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ABSTRACT

HW/SW Codesign and Design, Evaluation of Software Framework for AcENoCs :

An FPGA-Accelerated NoC Emulation Platform. (December 2010)

Vinayak Pai, B.E., Visvesvaraya Technological University

Chair of Advisory Committee: Dr. Paul V. Gratz

Majority of the modern day compute intensive applications are heterogeneous

in nature. To support their ever increasing computational requirements, present

day System-on-Chip (SoC) architectures have adapted multicore style of modeling,

thereby incorporating multiple, heterogeneous processing cores on a single chip. The

emerging Network-On-Chip (NoC) interconnect paradigm provides a scalable and

power-efficient solution for communication among multiple cores, serving as a pow-

erful replacement for traditional bus based architectures. A fast, robust and flexible

emulation platform is the key to successful realization and validation of such archi-

tectures within a very short span of time.

This research focuses on various aspects of Hardware/Software (HW/SW) code-

sign for AcENoCs (Accelerated Emulation Platform for NoCs), a Field Programmable

Gate Array (FPGA) accelerated, configurable, cycle accurate platform for emulation

and validation of NoC architectures. This work also details the design, implementa-

tion and evaluation of AcENoCs’ software framework along with the various design

optimizations carried out and tradeoffs considered in AcENoCs’ HW/SW codesign

for achieving an optimum balance between emulated network dimensions and emu-

lation performance. AcENoCs emulation platform is realized on a Xilinx Virtex-5

FPGA. AcENoCs’ hardware framework consists of the NoC built using configurable

hardware library components, while the software framework consists of Traffic Gen-

erators (TGs) and their associated source queues, Traffic Receptors (TRs) along with
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statistics analysis module and dynamically controlled emulation clock generator. The

software framework is implemented using on-chip Xilinx MicroBlaze processor. This

report also describes the interaction between various HW/SW events in an emulation

cycle and assesses AcENoCs’ performance speedup and tradeoffs over existing FPGA

emulators and software simulators.

FPGA synthesis results showed that networks with dimensions upto 5x5 could be

accommodated inside the device. Varying synthetic traffic workloads, generated by

TGs, were used to evaluate the network. Real application based traces were also run

on AcENoCs platform to evaluate the performance improvement achieved in com-

parison to software simulators. For improving the emulator performance, software

profiling was carried out to identify and optimize the software components consum-

ing highest number of processor cycles in an emulation cycle. Emulation testcases

were run and latency values recorded for varying traffic patterns in order to evalu-

ate AcENoCs platform. Experimental results showed emulation speedups in order

of 10000-12000X over HDL (Hardware Description Language) simulators and 14-47X

over software simulators, without sacrificing cycle accuracy.
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CHAPTER I

INTRODUCTION

The shrinking feature sizes and associated technology scaling of the integrated circuits

have brought about integration of large number of processing components on a single

slice of silicon. With rapid advancements in VLSI technology, the computational

requirements across the various application domains have increased significantly. To

meet the high performance requirements of such heterogeneous applications with

reasonable power consumption, the current day System-On-Chip (SoC) architectures

incorporate multitude of general purpose and special processing intellectual property

(IP) cores on a single chip.

Even though the computational capabilities of the processing cores have increased

tremendously, their communicational capabilities have not scaled proportionately.

Due to the ever increasing communication requirements between various on-chip pro-

cessing cores and peripheral modules, design of a robust, power efficient and scalable

communication infrastructure remains one of the key design challenges in implemen-

tation of multicore architectures. Traditionally, shared bus based communication

schemes and point-to-point interconnects were used to achieve effective communi-

cation between the limited number of processing cores [1]. The bus based scheme

was considered to be effective and cost-efficient for handling small scale communica-

tion requirements, while the dedicated interconnects aimed at achieving low latency

communication. However, with scaling of silicon technology, these two widely used

schemes have hit their limitations in terms of scalability, thereby limiting their usage

to interconnecting smaller number of cores [2, 3]. In addition, long dedicated buses

The journal model is IEEE Transactions on Automatic Control.
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and interconnects have become undesirable for use due to high power consumption,

crosstalk and noise interference [4]. Longer wire length implies increased wire delay,

which affects the speed of operation of a circuit. Failure of a bus or a point-to-point

interconnect directly results in system failure, as no alternate paths are present from

source to destination.

A new design paradigm, Network-On-Chip (NoC), proposed by Dally and Towles,

serves as a effective and scalable alternative to bus based and point-to-point schemes

for meeting communication requirements in a system with large number of processing

cores [2]. NoCs offer low latency high bandwidth communication when compared to

the bus based schemes. NoC borrows concepts from the well-established and scal-

able domain of computer networking. NoC primarily consists of network interfaces,

routers and interconnecting links. Interconnecting links can be shared among several

requestors and several links can operate simultaneoulsy, thereby exhibiting high de-

gree of parallelism. NoCs have high fault tolerant mechanism since multiple paths

exist from source to destination. Shorter links imply faster speed of operation and

less noise interference. In recent years, various chip architects have turned to NoCs

for providing reliable, cost-effective and energy-efficient means of communication in

gigascale systems with multiple processing elements. For instance, the brainchild of

Intel’s terascale computing research program, called the Teraflops chip, contains 80

processing cores interconnected in a 2D mesh network configuration [5]. The chip

operates at 5 GHz and is capable of delivering more than one trillion floating point

operations per second. Tilera’s Tile64 processor contains 64 processing tiles connected

in a 8x8, 2D mesh configuration [6].

Due to the stiff competition prevailing amongst several SoC vendors, a great deal

of emphasis has been placed on reduced time-to-market criterion. In addition, the

challenge of dealing with ever increasing communication requirements between the
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SoC components has scaled newer heights. Given this scenario, the validation of the

intercommunication infrastructure between several IPs plays a significant role in the

chip design cycle. Currently, a great deal of research activities are being conducted

on several aspects of NoC design, particularly in the field of exploring various low

latency router microarchitectures, optimized hop-count network topologies, multi-

ple clock domain communication, intelligent adaptive routing algorithms, application

mapping, etc. Hence, there is a vast design space offered by NoCs in the form of router

microarchitecture, routing algorithms, network topologies and flow control schemes.

In short, a fast exploration of the vast feature space offered by the NoCs along with

design validation is vital to arrive at a optimum interconnect configuration required

to meet the processing demands of an application.

A. Thesis Objective

Performing fast and accurate design validations at early stages in the design cycle

provides the designer a critical insight into the possible design and architectural is-

sues, thereby eliminating possible respins of the chip and contributing to significant

reduction in overall design time. Typically, such early stage design space explorations

and validations are performed using either the HDL (Hardware Descriptive Language)

simulators or software simulators and consumes a significant portion of the overall

chip design cycle. However, there are several performance tradeoffs involved with

using such simulators. The performance of simulators can be evaluated using two

benchmarking parameters, its ability to exhibit cycle accurate behavior and its speed

in terms of cycles per second. HDL simulators are cycle accurate in nature but are

extremely slow. Their simulation speeds are measured to be in the range between

3-5 cycles/sec, which is extremely slow for running real time applications. Some of
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the software simulators [7, 8, 9, 10, 11] are not cycle accurate but fast, while other

simulators [12, 13, 14, 15, 16] exhibit cycle accurate behavior but are invariably slow.

Software based cycle accurate simulators suffer from low performance since modeling

parallel nature of hardware using software techniques is an highly inefficient process.

Hence, there is a great demand for validation tools which are both cycle accurate and

fast.

With increasing size of applications and need for faster design validations, Field

Programmable Gate Array (FPGA) based emulators have proven to be an effective

replacements for HDL and software simulators due to their faster validation times

combined with cycle accurate behaviour [17]. These emulators exhibit high perfor-

mance efficiency by making use of actual FPGA hardware to model parallel hardware

structures. The HDL is simulated at actual hardware speeds. Design validation using

such emulators permit the researchers to explore, implement and validate new design

ideas accurately within very short timeframe. It also serves as an ideal platform

for researchers to weigh various design tradeoffs involving speed, area and power con-

sumption. Since actual synthesized HDL is used for validation, such FPGA emulators

permit accurate modeling of various architectural and design issues that may occur

at actual chip operating frequency. FPGA based emulation platforms also contribute

towards reducing the validation time required for hardware-software integration. The

software developers can start testing the real software immediately even before the

actual hardware is ready. This approach can be beneficial in detecting design and

architectural issues early in the design cycle.

Several FPGA based NoC emulation schemes have been proposed in the past.

Achieving greater emulation speeds has been the priority for most of the emulation

schemes [18, 19], but at the cost of reduced emulated network sizes. On the other

hand, there exists schemes which aim at emulating larger dimension networks while
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sacrificing emulation performance [20]. There is a great demand for emulation schemes

which strike an optimum balance between emulation performance and emulation net-

work dimensions. The main contribution of this research is the Hardware/Software

(HW/SW) codesign of a fast, configurable and cycle-accurate FPGA-accelerated NoC

emulation platform, AcENoCs (Accelerated Emulation Platform for NoCs), for val-

idating and evaluating various aspects of on-chip interconnection networks [21]. This

thesis report also details the design, implementation and evaluation of AcENoCs’

software framework. This work discusses critical design decisions taken, various soft-

ware code based optimizations performed on the basis of software profiling results

and tradeoffs considered between emulation performance and emulated network sizes

in AcENoCs’ HW/SW codesign. This work also highlights the reconfigurable fea-

tures available in the emulation platform together with the emulation flow between

HW/SW framework and evaluates the AcENoCs platform on the basis of perfor-

mance improvements and tradeoffs over existing NoC FPGA emulators and software

simulators.

AcENoCs is realized on a Xilinx Virtex-5 FPGA and built using a HW/SW

platform, making efficient utilization of the available FPGA’s hardware resources.

Achieving faster emulation performance together with realization of larger dimen-

sion NoC are the major design goals of AcENoCs. AcENoCs’ balanced HW/SW

framework helps it in achieving an optimum balance between emulation performance

and network dimensions. AcENoCs’ hardware framework is realized using FPGA’s

hardware resources and consists of the NoC built using configurable hardware library

components (routers and links) and connected in a 2D Mesh/Torus configuration.

Given limited FPGA resource space, AcENoCs can support larger dimension net-

works as compared to other FPGA emulators and can operate at speeds greater than

software simulators. AcENoCs’ high emulation performance can be attributed to its
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capability to exploit the parallelism available in the hardware as opposed to the se-

quential nature of software simulators. AcENoCs software framework consisting of

the Traffic Generators (TGs) and their associated source queues, Traffic Receptors

(TRs) and statistics analysis models, and dynamic emulation clock generator is im-

plemented on an on-chip soft IP processor. The software framework is designed for

leveraging the greater state space resources available to software and for freeing ad-

ditional FPGA resources that would have been consumed if the traffic models were

implemented using FPGA’s hardware. The software framework controls the emula-

tion process, allows for easy reconfiguration of emulation parameters and defines a

plug-and-play interface for realizing different router architectures and NoC topologies

on the emulation platform.

The contributions made by this research work are as follows :

1. HW/SW codesign of a fast, cycle accurate and flexible FPGA-accelerated NoC

emulation platform, called AcENoCs, for exploring the vast NoC design and

feature space and validating on-chip networks.

2. Design of AcENoCs’ software framework consisting of two different types of TGs

capable of supporting synthetic and realistic workloads, software based dynam-

ically allocated source queues/FIFOs (First In First Out), TRs and latency

analysis modules and dynamically controlled emulation clock generator.

3. Support for configuring several NoC emulation parameters in software with

minimal effort. Support for interfacing the software framework with different

configurations of NoC topologies and router microarchitectures.

4. Integrated and well-defined emulation flow between various HW/SW events

during an emulation cycle.
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5. Several software framework based optimizations carried out on the basis of

software profiling results, leading to improved emulator performance.

6. Evaluation of AcENoCs’ performance for different dimension networks under

varying flit sizes, flit injection rates and traffic workload conditions and subse-

quent comparisons/tradeoffs with other existing NoC emulators/simulators.

AcENoCs has been jointly developed by a team of two researchers. It is not

possible to present the hardware and software framework totally independent of each

other. A combined framework is presented in this thesis with a focus on the software

framework design.

B. Thesis Organization

This chapter presents the motivation and contribution made by this research and

serves as an introduction to the content of the thesis. The rest of the thesis is orga-

nized as follows : Chapter II presents an introductory background about NoCs and

presents a brief overview of basic concepts involving on-chip communication networks

together with various NoC architectures, components and terminologies involved in

the design of a simple interconnection network. Chapter III presents the related work

in the field of NoC software simulators and FPGA based emulators. Chapter IV in-

troduces the AcENoCs emulation framework and describes the various components of

the emulation framework along with other system level details. Chapter V presents

the AcENoCs’ software framework, the main contribution of this research work, and

discusses various design space exploration options provided by the software framework

along with design decisions taken for improving emulator performance. Chapter VI

presents the complete HW/SW emulation flow and describes the sequence of HW/SW

interactions taking place in an emulation cycle. In Chapter VII, AcENoCs FPGA im-
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plementation flow for running a complete emulation along with the reconfigurability

options in hardware and software framework are discussed. Chapter VIII examines

AcENoCs’ performance evaluation methodology, emulation performance results ob-

tained and its subsequent comparison with software and HDL simulators. Details

regarding emulation testcase run in order to validate AcENoCs platform along with

the results of software profiling are also presented. Chapter IX presents the summary

of conclusions and future work.
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CHAPTER II

BACKGROUND ON NETWORK-ON-CHIP

This chapter introduces the concept of Network-on-Chip (NoC) and presents the ba-

sic components and architectures involved in the design of a simple interconnection

network. NoC serves as a scalable, low latency alternative to traditional bus based

schemes for meeting communication requirements in an SoC environment. This chap-

ter also presents the various concepts and terminologies associated with NoC com-

munication scheme.

A. Introduction to Network-on-Chip

With rapid advancements in VLSI technology, the number of modules integrated on

a single slice of silicon have multiplied significantly. Present day processor designs in-

corporate multiple processing cores to meet the high performance requirements with

reasonable power dissipation. As a result, providing efficient, low latency communica-

tion between the various on-chip processing elements has become a primary concern

for chip designers. A design paradigm called Network-on-Chip has been proposed

as a solution for interconnection of chip multiprocessors and has emerged as a scal-

able alternative for bus based and point-to-point communication schemes [1]. NoCs

overcome the limitations of bus based schemes by providing a scalable, low latency,

high bandwidth interconnection medium. They can transfer maximum amount of

data within least possible time, and well within cost and power constraints. The

communication between the various nodes takes place in the form of packets. Packet

based communication scheme provisions for sharing of link resources between various

network nodes. NoC can be easily scaled to support communication requirements
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for giga-scale systems with multiple processing cores. They also exhibit lesser wire

delays, resulting in higher speed of circuit operation and have robust fault tolerance

mechanism.

B. NoC Architectural Overview

A basic NoC design consists of several routing nodes interconnected via links. These

routing nodes interface with the processing cores via Network Interface. Figure 1

illustrates the basic structure of a 3x3 mesh configuration NoC along with the various

architectural components.

IP1 IP2 IP3

IP4 IP5 IP6

IP7 IP8 IP9

NI NI

NI

NI

NI NI

NININI

R1 R2 R3

R4 R5 R6

R7 R8 R9 S

S - Switch

IP1-9 - IP Cores

R1-9 - Routers

NI - Network Interface

Fig. 1. Generic 3x3 NoC System Design

IP cores are the processing elements of the chip and are responsible for all the

computations carried out. An IP core may represent a processor, a memory core or

any peripheral device like UART. They are responsible for initiating communication

in a system.
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Network Interface (NI) connects the IP cores to the routing nodes on the inter-

connection network. NI assembles the data from the IP core into packets and injects

them into the network by inserting additional routing information. Packets are fur-

ther broken down into flow control units or flits, the basic units of data transmission.

On the other end, NI also de-assemble the packets received from the network into

data format recognized by the IP cores. Hence, NI helps in decoupling the processing

cores from the network.

Routers are the main building blocks of an interconnection system. They are

responsible for making the decisions involving the path to be taken for routing the

packets to their respective destinations. The routing decisions are made based on the

chosen routing scheme.

Links/Channels are used to interconnect the routers according to a specified

network configuration and provide the raw communication bandwidth in the network.

Flits are exchanged between network nodes through the data links. Dedicated control

links may also be present to exchange flow control information between adjacent

routers.

C. Network Topologies

A network topology defines the arrangement between the routing nodes and inter-

connecting links in a NoC. There are many different topologies available for inter-

connection, but the selection of an optimal topology depends on the required area

cost, power consumption and system performance. Selection of an optimal topology

is a major step in the design of an efficient NoC since the routing and flow control

schemes are dependent on the nature of topology.

The most commonly used network topologies belong to the tori family, also
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called k -ary, n-cubes [1]. These topologies contain nodes arranged in a n-dimensional

grid, with each dimension housing k nodes. Each node is connected to its adjacent

neighbor via a pair of links, one along each direction. Torus and mesh configurations

are examples of k -ary, n-cube topologies. For instance, 3x3 2D mesh can be configured

as 3-ary 2-mesh and 3x3 torus as 3-ary, 2-cube. Each of the nodes can be configured

as a terminal node, acting as source and sink for data communication, or switching

node, for forwarding the packets to the destination. Figure 2 depicts 3x3 2D torus

and 2D mesh network topologies.

00

01

02

10 1000

01

02

11 11

12 12

20 20

2121

22 22

a) b)

Fig. 2. Commonly Used NoC Topologies : a) 3x3 Mesh b) 3x3 Torus

Nodes connected in a torus configuration form a ring structure in each dimension,

with each node connected directly to the adjacent nodes. The nodes along the network

periphery are connected using a wrap-around link. As a result, torus networks display

symmetric characteristics along the network edges, resulting in uniform distribution

of load across the interconnecting channels.

Mesh networks are similar to torus, the only difference being the absence of
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wrap-around links along the network edges. The nodes along each dimension form a

linear array, with each node connected to its neighbor via direct point-to-point link.

Mesh networks are asymmetric along the network edges and are susceptible to load

imbalance problems, especially along the links connecting the central nodes.

D. Routing Algorithms

Routing schemes govern the path taken by a packet in order to traverse from its source

to destination [1]. Routing decisions are made on a per-hop basis at each intermediate

node till the packet reaches its destination. Hence, a packet traversing across the same

source-destination pair may take multiple paths in the network based on the type of

routing algorithm chosen. The type of routing algorithm chosen plays a significant

role in defining the performance of packet switched networks, where routing decisions

are made at each switching node.

A good routing algorithm should be capable of handling anomalies in the traffic

and should be able to distribute the load evenly throughout the network. It should

also aim at reducing the number of hops from source to destination, thereby reducing

the message latency. It should be able to handle faults in the network without affecting

the network throughput.

Commonly used routing algorithms fall under two categories : Deterministic

routing and Adaptive routing [1].

In deterministic routing, packets traverse through the same pre-decided path for

a given source-destination pair. These algorithms are commonly used since they are

easy to implement and can be made deadlock free with minimal effort. However, since

path diversity of the network is not exploited fully, they are incapable of balancing

the load uniformly through the network. Source routing and X-Y dimension ordered
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routing (X-Y DOR) algorithms fall under this category. In source routing, the source

specifies the entire route information to the destination in the packet header. As

the packet traverses through each intermediate node, the route information bits in

the header are stripped off. In case of X-Y DOR, packets are routed first along the

X-direction and then along the Y-direction till the destination is reached. X-Y DOR

is commonly used due to its ease of implementation and capability to avoid deadlocks

by restricting the formation of resource dependency cycles. Figure 3 shows X-Y DOR

for a 3x3 mesh network for a packet traversing from node 00 to 22 and back.

00

01

02

10

11

12

20

21

22

Fig. 3. X-Y Dimension Ordered Routing Example for 3x3 Mesh Network

In adaptive routing, the route taken by packets traversing between a source-

destination pair may vary depending upon the current network state. Information

regarding each router’s buffer occupancies and interconnection link faults are taken

into consideration while making the routing decisions at each intermediate node.

Hence, these algorithms help in reducing congestion and have robust fault tolerance

mechanism. However, they may be susceptible to deadlocks since they use only the

local network state information while making routing decisions. They are highly
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complex to implement.

E. Flow Control

Flow control is a mechanism that governs how the network resources are allocated

to packets transmitted over the network [1]. Network’s resources include channel

bandwidth, buffer allocation and capacity and control state. A good flow control

technique utilizes the network resources in an efficient manner, thereby achieving

high channel bandwidth and low message latency.

Flow control schemes fall under two classes : Bufferless flow control and Buffered

flow control [1]. Bufferless flow control drops or misroutes the packets if the network

resources are not allocated immediately to the requesting packet. Buffered flow con-

trol provides temporary storage for blocked packets waiting for network resource

allocation. Adding buffers in the network nodes decouples the allocation of adjacent

channels, thereby preventing the blocked packets from getting dropped. Buffered flow

control achieves better allocation and utilization of network resources and is the pre-

ferred flow control scheme in majority NoC designs. Allocation of network resources

can be done at a packet level or flit level.

1. Packet-Buffer Flow Control Schemes

In this type of flow control scheme, network resources consisting of buffers and link

bandwidth are allocated to packets.

In store-and-forward flow control, packets are buffered at each intermediate node

till the entire packet is received. The packet is forwarded to the next node only if

there is sufficient storage space available in the downstream node’s buffer to store

the entire transmitted packet. Also, the entire routing link’s bandwidth must be
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reserved exclusively for the packet to be forwarded. Since the entire packet needs

to be buffered before it is forwarded ahead, this scheme suffers from high message

latency overhead.

Cut-through flow control overcomes the high latency overhead in store-and-

forward scheme. The packets are forwarded to its next hop destination as soon as

their headers are received and necessary network resources are acquired. This elim-

inates the need to wait for the entire packet reception prior to packet forwarding,

thereby resulting in high channel utilization and low latency.

However, packet-buffer scheme suffers shortcomings in the form of inefficient

utilization of buffer storage space for packets. Secondly, since the entire link needs to

be reserved till the packet is received in its entirety, other packets waiting to use the

link may suffer from high contention latencies.

2. Flit-Buffer Flow Control Schemes

Here, the network resources are allocated on flit-by-flit basis.

Wormhole flow control is similar to cut-through, except that the network alloca-

tion happens at a finer granularity of flits. On arrival of a head flit at a particular

node, it is immediately forwarded to its next hop destination once it acquires the net-

work resources. Body and tail flits follow the head once they acquire the necessary

resources. Hence, buffer space and link bandwidth required for forwarding only one

flit needs to be allocated. Due to this reason, wormhole scheme utilizes the buffer

space more efficiently. However, networks with wormhole scheme may suffer from

throughput overhead since flits of a blocked packet may acquire several intermediate

links, thereby rendering these links to be unusable for other waiting flits.

Virtual-channel (VC) flow control overcomes the packet blocking and idle channel

bandwidth problem by allowing other flits to utilize the physical link even when a flit
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using the same link has stalled. As a result, VC scheme achieves higher throughput

compared to wormhole flow control. Each physical channel is divided into number of

VCs. Similar to the wormhole scheme, an arriving head flit is forwarded as soon as

it acquires a flit buffer in the downstream node, flit channel bandwidth and a VC in

the physical link connecting the downstream node. Body and tail flits of a packet are

allocated the same VC as its head flit but may not get instant access to the physical

link since flits from other VCs may be contending for the same physical link.

3. Buffer Management Schemes

The main aim of buffered flow control schemes is to provide effective utilization of

the network’s resources without the packet being dropped. To ensure no packets are

dropped, there needs to be some sort of communication between the buffers on the

upstream and downstream node. This communication takes place through a dedicated

control link between two adjacent nodes. The upstream node forwards flits only when

there is sufficient space available in the downstream node’s buffer. Commonly used

buffer management schemes are credit-based, on/off and ack/nack [1].

In credit-based flow control, the upstream node keeps track of number of free

buffer locations (called credits) available per VC in the downstream node. The credit

counter is decremented every time a flit is forwarded to the downstream router. A

credit is sent to back to the upstream router, via control link, once the downstream

node forwards the flit. This causes the credit counter to be incremented. The up-

stream node stops forwarding flits when the credit count reaches zero count.

In on/off flow control, the downstream node sends a signal to the upstream node

in the form of a control bit. This control bit status decides whether the upstream

node is allowed to transmit the flit (on state) or not (off state). The downstream

node sends an OFF status signal to the upstream node once the occupancy of buffers
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in the downstream node crosses a high threshold value. Similarly, ON status is sent

once the downstream buffer level falls below a certain low threshold value. On/off

flow control scheme helps in reducing the amount of upstream signaling.

In ack/nack flow control, upstream node doesn’t maintain any information re-

garding buffer availability status in the downstream node. The upstream node for-

wards the flits to the downstream node and waits for some sort of acknowledgment.

If there is buffer space available in the downstream router, it responds back with a

’ack’ signal to the upstream node. Negative acknowledgment (nack) is sent back in

case the flit is dropped by the downstream node due to lack of buffering space. In

such a scenario, the dropped flit is retransmitted. In any event, the upstream node

must hold on to the flit until it receives an ack from its downstream counterpart.

This scheme is rarely used due to its inefficient link bandwidth utilization.
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CHAPTER III

RELATED WORK

Owing to the need for exploration of the vast design space offered by the NoCs and

for identifying critical design and performance bottlenecks early into the chip design

cycle, several researchers have proposed different kinds of NoC simulation frameworks

and tools. The principle approach followed by these methodologies have focused on

performing detailed and cycle accurate simulations or achieving reduced validation

times (faster simulation speeds) or both. These methods can be broadly classified

into two categories – Software Simulators and FPGA based Emulators.

A. NoC Software Simulators

NoC simulations using software simulators can be performed at different levels of

abstraction. Operating at different levels of abstraction involves tradeoffs between

simulation speed and accuracy. Simulation time increases as we move towards more

cycle accurate and precise simulations. Several System C and HDL based simulation

frameworks have been proposed for performing NoC simulations at system level.

Coppola et al. describe a NoC modeling and simulation framework based on

C++ library built on top of System C [7]. The framework defines a communication

API for performing design space exploration, validation and system level performance

modeling of NoC components at various levels of abstraction. Kogel et al. propose

a modular exploration framework, built using System C, for modeling and evaluat-

ing different types of on-chip network configurations like crossbar topology, shared

bus and dedicated links [8]. This framework, built for system level exploration and

performance modeling of on-chip communication networks, carries out data exchange
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modeling at high levels of abstraction, thereby trading off full cycle accuracy for sim-

ulation speed. Another System C based NoC simulator, NNSE, proposed by Lu et al.

and built for Nostrum NoC, allows the user to explore the NoC architectural space

by configuring various NoC features like topology, flow control, routing schemes, etc.

[9]. It also analyzes subsequent performance impact caused by varying the NoC con-

figurations in terms of latency/throughput and performs extensive design validation

through the use of synthetic and realistic traffic workloads. Pestana et. al present an-

other System C based simulator which uses transaction level model for modeling the

NoC components at higher levels of abstraction [11]. The user needs to specify XML

files to model NoC architectures with varying topology, interconnection links and IP-

to-network mapping. Since modeling is carried out at higher levels of abstraction,

these System C based simulators compromise cycle accuracy for higher simulation

speeds.

On the other hand, several researchers have prioritized full cycle accurate vali-

dations and have proposed simulators with full cycle accuracy but these simulators

suffer from low speed performance. Siguenza et al. propose a VHDL based cycle

accurate simulator for validating Proteo NoC [14]. This simulator allows reconfig-

urable and reusable IP blocks to be modeled into NoC architectures having ring, star

and bus topologies and reports the latency and throughput parameters. Bertozzi

et al. describes a cycle accurate simulator with NoC architecture components and

links modeled in System C, used for verifying custom tailored NoC topologies [22].

OCIN TSIM implements a C++ based cycle accurate simulator for modeling NoCs

but its simulation speed makes it inefficient to execute real application trace work-

loads [12]. Many other cycle accurate simulators like Nirgam [23] and Worm sim [24]

have also been proposed.

In order to increase the simulation speed of cycle accurate simulators, various
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approaches have been proposed. A configurable, mixed framework simulator built

using System C and VHDL is presented by Goossens et al. [13]. The VHDL based

model accounts for cycle accurate simulation but is time consuming, while the Sys-

tem C models are faster than their VHDL counterparts and simulate the NoC at

flit-level and IP-to-network interface at transaction level. Since there are two types

of simulation environments, the user can choose the appropriate environment based

on the type and needs of the application to be validated. However, maintaining dif-

ferent abstraction models for desired tradeoff between accuracy and speed based on

application domain is a difficult task owing to the need for precise synchronization

between these models. A mixed SystemC/VHDL environment, called NoCGEN, used

for modeling and evaluating various aspects of on-chip interconnection networks have

been presented by Chan et al. [16]. It uses a configurable, modularized and synthesiz-

able set of hardware library components to create an NoC architecture with different

router configurations having varying data widths, routing algorithms and flow control

schemes. System C is used to realize the traffic generators and traffic ejectors.

The inherent problem with these software based simulators lies in the sequen-

tial nature of execution. The simulation speed degrades significantly with increase

in network dimensions and with a move towards lower levels of abstraction. This

degradation in simulation speed makes them unsuitable for executing real applica-

tion traffic workloads. Real application traces provide an accurate measure of the net-

work performance. Even though these simulation tools providing accurate measure of

the network performance metrics like latency, throughput and bisection bandwidth,

they are incapable of providing accurate information related to total area occupied

by the NoC architecture along with the impact of area on performance. To arrive

at an optimum NoC configuration for a particular application, a researcher would

want to consider all aspects of interconnect network design in terms of area, speed,
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power consumption and subsequent effect on performance due to variations in these

parameters.

B. FPGA Based NoC Emulators

In recent years, FPGA based emulation schemes have come into spotlight since they

overcome the limitations imposed by the software simulators and allow for faster ar-

chitectural space explorations and detailed, accurate design validations. Genko et al.

propose a HW/SW emulation platform based on Xilinx Virtex-II Pro FPGA housing

an embedded PowerPC processor and emulating a network of six routers [17, 18]. In

order to reduce the overall simulation time, their scheme emulates real processing

core behavior using traffic generator and receptor models. The hardware framework

is comprised of network components forming the network to be emulated, traffic mod-

els and a control module. The configurable and synthesizable NoC components are

generated using Xpipes compiler [25]. Two types of traffic generators, stochastic and

trace based, are provided to support synthetic and trace workloads. The control

module is responsible for synchronizing the various traffic components in the plat-

form. The software running on the embedded PowerPC processor has the capability

to program most of the NoC platform parameters, thereby controlling the entire em-

ulation process. The source queues associated with each processing core is modeled

in hardware and their sizes are statically decided. This results in inefficient utiliza-

tion of the available FPGA provisioned memory in cases where the traffic conditions

are non-uniform, ultimately resulting in premature throttling of packet generation

process. The amount of FPGA hardware resources (look-up tables and flip flops)

consumed by TG/TRs and control logic is expected to increase with increasing net-

work dimension sizes. Since the framework uses hardware based traffic models, any
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modifications/feature additions to these models requires a complete re-synthesis of

the hardware. This can be a time consuming process especially for FPGA devices

with resource consumption close to their capacity. Experimental runs show that the

entire emulation process completes in a matter of few seconds as compared to hours

taken by the simulation approach. Using such a framework allows exhaustive valida-

tion of the NoC by bombarding it with excessively large amount of packets within

a short interval of time, something which is not feasible with software simulation

approach.

Another flexible HW/SW NoC emulation platform for 4x4 mesh network, No-

COP, has been proposed by Liu et al. [19]. NoCOP’s hardware framework is similar

to the one proposed by Genko et al. In order to efficiently utilize the FPGA’s hard-

ware resources, the authors propose an FPGA based scheme without the on-chip

processor. Instead, the emulation system is made configurable and controlled using

external instruction set simulator (ISS) and USB communicator running on a host

computer. USB based communication is used to establish connection between the

external ISS and the traffic models on FPGA. The hardware framework consists of

the network to be emulated, TGs, TRs, packet controller and analysis module and

USB controller, all being implemented on FPGA hardware, thus occupying additional

hardware resources. Since the ISS runs on external host computer, the communica-

tion latency will be high as compared to latencies incurred by an on-chip embedded

soft processor.

Several other schemes have also been presented. Wolkotte et al. [20] present an

FPGA based emulator capable of emulating large homogeneous and heterogeneous

NoCs on a single FPGA. In the emulation framework proposed by Genko et al. [17],

the size of the emulated NoC is limited by the amount of hardware resources available

inside the FPGA. This places a firm restriction on further exploration of NoC design
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space in terms of network dimensions. Scheme proposed by Wolkotte et al. overcomes

this limitation by adapting a sequential style of modeling to emulate a large dimension

NoC. Each router block is executed sequentially, one block per functional clock cycle.

The state of each simulated router block along with its link states are stored in a large

memory and retrieved in the subsequent functional cycles. The hardware platform

consists of an FPGA board and an SoC board containing dual core ARM processors

and an on-chip memory module for storing the router states. A memory interface is

built inside the FPGA to gain access to the stored router states. The dual core ARM

processors split the work of generating and consuming traffic amongst themselves.

The advantage offered in terms of hardware area is visible when homogeneous NoCs

are modeled. For homogeneous NoCs, all routers are identical in design and operate

on the same clock domain. Hence, only one type of router architecture block is

synthesized into the FPGA, resulting in minimal consumption of FPGA resources.

Moreover, there is no restriction on the size of the NoC being emulated. However,

since this scheme doesn’t exploit the true parallel nature of hardware to speed up

simulations, experimental comparisons with System C simulator shows a performance

speed of only 80-300X.

There are other FPGA emulation platform tools like NoCem which explore the

on-chip interconnection architecture in the context of multiprocessor communication

[26]. This platform is capable of emulating memory system architecture and inter-

processor communication architecture. It provides a realistic estimate of the commu-

nication latencies incurred for interprocessor communication as well as for processor-

memory communication. Valle et al. present a highly scalable framework for modeling

and evaluating complex, heterogeneous Multi-Processor SoCs (MPSoCs) in a fast and

cycle accurate way [27]. The framework provides modeling and fast statistics extrac-

tion at three different levels : IP core, memory system and interconnection links.
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Addition of IPs or memories have very minimal effect on emulation speed, thereby

achieving a speedup in the range of 3X as compared to other cycle accurate MPSoC

simulators. Among other commercially available FPGA based emulators, ZeBu-XL

[28] uses multiple FPGA platforms to emulate a large dimension NoC. Inspite of being

fast, these emulators are cost expensive and are not ideal for performing fast design

space explorations due to lack of flexibility.
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CHAPTER IV

AcENoCs EMULATION PLATFORM FRAMEWORK

In this chapter, we introduce AcENoCs emulation platform consisting of the hard-

ware framework and the software framework. We also present system level details

of the embedded platform on which AcENoCs is realized. The hardware framework

consisting of configurable hardware library with NoC components will be presented

in this chapter. The various components constituting the software framework will

be introduced to the reader. More architectural and implementation aspects of the

software framework will be presented in greater details in the next chapter.

A. Overview of AcENoCs Emulation Platform

In chapter III, we examined several NoC software based simulators and concluded

that these exhibited a tradeoff between cycle accurate simulations and the simulation

speed. We also concluded that there is a lack of simulation tools which perform

exceedingly well in terms of speed and accuracy. We also reviewed various FPGA

based NoC emulation tools that serve as an ideal replacement for software simulators

due to their cycle accurate behavior and high emulation performance. Such FPGA

emulation schemes serve as an ideal platform for researchers wanting to explore myriad

design configurations and sort them accordingly based on speed, area and power

consumption.

AcENoCs emulation platform was born out of a need to perform fast and accurate

NoC feature space explorations and design validations and at the same time, emulate

larger dimension network, given limited FPGA hardware resources. AcENoCs is a

flexible, cycle accurate and FPGA-accelerated emulation platform built for running
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fast and detailed NoC emulations [21]. It is designed using a HW/SW framework, can

support larger dimension NoCs as compared to other FPGA based NoC emulators

and can operate at speeds greater than software simulators. Additionally, AcENoCs’

high emulation performance and utility can be attributed to HW/SW codesign op-

timizations performed based on hardware resource evaluation and software profiling

results.

The major design goals of the AcENoCs emulation platform are listed below :

1. Supporting larger dimension NoC : AcENoCs can support larger dimension

NoCs on FPGA when compared with other proposed FPGA emulation schemes

[17, 19]. This can be attributed mainly to the implementation of the traffic

models in software, which gets implemented using FPGA provisioned memory.

This results in freeing of additional FPGA resources: Look Up Tables (LUTs)

and Flip Flops (FFs), hence paving way for implementation of larger dimension

NoCs on the hardware.

2. Fast Emulation Performance : AcENoCs is designed for running fast NoC emu-

lations without sacrificing cycle accuracy. The reason for fast emulation perfor-

mance can be attributed to the fact that the NoC is modeled using the FPGA’s

hardware resources, and hence efficiently exploits the parallel nature of hard-

ware. It can generate more emulation cycles per second as compared to the

software simulators. Our experimental results show a performance speed of

10000-12000X when compared to the HDL simulators and 14-47X when com-

pared with cycle accurate software simulators like OCIN TSIM [12]. AcENoCs

can complete the entire emulation process in a matter of few seconds as com-

pared to software schemes which require significant amount of time.

3. Reconfigurability and Flexibility : Since AcENoCs platform is built for fast NoC
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design explorations during early phase of the chip design cycle, it is an essen-

tial requirement to provide flexibility and reconfigurability options to the end

user. Several features of the hardware framework are made user configurable,

thereby supporting exploration of wide range of router architectures and NoC

topologies. The software framework allows for easy reconfiguration of emula-

tion parameters and defines a plug-and-play interface for integrating different

router architectures and NoC topologies in the emulation platform. The TGs

can support synthetic traffic patterns as well as realistic trace workloads. Any

feature additions to the traffic models can be made with very minimal effort in

software and requires a mere recompilation.

AcENoCs is realized on a Xilinx XUPV5 FPGA board [29]. The XUPV5 board

houses a Virtex-5 (VLX110T) FPGA device. AcENoCs is centered around a HW/SW

framework with the NoC consisting of routers and links, implemented on FPGA hard-

ware, constituting the HW framework and the software running on the MicroBlaze

soft processor constituting the software framework. Among the peripherals found on

the XUPV5 board, UART serial communication interface, 256MB DDR2 RAM, 1MB

SRAM, System ACE compact flash interface and the JTAG programming interface

also form a part of the framework. The hardware and the software framework inter-

act via a register based interface through the Processor Local Bus (PLB). AcENoCs’

HW/SW framework is illustrated in Figure 4.

B. AcENoCs Hardware Framework

AcENoCs hardware framework consists of the on-chip interconnection network to be

emulated . The NoC is constructed using a custom designed hardware library of

configurable NoC components : network routers and its interconnecting links.
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Fig. 4. AcENoCs HW/SW Emulation Framework

Routers can be interconnecting using links according to specified configuration

to realize different network topologies. Several design parameters of the hardware

framework components such as router and link parameters and network configurations

can be configured by the user prior to emulation process, thereby adding flexibility

to the emulation platform. In our current release, the AcENoCs emulation platform

allows the routers to be connected in either 2D mesh or torus topologies.

The communication between the router nodes takes place in the form of packets.

Packets are sub-divided into smaller transmission units called flits. Flits are the basic

units of data transmission and storage. Flits are further classified into head, body
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and tail flits. The head flit contains the the vital routing information required for

a packet to traverse from source to destination. The body and tail flits contain no

routing information and must follow the head flit through the network.

In the present release, AcENoCs supports X-Y dimension ordered routing (X-Y

DOR). As stated earlier, allocation of network resources to a flit in the form of chan-

nels and storage buffers is decided by a flow control scheme. In AcENoCs, the flow

control scheme is user configurable. The current release supports VC flow control

using credit based buffer management. VC buffers help in avoiding network dead-

locks by decoupling the request-reply message path and reserving separate, dedicated

virtual channels for request and reply. They also help in increasing the throughput of

the network by allowing the waiting packets to surpass the blocked packet, thereby

making efficient use of the available channel bandwidth [30].

Table I shows the network features supported by the current release of AcENoCs

for the NoC realized as part of its hardware framework.

Table I. Summary of NoC Features Supported by AcENoCs HW Framework

Network Feature Available Options

Network Topology 2D Mesh and 2D Torus (upto 5x5)

Routing Scheme X-Y Dimension Ordered Routing

Flow Control Virtual-Channel Flow Control

Buffer Management Credit-based Flow Control

Emulated Link Width ≥ 32 bits

Described below are the components of the custom built hardware library that

constitutes the hardware framework of AcENoCs emulation platform.
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1. Network Router

Figure 5 illustrates the custom built router architecture implemented in AcENoCs.

The router used in the AcENoCs hardware framework is a standard five-port, single

stage pipelined router. The router can also have three or four ports depending on the

topology requirement and the physical position of the router in the NoC. The router

is modular in structure, coded using Verilog HDL and fully synthesizable. The router

architecture is comprised of various blocks viz. input unit, route computation unit,

VC allocation unit, switch allocation unit, crossbar switch and output unit. Route

computation, VC allocation, switch allocation and crossbar traversal are all carried

out in parallel in a single router stage and complete in one network cycle. Various

routers can be interconnected via links in either 2D mesh or 2D torus configuration

to realize an interconnection network.
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Fig. 5. NoC Router Architecture

Each router has five physical ports : North (N), South (S), East (E), West

(W) and Local (L). The L port of each router is connected to the software based

TGs/TRs models, through which traffic is injected into and ejected from the network.
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Several router parameters like number of VCs per router physical port, depth of each

VC buffer, packet data width, number of router and link pipeline stages and router

arbitration schemes are made configurable.

A brief explanation of the router components is provided below :

1. Input Unit : One input unit is instantiated per input port of the router. The

input unit receives flits from its neighboring routers and buffers them in VC

FIFOs, based on VCID (Virtual Channel ID) field in the head flit, till the flits

are forwarded to the downstream router. Each input unit also computes the

output port for a packet at the downstream node using the next hop route

computation (NRC) unit, based on the chosen routing scheme [31].

2. Virtual Channel Allocation Unit : The VC allocation unit is responsible for

allocating an available output VC to a packet from amongst several VCs at

the output port as indicated by the routing unit in the input unit. This unit

consists of several arbiters and implements both round robin and fixed priority

arbitration schemes.

3. Switch Allocation Unit : The switch allocation unit controls the crossbar switch

access and decides which input port should gain access to the output port

through the crossbar. This unit consists of several arbiters and implements

both round robin and fixed priority arbitration schemes.

4. Crossbar Switch : It is the switching resource of the router and provides physical

path from each input port to each output port. The crossbar unit provides

multiple simultaneous connections from the input to the output. The access to

the crossbar switch is controlled by the switch allocation unit.

5. Output Unit : One output unit is instantiated per output port of the router.
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The output unit contains the credit counters required for establishing credit

based flow control. It also maintains the availability status of each output

virtual channel associated with that particular output unit.

6. Programmable Delay Unit : This unit consists of series of programmable delay

registers that delay the valid output from appearing onto the physical link.

These delay registers can be configured to emulate variable depth router pipeline

stages and link traversal delays.

2. Interconnection Links

Routers are interconnected according to the specified network topology using the

interconnection links. Data flits are exchanged between the routers using these links.

Hence, links provide raw communication bandwidth in a network. Link traversal is

completed in a single network cycle if no link delay registers are instantiated. Credits

(tokens), required for credit based flow control, are also exchanged between the routers

via another set of dedicated links. The data width for these interconnection link is

32 bits, minimum required to carry routing information in the header flit. Different

link widths can be easily emulated by varying number of flits per packet.

C. AcENoCs Software Framework

AcENoCs software (SW) framework is realized on Xilinx MicroBlaze, an embedded

soft processor core. As shown in Figure 4, the SW framework consists of Traffic Gen-

erators (TGs), Source Queues/FIFOs for each router node, Traffic Receptors (TRs)

and Emulation Clock Generator. The SW framework controls the entire emulation

process via the emulation configuration file. The SW framework is designed to free

up additional FPGA resources (LUTs and FFs) that would have been consumed,
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had the traffic models been implemented in HW. This provisions for realization of a

larger dimension NoC on FPGA. Several emulation parameters such as total packets

to be injected, flit injection rate, type of traffic pattern, etc. that control the emula-

tion parameters can be configured using the software, making the platform extremely

flexible. The MicroBlaze processor is a 5-stage, single issue pipelined processor and

operates at a maximum clock frequency of 125 MHz. The software program running

on the MicroBlaze is stored in FPGA based on-chip BRAM (Block RAM) memory

resources. MicroBlaze accesses the FPGA BRAM using a dedicated Local Memory

Bus interface (LMB). Alternately, higher capacity off-chip DDR2 RAM or SRAM can

also be used for storage purposes, but this comes at the cost of reduced emulation

speed due to increased access latencies. The SW framework is also responsible for

generating the emulation clock dynamically and driving it to all the hardware network

components.

A brief overview of the functionality of each component constituting AcENoCs

SW framework is presented below.

1. Traffic Generators (TGs) : Each router is associated with a TG. TGs are re-

sponsible for building flits, generating packets and injecting them into the source

queues associated with each hardware router. There are two different types of

TGs supported in AcENoCs : Synthetic TGs for generating different types of

synthetic traffic patterns and Trace-based TGs for supporting execution of real

traces. TGs are also responsible for latency bookkeeping for each generated

packet.

2. Source Queues : Each router node is associated with a source queue. A source

queue operates in a First-In First-Out (FIFO) fashion. These structures provide

temporary storage for flits prior to their injection into the network. These
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queues are allocated and built dynamically at runtime during the emulation

process. The buffered flits in these queues are injected into the network through

PLB based registers.

3. Traffic Receptors (TRs) : Each router is also associated with a TR. TR is re-

sponsible for decoding the information in the packet received at the destination

router and for validating each packet’s destination. TRs are also responsible

for calculating latency for each received packet. Passing of received packet data

from destination router to TRs happens through PLB based register interface.

4. Emulation Clock Generator : The emulation clock driving the network is dy-

namically generated and controlled by the processor depending on the software

operation latency. Such a scheme helps in achieving proper synchronization

between the HW/SW events occurring in an emulation cycle.

D. Platform Interfaces

There are three major interfaces used by the AcENoCs emulation platform.

1. UART Serial Interface interfaces the XUPV5 board to the monitor for displaying

various emulation statistics and debug messages to the end user.

2. SystemACE Compact Flash Interface is used by the MicroBlaze processor for

reading the trace data stored in the external flash card into the FPGA.

3. JTAG Programming Interface is used to download the FPGA configuration file,

generated by the Xilinx EDK platform, onto the FPGA.
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CHAPTER V

AcENoCs SOFTWARE FRAMEWORK : DESIGN AND IMPLEMENTATION

In this chapter, the software environment built around the NoC in AcENoCs emula-

tion platform is described in detail. We will discuss the design and implementation

details of various software components that form an integral part of AcENoCs soft-

ware framework. More details on the functionality of traffic models will be provided.

Advantages gained by opting for a software based source queues and dynamically

controlling emulation clock scheme will be presented. We will conclude this chapter

by discussing some of the design decisions and optimizations undertaken to improve

the overall performance of the emulator.

A. Software Framework Components

As discussed in Chapter IV, AcENoCs software framework mainly comprises of the

software environment built around the NoC for validating the interconnection network

extensively. AcENoCs software framework is coded entirely in C language. The

main components of the software framework along with their design features and

implementation details are provided below :

1. Traffic Generators (TGs)

Each NoC router on the hardware is associated with a software-based TG model

connected through its local port (L). TGs act as the source for all data in the on-

chip communication network. By opting for a software based scheme for implement-

ing the TGs, additional hardware resources (LUTs and FFs), required for hardware

based TGs, are freed and they can be effectively utilized to realize a larger dimension
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network in hardware. TGs are responsible for building the head, body and tail flits,

assembling them into packets and injecting the generated packets into their respective

source queues flit-by-flit. TGs generate flits according to the chosen traffic pattern

and the process is controlled by flit injection rate. The number of flits to be generated

per packet is decided based upon the packet size and flit size entities specified by the

user. Eventually, these flits are read out from the source queues and get injected into

the network through the source router’s local port. During the process of building

a flit, TGs generate various flit fields such as flit type, packet destination address,

source router’s output port number for routing the packet to the next downstream

node, source router’s local port input virtual channel identifier (VCID) and packet id.

Figure 6 shows the structure of the head, body and tail flits generated by the TGs.

FLIT
TYPE

VCID CNOP
SRC X
COOR

SRC Y
COOR

DEST X
COOR

DEST Y
COOR

PACKET ID

013

UNUSED

111214161719202223252628293031

FLIT
TYPE

VCID UNUSED

028293031

HEAD FLIT

BODY and TAIL FLITS

FLIT TYPE : 00 - HEAD FLIT, 01 - BODY FLIT, 10 - TAIL FLIT
                  11 - SINGLE FLIT (HEAD AND TAIL)

VCID : VIRTUAL CHANNEL IDENTIFIER 

CNOP : CURRENT NODE’S OUTPUT PORT NUMBER

SRC X/Y COOR : SOURCE NODE’S X and Y COORDINATES

DEST X/Y COOR : DESTINATION NODE’S X and Y COORDINATES

Fig. 6. AcENoCs Flit Structure for 5x5 Network

Apart from packet generation, TGs also play an active role in latency bookkeep-

ing for each packet. Each TG stores the actual network cycle when a packet was
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injected into its source queue in a separate data structure. This information is ac-

cessed by the TRs to calculate the packet latency when the packets reach their final

destinations. Each TG instantiates a separate two-level data structure for storing the

packet injection time of all the packets generated by that particular TG. At the first

level, this data structure is indexed using the injected packet’s source node id. To

gain access to the second level of the structure, packet id field of the packet is used

as an index qualifier. The final indexed location contains a 16-bit field for storing the

packet injection time.

TGs initiate packet throttling process when the network experiences congestion

conditions. During heavy congestion conditions, source queues associated with each

router node become full and may overflow owing to the back-pressure due to conges-

tion in the network. In such a scenario, TGs start packet throttling by delaying the

generation and injection of packets into source queues.

There are two broad classes of traffic supported by the TGs : synthetic workloads

and trace based realistic workloads. Synthetic workloads aim at abstract modeling

of underlying network characteristics, when the network is subjected to real applica-

tion traffic [1]. Examples of synthetic traffic patterns include uniform random, bit

complement, etc. Realistic workloads represent real-time network traffic generated

by a NoC system running full load applications. The AcENoCs emulation framework

provides support for both these workloads. AcENoCs supports two flavors of TGs

: Synthetic TG and Trace-based TG. The selection of TG to be instantiated in the

emulation platform depends on the chosen traffic pattern type.

a. Synthetic Traffic Generator

AcENoCs’ synthetic TGs are realized on a single MicroBlaze processor environment

operating at 125 MHz. The synthetic TGs support seven commonly used synthetic
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workloads for evaluating interconnection networks. All synthetic patterns, except

Uniform Random, direct each source nodes traffic in the network to a unique prede-

fined destination node. These seven patterns include :

1) Uniform Random : Each source node sends a packet to every other node in the

network with equal probability. The destination node is generated using a uniform

random process.

2) Bit Complement : The destination node coordinates are obtained by sub-

tracting the source node X-Y coordinates from the maximum X-Y coordinates in the

network.

3) Bit Reversal : The destination node coordinates are obtained by reversing the

bit positions of source node coordinates.

4) Matrix Transpose : The destination node coordinates are obtained by directly

taking the transpose of the source node coordinates.

5) Bit Shuffle : The destination node coordinates are obtained by performing a

single shift rotate left operation on the source node coordinates.

6) Bit Rotation : A single shift rotate around right operation is carried out on

source routers coordinates to determine destination coordinates.

7) Hotspot : Two kinds of traffic are generated in hotspot traffic pattern : hotspot

traffic and background traffic [32]. During hotspot traffic generation, all source nodes

in the network direct their traffic towards a specified set of one or more destination

nodes. In the current release, we only support a single hotspot destination node.

Once the hotspot traffic rate is achieved, TGs switch over to generating background

traffic. The background traffic can be any synthetic pattern and can be configured

by the user.

A uniform random injection process governs the packet generation in synthetic

traffic mode. The probability that each node generates a packet in an emulation cycle
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depends on the user specified flit injection rate and uniform random number gener-

ation. This involves generating an uniform random number for each node in every

emulation cycle and comparing the number with the packet injection rate. Packet

injection rate is derived from the user defined flit injection rate. A packet will be

generated if the random number is lesser than the packet injection rate. AcENoCs

uses an XOR-shift algorithm, proposed by Marsaglia, for generating uniform random

numbers [33]. This algorithm was chosen due to its ability to generate highly ac-

curate uniform random numbers within a specified range and most importantly, its

consumption of much fewer processor cycles per number generation as compared to

other techniques examined such as glibc’s rand() function. The XOR-shift scheme

uses XOR and shift operations for generating uniform random numbers within a

specific range (consuming about 24 processor cycle per number generation) and com-

pletely avoids the division and modulus operations required by glibc’s rand() function.

During the software profiling stage, it was observed that a floating point divide op-

eration in MicroBlaze consumes around 80-100 processor cycles, thereby incurring a

huge impact on the emulator performance.

Even with the XOR shift algorithm, the random number generation still remains

a bottleneck for achieving high emulator performance considering the fact that a

random number needs to be generated for each node in every emulation cycle. To

reduce this overhead, AcENoCs provide an option for pregenerating a prime number

of uniform random numbers and storing them in a circular buffer statically prior to

emulation. By choosing to generate prime number of uniform random numbers, a

behavior similar to actual uniform random injection process for each TG can be emu-

lated. The larger the prime number selected , greater will be accuracy of the uniform

random process. This scheme reduces the random injection process to mere fetching

of the stored array of numbers from memory, thereby boosting emulator performance.
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This option can be handy when emulation performance assumes higher priority com-

pared to the accuracy of the injection process. According to our experimental results,

pregeneration scheme for random numbers was found to provide a emulation per-

formance speedup ranging from 5-10% when compared to XOR shift scheme. By

default, AcENoCs uses XOR shift algorithm for uniform random number generation.

Pregeneration scheme can be enabled by the user in the emulation configuration file.

b. Trace-based Traffic Generator

AcENoCs also supports simulation of real application based trace files. Trace files are

indicative of real time traffic generated by a network running full load applications.

The sizes of the traces can run up to several gigabytes, thereby requiring some sort

of external storage. In AcENoCs, the software running on the processor reads the

trace data from compact flash (CF) card. A CF card slot is present on the XUPV5

Board and a CF interface needs to be instantiated inside the FPGA in order to read

the traces. The processor reads and decodes each line of the trace data in order to

inject a packet from a particular node. Each trace line contains information related

to to-be-generated packet’s source and destination node coordinates along with the

packet injection cycle. Reading each trace line from the flash card, decoding the

packet information and then generating packets in a sequential manner by a single

processor incurs huge latencies and therefore contributes to significant degradation of

the emulator performance. Considerable performance improvement can be achieved

if the process of reading from flash card and generating packets can take place concur-

rently. AcENoCs achieves the parallelization of these two processes by implementing

a dual processor environment, MicroBlaze1/MB1 and MicroBlaze2/MB2, with soft-

ware on MB1 implementing a trace based TG to execute the trace and software on

MB2 dedicated for reading the trace data from the flash card.
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In the dual processor scheme, the trace file read operation, performed by MB2,

is overlapped with the actual execution of the traces in MB1. Since MB2 prefetches

the trace data and passes it to MB1, MB1 can directly start executing the traces

without actually being delayed by any trace file I/O operations, as would be the case

if the two processes were sequential in a single processor environment. The message

passing from MB2 to MB1 happens through a shared storage structure : Shared Block

RAM FIFO (SHBRAM) buffer. By overlapping the trace file I/O operations with

the trace execution, AcENoCs is able to achieve significant speedups for emulating

realistic workloads as compared to other software simulators. This dual processor

environment synthesizes at a maximum frequency of 100 MHz.

SHARED BRAM
FIFO

MICROBLAZE
1

MICROBLAZE
2

MB1 BRAM
MEMORY

MB2 BRAM
MEMORY

UART
SYSTEM ACE

COMPACT FLASH

NoC

PLB BUS 1 PLB BUS 2

Fig. 7. Message Passing Mechanism between Dual Processors in Trace-based TG

The dual processor scheme for Trace based TGs is shown in Figure 7. The

message passing structure, SHBRAM, is implemented as a shared object, which means

only one processor is granted the access rights to SHBRAM at any instant of time.
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In order to prevent any locking issues, each processor accesses the SHBRAM in an

ordered sequential fashion. MB2 performs file read operation on the trace file and

stores the trace data into the SHBRAM of size 32KB. At the start of each emulation

cycle, MB1 reads the data from the SHBRAM and decodes the packet information. If

the decoded packet needs to be injected in the current network cycle, MB1 stores the

packet fields and then fetches the next data. The SHBRAM read process continues till

MB1 encounters a packet whose intended injection cycle doesn’t match the current

network cycle. MB1 then builds the flits, as per the decoded flit fields, generates

packets based on the stored source and destination node information and injects them

into their respective node’s source queue. During heavy congestion, MB1 initiates

packet throttling by delaying further reads to the SHBRAM till enough space is

available to hold atleast one more flit in the source queues. Throttling can also occur

when the number of in-flight packets from each source becomes equal to the maximum

number of in-flight packets allowed from a node at any instant (defined by number of

packet id bits reserved in the header flit). This condition ensures correct calculation

of packet latency values.

2. Source Queues/FIFOs

The source queues for each router node provide temporary storage for packets that

have been generated prior to their injection into the network, and are implemented in

software as singly-linked lists. Source queues decouple the traffic generation process

at each node from the network state. This ensures that the generated packets are

not lost and are injected into the network based on space availability in the source

node’s input VC FIFOs. Each source queue operates in a First In First Out fashion.

The source queues for each terminal are dynamically allocated at runtime during

the emulation process. The width of each location in the source queue is equivalent
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to the emulated flit width. In every emulation cycle, packet generated by each TG

is inserted into their respective source queues. The total number of outstanding

flits that could be accomodated across all source queues is calculated at compile

time based on the remaining software memory after the software program is loaded

into memory. In every emulation cycle, a flit is read from the head of each non-

empty queue and transmitted to the corresponding router through the input data

and data valid registers. Once read out, the memory allocated to that flit is freed.

Dynamic allocation of source queue depth avoids premature throttling of packets for

non uniform traffic, as would have been the case if the source queues were implemented

on hardware.

3. Traffic Receptors (TRs)

As shown in Figure 4, each router node is also associated with a TR. The TRs perform

decoding of information in packets received at the destination router and validates its

destination. TRs also plays a significant role in performing packet latency analysis by

calculating the latency for each received packet. The latency of each received packet

is calculated by accessing the packet injection time stored in the two level latency

structure at the packet’s source. The latency structure is indexed based on received

packet’s source node address and packet id. When a packet reaches its hardware

based destination router, it is passed onto its software based associated TR through

PLB based output data register and output status register. At the end of the entire

emulation process, the average latency per packet is computed. Network throughput

is also calculated by dividing the total number of flits received by total number of

emulation cycles.
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4. Emulation Clock Generator

In AcENoCs, the emulation clock driving the network routers on FPGA hardware

is generated and controlled by the MicroBlaze processor (MB1 for Trace based TG).

The emulation clock period is dynamically controlled depending on the software op-

eration latency per emulation cycle. A single network emulation cycle is made up of

several processor cycles. Generating and controlling the emulation clock using soft-

ware helps in achieving proper synchronization between the different hardware and

software events scheduled to occur in every emulation clock cycle. Dynamically con-

trolling the emulation clock is more effective than the static clocking scheme based on

worst case software operation latency since the hardware on the FPGA can be clocked

at a much faster clock rate. Since the emulation clock rate directly depends on the

latency of software operations scheduled to occur per emulation cycle, the clock rate

decreases with increasing network sizes. This can be attributed to the fact that as

network size increases, total software operation latency also increases due to increase

in the packet generation and reception operations for the additional network nodes.

In AcENoCs, every emulation cycle defines an ordered sequence of hardware and

software events. The emulation clock is allowed to proceed ahead to the next emula-

tion cycle only when the software completes all assigned functions in a given emulation

cycle (both traffic generation and reception). The emulation clock is transmitted to

the hardware components on FPGA using PLB based clock register.

B. Design Decisions for Increased Emulator Performance

Two possible implementations of MicroBlaze are available in the Xilinx Embedded

Development Kit (EDK) platform. : the area optimized 3–stage pipelined processor

and the frequency optimized 5–stage pipelined version. Since the 3–stage version is
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area optimized, it synthesizes at a much lesser frequency of 100MHz as compared

to 125MHz in the 5–stage version. The software code for traffic generation and re-

ception involves multiple looping constructs, if/else comparators and calls to various

traffic functions, which maps to branches in the assembly code. Branches act as bot-

tlenecks for achieving higher instructions per cycle (IPC) for a processor since they

contribute to stalls due to control hazards. MicroBlaze implements a static branch

prediction scheme with all branches treated as not taken. To reduce the branch la-

tency overhead, automatic delay slots are inserted by the compiler after every branch

instruction. Branch mispredictions incur 2 cycle penalty (1 cycle penalty with branch

delay slot) for both versions of MicroBlaze. This implies lower branch misprediction

penalties (in terms of cycle time) for the 5-stage pipeline, since it operates at a higher

clock frequency. Reduced branch misprediction penalty coupled with the higher op-

erating frequency of 5–stage pipeline gives higher performance as compared to the

3–stage pipeline architecture. Hence, AcENoCs implements the frequency optimized

5–stage MicroBlaze processor. In order to reduce the performance impact due to

branch penalties, we tried to reduce the number of branch decisions in the assembled

code. To achieve this, we carried out optimizations like loop unrolling, function inlin-

ing, reducing the number of function calls, etc. in the software to reduce the number

of branches. Based on the expected workload, we also choose to instantiate a float-

ing point unit (FPU) and a hardware barrel shifter as add-ons to the MicroBlaze.

Significant performance improvement was observed with the addition of hardware

barrel shifter since it completes any number of shifts in a shift operation, required for

building flits, in exactly one processor cycle.

Software based implementation of the TGs and TRs helps in realizing a larger

dimension network on the FPGA , as compared to the hardware based implemen-

tation schemes [18, 19]. By implementing the TGs and TRs in software, the FPGA
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provisioned BRAM memory is used for storing the code associated with them. If

the TGs and TRs were to be implemented in hardware, additional overhead in terms

of FPGA logic resources (LUTs and FFs) would have incurred to implement these

components. Considering increasing network sizes, the amount of FPGA hardware

resources utilized for realizing TGs and TRs would have increased proportionately,

leading to realization of a relatively smaller dimension NoC on the FPGA. Imple-

menting the TGs and TRs in software allows efficient usage of FPGA resources by

making room for additional routers and thereby, realizing a larger emulation network.

The emulation scheme described by Genko et al. employs a timestamp field in

every packet for performing latency analysis [18]. The timestamp field is an overhead

for maintaining statistics in hardware and limits the minimum emulated flit size. This

results in loss of some flexibility in the emulator. Since AcENoCs maintains separate

latency timekeeping structures for each TG to perform latency analysis, there is no

need to transmit the packet injection timestamp field along with the packet. In

AcENoCs, the minimum emulated flit size is 32 bits, the minimum required to carry

route information in head flit.

In the previously proposed FPGA emulation schemes [17, 19], the source queues

for each router were implemented in hardware and hence their depths had to be stati-

cally allocated prior to hardware synthesis. This is a serious disadvantage in schemes

with hardware source queues considering non uniform traffic conditions. Eventually,

the emulator may be forced to prematurely throttle the packet generation process

under non-uniform traffic conditions. Throttling of the packets has implications on

the packet injection rate since it drops below its specified value. This results in non

accurate modeling of congestion behavior in the network. AcENoCs overcomes this

premature throttling problem by implementing the source queues in software and al-

locating their depths dynamically. AcENoCs initiates packet throttling when source
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queues overflow for injection rates higher than the network saturation rate. AcENoCs

is able to sustain transitory injection rates which are higher than the network satura-

tion injection rate for a longer time, thereby providing more accurate packet latency

and network throughput analysis.

The decision to opt for a embedded MicroBlaze processor core for AcENoCs’

software framework over the conventional external processor scheme is justified by

the significant amount of emulation speedup achieved. This can be attributed to sig-

nificant decrease in communication latencies between the hardware and the software

components for an embedded processor core.
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CHAPTER VI

AcENoCs HW/SW EMULATION FLOW

This chapter presents details on interactions between the hardware and software

framework in AcENoCs emulation platform. It describes the PLB based register

based interface which acts as the backplane for HW/SW interactions. This chapter

also presents the entire HW/SW emulation flow and the various interactions happen-

ing between the HW/SW framework in an emulation cycle.

A. Hardware-Software Interface

AcENoCs emulation framework is realized on a Xilinx XUPV5 board, using the Xil-

inx Embedded Development Kit (EDK). This framework facilitates active interaction

between the NoC hardware and software library components. AcENoCs’ hardware

framework and software framework interact with each other through the Processor

Local Bus (PLB). We implement a 32 bit register based interface for providing com-

munication between the emulation network and traffic models running on the MicroB-

laze processor. This register bank is connected to the PLB bus and is made software

accessible using a set of standard library functions defined by the Xilinx EDK tool.

The register bank consists of six categories of registers :

1. Input Data Register : It is used to hold the flits that needs to be injected from

the source queue into the local port VC FIFO of each source router. There

exists one input data register per router on the network.

2. Input Data Valid Register : It is used as a data qualifier for the input data

injected into local port of each router. A single valid bit is reserved in the

register for each router.
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3. Input Status Register : It indicates each router’s local port input VC FIFOs

full status. The number of status bits reserved for each router in the register

depends on the the number of VC FIFOs configured per router port.

4. Clock Register : It is used to provide software generated clock to the emulated

network.

5. Output Data Register : It holds the packets that are ejected from the net-

work. This data is then read by the processor and passed to the respective TRs

for destination validation and latency analysis. There exists one output data

register per router.

6. Output Status Register : It indicates the availability of a packet at the desti-

nation router’s output. The processor reads this register to check which routers

have received a packet in the current emulation cycle and then reads the corre-

sponding output data register. A single status bit is reserved in the register for

each router.

B. HW/SW Flow during an Emulation Cycle

In this section, we present a detailed description of AcENOCs’ complete HW/SW

emulation flow during one complete network emulation cycle. Figure 8 depicts the

sequence of HW/SW events (denoted as A,B, etc.) taking place in an emulation cycle.

Detailed simulation flow of these HW/SW events per emulation cycle are pro-

vided below :

A. On the positive edge of the emulation clock, the network components consti-

tuting the hardware framework are triggered. Flits are exchanged between the

router nodes. A packet which has arrived at its intended destination router gets
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Fig. 8. AcENoCs HW/SW Emulation Flow

ejected through that routers’ local port into its corresponding output data reg-

ister. The availability of packets at the output router is indicated through the

output status registers associated with each router. The necessary fields from

the ejected packet such as its origin address, destination address and packet id

are captured in the output data register.

B. The emulation clock is toggled and made low by writing 0 into the emulation

clock register. Each router’s local port FIFO full status is read from the corre-

sponding bits in the input status register.

C. Traffic generation process is invoked sequentially for each TG node. A random

injection process based on uniform random number generation and flit injection

rate determines whether a TG gets to generate a packet during that emulation

cycle. If a packet needs to be generated, the TG builds the packet and inserts

the flits into its source queue. During congestion, no software memory may

be available to allocate storage space for flits in the source queues. In such a

situation, TGs initiate packet throttling and don’t generate any packets until

sufficient storage space becomes available. A flit is read from each non-empty
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source queue and transmitted to corresponding router’s local port VC FIFO by

writing the flit data into the input data register and setting the data valid bit

associated with that router. In case a router’s local port FIFO full status is set,

the flits are not read from the corresponding source queue.

D. Software reads the output status register to determine which among the output

data registers contain valid received packet information. Based on this infor-

mation, the appropriate output data register is read and the read packet data

is forwarded to respective TR.

E. The TRs, on receiving valid packet data, decode the packet information and

validate if the packets have arrived at the correct destination. Along with

the packet decoding, the TRs also carry out latency analysis for each received

packet based on the retrieved source id and packet id. Network throughput is

also calculated.

F. The emulation clock is made high by writing 1 into the emulation clock register.

This indicates the start of the next emulation cycle.

The emulation process is terminated after all the injected packets have been

received at the destination or once an error is encountered. Error may occur when all

the transmitted packets have not been received, when a packet has reached a wrong

destination node or when the specified total outstanding flits in the source queues is

more than the allocated software memory. Emulation may also be stopped when there

is more than one packet in-flight, originating from the same source node, having the

same packet id at any instant. This is due to the fact that such a condition may lead

to incorrect calculation of packet latency value since the packet latency structure at

each TG stores the packet injection time based on packet id field. If this condition is
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not dealt with, initially transmitted packet’s injection time gets overwritten with the

latter packet’s injection time. To avoid this latency miscalculation condition, a valid

bit is associated with each entry in the TG latency bookkeeping structure. Before

transmitting a packet, TG checks if the valid bit is reset. If it is not reset, an error is

thrown. TGs set this bit when they inject the corresponding packet into the network.

The TRs, on receiving a particular packet, reset the valid bit corresponding to the

entry in the latency structure.

At the end of the emulation process, various emulation output statistics such as

total number of packets injected/ejected, total number of emulation cycles, average

latency and throughput and total emulation time are displayed to the end user.
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CHAPTER VII

AcENoCs PLATFORM FPGA IMPLEMENTATION FLOW

This chapter focuses on the FPGA implementation flow of AcENoCs using the Xilinx

Embedded Development Kit (EDK) platform. It also describes the various input files

and libraries required at different stages of the implementation flow. This chapter

also presents the user configurable options offered by the AcENoCs platform. We

conclude this chapter with a discussion on advantages and flexibility offered by the

AcENoCs’ implementation flow.

A. Emulation Platform Configuration

As stated earlier, reconfigurability of the emulation platform was one of the major

design goals of AcENoCs platform. AcENoCs emulation platform can be configured

for different emulation runs using two configuration files :

1. Network Configuration File : This configuration file is used to configure AcENoCs’

hardware framework parameters. The user can configure various network pa-

rameters like network dimensions, network topology, routing algorithm, flow

control schemes and flit width. Various router parameters like number of router

ports, number of VC FIFOs per router port, depth of each VC FIFO, router

arbitration scheme and number of pipeline stages can also be configured via

network configuration file. Any change in parameters specified in the network

configuration file would require a complete hardware re-synthesis.

2. Emulation Configuration File : This configuration file supports configuration

of AcENoCs’ software framework parameters. The parameters specified in this

configuration file control the entire emulation process. Various emulation pa-
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rameters such as total number of packets to be injected, flit injection rate, traffic

pattern, packet sizes and flit width can be configured via emulation configura-

tion file. Software framework parameters such as uniform random number gen-

eration scheme, total number of outstanding flits in the source queues, enabling

debug mode, selection of hotspot traffic node and hotspot packet injection rate

can also be configured. Table II shows the reconfigurable options available in

AcENoCs’ emulation configuration file.

Table II. Configurable Features in AcENoCs’ Software Framework

PARAMETERS AVAILABLE OPTIONS/VALUES

Max. Number of Packets 1 – (232-1)

Packet Size Fixed, Random

Fixed Packet Size 32 – 256 bits

Random Packet Size Min – 32 bits, Max – 256 bits

Flit Size 32 – 256 bits

Type of Traffic Pattern

Uniform Random, Bit Complement,

Bit Reverse, Shuffle, Bit Rotation,

Transpose, Hotspot, Traces

Uniform Random Number Generation
XOR-shift method,

glibc’s rand(), Pregeneration Rand Method

Total No. of Outstanding Flits
6500 – 10250

(across all queues) (for 256KB SW BRAM Memory)

Flit Injection Rate 1% – 100%

Hotspot Node and Injection Rate Any node, 1% – 100%

Heap Memory and Stack Memory Sizes
Depends on remaining SW memory after

SW program is loaded into memory

Debug Mode Available, not enabled (default)
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B. AcENoCs FPGA Implementation Flow using Xilinx EDK Platform

AcENoCs emulation framework is realized using Xilinx EDK Platform. Xilinx EDK

facilitates easy integration of NoC hardware library components with the NoC soft-

ware library components, thereby creating a stand-alone embedded emulation plat-

form on the FPGA for faster, cycle accurate NoC emulations. In this section, we

deal with the FPGA implementation flow for realizing AcENoCs emulation platform

using Xilinx EDK.
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Fig. 9. AcENoCs Emulation Platform Flow
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Standard Xilinx EDK synthesis flow [34], shown in Figure 9, was followed for

generating the executable to be downloaded into the FPGA for starting the emula-

tion process. The primary step in the EDK synthesis flow involves building a base

system consisting of MicroBlaze processor and other necessary peripherals along with

a standard bus interface such as PLB for interfacing the processor with different pe-

ripherals. This is accomplished using the Xilinx Base System Builder (BSB). The

amount of FPGA BRAM memory to be associated with MicroBlaze can be specified

during BSB process. NoC hardware library components consisting of network con-

figuration file and the NoC to be emulated is then included into the base system.

The base system also instantiates user-defined PLB interface registers for providing

interaction between the HW/SW framework components on the FPGA.

Once the BSB is ready, synthesis of the entire hardware framework is carried

out using the Xilinx XST Synthesis tool. The outcome of this step is the generation

of gate level netlist for each component defined in the base system. These netlists

are then given as inputs to the MAP and Place and Route (PAR) tool to map the

design elements to device resources and place these synthesized cells efficiently on the

device layout. This is followed by Static Timing Analysis (STA) step to verify that

the synthesized design meets the desired timing constraints. The MAP, PAR and

STA are part of Xilinx ISE design suite. Successful completion of these steps leads to

the creation of an hardware platform based executable .bit image file. The total time

for bitstream generation process varies according to the logic resource utilization of

the FPGA resources. Time taken is higher for larger dimension networks since more

FPGA logic resources are consumed.

Once .bit executable containing the FPGA hardware is generated, the NoC soft-

ware library components consisting of emulation configuration file and the software

framework components such as traffic models are then compiled using GCC compiler.
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A linker script describing the memory mappings for the code and data sections of the

software program in FPGA BRAM memory is generated. The BRAM heap and stack

sizes are also specified in the linker script. The heap holds the static variables and the

dynamic memory allocated for flits in the source queues. The outcome of this process

is .elf, a software image executable. In the final step, the .bit and .elf bitstreams

are initialized and combined into a single downloadable bitstream file, download.bit,

which is downloaded onto the FPGA. This initiates the emulation process. Emulation

results are displayed on the monitor using the serial UART interface.

C. Discussion

The ease with which emulation parameters can be changed for each emulation run

is the standout feature in AcENoCs platform. By varying the various emulation

parameters in the emulation configuration file and recompiling the software, the user

can explore design aspects of NoC in a very short time span without hardware re-

synthesis. To rerun emulation, the user just needs to re-program the FPGA with the

new executable. Hence, AcENoCs provides flexibility very similar to that offered by

software simulators. AcENoCs will serve as an ideal platform for researchers who wish

to explore the NoC design space by exploiting the various features available in the

emulator. Experimentation with new features such as addition of a new traffic pattern

require changes in the software framework alone. AcENoCs’ software framework

defines a plug-and-play interface for integrating the traffic models with different router

architectures and NoC topologies. Changes in the underlying network hardware can

be achieved with minimal effort by modifying only the network configuration file. All

these features combined with its fast and cycle accurate nature makes AcENoCs an

ideal tool for quick, efficient and accurate NoC design space explorations.
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CHAPTER VIII

AcENoCs PERFORMANCE EVALUATION AND VALIDATION RESULTS

Evaluation of AcENoCs performance is the main focus of this chapter. We examine

the underlying performance evaluation methodology and evaluate AcENoCs’ perfor-

mance against OCIN TSIM software simulator [12] and the ABC network’s verilog

HDL simulator [35]. We present the results of hardware evaluation, software profiling,

emulator performance against simulated network sizes and workloads. Also presented

are some details on emulation testcases run in order to validate AcENoCs platform.

A. Baseline Network Configuration

AcENoCs’ baseline network configuration was used for obtaining all the results pre-

sented in this section. Any changes or deviation from the baseline configuration have

been described explicitly. The baseline network configuration consists of a 5x5 di-

mension NoC configured using a 2D mesh topology. X-Y DOR is the chosen routing

scheme and VC based flow control with credit based buffer management is the default

flow control scheme. No programmable delay registers were instantiated to emulate

router pipeline depth, hence the router was a single cycle router. Each router port

is configured to contain two VC FIFOs with each FIFO deep enough to hold eight

flits. Flit size was chosen to be 32 bits and each packet was made up of five flits (a

head flit, three body flits and a tail flit). Bit-complement synthetic traffic pattern

was used and the emulation was carried out for one million packets.
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B. Hardware Framework Evaluation

In this section, we evaluate the FPGA area consumed by the NoC implemented on the

hardware. We present the total FPGA resource utilization obtained by synthesizing

varying dimension NoCs. The FPGA resource utilization also varies with the number

of ports present on each router. A 5-port router consumed more logic resources than

4-port and 3-port router. We were able to accommodate a maximum 5x5 dimension

by pruning out the unused ports on the routers at the periphery of the mesh network.

The advantage gained in terms of fitting a larger dimension NoC in hardware as a

result of moving TGs/TRs to software is evident from the fact that AcENoCs was able

to fit a maximum size network of 3x3, when its hardware framework was instantiated

on a Xilinx Virtex-II Pro FPGA device as compared to Genko’s scheme which was

able to fit a maximum size network of six routers, given the same device.

Table III illustrates the total FPGA resource utilization against varying network

dimensions. As seen, FPGA LUTs consumption forms the bottleneck for implement-

ing larger dimension NoCs on FPGA.

Table III. Total FPGA Resource Consumption for Varying Network Dimensions

NETWORK LUT REGISTERS LUTRAM

2x2 Mesh 4958 (7.17%) 2816 (4.07%) 96 (0.005%)

3x3 Mesh 14637 (21.18%) 6372 (9.22%) 264 (1.47%)

4x4 Mesh 29980 (43.37%) 11414 (16.51%) 512 (2.86%)

5x5 Mesh 52520 (75.98%) 19569 (28.31%) 840 (4.69%)
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C. Software Framework Evaluation

AcENoCs’ network emulation clock is dynamically generated by software and consists

of several processor cycles. The emulation clock controls the frequency at which

the NoC operates and therefore defines the emulator’s performance. Even though

the hardware can be clocked at a much higher rate, the emulation clock frequency

is limited by the software operation latency. High emulation performance can be

achieved if the software operation latency is minimized. Performing profiling on

software framework can help in identifying the software component that forms the

bottleneck towards achieving high emulation performance. With this as our primary

motive, MicroBlaze profiling was carried out for varying flit injection rates using the

32–bit processor cycle counters available in the Xilinx EDK platform. Increase in flit

injection rate implies more packet generations and injections into the source queues by

the TGs at each node and hence greater software operation latency in an emulation

cycle. As a result, we expected to see increase in the number of processor cycles

per emulation cycle with increasing injection rates. This resulted in degradation

of emulator performance (emulation cycles per second) with increasing flit injection

rates.

1. Software Profiling

Figure 10 shows the software profiling results with no software based optimiations

applied. The graph indicates average processor cycles per emulation cycle for varying

flit injection rates. All the values are averaged over 10,000 packet generations and

receptions using the baseline network configuration. This profiling was carried out on

the first stable version of the AcENoCs emulator. It can be seen from the graph that

the emulator performance was well below the expected standards. It is clearly visible
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that Packet Generation function along with Random Number Generation functions

consume majority of the processor cycles per emulation clock. Hence, it was decided

to optimize these two processes in order to achieve better emulation performance.

Based on these conclusions, software code optimizations were carried out, targetting

packet generation and random number generation processes, in order to improve the

performance of the emulator.
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Fig. 10. Software Profiling Results (Average Processor Cycles per Emulation Cycle)

before Software Optimizations

Figure 11 shows the latest profiling results for AcENoCs with software based

code optimizations applied. The graph indicates the average processor cycles per

emulation cycle with varying flit injection rates. Also illustrated is the breakdown

of processor cycles consumed by each software component per emulation cycle. Note

the improvement in emulator performance as a result of the software optimizations

performed. These software based optimizations undertaken in order to improve em-

ulator performance will be explained in detail in the next sub-section. Any reference
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after Software Optimizations

to the profiling results, henceforth, shall point to the latest profiling results shown in

Figure 11.

As seen, packet generation process emerges to be the highest consumer of pro-

cessor cycles in an emulation cycle, occupying about 30-35% of the processor’s time

in an emulation cycle. Uniform random number generation forms the single largest

component of the packet generation process, consuming 20-50% of the total processor

cycles for packet generations.

Among other significant contributors for packet generation include building the

flit along with function calls across the traffic generation function. The packet inser-

tion into the source queues and deletion from the source queues also consume a signif-

icant amount of the processor’s time, totaling an average 35% of the total processor

time in an emulation cycle. These functions’ use of malloc() and free() function calls

for allocating and deallocating memory respectively dominate their runtime. Traffic

reception and latency analysis functions account for only 3% of the total processor cy-
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cles. The processor spends about 6% of its time in an emulation cycle for interactions

between the hardware components and software components through PLB register

interface. Components like packet injection and ejection counters, loop constructs for

calling packet generation functions per TG, per TR packet reception functions and

terminating the emulation process, if–else comparators for per TG packet generation

decision, etc. classified under Miscellaneous category account for approx. 15-20% of

the total processor cycles per emulation cycle.

2. Software Optimizations

In order to improve emulator performance, several software based optimizations were

carried out to reducing software operation latency. Compiler techniques like loop

unrolling were applied on loop constructs to reduce the number of branching decisions

to be made. Function inlining was also applied to reduce the branches in the assembled

code but at the cost of increased code size. During profiling, it was found that building

of flits involved a great deal of shift operations. Hence, hardware barrel shifter was

integrated into the MicroBlaze’s ALU for faster shift operations. It was also observed

that function calls and return consumed considerable amount of processor cycles, and

hence the number of functions called were reduced. Apart from these, the use of

typecast operations for converting one datatype to another were also avoided.

Since random number generation constituted a sizable chunk of the total packet

generation time, various schemes were used to find an optimal technique for gen-

erating them. The initial scheme for random numbers made use of glibc’s rand()

accompanied by a floating point divide operation for restricting the random num-

bers within a specific range. This technique had a negative impact on the emulator

performance and increased the software latency (consuming approx. 90-100 cycles

per random number generation). The chosen Marsaglia’s XOR shift algorithm was
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found to achieve 4X cycle improvement over the other schemes. We also evaluated a

scheme which generated prime number of random numbers prior to start of emula-

tion process and these number were stored and recycled throughout emulation. This

technique reduced the number of random number generation cycles by almost two

times for smaller injection rates as compared to XOR shift scheme. However, over-

head involves loss of network injection rate accuracy and additional software memory

for storing the numbers, having a direct impact on the number of outstanding flits

stored across all source queues.

D. Emulator Performance Evaluation

This section deals with the evaluation of AcENoCs’ performance for synthetic and

real application based workloads under varying network dimensions and packet sizes.

We compare AcENoCs’ performance against OCIN TSIM cycle accurate software

simulator and ABC network’s HDL simulator [35] under similar set of workloads.

Emulation cycles per second is used as a metric to evaluate emulator performance.

1. Evaluation under Synthetic Workloads

AcENoCs’ performance was evaluated under varying network dimensions and packet

sizes, when subjected to synthetic traffic patterns. Figure 12 illustrates AcENoCs’

performance for varying flit injection rates under different network dimensions. Re-

sults are shown for bit complement and matrix transpose synthetic traffic patterns

respectively.

In both cases, it can be seen that for a constant injection rate, the emulation

speed decreases with increasing network dimensions. This is due to the fact that larger

dimension network implies more number of network nodes that generate packets in
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Fig. 12. Emulation Speed v/s Injection Rate for Varying Network Sizes for (a) Bit–

Complement Traffic and (b) Transpose Traffic

an emulation cycle, leading to an increasing in the software operation latency per

emulation cycle. Hence, more processor cycles are consumed in handling the traffic

generation and reception for increased number of nodes. Emulation performance is

higher for transpose traffic as compared to bit complement since nodes along one

diagonal of the mesh in transpose traffic do not participate in traffic generation and

reception process. However, this also implies that the time taken to complete the

emulation process for transpose traffic is much higher as compared to bit complement

pattern. It is also observed that for a given network, emulation speed decreases

with increasing flit injection rates. Higher injection rate implies more number of
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packet generations and hence more computations on the software, thereby reducing

the emulation clock frequency. As seen from the plot, the emulator achieves a speedup

of 5-10% when random number pregeneration technique is employed.

Next, we examine the effect of varying injection rates on the emulator perfor-

mance for different flit sizes for a 5x5 mesh network under bit complement and trans-

pose traffic patterns. Performance results are shown in Figure 13.
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Fig. 13. Emulation Speed v/s Injection Rate for a 5x5 Mesh Network with Varying

Flit Sizes for (a) Bit-Complement Traffic and (b) Transpose Traffic

It can be observed that for a constant flit injection rate, AcENoCs’ emulation

speed increases as number of flits per packet is increased. This can be attributed to

the fact that that as the number of flits per packet increases, the number of packets

to be injected from each node into the network, to maintain the specified injection

rate over a period of time, decreases. In other words, the traffic generation rate varies

inversely with number of flits per packet. Less packet generation implies reduced

software operation latency, and hence higher emulation performance. It can also be

observed that the emulator performance tends to flatten for flit injection rates beyond

45% and 30% for bit complement and transpose traffic respectively. At this point, the
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network under test is said to have reached its saturation point. The source queues

tend to overflow and to avoid loosing a packet, throttling of packets is initiated.

a. Comparison with other Simulators

AcENoCs’ emulation performance was compared against OCIN TSIM software simu-

lator running similar set of synthetic workloads. The results are shown in Figure 14.

It needs to be noted that OCIN TSIM was run on an 8–core Intel Xeon processor,

with each core operating at 3.2 GHz. AcENoCs, in its available capability, runs on a

much slower single core 125 MHz MicroBlaze processor.
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Fig. 14. AcENoCs v/s OCIN TSIM Performance Comparison (in Cycles per Sec)

AcENoCs achieves a speedup in the range of 14-47X when compared to OCIN TSIM,

and about 10000-12000X when compared to HDL simulators like Modelsim, etc. in

the non saturation operating region. AcENoCs can be made to achieve relatively

better performance if the current MicroBlaze soft core processor configuration can

be replaced by an embedded hard processor configuration, like PowerPC, which is

capable of synthesizing at much higher frequencies.
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2. Evaluation under Real Application based Workloads

AcENoCs platform is capable of executing real time traces generated by a NoC sys-

tem running full load applications. For evaluating AcENoCs’ performance under

trace based workloads, we instantiated the dual processor based trace traffic TG en-

vironment for supporting real application traffic. AcENoCs’ baseline network was

evaluated with traces generated by SPEC CPU2000 [36] benchmark suite running on

TRIPS OCN [37]. TRIPS OCN is a 5x5 2D mesh network, hence we could easily map

the trace data onto our baseline network.

The emulator performance for trace based workloads was found to be approx.

17500 emulation cycles/sec, about 9X faster as compared to OCIN TSIM. AcENoCs’

lower performance for trace based traffic as compared to synthetic workloads can be

attributed to the lower operational frequency of the dual processor environment.

E. Emulation Testcase
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This section presents the tests that were carried out in order to verify the correct-
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ness of AcENoCs emulator by observing the network parameter behavior. The net-

work under consideration was a 5x5 2D mesh network. Average latency and through-

put were measured for different synthetic traffic patterns.

Figure 15 shows the obtained average latency values against varying injection

rates for different synthetic traffic patterns. The obtained curves exhibited charac-

teristics typical of a standard 2D mesh network.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

A. Conclusions

Rapid advances in VLSI technology has led to integration of multiple heterogeneous

processing cores on a single silicon slice. This has resulted in communication infras-

tructure becoming the bottleneck in the chip design cycle. Traditionally used buses

and point-to-point links have become undesirable due to their scalability limitations,

low performance, high power consumption and noise susceptibility. NoC serves as an

ideal replacement for bus based schemes for handling communication requirements in

a system with large number of cores.

In order to arrive at an optimal NoC architecture, fast and cycle accurate sim-

ulations must be carried out to explore the vast design space provided by on chip

interconnection networks in terms of network topologies, router microarchitecture

and routing algorithms. FPGA based NoC emulation schemes have been shown to

overcome the shortcomings of software simulators and perform fast, cycle accurate

simulations. There is a great demand for emulation schemes which offer an optimum

balance between network dimensions and emulation performance. This thesis presents

HW/SW codesign of AcENoCs, a novel FPGA based NoC emulator capable of fast

and cycle accurate emulations, with a specific focus on the design and implementation

of AcENoCs’ software framework.

Two different flavors of TGs for supporting synthetic and realistic workloads,

source queues/FIFOs, TRs and latency analysis modules and emulation clock gener-

ator were designed as part of AcENoCs’ software architecture. Implementing traffic

models in software made room for implementing a larger dimension network in hard-
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ware. Controlling the emulation clock using software helped in achieving proper

synchronization between the hardware and software events scheduled to occur in an

emulation cycle. By dynamically allocating software source queues, specified injec-

tion rates were sustained for longer period of time, thereby modeling the congestion

behavior of the network more accurately. Several emulation and software frame-

work parameters were made user configurable through the emulation configuration

file, thereby adding flexibility to the emulation platform. Support was provided for

interfacing the software framework with various network configurations and router mi-

croarchitectures. Integrated and well defined HW/SW emulation flow was proposed

for handling HW-SW interactions taking place in an emulation cycle. AcENoCs

well-defined HW/SW framework provisions for efficient utilization of available FPGA

resources and helps in achieving high emulation performance together with realiza-

tion of larger dimension networks on hardware. All these features make AcENoCs

an ideal platform for researchers wanting to validate their NoC designs early in the

design cycle.

AcENoCs’ performance was evaluated for varying network sizes and flit sizes

against software simulators and HDL simulators. Since software operation latency

dictated the performance of the emulator, software profiling was carried out in or-

der to identify the software components that formed bottlenecks towards achieving

high emulation performance. Based on the software profiling results, several software

code based optimizations were performed, leading to improved emulator performance.

Emulation tests were performed in order to validate AcENoCs platform and the plots

obtained were characteristic of a standard 2D mesh networks. AcENoCs was able to

achieve speedups of 10000-12000X compared to the HDL simulators and 14-47X com-

pared to OCIN TSIM software simulator running on a 3.2 GHz processor machine,

without sacrificing cycle accuracy.
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B. Future Work

With the emergence of complex SoC based design methodologies, more researchers

are adapting Globally Asynchronous Locally Synchronous (GALS) based design styles

for establishing intercommunication between modules operating on independent clock

domains [38]. In order to explore the design space and evaluate various characteristics

of such GALS based NoC designs, a robust and fast emulation platform is required.

The current version of AcENoCs supports synchronous operation of router nodes,

with all routers in the network operating on a common network clock. In addition to

the currently implemented synchronous NoC emulation feature, AcENoCs’ flexibility

and versatility can be enhanced by incorporating support for emulating GALS based

NoC designs, where each node in the network would operate at its own independent

clock frequency.

The current AcENoCs architecture places a firm restriction on emulating larger

dimension networks (greater than 5x5) due to limited FPGA hardware resources

available. To overcome this limitation, AcENoCs’ framework can be combined with

the technique presented by Wolkotte et al. [20] by treating smaller dimension networks

as a single block and executing each block in a sequential manner by storing the

contents of routers and its associated links in memory.
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APPENDIX A

TRAFFIC GENERATION FUNCTIONS

AcENoCs’ Traffic Generator function is made up of several sub-functions. This infor-

mation may be useful for future users of this platform, to integrate more additional

features into the software framework. Briefly discussed below are sub-functions called

by the TG function :

1. Main.c : This is the main function. For synthetic TGs, it calls the traffic

generator function based on uniform random injection process. The uniform

random injection process involves calling a uniform random number generator

function, for each TG in every emulation cycle, and comparing it with the user

specified flit injection rate to decide whether a packet needs to be generated

by that particular TG. For trace based TGs, main function running on MB2

(MicroBlaze 2) reads the trace data from the compact flash card and stores it

into a Shared Block RAM (SHBRAM) structure. Main function running on

MB1 (MicroBlaze 1) reads the data from the SHBRAM and decides in which

cycle the packet needs to be generated and injected into the network.

2. Traffic Generate.c : This is the main traffic generator function for both kinds of

TGs. It injects flits into the router’s source queue and reads out the flits from

each source queue for injection into network. It also initiates packet throttling

when the network experiences congestion.

3. Generate Pkts.c : Calls the “build flit” function. Supplies all the flit fields

necessary for building the flits. Generates Packet Id field for each packet. In-

stantiates the two-level latency structure for storing the packet injection time.
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For Synthetic TGs, it also stores the destination node address for each source

node, as calculated according to the selected traffic pattern, along with the

source router’s output port number.

4. Build Flits.c : Builds the head, body and tail flits and returns them to the caller

function. The number of body flits vary based on number of flits per packet

parameter.

5. Queue FIFO.c : Contains the queue/FIFO data structure for storing the flits.

The FIFO is realized using singly-linked list data structure. Contains functions

required for inserting and deleting the flits from the source queue. Flits are

added to the rear of the FIFO, as indicated by the rear pointer and are read

out from the front of the FIFO, as indicated by the Front pointer.

6. Marsaglia Rand.c : This function is called only for synthetic TGs. It contains

code for uniform random number generation scheme based on Marsaglia’s XOR

shift algorithm [33].

7. config dest.c : This function is called only for synthetic TGs. It generates the

destination node address for packets generated by each TG, based on the type

of selected synthetic traffic pattern.

8. current node op port.c : Generates the source router’s output port (N,S,E,W

or L) for packets. This field is generated based on knowledge of the destination

node coordinates and selected routing algorithm.

.



82

VITA

Vinayak Pai was born in Mysore, India. He received his Bachelor of Engineering

degree in electronics and communications from Visvesvaraya Technological University,

Belgaum, India in June 2005. For the next three years, he was employed with Wipro

Technologies, Bangalore, working for their semiconductor and systems business unit

as an Field Programmable Gate Array (FPGA) Design Engineer. He joined the grad-

uate program in computer engineering at Texas A&M University (TAMU) in August

2008 and graduated with his M.S. in December 2010. At TAMU, his research was

focused on Network-on-Chip (NoC) emulation and FPGA acceleration techniques.

During the summer of 2009, he held an internship with Texas Instruments in Ban-

galore, India, working on integration verification of mixed signal circuits. He can be

reached at the following address :

c/o Dr. Paul V. Gratz,

Computer Engineering Group

Department of Electrical and Computer Engineering

Texas A&M University

College Station, Texas - 77843-3259

Email : vinayak.pai123@gmail.com

The typist for this thesis was Vinayak Pai.


