not enough porewater solution at each port within the core to 

collect a full suite of samples for each geochemical parameter.  The results can be found 

in Appendix B.   

After sample collection, the core was placed into an anaerobic glove bag filled 

with N2 gas to prevent oxidation of the sediments.  The core was split lengthwise and the 

sediment layers were described and measured.  Sediment samples were collected from 

each section by removing 2 inches of sediment from either side of a port.  Care was 

taken to not include any sediment that touched the inside wall of the core liner to ensure 

representative samples were obtained.  The samples were placed into mason jars and 
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subsequently frozen (using dry ice) along with the core to maintain in situ conditions for 

further analysis. 

 

Table 3.  Summary of geochemical parameters collected from core.   
 

1 X X X X
2 X X X X
3 X X X X X
4 X X X X X
5 X X X X X
6 X X X X X

Sulfide 
H2S

Section
Ammonium 

NH4
+

Cations            
Ca, Mg, Mn, Na

Organic Acids       
Lactate, Acetate, 

Propionate, Formate

Anions                
Cl-  SO4

2-  NO3
-

Iron             
Fe2+
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As seen in Figure 3, the top layer of the core consists of organic sediments, the 

middle layer is a porous sand layer acting as shallow aquifer, and the bottom layer is 

composed of organic sediment.  Because of the porous nature of the sand layer, 

oxygenated water is reintroduced during a recharge event.  This allows the ferrous iron 

in this layer to become reoxidized; thereby, returning it to the more crystalline ferric iron 

state.  This process should result in the sand layer having a higher abundance of 

crystalline ferric iron when compared to the other layers.  The Munsell values for the 

sediment layers were also determined (Table 4).  

 
 
Table 4.  Munsell values for core. 
 

Top of  Core Hue Value/Chroma
Silt 10YR 4/3
Sand 10YR 5/3
Clay 10YR 3/3
Bottom of Core  
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Figure 3.  Schematic of core taken from site SI-102.
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Task 2: Perform Sequential Extractions on the Six Sections of Sediment Sample 

Taken From the Core 

The core was subsampled for extraction analysis in a glove bag filled with N2 

gas as discussed above in Task 1.  The sample was then homogenized inside a sterile 

Mason jar with a sterile spatula.  Extractions were performed in triplicate for each 

section to get the best analysis possible.  Thus, three sets of ten grams of each sample 

were weighed out and placed into each centrifuge sample tube (Figure 4).  An outline of 

the following steps is located in Table 5. 

  

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

C C C C C C

B B B B B B

A A A A A A

Section 3

Blank 

Section 4

Blank 

Section 5

Blank 

Section 2

Blank 

Section 1

Blank 

Section 6

Blank 

Centifuge
Tubes 

S

 
 
Figure 4.  Aerial representation of the replicates, A, B, and C of each section, as 
well as the blank for each section.   
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Table 5.  Breakdown of the different parameters for each fraction. 
 

Step
Sample 
Amount

Solution 
Make-up

Titration 
Reagent

pH  
Slope

Initial 
pH

Final 
pH

Reagent 
Added 

Agitation 
Time/Level

Centrifuge 
Time/Level

Supernatent 
Collected 

1 10 G
Nanopure 

Water N/A N/A N/A N/A 25 mL N/A 2 hr/40 17 mL

2 10 G  1 M MgCl2   Na2CO3·H2O 99.6 5.6 7 25 mL 2 hr/10 2 hr/40 17 mL

3 10 G 1 M NaOAc HOAc 98.5 8.47 4.5 25 mL 48 hr/10 2 hr/40 17 mL

4 10 G
1 M NH2OH-
HCl in 25% 
HOAc v/v

N/A N/A N/A N/A 10 mL 48 hr/10 2 hr/40 17 mL

5 10 G
50 g/L 

Na2O4S2

0.35 M HOAc   
0.2 M 

Na3C6H5O7

99.3 6.75 4.8 25 mL 2 hr/10 2 hr/40 17 mL

6 10 G
 0.1 M 

Na4P2O7 
N/A N/A N/A N/A 25 mL 18 hr/10 2 hr/40 17 mL

7 10 G

0.2 M 
NH4OAc / 

0.17 M 
H2C2O4

N/A N/A N/A N/A 25 mL 6 hr/10 2 hr/40 17 mL

AVS 5 G
cold 6N HCl 

+ SnCl2
N/A N/A N/A N/A 60 mL Digestion for 

1 hr
N/A 60 mL

TRS 1 G
1 M CrCl3 

acidified to 
0.5 N HCl

N/A N/A N/A N/A
40 mL CrCl3  

20 mL HCl    
10 mL ethanol    

Boil for 1 hr N/A 60 mL

Amorphous 
Iron Oxides

P
r
y

r
it

e

 Experimental Procedure Information on Performance of Fractions 

8

Reagent

Water

Exchangeable
Weakly Acid 

Soluble

Easily Reduced

Moderately 
Reduced

Organic
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Step 1:  Water – Soluble Iron 

   The first step in performing the series of sequential extractions requires looking 

at the type and abundance of iron that is removed simply by water.  These iron types 

should be fully available for reduction by microbial colonies.  However, they generally 

tend to be low in concentration (Van Bodegom et al., 2003).  To extract this fraction, 

methods by Van Bodegum (2003) were used as follows.  Each centrifuge tube had 25 

mL of Nanopure water pipetted into it.  A blank was made for each section that consisted 

of a centrifuge tube filled with 25 mL of Nanopure water.  All of these processes were 

performed in a glove bag filled with inert N2 gas (all steps were performed in an 

anaerobic glove bag to prevent the oxidation of iron (II) minerals present in the soil.  

Following the addition of the Nanopure water, each centrifuge tube was capped and 

centrifuged at 2000 rpm for 120 minutes.   

For each extraction step hereafter, the following procedures were performed once 

the step was completed.  After centrifugation, the samples were placed back in to the N2 

filled glove bag where the supernatant was extracted from the centrifuge tube via a 

syringe equipped with a 3 inch polyethylene tube at the tip.  A 0.45 µm millipore syringe 

filter was used to filter the supernatant into 60 mL Nalgene HDPE sample bottles after 

first rinsing the filter with 2 drops of supernatant.  The bottles were placed into the 

refrigerator to await further analysis to be performed on a Varian SpectrAA-200 (Varian, 

Inc. North America).  Once all of the supernatant was extracted from each centrifuge 

tube, the residual fluid in the centrifuge tube was emptied into a waste beaker.  The 

remaining sediment sample was rinsed with 10 mL of Nanopure water by hand-wrist 
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action shaker agitation for 20 minutes and then submitted to centrifugation for 2 hrs at 

2000 rpm.  The final water wash was discarded prior to the next step in the extraction 

sequence.     

 

Step 2: Exchangeable Iron 

 Exchangeable iron, i.e. ferrous iron or iron (II), is the reduced form of ferric iron 

or iron (III).  This is important because the amount of ion-exchangeable iron (II) will 

indicate if this wetland-aquifer interface is a redox zone (Schlottmann, 2000).   

In order to discover the amount of ion-exchangeable iron (II), created in the 

wetland environment, an amended procedure from Poulton and Canfield (2005) was 

used.  While the sediment samples were being thoroughly rinsed via centrifugation, a 

600 mL solution of 1M magnesium chloride (MgCl2) was created.  Titration with 

sodium carbonate (Na2CO3∙H2O)  was performed to achieve a pH of 7.  The magnesium 

chloride solution (25 mL) was added to each sample after the removal of supernatant 

from the final Nanopure water rinse.  The vials were then agitated for 2 hours at the 

maximum level in the Hand-Wrist Action Shaker agitator and subsequently centrifuged 

for 120 minutes at 2000 rpm.   

 

Step 3:  Weakly Acid Soluble Iron 

 The next step involved extraction of weakly acid soluble iron.  A 600 mL, 1 M 

solution of sodium acetate (NaOAc) was prepared and the pH was lowered to 4.5 by 

titrating acetic acid (HOAc) into the sodium acetate solution  (Poulton and Canfield, 
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2005).  The final solution was then distributed into each vial in 25 mL aliquots.  The 

vials were then placed into a static water bath for 49 hours at a temperature of roughly 

50.0o C.  Subsequent agitation for 1 hour followed by centrifugation for 2 hrs occurred.   

 

Step 4:  Easily Reduced Iron 

A solution of 1 M Hydroxylamine-HCl was made and placed into each centrifuge 

tube in 25 mL aliquots once the Nanopure water used to clean the sediment was removed 

from the vials (Poulton and Canfield, 2005).  The vials were then shaken in the Hand-

Wrist Action Shaker for 48 hours trailed by centrifugation for 2 hours.   

 

Step 5:  Moderately Reduced Iron  

A solution of sodium dithionite (Na2O4S2) was prepared and titrated to a pH of 

4.8 with a solution of 0.35 M acetic acid and 0.2 M sodium citrate (Na3C6H5O7) 

following the methods of Poulton and Canfield (2005).  Subsequently 25 mL of the 

solution was added to each vial post the removal of the waste water used to clean the 

sediments.  The vials were then shaken in the Hand-Wrist Action Shaker for 2 hours 

trailed by centrifugation for 2 hours.   

 

Step 6:  Organically Bound Iron 

A 600 mL solution of 0.1 M sodium pyrophosphate (Na4P2O7) was created and 

distributed into each vial in 25 mL aliquots after the Nanopure water used to remove the 

previous reagent was removed (Weiss et al., 2004).  The vials were shaken in the Hand-



 

 

19 

Wrist Action Shaker for eighteen hours at level 10 followed by centrifugation for 2 

hours and supernatant removal. 

 

Step 7:  Amorphous Iron Oxides 

A 600 mL solution of 0.2 M ammonium oxalate ((NH4)2C2O4.H2O) and 0.17 M 

oxalic acid (H2C2O4) solution was prepared and distributed into each vial in 25 mL 

aliquots following the procedures performed by Poulton and Canfield (2005).  This 

process was performed after the Nanopure water was removed from each vial and 

deposited into a waste beaker.  The vials were then shaken in the Hand-Wrist Action 

Shaker for 6 hours at level 10 followed by centrifugation for 2 hours at level 40.   

 

Step 8:  Acid Volatile Sulfides (AVS) and Total Reduced Sulfides (TRS) 

 To perform the recovery of the acid volatile sulfides, a 5g sample of the original 

sediment was removed from each section of the core and digested in cold 6N 

hydrochloric acid (HCl) and tin chloride (SnCl2) solution (5g SnCl2 per 20 mL of 6N 

HCl) in an Erlenmeyer flask using the previously defined methodology of Canfield and 

Cornwell and Morse (Canfield et al., 1986; Cornwell and Morse, 1987).  Each flask 

underwent digestion for one hour.  Following the digestion, trapping vessels used to 

collect all of the evolved acid volatile sulfides were capped and placed in the refrigerator 

to await analysis on a Shimadzu UV1601 Spectrophotometer.   

To begin the process of evolving the total reduced sulfides in the core, it was 

necessary to build a Jones Reductor column (Figure 5).  The column was built following 
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the methodology of Kolthoff (Canfield et al., 1986; Kolthoff and Elving, 1993).  The 

purpose of building the column was to reduce CrCl3 as it passed through the column and 

interacted with the zinc that was used to fill the column.  Once the CrCl3 was reduced, it 

was utilized in conjunction with concentrated HCl and ethanol as the digestion reagent 

that reacted with the sediment samples to release H2S.  The procedure that was followed 

to perform this digestion was that of Canfield et al., (1986).  

Final analysis of the TRS and AVS solutions was performed on the UV1601 

Visible Spectrophotometer.  These analyses were performed using the Cline Method, 

which was observed to be the most reliable methodology of those available (Reese et al., 

2009). 
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Figure 5.  Photograph showing the Jones Reductor Column with CrCl3 undergoing 
reduction (turning from a shade of dark forest green to the bright blue as seen 
above). 
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4. EVALUATION OF NATIVE MICROBIAL COMMUNITIES RESPONSE TO 

GEOCHEMICAL PERTURBATIONS 

 

Microorganisms play a fundamentally important role in the biogeochemical 

cycling of iron in groundwater systems by utilizing available electron donors and 

acceptors for anaerobic respiration.  Often, subsurface systems can experience influxes 

of electron acceptors and donors due to changes in the hydrologic conditions of the 

system.  However, when a system changes and the subsurface solution becomes 

perturbed with an electron acceptor, little is known about how the native microbial 

communities respond to this influx.  Furthermore, little is known about the initial 

framework of the microbial community.  This is an important attribute as it is necessary 

to understand the initial structure of the microbial community in order to understand how 

the community changes once a perturbation is introduced.  One reason why this has yet 

to be studied is because no experimental apparatus has been devised that will allow an in 

situ test to occur to observe the outcome of a community’s response to a perturbation in 

its native environment.  To gain a better understanding of a native microbial 

community’s response to an influx of iron oxide rich solution, an enclosed microbial 

community was exposed to a test solution amended with ferrihydrite as an electron 

acceptor, and lactate and acetate as electron donors.  The testing process for this 

experiment used an apparatus called a Native Organism Geochemical Experimentation 

Enclosure, or NOGEE, designed and fabricated by Erik Smith under the direction of Dr. 

Jennifer McGuire (TAMU).  Through the use of the NOGEE the rate at which the 
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microbial community was able to reduce the ferrihydrite was studied, and the initial and 

final microbial community makeup was analyzed using DNA and RNA genetic analysis. 
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Figure 6.  Depiction of NOGEE broken into two sections.  
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4.1 METHODS 

Task 1: Fabrication of NOGEEs (Performed by Erik Smith) to Allow Microbial 

Communities to Establish a Colony, and be Subjected to Geochemical 

Perturbations 

 The latest version of the Native Organism Geochemical Experimental Enclosure 

(NOGEE) consists of a core compartment (5.33 cm W X 5.72 cm H) that is constructed 

from type 1 PVC.  The core compartment contains a chemically inert polyethylene 

sponge located inside of a shaft of PVC that is glued to the pedestal at the base of the 

core compartment (Figures 6 and 7).  The perimeter of the NOGEE is slotted so that 

water may pass in and out of the NOGEE, allowing the sponge to become colonized 

with microbes.  To prevent sediment from entering through these slots, the 

circumference of the NOGEE is covered with a plastic mesh screening.  The core 

compartment of the NOGEE was attached to a PVC pipe (5.33 cm W X 1.52 m H) that 

extended through the wetland sediment to the surface of the water.  Contained inside the 

PVC pipe is another PVC pipe of smaller dimensions that is secured over the shaft 

containing the sponge.  This pipe closes off the sponge, preventing the flow of wetland 

water from passing through the outer perimeter of the NOGEE and entering into the area 

where the sponge is in repose.  The inner shaft was fitted with two tubes; one (Figures 6 

and 7) allowed the introduction of amended test solutions into the enclosed chamber, and 

the other served to remove all fixed solutions from the chamber after a regulated number 

of days.   
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Figure 7.  Diagram of NOGEE design during colonization stage. 
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 When the NOGEEs were deployed, they were implanted completely through the silty 

clay layer until they were seated just past the surface of the sand (aquifer) layer (Figure 

7).   

 

Task 2: Prepare Ferrihydrite to Use in Amended Test Solution for NOGEES 

 Prior to performing field research, 2-line ferrihydrite was made following the 

original methodology of Schwertmann and Cornell (2000) with slight amendments made 

by Raven et al., (1998) (Raven et al., 1998; Schwertmann and Cornell, 2000).  The 

different phases of ferrihydrite are characterized (in name) by the number of XRD peaks 

they possess (Schwertmann and Cornell, 2000).  In addition, the number of peaks 

correlates to the crystallinity of the ferrihydrite, i.e. more peaks result in a more 

crystalline form of ferrihydrite.  Therefore, the ferrihydrite made for this experiment 

only had two XRD peaks at a d-spacing of 2.4 and 1.5 Å, as shown in the Figure on page 

29, and was the most amorphous form of ferrihydrite.  The d-spacing corresponds to the 

x-axis (º2θ) through Bragg’s Law, Equation 1. 

 

Equation 1. 

nλ = 2dsinθ 

 

where n is an integer representing the atomic layer of the mineral where diffraction has 

occured, λ is the wavelength of the incident X-ray beam (λ = 1.0 Å), d is the interatomic 

spacing in angstroms and θ is the diffraction angle.  Each mineral has its own set of 
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characterizing d values and related intensities.  For 2-line ferrihydrite the 2θ values that 

correspond to the d-spacing values of 2.4 and 1.5 Å are 37 and 62, respectively.   

The method to make the 2-line ferrihydrite began with making a 500 mL solution 

of 0.2 M Fe(NO3)3∙9H2O in a volumetric flask, which was then emptied into a 1L 

Nalgene stock bottle and placed onto a stir plate.  While the solution underwent vigorous 

stirring, 276 mL of 1 M KOH was added to the solution.  The KOH was added at a fixed 

rate of roughly 50mL/min from 100 mL burette.  With the final 10 mL of KOH added 

dropwise, the pH of the solution was titrated, using a burette, to 7.50.  After reaching the 

desired pH, the solution was left alone for thirty minutes while still maintaining a 

vigorous stirring to assure complete mixture.  This step was performed to ensure that the 

pH of the solution was at equilibrium.  Following the equilibration of the pH, the 

solution of ferrihydrite was divided into four 250 mL Nalgene stock bottles.  Nanopure 

water was added to each bottle to wash the suspension as well as to make them all of 

equal weight.  The bottles were then centrifuged at 2000 rpm for two hours.  After 

centrifugation, the supernatant was decanted and each bottle was refilled with fresh 

Nanopure water, hand agitated, and placed on a vortex to assure the pellet was broken up 

and thoroughly mixed with the Nanopure water.  The new solution was then centrifuged 

again.  This process was repeated 4 more times.  The purpose of this process was to rinse 

the congealed ferrihydrite of any nitrate analyte remaining in the solution.  After the last 

two rounds of centrifugation, a CheMetrics Nitrate 1 VacuVial was popped to confirm 

the removal of the nitrate.  Once the nitrate level was below the limit of detection, the 

ferrihydrite contents of the four bottles were placed into one 250 mL bottle which was 
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centrifuged one more time to remove all ferrihydrite particles from suspension in the 

Nanopure water.  Before placing the sample in the refrigerator at 2o C as suggested by 

Raven et al., (1998), a small portion of ferrihydrite was then removed from the bottle 

and freeze dried.  This process was performed to prepare the ferrihydrite for powder 

analysis on the X-ray emission microscopy Electron Microscope Cameca SX50 as well 

as the X-ray Diffraction Spectrometer (XRD).  The X-ray emission microscopy analysis 

was performed under the direction or Dr. Ray Guillemette from Geology & Geophysics, 

TAMU.  These analyses were used to confirm the identity and purity of the 2-line 

ferrihydrite.  Due to a malfunction in the X-ray emission microscopy Electron 

Microscope Cameca SX50, a qualitative analysis of ferrihydrite was unable to be 

performed.  However, previous analyses of ferrihydrite samples using the same 

methodology had been performed by Susan Báez Cazull.  Those analyses were used in 

comparison, quantitatively, to the sample of interest.  These comparisons were within 

numbers expected of previous ferrihydrite data, and thus it was concluded that the 

sample was in fact ferrihydrite.  Figure 8 displays the results found from the XRD 

analysis, which matches the XRD analysis that was given by (Schwertmann and Cornell, 

2000). 
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Figure 8.  XRD analysis of ferrihydrite.  X-axis scale is in º2θ, Y-axis is in intensity 
(I). 
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Task 3: Perform Experiments Introducing Amended Test Solution into Each 

NOGEE and Evaluate the Microbial Community’s Response to the Geochemical 

Perturbations 

 Six weeks prior to performing field research, the NOGEEs were pounded into the 

wetland to allow a sufficient incubation period.  Along with the NOGEEs, six blank 

wells (D1-D6), similar in style to drive point wells and containing only sponges, were 

driven into the ground (Figure 9).  The blank wells consisted of a PVC pipe connected to 

a permeable drive chamber containing a chemically inert polycarbonate sponge (Figure 

10).  The blank wells served the purpose of allowing DNA analysis to be performed on 

the microbial communities without the introduction of geochemical perturbations.  

Before removing the blank wells from the wetland, wetland water contained in the 

internal chamber was removed from each well and sampled for the geochemical 

parameters.  A peristaltic pump was used to remove this water.  The geochemical 

parameters collected for each blank included sulfide, iron, anions, cations, organic acids, 

ammonium, alkalinity, methane and DOC.  This data can be found in Appendix B.   
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Figure 9.  Actual arrangement of NOGEEs in the field.  Dimensions of the platform 
were roughly 1.52 m L X 1.21 m W.  NOGEEs were 5.08 cm in diameter and were 
spaced in a circular arrangement, approximately 0.46 m in diameter.  The spacing 
between the NOGEEs was roughly 6.35 cm.  The Dummy NOGEEs were 1.27 cm in 
diameter and were interspersed between the larger NOGGEs as seen above.   
 
 
 The first step in beginning the experimentation was to find a well at the sand 

layer (Figure 7) with low sulfate concentrations and an ample flow rate.  Multi-level 

sampler (MLS) 38-6 (Figure 10) was found to have a copious source of groundwater for 

producing the test solutions that would be used throughout the experiment.  Dissolved 

oxygen, pH, conductivity, temperature, and redox potential were measured on the 
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groundwater extracted from MLS 38-6 using a 600 XLM YSI Hydrodata 

multiparameter.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 10.  Layout of the different collection sites located at the Norman Landfill 
Research site.  MLS 38, highlighted with a circle, is the sampling well of interest for 
this research project.   
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Creating the Amended Solution 

 An amber bottle, used as the mixing chamber for the amended solution, was 

placed in an ice-filled cooler to preserve the subsurface temperatures of the groundwater.  

Both the cooler and the amber bottle were then filled with argon gas to displace any 

oxygen, thereby preventing any oxidative processes.  Once sufficiently filled with argon 

gas, the amber bottle was filled with 3L of groundwater pumped from MLS 38-6.  

Acetate (60 mg/L) and lactate (300 µl) were added to the solution as electron donors.  In 

addition, bromide (100 mg/L) and ferrihydrite (130 mg/L) were added to the solution to 

act as a conservative tracer and electron donor, respectively.  The sulfide NOGEEs 

utilized the same mixture, only exchanging 100 mg/L sulfate for the ferrihydrite.  For the 

control NOGEEs, a test solution consisting of only groundwater and bromide was made.  

Once all of the amendments were added to the test solution, the amended solution was 

inverted multiple times for homogenization.  Initial test solution (ITS) samples were 

taken to analyze for geochemical parameters.  Finally, the amended solution was 

transferred into a tedlar gasbag to be pumped later into the NOGEE. 
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Addition of Amended Solution to NOGEEs 

 To prepare the NOGEEs for the addition of test solution the inner pipe (Figure 7) 

was lowered into position, completely sealing off the inner chamber.  This process was 

operationally defined as seating.  Each of the NOGEEs was seated by hand, meaning the 

inner PVC pipe was driven down over the internal chamber to seal off the compartment 

(Figure 6).  In total, six NOGEEs were seated, two for each control (C), iron (I), and 

sulfate (S) test.  The remaining three NOGEEs were pulled from the wetland, their 

sponges removed, and preserved on dry ice for DNA testing.  Once the NOGEEs were 

securely seated, the outlet tube was connected to the 6-channel peristaltic pump tubing 

while the inlet tube was attached to a tedlar bag filled with argon gas, to prevent any 

oxygen from entering the system while fluids were being removed.  The peristaltic pump 

was activated and 6 mL of solution was removed to clear the tubing of any oxygen-

contaminated fluid.  Subsequently, a clean syringe and filter were made ready and 

samples of the groundwater solution that became trapped in the internal chamber of the 

seated NOGEE were taken for geochemical analyses.  This procedure was followed 

again at a later time when the incubated test solution was removed from the NOGEE. 

 The addition of the amended test solutions occurred by connecting the tedlar 

gasbag containing the test solution to the inlet tubing of the NOGEE via a 6-channel 

peristaltic pump.  The amended test solution was pumped into the NOGEE until 100 mL 

of solution was expelled from the outlet tube.  Once the NOGEE was sufficiently filled 

with the amended test solution the inlet and outlet tubing were folded over and taped 

closed to prevent any oxygen from entering the tubing.    
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 The process outlined occurred five times in approximate 48-hour increments, 

over a period of eleven days.  Additional test solution was added approximately every 48 

hours to ensure that the microbial community never ran out of electron donors or 

acceptors to utilize in their redox processes.  The purpose of performing this research 

was to see how the microbial community in each NOGEE would respond to the addition 

of a geochemically perturbed solution.  The polycarbonate sponges contained in the 

internal chamber of each NOGEE were extracted and preserved at the end of the 

experiment for DNA analysis of geobacter (a proxy for Fe-reducers),  to determine how 

the microbial community within each NOGEE reacted to the addition of the ferrihydrite 

amended test solution.  Mary Voytek and her lab group performed the DNA and RNA 

analysis at the USGS in Reston, Virginia.   
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5. RESULTS AND DISCUSSION 

 

5.1 SEQUENTIAL EXTRACTIONS OF IRON PHASES 

Figure 11 is a graphical representation of the data contained in Table 6; which 

displays the concentration in parts per million (ppm) and types of iron (III) phases in 

each section of the extracted soil column.  As seen in Figure 11, the total concentration 

of iron (III) in each section varied greatly due to the type of soil contained within it.  A 

detailed schematic of the core, descriptions and vertical placement of the soil layers, and 

the vertical location of each section is illustrated in Figure 3.  Due to the vast difference 

in concentration of iron (III) in each section, which ranged from 2144 ppm in Section 6 

down to 201 ppm in Section 5, Figure 12 was included.  Figure 12 shows the percent 

total concentration of each iron (III) phase in a section based on the total concentration 

of iron (III) in the given section, and indicates which section(s) contained the largest 

percentage of each iron (III) phase. 

The results from the sequential extractions indicate that iron (III) phases vary 

dramatically with depth within the wetland.  This is largely due to the vertical layering 

of the soil.  Sections 1 – 3 are composed of fine grained silt with many organics and 

have high concentrations of iron (III).  Roden and Wetzel (1996) discovered similar 

trends in the distribution of total iron (III) in the organic upper layers of a wetland 

system.  Sections 4 and 5, Figure 11, are composed of mainly coarse-grained sand and 

contain the smallest concentration of total iron (III) phases.  These two sections are 

contained within the sand layer, which contributes freshwater recharge to the system and 
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acts as a shallow aquifer.  Baez-Cazull (2007) hypothesized that the shallow aquifer was 

connected hydraulically to the surface wetland.  The low iron (II) found in the surface 

water, (Baez-Cazull, 2007), coupled with the low organic matter in found this layer may 

contribute to the low concentration of total iron (III) phases discovered in Sections 4 and 

5.  Section 6 is composed of organic rich clay and has the highest concentration of iron 

(III) phases.       

 

Table 6.  Summary of data results from sequential extraction experiment. 
   

Water 
Soluble

Easily 
Exchangeable

Weakly Acid 
Soluble

Easily 
Reducible

Moderately 
Reducible Organic Iron Oxides AVS TRS

Total 

Concentration of 

Iron extracted 

(ppm)

Section 1 0.7 0.7 910.0 160.0 186.7 23.3 36.0 37.23 15.77 1370.40

Section 2 0.4 0.0 950.0 296.7 403.3 49.0 63.7 47.30 13.64 1824.05

Section 3 0.5 0.0 490.0 176.7 326.7 436.7 123.3 200.39 48.07 1802.26

Section 4 1.5 0.0 33.7 35.7 113.3 17.7 42.0 0.00 36.57 280.41

Section 5 0.0 0.0 35.0 21.0 75.0 10.3 12.0 48.23 0.00 201.60

Section 6 0.2 0.0 760.0 106.7 496.7 196.7 416.7 120.28 47.49 2144.60
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Figure 11.  Concentration (ppm) results of sequential extractions displayed with 
depth.  Section 1 represents the sediment-water interface.  Data are presented in 
parts per million (ppm) of iron (III) phases extracted for each section.  Asterisks (*) 
represent concentrations that are so minute they are unable to be seen in the graph 
above.   
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Figure 12.  Percentage of total concentration results of sequential extractions 
displayed with depth.  Data are shown in percentage of total concentration of iron 
(III) phases extracted for each section.  Asterisks (*) represent concentrations that 
are so minute they are unable to be seen in the graph above.  
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The most abundant iron (III) phase throughout the core was weakly acid soluble, 

which include iron carbonates such as siderite and ankerite.  This iron (III) phase 

composed 41.7% of the total iron (III) in all sections.  The weakly acid soluble forms of 

iron are the most abundant phase in core sections composed entirely or partially of 

organic rich layers (sections 1-3, 6).  These organic rich layers have calcium carbonate 

shells (snails, ostracods and bivalves; Welsh, 2007), as well as a high carbon content that 

can contribute to the formation of ankerite and siderite, which are iron carbonates.  The 

second most abundant iron (III) phase in the core was moderately reducible, which 

composed 21.01% for the total iron (III) in all sections.  Moderately reducible iron 

oxides constitute the dominant percentage in the coarse sand layer (sections 4 and 5; 

Figures 3 and 12).  The influx of more oxygenated, anaerobic water into the sand layer 

via the aquifer engenders the possibility that sections 4 and 5 were more abundantly 

filled with the moderately reducible iron oxide phases due to the coupling of dissolved 

oxygen with any existing reduced iron.  The least abundant iron oxide phases were the 

water soluble and easily exchangeable phases, with 0.04 % and 0.009% of the total iron 

(III) in all sections, respectively.  Because of these low concentrations, these iron phases 

are indiscernible in Figures 11 and 12. 

It was hypothesized that easily reducible iron (III) phases would be a dominant 

iron oxide phase utilized by iron-reducing bacteria at the sediment-water interface 

section of the core as well as an important iron oxide phase throughout the core.  Larsen 

and Postma (2001) found that easily reducible iron (III) phases were the dominant 

terminal electron accepting iron phases.  In a later study, Bonneville et al., (2004) 
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concluded that other variables such as surface area, crystallinity, and impurity content, 

affected the preferential order in which iron reducing bacteria selected iron (III) phases 

for reduction.  The research conducted in this study showed that easily reducible iron 

(III) phases were present in all sections and constituted the third largest percentage 

(10.4%) of iron (III) phases (Table 6).  Easily reducible iron (III) phases were an 

important electron accepting phase; however, most likely not the dominant terminal 

electron accepting iron phases in the wetland-aquifer system.   

Acid volatile sulfides (AVS) and total reduced sulfides (TRS) were analyzed 

using the Cline Method on a UV spectrophotometer.  The results indicated that AVS and 

TRS occurred in most sections of the soil column, as shown in Table 6.  AVS was found 

in silt sections (sections 1, 3) and in the lower sand layer (5) as shown in Figure 11; with 

no detectable AVS presence found in the upper coarse sand layer (section 4).  The 

largest concentration of AVS was contained at the bottom of the upper silt layer in 

section 3 (200.39 ppm).  Detectible concentrations of TRS were found in silt sections (1, 

3, and 6) and in the upper coarse sand layer (section 4) as displayed in Figure 11.  The 

lower coarse sand layer (Section 5) contained no TRS.  The largest amount of TRS 

(48.07 pm) was found in Section 3. 

The validity of the acquired results for both the AVS and TRS phases are 

questionable.  This is due to the late discovery that the samples needed to be titrated with 

HCl acid prior to analysis on the spectrophotometer to remove suspended particles.  The 

original soil column samples had degraded past the point of yielding usable data upon 
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discovery of the missed step.  Because of this, no accurate data for the concentrations of 

either AVS or TRS could be obtained.   

The qualitative findings from the XRD analysis (Table 7) correspond reasonably 

well to the quantitative results determined through sequential extractions shown in 

Figures 11 and 12.  Comparing the results from the two methods, it appears that the 

sequential extractions were able to positively identify all iron phases (e.g. water soluble, 

easily exchangeable,  weakly acid soluble, etc.) present within each section of the core; 

however, was not able to identify the specific iron (III) minerals present within each 

phase (e.g ankerite, siderite, hematite, etc.).  The XRD analysis, on the other hand, was 

able to positively identify several specific iron (III) minerals present within each section 

of the core, but was not able to identify an iron (III) mineral that corresponded to each 

iron (III) phase  (Figures 11 and 12, Tables 6 and 7).  The results from the XRD; 

however, more accurately identify the individual minerals present within each iron (III) 

phase for a given section.   

When analyzing the data from the XRD, there were two classifications of 

minerals found:  minerals “definitely present” and minerals “possibly present” (Table 7).  

Minerals that were “definitely present” matched all peaks from the XRD profile graph, 

and minerals that were “possibly present” matched at least the three strongest peaks, but 

not all peaks.  The XRD profiles for each section and peaks for each mineral can be 

found in Appendix A. 
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Table 7.  Qualitative findings of XRD results.  Peaks corresponding to each mineral 
species are located in Appendix B. 
 

Definitely Present Possibly Present
SECTION 1 Maghemite (Moderately Reducible) Hematite (Iron Oxides)

Goethite (Iron Oxides) Ferrihydrite (Easily Reduced)
Feroxyhyte (Easily Reduced)

SECTION 2 Maghemite (Moderately Reducible) Feroxyhyte (Easily Reduced)

SECTION 3 Magnetite (Moderately Reducible) Feroxyhyte (Easily Reduced)
Ferrihydrite (Easily Reduced)

Ankerite (Weakly Acid Soluble)

SECTION 4 Hematite (Iron Oxides) Ferrihydrite (Easily Reduced)
Maghemite (Iron Oxides)

SECTION 5 Ferrihydrite (Easily Reduced)

SECTION 6 Magnetite (Moderately Reducible) Maghemite (Moderately Reducible)
Ferrihydrite (Easily Reduced)
Feroxyhyte (Easily Reduced)

Ankerite (Weakly Acid Soluble)  
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 Figure 13.  Depth-concentration profile for ammonium. 
 
 
 
Ammonium 

The ammonium-iron redox cycle has recently been found to constitute an 

important cycle in bioremediation processes (Chapelle 2001).  Ammonium originates in 

the soil as a result of microbial decomposition of organic acids (Schlesinger 1997).  

Once released into the soil it can be affected by a variety of processes, such as uptake by 

plants, microbial immobilization (Schlesinger 1997), oxidation by microbes (Weber 

2006), or reduction by microbes (Clement et al., 2005 and Weber 2006).  Clement et al. 

(2005) studied the relationship between ammonium and iron (III) and found that 

ammonium is coupled to the reduction of iron (III).  Their findings showed that iron (III) 

would become reduced to iron (II) while ammonium became oxidized to nitrite, 

(Equation 2). 
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Equation 2. 

NH4
+ + 6 FeOOH + 10H+  NO2

- + 6 Fe2
+ + 10 H2O   

 

However, Li et al., (1988) and Weber et al., (2006b) found that ammonium ultimately 

became oxidized to a final product of nitrate.  In addition to this processes, the reverse 

processes has also been found to be successfully achieved by microbes (Weber et al., 

2006a; Weber et al., 2006b).  Whereby, microbes are able to reduce nitrate to 

ammonium in conjunction with the oxidation of iron (II) to iron (III).   

Due to a limited supply of porewater solution available in the upper portion of 

the core, ammonium was not measured in sections 1 and 2 (Figure 13).  Despite the lack 

of samples, it can be concluded from previous studies (Báez-Cazull et al., 2007; 

Cozzarelli et al., 2000) that ammonium would be present in these two sections from both 

active microbial cycling of wetland organic matter and through transport from the 

landfill leachate plume.  The high levels of ammonium discovered in Sections 3 – 6 of 

the soil column are consistent with nitrate reduction, yet nitrate levels throughout the soil 

column were below detection except in Section 1, Figure 14b.  Sections 3 through 6 of 

the core show a general increase in ammonium with depth.  Three alternatives are 

available that could explain this occurrence.  The first alternative is that the increase in 

ammonium with depth is possibly an abiotic result of upward ammonium transport from 

the landfill leachate plume.  Furthermore, concentrations of ammonium will most likely 

continue to increase with increases in depth as the heart of the plume is approached.  

These results are analogous to the findings of Lorah et al., (2009).  The second 
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alternative to explain the increase in ammonium with depth would be that this process is 

biotically charged and is a result of microbial cycling of iron and ammonium as 

mentioned above.  Looking at iron (II) concentrations, NO3
- concentrations, and 

ammonium concentrations collectively, it can be seen that iron (II) becomes depleted 

along with the NO3
-, while the ammonium increases.  This inverse relationship between 

the iron (II) and nitrate and ammonium suggests a microbially mediated redox process is 

at work.  The last alternative is that the increase in ammonium with depth is a 

combination of both the abiotic and biotic processes explained above.  This is the most 

likely alternative as indicators for both processes are present.  As seen in Figure 14a and 

14c, high concentrations of chloride and ammonium were present throughout the soil 

column, confirming that landfill leachate contaminates were present.  Also, the decrease 

in iron (II) and subsequent increase in ammonium contributes to the strong possibility 

that a microbially mediated redox process was occurring.  The degree to which each of 

the processes contributed to the concentrations of ammonium throughout the core, 

however, is not known.  
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Figure 14.  Depth - concentration profiles for components of the anion geochemical 
parameter.  14a represents chloride concentrations with depth.  14b represents 
nitrate concentrations with depth.  14c represents sulfate concentrations with 
depth.  14d represents reduced iron concentrations with depth.  14e represents both 
reduced iron and sulfate concentrations with depth.   
 



 

 

48 

Anions, Iron (II), and Sulfate 

 Concentrations for chloride (Figure 14a) were significantly higher than any of the 

other anions, peaking at a maximum value of 683 ppm.  These high concentrations of Cl- 

within the core, which were in excess of 300 ppm, indicate the possible presence of 

leachate in the system from the nearby leachate plume.  It is likely that the concentration 

of Cl- will increase with depth and, similar to the concentration of ammonium, might 

peak at the center of the contaminate plume (Báez-Cazull et al., 2007).  Recent studies 

have found that Cl- can be used as a tracer to indicate the presence of leachate 

contaminated waters (Báez-Cazull et al., 2007; Grossman et al., 2002; Lorah et al., 2009; 

Roling et al., 2001; van Breukelen and Griffioen, 2004). 

Figure 14c illustrates that nitrate is present in the uppermost section of the core 

with a concentration of 9 ppm.  However, the concentration of nitrate decreases to zero 

in the remaining sections of the core.  Nitrate, according to thermodynamics, should be 

one of the first alternate electron acceptors to be utilized by anaerobic bacteria in anoxic 

aquifers, leaving ammonium as the primary nitrogen species in the system.  Ammonium 

originates from both active microbial cycling of wetland organic matter and transport 

from the landfill leachate plume (Báez-Cazull et al., 2007; Cozzarelli et al., 2000).  The 

source of the initial show of nitrate at the surface likely results from surface run off of 

agricultural fertilizers (Knox and Canter, 1996). 
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Section 1 -442.1 bdl
Section 2 -527.8 bdl
Section 3 -552.7 bdl
Section 4 -563.9 bdl
Section 5 -537.4 bdl
Section 6 -544 bdl

H2S  Detction Results (mV)

Table 8.  H2S detection Result (mV) measured for each section of the core.  All 
results for H2S were below the detection limit (bdl) (< 0.001 ppm).   

 

 

 

 

 

 
 
 

The change in concentrations of sulfate and iron (II) with depth are shown in 

Figures 14d and 14e, respectively.  Studies by Báez-Cazull et al., (2007) and Koretsky et 

al., (2003) found similar sulfate and iron profiles in wetland environments.  Sulfate, 

which is an indicator of oxidative processes, is relatively low in the first section of the 

core.  However, iron (II) is at its highest concentration in the same section.  Moving 

down the core, the sulfate concentrations begin to increase while the iron concentrations 

start decreasing with increasing depth.  At the same time, Table 8 reveals that no sulfide 

was present throughout the core.  These contrasting quantities may indicate the 

occurrence of a redox process whereby reduced iron (II) phases became oxidized into 

iron (III).  Results of previous studies support this hypothesis (Baez-Cazull et al., 2008; 

Hyacinthe and Van Cappellen, 2004; Luther III et al., 1992).  The highest concentration 

of sulfate, which occurred at a depth of 40 cm at a concentration of 108 ppm, possibly 

resulted from a recharge event in the sandy section (aquifer) of the core.  Scholl et al., 

(2006) associated high concentrations of sulfate with recharge events in aquifer 

environments.  A significant recharge event would bring an influx of more oxygenated, 



 

 

50 

anaerobic water into the system enhancing the ability of redox processes to occur.  At 

this section of the core, there is also a complete lack of any iron (II), which further 

confirms that a significant recharge event occurred.  The findings of the sequential 

extractions, i.e. a high percentage of moderately reducible iron (III) phases, coupled with 

the results from the geochemical analysis, i.e. undetectable amount of iron (II); support 

the earlier hypothesis that the sand layer contained more crystalline ferric iron.    

 

  
15a      15b  
 

  
15c      15d 
 
Figure 15.  Depth - concentration profiles for components of the organic acid 
geochemical parameter.  15a represents the concentrations of formate with depth.  
15b represents the concentrations of acetate with depth.  15c represents the 
concentrations of lactate with depth.  15d represents the concentrations of 
propionate with depth.   
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Organic Acids 

Throughout the depth profiles, the organic acids generally decrease with depth, 

with the exception of propionate (Figure 15).  The highest concentrations for each of the 

organic acids are 240 ppm at a depth of 50 cm, 24 ppm at a depth of 30 cm, and 220 ppm 

at a depth of 10 cm for formate, acetate, and lactate, respectively.  Propionate was not 

detected at the depths studied in this research.  The presence of the organic acids at the 

sediment-water interface is likely due to the degradation of the organic matter in the 

upper sediment layers of the slough.  Due to the availability of electron acceptors at 

depth within slough sediments (Figure 15), the decreasing amount of organic acids may 

reflect microbial oxidative processes occurring; whereby organic acids are becoming 

depleted as they are oxidized into CO2 by microbes (Chapelle 2001). 

 

5.2 MICROBIAL COMMUNITIES’ RESPONSE TO GEOCHEMICAL 

PERTURBATIONS VIA NOGEES 

Two main findings are presented in this section: a microbial communities’ 

response to geochemical perturbations, Figures 16 and 17 along with Table 9, and a 

DNA analysis to determine the amount of growth of geobacter due to geochemical 

perturbations, Figure 18.  Figure 16 shows the concentration of iron (II) in the initial test 

solution (green line) and after exposure to the microbial communities in NOGEE I1 

(blue line) and NOGEE I2 (red line).  Figure 17 displays the rate at which the microbial 

communities in NOGEEs I1 and I2 can reduce iron (III).  Figure 18 illustrates the 
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density of geobacter present in NOGEEs I1 and I2 as well as the density of geobacter 

present in the blank and dummy wells. 

 

Table 9.  Summary of exposure periods of ferrihydrite amended solution and iron 
(II) concentration results.  
 

ITS I1 9.85
I1-1 71.82 71.82 2.09
I2-1 71.93 71.93 5.28

ITS I2 9.46
I1-2 47.52 119.33 7.32
I2-2 47.57 119.50 8.22

ITS I3 9.46
I1-3 47.70 167.03 15.54
I2-3 47.85 167.35 14.51

ITS I4 7.88
I1-4 47.45 214.48 14.98
I2-4 47.47 214.82 18.80

ITS I5 8.46
I1-5 47.60 262.08 11.94
I2-5 47.35 262.17 19.47

Run 1

Run 2

Run 3

Run 4

Run 5

Cumulative Exposure Time 
to Amended Solutions

Time Exposed to Each 
Test Solution (hrs)

Concentration of 
Iron (II) (ppm)

Run # Iron NOGEEs
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Figure 16.  Iron (II) concentration with time for NOGEE’s I1 and I2.  
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Figure 17.  Iron (III) reduction rate over time. 
 
 

The results of the experiments performed with the NOGEEs are presented in 

Figures 16 and 17, and Table 9 show that over the 11 day period the NOGEEs were 

subjected to the geochemically perturbed solution the microbial communities were able 

to effectively reduce ferrihydrite into an iron (II) phase.  Although, laboratory 

microcosm studies have proven that microbially mediated iron reduction occurs in 

wetland sediments (Albrechtsen and Christensen, 1994; Lovley, 1991; Pulgarin and 

Kiwi, 1995; Roden and Wetzel, 2002; Thamdrup et al., 1993), this is the first time that 

iron (III) reduction has been observed in in situ environments.  Due to inclement weather 

conditions, the first two data sampling periods could not be completed as intended.  

However, previous studies (Chapelle, 2001; McGuire et al., 2002) and extrapolation of 

the data suggest that a lag phase occurred as the microbes adjusted to the introduction of 
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the amended solution.  Following the lag phase, both NOGEE I1 and I2 entered 

exponential growth phase between the first and third data points, as seen in Figure 16.  

Between the third and fourth addition of the perturbed solution, i.e. between data points 

3 and 4, NOGEE I1 (blue line) began to decrease in iron (II) concentration.  This occurs 

at an exposed time of 167 hrs (Table 9) and could indicate that the microbial 

communities inhabiting this NOGEE reached the death phase for that colony.  There are 

several theories as to why this decrease in iron (II) production occurred in similar 

experiments.  A study by Koretsky et al., (2003) found that iron reducing bacteria ceased 

to continue growth in the presence of sulfide reducing bacteria; however, the lack of 

sulfide in the amended solution should have prevented this.  Chapelle et al., (1996) and 

Portier and Palmer (1989) theorized that an increase in the bioaccumulation of toxic 

microbial waste could result in the cessation of growth in a microbial community; 

leading to a death phase and concomitant decrease in iron (II) production.    The 

microbial communities in NOGEE I2 appear to have reached the stationary phase 

following data point 4, as shown in Figure 16.  The slowdown in the production of iron 

(II) could be a result of the bioaccumulation of toxic microbial waste preventing further 

growth of the microbial colony; however this was not sufficiently high during the 

sampling time to begin seeing a decline in the population.   

As seen in Figures 16 and 17, there was an initial decrease in the concentration of 

iron (II) during the lag phase of the iron reducing bacteria.  Emerson and Moyer (1997) 

discovered several strains of bacteria that are capable of oxidizing iron (II) to iron (III).  

A higher initial population of the iron oxidizing bacteria compared to the iron reducing 
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bacteria would explain the low early iron (II) concentration.  The low concentrations of 

iron (II) in the amended test solution compared to the high concentrations of iron (III) 

could possibly lead to a decline in the population of the iron oxidizing bacteria and an 

increase in the population of the iron reducing bacteria, seen in Figures 16 and 17.   

The polycarbonate, chemically-inert sponge that served as a colonization 

substrate within the NOGEE samplers was removed from the inner chamber of the 

NOGEE immediately after the wells were extracted from the wetland.  Sponges were 

immediately preserved on dry ice for molecular assays of microbial community 

structure.  These sediments were analyzed by Mary Voytek (USGS) and her team in 

Reston, Virginia for the quantity of geobacter per nanogram DNA.  Geobacter was 

specifically targeted because it is a known iron-reducing microbial group.  The results of 

this test revealed that microbial communities had colonized on each of the sponges in the 

blank NOGEEs (to) and their communities existed at varying magnitudes (Figure 18).  

Some of the blank NOGEEs showed that a smaller population existed within the 

microcosm when compared to the other blank NOGEEs.  These differences between 

blank wells are likely a result of small scale heterogeneities in the wetland.  Similar 

microbially heterogeneous distributions in aquifer environments have been found in 

other studies (Baez-Cazull, 2007; Báez-Cazull et al., 2007; Baez-Cazull et al., 2008; He 

et al., 2002; Kneeshaw, 2008).  A comparison of the initial amount of 

geobacter/nanogram DNA in the blank NOGEEs (to) to the final amount in NOGEEs I1 

and I2 shows that the iron reducing community specific to geobacter became more 

dominant following an 11 day period of subjection to a geochemically amended solution 
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(Figure 18).  When introduced to a porewater solution amended with ferrihydrite, the 

microbial communities positively responded by expanding their population by a 

significant amount (mean abundance ~1.28E+04 +/- 535.29 copies geo/ng DNA).  This 

was nearly half an order of magnitude when compared to the most populous blank 

NOGEE, and over an order of magnitude when compared to the least populated blank 

NOGEE (mean abundance 4.70E+03 copies geo/ng DNA).  The wells that were 

amended with sulfate (NOGEEs S1 and S2) were not subjected to the amended solution 

of ferrihydrite.  However, their microcosms were still populated with a community of 

geobacter (4.36E+03 copies geo/ng DNA) and showed a similar population to that of the 

blank NOGEEs.  These results support the hypothesis that the microbial communities of 

geobacter will favorably respond to ferrihydrite as an electron donor, thus engaging in 

redox reactions, which ultimately contribute to bioremediation.   
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Figure 18.  Amount of geobacter/nanogram (geo/ng) DNA present in each NOGEE.  
To bars represent results of sponges removed from each blank well.  S1, S2, I1 and 
I2 show results of corresponding NOGEE’s after 11 days of subjection to a 
geochemically perturbed solution amended with ferrihydrite.  These data were run 
by Mary Voytek and her lab group at the USGS in Reston, Virginia. 
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Figure 19.  Acetate concentrations throughout NOGEE experimental procedure. 
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Figure 20.  Bromide concentrations throughout NOGEE experimental procedure. 

 
 
 

Figures 19 and 20 display how microbial communities respond to the 

introduction of acetate and bromide, respectively.  Since the ITS geochemical samples 

were taken prior to being introduced into the well, any variability in either acetate or 

bromide concentrations were most likely due to random error by the researchers at the 

time of preparation.  The acetate concentrations for the given incubation period for 

NOGEEs I1 and I2, shown in Figure 19, fluctuate throughout the experimental period.  

Despite these fluctuations, there was sufficient acetate for the microbial communities to 

remain active.  NOGEE I2 during Run 4 culminated with the lowest concentration of 

acetate.  However, it also produced the second highest Fe III reduction rate, shown in 

Figure 17, concluding sufficient acetate was remaining to fuel a continued, microbially-

driven redox reaction.  He et al., (2002) found that acetate played an essential role as a 

donor in redox processes.  This is reasonable since the targeted microbial growth was 
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aimed toward iron reducing microbial communities which would oxidize acetate in 

association with the reduction of the ferrihydrite (Tor et al., 2001). 

 Bromide was added to the solution to act as a conservative tracer.  Figure 20 

shows that bromide increased about 25% throughout the experimental process.  This 

overall increase is probably a result of an incomplete removal of the amended solution 

after each 48-hr subjection period.  If residual test solution remained in the chamber of 

the NOGEEs after the test solution was removed, it would result in a slow, constant 

increase of bromide with each successive addition of amended test solution.  Over all, 

the bromide acted as a sufficient tracer to indicate that the amended solutions were being 

almost completely removed after each subjection period.    

The remainder of the geochemical parameters that were tested showed no 

significant changes throughout the experiment.  However, these data were recorded and 

can be found in Appendix B.   

 

5.3 AVS AND TRS EXTRACTIONS PREFORMED ON NOGEE SPONGES  

 AVS and TRS extraction procedures were performed on the sponges removed 

from each of the NOGEEs.  The findings from these extractions show that AVS was 

only recovered in the first and second blank wells (Figure 21).  TRS was evolved in 

several more of the NOGEEs.  TRS appeared in four of the six blank wells, all but one 

of the iron NOGEEs, and in all three of the sulfate NOGEEs (Figure 22).  However, 

control NOGEEs showed no TRS present.  Similar heterogeneous distributions in 

aquifer environments have been found in other studies (Baez-Cazull, 2007; Báez-Cazull 
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et al., 2007; Baez-Cazull et al., 2008; He et al., 2002; Kneeshaw, 2008).  Like the AVS 

and TRS results from the sequential extractions, these results are also questionable 

because of the late discovery of the need to titrate samples with HCl.  It is possible that 

not performing this step may have led to a loss in data as well as inaccurate data results.   
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Figure 21.  Concentration (μmol/L) of AVS present in each NOGEE.  
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Figure 22.  Concentration (μmol/L) of TRS present in each NOGEE. 
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6. CONCLUSIONS 

 

The purpose of this research served to gain a better understanding of the 

temporal, spatial, and microbial controls on iron (III) in and around the Norman 

Oklahoma Landfill.  The results of the first part of this study allowed us to understand 

qualitatively, as well as quantitatively, where different iron (III) phases reside with depth 

in the wetland-aquifer system.  It was found that the most abundant iron (III) phases 

throughout the core were the weakly acid soluble iron phases.  The shallow aquifer or 

sandy layers of Sections 4 and 5 presented the lowest amount of iron (III) phases overall 

While these layers had the lowest total concentrations of iron (III) phases, the phases that 

were the most abundant within these two sections were the moderately reducible phases, 

which is probably due to the constant influx of fresh water recharge. 

The NOGEEs were used to discover if microbial communities would respond 

positively to an introduction of geochemically perturbed solutions.  The findings from 

these experiments showed that the microbial communities not only responded to the 

solutions by reducing ferrihydrite to an iron (II) phase, but also increased their 

community population by a significant amount.  The change in reduction of iron (III) for 

NOGEE I1 was a total of 13.45 ppm, increasing from an iron (II) concentration of 2.09 

ppm to 15.54 ppm.  NOGEE I2 had a total change in reduction of 14.19 ppm.  The initial 

concentration of iron (II) for NOGEE I2 was 5.28 ppm and increased to a final 

concentration of 19.47.  Geobacter, the iron reducing bacteria specifically analyzed in 
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this experiment, were found to have increased in population over the eleven day period 

by a mean of 1.28 E+04 +/-535.29 copies geo/ng DNA. 

While this experiment was able to test for the overall change in population of the 

microbial communities, it was unable to account for changes in population as amended 

solution was removed and added to the NOGEEs.  The removal or addition of amended 

solution may have resulted in possible loss of microbes from the polycarbonate sponge.  

This may have introduced a slight decrease in the amount of reduction of iron (III) 

throughout the experiment.  Ultimately, this experiment was able to prove that geobacter 

positively responded to the addition of amended solution through increased iron (III) 

reduction over an extended time period and successfully increased in population.  

However, taking in account the microbial growth rates at each addition of amended 

solution is something that should be considered in future studies. 

This study is the first attempt to perform in situ tests on microbial communities 

in the slough.  This methodology can now be expanded to other study sites and utilized 

by researchers to test microbial communities for their ability to biodegrade contaminates 

and the rates at which they perform these processes.   

These results give us some insight into the iron cycling and controls that occur 

within this system.  However, to gain an even better understanding of this system it 

would be prudent to perform more studies using different variables including, but not 

limited to: 

• Differences between seasonal temperature changes 

• Effects of weather on the system 
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• Amended NOGEEs with other iron oxide phases to explore if the 

microbial communities will respond more favorably to one phase over 

another   

• Quantification of the population and type of each microbial community 

for the NOGEE experiments 
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APPENDIX A  

 

XRD ANALYSIS OF CORE SECTIONS 

 
Table A.  XRD peak values showing the first three highest intensities (I) for iron oxides.  
Lattice spacing was measured in Angstroms (dÅ).   
 
 

Iron Oxide Mineral esitmated 2θ  d(Å) I Iron Oxide Mineral  estimated 2θ  d(Å) I

Hematite 32.80 2.700 100 Ferrihydrite 35.50 2.500 100
34.60 2.591 70 40.60 2.210 80
54.50 1.694 45 46.10 1.960 80

Maghemite 35.70 2.514 100 Feroxyhyte 35.12 2.560 100
63.00 1.474 40 40.30 2.230 85
30.20 2.950 30 54.00 1.700 65

Magnetite 35.40 2.532 100 Schwetmanite 35.11 2.550 100
62.50 1.485 40 26.20 3.390 46
56.80 1.616 30 35.11 2.550 37

Goethite 21.20 4.183 100 Ankerite 30.70 2.910 100
36.80 2.450 50 50.40 1.801 45
33.10 2.693 35 40.40 2.207 30

Lepidocrocite 27.00 3.294 100 Siderite 32.00 2.793 100
36.30 2.473 76 24.40 3.592 30
47.10 1.935 72 53.20 1.731 30

Akaganéite 11.90 7.400 100
28.50 3.311 100
35.30 2.543 80
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Figure A-1:  Section 1 XRD analysis.  X-axis scale is in º2θ,Y-axis scale is intensity (I). 
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Intensity, (I)
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Figure A-2.  Section 2 XRD analysis.  X-axis scale is in º2θ, Y-axis scale is intensity (I). 
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Figure A-3.  Section 3 XRD analysis.  X-axis scale is in º2θ, Y-axis scale is intensity (I).
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Figure A-4.  Section 4 XRD analysis.  X-axis scale is in º2θ, Y-axis scale is intensity (I).
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Figure A-5.  Section 5 XRD analysis.  X-axis scale is in º2θ, Y-axis scale is intensity (I).
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Figure A-6: Section 6 XRD analysis.  X-axis scale is in º2θ, Y-axis scale is intensity (I). 
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APPENDIX B 

 

RESULTS OF GEOCHEMICAL AND MOLECULAR ANALYSIS PERFORMED 

FOR NOGEE EXPERIMENT 
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Table B-2.  Molecular parameters collected during NOGEE experiment.  Below 
detection limit is captured as bdl.   
 

Iron NOGEEs

wet wt. 
extracte

d
DNA yield 

(ng)
dsr/gm 

ext
geo/gm 

ext. mcr/gm ext. dsr/ng DNA
geo/ng 

DNA mcr/ng DNA
to-1 2.07 203.4 2.98E+05 6.95E+05 bdl 3.03E+03 7.08E+03 bdl
to-2 1.99 106.2 1.01E+05 2.74E+05 bdl 1.90E+03 5.14E+03 bdl
to-3 2.10 478.3 9.45E+05 1.80E+06 1.35E+03 4.15E+03 7.89E+03 5.93E+00
to-4 0.60 59.4 7.50E+04 1.49E+05 bdl 7.58E+02 1.51E+03 bdl
to-5 0.60 59.4 7.50E+04 1.49E+05 bdl 7.58E+02 1.51E+03 bdl
to-6 0.60 268.5 5.12E+05 2.28E+06 bdl 1.14E+03 5.09E+03 bdl
S1 0.24 598.5 6.69E+07 1.36E+07 4.97E+03 2.68E+04 5.45E+03 1.99E+00
S2 1.24 1055.2 1.31E+07 2.79E+06 3.54E+03 1.54E+04 3.28E+03 4.16E+00
I1 0.33 102.6 4.92E+05 3.86E+06 bdl 1.58E+03 1.24E+04 bdl
I2 0.33 108.3 9.92E+05 4.32E+06 bdl 3.02E+03 1.32E+04 bdl
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