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ABSTRACT

Snap: Robust Tool for Internet-wide Operating System

Fingerprinting. (December 2010)

Ankur Bharatbhushan Nandwani, B.Tech., National Institute of Technology-Surat

Chair of Advisory Committee: Dr. Dmitri Loguinov

Different approaches have been developed for TCP/IP fingerprinting, but none

of these approaches is suited for Internet-wide fingerprinting. In this work, we develop

approaches that rigorously tackle the issue of noise and packet loss while carrying out

Internet-wide fingerprinting. We then carry out an Internet-wide scan to determine

the distribution of different operating systems on the Internet. The results of our

scan indicate that there are approximately 8.9 million publicly accessible web-servers

on the Internet running Linux, while there are nearly 9.6 million web-servers with

different embedded operating systems.
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CHAPTER I

INTRODUCTION

With the exponential growth of computer networks, it has become a challenge to

effectively manage and secure these networks. One of the integral components of

managing and securing networks is to be aware of the operating system running on

each machine connected to the network. Operating system fingerprinting as its name

suggest aims to identify the OS of a remote machine, by either sending probes to the

machine or by sniffing traffic originating from remote machines. While the former

comes under the class of approaches known as active fingerprinting, the later belongs

to passive fingerprinting, as no probes are sent to the target machine.

Operating System fingerprinting had its origins in banner grabbing, where one

tried to connect to a remote machine on a particular service like FTP. Telnet and

HTTP, and then use the displayed banner to identify the operating system. Since the

banner can be easily be modified, banner grabbing gave way to techniques which base

their identification on the TCP/IP stack. Identification, with TCP/IP stack is made

possible because various RFC’s like 1122 [1] and 2988 [2] that deal with TCP/IP,

are ambiguous about certain features, while for some other features they provide no

guidelines, thus resulting in developers having different interpretations of the TCP/IP

protocol, leading to implementations unique to an OS.

A. Motivation

In this paper, we develop robust techniques that would allow us to fingerprint all

the publicly accessible machines on the Internet. The main motivation behind this

The journal model is IEEE Transactions on Automatic Control.
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work is that developing techniques to work at such a large scale would allow us to

find the vulnerable population for a malware on the Internet in less than 40 minutes

using a custom scanner. While fingerprinting, we make sure that we use the bare

minimum packets and only use packets that conform to the TCP/IP protocol. Owing

to limiting the number of probes, the techniques we develop can be used by the

network administrators of large corporate networks to scan their networks in real

time, without clogging the network, or resulting in denial of service attack. Also,

since we use protocol conforming packets, the risk of bringing down machines which

are not adequately equipped to handle malformed packets is greatly reduced.

B. Our Contribution

Over the past decade, many tools [3, 4, 5, 6, 7, 8, 9] have been developed to carry out

operating system fingerprinting by analyzing the TCP/IP stack properties. These

tools use different type and number of probes for fingerprinting purposes. While

fingerprinting machines on the Internet one has to inherently deal with noise and

packet loss. Whereas noise can result in unknown values for various fields of TCP/IP

headers and random retransmission timeout value, packet loss which is to the extent of

3.8% [10] on the internet, can drastically change the observed retransmission timeout

values (RTO). Hence, if we don’t consider these factors while carrying out a scan,

then the results we achieve are bound to be inaccurate. Current tools [6, 8] which use

retransmission timeout values fail to address the issues of packet loss on one hand,

while are also ineffective in dealing with noise. Thus the major contribution of this

paper is to develop robust techniques that deal with noise and packet loss, and apply

the developed techniques for Internet-wide OS fingerprinting.

In the first part of the paper we discuss the problem of fingerprinting using
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RTO and the challenges associated with it. Also, we discuss how we augmented the

signature vector and built the signature database. The fingerprinting methodology we

use can be broken down into two steps, the first being data collection, where we send

SYN probes similar to those sent by Windows Server 2008, to the target machines and

log all the responses received from the target. The second step is classification, where

by using Retransmission Timeout values in conjugation with various features derived

from TCP/IP headers of the response packet, and applying a custom classification

algorithm, we classify the target machines into different operating system.

In the next section we propose a custom classification scheme that robustly deals

with both noise and packet loss. We then evaluate our classification scheme against

the default scheme used by Snacktime for classification.

Finally, to get a picture of the distribution of different operating systems on

the internet, we scan the internet for all the machines which have port 80 open,

and at the same time fingerprint by running our classification algorithm on received

response packets. Of the 37.8 million machines, which responded to our SYN probes

with SYN-ACK packets, nearly 9.6 million machines are running different embedded

OS, the major chunk of these embedded OS being VxWorks. VxWorks is a popular

embedded OS mainly used in routers, modems and printers. This is followed by Linux

which account for nearly 8.9 million machines. This is followed by Windows which

collectively account for nearly 5.2 million machines.

C. Ethical Implications

The work presented in this paper can be used for both good and bad purposes. On one

hand it can be used to secure a large network, while on the other hand, it can also be

used by the hackers to surreptitiously scan the Internet for vulnerable machines. To
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counteract this threat caused by the hackers, a simple solution would be to randomize

the first RTO value, since in most cases successive RTO values are computed based

on the initial RTO. Also, simply altering values of various TCP/IP header fields can

drastically reduce the accuracy of fingerprinting. We hope that by publishing this

work, during the future implementation of TCP/IP protocol in different OS, these

techniques could be kept in mind, so that risk of detection could be reduced.
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CHAPTER II

RELATED WORK

OS fingerprinting has been studied for a long time now, but most of the work has been

done by independent hackers. Initial approaches used banner grabbing, but since the

banner for most of the services can be easily changed, the focus shifted towards the

use of TCP/IP stack for identification. Of the techniques that use TCP/IP stack,

some send probes to the target machines [3, 5, 6, 7, 8, 9], while others involve sniffing

traffic [7, 9]. At the same time some techniques have even made use of application

level data for OS detection [5, 4]. Since OS fingerprinting poses a network security

threat, work has also been to defend against fingerprinting.

A. Active Fingerprinting

Among the tools used for fingerprinting, Nmap [3] is the most actively developed and

widely used tool. Developed by Fyodor, it has one of the largest user contributed

signature database, and is fairly accurate. But it is of limited utility when scanning

on the internet because it suffers from various issues. Firstly, it uses 16 packets per

machine, which would result in lot of traffic when considering all the machines on the

internet. Secondly, it uses malformed packet, thus allowing signatures to be written

to detect its probes. In fact Snort [11] has signatures to detect nmap probes. Finally,

it requires and open and closed port, for which it does a port scan, thereby again

increasing the number of packets sent to a machine.

Since Nmap is the most popular tool, a lot of work has also been done to improve

the same. Sarraute et al. [12] propose the use of neural networks to identify different

versions of a same operating system. Medeiros et al. [13] also make use of neural

networks, to add the capability of identification of unknown devices to Nmap. In
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Fig. 1. RTO (*Not sent by all OS).

[14], Greenwald et al. discuss how information theoretic measures could be used to

reduce the number of probes that are sent by Nmap, and at the same time get good

results. Finally, Shu et al. [15], explore the use of Parameterized Extended Finite

State Machines with Nmap for fingerprinting.

Xprobe2++ [5], is a tool which makes use of ICMP probes, SYN probes, and

application layer requests for fingerprinting. It has a modular architecture,which

allows the user to control which probes are sent to the target machine. By default

the latest version uses 13 modules, which includes two application layer requests

modules.

RING [8] and Snacktime [6], both base their detection on Retransmission timeout

values. RING was developed as a proof of concept tool, and it uses Retransmission

timeout values to detect the OS of a machine. The initial version of RING only

made use of SYN-ACK RTO values and presence of RST or RST-ACK packet. Later

version of RING gave an option of considering RTO values of FIN-ACK packets. Now,

in order to get the RTO values for FIN-ACK packets, at least 3 packets need to be

sent per machine, making the approach infeasible for the internet. Snacktime (Fig.

1) which is based on RING uses RTO values of SYN-ACK packets in combination

with the observed Window Size and TTL values to determine the operating system
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of the machine. In Snacktime, the client first sends a SYN packet to the remote

machine and then listens for SYN-ACK packets. If it fails to get a response for 65

seconds(default value) it terminates the connection and proceeds with fingerprinting.

Now, during fingerprinting only signatures which have the same length as that of the

generated fingerprint are considered, and then using different weights for different

features similarity between a signature and fingerprint is computed. The signature

with the highest similarity to the fingerprint is returned as detected OS. Also, OS

corresponding to signatures with second and third highest similarities are returned

as probable matches.

Some work has also been done academically, in the domain of TCP/IP finger-

printing. In [16], Caballero et al. develop an approach similar to fuzz testing, to come

up with new probes that could be used for fingerprinting. But, since non-standard

probes are generated, IDS/IPS signatures could be written to detect the same, hence

fingerprinting could be easily circumvented. Medeiros et al. in [17], present a tech-

nique to fingerprint OS based on only Initial Sequence Number, which is based on

the work done in [18] . The problem with this approach is that it requires thousands

of ISN samples per machine, making the approach infeasible for large scale scanning

and easily prone to detection.

B. Passive Fingerprinting

p0f [9] is a tool primarily built for passive fingerprinting. It supports 4 modes of

fingerprinting, they being the SYN mode, SYN-ACK mode, RST+ mode and the

stray ACK mode. The first and the third mode support passive fingerprinting, while

the second and the fourth mode are for active fingerprinting. The SYN mode has

the largest signature database and seems to be the most developed, while the other
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modes are not well supported. p0f makes use of options, various TCP/IP quirks and

values of TCP/IP fields for OS detection.

C. Defenses

There exist many tools to defend against OS fingerprinting. Berrueta in his paper

[19] provides an overview of tools to defend against Nmap. In [20], a proof of concept

tool using Netfilter [21] kernel module for fingerprinting evasion is presented. Use

and effectiveness of Honeyd against fingerprinting tools has been discussed in [22,

23]. Smart et. al. present a fingerprinting scrubber in [24] as a general solution

to protection against TCP/IP fingerprinting to be implemented at the gateway. As

stated in the paper, fingerprinting scrubber effectively deals with static approaches

but is not well developed for temporal approaches like RING and Snacktime.
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CHAPTER III

OPERATING SYSTEM FINGERPRINTING

In this section we first formulate the problem of OS fingerprinting, follow it by ex-

plaining the issue of noise and packet loss, and conclude by discussing Snacktime.

A. General Problem Formulation

The problem of Operating System fingerprinting is closely related to the problem

of pattern matching, therefore we formally state our problem using the terminology

of pattern matching. Assuming a set of c unique operating system types where

C = {ω1, . . . , ωc}, the signature of the i-th OS is a vector Si = {Si,1, . . . , Si,ni
}, where

Si,j is the random variable represented the j-th feature of the OS i. Fig. 2 shows

the randomness in RTO values. These values were measured for machines in our lab

itself, hence they correspond to the randomness in the RTO values itself and not

network delays.

Now assuming that M is a random variable (vector of features) representing a

response from a host on the Internet, the classification goal is to find the most likely

class iopt in C that could have generated M such that

iopt = arg max
i

P (M ∈ ωi|M = m). (3.1)

Using Bayes rule (3.1) can be expressed as

iopt = arg max
i

P (M = m|M ∈ ωi)P (M ∈ ωi)

P (M = m)
. (3.2)

Now, the conditional probability P (M = m|M ∈ ωi) is equivalent to the prob-

ability P (Si = m), and the probability of a measurement M = m is constant for all
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Fig. 2. RTO Randomness

the signatures hence we can reduce (3.2) to

iopt = arg max
i
{P (Si = m)P (M ∈ ωi)} (3.3)

The work done in this paper deals with estimating the probability of the measured

value m being equal to a signature Si. It is necessary to note that it is impossible to

compute P (Si = m), because of the human factor involved. For example, the users

may arbitrarily decided to tweak OS settings. For an Internet-wide scan, apriori

probability for a class can be computed iteratively but we leave it for future work.

As mentioned earlier many efforts have been made to solve the above problem

using the TCP/IP stack, but few efforts have been made to reduce the number of

probes sent to the target machine [7, 9, 6, 5], and to the best of our knowledge, no

work has been done to robustly fingerprint a large number of machines. If we wish

to accurately fingerprint all of the publicly addressable machines on the internet, we

need to make sure that our approach is not only resilient to noise an packet loss, but

is also polite. Now [5] and [6], which use RTO values for identification, are polite,

but fail to address noise and packet loss. In the following subsections we address

the problem of noise and packet loss associated with RTO by carrying out a rigorous
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analysis of the two problems.

B. Noise

The first issue we consider is that of noise on the Internet. In the ideal conditions

assuming the delay between the sender and the receiver is d, and the retransmission

timeout values at the sender and receiver are R and Z, respectively, the values of

Z and R would be same. But, as shown in [25], normally there is jitter(δ) in the

Internet packet delay, which is illustrated in Fig. 3. Therefore, due to the presence

of jitter, the values Zi and Ri are not the same and we have

Zi = Ri + (δi+1 − δi) (3.4)

Thus it is required that the classification algorithm we use effectively deal with jitter,

which we refer to as noise from now on.
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C. Packet Loss

Next we consider the issue of packet loss, which can reach as high as 3.8% for SYN-

ACK packets[10]. In ideal circumstances when there is no packet loss the RTO values

measured at the receiver are approximately equal to the RTO values of the sender,

but in the case of packet loss we have a different scenario. Therefore, considering

Q as a vector representing the values measured at the receiver,and N as a vector

indicating the packets which are actually received by the receiver we have

Qj =
Nj+1−1∑

i=Nj

Zi (3.5)

where n is the number of packets received.

The above equation shows not only the length of the RTO vector gets reduced,

but also the observed RTO value changes. As an example, for FreeBSD 7.x the RTO

vector without any packet loss is {3, 6, 12}. However, should the third packet be

lost, then the RTO vector in that case would be {3, 18}. Therefore, the classification

scheme we use, should deal with the above issue effectively.

D. Snacktime

Here we explore the need for augmenting feature vector, by showing that features

currently used by Snacktime are not enough in accurately identifying an Operating

System. We motivate this by showing how Snacktime fails to address the issues

discussed is the previous section. Therefore, let Sij be the j-th feature of the i-th

class of operating system, such that i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , ki, where ki

is the number of features of the i-th class. Given, the above information, Snacktime

only considers the operating systems which have the same number of features in

the signature i.e. the value of k are same. Snacktime, uses the following formula
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when using receiver window size and TTL, to determine the score corresponding to

a particular class, and the class with maximum score is declared to be the predicted

class.

Yi = max(|Xj − Sij|, 10−6)

Ui =
n∑

j=1

d− log10 Yie+ Wi + Ti (3.6)

where Wi and Ti are the weights associated with receiver window size and TTL. If

the receiver window size of the fingerprint and the signature match, Wi is assigned a

value of 3, other a value of zero is assigned. Ti, is a assigned a value of 2, if the TTL

of fingerprint is .less than the TTL of the signature and is within 32 seconds, a value

of 1 is assigned if TTL of fingerprint is only less than TTL of signature. In all other

cases a value of 0 is assigned to Ti.

Now, if we consider the fingerprint and signatures in Table I, and assume that the

TTL and Win values are equivalent, the total score for Signature 1 is 11, while that of

Signature 2 is 6. Thus the fingerprint is determined to belong to OS being represented

by class 1, when in fact it should have been assigned to Signature 2, which may be

deviating from the fingerprint due to the presence of noise. This behavior of Snacktime

can be attributed to the fact that the RTO values are compared individually, when,

in fact, the whole vector should have been compared at once. In response to this

problem, we first augment the feature vector and then present an approach in Part

V, that effectively deals with noise and packet loss. Secondly, the weights assigned for

the receiver window size and TTL are totally arbitrary without and rigorous analysis.

Finally, discrete and random features are used together in the classification algorithm,

when in fact they should be treated differently.
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Table I. Sample Snacktime Fingerprint and Signatures

Type RTO1 RTO2

Fingerprint 3.000000 24.000000

Signature 1 3.000000 12.000020

Signature 2 3.299999 25.500879
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CHAPTER IV

SNAP

In this section, we first show the feature vector for the proposed solution. We follow

it, by talking about our signature database, and how the signature are preprocessed

before being used in the classification algorithm. We end this section by introducing

the proposed solution.

A. Feature Vector

An important aspect of operating system fingerprinting is that a signature represent-

ing an operating system should clearly differentiate it from other OSes. Hence, in

this sub-section we consider the features that aid us in achieving the above goal. The

features that we use are shown in Table II.

We use eight additional features as compared to Snacktime, which only uses Win,

TTL and SA-RTO. In addition to considering RTO values between the SYN-ACK

packets we consider the RTO value between the last SYN-ACK packet and RST/RST-

ACK packet R-RTO, as shown in Fig. 1, which helps us in resolving ambiguities. For

example, by considering the R-RTO in Table III we can resolve the ambiguity between

Mac OS 10.1.x and NetBSD 4.0.1 shown in Table III, which would otherwise have

similar SA-RTO patterns. Moreover by default, we consider RTO values greater than

65 seconds, which again helps us in better differentiating OSes. For instance without

considering the last SA-RTO of Linux 2.0.X (Table III), the SA-RTO vector of both

Linux 2.0.x and Linux 2.6.x would have similar SA-RTO vectors.

Additionally, we have found a large variety of behavior pertaining to the RST/RST-

ACK packets. Because, the behavior is not well defined in the RFC, the properties of

there RST/RST-ACK response, or lack of a response are very OS dependent. Thus,
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Table II. Signature Description

Feature Description Type

Win Default Receiver Window Size M

TTL Initial Time to live M

SA-RTO RTO values between SYN-ACK packets MNL

R-RTO RTO value between the last SYN-ACK packet and

RST/RST-ACK packet

MNL

DF DF bit set or not M

OPT TCP options and their sequence F

RST RST packet sent by the target F

RA RST-ACK packet sent by the target F

R-Broken Non-zero ACK value in RST Packet F

R-Win Receiver window size in RST/RST-ACK is zeroed F

R-Seq Sequence number incremented in the RST/RST-ACK

packet

F
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five of our features are based on RST/RST-ACK packet. Then, depending on whether

a RST or RST/ACK is sent by the target, we set the appropriate value to 1. We then

consider the various peculiarities of RST/RST-ACK packets to extract the features

R-Win, R-Seq, and R-Broken, which are explained in Table II.

Support for various TCP options differs between operating systems, and is OS

dependent, as RFC 1232 is not specific about various implementation details. As a

result, some operating systems support all of the standard TCP options (MSS, Win-

dow Scaling, SACK Permitted, SACK, NOP, and EOL), while others only support a

subset of them. Moreover, the ordering of options in the TCP header of SYN-ACK

packets varies among operating systems. So, similar to most other fingerprinting tools

we also make use of TCP options (Opt) as one of the features of our signature.

The last feature we consider DF pertains to the Don’t Fragment bit in the IP

header. Some operating systems set this bit by default, while others clear this bit, so

we identify this behavior and accordingly set the value of DF to 1 or 0. Most of the

features discussed above have been used in other tools, with the exceptions of R-Win

and R-Seq, which to the best of our knowledge haven’t been used before.

It is important to understand that different features in the signature have dif-

ferent properties. Certain features like Win, DF, and TTL can be changed easily by

either altering registry values or by editing specific configuration files, while features

like Opt and those related to RST/RST-ACK packets are hard to change without

hacking the kernel. Hence, based on the above nature of the features, features can

be either Modifiable represented by M or Fixed represented by F. The remaining

random features, SA-RTO and R-RTO, are not only random but are altered in noisy

and lossy condition. Therefore, we identify the lossy nature of this features using L,

random nature using R and noisy nature using N. Finally, note that, for embedded

devices, unless they are behind normalizers [26] or scrubbers [27], it is difficult to
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change any of the above mentioned features.

B. Signature Database

We now discuss our signature database, which currently contains 115 signatures.

We prepared these signatures by either installing the operating system, or by using

already-installed systems. Using our signature we can not only distinguish different

operating systems like Windows, Linux etc, but we can also identify different ver-

sions of Windows, Linux, FreeBSD etc. We collected 50 samples for each operating

system, so that we could use them as training data in our classification algorithm.

These samples were collected over a period of 24 hours to account for different load

conditions.

While preparing our signature database, we noticed that, in general, the first

RTO value had much larger variations as compared to other RTO values. This could

explained by noting that the first RTO timer might be starting between two clock

ticks, hence resulting on an average error of half the clock tick period [28]. Also, we

noticed that Windows Server 2003 was the only OS which seemed to have multiple

RTO patterns. The first RTO ranges from anywhere between 2.5 and 4.5 seconds,

while the second RTO was between 5.8 and 9.5 seconds.

C. Signature Preprocessing

In this section we provide details about the preprocessing we do with the signatures

to make Snap robust against noise and packet loss.
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1. Clustering

As a first step we group signatures together into different Clusters. This clustering is

done based on the length of the signatures, type of the packet sent and overlapping

of RTO values. As, an example all the operating systems which have a signature of

length 4, which send only SYN-ACK packets and have overlapping RTO values are

grouped together into one cluster. By overlapping RTO values we mean that the

interval formed by the min and max value of the j-th RTO of Si and by considering

a threshold of 0.1 sec, should overlap with the corresponding interval for Sk. If all

the RTO’s of two signatures overlap and they satisfy the other two criteria of same

length and type of packets, then they are grouped together. Now, in order for a new

signature to be a part of this cluster, it should satisfy the above three requirements

with all the signatures already present in the cluster. By applying clustering on our

signature database, we end up with 58 cluster, and the average size of a cluster being

2.

Now, the main motivation behind clustering is to eliminate the affect of noise.

By using clustering, instead of find an exact match for an unknown sample, we look

for a cluster with similar RTO vector, thereby ignoring the noise that may have been

introduced as a result of delay jitter. After finding the appropriate cluster we use

other features like TCP options, receiver window size, TTL and DF to select an

operating system which best matches the given unknown sample.

2. Cumulative RTO Values

We make use of cumulative RTO values in conjugation with binary search to deal

with the packet loss. For cumulative RTO values, instead of considering the time

difference between two SYN-ACK packets, we consider the time difference relative to
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the first packet. The i-th Ccumulative RTO (Ci) is given using the following equation

Ci =
i−1∑

j=0

Zj. (4.1)

As we saw earlier, in case of packet loss the measured RTO values Zi are dras-

tically affected and also the number of RTO values are reduced. In the case of Ci

only the number of RTO values get affected but the values remain the same, as the

Ci values are measured relative to the first received packet. The only exception to

this is when the first SYN-ACK packet gets lost, in which case all the Ci values get

affected.

Let Cj represent the j-th cumulative RTO value of the fingerprint, and let C ′
ij

represent the j-th RTO value of the i-th signature. Now, to detect packet loss when

considering a signature Si, we do binary search for each of the Cj value on C ′
i. Now, if

Z and Si are of the same length, we skip the binary search and assign a correspondence

between them such that Zj corresponds to the Sij. If the signature is longer than

fingerprint, then some of the values in the signature have no correspondence in the

fingerprint and this help us in detecting the packet loss.

For e.g., the RTO vector for FreeBSD is {3, 6, 12}, which when represented in

cumulative RTO form would be {3, 9, 21} If the third packet is lost, the original

RTO vector for the fingerprint would be {3, 18}, while the same in cumulative format

would be {3, 21}. Now, on doing a binary search for 3 on the FreeBSD signature

vector would result in it corresponding with the first RTO of the signature, while

doing it for 21 would result it in corresponding to the third RTO of FreeBSD vector.

Thus, the second RTO of the FreeBSD vector is unassigned thereby indicating the

third packet was not received at the receiver end.
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D. Classification Algorithm

In this subsection we discuss the algorithm used in Snap to detect the operating

system of the target machine. As shown in Fig. 4, we begin by grouping the signatures

into different clusters. This is followed by filtering the signatures based on reset

parameters. If the RST or RST-ACK packets are not observed in the fingerprint,

we skip this filtering process, as they might have been lost during transit. We do

this filtering because the reset properties are highly implementation specific as RFC’s

make no mention about their implementation details. Next, we determine the best

cluster corresponding the signature. We follow this by filtering based on the TCP

options. Now, if no signature in the cluster has matching TCP options, we return

with a no match. But, if there are signatures with the same ordering and support for

TCP option, we determine which signature in the cluster has the most similar Win,

DF and TTL values. If there is more than one signature having the maximum match

for Win, DF and TTL values then we call it as a tie and return the cluster, otherwise

the OS corresponding to the signature with the highest match for Win, DF and TTL

values is returned as the predicted OS. Now the most important part of the algorithm

discussed above is the identification of the correct cluster. The algorithm we use for

this purpose is shown in Algorithm 1. Here we consider only those signatures which

have a length greater than equal to the length of the fingerprint. Next, we perform

binary search for all the remaining signatures. During binary search if more than one

Cj value corresponds to any C ′
ij value, we discard that signature. For each of the

remaining signature we calculate the probability of it matching the fingerprint using

a modified K-NN algorithm, which is explained next. Finally, we return the cluster

corresponding to the signature with the highest probability.

In the modified K-NN algorithm, to compute the probability for each candidate
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Algorithm 1 Snap RTO Matching Algorithm

ci = 1 for all signatures {Candidates}
for all Si where LenZ >= LenSi

do

for all Cj do

k = binarysearch(Cj, C
′
i) {Returns corresponding signature RTO, -1 returned

if the determined RTO is already assigned}
if k = −1 then

ci = 0

break

else

posij = k {Store corresponding Signature RTO position}
end if

end for

end for

P = modified k-NN (Z, Si, c, pos)

Pi = Pi × 0.038(LenZ−LenSi
) for all signatures

return max P

signature i, we consider all the samples of a signature. Using the following equations

we compute the probability for the fingerprint being generated by a particular oper-

ating system under the assumption of delay jitter having laplace distribution with a

mean of 0.1 seconds.

Pi = P (Si + δ = Z) =
50∑

j=1

P (|δ| = |Si − Z|)

P (|δ| = |Si − Z|) =
nk∏

k=1

P (δik = Sik − Zk) (4.2)
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CHAPTER V

EVALUATION

We evaluate Snap against Snacktime under four different conditions by using 10-fold

cross-validation. In order to carry out 10-fold cross-validation, during each iteration

we divide the data into two parts, test and training. The training data is used to

train the classifier, while the test data is used to check the accuracy of the trained

model. This process is repeated 10 times, each time selecting different data as test

and training data.

In order to simulate the lossy and noisy nature of traffic on the Internet, we

carry out Cross-validation under four different conditions. In the first case we assume

that there is no noise and packet loss, while in the second case we assume noise

affecting the RTO values. We assume that the jitter values are distributed as per

Laplace distribution with a mean of 0.1 secs. The generated delay is then added or

subtracted from the RTO values to simulate noise. As show earlier, packet loss on

the internet is to the extent of 3.8% for SYN-ACK packets. In the third case, we

randomly drop 3.8% of the packets we are considering to simulate packet loss. It is

interesting to note that though the packet loss is to the extent of 3.8% the number

of samples affected by packet loss are much larger. Finally, in the fourth case we

introduce both noise and packet loss using the above mentioned models. Here, it is

important to note that in all the cases noise and packet loss is only applied to the

test data, while for training purposed we consider no noise and packet loss.

Table IV shows accuracy of Snap and Snacktime when considering the complete

algorithm. As the table shows Snap performs significantly better than Snacktime

under all conditions. Since Snacktime only considers signatures of same length as

candidates, in presence of packet loss the accuracy falls by nearly 12%, when compared
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Table IV. 10-fold Cross-validation Accuracy

Conditon Snap Accuracy Snacktime Accuracy

Normal 99.92% 84.62%

Noise 98.39% 81.43%

Packet Loss 98.86% 74.35%

Noise + Packet Loss 96.32% 72.45%

to normal conditions. This conforms to the above result which shows that a large

number of samples are affected by just 3.8% loss of SYN-ACK packets.
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CHAPTER VI

INTERNET SCAN

A. Scan Statistics

In order to determine the distribution of different operating systems on the Internet,

we scan for all the publicly accessible machines running a web server on the Internet,

using a custom scanner. We conducted the scan from a Windows Server 2008 machine

with 16GB of RAM and 2 Dual core 1.70 GHz AMD Opteron processors. The SYN

probe that was sent to each machine reassembles the SYN packet sent by a Windows

Server 2008 machine with ECN and TCP timestamp option enabled. While, finger-

printing live hosts running a web server, we also did banner grabbing, so as to use

the information for verification purposes.

As you can see in Table V nearly 37.8 million machines replied to our SYN probes.

Of this majority of them supported MSS option, while nearly 2.32% machines support

ECN. As Table VI shows nearly 75% of the hosts that responded to out SYN probe

also replied to our GET request. The average size of the downloaded page that we

could parse was 3.351 KB. This is due to the fact that nearly 10 million hosts replied

with 4xx messages, which typically are smaller compared to other responses, as they

only contain the error code and their description.

B. Results

In this subsection we analyze of the results of SYN scan used for OS detection. Of

the nearly 37.8 million machines on the internet, we were able to uniquely identify

66.25% of these machines. By unique identification we mean that we were able to

narrow down the OS running on that machine to one unique OS. As Table VII shows
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Table V. SYN-ACK Scan Statistics

Property # of hosts

Live Hosts 37,808,896

ECN Support 878,579 (2.32%)

MSS 37,610,829

Window Scaling 31,412,934

Timestamps 28,270,643

SACK Permitted 23,041,898

End Of Options List 2,349,369

Table VI. HTTP Scan Statistics

Property # of hosts

Responses 28,592,538

Connection reset by peer 3,294,344

No data 2,942,658

Select Timeout 2,734,952

Connection timed out 371,262

Connection Refused 30,770

Software caused connection abort 1,341
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Table VII. Top 5 Operating Systems

Operating System # of hosts

Linux 2.6.x/2.4.x 7,315,946

VxWorks A 3,698,707

VxWorks B 2,044,608

Windows Server 2003 SP1 SP2 1,657,696

Windows XP 2002 SP3/Microsoft Server 2003 1,565,008

Linux 2.4.x/2.6.x is the most popular OS, with nearly 1/4th of the uniquely identified

machines running it. The next most popular operating system is VxWorks, an embed-

ded Real-time Operating System, used extensively in routers, modems, and printers

etc. Here the second and the third most popular OS correspond to two different

signatures for VxWorks. Ideally the port 80 should be blocked on these devices, but

as the results show, it is not done, thus showing how insecure devices on the Internet

are. At the fourth and fifth spot we have two different versions of Windows, It is

interesting to see Windows XP at the 5th spot, but as TCP/IP stack of XP/2000 and

2003 are nearly the same, in many cases it is difficult to differentiae Windows Server

2003 from XP and 2000.

As shown earlier, we try to predict the cluster the machine may belong to, if we

are not able to find an unique match for the machine. We end up identifying clusters

for 10.35% of the machines (Table VIII), we found on the Internet. Linux again

occupies the top spot for having the maximum number of hosts in a cluster. We have

4 different signatures for Linux, and these signatures are distinguished from each other

by use of different receiver window size values. So, if we get a new receiver window

size value with all the other features same, we end up assigning the machine to the
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Table VIII. Top 5 Clusters

Cluster # of hosts

Linux 2,601,436

ADSL Routers Cluster 419,952

Windows A 264,133

FreeBSD+VxWorks 237,680

Windows B 149,539

cluster. Hence, such a large number of values in the Linux cluster show that in many

instance receiver window size values are changed by the user. Besides VxWorks being

used extensively for routers and modems, we also found a large number of routers

and modems running a particular OS which we could not identify, hence we label it

as ADSL router, which is at the second position among the top 5 clusters. This is

followed by a cluster of windows, composed of different versions of XP/2000/2003 in

the third and fifth position. Finally, as the signature of a version of FreeBSD and one

of the signatures of VxWorks i differ only in receiver window size, they are clustered

together and they occupy the fourth position

Finally, in Table IX we show the number of hosts running various popular op-

erating systems. It is interesting to see embedded systems occupying the top spot,

thus indicating a large number of routers and modems run web servers. As expected

embedded systems are followed by Linux, which is followed by Windows, FreeBSD

and Mac. It should be noted that, the numbers presented in IX correspond to only

uniquely identified OS.
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Table IX. Common Operating Systems

Operating System # of Hosts

Embedded 9,661,843

Linux 8,900,335

Windows 5,218,990

BSD 826,812

MacOS 80,918

C. Verification

Using the http-scan we did along with fingerprinting scan, we carry out basic veri-

fication. In order to verify the operating system of the machine we either used the

HTTP server response header or the web-page itself. Also we manually looked at

the fingerprint to identify the OS running on the target machine. The results of our

verification are shown in Table X. Based on the above methodology and information,

these results only give a basic idea about the accuracy of our scan and the results

may vary as per the interpretation. In future we plan to carry out a much thorough

verification and also compare our results with Nmap. As the results in Table X show,

we had nearly perfect accuracy in almost all the cases except for the 5th OS, which

had a lower accuracy because of a previously unknown OS is assigned to that class.

If we include the signature for that unknown OS in our signature database, we again

get 100% accuracy.
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Table X. Basic Verification

OS Correct Incorrect New signaturs

Linux 2.6.x/2.4.x 49 1 0

VxWorks A 50 0 0

VxWorks B 50 0 0

Windows Server 2003 SP1 SP2 50 0 0

Windows XP 2002 SP3/Microsoft Server 2003 45 0 5
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CHAPTER VII

DEFENSES

Operating system fingerprinting poses a security threat, because once the operating

system of a machine is known, one can tailor the attack based on it. Hence, in order

to deal with this threat effectively it is required that we obfuscate the machine’s

operating system. One simple way to defeat IRLSnack is to randomize the number of

retransmission tries [6] and also randomize the initial retransmission timeout value.

Randomizing the initial timeout would suffice because in most cases, as successive

timeout values in most as are computed using initial timeout values. To further add

a layer of obfuscation one can make changes to the values of TCP/IP header fields,

so as to resemble that of some other operating systems. The defenses suggested till

now require that changes be made to each individual host, a network administrator

can avoid doing that by ensuring that for all outgoing packets, the TCP/IP header

values are similar to an arbitrary OS, and also by ensuring that for all machines in the

network the number and value of RTO is again same as some random OS, preferably

not present on the network.
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CHAPTER VIII

CONCLUSION

In this paper we developed robust techniques so as to fingerprint all the publicly

available machines on the internet. We were successful in identifying nearly 78%

percent of the machines we discovered during our scan. In future to further increase

the detection, we plan to start an open source project so as to increase the number

of signature in the signature database. Also, we intend to do scans on different ports

thereby obtaining a much larger picture of OS distribution on the internet.
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