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ABSTRACT

On Combining Duty-cycling with Network Coding in Flood-based Sensor Networks.

(December 2010)

Roja Ramani Chandanala, B.Tech, National Institute of Technology, Warangal,

India

Chair of Advisory Committee: Dr. Radu Stoleru

Network coding and duty-cycling are two popular techniques for saving energy

in wireless sensor networks. To the best of our knowledge, the idea to combine these

two techniques, for even more aggressive energy savings, has not been explored. One

explanation is that these two techniques achieve energy efficiency through conflicting

means, e.g., network coding saves energy by exploiting overhearing, whereas duty-

cycling saves energy by cutting idle listening and, thus, overhearing. In this thesis,

we thoroughly evaluate the use of network coding in duty-cycled sensor networks.

We propose a scheme called DutyCode, in which a MAC protocol implements packet

streaming and allows the application to decide when a node can sleep. Additionally,

a novel, efficient coding scheme decision algorithm, ECSDT, assists DutyCode to

reduce further energy consumption by minimizing redundant packet transmissions,

while an adaptive mode switching algorithm allows smooth and timely transition

between DutyCode and the default MAC protocol, without any packet loss. We

investigate our solution analytically, implement it on mote hardware, and evaluate it

in a 42-node indoor testbed. Performance evaluation results show that our scheme

saves 30-46% more energy than solutions that use network coding, without using

duty-cycling.
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CHAPTER I

INTRODUCTION

Energy is a scarce resource in wireless sensor networks (WSN) and conservation of

energy has been the subject of extensive research. While a variety of solutions have

been proposed, duty cycling and network coding have proven to be two of the most

successful techniques in this field.

Network coding is a technique that increases energy efficiency and reduces net-

work congestion by combining packets destined for distinct users. Since the initial

proposal by Ahlswede [1], many applications have incorporated this idea. Network

coding is particularly well-suited for WSN due to the broadcast nature of their com-

munications. Overhearing is effortless, propagation is usually symmetric, and energy

efficiency is a priority. Network coding can be found in applications including multi-

cast, content distribution, delay tolerant networks (DTN), underwater sensing suites,

code dissemination, storage, and security. As diverse as these applications are, they

all share a common assumption: nodes in the network are always awake.

Duty cycling is a technique that increases energy efficiency by allowing a node

to turn off part or all of its systems for periods of time. Encompassing a range of

techniques from peripheral management to almost complete system shutdown, duty

cycling extends node lifetime and reduces maintenance. It has been shown that duty

cycling can extend battery life by an order of magnitude or more. In WSN, duty

cycling is pervasive and almost all deployed systems integrate it.

Given the importance of duty cycling to WSN, the assumption that nodes will

This thesis follows the style of IEEE/ACM Transactions on Networking.
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be awake cannot be made. Since nodes will be asleep at least part of the time,

network coding becomes more difficult because the time available for overhearing is

reduced. Sleep cycles using fixed intervals as short as 3msec result in increased energy

consumption and delay instead of shrinkage.

In this thesis, we address the challenge faced when aggressive (i.e., both duty-

cycling and network coding are employed) energy savings are mandated in flooding-

based WSN applications. To the best of our knowledge, this is the first work that

considers both duty cycling and network coding. We particularly target applications

such as code dissemination that require a non-negligible amount of time, possibly tens

of minutes in large scale sensor networks. Since network coding requires nodes to be

awake to make the maximum use of coding/decoding opportunities, it may seem inef-

ficient to allow nodes to sleep. Our main idea is derived from the intuition that, due

to the redundancy of coding, there are periods of time when a node does not benefit

from overhearing coded packets being transmitted. We seek to precisely determine

these periods of time, and let nodes that do not benefit from these “useless” packets

to sleep. Our solution is a cross layer approach, where Random Low-Power Listening

(RLPL), the new MAC layer, facilitates streaming, elastic random sleeping (ERS) and

synchronization, and the network coding-aware application layer determines, based

on the stream being transmitted, the time to sleep and the sleep duration. The pre-

requisite of our solution is that network coding be applied individually to a sequence

of packets, called a “page” (also known as a “generation”). The packets that are to

be coded within a page are random.

Redundant packet transmissions can be reduced by selecting appropriate coding

schemes for nodes. We propose a novel efficient coding scheme decision algorithm

“ECSDT” that computes coding scheme for each node that minimizes the extraneous

packet transmissions. ECSDT is integrated with DutyCode and achieves more energy
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savings. In addition, a novel technique ensuring the transitions between LPL, a

normal duty-cycling protocol, and RLPL, our proposed protocol, happen in a smooth

and timely manner is devised in an attempt to avoid packet loss during the transitions.

The contributions of this thesis include:

• A media access control (MAC) protocol that supports streaming. This allows

nodes to use streams to predict packet arrival.

• A mechanism for randomizing sleep cycles using elastic intervals. This allows

nodes to intelligently select sleep periods.

• ECSDT, a new efficient coding scheme decision mechanism for any static net-

work topology. This assigns coding schemes to minimize the number of trans-

missions and make the solution more energy efficient.

• A complete adaptive solution allowing the application to smoothly switch from

LPL to RLPL based on message traffic.

• Theoretical analysis and extensive simulations demonstrating the energy effi-

ciency and higher throughput of this solution.

• An implementation on mote hardware and performance evaluation in 42-node

testbed where actual energy consumption is measured.

This thesis is organized as follows. We review the state of art in Chapter II.

Chapter III motivates our work and provides background on network coding. Chap-

ters IV and V present our scheme for network coding in duty-cycled environments

and ECSDT and an analysis for DutyCode, respectively. Chapters VI and VII de-

scribe the implementation and performance evaluation of our scheme. We conclude

in Chapter VIII.
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CHAPTER II

STATE OF ART

Energy-efficiency in WSN is an area of active research. Multipath routing schemes for

energy-efficiency transmissions are examined in [2]. Error correction increases packet

delivery rates and decreases retransmissions in [3] [4]. Peripheral driver optimizations

are proposed in [5]. However, two promising directions for increasing energy-efficiency

include duty cycling and network coding.

In the area of duty cycling, research has often examined low power listening

(LPL) and scheduling. Whereas LPL protocols demand the use of long preambles,

scheduling protocols require periodic transmission of control packets for synchroniza-

tion. B-MAC [6] is a simple LPL protocol with periodic listening that requires no

synchronization. However, in high traffic networks, either throughput or sleep is

impacted because of overhearing caused by long preambles. X-MAC [7] improves

B-MAC with the help of short preambles and acknowledgements thus minimizing

the overhearing problem, but suffers similar inefficiencies in networks using broadcast

messages. Wise-MAC [8] enhances efficiency by creating opportunities for synchro-

nization, but is designed for low traffic networks. In SPAN [9], average sleep time

is lengthened but common network configurations cause power exhaustion in nodes

on high traffic routes. S-MAC [10] uses adaptive, periodic sleep, and clustering. Ef-

ficient at low bandwidth, performance degrades at higher network loads because of

fixed duty cycling and adaptation to neighbors’ schedules. SCP [11] saves power by

scheduling coordinated transmission and listen periods. However, high network loads

reduce sleep opportunities. T-MAC [12] enhances S-MAC by reducing the awake
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period even more. However, nodes frequently miss useful packets while asleep. A-

MAC [13] introduces advertisement window to provide prior knowledge of the future

transmissions to nodes. However, scheduling through advertisement is not a feasible

solution for broadcast applications with higher network loads. DW-MAC [14] is an-

other scheduling protocol that allows nodes to wake up on demand. AS-MAC [15]

achieves scheduling through periodic hello packets but fails to optimize efficiency

because the hello packet has to be transmitted at the wake up intervals of each neigh-

bor. RI-MAC [16] is a receiver initiated MAC protocol with an aim to reduce the

idle-listening. But, scheduling algorithms do not apply for broadcast applications.

Broadcasting in low duty-cycling networks has similarities to the problem ad-

dressed in this thesis. Because in flood-based network coding applications typically

all messages are broadcasted. The Sleep and Awake durations for each node are

computed as a optimization problem for unicast transmissions [17]. Opportunistic

flooding [18] and Schm-Dist [19] save energy in a low duty-cycling networks by treat-

ing broadcast transmissions as unicasts. Opportunistic flooding [18] utilizes proba-

bilistic flooding based on the delay distribution of neighbors. Hong, et.al. [19] prove

that broadcasting in a low duty-cycling network is an NP-hard problem and pro-

vide approximation algorithms based on top-down layered approach and D2-coloring

solution. OTAB [20] is a centralized approximation algorithm for duty-cycle aware

minimum latency broadcast scheduling. ADB [21] achieves efficient broadcast in

asynchronous duty-cycling networks, through collaboration among nodes achieved

by additional information in the packet footer. These technique may not scale to

large scale and message intense networks because each transmission is handled as a

transmission to each neighbor individually.

A variety of network coding approaches have also been proposed. With COPR [22],

Cui, et.al. maximize throughput by combining several unicast packets into a single
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broadcast packet. BEND [23] improves packet delivery rates, reducing retransmis-

sions, but negates much of the energy savings by forwarding multiple copies of the

same packet. Energy-efficiency at intermediate nodes was examined in [24] where

Markov chains were used to determine bounds on energy consumption. Inspired by

Reed-Solomon codes, network coding based on raptor codes is proposed for video

streaming on lossy packet networks in [25]. Decreased errors contribute to higher

throughput and reduced power consumption in [26]. Multimedia throughput and

energy-efficiency in wireless networks is examined in [27]. However, existing coding

schemes did not consider the duty cycling into consideration. Many applications in

wireless sensor networks adapted network coding for efficiency. AdapCode [28] is a

code dissemination protocol that incorporates network coding. When combined with

a low-power-listening MAC protocol, packets are forwarded between asynchronized

sleep periods using network coding to reduce total transmission. However, inflex-

ible scheduling increases energy use. Widmer, et.al. [29] proposed a new flooding

application that uses network coding for energy efficiency in extreme networks. Pack-

ets are divided into generations in [29] which is similar to pages in AdapCode [28].

CODEB [30] uses Reed-Solomon based coding algorithm for achieving optimal cod-

ing. ReedSolomon (RS) codes are non-binary cyclic error-correcting codes invented

by Irving S. Reed and Gustave Solomon [31]. Cluster based network coding scheme

is proposed in [32], to minimize the redundancy in messages transmitted. But these

schemes are designed for unicast message patterns.

In the past few years, dynamic MAC protocols that modify adapt based on the

traffic pattern has been the prime topic of research. TEEM [33], MaxMAC [34]

and BEAM [35] are traffic aware MAC protocols in WSN. TEEM [33] builds traffic

awareness on top of S-MAC. MaxMAC [34] uses features of WiseMAC and XMAC

for energy efficiency. BEAM [35] uses short preambles and long preambles based on
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the traffic patterns and employs schedule adaptation for energy efficiency. However

all these protocols deal with unicast messages and are not suitable for flood-based

applications. P-MAC [36] may not scale to a large, message-intense network, as it

requires periodic traffic pattern update to achieve traffic aware duty-cycling.

In [37], we proposed a network coding protocol that achieves energy saving of

20-30% in duty-cycled wireless sensor networks. This thesis improves the energy effi-

ciency of the protocol by proposing a coding decision algorithm, ECSDT, that mini-

mizes the redundant packet transmissions, thereby saving more energy. Furthermore,

a sophisticated adaptive transition technique accomplishes a smooth and timely tran-

sition between LPL mode and RLPL mode without any packet loss. The effectiveness

of the new algorithms is proven by extensive experiments on real hardware.
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CHAPTER III

MOTIVATION AND BACKGROUND

Network coding enhances energy efficiency by reducing the number of transmissions.

The basic concept of network coding can be explained using a simple scenario. Sender

s1 wants to send a packet x1 to t1 and sender s2 wants to send another packet x2

to r2, as shown in Figures 1(a) and 1(b). A total of six transmissions are required

to deliver the two packets when network coding is not used (Figure 1(a)). However,

Figure 1(b) shows that, when network coding is used, only 4 transmissions are needed

because the two relays can transmit only one coded packet (x1 + x2) instead. For

network coding to work, receivers t2, t1 must be able to overhear packets x1 and x2

from s1 and s2, respectively. Otherwise, they will be unable to decipher anything

from the coded packet received.

It is important to note that, unlike normal broadcast packets, one missing coded

packet can render a sequence of coded packets “useless” (i.e., they do not convey

any information). Consider a scenario where a node receives the independent coded

packets, (a1x1 + a2x2 + a3x3 + a4x4), (b1x1 + b2x2 + b3x3 + b4x4), and (c1x1 + c2x2 +

c3x3 + c4x4). Receiving another coded packet, (d1x1 + d2x2 + d3x3 + d4x4), is critical

for this node in order to decode all the packets. Otherwise all 3 received packets are

useless. As the coding scheme (i.e the number of different packets coded into a single

packet) increases, the penalty for losing a single packet increases linearly.

Most existing duty-cycling protocols achieve energy savings through scheduling

or low power listening (LPL) [6]. However, both scheduling and LPL are not feasible

solutions for network coding, since overhearing, the fundamental building block of
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Fig. 1. a) Transmissions without network coding; b) with network coding.
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Fig. 2. Network coding integrated with two major categories of duty-cycling protocols:

(a) Scheduling based (”A” and ”S” represent active and sleep states respec-

tively), and (b) Low power listening based on long preambles (P represents a

Preamble).

network coding, is difficult to achieve when those techniques are employed. If network

coding is used with such duty cycling protocols, the probability of losing useful packets

will increase by failing to overhear packets. Consequently, system performance such

as energy consumption and code dissemination time will be impacted. Figure 2(a)

illustrates the scenario where scheduling is employed in the network coding example

shown in Figure 1(b), and Figure 2(b) shows the scenario when LPL is applied. In

Figure 2(a), t2 misses the coded packet x1+x2 due to scheduled sleep time. Figure 2(b)
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Fig. 3. Execution of X-MAC-enabled AdapCode on a 42 epic mote testbed.

shows an increase in total execution time caused by long preambles used for LPL.

To validate our intuition, we performed experiments on a testbed of 42 Epic

motes. We integrated AdapCode [28], a code dissemination application that uses

network coding, with X-MAC [7], a frequently used MAC protocol that allows duty

cycling. The results of our experiment, in which we varied the LPL sleep interval

parameter (indicative of the duty-cycle desired), are depicted in Figure 3. Although

some degradation due to missed transmissions was expected, especially at longer sleep

intervals, energy consumption was generally expected to decrease. Instead, even using

very short static sleep intervals nearly doubled the delay and energy consumption.

From these results, it was clear that: i) a node should select sleep intervals intelligently

at non-static intervals; and ii) long preamble-based MAC solutions are not suitable

for network coding applications. The problem formulation that emerged was for each
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node to predict the likelihood of receiving packets and decide to sleep if the packets

are likely to be useless.

During these experiments, a significant number of redundant packet transmis-

sions was detected. This redundancy in AdapCode could be attributed to its sim-

plified assumption that the network is uniform, where the number of neighbors is

assumed to be the same for all nodes. However, uniform network is not a practical

assumption and results in inefficient coding scheme assignments. Network topology,

e.g. the number of parents or children, should be carefully taken into account when

coding schemes are determined to avoid unnecessary packet transmissions. Those con-

siderations motivated us to devise a new technique to assign efficient coding schemes

for any network topology such that all nodes can decode all packets with the minimum

possible packet transmissions.

When code download is not taking place, LPL mode is a better solution in terms

of energy saving, since when network traffic is low, there are more opportunities of

making nodes to sleep. Thus, a technique ensuring adaptive transitions between LPL

mode and RLPL mode based on the traffic is required. Such technique also needs to

provide smooth and timely transition to avoid packet loss during the transitions.
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CHAPTER IV

DUTY CYCLING OF NETWORK CODED WSN

The core problem of combining duty-cycling and network coding is non-intelligent

duty-cycling. Our solution tackles this problem by providing a framework to keep a

node informed of future packets without any use of control packets. This knowledge

makes a node capable of employing smart duty-cycling. The fundamental principle of

our solution is that each node streams all the packets of a logical entity (i.e., page) in

a row. This stream is useful for nodes lacking the data being transmitted, otherwise

it is useless. Upon receiving the first packets a node stays awake and receives all

packets if they are useful, otherwise the node sleeps for the duration of the stream.

Each packet of the stream has an additional control field indicating the number of

remaining packets of the stream. A node can compute the duration of stream as the

transmission time per packet times the remaining packets of stream.

4.1 Preliminaries

In this section we introduce a typical application, called NetCode, that uses network

coding for energy efficiency. NetCode is a generic representation of flooding appli-

cations that use network coding. AdapCode [28] is an instance of NetCode. We

describe its operation in detail because we aim to analytically demonstrate, in the

sections that follow, that the introduction of our smart duty-cycle does not come with

any major overhead. The operation of NetCode is depicted in Figure 4. In NetCode,

when a source node, e.g., a base station, wants to disseminate a new program image

in the network, it broadcasts the data as pages. Each page consists of a number of
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Fig. 4. The NetCode protocol: Ci are coded packets, N is a NACK packet, due to

missing packet C4, R4 is the ReNACK packet - the non coded packet missing,

IP is the Inter-page interval, BOi,c is the backoff interval - initial and congestion,

NACK is a timer.

packets. After transmitting a page, the source waits for a short period of time for code

propagation, and subsequently sends the next page. The time interval that separates

two pages is called “Inter-page interval” (IP in Figure 4). The source maintains a

constant small delay between any two packets of a page. The “Transmission Request”

(TR in Figure 4), is the transmission request for a packet transmission. In Figure 4,

the TR only for the coded packet C1 is shown to keep the figure simple. NetCode

typically uses CSMA as a MAC protocol.

All nodes, after receiving packets, adaptively choose an appropriate “coding

scheme” (i.e. the number of packets to be coded in a single packet) or have a

predefined one. The appropriate coding scheme is chosen based on the number of

neighbors. If a node does not receive any packets for a random period of time (called

“NACK” delay in Figure 4), it broadcasts a NACK packet (labeled N in Figure 4),

indicating the exact packets that it missed. Upon receiving a NACK, all nodes hav-

ing the page that contains the requested packets, set a random backoff timer (called

“ReNACK” delay). The node with the smallest ReNACK delay interval wins and

transmits all the requested packets (packet R4 in Figure 4). As with existing CSMA
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Fig. 5. (a) DutyCode architecture: (b) Streaming in DutyCode: after the backoff

intervals, BO1i,1c and BO2i,2c coded packets in a page are streamed.

protocols, NetCode uses a “Backoff timer” for accessing the medium before transmit-

ting any packet. This backoff timer has, typically, two values: an initial value, and a

congestion value, selected randomly (as in Figure 4) from BOi and BOc, respectively.

4.2 Proposed Solution: DutyCode

Our solution, called DutyCode, is shown in Figure 5(a). DutyCode is an integrated

scheme (MAC and Network coding application) in which the MAC layer facilitates

streaming, random sleeping and synchronization, while the application layer deter-

mines the time to sleep and the sleep duration based on its knowledge about the

stream being transmitted. The prerequisites of our solution are: i) packets are

grouped into logical entities, called pages; and ii) network coding is limited to the

packets from same logical entity.

The proposed MAC protocol, Random Low-Power-Listening (RLPL), allows: i)

packet streaming; ii) transmission defer; and iii) transmission arbitration. When

requested by network coding (NC) application, RLPL turns off the radio for the

requested duration if there is no pending transmission. The NC application specifies

the sleep duration when it requests the node to sleep. RLPL does not put the node
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to sleep periodically. When requested, and if feasible, RLPL shuts down the radio

for the requested period. Unlike other duty-cycling protocols (e.g., DefaultLPL in

TinyOS 2.1) it does not perform Clear Channel Assessment (CCA) before turning off

the radio. The reason for this is that the CCA would not have any meaning, since

requests for sleep come from the NC application when there is, typically, ongoing

radio communication (e.g., streaming of useless packets). We define “useless packets”

as the packets pertaining to a page which was already decoded by the receiving node.

We define “Sleep Interval” as the duration per packet, for which a node sleeps upon

receiving a packet from a useless stream.

Packet Streaming. For streaming, RLPL sets different initial and congestion

backoff intervals for packet transmission. The operation of DutyCode is depicted

in Figure 5(b). The first two packets of the stream are transmitted normally with

random backoff intervals (BO1i,1c and BO2i,2c) chosen from different ranges and the

rest of the stream is sent with very small and fixed backoff interval BOri,rc. In

streaming, the penalty for transmission collision is high. To reduce collisions, the

first two packets of the stream are sent with large random backoff intervals. As

shown, backoff intervals for the first packet and second packet are selected from BO1

and BO2 respectively (each has one initial, and one congestion value: BO1i, BO1c and

BO2i, BO2c). The application can set these values according to the reliability of the

network.

Upon receiving a stream packet, a node yields if it has no unfinished stream

transmission and no packet awaiting transmission. As shown in Figure 6 upon receiv-

ing a stream from node s, nodes r1 and r2 decides to yield to the stream from s (red

color arrows) and they do not process any transmit requests coming from their NC

application, for the duration of the stream from s. As shown, because r1 has the page

being transmitted by s, it sleeps for the duration of the stream. After r1 wakes up, it
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Fig. 6. Streaming with no packets awaiting transmission and no unfinished streams at

nodes r1 and r2.

tries to transmit any pending packet. Because node r2 does not have the page being

transmitted, it stays awake and receives all streamed packets. Node r2 handles its

packet transmission request, either after it receives the last packet of the stream from

node s or after the expected stream duration is over, whichever happens first (HP in

Figure 6). In Figures 6 through 10, TR indicates a transmission request from the NC

application; BT indicates the backoff timer fire event; HD indicates the handling of

deferred packet and HP indicates the handling of pending transmissions.

Transmission Defer. A transmission defer is a decision made by MAC layer

to postpone a packet transmission for a future time, if feasible. A node defers its

transmission when it decides to yield to an existing stream from another node. In

Figure 7, nodes r1 and r2 yield when they have no unfinished stream, to node s. This

is similar to the case of regular streaming (Figure 6) except that nodes r1 and r2

defer packet transmissions. At any time the application can only have one pending

transmission. Hence, r1 and r2 resume the deferred packet transmission when they
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Fig. 7. Streaming with transmission defer (red color arrows indicate the defer of the

current transmission) with no unfinished streams at nodes r1 and r2.

realize that the stream transmission by node s is over. A deferred packet is handled

as a new transmission request i.e., the node backs off for the duration selected ran-

domly from the initial backoff interval. A transmission defer is similar to transmission

cancelation except that it is completely handled in MAC. RLPL handles the deferred

and pending packets after the sleep interval is over and radio is turned on.

Transmission Arbitration. Transmission arbitration happens when two nodes

attempt to transmit a packet from an unfinished stream at the same time. Unique

node ID is used to determine who will transmit first. Specifically, a node with larger

node ID will have a higher priority. However, constantly giving a priority to nodes

with larger IDs might result in starvation of nodes with smaller IDs. To compensate

for this unfairness, BOri,rc is determined based on node ID, and nodes with smaller

IDs are given smaller backoff interval, allowing more chances to transmit. Figures 8, 9,

and 10 illustrate different transmission arbitration scenarios where nodes s and r1 (s

> r1) compete for the channel. In Figure 8, r1 learns about the stream from s, and
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Fig. 8. Transmit arbitration: s > r1 and r1 learns about the stream from s and suc-

cessfully defers its transmission.
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Fig. 9. Transmit arbitration: s > r1 and r1 learns about the stream from s and fails

to defer its transmission.
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Fig. 10. Transmit arbitration: s > r1 and s learns about the stream from r1 first.
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Fig. 11. An example of a network topology that causes redundant packet transmis-

sions.

yields to s by successfully deferring its transmission. Figure 9 presents the case where

r1 learns about the stream from s but fails to defer. Thus, s sees the channel is busy.

In this case, s waits for BOrc, after which s resumes its stream. Figure 10 shows a

different scenario, where s learns about the stream from r1. In this case s waits for

BO2c, and after receiving the last packet from the stream of r1, s tries to transmit

the remaining stream as a new stream.

4.3 Coding Enhancement

While the solution proposed in the previous section saves a considerable amount of

energy, there is still an opportunity to save more energy, i.e., by minimizing the

number of unnecessary packet transmissions. To illustrate such redundant packet

transmissions, Figure 11 shows a hypothetical network with four leaf nodes (c1 − c4)

and their parents (p1−p8), where c1 and c4 receive packets from four parents whereas

c2 and c3 receive packets from only two parents. We first easily note that leaf nodes

(c1−c4) do not need to send coded packets. In order to analyze the unnecessary packet

transmissions, we define PCS (Preferred Coding Scheme) for each node. PCS is the

maximum coding scheme that a node’s parents can have such that all the children of
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the parent can successfully decode all the encoded packets. As an example, consider

the PCS value for c1. Since c1 receives 4 coded packets, each from its 4 parents,

p1 − p4, at most 4 packets can be encoded into a single packet, yielding a PCS value

of 4. In a similar way, the PCS values for c2, c3, and c4 are 2, 2, and 4 respectively.

A critical observation is that any coded packet transmissions from p1, p2, p7, and p8

are useless, because the coding scheme of p3 − p6 must be 2, and all children c1 − c4

can decode all the packets from the coded packet transmission of p3 − p6.

In order to avoid such extraneous transmissions and save extra energy, we propose

ECSDT, a new efficient coding scheme decision mechanism for any static network

topology. The static network topology is represented as a directed graph G = (N,E),

where N is the set of all nodes ni, and E is the set of edges(ni, nj) such that ni is

the one-hop parent of nj. Each edge is associated with a link quality (LQ) which

represents the successful packet delivery ratio. Only the edges with LQ greater than

a pre-defined link quality threshold (LQT) are considered. A different LQT results in

different topologies, affecting the performance of ECSDT. We let Pi = {nj : (nj, ni) ∈

E} be the set of all one-hop parents of node ni and let Ci = {nj : (ni, nj) ∈ E} be

the set of all one-hop children of node ni. We denote by nPCS
i,j the PCS value of ni

for its parent nj ∈ Pi, and by nCS
i the coding scheme of ni.

The ECSDT algorithm is depicted in Algorithm 1. The ECSDT runs in 2 phases.

In the first phase, each node ni computes the PCS value nPCS
i,j for all nj ∈ Pi. (Line

1-3). Then, the initial coding scheme for each node ni is determined to be the

min{nPCS
j,i : nj ∈ Ci}, i.e., the minimum PCS value among all the PCS values of

its children (Line 4-6). If |Ci| = 0, “null coding scheme” is chosen for ni (in a “null

coding scheme” no coded packets are forwarded), preventing a leaf node from send-

ing unnecessary packets. In the second phase, each node ni checks for any possible

redundant transmissions by examining the initial coding schemes of its parents. If
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Algorithm 1 ECSDT: Assigning Coding Schemes

1: for each ni ∈ N do

2: nPCS
i,j ← |Pi|, ∀nj ∈ Pi.

3: end for

4: for each ni ∈ N do

5: nCS
i ← min{nPCS

i,j : nj ∈ Ci}

6: end for

7: for each ni ∈ N do

8: nEQNS
i ← 0

9: for each nj ∈ Pi (in an ascending order of nCS
j ) do

10: if nEQNS
i ≤ page size then

11: nEQNS
i ← nEQNS

i +
page size

nCS
j

12: else

13: nPCS
i,j ← null coding scheme

14: end if

15: end for

16: end for

17: for all each ni ∈ N do

18: if ∀nj ∈ Ci, n
PCS
j,i = null coding scheme then

19: nCS
i ← null coding scheme

20: else

21: nCS
i ← min{nPCS

j,i : nj ∈ Ci}

22: end if

23: end for
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node ni finds a possible redundant transmission from its parent nj, it updates the

PCS value for the parent, nPCS
i,j to null coding scheme (Line 7-16). As the last step,

each node checks the PCS value of its children. If all children suggest a null coding

scheme, the parent sets its final coding scheme to the null coding scheme; otherwise

to the minimum PCS value among all the PCS values of its children (Line 17-23).

We present a proof-of-concept simulation result that proves the correctness of

the proposed algorithm. A simple simulator written in JAVA generates a random

topology with 16 to 100 nodes, in which one node is chosen as a source and starts a

code update. We measured the total number of transmitted packets during the code

update for both AdapCode and ECDST. In AdapCode, a node determines the coding

scheme based on the number of neighbors from which it received useful packets. Thus,

one-hop parents and peer nodes (the nodes that are in the same hops away from the

source) can be its neighbors. In this simulation, both cases, when the peer nodes are

counted as neighbors and when not, are considered. Figure 12 depicts the results.

Compared with the AdapCode result with peer nodes being counted as neighbors

(The line “Adapcode+Peer nodes” in Figure 12), ECSDT shows more than a few

magnitude less packet transmissions, and compared with the AdapCode without the

peer nodes being counted as neighbors, ECSDT shows 50% less packet transmissions.

Although ECSDT is a centralized algorithm where coding schemes are decided

at a central entity, it can be modified to run in a distributed manner through some

additional message exchanges between nodes. Also, it can be adapted to dynamic

environments to take link failures into account by piggy-backing feedback related to

coding schemes in NACKS.
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Fig. 12. The proof-of-concept result showing the effectiveness of the ECSDT algorithm.

4.4 LPL/RPLP Mode Transitioning

Leveraging data streaming, aggressive energy saving can be achieved using RLPL

when a code update is underway. However, this is not the case when the network

traffic is low, typically after a code update is finished. In that case, LPL becomes

more efficient than RLPL. Thus, there is a need for an efficient technique to switch

between the two modes. Such switching technique needs to be carefully designed to

ensure a smooth timely transition with no packet loss.

In our solution, each node starts with LPL mode, and when it receives the first

packet of code update, it attempts to switch modes (this is illustrated in Figure 13) To

minimize packet loss during mode transition from LPL to RLPL, we use a transient

mode, called NoSleepLPL, instead of directly switching mode from LPL to RLPL.

In NoSleepLPL mode, after receiving the first packet of code update, a node does

not sleep trying not to miss any packets, and received packets are relayed utilizing
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Time
LPLNoSleepLPL RLPLLPL

CD EndsCD Starts
Fig. 13. Protocol transition; “CD starts” indicates the beginning of code download and

“CD Ends” indicates when a node receives all expected code update packets.

long preambles to ensure that its children, in turn, do not miss the relayed packets

and go into NoSleepLPL successfully. At a fixed time interval after receiving the first

packet of code download, a node switches its mode from NoSleepLPL to RLPL. RLPL

mode is switched back to LPL mode when a node has received all the expected coded

packets. Switching back to LPL mode is relatively easier due to low traffic, without

incurring any issues of packet loss.
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CHAPTER V

DUTYCODE PROTOCOL ANALYSIS

In this chapter we analyze the operation of the proposed DutyCode scheme. The aim

of our analysis is as follows:

• To show that the proposed duty-cycling enabled network coding does not have

any overhead, when compared with existing network coding applications, such

as NetCode. The two metrics we investigate are the total number of packets

per page, and the total execution time.

• To show that the coding schemes assigned by ECSDT are optimal.

• To analytically evaluate the DutyCode protocol and compute an upper bound

on the energy savings.

We denote by pp the number of packets per page, cs the coding scheme, cp the

collision probability in NetCode, and cp1 and cp2 the collision probabilities associated

with BO1 and BO2 in DutyCode (as described in the previous chapter), BOc the

CSMA congestion backoff interval and ttr the actual transmission time per packet.

We assume that the sleep interval per packet, SI is chosen such that there is no time

overhead due to sleeping (i.e., stream duration is much longer than sleep interval):

SI · pp/cs ≤ (BO1i/2 + pp/cs · ttr) (5.1)

Because, NetCode is message intense there is always a node waiting to transmit a

packet with congestion backoff interval chosen randomly between 0 and BOc. Because

the backoff is uniformly distributed, the average backoff interval is BOc/2 and the

average collision probability is cp.
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Similarly, in DutyCode, the average backoff time for the first packet of stream

is BO1i/2. The reason for this is that in DutyCode, because of packet defer, the

first packet of a stream is always transmitted with a backoff interval chosen from 0

to BO1i. Hence, the average backoff interval for the first packet is BO1i/2 and the

average collision probability for the first packet of the stream is cp1. The collision

probability for the second packet of the stream is cp1 · cp2, because there could be

collision during the transmission of second packet if and only if there was collision

during the first packet transmission.

5.1 Total Number of Packets Transmitted

Theorem 1 If BO1i ≥ BOc then P d
p ≤ P a

p , where P d
p and P a

p are the total number

of packets for DutyCode and NetCode, respectively.

Proof 1 In both DutyCode and NetCode, three types of packets can contribute to the

total number of packets: a) coded packets; b) NACK packets; and c) ReNACK packets.

Coded Packets. Coded packets are the packets transmitted by a node, obtained

after coding (i.e., based on a coding scheme). Hence, the number of coded packets per

page Cp is given by: Cp = pp/cs. Since the coding scheme is the same in DutyCode

and NetCode:

Ca
p = Cd

p (5.2)

where Ca
p and Cd

p are the number of coded packets for NetCode and DutyCode, respec-

tively.

NACK Packets. A node sends a NACK when it is unable to decode a page.

There are two reasons for NACKs: i) unable to receive enough independent packets

needed for decoding a page; and ii) collisions;

i) independent packets. Because DutyCode uses the same coding scheme as
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NetCode, this factor has no impact on the total number of packets. Hence, we do not

consider it.

ii) collisions. In NetCode, the maximum the number of NACKs per packet is

N = cp + 2cp2 + ...., i.e., with probability cp , the node needs to send 1 NACK. If

a collision occurs during the NACK transmission, the node may have to transmit 2

NACK packets with cp2 probability. The total number of NACKs per page is:

Na
p = (pp/cs)(cp+ 2cp2 + ...)

For DutyCode, the NACKs can be sent as a result of two scenarios: i) collision

during first packet transmission (cp1); ii) collision during second packet transmission

(cp1 · cp2). Thus, the total number of packets per page is:

Nd
p = (cp1 + cp1 · cp2) + 2cp1 · (cp1 +

cp1 · cp2) + 3cp21(cp1 + cp1 · cp2) + ..

= (1 + cp2) · (cp1 + 2cp21 + ....)

Since the collision probability of a transmission, cp, is inversely proportional to the

backoff interval range BO, i.e., cp ∝ 1/BO, then cp = k1/BO and cp1 = k2/BO1i

when DutyCode and NetCode are run in the same network with similar parameters

k1 = k2.

cp1
cp

=
BOc

BO1i

(5.3)

If backoff intervals are chosen such that BO1i ≥ BOc, then, from Equation 5.3:

cp1 ≤ cp (5.4)

From Equation 5.4, when pp/cs ≥ (1 + cp2) and BO1i ≥ BOc then:

Nd
p ≤ Na

p (5.5)
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For DutyCode, it is necessary to ensure pp/cs ≥ (1 + cp2) otherwise there would only

be 1 packet in the stream, and there would not be any opportunity for sleeping. It

would be very easy to increase packets per page with an increase in coding scheme.

One might argue that a node may miss some useful packets while asleep. A node goes

to sleep, however, only after receiving a useful packet stream. If there is only one

stream then the node would not miss any useful packets. Only because of collision

there could be multiple streams at a time. Hence, the NACKs due to collisions cover

this part.

ReNACK Packets. ReNACKs are regular packets with no coding.

In NetCode, if there is a collision while transmitting a coded packet, the appli-

cation may need to send all the packets that are coded into the message, individ-

ually and not coded. So, for each coded packet which is pp/cs per page, the node

needs to retransmit cs with probability cp. Similar to NACKs it needs to transmit

these packets twice with probability cp2. Hence, the number of ReNACKs per page is:

Ra
p = cs · pp/cs · (cp+ 2cp2 + ....).

For DutyCode, a collision during a stream transmission can be attributed to one

of the following: i) a collision during the transmission of first packet (probability cp1),

requires that cs packets be retransmitted; and ii) a collision during the transmission of

the second packet (probability cp1 · cp2), requires that an entire page be retransmitted:

cs · cp1 + cp2 · cp1 · pp.

Assuming the worst case, in which pp packets need to be retransmitted in case of

collision during the transmission of first packet, the total number of ReNACKs per

page per node is:
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Rd
p = cp1 · pp+ 2cp21 · pp+ 3cp31 · pp+ ...

= pp · (cp1 + 2cp21 + ...)

From Equation 5.4, when BO1i ≥ BOc then:

Rd
p ≤ Ra

p (5.6)

From Equations 5.2, 5.5 and 5.6, and since P
a/d
p = C

a/d
p + N

a/d
p + R

a/d
p , then

P d
p ≤ P a

p .

5.2 Total Execution Time

Theorem 2 If the backoff intervals satisfy pp/cs · BOc ≥ BO1i and BOc = BO1c,

then the total time for DutyCode is less than or equal to that of NetCode.

Proof 2 In DutyCode, except for NACKs, all other packets (i.e., coded packets and

ReNACKs) can be transmitted as streams. If s is the total number of streams in

DutyCode then the number of packets to be transmitted per node is:

P d = s · pp/cs+Nd (5.7)

In NetCode, the total number of packets can be written, in terms of s as:

P a = s · pp/cs+Na (5.8)

As explained, the average backoff time per packet in NetCode is BOc/2. Hence,

the total time per node is:

T a
n = P a(BOc/2 +Da

t + ttr)
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where Da
t is the average time delay in NetCode (because NetCode packets are not

streamed, a small time delay is maintained between successive transmissions).

After substituting Equation 5.8, we obtain:

T a
n = s · pp/cs ·BOc/2 +Na ·BOc/2 + P a ·Da

t + P a · ttr (5.9)

For DutyCode, for each stream the average backoff interval is BO1i/2 except for

the stream which is transmitted after a NACK packet (for a NACK packet, yielding is

not done because it is not a stream). Hence, the wait time of stream which is trans-

mitted right after the NACK is BO1c/2. Dd
t is the average time delay in DutyCode,

similar to Da
t (Dd

t << Da
t ). In DutyCode, based on Equation 5.1, the total time for

code download is the total time required for all packet transmissions. Consequently

the total time per node is:

T d
n = (s−Nd) ·BO1i/2 +Nd ·BO1c/2 +

Nd ·BO1i/2 + P d ·Dd
t + P d · ttr

= s ·BO1i/2 +Nd ·BOc/2 + P d ·Dd
t + P d · ttr

since BO1c = BOc.

The above equation may give a false impression that, by decreasing the backoff

intervals, the total execution time can be decreased. However, with a decrease in

backoff interval, the collision probability increases, which results in an increase in the

number of NACKs and ReNACKs.

From Equation 5.5 and Theorem 4.1 and when pp/cs · BOc ≥ BO1i is satisfied

then:

T d
n ≤ T a

n (5.10)
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Fig. 14. A multihop network topology for a flood-based wireless sensor network appli-

cation.

5.3 Total Energy Saving

This section presents an analytical upper bound on the total energy saving of a node

in DutyCode. To prove the upper bound, we consider a particular network topology

depicted in Figure 14, where any nodes in i-th hop are within the interference range

of the nodes in (i + 1)-th hop and (i − 1)-th hop. We assume that the Inter-page

interval (IP) is fixed to minimal, i.e., the source sends the next page after the previous

page has been successfully downloaded from all the nodes in 3 hops from the source,

preventing the hidden terminal problem. We denote by Si the set of nodes that are i

hops away from the source. The total energy saving for a node is defined as follows:

Esaving = Tsleep/Ttotal (5.11)

where Ttotal is the total code download time, and Tsleep is the total time that a node

is in sleep mode.

Since the code download is a pipelined process, given the minimal IP interval,

Ttotal can be measured as the total time taken for any nodes in Si−1, Si, and Si+1
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to finish the code download. Consider a node ni ∈ Si. In this topology, ni cannot

transmit a packet if any nodes in Si−1 (parents), Si (peers), or Si+1 (children) are

transmitting packets. Thus, the expected total code download time E(Ttotal) is given

as,

E(Ttotal) =

(
|Si−1|+ |Si − 1|+ |Si+1|

2

)
· Tpage · P

=
3n

2
· Tpage · P (5.12)

where Tpage is the time taken for one page, i.e., Tpage = (BO1i/2 + pp/cs · ttr), and P

is the total number of pages.

If the coding scheme is implemented properly, only packets transmitted by the

nodes in Si−1 are useful. So, ni can sleep while the nodes in Si and Si+1 are transmit-

ting their packets. The expected total sleep time E(Tsleep) is thus given as follows:

E(Tsleep) =

(
|Si − 1|+ |Si+1|

2

)
· T ′

page · P

= n · T ′
page · P (5.13)

where T ′
page is the sleep time for a page, i.e., T ′

page = SI · pp/cs.

From Equation 5.1,

2n · SI · pp/cs ≤ 2n(BO1i/2 + pp/cs · ttr). (5.14)

The maximum energy saving is achieved when

SI · pp/cs = (BO1i/2 + pp/cs · ttr) (5.15)
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Thus,

E(Esaving) = E

(
Tsleep

Ttotal

)
=

n · (SI · pp/cs)
3n
2
· (BO1i/2 + pp/cs · ttr)

≤ 2

3
≈ 66%. (5.16)

5.4 Coding Scheme Enhancement

This section proves that the coding schemes obtained from ECSDT are optimal.

Theorem 3 ECSDT outputs the optimal coding schemes for all nodes to decode all

the packets successfully.

Proof 3 Assume in contradiction that there exists a better coding scheme A. This

implies that in A, there exists a node that transmits fewer packets than that of ECSDT.

Let such node be ni. Note that, in ECSDT, each parent chooses the minimum of the

coding schemes proposed by its children, as explained in algorithm 1 (Line 21). Thus,

if ni transmits fewer packets, then at least one child would not be able to decode all

packets successfully, which is a contradiction. And so, A does not exist.
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CHAPTER VI

IMPLEMENTATION

We implemented the DutyCode protocol in nesC for TinyOS 2.1.0. The implementa-

tion was done in the CC2420ReceiveC (Receive), CC2420TransmitC (Transmit) and

CC2420CsmaC (Csma) modules. New modules RandomLPL (RLPL), RPowerCy-

cleC(Power) were created, which differ from the existing DefaultLPL and PowerCy-

cle respectively, as presented in Chapter IV. The implementation changes can be

broadly classified based on the two basic aspects of the DutyCode protocol: i) Packet

Streaming ii) Elastic and Random Sleeping (ERS).

6.1 Packet Streaming

Transmit, Receive and RLPL modules are modified to achieve packet streaming.

When streaming is achieved, the application sends packets one after the other without

any significant delay (i.e., as soon as sendDone() is signaled). Each packet header

contains the number of remaining packets in the stream, computed based on the

coding scheme used.

Streaming Packet Received. The Receive module notifies the Transmit mod-

ule when it receives a stream packet from other nodes. Upon receiving a stream signal

from Receive, Transmit runs Algorithm 2. First, Transmit checks if it has pending

packets or the end of the stream has been reached (Line 1). If there are remaining

packets in the stream, Transmit checks if the stream satisfies the yielding conditions

discussed in Chapter IV (Line 2). If not, no action is taken. Otherwise, if it is in the

middle of transmission, the node tries to defer the packet transmission and informs



35

Algorithm 2 Transmit: Streaming Packet Received (From Receive Module)

1: if (# of remaining pkts > 0) then

2: if (any yield cond. is true) then

3: if (# pkts awaiting transmit > 0) then

4: attempt to DEFER pkt transmission

5: RLPL saves DEFER result

6: end if

7: RLPL starts NoSend timer

8: end if

9: else

10: RLPL stops NoSend timer and handles packet

11: end if

RLPL about: i) the details of the stream transmission; and ii) the defer status, if

there was a need for packet defer (Line 4-5). RLPL then sets a NoSend timer (Line

7) and keeps future transmit requests pending until the stream duration is over or

informed by Transmit about completion of stream it is yielding to. Transmit informs

RLPL about the completion of stream upon receiving the signal from receive for the

last packet of the stream (Line 10).

We implemented the packet defer in the Transmit module because it is the only

module that maintains the transmission internal state, and because Transmit has to

be informed at the earliest time so that it can defer the transmission if possible.Earlier

our solution included extended backoff intervals but if there is any pending packet

transmission, RLPL does not turn off the radio. (This check is validated even in the

DefaultLPL, and this check is needed to ensure that the radio would not be turned

off in middle of transmission.)



36STARTED LOAD SAMPLE CCATRANSMIT BEGIN TRANSMITDEFER a b cdf e
Fig. 15. State transition diagram for the transmit module, with changes (dotted ar-

rows) for the “packet transmission defer”. Other transitions: (a) transmission

request; (b) copy packet on radio stack; (c) perform CCA; (d) channel clear,

transmit; (e) congestion backoff; (f) no CCA requested, transmit.

Packet Ready for Transmission. Upon receiving a transmit request from the

application with the result of clear channel assessment (CCA), the Transmit module

copies the message to the radio and waits for the backoff interval corresponding to

the CCA result (transitions a-b-c-d in Figure 15). Transmit can defer a packet trans-

mission until the actual transmission has been started (dotted arrows in Figure 15).

The application would not be aware about this packet defer and RLPL handles the

deferred packet as soon as possible.

6.2 Elastic and Random Sleeping (ERS)

This section presents the implementation changes done for ERS. RLPL and Power

modules are modified such that sleep requests are no longer handled periodically (as

done for LPL). Instead, they are treated as one time requests. The Power module

is also modified to not perform clear channel assessment (CCA) before turning off

the radio. Csma is modified to turn off the radio only if Transmit decides to defer

the transmission, when the sleep request arrives while it is in the middle of packet

transmission.
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Fig. 16. The map of our testbed. (x, y) represents the relative coordinate of a node in

inches with the node at the lower left corner as origin.

6.3 The ECSDT Algorithm

The ECSDT algorithm is implemented in JAVA and deployed on a central server

which is shown in Figure 16. It communicates with all 42 motes of our testbed via

serial ports. When the algorithm starts, the network topology is constructed by

receiving neighbor tables from the motes. Using the network topology, the ECSDT

then computes an appropriate coding scheme for each node as described in Section 4.3.

The new coding schemes are transmitted back to the nodes via serial ports. When

the code download starts, each mote uses the new coding scheme.
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6.4 LPL to RLPL Mode Transition

In order to achieve a smooth transition between LPL mode and RLPL mode (as

described in Section 4.4) two independent MAC protocol modules, one with LPL and

the other with RLPL, are built, and a new wrapper module is created to serve as

a common interface to the underlying MAC protocols. The wrapper forwards the

function calls to the relevant MAC function based on the current mode selected by

the application.

The wrapper handles the mode transition smoothly: if the current MAC protocol

is in the middle of transmission, the transition happens after receiving the SendDone

signal. Switching is accomplished by stopping the current MAC protocol and then

starting the other MAC protocol. Especially for the transition from LPL to RLPL,

the transient state noSleepLPL is introduced to minimize the packet loss, as explained

in Section 4.4. The noSleepLPL is implemented such that the DefaultLPL and Power-

Cycle modules are modified not to turn off the radio when requested by an application

through Wrapper. In order to fit the two MAC layers in the 10KB RAM of the epic

motes, the LPL and RLPL are designed to share modules that are common to both

protocols.
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CHAPTER VII

PERFORMANCE EVALUATION

We evaluate the performance of DutyCode in an indoor testbed consisting of 42 Epic

motes [38] deployed in an approximately 500ft2 area. Out of the 42 nodes, 14 are

instrumented for power consumption measurements. Different TX power is obtained

by changing the TXCTRL.PA LEVEL register of the CC2420 transceiver [39]. Ex-

periments are performed in a 5 hop network, obtained by setting the TX power of

each node to 4. Each experimental point represents the mean of 5 executions of the

protocol. Standard deviation is depicted in all performance evaluation results.

For comparison with state of art we chose AdapCode [28], a flooding protocol

that uses network coding and is representative of our NetCode model. The metrics

used for performance evaluation are per node energy consumption and total code

dissemination time. While we are interested in energy consumption, we also aim to not

increase the total download time. The parameters that we vary are sleep interval (SI),

node density (ND), the size of packet (SP ), the number of packets (NP ), NACK

delay (NACKD), and inter-page interval (II). From Theorems 4.1 and 4.2, the BO1i

value should satisfy the condition: pp/cs · BOc ≥ BO1i ≥ BOc. In order to decrease

the collision probability of DutyCode and reduce the penalty for retransmission, the

greater bound for BO1i is used for the experiments. Default values for the parameters

are: SI=17msec, ND=4, SP=28bytes, NP=256, NACKD=640msec, II=300msec

(from here on units of measure will be omitted). The effects of these parameters are

investigated in the remaining part of this Chapter.
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Fig. 17. Oscilloscope view of streaming. Sleeping is indicated by solid arrows and

packet streams are denoted by dotted arrows.

7.1 Preliminary Evaluation

The DutyCode framework was initially verified using three nodes and a source forming

a single hop network. An oscilloscope was used to measure actual power consumption

and sleep intervals. Figure 17 depicts the oscilloscope view of coded packet trans-

missions of the 3 nodes after receiving a page from the source. In Figure 17, two

small spikes under the dotted arrow indicate a packet transmission, and the cluster

of such spikes represents a “stream”. The solid arrow indicates the sleep duration of

a node. As the figure shows, during a stream transmission, other nodes are in sleep

state. As soon as the transmission is finished, one of the other nodes starts its stream

transmission.

7.2 Sleep Interval

In this experiment we investigate how sleep interval SI affects energy consumption

and total dissemination time. It should be noted that AdapCode and DutyCode con-
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Fig. 18. The effect sleep interval has on energy consumption and time.

sume the same amount of energy when Sleep Interval is set to zero. Our intuition

is that energy saving would incur with non-zero sleep interval; but if sleep interval

reaches a certain point, energy consumption would increase. We measured energy

consumption and total dissemination time by varying SI in the [4, 60] range, while

keeping other parameters constant. Figure 18 depicts the results, which confirm our

expectation. As SI increased, the energy consumption of DutyCode gradually de-

creased until SI was 45, after which it started to increase. According to our analysis in

Chapter V, maximum energy saving is achieved when sleep duration matches stream

duration. The experimental results follow the analytical result, as the maximum en-

ergy saving for our testbed was achieved when SI = 45. The theoretical upper bound

of energy saving was also drawn in the figure for comparison. The maximum energy

savings achieved for our testbed was 42%, while the theoretical bound is 66%. To

complete the evaluation, we also compare the DutyCode with NoCode application,
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a modified version of AdapCode which does not do network coding. The results are

given in Figure 19. DutyCode outperforms the NoCode application thus revealing

that DutyCode is useful for any flood-based message intense application.

7.3 Node Density

In this experiment, we explore the impact of network node density by varying TX

Power. All other parameters are kept constant. A higher node density causes higher

collisions, increasing energy consumption and total dissemination time. However, at

the same time, it might also decrease maximum hop count from the source, given that

the network size is constant like our testbed, resulting in lower energy consumption

and time. This conflicting effect is depicted in Figure 20. As TX Power increased

from 3 to 4 and from 5 to 6, energy consumption and dissemination time decreased

due to decreased hop count, despite the higher number of collisions. However, for the
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tion time.

increases of TX Power from 4 to 5 and from 6 to 7, hop count was not changed. In

this case, only the higher number of collisions affected the performance, increasing

energy consumption and time.

7.4 Number of Packets

We evaluated the impact of total number of packets on energy savings and code

dissemination time. The results are depicted in Figure 21. As the total number of

packets increased, both energy consumption and code dissemination time increased.

This is because larger number of packets increases the probability of collisions and

the total transmission time. To be more specific, as the number of packets increased

from 64 to 512 (700%), power consumption increased by 600%. This increment is

not strictly linear because, as the number of packets increases, nodes find the most
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appropriate coding scheme and useless transmissions are decreased. Although energy

savings increase from 866mJ to 5,021mJ, when compared to AdapCode, our solution’s

savings reduced from 55% to 48%. This reduction in power savings can be attributed

to reduced redundant transmissions.

7.5 Packet Size

In this experiment, we investigate the effect of packet size on energy efficiency and

total time. We measured energy consumption and total time by varying packet size

from 28 to 108 keeping other parameters constant. The results are depicted in Fig-

ure 22. As packet size increased, both energy consumption and code dissemination

time gradually decreased. With an increase in the packet size, we also increased the

time gap between successive transmissions from 4msec to 9msec. This is because
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as packet size increases, required computation time increases, and nodes need larger

time gap between successive packet transmissions to allow more time to process a

larger packet. When packet size increases 3-fold, energy consumption decreased by

33%. This emphasizes that in a packet transmission, the backoff intervals are a lot

larger than the time taken for the actual packet transmission. From our experiments,

it appears that we save energy using few large packets, compared to many small

packets. A possible explanation is the good link quality in our testbed.

7.6 NACK Interval

In this experiment we investigate the effect NACK interval has on energy efficiency

and total time of DutyCode (as explained before, in NetCode a node waits for “NACK

Interval” to receive a useful packet without transmitting a NACK). The results are

depicted in Figure 23. The NACK intervals are chosen from the range [340, 740]. An
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increase in NACK time is expected to generate additional delays. As the NACK in-

terval increases from 340 to 740, the increase in the energy consumption of DutyCode

followed the same pattern as that of AdapCode.

7.7 Inter-page Interval

In typical flooding-based applications that use network coding, the source node main-

tains a gap between subsequent page transmissions. This is a design parameter of

AdapCode. For this evaluation, we tested AdapCode with different inter-page inter-

vals in the range [300, 700] while keeping all other parameters constant, including

NACKD. The results of our evaluation of inter-page intervals are depicted in Fig-

ure 24. As long as the increase in inter-page interval does not increase the idle time

in the network (i.e., increase the time where nodes do not have anything to transmit),

the inter-page interval does not affect the total time taken and power consumption
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of both AdapCode and DutyCode.

7.8 DutyCode + ECSDT

In this section, we investigate the performance gain of integrating ECSDT with Duty-

Code. Also, the impact of link quality threshold (LQT) is examined. LQT is a design

parameter of ECSDT. Different LQT values result in different topologies, affecting

the performance of ECSDT.

Performance gain of DutyCode with ECSDT. we measured energy con-

sumption and total dissemination time for both DutyCode with ECSDT and Duty-

Code (without ECSDT) by varying sleep interval. For these experiments, the LQT

was set to .95 to obtain accurate coding schemes and ensure sufficient redundancy for

packet decoding. The results are depicted in Figure 26. The patterns of energy con-

sumption and code dissemination time of DutyCode with ECSDT was similar to that
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of DutyCode. The graph also shows that DutyCode with ECSDT outperforms Du-

tyCode: the maximum energy saving was more than 10% compared with DutyCode

which is about 46% enhancement compared with AdapCode.

LQT. the total number of packet transmissions was measured for both DutyCode

with ECSDT and DutyCode by varying LQT. The results are shown in Figure 25. As

expected, DutyCode with ECSDT outperforms DutyCode in terms of the total packet

transmissions, regardless of LQT. As LQT increased from .8 to .9, the total number

of packet transmissions for DutyCode with ECSDT decreased. This is because more

accurate coding schemes are assigned with higher LQT. Interestingly, however, the

increase of LQT from .9 to .95 actually increased the total number of transmissions.

This is because the total number of valid links tend to decrease with extremely high

LQT, thereby allowing only few additional redundant transmissions.
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Fig. 27. A snapshot of voltage level changes showing the LPL to RLPL mode transi-

tions.



50

 0

 1500

 3000

 4500

 6000

 7500

 9000

LPL RLPL Transition

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Mode

Fig. 28. Effect of MAC protocol on the energy consumption of DutyCode.

7.9 LPL/RLPL Mode Transition

The transition from LPL to RLPL as explained in section 4.4, is illustrated in Fig-

ure 27(where mode switches are denoted as changes in voltage level). The nodes are

initially in LPL mode and when the source starts the code download all nodes stop

duty-cycling and stays in NoSleepLPL mode for a while and switch to RLPL mode.

While in NoSleepLPL mode, the nodes do not sleep but transmit the packets as in

LPL mode.

To assess the effects of protocol switching, the DutyCode is tested in LPL mode,

RLPL mode and in the “protocol transition” mode. The results are shown in Fig-

ure 28. The Sleep Interval value is chosen as 45msec for these experiments. This

is because energy savings of DutyCode in RLPL mode achieves more energy savings

compared to the DutyCode in LPL mode when the sleep interval is 45msec. The

energy consumption for a 150sec time interval is shown in the figure. As expected,
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the energy consumption of RLPL mode is high as the nodes were awake most of the

time when the code download was not happening. The “protocol transition” mode is

20% more energy efficient than the LPL mode.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

Network coding and duty-cycling are two popular techniques for saving energy in

wireless adhoc and sensor networks. In this thesis, we demonstrate that although

they achieve energy efficiency by conflicting means, they can be combined for more

aggressive energy savings. To achieve these energy savings we propose DutyCode, a

network coding friendly MAC protocol which implements packet streaming and allows

the application to decide when a node can sleep. ECSDT is proposed to enhance the

coding scheme selection technique for further energy savings. The ECSDT, solves the

coding scheme assignment problem as a graph problem with an objective to minimize

the redundant transmissions. A complete solution is provided by facilitating MAC

protocol transition, which can be configurable in the application based on the changes

in the traffic.

Through analysis and real system implementation we demonstrate that Duty-

Code does not incur higher overhead, and that it achieves up to 46% more energy

savings when compared with network coding-based solutions that do not use duty-

cycling. Our analytical model predicts the upper bound on the energy savings to

be 66%. Our experiments reveal that the proposed solution is beneficial not only for

flood-based network coding applications but also for any message intense flooding ap-

plications. The proposed scheme requires minimal changes to existing network coding

applications. Currently this solution targets only flood-based network coding appli-

cation and we expect to extend this solution to other network coding applications.

And also making this solution more secure is left for future work.
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