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ABSTRACT 

 

Mechanistic and Structural Studies of Phenylalanine Hydroxylase from 

Chromobacterium violaceum. (August 2010) 

Aram Joel Panay Escobar, B.S., Universidad del Valle, Cali, Colombia 

                          Co-Chairs of Advisory Committee:  Dr. Paul F. Fitzpatrick 
       Dr. Gregory D. Reinhart 

 

The phenylalanine hydroxylase from Chromobacterium violaceum (CvPheH) is a 

non-heme iron monooxygenase that catalyzes the hydroxylation of phenylalanine. This 

study presents the use of kinetic isotope effects (KIE) as mechanistic probes to compare 

the reactivity of CvPheH and that of the eukaryotic aromatic amino acid hydroxylases. 

This study also describes the use of different spectroscopic and kinetic techniques to 

identify the hydroxylating intermediate for this enzyme and the assignment of the NMR 

backbone resonances of CvPheH. 

Kinetic isotope effects on aromatic and benzylic hydroxylation were used to 

establish that bacterial and eukaryotic phenylalanine hydroxylases have similar 

reactivity. The observed KIE on aromatic hydroxylation of 1.4 was shown to be a 

combination of an inverse isotope effect on the hydroxylation of the amino acid and a 

normal isotope effect on a subsequent step in the reaction. An isotope effect on benzylic 

hydroxylation of 10 was found for CvPheH. This result establishes the similar reactivity 

for CvPheH and the eukaryotic aromatic amino acid hydroxylases and suggests the 

involvement of a common hydroxylating intermediate.  



 iv 

Kinetic isotope effects were used to study the hydroxylation of the aliphatic 

substrate cyclohexylalanine. The Dkcat value with [1,2,2,3,3,4,4,5,5,6,6-2H11]-

cyclohexylalanine is unity with wild-type CvPheH, suggesting that chemistry is not rate-

limiting with this substrate. The intramolecular isotope effect calculated using 

[1,2,3,4,5,6-2H6]-cyclohexylalanine yields a value of 14. This result is evidence for the 

involvement of a reactive iron species capable of abstracting a hydrogen atom from the 

aliphatic carbon in cyclohexylalanine.  

Analysis of the CvPheH reaction using freeze-quench Mössbauer spectroscopy 

allowed the detection of an Fe(IV) species in the first turnover of the enzyme. Chemical 

quench and stopped-flow spectrophotometric methods were used to establish the kinetic 

competency of the Fe(IV) intermediate as the hydroxylating species. 

The NMR amide backbone resonances in the HSQC spectrum of CvPheH were 

assigned to the corresponding amino acid residues using a suite of TROSY-based three-

dimensional triple resonance experiments. We were able to assign 224 residues out of 

the 278 assignable residues in CvPheH, this constitutes 81 % of the assignable protein 

sequence.  
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CHAPTER I 

INTRODUCTION  

 

Phenylalanine hydroxylase (PheH) is a non-heme iron dependent enzyme that 

catalyzes the hydroxylation of the amino acid phenylalanine to tyrosine . In mammals 

PheH is present in the liver where it catalyzes the first and rate-limiting step in the 

metabolism of the phenylalanine acquired in the diet . More than 500 mutations in PheH 

have been associated with the metabolic disorder phenylketonuria (1, 2). In individuals 

suffering from phenylketonuria the activity of PheH is hindered. Thus, phenylalanine 

accumulates in the blood. When not diagnosed in time phenylketonuria leads to mental 

retardation. Despite the severity of the disease, the problem can be avoided with a diet 

low in phenylalanine. All babies born in the United States are tested for phenylketonuria 

after birth by measuring the level of phenylalanine in the blood (3). 

Phenylalanine hydroxylase is a member of the family of aromatic amino acid 

hydroxylases, which also includes tyrosine hydroxylase (TyrH) and tryptophan 

hydroxylase (TrpH) (4). Figure 1.1 summarizes the reactions catalyzed by the aromatic 

amino acid hydroxylases. The product of the reaction catalyzed by TyrH, 

dihydroxyphenylalanine (DOPA), is the precursor of the neurotransmitters dopamine, 

norepinephrine and epinephrine (5). TrpH converts tryptophan to 5-hydroxytryptophan, 

which is further metabolized to the neurotransmitter serotonin (6). 

 
 
____________ 
This dissertation follows the style of Biochemistry. 
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Figure 1.1: Reactions catalyzed by the aromatic amino acid hydroxylases phenylalanine 

hydroxylase (PheH), tyrosine hydroxylase (TyrH), and tryptophan hydroxylase (TrpH). 
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In addition to the amino acid substrate, all the aromatic amino acid hydroxylases 

require ferrous iron and a tetrahydropterin for catalysis. In vivo, the electrons from a 

tetrahydrobiopterin (BH4) are used to activate ground-state (triplet) molecular oxygen to 

react, with the aromatic side chain of the substrate (7, 8). As the result of the reaction, 

one oxygen atom from molecular oxygen is incorporated into the aromatic ring of the 

amino acid and the other into the 4a-position of the biopterin. Once in solution the 

pterin-4a-carbinolamine dehydrates to quinonoid dihydrobiopterin. BH4 is regenerated 

by dihydropteridine reductase (DHPR) using electrons from NAD(P)H (9) (Figure 1.2). 

The kinetic mechanism has been determined for TyrH and CvPheH (10-12). In 

the case of the eukaryotic enzyme, Fitzpatrick (10) reported that  

6-methyltetrahydropterin (6-MePH4) bound first followed by oxygen and tyrosine. Two 

different results have been reported for CvPheH. Pember et al. (11) reported that oxygen 

bound first followed by random binding of 6,7-dimethyltetrahydropterin (DMPH4) and 

phenylalanine. Volner et al. (12) reported an ordered binding in which DMPH4 binds 

first followed by phenylalanine and oxygen. Regardless of the order, all the substrates 

must be bound in the active site before the reaction can take place. 
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Figure 1.2: Hydroxylation of phenylalanine catalyzed by phenylalanine hydroxylase. 

The transformations of the pterin after the reaction are shown.  

DHPR: Dihydropteridine reductase. 
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Studies using 18O2 showed that molecular oxygen was the source of the oxygen 

atoms incorporated in the amino acid (13) and the 4a-hydroxypterin (14) products. This 

result argued against the role of the tetrahydropterin as a mere electron supplier and 

supported a model in which a peroxypterin was formed upon reaction of molecular 

oxygen and the tetrahydropterin. The viability of this structure as the hydroxylating 

species was supported by the resemblance of tetrahydropterin and flavin and the 

observation of a 4a-peroxyflavin in flavoprotein-catalyzed hydroxylation reactions (15). 

In addition, the production of hydrogen peroxide in the slow hydroxylation of tyrosine 

by PheH is consistent with the breakdown of a peroxypterin species (16).  

The capability of a peroxypterin species as the hydroxylating intermediate in the 

aromatic amino acid hydroxylases is challenged by the fact that in the flavoenzymes the 

substrates must be activated before hydroxylation by the 4a-peroxyflavin (17). In 

contrast, unactivated benzylic and aliphatic carbons are readily hydroxylated by the 

aromatic hydroxylases (4, 18, 19), suggesting a much more reactive species than a 

peroxypterin. The iron requirement and the need for a more reactive species led to the 

proposal of an Fe(II) µ-peroxypterin as the hydroxylating species or an intermediate to 

its formation (14). The intermediacy of the Fe(II) would avoid the spin-forbidden direct 

interaction of oxygen with the tetrahydropterin. Moreover, computational studies were 

not able to find a mechanism for the reaction of oxygen and the tetrahydrobiopterin in 

the absence of the metal (20). 

The experimental data supports the Fe(II) µ-peroxypterin as an intermediate 

rather than the hydroxylating species itself. Stoichiometric amounts of hydroxylated 
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amino acid and 4a-hydroxypterin are expected from the hydroxylation by such a species. 

However, when tyrosine is the substrate for PheH or TrpH the amount of DOPA formed 

is only a fraction of the tetrahydropterin that is oxidized (16, 21). Similar results were 

obtained using the S395A mutant of TyrH (22). These results are in disagreement with 

the concerted rupture of the peroxypterin OO bond and the hydroxylation of the amino 

acid substrate. On the contrary, they support a model in which the hydroxylating 

intermediate is formed from the heterolytic cleavage of the OO bond of Fe(II) µ-

peroxypterin, generating the hydroxypterin product and an Fe(IV)O species (23). 

Computational and biomimetic studies have shown the ability of oxoferryl species to 

hydroxylate the wide range of carbons that the amino acid hydroxylases accept as 

substrates (20, 24, 25). An Fe(IV)O species has been identified as the hydroxylating 

intermediate in the α-ketoglutarate dependent taurine dioxygenase system (26, 27). In 

both the latter enzyme and the aromatic amino acid hydroxylases the Fe(II) is 

coordinated by a carboxylic group and two histidine residues. More recently, Eser et al. 

reported spectroscopic evidence for the existence of a kinetically competent Fe(IV)O 

species for TyrH (28).  

A chemical mechanism for aromatic amino acid hydroxylation that is consistent 

with all the evidence gathered for all the hydroxylases is shown in Figure 1.3 (23). Once 

the three substrates are present in the active site, a peroxo bridge is formed between the 

tetrahydropterin and the ferrous iron. The first product, 4a-hydroxypterin, and the 

hydroxylating species Fe(IV)O are produced after the heterolytic cleavage of the 

oxygen-oxygen bond. Once formed the Fe(IV)O reacts with the aromatic side chain of 
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the amino acid, generating a carbocation that undergoes a 1,2 hydride transfer to form a 

dienone. Tautomerization of the dienone gives the final product, tyrosine. 
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Figure 1.3: Proposed chemical mechanism of aromatic hydroxylation. 
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In spite of having a similar chemical mechanism the three aromatic amino acid 

hydroxylases differ in their reactivity and rate limiting steps. In TrpH the rate limiting 

step is the reaction of the hydroxylating intermediate with the indole side chain (21). 

Recently, Eser and Fitzpatrick (29) reported that for TyrH hydroxylation of tyrosine is 

about 26 fold faster than the release of the products. In the case of PheH multiple steps 

are partially rate limiting (30). 

Most of the evidence for the proposed chemical mechanism comes from studies 

using ring-deuterated amino acids as substrates. When 5-2H-tryptophan is used as 

substrate, TrpH shows an inverse deuterium isotope effect. This is consistent with a 

change in hybridization from sp2 to sp3 at the hydroxylated carbon (21). On the other 

hand, TyrH and PheH show no or small normal isotope effects, respectively, when 

deuterated substrates are used (30, 31). In both enzymes, the intrinsic isotope effect on 

hydroxylation was unmasked using mutant enzymes in which an alternate pathway for 

the decay of the hydroxylating intermediate was introduced (30, 32). These mutant 

enzymes show inverse isotope effects when the site of hydroxylation in the substrate is 

deuterated; this result is consistent with the formation of a carbocation after the 

electrophilic addition of the Fe(IV)O species (Figure 1.3). In addition, supporting 

evidence for the arenium cation intermediate comes from studies using para-substituted 

(X = F, Br, Cl, CH3, OCH3) phenylalanines as substrates for TyrH (31). The ρ value of 

about – 5 is in agreement with an electron deficient transition state. After the formation 

of the carbocation intermediate the subsequent step is a hydroxylation-induced 

migration, known as NIH shift, of the atom present at the site of hydroxylation to the 
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adjacent carbon (33). The evidence for this phenomenon in the aromatic amino acid 

hydroxylases comes from studies using tritiated phenylalanine and tryptophan (34, 35). 

Computational studies using hybrid density functional theory found the NIH shift to 

have a low energy barrier making it isotope insensitive (20). For PheH an intramolecular 

isotope effect of 5.1 was measured for the final tautomerization step (30). 

Phenylalanine hydroxylase is also present in prokaryotes. A gene for 

phenylalanine hydroxylase has been reported in almost 200 bacterial genomes. The 

phenylalanine hydroxylase from Chromobacterium violaceum (CvPheH) is the only one 

that has been subject to biochemical study. CvPheH has been cloned and expressed in 

Escherichia coli (36, 37). The metal requirement of CvPheH has yielded contradictory 

results. Initially, CvPheH was reported to be a copper-requiring enzyme (11). 

Subsequently, the same group reported evidence for catalysis by metal-free CvPheH. 

Also, copper was reported to be an inhibitor of the metal-free CvPheH (18, 38). More 

recently, Chen and Frey (36) showed that iron was required for the hydroxylation of 

phenylalanine. In addition, the crystal structure of CvPheH showed an iron center 

identical to that found in the eukaryotic enzymes (39). Despite the structural evidence 

and the iron requirement for catalysis displayed by CvPheH, the fact that apo-CvPheH 

was able to catalyze the oxidation of DMPH4 at 5 % the rate of the iron-containing 

enzyme raised the possibility of a metal independent mechanism of oxygen activation 

(36). This result stands in stark contrast to the complete iron dependence showed by 

TyrH to oxidize either the tetrahydropterin or the amino acid (19). The discrepant results 

between eukaryotic and prokaryotic hydroxylases could be explained by a more reactive 
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iron center present in the more evolved bacterial enzyme. Nevertheless, the residual 

DMPH4 oxidation activity displayed by apo-CvPheH could arise from adventitious iron 

present in the buffers used for the assays. The latter possibility is supported by the low 

concentrations of enzyme used in steady-state assays and the fact that tetrahydropterins 

can reduce ferric iron to the catalytically active ferrous form. A re-examination of the 

metal independent oxidation of DMPH4 under conditions where free metal ions are 

minimized, like in the presence of EDTA, could clarify the discrepancy between the 

findings reported for CvPheH and TyrH. 

The aromatic amino acid hydroxylases can accept different amino acids as 

substrates. The range of reactions catalyzed by these enzymes includes aromatic 

hydroxylation of ring-substituted amino acids, benzylic hydroxylation, aliphatic 

hydroxylation, epoxidation and sulfoxidation (4). When presented with 4- CH3-

phenylalanine, hydroxylation occurs at the benzylic carbon and the aromatic ring (Figure 

1.4). The ratio of the hydroxylated products varies depending on the enzyme (40). PheH 

produces roughly equal amounts of 4-HOCH2-phenylalanine and 3-CH3-4-HO-

phenylalanine and just detectable amounts of 3-HO-4-CH3-phenylalanine. In TyrH the 

main products are hydroxylated in the aromatic ring. TrpH behaves in a similar fashion 

to PheH but 3-HO-4-CH3-phenylalanine constitutes 20 % of the products. When 4-C2H3-

phenylalanine is used as a substrate, the partitioning of benzylic to aromatic products 

changes and the deuterium isotope effect on benzylic hydroxylation can be determined 

from that partitioning (40, 41). A large isotope effect of about 13 was found for all the 

eukaryotic enzymes. The similar effect of temperature on the isotope effect was 
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interpreted as evidence of a similar chemical mechanism and comparable reactivity 

among the eukaryotic amino acid hydroxylases.  

Few isotopic studies have been carried out using CvPheH. The only reported 

attempt to use deuterated substrates with this enzyme used a metal free enzyme (18). No 

isotope effect was found when fully deuterated or para-deuterated phenylalanine was 

used. These results highlight the need for a more comprehensive characterization of the 

bacterial phenylalanine hydroxylase. 
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Figure 1.4: Benzylic hydroxylation by the aromatic amino acid hydroxylases. The 

mixture of products varies depending on the enzyme. 

 

The eukaryotic amino acid hydroxylases form homotetramers in solution. Each 

monomer can be divided into three domains, an N-terminal regulatory domain, a 

catalytic core and a C-terminal domain responsible for tetramerization (23). The N-
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terminal regulatory domain, which spans on average the first 130 residues, contains 

different serine residues that can be phosphorylated (4). The effect of phosphorylation 

varies for each of the enzymes, and accordingly the similarity of the regulatory domains 

is less than 14 % (23). Only in the case of PheH has a crystal structure been reported that 

includes the regulatory domain (42). This structure shows that in the absence of the 

substrates the regulatory domain blocks the active site. The catalytic domain, of about 

280 amino acids, contains all the residues necessary for catalysis and substrate 

recognition (43-47). Among the eukaryotic enzymes the catalytic domains share about 

52 % identity, and the crystal structures of the three enzymes show a similar protein fold 

for this domain (48-50). The bacterial CvPheH is a monomer comprising only the 

catalytic domain. The crystal structure of the 32 kDa CvPheH can be superimposed on 

that of the catalytic domain of human PheH with an RMSD of 1.2 Å (39) , confirming 

the homology across the species. Finally, for the eukaryotic enzymes the last 40-50 

residues make up the tetramerization domain (45). The crystal structure of TyrH shows 

the helix of approximately 25 residues that interacts in the coil-coil structure that holds 

the tetramers together (50).  

Crystal structures of the catalytic domains of all three eukaryotic enzymes and of 

CvPheH are available (39, 48-50). In all of these structures the iron binding site is 

located about 12 Å deep in a cleft formed by the protein. The iron ligands are two 

histidines, a glutamate and, in the resting state of the enzyme, three water molecules that 

coordinate the iron in an octahedral fashion. The structure of CvPheH with BH2 shows a 

bidentate glutamate, whereas the glutamate is a monodentate ligand in the structure of 
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the human enzyme (39). The changes in the coordination of the glutamate as well as the 

displacement of two water molecules, triggered by the presence of the substrates, leave a 

five-coordinated iron that is ready for oxygen activation (51). The tetrahydropterin 

binding site is close to the iron. The structure of human PheH with BH4 shows a loop 

comprising residues 247 to 251 interacting directly with BH4 (48). Most of these 

interactions involve the protein backbone instead of the amino acid side chains. Only the 

hydroxyl group of Ser251 hydrogen bonds to the dihydroxypropyl group of biopterin. 

This interaction is not crucial for the proper binding of the tetrahydropterin, since a 

variety of 6 and 7 substituted tetrahydropterins are accepted as electron donors for 

hydroxylation (4). The crystal structure of this binary complex can be superimposed over 

the free enzyme with an RMSD of 0.21 Å. Only when both the pterin and the amino acid 

are present do significant changes take place in the protein structure. No structure of a 

hydroxylase with only the amino acid is available. However, human PheH was 

crystallized with both tetrahydrobiopterin and 3(2-thienyl)-L-alanine. This structure 

shows the amino acid being held in place by an electrostatic interaction between the 

carboxylate of the substrate and Arg270. Hydrogen bonding between the substrate amino 

group and the side chain hydroxyl of Thr278 also contributes to positioning the amino 

acid. A group of mainly aromatic residues including Trp326, Phe331, and Pro281 form a 

hydrophobic pocket that holds the aromatic side chain of the substrate in place. 

Additionally, the substrate aromatic ring π-stacks with the side chain of the metal ligand 

His285. The crystal structure of this ternary complex shows an RMSD of 2.2 Å when 

compared to the free enzyme (48). When both substrates are present, the 
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tetrahydrobiopterin moves 2.6 Å closer to the metal center and a loop containing 

residues 131-155 moves almost 10 Å towards the iron center with Tyr138 packing 

against the residues that make up the hydrophobic pocket around the active site. This 

structure is believed to resemble the catalytically active enzyme. No other aromatic 

amino acid hydroxylase has been crystallized with both an amino acid and a pterin 

substrate. However, fluorescence anisotropy studies with TyrH show that the region 

corresponding to Tyr138 changes upon binding of the substrates (52). The 

crystallographic and fluorescence data provide evidence that PheH and TyrH are flexible 

enzymes that fluctuate between conformations during catalysis. More information on 

this has been recently obtained using hydrogen/deuterium exchange experiments on 

these two enzymes. For TyrH, phosphorylation at Ser40 displaces the equilibrium from a 

closed, dopamine-bound conformation, to a catalytically active open conformation (53). 

Similar studies on PheH provide direct evidence for an autoregulatory role for the N-

terminal sequence of the protein (54). In the presence of the activator phenylalanine 

peptides that lie in the interface regions of the regulatory and catalytic domain show 

increased deuterium incorporation. This result is consistent with a more open structure in 

which the regulatory domain moves away from the active site when phenylalanine is 

present. The results from the isotope exchange studies support the use of a more specific 

technique like nuclear magnetic resonance to study the aromatic amino acid 

hydroxylases. NMR studies could provide detailed information on the dynamic changes 

that take place in regulation and catalysis by this family of enzymes. 
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CHAPTER II 

KINETIC ISOTOPE EFFECTS ON AROMATIC AND BENZYLIC 

HYDROXYLATION BY CHROMOBACTERIUM VIOLACEUM 

PHENYLALANINE HYDROXYLASE AS PROBES OF THE CHEMICAL 

MECHANISM AND REACTIVITY  

 

Phenylalanine hydroxylase (PheH) is a non-heme iron monooxygenase that 

catalyzes the hydroxylation of phenylalanine by oxygen to form tyrosine (55). After the 

three substrates, oxygen, phenylalanine and a tetrahydropterin are bound in the active 

site, the electrons from the tetrahydropterin are used to activate molecular oxygen. One 

oxygen atom is incorporated into the aromatic ring of phenylalanine and the other is 

reduced to the level of water (4). While in vivo the source of electrons for the reaction is 

tetrahydrobiopterin (BH4), in vitro 6-methyltetrahydropterin (6-MePH4) and 6,7-

dimethyltetrahydropterin (DMPH4) are able to sustain the reaction (Figure 2.1). 

PheH is found in different organisms ranging from prokaryotes to eukaryotes. In 

humans, mutations in PheH are linked to the metabolic disorder phenylketonuria, which 

is associated with mental retardation (1). To date almost 200 bacterial genomes have 

been reported to include a gene for PheH. The phenylalanine hydroxylase from 

Chromobacterium violaceum (CvPheH) was previously cloned and expressed in 

Escherichia coli (36) . The sequence of CvPheH shows about 35% identity with the 

corresponding residues of human PheH, and the X-ray crystal structures can be 

superimposed with an RMSD of 1.2 Å (39). The active site is well conserved; both 
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proteins share the same triad of metal ligands, 2 histidine residues and a glutamate 

residue, and show complete dependence on iron for activity (4, 36). The homology 

between bacterial and eukaryotic PheH extends to the other two aromatic amino acid 

hydroxylases, tyrosine hydroxylase and tryptophan hydroxylase. Their relationship is 

confirmed by the similar folds of the catalytic domains (39). Recently, it was shown that 

despite different substrate specificities and catalytic properties, all three eukaryotic 

amino acid hydroxylases use the same chemical mechanism for catalysis, and the 

reactivities of the metal centers are comparable (30, 40). Figure 2.2 shows the proposed 

mechanism of aromatic amino acid hydroxylation using the PheH reaction as a model 

(23). After the three substrates are in the active site, molecular oxygen forms a bridge 

between the 4a position of the tetrahydropterin and the iron. The oxygen-oxygen bond 

cleaves to form the hydroxylating species Fe(IV)O and a 4a-hydroxy-pterin. Direct 

evidence for the existence of the Fe(IV)O hydroxylating intermediate has recently been 

obtained for  tyrosine hydroxylase (28). Once formed the Fe(IV)O reacts with the side 

chain of the amino acid, generating a carbocation that undergoes a 1,2-hydride transfer 

to form a dienone. Tautomerization of the latter gives the final tyrosine product. 
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Figure 2.1: Chemical reaction catalyzed by phenylalanine hydroxylase. 
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Figure 2.2: Proposed chemical mechanism of phenylalanine hydroxylase. 
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The affinity of CvPheH for various metals, including iron, led to controversy in 

the literature regarding the iron requirement of this enzyme (18, 38, 56). More recently, 

Chen and Frey (36) showed that CvPheH required ferrous iron to hydroxylate 

phenylalanine. In addition, the crystal structure of CvPheH showed an arrangement of 

iron ligands essentially identical to that of the eukaryotic enzymes (39). These results 

suggest that for prokaryotic and eukaryotic hydroxylases an Fe(IV)O is the common 

hydroxylating intermediate (23, 36, 57). However, the latter species could arise from 

direct interaction of oxygen with the ferrous iron or initial electron donation from the 

tetrahydropterin. Chen and Frey (36) reported that iron-free CvPheH could catalyze the 

oxidation of DMPH4 at about 5% the rate of the iron containing enzyme suggesting that 

iron is not necessary for oxygen activation. In stark contrast, the eukaryotic tyrosine 

hydroxylase showed a complete dependence for iron to catalyze the oxidation of the 

tetrahydropterin or the hydroxylation of the amino acid (19). This discrepancy could 

arise from a more reactive iron center in CvPheH.  

The goal of the work reported here was to use kinetic isotope effects as probes of 

transition state structures for hydroxylation reactions catalyzed by CvPheH to allow 

comparison with the reactivities of the eukaryotic enzymes. In addition to aromatic 

hydroxylation, the bacterial and eukaryotic PheHs are capable of hydroxylating benzylic 

carbons (18, 58). In the case of the eukaryotic enzymes, the deuterium kinetic isotope 

effect on benzylic hydroxylation is consistent with a mechanism involving hydrogen 

atom abstraction from the methyl group (40); this reaction was used to compare the 

reactivities of the Fe(IV)O intermediates in the three eukaryotic enzymes (40). 
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EXPERIMENTAL PROCEDURES 

 
Materials. Oligonucleotides were purchased from Integrated DNA Technologies 

(Coralville, IA). Plasmid pET21b was from Novagen (San Diego, CA). Restriction and 

DNA modification enzymes were purchased from New England Biolabs (Ipswich, MA) 

and Promega (Madison, WI). Plasmids were purified using Wizard mini-prep kits from 

Promega. Catalase was from Roche (Indianapolis, IN). DEAE-Sephacel was from 

Amersham Pharmacia Biotech (Uppsala, Sweden). The E. coli strain BL21(DE3), used 

for protein expression,  was from Novagen, and the strain Mach1, used for subcloning, 

was from Invitrogen (Carlsbad, CA). 6-MePH4 and DMPH4 were from B. Schircks 

Laboratories (Jona, Switzerland). L-Tyrosine, L-phenylalanine, L-tryptophan, D,L-

phenylalanine, dihydropteridine reductase, sodium cyanide, boric acid and 5-

hydroxytryptophan were from Sigma-Aldrich Chemical Co. (Milwaukee, WI). 

Napthalene-2,3-dicarboxaldehyde (NDA) was from Invitrogen. L-2H5-Phenylalanine 

was from Cambridge Isotope Laboratories (Andover, MA). Dithiotreitol (DTT) was 

from Inalc (Milan, Italy). The synthesis of D,L-[4-2H]-phenylalanine and D,L-[3,5-2H2]-

phenylalanine was previously described (59). All other reagents were of the highest 

purity commercially available. 
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Construction of vectors, enzyme expression and purification. A vector containing 

the cDNA for C. violaceum phenylalanine hydroxylase was obtained from Dr. Perry 

Frey (University of Wisconsin). The cDNA was amplified by PCR and subcloned into 

the pET21b vector using the restriction sites 5’ NdeI and 3’ Hind III to generate the 

plasmid pET21b-CvPheH. The plasmid was sequenced by the Gene Technology 

Laboratory of the Biology Department of Texas A&M University. We found 

discrepancies with the published sequences of CvPheH (36, 39). Specifically, 

methionine 64 is a leucine in the X-ray structure of CvPheH (39). Sequence alignments 

using all the available bacterial phenylalanine hydroxylase sequences revealed a 

conserved leucine residue at position 64. Consequently, we introduced the mutation 

M64L into pET21b-CvPheH using the QuikChange protocol (Stratagene).  

Purification of CvPheH was carried out with modifications of previously 

reported procedures (37, 39). The E. coli strain BL21(DE3) was transformed with the 

plasmid pET21b-CvPheH. A single colony was used to inoculate 50 mL of LB broth 

(100 µg/mL of ampicillin) and allowed to grow at 37 °C for 16 hours. Ten mL of the 

overnight culture were used to inoculate 1 L of fresh LB broth (100 µg/mL of 

ampicillin). When the A600 reached a value between 0.8 and 1.0 the cells were induced 

with isopropyl-β-thiogalactoside at a final concentration of 120 mg/L. After 5 hours at 

37 °C the cells were harvested by centrifugation for 30 minutes at 2620 x g. The cell 

pellet was suspended in an 8-fold excess (with respect to the initial weight of the cells) 

of 50 mM Hepes buffer (pH 7.2), 1 mM DTT and 100 µg/mL phenylmethanesulfonyl 

fluoride (dissolved in acetone). Cells were disrupted using 100 mg/mL lysozyme and 
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sonication for 5 cycles of 3 min. The suspension was centrifuged at 17640 x g for 30 

minutes. The supernatant was made 600 µM in FeSO4 and stirred for 30 min at 4 °C. 

The solution was brought to 2% streptomycin sulfate, stirred for 15 min and centrifuged 

for 30 min at 17640 x g. The resulting solution was made 50% saturated in ammonium 

sulfate, stirred for 15 min and centrifuged for 30 min at 17640 x g. The resulting protein 

pellet was dissolved in a minimal amount of 50 mM Hepes (pH 7.2), 20 mM NaCl, and 

dialyzed for four hours against a 100-fold excess of the same buffer solution with two 

buffer changes. The dialyzed solution was loaded onto a DEAE-Sephacel column 

equilibrated with 50 mM Hepes (pH 7.2) and 20 mM NaCl. The protein was eluted with 

a linear gradient formed with 500 mL of 50 mM Hepes buffer at pH 7.2 containing 20 

mM NaCl and 500 mL of the same buffer containing 500 mM NaCl. The fractions were 

analyzed using A280 and SDS-PAGE gel electrophoresis. Fractions containing the purest 

and most active enzyme were pooled. This method usually gave 100 mg of more than 

95% pure CvPheH per liter of LB.  

The metal-depleted CvPheH was made by incubating the enzyme with 5 mM 

EDTA and 5 mM NTA on ice for 2 hours followed by dialysis against 50 mM Hepes 

(pH 7.2) and 20 mM NaCl. For the DMPH4 oxidation studies, gel filtration 

chromatography using Micro Bio-Spin columns from Bio-Rad (Hercules, CA) was 

carried out after incubation with EDTA. The metal content of the protein was measured 

as previously described (60) using a Perkin-Elmer Model 2380 atomic absorption 

spectrophotometer equipped with a graphite furnace. The DMPH4 oxidation studies by 

the apo-CvPheH were performed as previously described (36, 38). 
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Enzyme assays. All spectroscopic assays were carried out in a Hewlett-Packard 

Model 8453 diode array spectrophotometer equipped with a thermostatically controlled 

cuvette holder. Tyrosine formation was measured by monitoring the change in 

absorbance at 275 nm; an ε275 value of 1.34 mM-1 cm-1 was used to calculate the rate of 

product formation (43, 61). The assays were performed at 25 °C in 50 mM Hepes (pH 

7.2), 5 mM DTT, 10 µM ferrous ammonium sulfate, 50 µg/ml catalase, 0.1-0.3 µM 

CvPheH, 150 µM 6-MePH4 or 250 µM DMPH4, and varying concentrations of 

phenylalanine. The steady-state kinetic parameters for the hydroxylation of tryptophan 

or cyclohexylalanine were measured using a coupled assay in which the oxidation of 

NADH by DHPR was followed (62). 

The coupling between amino acid oxidation and the tetrahydropterin oxidation 

was measured using an HPLC-based assay (62). The conditions were 500 µM 

phenylalanine, 10 µM ferrous ammonium sulfate, 1 µM CvPheH and 25-100 µM 

tetrahydropterin. The reactions were carried out for 5 min in 400 µL of 10 mM sodium 

phosphate buffer (pH 7.0). The reaction was quenched with 100 µL of 100 mM sodium 

borate (pH 9.0). To this, 50 µL of 50 mM sodium cyanide and 100 µL of 50 mM 

naphthalene-2,3-dicarboxaldehyde were added. The fluorescent derivatives were 

separated using a Nova-Pack C 18 column and a gradient of 30-40% acetonitrile in 70-

60% 10 mM sodium phosphate with 1% THF (pH 7.0). The fluorescent molecules were 

detected using a Waters 2475 detector. The excitation and emission wavelengths were 

420 and 490 nm, respectively. The amount of tyrosine was quantified using a standard 

curve generated using the same reaction conditions but with omission of the protein. 
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The samples sent for mass spectrometry for the determination of the isotope 

effect on the tautomerization were prepared following the same protocol, except that 1 

mM 6-MePH4 or DMPH4, 1 µM CvPheH and 500 µM D,L-[4-2H]-phenylalanine or D,L-

[3,5-2H2]-phenylalanine were used. The reactions were incubated at 25 °C for 30 min. 

The peak corresponding to tyrosine was collected and analyzed by negative ion 

electrospray time-of-flight mass spectrometry at the Laboratory of Biological Mass 

Spectrometry at Texas A&M University. The data were corrected for 13C contributions 

and used in the calculation of the isotope effects. 

The benzylic and aromatic hydroxylation products from the reaction of CvPheH 

with 4-CH3-phenylalanine were detected and quantified using an HPLC-based assay as 

previously reported for tyrosine and phenylalanine hydroxylase (40, 41). The conditions 

for the reaction were 500 µM 4-CH3-phenylalanine or 4-C2H3-phenylalanine, 10 µM 

ferrous ammonium sulfate, 1 µM CvPheH and 250 µM tetrahydropterin. The reactions 

were carried out for 2 min in 300 µL of 10 mM sodium phosphate buffer (pH 7.0) and 

quenched and analyzed by HPLC as described above. 
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Data analysis. Initial rates obtained as a function of the concentration of a single 

substrate were fit to the Michaelis-Menten equation to obtain kcat, kcat/KM, and KM values 

using the program KaleidaGraph (Synergy Software, Reading, PA). When substrate 

inhibition was observed, the data were fit to equation 2.1 in which Ki is the substrate 

inhibition constant. When the DTT concentration was varied, the data were fit to 

equation 2.2. Here v0 and v∞ are the rates when DTT is absent and saturating, 

respectively. Steady-state kinetic isotope effects were determined using Igor Pro 

(WaveMetrics, Lake Oswego, OR) to fit the data to equation 2.3 which assumes an 

isotope effect on kcat only. Here, v is the initial rate, Fi is the fraction of deuterium in the 

substrate and Ev is the isotope effect on kcat. 

v = kcat [S] / [KM + S + (S2/ Ki)]       (2.1) 

v = v∞ [A] / (KA + A) + v0         (2.2) 

v = kcat [S] / [KM + S*(1+Fi*(Ev -1))]       (2.3) 
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RESULTS  

Metal requirement for hydroxylation. Because of contradictory reports in the 

literature, we re-examined the metal content and kinetics of CvPheH. In our hands the 

recombinant enzyme expressed in E.coli contained significant amounts of copper, zinc 

and iron when isolated. The activity of this enzyme was only 30% of the reported value 

(36, 39) and it correlated with the amount of iron present in the enzyme. Fully active, 

100% iron-containing enzyme could be obtained by addition of FeSO4 to the cell extract. 

However, we observed a decrease in activity of the enzyme purified in this fashion after 

prolonged periods at –80 °C. The activity of the protein could be restored after treatment 

with 2 mM EDTA and subsequent addition of ferrous ammonium sulfate after dialysis, 

suggesting a slow inhibition by other metals during the storage period (Table 2.1).  

 

Table 2.1: Effect of storage conditions on the activity of C. violaceum phenylalanine 

hydroxylase* 

Enzyme condition  KPhe (µM) kcat (s-1) 

Recently purified  69 ± 7 11 ± 1 

After 1 month at -80 °C 105 ± 8 7.9 ± 0.2 

After 1 month at - 80°C treated with 2 mM EDTA  68 ± 11 12 ± 1 

*The solution contained 50 mM HEPES (pH 7.2), 5 mM DTT, 10 µM ferrous 

ammonium sulfate, 50 µg/ml catalase, 150 µM 6-MePH4, 0.1-0.3 µM CvPheH. 
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It was previously reported that CvPheH required DTT to couple tetrahydropterin 

oxidation to the hydroxylation of phenylalanine and that no tyrosine could be formed 

without the addition of a thiol (36). However, we found that in the absence of DTT the 

activity of recently purified CvPheH is 50% of that achieved when DTT is present. 

Maximal activity was reached at 2 mM DTT (Figure 2.3). Fitting the data to equation 2.2 

yielded a value of 0.6 ± 0.2 mM for the concentration of DTT giving half-maximal 

activation. The activity of the EDTA-treated CvPheH is independent of the presence of 

DTT, relating the activation by DTT to its ability to remove inhibitory metals, like 

copper, from CvPheH (38, 56). 

The steady-state parameters for the fully active enzyme (Table 2.2) are consistent 

with previous reports (18, 63). The hydroxylation of phenylalanine was completely 

coupled to the oxidation of the tetrahydropterin for all the tetrahydropterin co-substrates 

used here. Substrate inhibition was observed with phenylalanine when BH4 was the co-

substrate but not for DMPH4 or 6-MePH4 (Figure 2.4). CvPheH could hydroxylate 

tryptophan at about 20% the rate at which it does phenylalanine (Table 2.2), in contrast 

to previous reports of very low activity with this amino acid (63). On the other hand, no 

DOPA was detected by HPLC with tyrosine up to 2 mM. 
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Figure 2.3: Initial rate of tyrosine formation by phenylalanine hydroxylase as a function 

of DTT concentration. The line is from the fit of the data to Equation 2.2. 
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Table 2.2: Steady-state kinetic parameters for C. violaceum phenylalanine 

hydroxylase  

 

Substrate pair 

KPhe 

(µM) 

KMPH4  

(µM) 

kcat/KPhe 

(s-1 µM-1) 

kcat/KMPH4 

(s-1 µM-1) 

kcat 

(s-1) 

Phe*       6-MePH4       68 ± 11 18 ± 5 0.18 ± 0.02 0.61 ± 0.05 12 ± 1 

Phe*       DMPH4           137 ± 23 44 ± 6 0.33 ± 0.07 0.73 ± 0.07 35 ± 2 

Phe*       BH4                   61 ± 10 43 ± 4 0.15 ± 0.05 0.23 ± 0.06 10 ± 1 

Cha§†     6-MePH4     60 ± 10 49 ± 9  0.045 ± 0.006 0.054 ± 0.008 2.8 ± 0.1 

Trp§†      6-MePH4     800 ± 80 ND  0.003 ± 0.001 ND 2.2 ± 0.2 

*The solution contained 50 mM HEPES (pH 7.2), 5 mM DTT, 10 µM ferrous 

ammonium sulfate, 50 µg/ml catalase, 0.1-0.3 µM CvPheH. 

§ Determined using the coupled assay.  

†The solution contained 50 mM HEPES (pH 7.2), 50 µg/ml catalase, 250 µM NADH, 

0.3 Units of DHPR, 10 µM ferrous ammonium sulfate, 0.1-0.3 µM CvPheH. 
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Figure 2.4: Initial rate of tyrosine formation by phenylalanine hydroxylase as a function 

of phenylalanine concentration. 150 µM 6-MePH4 (circles); 150 µM BH4 (triangles). 

The lines are from fits of the data to the Michaelis-Menten equation for 6-MePH4 and to 

Equation 2.1 for BH4. 
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Isotope effects on aromatic hydroxylation. The mechanism shown in Figure 2.2 

predicts that multiple steps will be affected by deuterium substitution at the site of 

hydroxylation. In order to identify those steps we used phenylalanine in which deuterium 

was incorporated at the site of hydroxylation, the adjacent carbons or the whole ring. 

The best fit of the data was to Equation 2.3 which assumes an isotope effect only on kcat. 

The observed kinetic isotope effect was normal with both 6MePH4 and DMPH4  (Table 

2.3). A similar result has been reported for rat PheH. With that enzyme the normal 

isotope effect was shown to be a combination of two isotope-sensitive steps, the initial 

reaction of the hydroxylating intermediate with the aromatic ring of phenylalanine and 

the final tautomerization required to form tyrosine (30, 64).  

 

Table 2.3: Kinetic isotope effects on kcat for C. violaceum phenylalanine hydroxylase 

with deuterated phenylalanine* 

Enzyme 6-MePH4 DMPH4 

Wild-type  1.24 ± 0.04 1.43 ± 0.07 

I234D 1.00 ± 0.01 0.90 ± 0.03 

*The solution contained 50 mM HEPES (pH 7.2), 5 mM DTT, 10 µM ferrous 

ammonium sulfate, 50 µg/ml catalase, 0.1-0.3 µM CvPheH. 
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With eukaryotic TyrH and PheH the intrinsic isotope effect on the initial 

formation of the CO bond could be obtained using mutant enzymes in which an 

alternative pathway for the decay of the hydroxylating intermediate was introduced (30, 

32). In the case of rat PheH, the single V379D mutation was sufficient to unmask the 

intrinsic isotope effect on hydroxylation. Consequently, we introduced the corresponding 

mutation, I234D, into CvPheH. The hydroxylation of phenylalanine by CvPheH I234D 

was only 60 and 30% coupled to the oxidation of 6-MePH4 and DMPH4, respectively. 

Moreover, the isotope effect observed with DMPH4 was inverse with the mutant 

enzyme, and the isotope effect observed with the more-coupled 6-MePH4 was clearly 

less normal than for the wild-type enzyme (Table 2.3). The value of 0.90 obtained with 

the mutant protein and DMPH4 is within error of the intrinsic kinetic isotope effect for 

addition of oxygen to the aromatic ring of the amino acid substrate by both TyrH (32) 

and rat PheH (30). It is thus likely to be the intrinsic isotope effect for that step with 

CvPheH also. 

In order to measure the isotope effect on the subsequent tautomerization of the 

dienone to tyrosine (Figure 2.2), the deuterium content of tyrosine produced from [4-

2H]- or 3,5-2H2-phenylalanine was determined using mass spectrometry. While hydrogen 

is preferentially lost in all cases, there is slightly more deuterium in the tyrosine from [4-

2H]-phenylalanine, independent of the identity of the pterin (Table 2.4). The kinetic 

isotope effect on the tautomerization can be determined from the data of Table 2.4 using 

the minimal mechanism in Figure 2.5 (30). After the 1,2-hydride shift, both atoms are on 

the carbon adjacent to the site of hydroxylation. To form tyrosine Ha can be lost with 
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rate constant ka or Hb with rate constant kb. When [4-2H]-phenylalanine is the substrate 

ka is subject to a primary deuterium isotope effect. Likewise, kb is subject to an isotope 

effect when 3,5-2H2-phenylalanine is the substrate. The isotope effects on ka and kb are 

related to the deuterium content of the tyrosine products from [4-2H]- and [3,5-

2H2]phenylalanine by equations 2.4 and 2.5, respectively. Here, PD and PH (equation 2.4) 

are the relative amounts of tyrosine retaining one or zero deuterium atoms in the reaction 

with [4-2H]-phenylalanine, while PD2 and PD in equation 2.5 are the relative amounts of 

tyrosine containing two or one deuterium atoms in the reaction with [3,5-

2H2]phenylalanine. If ka and kb are affected in the same way by deuterium substitution, 

then the geometric mean of the ratios reported in Table 2.4 gives the isotope effect for 

the tautomerization (65). This value is 5.1 ± 1.0 for the reactions with both 6-MePH4 and 

DMPH4. 

PD/PH = R1 = Dka(kb/ka)        (2.4) 

PD2/PD = R2 = Dkb(ka/kb)        (2.5) 
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Table 2.4: Ratio of deuterium to protium in the tyrosine produced by C. violaceum 

phenylalanine hydroxylase* 

Tetrahydropterin Phenylalanine 

 4-2H-Phe 3,5-2H2-Phe 

6-MePH4 6.3 ± 0.5 4.1 ± 0.2 

DMPH4 5.7 ± 0.3  4.4 ± 0.3 

*Conditions: 10 mM phosphate buffer (pH 7.0), 10 µM ferrous ammonium sulfate,  

1 µM CvPheH, 400 µM phenylalanine and 3 mM DMPH4 or 6-MePH4. After 30 min the 

reaction was stopped, the amino acids products were purified by HPLC and their 

deuterium content was determined using ESI mass spectrometry. 
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Figure 2.5: Final step in the hydroxylation of phenylalanine to tyrosine. 
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Isotope effects on benzylic hydroxylation. The eukaryotic and prokaryotic 

hydroxylases will catalyze hydroxylation on the benzylic carbon as well as on the 

aromatic ring of 4-methylphenylalanine (Figure 2.6) (18, 40, 41). In the case of CvPheH 

we found that 89% of the product is 4-HOCH2-phenylalanine and 11% 4-HO-3-CH3-

phenylalanine. However, when 4-C2H3-phenylalanine is the substrate a metabolic switch 

takes place and 45% of the product comes from benzylic hydroxylation and 55% from 

aromatic hydroxylation. The intrinsic isotope effect on benzylic hydroxylation, DkBenz, is 

related to the isotope effect on the fraction of 4-HOCH2-phenylalanine produced through 

equation 2.6 (40, 41). Here k1 and k2 are the net rate constants for the reaction of the 

hydroxylating intermediate with the non-deuterated substrate for benzylic and aromatic 

hydroxylation, respectively (Figure 2.6). Application of equation 2.6 to the data for 

CvPheH yields an intrinsic isotope effect on benzylic hydroxylation of 10 ± 1 at at 25 

°C. This large isotope effect suggests a contribution of hydrogen tunneling to catalysis. 

In order to test this possibility we measured the temperature dependence of the isotope 

effect on benzylic hydroxylation (Figure 2.7). The isotope effects at different 

temperatures were fit to equation 2.7 (66) to obtain the isotope effect on the Arrhenius 

prefactor (AH/AD) of 0.29 ± 0.03 and the difference in activation energy (∆Ea) for 

hydrogen and deuterium of 2.1 ± 0.4. These results show a moderate contribution of 

tunneling to the benzylic hydroxylation reaction catalyzed by CvPheH (67).   

D(% Benz OH) = DkBenz + k1/k2  / (1 + k1/k2)        (2.6) 

ln(kH/kD) = ln(AH/AD) + [Ea(D) -Ea(H)]/RT      (2.7) 
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Figure 2.6: Benzylic hydroxylation carried out by phenylalanine hydroxylase. 
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Figure 2.7: Temperature dependence of the isotope effect on the benzylic hydroxylation 

reaction catalyzed by C. violaceum phenylalanine hydroxylase. 
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Uncoupled DMPH4 oxidase activity of CvPheH. Chen and Frey (36) reported that 

metal-free CvPheH is able to catalyze the phenylalanine-dependent oxidation of DMPH4 

at about 5% the rate of the metal containing enzyme. This result was interpreted as 

support of a model in which the initial interaction of molecular oxygen is with the 

tetrahydropterin with no need for the iron. To confirm this result we used EDTA to 

remove all the bound metal from the enzyme. After dialysis to remove the chelating 

agent, analysis of the metal content of this apo-CvPheH showed that iron was present at 

less than 1 mol %. In the absence of added iron in the assay, the EDTA-treated CvPheH 

still exhibited 3.5 % the phenylalanine hydroxylation activity of the metal-containing 

enzyme, consistent with the results of Chen and Frey (36). However, in our hands 

tyrosine formation and DMPH4 oxidation were completely coupled and increasing 

amounts of enzyme yielded decreasing kcat values, suggesting that the residual activity 

was due to a very low concentration of iron in the dialysis buffers or assay. To avoid 

exposure of the apoenzyme to adventitious iron during dialysis and to remove excess 

EDTA, the chelator was removed by gel filtration. In addition, we included 10 µM 

EDTA in the assays to scavenge any free metal. When CvPheH was treated in this 

fashion, the formation of tyrosine was reduced below the detection limit of 8 nM, and 

the rate of DMPH4 oxidation was unaffected by the presence of the enzyme (Table 2.5). 
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Table 2.5: Effect of C. violaceum phenylalanine hydroxylase on the rate of DMPH4 

oxidation* 

CvPheH  Rate (nmol s-1) 

No CvPheH  0.034 ± 0.002 

EDTA-treated CvPheH (0.1 µM) 0.030 ± 0.002 

EDTA-treated CvPheH (0.1 µM) + Fe(II) (15 µM) 1.2 ± 0.01 

*Conditions: 100 mM HEPES (pH 7.2), 3 mM phenylalanine and 150 µM DMPH4, 10 

µM EDTA. The rate was determined from the change in A437 with time using an ε437 

value of 3600 M-1 cm-1. 
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DISCUSSION 

Several authors (47, 68) have proposed that the eukaryotic amino acid 

hydroxylases evolved from a common ancient hydroxylase that resembled the bacterial 

phenylalanine hydroxylase. Consistent with such a model, bacterial and eukaryotic 

phenylalanine hydroxylases share 35 % sequence identity and similar structures for their 

catalytic domains (39, 49, 50, 69). While this makes the bacterial enzyme an attractive 

and simpler model for study of the mechanism of aromatic amino acid hydroxylation, 

structural differences and the different metal binding ability of the bacterial enzyme raise 

the possibility that there are substantive differences in the reactivities of the bacterial and 

eukaryotic enzymes. Comparison of the intrinsic isotope effects for the bacterial enzyme 

with previously reported values for the eukaryotic enzyme provides a test of this 

hypothesis, in that the intrinsic isotope effects reflect the transition state structures for 

the individual reactions and thus of the reactivity of the Fe(IV)O intermediate in the 

different enzymes. 

The physiological reaction catalyzed by CvPheH, the hydroxylation of 

phenylalanine to form tyrosine, exhibits a deuterium kinetic isotope effect greater than 

one with both 6-MePH4 and DMPH4. The value with DMPH4 is similar to that for the 

catalytic domain of rat PheH (30), while that with 6-MePH4 is somewhat smaller. 

Neither value is the intrinsic isotope effect for the reaction of the Fe(IV)O intermediate 

with the aromatic ring of the substrate. Rather, the observed isotope effects are 

combinations of the isotope effect on this step and the isotope effect on the subsequent 

tautomerization to form phenylalanine. For the three eukaryotic enzymes, the isotope 
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effects on the initial hydroxylation are all 0.90 ± 0.03 (21, 30, 32). With both rat PheH 

and rat TyrH, this isotope effect is masked by other slower steps and could only be 

measured in mutant proteins in which an unproductive side path was introduced. This 

same strategy was effective with CvPhe, in that the I234D enzyme exhibits a Dkcat value 

identical to the intrinsic isotope effects for the eukaryotic enzymes when the less-

coupled DMPH4 is used as substrate. This agreement of the isotope effects and the fact 

that homologous mutations in CvPheH and rat PheH unmask it are consistent with 

similar transition states for hydroxylation by both enzymes. The isotope effects for the 

subsequent tautomerization step are also identical for rat and CvPheH at 5.1, suggesting 

that this step is also identical in the two enzymes. The much smaller values for the 

observed isotope effects are consistent with hydroxylation or an isotope-insensitive step 

being about 9-fold slower than tautomerization. Tautomerization is expected to be much 

more favorable in the absence of a catalyst than formation of the Fe(IV)O species or the 

hydroxylation step, raising the possibility that there is no need for the enzyme to actively 

catalyze this step, so that it occurs after product release. However, with CvPheH there is 

a 20% preference for loss of the hydrogen initially present at the 3-position of the 

aromatic ring. In the case of rat PheH there is a slight (34%) preference for loss of the 

other hydrogen (30). These results are most consistent with this step occurring in the 

active site of both enzymes and with the small differences in the structures seen in the X-

ray structures. 

The magnitude of the isotope effect on benzylic hydroxylation is a far more 

sensitive probe of the reactivities of the Fe(IV)O intermediate in the prokaryotic and 
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eukaryotic enzymes due to its much greater magnitude. The relative amount of benzylic 

hydroxylation of 4-methylphenylalanine is greater with CvPheH (89%) than with the rat 

enzyme (55%) (40), further establishing that the active sites are very similar but not 

identical. The isotope effect for benzylic hydroxylation of 10 ± 1 is slightly smaller than 

the value for the catalytic domain of the rat enzyme, 12 ± 1, but this is probably not 

significant. Importantly, benzylic hydroxylation by CvPheH also involves moderate 

tunneling of the substrate hydrogen atom. Of the two parameters derived from the 

temperature dependence of the isotope effect on this reaction, the effect of deuteration 

on the activation energy, ∆Ea can be measured with greater confidence that the effect on 

the Arrhenius prefactor, in that the latter involves extrapolation to infinite temperature. 

The former value for CvPheH is within error of the value for rat PheH. The 

interpretation of the temperature dependence of kinetic isotope effects is a matter of 

intense investigation at present, and no final consensus has been reached. While 

temperature-dependent isotope effects such as those described here for benzylic 

hydroxylation by CvPheH can be rationalized using a simple correction to the transition 

state such that hydrogen tunnels through the barrier at a lower energy than deuterium 

(70), the temperature dependence of the isotope effects for a growing number of 

enzymes cannot be explained by such a simple model. Instead, more sophisticated 

models are required in which the temperature dependence reflects the extent of 

preorganization of the active site and/or the involvement of protein motion in the 

reaction coordinate (71, 72). In these models, the significant temperature dependence of 

the isotope effect for benzylic hydroxylation would reflect an active site that is not 
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optimized for the reaction. Such a model is certainly reasonable in that PheH and the 

other aromatic amino acid hydroxylases have not been designed by evolution for this 

reaction. More importantly, the similar effects of temperature on the isotope effects for 

CvPheH and the eukaryotic enzymes indicate similar active site environments for 

hydroxylation in all. 

Chen and Frey (36) reported that iron-free CvPheH was able to catalyze the 

oxidation of DMPH4 without the formation of tyrosine. However, the results on Table 

2.5 show that this activity is lost when metal-free CvPheH is used. These two results can 

be reconciled if the residual tetrahydropterin oxidation activity reported previously was 

conferred by a metal other than iron. A precedent for this is the H336Q mutant of 

tyrosine hydroxylase, which in the presence of Co(II) catalyzes the oxidation of 

tetrahydropterin without hydroxylation of tyrosine (73).  

The isotope effects reported here for hydroxylation of phenylalanine and 4-

methylphenylalanine by CvPheH, the temperature dependence of the latter, and the iron 

requirement for catalysis of tetrahydropterin oxidation by CvPheH all demonstrate that 

the reactivity of the hydroxylating intermediate in this bacterial amino acid hydroxylase 

is indistinguishable from that of the eukaryotic enzyme. Thus, for mechanistic if not 

regulatory studies, the bacterial enzyme is a valid model for the eukaryotic enzymes. 
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 CHAPTER III 

MEASUREMENT OF THE INTRAMOLECULAR ISOTOPE EFFECT ON 

ALIPHATIC HYDROXYLATION BY CHROMOBACTERIUM VIOLACEUM 

PHENYLALANINE HYDROXYLASE 

 

Phenylalanine hydroxylase (PheH) is a non-heme iron dependent 

monooxygenase that catalyzes the hydroxylation of the amino acid phenylalanine to 

yield tyrosine (Figure 3.1) (4). PheH is found in organisms ranging from bacteria to 

humans. In mammals, the enzyme is responsible for catabolism of dietary phenylalanine, 

and mutations in PheH are linked to the disorder phenylketonuria (1). Among the 

bacterial enzymes, that from Chromobacterium violaceum (CvPheH) is the most studied 

(36, 37, 74). PheH is a member of the family of aromatic amino acid hydroxylases, along 

with tyrosine hydroxylase (TyrH) and tryptophan hydroxylase (75). Each of these 

enzymes catalyzes the hydroxylation of the corresponding aromatic amino acid using 

molecular oxygen and the electrons from a tetrahydropterin. In addition to aromatic 

hydroxylation, the aromatic amino acid hydroxylases can catalyze the hydroxylation of 

benzylic and aliphatic substrates (18, 58). Previously, the isotope effect on benzylic 

hydroxylation was used to compare the reactivity of the eukaryotic enzymes and that of 

CvPheH (40, 41, 74). These studies showed a similar reactivity for all the enzymes and 

suggested a common hydroxylating intermediate for all the family members. 

Crystal structures of the three eukaryotic enzymes and CvPheH reveal a common 

fold for the catalytic domain (39, 49, 50). The active sites are characterized by a ferrous 
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iron coordinated on one face by two histidines and a glutamate. Three water molecules 

complete an octahedral geometry. When a tetrahydropterin and an amino acid substrate 

are present the geometry around the iron changes from six to five coordinate, 

presumably opening a site for oxygen to directly coordinate the iron (48, 51, 76). The 

proposed hydroxylating intermediate is an Fe(IV)O species; direct evidence for such an 

intermediate has been obtained for TyrH (28) and CvPheH (Chapter IV). Such a reactive 

intermediate could explain the rich chemistry displayed by these enzymes. Here we 

report the use of an intramolecular kinetic isotope effect as a probe of the chemical 

mechanism of aliphatic hydroxylation by CvPheH. The results presented here shed light 

on the reactivity of the hydroxylating intermediate for the family of aromatic amino acid 

hydroxylases. 
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Figure 3.1: Reaction catalyzed by phenylalanine hydroxylase. 
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EXPERIMENTAL PROCEDURES 

Materials. Catalase was from F. Hoffmann-La Roche Ltd (Indianapolis, IN). 

DEAE-Sephacel was from Amersham Pharmacia Biotech (Uppsala, Sweden). The E. 

coli strain BL21(DE3), used for protein expression, was from Novagen. 6-

Methyltetrahydropterin (6-MePH4), and 6,7-dimethyltetrahydropterin (DMPH4) were 

from B. Schircks Laboratories (Jona, Switzerland). L-Tyrosine, L-phenylalanine, 

dihydropteridine reductase, sodium cyanide, boric acid and platinum oxide were from 

Sigma-Aldrich Chemical Co. (Milwaukee, WI). Napthalene-2,3-dicarboxaldehyde was 

from Invitrogen. L-[Ring-2H5]-phenylalanine was from Cambridge Isotope Laboratories 

(Andover, MA). Dithiothreitol was from Inalc (Milan, Italy). 

Cyclohexylalanine was synthesized by reduction of L-phenylalanine with H2 

over 100 mg of platinum oxide (18). L-3-[2H11-Cyclohexyl]-alanine was prepared by 

reducing L-[ring-2H5]-phenylalanine with D2 in DCl. L-3-[1,2,3,4,5,6-2H6-Cyclohexyl]-

alanine was synthesized following the same protocol, starting from L-phenylalanine or 

L-[ring-2H5]-phenylalanine, using DCl and D2 or HCl and H2, respectively. Complete 

reduction of the starting material was confirmed by HPLC and 1H NMR. The purities of 

the products were confirmed using HPLC. 4-Hydroxycyclohexylalanine was similarly 

obtained from the reduction of tyrosine with H2 (18). All other reagents were of the 

highest purity commercially available. 
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Enzyme purification and enzymatic assays. CvPheH was expressed and purified 

as previously described (74). The steady-state kinetic parameters for the hydroxylation 

of cyclohexylalanine and of 3-[2H11-cyclohexyl]-alanine were measured using a coupled 

assay in which the oxidation of NADH by dihydropteridine reductase was followed (43). 

The assays were performed at 25 °C in a solution containing 50 mM HEPES (pH 7.2), 

50 µg/ml catalase, 250 µM NADH, 0.3 units of dihydropteridine reductase, 10 µM 

ferrous ammonium sulfate, 0.1 - 0.3 µM CvPheH, 150 µM 6-MePH4 or 250 µM 

DMPH4, and varying concentrations of cyclohexylalanine or 3-[2H11-cyclohexyl]-

alanine. 

The hydroxylation of cyclohexylalanine was monitored by HPLC (41, 59). The 

reaction conditions were 500 µM cyclohexylalanine or 3-[2H11-cyclohexyl]-alanine, 10 

µM ferrous ammonium sulfate, 1 µM CvPheH and 1 mM 6-MePH4 or DMPH4. 

Reactions were carried out for 1 min in 300 µL of 10 mM sodium phosphate buffer (pH 

7.0) and then quenched with 100 µL of 100 mM sodium borate (pH 9.0). To this, 50 µL 

of 50 mM sodium cyanide and 100 µL of 50 mM naphthalene-2,3-dicarboxaldehyde 

were added. The fluorescent derivatives were separated using a Nova-Pack C 18 column 

and a gradient of 30-40% acetonitrile in 70-60% 10 mM sodium phosphate with 1% 

tetrahydrofuran (pH 7.0).  
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The fluorescent molecules were detected using a Waters 2475 detector, with 

excitation and emission wavelengths of 420 and 490 nm, respectively. The amount of 

product was quantified using a standard curve generated using known amounts of the 

product 4-HO-cyclohexylalanine. 

In order to determine the amount of deuterium retained in the hydroxylated 

cyclohexylalnine after the reaction with CvPheH the samples were isolated by HPLC 

following the protocol described above. For the determination of the deuterium content 

of 4-HO-cyclohexylalanine, 1 mM DMPH4 and 500 µM 3-[2H6-cyclohexyl]-alanine 

were used. The reactions were carried at 25 °C for 30 min. The peak corresponding to 4-

HO-cyclohexylalanine was collected and analyzed by negative ion electrospray time-of-

flight mass spectrometry at the Laboratory of Biological Mass Spectrometry at Texas 

A&M University. The data were corrected for 13C contributions and used in the 

calculation of the isotope effect. 
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RESULTS AND DISCUSSION  

The hydroxylation of cyclohexylalanine by prokaryotic or eukaryotic PheH 

yields 4-HO-cyclohexylalanine as the only amino acid product (18). With 6-MePH4 the 

kcat and kcat/Km values for cyclohexylalanine as substrate for CvPheH are 2.8 ± 0.1 s-1 

and 45 ± 6 mM-1s-1, respectively, and amino acid hydroxylation is fully coupled to 

tetrahydropterin oxidation (18). In order to gain insight into the chemical mechanism of 

this reaction we measured the deuterium kinetic isotope effect using 3-[2H11-

cyclohexyl]-alanine. Isotope effects within error of one were obtained for both kcat and 

kcat/KM with either 6MePH4 or DMPH4. (Table 3.1) This result suggests that a step that 

does not involve hydrogen atom abstraction is rate-limiting with this substrate.  

As an alternative approach, the isotope effect on the hydroxylation of 

cyclohexylalanine was analyzed as an intramolecular isotope effect. Such an approach 

can avoid the problem of slow, non-chemical steps (65, 77). To do so, 3-[1,2,3,4,5,6-

2H6-cyclohexyl]-alanine was used as the substrate, so that the carbon of interest 

contained one deuterium and one hydrogen. The amount of deuterium in the 4-HO-

cyclohexylalanine formed from 3-[1,2,3,4,5,6-2H6-cyclohexyl]-alanine was then 

determined by mass spectrometry of the isolated product. The ratio of product with six 

deuteriums to that with five was 2.5 ± 0.1. When similar experiments were carried out 

with 3-[2,3,4,5,6-2H5-cyclohexyl]-alanine obtained by reduction of L-[ring-2H5]-

phenylalanine with H2 the ratio of products was 3.03 ± 0.1. The average of the two 

values was used in the calculation of the isotope effect. 
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Table 3.1: Kinetic isotope effects on kcat and kcat/KM for C. violaceum phenylalanine 

hydroxylase with 3-[2H11-cyclohexyl]-alanine* 

Parameter 6-MePH4 DMPH4 

Dkcat 1.03 ± 0.1 0.99 ± 0.1 

Dkcat/KM 1.35 ± 0.5 1.24 ± 0.5 

*The solution contained 50 mM HEPES (pH 7.2), 50 µg/ml catalase, 250 µM NADH, 

0.3 Units of DHPR, 10 µM ferrous ammonium sulfate, 0.1-0.3 µM CvPheH. 
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The isotope effect for CH bond cleavage can be obtained from the partitioning 

between H and D abstraction if one makes two reasonable assumptions: 1) CH bond 

cleavage is irreversible, and 2) the cyclohexyl ring cannot flip in the active site more 

rapidly than CO bond formation occurs. The first assumption is reasonable for a 

hydroxylation reaction. The second is supported by the structure of human PheH with 

bound amino acid (48) and by the stoichiometric coupling of tetrahydropterin oxidation 

to amino acid hydroxylation with cyclohexylalanine as a substrate for CvPheH. The 

position of the hydroxyl group in the product is the result of the partitioning between 

hydroxylation of C4 at the axial position and hydroxylation at the equatorial position 

(Figure 3.2). The ratio of the two products (Pa/Pe) is then described by equation 3.1. The 

monodeuterated substrate can be bound with deuterium in the axial or the equatorial 

position. If deuterium is in the axial position, the rate constant for cleavage of the axial 

CH bond, ka, will be subject to the primary kinetic isotope effect Dk and the rate constant 

for cleavage of the equatorial CH bond, ke, will be subject to the secondary isotope 

effect αDk. In this case the ratio of the product that has lost deuterium, PH, to that which 

retains deuterium, PD, is given by equation 3.2. If deuterium is in the equatorial position 

the isotope effects are on the opposite steps (Figure 3.2), and the ratio of products is 

given by equation 3.3. No preference is anticipated for binding the substrate with 

deuterium in the equatorial versus the axial position. Thus, the isotopic content of the 

product will be the average of the contents from the two binding orientations (Equation 

3.4). 
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Figure 3.2: Possible outcomes of the hydroxylation of cyclohexylalanine by 

phenylalanine hydroxylase. 
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Previously Carr et al. (18) reported that 90% of the hydroxylation occurred at the 

axial position with cyclohexylalanine, so that ka/ke = 9. Combining this value with the 

value of 0.37 ± 0.02 for PH/PD reported here yields a value for Dk /αDk of 12.3 ± 1. If an 

upper limit of 1.2 is used for the secondary isotope effect (40), Dk has an upper limit of 

14.7 ± 1.2. 

Pa/Pe = ka/ke (3.1) 

PH/PD = (ka/ke)(αDk/ Dk) (3.2) 

PH/PD = (ke/ka)(αDk/ Dk) (3.3) 

PH/PD = 0.5(αDk/ Dk)[(ka/ke) + (ke/ka)] (3.4) 

The isotope effect on hydroxylation of cyclohexylalanine by CvPheH is slightly 

larger than that on benzylic hydroxylation by the enzyme of 10 ± 1 (74). Given its 

magnitude, the intermolecular isotope effect of 12.3-14.7 is likely to be the intrinsic one. 

This value is comparable to those reported for aliphatic hydroxylation by cytochrome 

P450 (78-80), but smaller than values obtained from rapid reaction studies of the α-

ketoglutarate-dependent non-heme enzymes TauD (Dk = 16) (26) and prolyl-4-

hydroxylase (Dk = 60) (81), which utilize a Fe(IV)O center similar to that in PheH (27). 

The magnitude of the value with CvPheH is consistent with a mechanism involving 

hydrogen atom abstraction by the Fe(IV)O center followed by rebound of the hydroxyl 

radical, a mechanism also suggested for the other enzymes (Figure 3.3) (26, 27, 81). The 

large isotope effect also suggests the involvement of tunneling in this reaction, although 

not as much as occurs when TauD or prolyl-4-hydroxylase react with their normal 

substrates. Evidence of tunneling was also observed for the hydroxylation of benzylic 
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carbons by all the aromatic amino acid hydroxylases (40, 41, 74). The lack of an isotope 

effect on the kcat value with 3-[2H11-cyclohexyl]-alanine establishes that hydrogen atom 

abstraction is much faster than other steps in turnover, even though this enzyme is not 

evolved to carry out this reaction.  

The results presented here are consistent with the involvement of a highly 

reactive Fe(IV)O as the hydrogen atom abstracting species for the aliphatic 

hydroxylation carried out by CvPheH. The magnitude of the isotope effect on aliphatic 

hydroxylation reported here is comparable to that found for benzylic hydroxylation by 

CvPheH and all the eukaryotic enzymes (40, 41, 74). Thus, for both reactions a similar 

mechanism of hydrogen atom abstraction followed by radical rebound can be proposed . 

Based on the similar iron centers shared by all the members of the family, these results 

suggest that an Fe(IV)O species is the general hydroxylating intermediate for the family 

of aromatic amino acid hydroxylases. Further spectroscopic investigations using 

CvPheH and the aliphatic substrate cyclohexylalanine could help better characterize the 

hydroxylating intermediate utilized by this family of enzymes. 
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Figure 3.3: Proposed chemical mechanism of aliphatic hydroxylation by phenylalanine 

hydroxylase. 
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CHAPTER IV 

SPECTROSCOPIC EVIDENCE FOR A HIGH SPIN Fe(IV)O SPECIES IN THE 

CATALYTIC CYCLE OF CHROMOBACTERIUM VIOLACEUM 

PHENYLALANINE HYDROXYLASE 

 

Phenylalanine hydroxylase (PheH) is a non-heme iron-dependent 

monooxygenase that catalyzes the hydroxylation of the aromatic amino acid 

phenylalanine to yield tyrosine. PheH belongs to the family of aromatic amino acid 

hydroxylases, along with tyrosine hydroxylase (TyrH) and tryptophan hydroxylase. 

PheH is found in organisms ranging from eukaryotes to prokaryotes. In mammals PheH 

is present in the liver where it catalyzes the first and rate-limiting step in the metabolism 

of the phenylalanine acquired in the diet (82). TyrH and tryptophan hydroxylase catalyze 

the hydroxylation of the corresponding amino acids and they play key roles in the 

metabolism and synthesis of neurotransmitters (5, 6, 82). Mutations that hamper the 

function of PheH have been linked to the disease phenylketonuria (83). Individuals 

suffering from this disease have elevated levels of L-Phe in the blood and suffer from 

mental retardation (1). The reaction catalyzed by PheH is depicted in Figure 4.1. Once 

the three substrates are present in the ferrous active site, the electrons from 

tetrahydrobiopterin are used to activate molecular oxygen to react with the aromatic side 

chain of the substrate (7, 8). As the result of the reaction, one oxygen atom from 

molecular oxygen is incorporated into the aromatic ring of the amino acid and the other 

into the 4a-position of the biopterin. 
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Figure 4.1: Hydroxylation of phenylalanine by phenylalanine hydroxylase. 
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The crystal structures of the catalytic domains of the eukaryotic and prokaryotic 

aromatic amino acid hydroxylases reveal a common fold around the active site (39, 49, 

50). In the case of the human PheH, the crystal structures of the resting enzyme and that 

of the binary complex with a tetrahydropterin show the iron atom coordinated in an 

octahedral fashion by two histidine residues, a glutamate, and three water molecules. In 

the crystal structure of the ternary complex of PheH with 3-(2-thienyl)-L-alanine and 

tetrahydrobiopterin, the iron atom is coordinated by two histidine residues, a bidentate 

glutamate, and a water molecule. Thus, binding of the three substrates would open a site 

for oxygen to directly coordinate to the iron. This model is supported by spectroscopic 

evidence for PheH and tyrosine hydroxylase (51, 76). X-Ray absorption spectroscopy 

shows that only when both tetrahydropterin and amino acid substrate are present does 

the coordination around the iron change from six-coordinate to five-coordinate. The 

change in iron coordination is a prerequisite for catalysis since it modulates the reactivity 

of the iron center towards oxygen. The reaction of oxygen and tetrahydropterin is 

accelerated by two orders of magnitude in the five-coordinated enzyme. 

A chemical mechanism for aromatic amino acid hydroxylation that is consistent 

with all the evidence gathered for all the hydroxylases is shown in Figure 4.2 (23). 

Initially, the three substrates are recruited to the six-coordinate ferrous iron active site. A 

change in the iron coordination from six to five-coordinate opens a site for oxygen to 

coordinate the iron and form a peroxo bridge between the tetrahydropterin and the 

ferrous iron. The hydroxylating species, an Fe(IV)O, and the first product, 4a-

hydroxypterin, are produced after the heterolytic cleavage of the oxygen-oxygen bond. 
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Direct spectroscopic evidence for the existence of a kinetically competent Fe(IV)O 

species was reported by Eser et al. (28) for the reaction of TyrH with its natural 

substrate. Once formed the Fe(IV)O reacts with the aromatic side chain of the amino 

acid, generating a carbocation that undergoes a 1,2 hydride transfer to form a dienone 

(31). Tautomerization of the dienone gives the final product, tyrosine. 

The iron center in the aromatic amino acid hydroxylases is capable of accepting a 

wide range of amino acids as substrates (4). Besides the aromatic hydroxylation of ring-

substituted substrates, the aromatic hydroxylases can perform benzylic, and aliphatic 

hydroxylation (18, 58). The isotope effect on benzylic hydroxylation has been used to 

compare the reactivity of the eukaryotic enzymes (40) and that of CvPheH (Chapter II). 

These studies showed a similar reactivity for all the enzymes and suggested a common 

hydroxylating intermediate for all the family members. The large isotope effect of about 

13 calculated for benzylic hydroxylation for all the enzymes was interpreted as evidence 

for a chemical mechanism involving hydrogen atom abstraction by the Fe(IV)O 

followed by recombination of the hydroxyl and benzylic radicals. Recently, an 

intramolecular isotope effect of similar magnitude has been determined for the 

hydroxylation of the aliphatic cyclohexylalanine by CvPheH (Chapter III). These results 

are consistent with the involvement of a highly reactive Fe(IV)O species capable of 

hydrogen atom abstraction from the relatively less activated carbon atoms of the 

benzylic and aliphatic substrates. 
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Figure 4.2: Chemical mechanism of aromatic amino acid hydroxylation. 
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The only direct spectroscopic evidence for the existence of an Fe(IV)O species in 

the catalytic cycle of any of the aromatic amino acid hydroxylases comes from freeze 

quench Mössbauer spectroscopy of TyrH (28). When a complex of TyrH, tyrosine, and 

6-MePH4 is exposed to oxygen, an iron intermediate with characteristics similar to those 

observed for high-spin Fe(IV) intermediates in other mononuclear non-heme enzymes 

(27, 28, 81) is seen at 20 ms . Cryoreduction of the 20 ms sample gives rise to an EPR 

signal consistent with a high-spin Fe(III) complex, as expected for one-electron 

reduction of a high-spin Fe(IV). A similar strategy was used to characterize the iron 

intermediate in the α-ketoglutarate dependent taurine dioxygenase (TauD) (27). Both 

TyrH and TauD share an iron center in which the iron is coordinated by two histidine 

residues and a carboxylate, and the spectroscopic evidence suggests that both use similar 

Fe(IV)O hydroxylating intermediates. 

Here we report the use of Mössbauer spectroscopy to monitor the early stages of 

the catalytic cycle of CvPheH. The results provide direct spectroscopic evidence for the 

formation of an Fe(IV) species during the hydroxylation of phenylalanine by CvPheH. 

Rapid chemical quench experiments were also used to establish the kinetic competency 

of the Fe(IV) intermediate as the hydroxylating species. 
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EXPERIMENTAL PROCEDURES 

Materials. The E. coli strain BL21(DE3), used for protein expression, was from 

Novagen. 6-Methyltetrahydropterin (6-MePH4) was from B. Schircks Laboratories 

(Jona, Switzerland). L-Phenylalanine, Hepes, and ferrous ammonium sulftate were from 

Sigma-Aldrich Chemical Co. (Milwaukee, WI). Dithiothreitol was from Inalc (Milan, 

Italy). L-Cyclohexylalanine and L-3-[2H11-Cyclohexyl]-alanine were prepared as 

described in chapter III. All other reagents were of the highest purity commercially 

available. 

Enzyme expression and purification. CvPheH was expressed in E. coli and 

purified as previously described (74). The enzyme was made apo by incubating with 5 

mM EDTA and 5 mM NTA on ice for 2 hours followed by dialysis against 50 mM 

Hepes (pH 7.2) containing 50 mM NaCl. 

Rapid chemical quench analyses. A solution of 100 mM Hepes buffer (pH 7.2) 

containing 1.6 mM apo-CvPheH, 50 mM NaCl, and 5 mM phenylalanine was made 

anaerobic in a tonometer through 20 argon-vacuum cycles over a period of 1 hour. 

Ferrous ammonium sulfate (1.5 mM) was added to the tonometer under argon. An 

aliquot from a stock solution of 6-MePH4 sufficient for a final concentration of 5 mM 

after mixing was placed in one arm of the tonometer. Additional argon-vacuum cycles 

were performed before mixing the 6-MePH4 with the CvPheH:Fe(II):Phe complex in the 

main body of the tonometer. A solution of 1.9 mM O2 was generated by bubbling 

oxygen into a cold solution of 100 mM Hepes (pH 7.2) and 50 mM NaCl. Both 

oxygenated buffer and anaerobic enzyme solutions were loaded onto a SFM-400/Q 
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rapid-mixing instrument from Bio-Logic (Claix, France). The specifications in the 

manufacturer’s manual were followed to achieve reactions of the desired time. The 

reactions were performed at 5 °C and quenched with 5 M HCl. The collected samples 

were chilled on ice until further analysis. 

The precipitated protein was removed by centrifugation for 5 min at 13,700g. An 

aliquot of the sample was diluted in water and injected onto a Waters HPLC equipped 

with a Model 2475 fluorescence detector. Phenylalanine and tyrosine were separated 

using a Phenomenex C18 column using 10 mM sodium phosphate with 1% THF (pH 

7.0) as the mobile phase. The intrinsic fluorescence of the amino acids was used for their 

detection with an excitation wavelength of 270 nm and an emission wavelength of 310 

nm. The amount of tyrosine in each reaction was determined by comparing the area 

under the curve to that of a tyrosine standard curve. Oxygen contamination during the 

sample preparation was taken into account by analyzing the tyrosine present in reactions 

made by mixing the CvPheH:Fe(II):Phe:6-MePH4 complex with anaerobic buffer. The 

amount of tyrosine found in the anaerobic control was subtracted from the amounts in 

samples generated using oxygenated buffer. 

Rapid freeze quench Mössbauer spectroscopy. Mössbauer experiments were 

performed in the laboratories of Drs. J. Martin Bollinger and Carsten Krebs at the 

Pennsylvania State University. A solution of 100 mM Hepes buffer (pH 7.2) containing 

1.6 mM apo-CvPheH, 50 mM NaCl, and 5 mM phenylalanine was made anaerobic in a 

round bottom flask through 30 argon-vacuum cycles over a period of 1 h. This solution 

was placed in an MBraun anoxic chamber with a nitrogen atmosphere (Peabody, MA) 
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where it was made 5 mM in 6-MePH4 by the addition of an aliquot from a stock solution 

prepared by dissolving the solid compound in anaerobic 100 mM Hepes buffer (pH 7.2) 

and 50 mM NaCl. A 50 mM stock solution of 57Fe(II) was made by dissolving 57Fe(0) in 

anaerobic 1M H2SO4. In order to avoid precipitating the enzyme, the stock solution of 

57Fe(II) was mixed with 0.5 volume equivalents of anaerobic 1 M Tris⋅HCl (pH 7.6) 

before its addition to the CvPheH:Phe:6-MePH4 complex at a final concentration of 1.5 

mM. A 0 ms time point sample was prepared by taking an aliquot of the 

CvPheH:57Fe(II):Phe:6-MePH4 complex and transferring it to a Mössbauer cell. The cell 

was sealed in a plastic vial, removed from the glovebox, frozen in liquid nitrogen, 

removed from the vial, and stored in liquid nitrogen.  

The procedure for the preparation of freeze-quench Mössbauer samples has been 

described before (80). The CvPheH:57Fe(II):Phe:6-MePH4 complex was transferred to a 

rapid-quench syringe in the glovebox. The syringe was removed from the glovebox and 

attached to the rapid quench instrument. A second syringe filled with oxygen saturated 

buffer (1.9 mM O2) was also attached to the instrument. These two solutions were mixed 

in a 1:1 ratio at 5 °C and allowed to flow through an aging line before quenching by 

direct injection into 2-methylbutane at -150 °C. The total reaction time was calculated by 

adding 10 ms to the time of transit through the aging line (84).  

Mössbauer spectra were recorded on spectrometers from WEB Research (Edina, 

MN) operating in the constant acceleration mode in a transmission geometry. The 

samples were kept at 4.2 K during the acquisition of the spectra. The samples were 
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inside 12VST dewars (Janis) equipped with a superconducting magnet that allowed the 

application of magnetic fields ranging from 0 to 8 T parallel to the γ-beam. 

Stopped-Flow spectrophotometry. Stopped-flow experiments were performed in 

the laboratories of Drs. J. Martin Bollinger and Carsten Krebs at the Pennsylvania State 

University. The reactions were carried out at 5 °C in an Applied Photophysics (Surrey, 

U.K.) SX.18MV machine equipped with a photo diode array detector and mounted in the 

MBraun anoxic chamber. The anaerobic reactant complex of CvPheH was made as 

described above for the Mössbauer spectroscopy using 400 µM apo-CvPheH, 1 mM 

phenylalanine, 1.5 mM 6-MePH4 and 360 µM Fe(II). The enzyme complex solution was 

loaded into one of the syringes of the stopped-flow instrument. The second syringe was 

loaded with 100 mM Hepes buffer containing 50 mM NaCl and 1.9 mM O2.  

Data analyses. The kinetics of tyrosine formation under pre-steady state 

conditions was analyzed by fitting the data to Equation 4.1 using the program 

KaleidaGraph (Synergy Software, Reading, PA). In Equation 4.1 (Tyr/CvPheH)0 is the 

amplitude of the burst, kburst is the rate constant for the burst phase, and klinear is the rate 

constant for the linear phase. Global analyses of the kinetic data were performed using 

the program KinTek Explorer Pro (KinTek Corp., Austin, TX) (85). Error analysis was 

conducted using the FitSpace Explorer (86) option of KinTek Explorer using a value of 

1.2 for the sum square error (SSE). All the Mössbauer data analysis was carried out by 

Dr. Carsten Krebs using the program WMOSS (WEB Research). The details of the 

analysis have been described previously for the iron center of TauD (27). 

(Tyr/CvPheH)t = (Tyr/CvPheH)0 (1-e(-kburstt)) + klinear t    (4.1)
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RESULTS 

Rapid chemical quench studies with phenylalanine. Mössbauer spectroscopy 

studies require high concentrations of enzyme in order to generate detectable transient 

metal intermediates. In the past, attempts to perform such studies using eukaryotic PheH 

were hampered by the inactivation of the enzyme, presumably by aggregation at the 

millimolar concentrations used (Pavon and Fitzpatrick, personal communication). The 

bacterial CvPheH showed no signs of aggregation at concentrations up to 1 mM as 

judged by light scattering and gel filtration chromatography. We performed chemical 

quench experiments using conditions similar to those necessary for rapid freeze quench 

Mössbauer spectroscopy. When a complex of CvPheH:Fe(II):Phe:6-MePH4 was mixed 

in a 1:1 ratio with O2 (1.9 mM) containing buffer, tyrosine was produced up to almost 

700 µM (Figure 4.3) This result shows that CvPheH is active under conditions similar to 

those required for Mössbauer experiments. Similar experiments performed using 200 

µM CvPheH showed multiple turnovers and evidence of burst kinetics (Figure 4.4). 

Fitting of the data to Equation 4.1 gives a rate constant for the formation of tyrosine 

during the first turnover (kburst) of 7.0 ± 2 and a rate for the subsequent turnovers (klinear) 

of 3 ± 0.5. This result is consistent with hydroxylation being faster than the release of the 

products from the active site. 
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Figure 4.3: Time course at 5 °C for the formation of tyrosine from the reaction of 

CvPheH (1.6 mM):Fe(II) (1.5 mM):6-MePH4 (5 mM):Phe (5 mM): with an equal 

volume of O2 saturated buffer (1.9 mM). The line was calculated from the mechanism in 

Figure 4.7 using the rate constants listed in Table 4.1. 
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Figure 4.4: Time course at 5 °C for the formation of tyrosine from the reaction of 

CvPheH (200 µM):Fe(II) (500 µM):6-MePH4 (5 mM):Phe (5 mM): with an equal 

volume of O2 saturated buffer (1.9 mM). The line was calculated from the mechanism in 

Figure 4.7 using the rate constants listed in Table 4.1. 
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Rapid chemical quench studies with cyclohexylalanine. Phenylalanine 

hydroxylase hydroxylates cyclohexylalanine producing only 4-HO-cyclohexylalanine 

(18). We performed rapid chemical quench experiments with CvPheH and 

cyclohexylalanine. However, we found that the amount of 4-HO-cyclohexylalanine 

produced did not increase consistently with increasing reaction times. Instead, the 

amount of product fluctuated randomly in the samples. Presumably, the high 

concentration of HCl used to quench the enzyme dehydrates the alcohol product. We 

tried using THF and methanol as quenchers but they failed to stop the reaction fast 

enough. 

Rapid freeze quench Mössbauer spectroscopy. The anaerobic complex of 

CvPheH:57Fe(II):Phe:6-MePH4 was reacted with O2 enriched buffer and quenched by 

rapid-freeze. Mössbauer spectra for the reactions at 0, 20 and 100 ms are shown in 

Figure 4.4. The spectrum of the anaerobic complex shows a broad quadrupole doublet 

with parameters typical of a high-spin Fe(II) (27). The asymmetry of the doublet 

suggests the presence of at least two different Fe(II) complexes that possibly arise from 

the conversion of a six-coordinate Fe(II) to a five-coordinate square-pyramidal Fe(II) 

site.  
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The Mössbauer spectra of samples in which the reactant complex was exposed to 

oxygen for 20 and 100 ms exhibit a prominent peak at 0.9 mm/s in addition to the 

contribution from the high-spin Fe(II) (Figure 4.5). This peak is not seen in the spectrum 

of a sample reacted for 400 ms (not shown) as expected for a reaction intermediate. The 

signal centered at 0.9 mm/s is associated with an iron intermediate that exhibits a 

quadrupole doublet. The low energy line of this quadrupole overlaps with the low energy 

line of the Fe(II) site in the reactant complex. The spectra of the 20 and 100 ms samples 

can be analyzed as superpositions of the contributions from high-spin Fe(II) and the 

newly formed iron intermediate (27). Deconvolution of the spectra reveals that the new 

iron species contributes 17 % of the absorption at 20 ms and 14 % at 100 ms. 

The possibility of increasing the life time of the iron intermediate was addressed 

using cyclohexylalanine and L-3-[2H11-cyclohexyl]-alanine as substrates in a similar 

experiment. Unfortunately no signal for an Fe(IV) species was detected using either of 

these two substrates. 
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Figure 4.5: Mössbauer spectra at 4.2-K of the reactions at 5 °C of the 

CvPheH:57Fe(II):Phe:6-MePH4 complex. (1.6 mM CvPheH, 1.5 mM Fe(II), 5 mM 6-

MePH4, 5 mM Phe in 100 mM Hepes (pH 7.2), 50 mM NaCl with 1.9 mM oxygen-

containing buffer). The reaction times and magnetic field strengths are indicated. The 

hashed marks are the Mössbauer spectra. The solid lines are quadrupole doublet 

simulations of the spectra of the Fe(IV) intermediate.
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Stopped-Flow spectrophotometry. As an additional approach, we used stopped-flow 

absorbance spectroscopy to monitor the pterin during the hydroxylation of phenylalanine 

by CvPheH. Figure 4.6 shows the resulting absorbance traces at 246 nm. The absorbance 

at 246 nm reports mainly on the formation of the 4a-hydroxypterin product (21). 
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Figure 4.6: Stopped-flow absorbance traces at 246 nm for the reaction of C. violaceum 

phenylalanine hydroxylase with phenylalanine. The line was calculated from the 

mechanism in Figure 4.7 using the rate constants listed in Table 4.1. 
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DISCUSSION 

The ability of PheH to perform aromatic, benzylic, and aliphatic hydroxylation 

reactions can be explained by the capability of the iron center to form a highly reactive 

Fe(IV)O species. The Mössbauer spectrum of the reaction of CvPheH with 

phenylalanine at 20 ms showed the maximal accumulation of an iron intermediate with 

an isomer shift (δ) and quadrupole splitting (∆EQ) of 0.277 mm/s and 1.255 mm/s 

respectively. These parameters are similar to those reported for the Fe(IV) intermediate 

observed in TauD (27) and TyrH (28). Both the aromatic amino acid hydroxylases and 

the α-ketoglutarate dependent enzyme utilize a non-heme Fe(II) center in which the 

catalytic iron is coordinated facially by two histidines and a carboxylate. The finding of 

an iron intermediate in PheH that is best described as Fe(IV) adds to the growing 

evidence suggesting that the 2-his 1-carboxylate motif serves as a platform for the 

formation of reactive Fe(IV)O species. 

The different kinetic experiments described herein report on the concentration 

dependence of the chemical species formed during the reaction of CvPheH with time. 

Analysis of the individual experiments can provide rate constants for the life-time of 

intermediates and the formation of the products. However, a more powerful approach is 

to perform a global fitting of the different kinetic experiments to a single kinetic 

mechanism. The robustness of this strategy is that the values for the kinetic constants are 

based on more than one experimental approach. A logical starting point to finding a 

kinetic mechanism that can accommodate the experimental data is to divide the 

mechanism into steps that account for the formation of the chemical species that are 
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monitored in each of the different experiments. The hydroxylation of phenylalanine by 

CvPheH can be described with the minimal mechanism shown in Figure 4.7. Here, we 

excluded an initial oxygen binding step since all the experiments were done at a single 

saturating concentration of oxygen. Instead, the first step is the reaction of the ternary 

complex of CvPheH:Phe:6MePH4 with O2 to form the Fe(IV) and the first enzyme 

bound product 4a-HO-6MePH3 with rate constant k1. The rate constant k2 is for the 

hydroxylation of phenylalanine, and k3 is the rate constant for the release of the products 

from the active site. The last rate constant was included based on the burst kinetics 

observed in the chemical quench experiment shown in Figure 4.4. 

 

CvPheH:Fe(II):Phe:6MePH4 + O2 CvPheH:Fe(IV)O:Phe:4a-HO-6MePH3
k1

CvPheH:Fe(IV)O:Phe:4a-HO-6MePH3 CvPheH:Fe(II):Tyr:4a-HO-6MePH3
k2

CvPheH:Fe(II):Tyr:4a-HO-6MePH3 CvPheH:Fe(II) + Tyr + 4a-HO-6MePH3
k3

 

 

Figure 4.7: Minimal mechanism for the hydroxylation of phenylalanine by PheH. 

 

The data from the rapid chemical and freeze quench experiments were used to 

perform a global fitting of the different kinetic experiments to the mechanism shown in 

Figure 4.7. The values for the rate constants and their confidence intervals as determined 

using the FitSpace option of the KinTek software are listed in Table 4.1.  
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Table 4.1: Values of the rate constants and their confidence intervals obtained from 

global fitting of the rapid chemical quench and Mössbauer data for the reaction of C. 

violaceum phenylalanine hydroxylase to the mechanism shown in Figure 4.7. 

Rate constant Best-fit value Lower bound Upper bound 

k1 30 ± 2 mM-1 s-1 28 mM-1 s-1 32 mM-1 s-1 

k2 36 ± 4 s-1 31 s-1 42 s-1 

k3 5.5 ± 0.3 s-1 5.3 s-1 5.8 s-1 
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The rate constant k1 corresponds to the formation of the Fe(IV) intermediate. 

Even though the Mössbauer data is a direct measure of the Fe(IV)O species, the data in 

the first 30 ms do not allow a reliable estimation of k1. Nevertheless, the data places 

critical constraints on the rate constants for its formation and decay. The constant k2 

corresponds to the hydroxylation of the amino acid and the decay of the Fe(IV)O. The 

value of k2 is more reliable since it is based on both the rapid freeze quench and the 

chemical quench data. Both k1 and k2 agree well with the experimental data. To illustrate 

the agreement, the rate constants in Table 4.1 were used to generate the lines in Figures 

4.3 and 4.8. 

The burst kinetics observed in the chemical quench experiment shown in Figure 

4.4 predicts that a physical step rather than a chemical step is the slowest step in the 

reaction pathway. The rate constant k3 in the mechanism in Figure 4.7 accounts for the 

release of the products from the active site. The magnitude of k3 obtained in the global 

fitting lies within error of the value for klinear obtained by fitting the chemical quench 

data shown in Figure 4.4 to Equation 4.1 and the steady-state kcat at this temperature (6.0 

± 1). The rate constants in Table 4.1 can be used to simulate the kinetics of tyrosine 

formation observed during the first few turnovers of the CvPheH reaction (Figure 4.4). 

Altogether, these results suggest that the step that determines the kcat value for CvPheH 

is the release of the products from the active site. 

The chemical mechanism for the hydroxylation of phenylalanine is shown in 

Figure 4.2. This mechanism predicts the concomitant decay of the Fe(IV) and the 

formation of tyrosine. Comparison of the amount of Fe(IV) observed in the freeze 
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quench experiments to that of the tyrosine made in a similar chemical quench 

experiment shows the expected correlation for the decay of the Fe(IV) intermediate and 

the formation of tyrosine as expected for the hydroxylating species (Figure 4.8). 
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Figure 4.8: Comparison of the time courses for tyrosine formation (circles) and 

for formation and decay of the Fe(IV) (triangles). The lines were calculated from the 

mechanism of Figure 4.7 with the rate constants in Table 4.1. 
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During the turnover of CvPheH, 6MePH4 undergoes several transformations 

(Figure 4.2). The different reduced and oxidized forms of pterin have distinct absorbance 

spectra at 200-450 nm (21). Specifically, formation of the first product, 4a-HO-6MePH3, 

is characterized by an increase in the absorbance at 246 nm. We included the stopped-

flow absorbance data at 246 nm in the global analysis of the kinetic mechanism of 

Figure 4.7. The first step in the mechanism corresponds to an increase in absorbance at 

246 nm as expected for the formation of 4a-HO-6MePH3 in that step. The rate constants 

reported in Table 4.1 were used to generate the line in Figure 4.6. The agreement 

between the simulations and the experimental data points shows that the proposed 

kinetic mechanism can account for the concomitant formation of the Fe(IV) and the first 

enzyme bound product 4a-HO-6MePH3, as predicted by the chemical mechanism shown 

in Figure 4.2. 

The demonstration that the minimal mechanism in Figure 4.7 can account for the 

kinetics of the Fe(IV) intermediate and the formation of the products tyrosine and 4a-

HO-6MePH3 determined in different experiments indicates that it reflects important 

features of the CvPheH reaction. Nevertheless, it also contains untested assumptions and 

simplifications. First, it presumes the bimolecular nature of the first step, but this kinetic 

characteristic has not been tested by variation of reactant concentrations. Second, it 

considers the three steps to be irreversible. The latter assumption is based on the 

chemical nature of the transformations that take place in each step. Clearly, breakdown 

of the O-O bond, the decay of the Fe(IV) species, and the release of the products from 

the active site are all expected to be irreversible. 
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The other aromatic amino acid hydroxylase for which an Fe(IV) intermediate has 

been detected is TyrH (28). In the case of TyrH the hydroxylation of tyrosine was better 

described with a four-step mechanism (29) instead of the three steps used in this report 

to describe the reaction of CvPheH. The difference in the mechanisms is a reversible 

oxygen binding step for TyrH. In the mechanism in Figure 4.7, the second order rate 

constant k1 groups the rate constants for O2 binding and formation of the Fe(IV) 

intermediate. The magnitude of k1 (30 mM-1s-1) is comparable to that of the 

corresponding net rate constant in the TyrH system (61 mM-1s-1). Also, the rate constant 

for the decay of the Fe(IV) species in TyrH (22 s-1) and k2 in Table 4.1 are of 

comparable magnitude. This observation is not surprising based on the very similar iron 

centers shared by PheH and TyrH (23). For both enzymes the rate limiting step is the 

release of the products from the active site. However, the rate constant for product 

release for TyrH is ∼10-fold slower than that in CvPheH. The slower product release in 

TyrH might arise from the presence of dynamic protein loops that regulate the entrance 

of substrates to the active site in TyrH (52, 53). 

Previously, kinetic isotope effects (KIEs) were used to study the reaction of 

CvPheH with phenylalanine (Chapter II). The observed normal isotope effect of 1.4 was 

determined to be a combination of an inverse isotope effect on C-O bond formation and 

a normal isotope effect on the final tautomerization step. Also, it was concluded that 

formation of the C-O bond or an isotope-insensitive step was ∼9-fold slower than 

tautomerization. In the present analysis, the individual rate constants for C-O bond 

formation and tautomerization were not determined individually instead they are 
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grouped into the rate constant for tyrosine formation k2 in Figure 4.7. Nevertheless, 

analysis of the rate constants reported in Table 4.1 shows that the rate constant for 

product release (k3) is ∼7-fold slower than the rate constant for tyrosine formation (k2) 

consistent with an isotope-insensitive step being rate-limiting for the reaction. This result 

is in agreement with the prediction made by previous KIEs studies and establishes that 

product release is the isotope-insensitive step that masks the intrinsic isotope effects in 

the reaction of CvPheH. 

This study provides spectroscopic evidence for the accumulation of an iron 

intermediate in the catalytic cycle of CvPheH. The intermediate is better described as an 

Fe(IV) species with characteristics similar to those observed in other enzymes using a 2-

his 1-carboxylate triad motif (27, 28). Different experimental data using rapid quench 

experiments and stopped-flow spectroscopy present evidence for the kinetic competency 

of the Fe(IV) species as the hydroxylating intermediate for phenylalanine hydroxylase. 



 81 

CHAPTER V 

NMR BACKBONE RESONANCE ASSIGNMENT OF CHROMOBACTERIUM 

VIOLACEUM PHENYLALANINE HYDROXYLASE AND PERTURBATION 

MAP OF THE BACKBONE SIGNALS UPON LIGAND BINDING 

 

Phenylalanine hydroxylase (PheH) catalyzes the hydroxylation of the aromatic 

amino acid phenylalanine to yield tyrosine (75). PheH is found in organisms ranging 

from eukaryotes to prokaryotes. PheH, tyrosine hydroxylase (TyrH) and tryptophan 

hydroxylase (TrpH) form the family of aromatic amino acid hydroxylases (4). Each 

enzyme catalyzes the hydroxylation of the corresponding amino acid. In mammals they 

play key roles in metabolism and synthesis of neurotransmitters (5, 6, 82). Mutations 

that hamper the function of PheH have been linked to the disease phenylketonuria (1). 

Individuals suffering from this disease have elevated levels of L-Phe in the blood and 

suffer from mental retardation. More than 500 mutations are associated with the disease; 

most of them occur in the catalytic domain of the enzyme (2). 

The eukaryotic aromatic amino acid hydroxylases form tetramers in solution. The 

individual monomers can be divided into three domains, an N-terminal regulatory 

domain, a catalytic core containing an iron atom coordinated by two histidines and a 

glutamate, and a C-terminal domain involved in tetramerization (23). In contrast, PheH 

from Chromobacterium violaceum (CvPheH) is a monomer containing only the catalytic 

domain (39). Among the eukaryotic family members the catalytic domains share about 
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50% identity (23); the structures of CvPheH and the human counterpart can be 

superimposed with an RMSD of 1.2 Å (39).  

Consistent with the similar fold around the active site, the eukaryotic and 

prokaryotic aromatic amino acid hydroxylases have similar reactivities and a common 

mechanism of hydroxylation (30, 40, 74). All the enzymes require ferrous iron for 

catalysis and use a tetrahydropterin as source of electrons to activate molecular oxygen 

(36, 44, 57, 87). The current model for the mechanism of hydroxylation is illustrated in 

Figure 1.3. Before oxygen activation can take place, both the tetrahydropterin and the 

amino acid must be present in the active site of the enzyme (10, 12, 51). After the three 

substrates are bound, a reactive Fe(IV)O species is formed (23, 28). An electrophilic 

reaction of the Fe(IV)O with the aromatic side chain of the amino acid leads to the 

formation of the hydroxylated product and a 4a-hydroxy-pterin (23). 

Crystal structures have been described of the catalytic domains of all three 

eukaryotic enzymes and of CvPheH (39, 48-50). The iron is buried in a 12 Å deep 

pocket surrounded by protein loops. Crystal structures of the binary complex of the 

human PheH with dihydrobiopterin can be superimposed over the non-liganded enzyme 

with an RMSD for the main-chain atoms of 0.21 Å. In contrast, a comparison of the 

crystal structure of the human PheH ternary complex with tetrahydrobiopterin and 3-(2-

thienyl)-L-alanine (THA) with that of the non-liganded enzyme shows an RMSD for 

main-chain atoms of 2.2 Å (48). The ternary complex is a more compact structure with 

the tetrahydropterin showing a displacement of 2.6 Å towards the metal center. The most 

dramatic changes take place in the loop containing residues 131-155, with Tyr138 
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moving almost 10 Å. In the free and tetrahydropterin-bound enzymes Tyr138 is near the 

surface and points towards the solvent. In the ternary complex the hydroxyl group of the 

tyrosine has moved into the active site. The crystallographic data with PheH supports a 

model in which the binding of the substrates triggers the conformational changes 

required for oxygen activation. This mechanism would ensure that the reactive Fe(IV)O 

is formed only in the presence of its intended substrate. Whether a similar mechanism is 

present in the other members of the family is not clear. Unfortunately, there are no 

crystal structures with both substrates for any of the other hydroxylases.  

In contrast to the results of the crystallographic studies with PheH, fluorescence 

anisotropy studies with tyrosine hydroxylase show that the region of the protein that 

corresponds to Tyr138 becomes less mobile upon tetrahydropterin binding but not upon 

binding of the amino acid (52). This discrepancy in response might reflect the functional 

differences between PheH and TyrH. PheH is an allosteric enzyme with phenylalanine 

and tetrahydropterin having antagonistic roles, whereas TyrH is not an allosteric enzyme 

(88, 89). Also plausible is that the changes observed in the crystal structure of PheH do 

not accurately reflect the conformational changes that take place in solution. This 

discrepancy calls for more dynamic studies to be carried out with PheH and TyrH. 
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Growing lines of evidence link protein motions to catalysis, indicating that not 

only active site residues but also residues located throughout the protein are involved in 

the catalytic process (90-92). The ability to monitor specific amino acids in precise time 

and spatial resolution makes nuclear magnetic resonance (NMR) the perfect technique to 

study the dynamic changes that accompany catalysis in enzymes (93, 94). In the specific 

case of the aromatic amino acid hydroxylases, considering the size limitations of NMR 

and the size of the eukaryotic enzymes, the 32 kDa bacterial phenylalanine hydroxylase 

represents the best candidate for those studies. Here we report the NMR backbone 

resonance assignments of CvPheH and the chemical shift perturbation map generated 

upon binding of L-phenylalanine, 6-methyl-5-deazapterin or both. The similar tertiary 

structure and catalytic properties of bacterial and eukaryotic hydroxylases validate the 

extrapolation of the structural results presented here to the other members of the family. 
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EXPERIMENTAL PROCEDURES 

Materials. DEAE-Sephacel was from Amersham Pharmacia Biotech (Uppsala, 

Sweden). E. coli strain BL21(DE3), used for protein expression, was from Novagen. 6-

Methyltrahydropterin (6-MePH4) was from B. Schircks Laboratories (Jona, 

Switzerland). Catalase was from Roche (Indianapolis, IN). The redox inactive 6-methyl-

5-deazatetrahydropterin was synthesized essentially as described by Moad et al. (95). 

15NH4Cl (98 %) was from Sigma-Aldrich Chemical Co. (Milwaukee, WI). D2O (99.9 

%), [13C6]-D-glucose (99 %), 15N-leucine, 15N-phenylalanine, 2-15N-Lysine and 15N-

tyrosine were from Cambridge Isotope Laboratories (Andover, MA). All other 

commercial reagents were of the highest purity available and were used without further 

purification. 

Enzyme expression and purification. Different growth conditions were used to 

generate 15N-labeled and 2H,13C,15N-labeled phenylalanine hydroxylase (96). 15N-

Labeled CvPheH was prepared by transforming E. coli BL21(DE3) cells with the 

expression plasmid pET21b-CvPheH (Chapter II). A single colony was used to inoculate 

50 mL of LB broth (100 µg/mL ampicillin); this was allowed to grow at 37 °C for 16 h. 

Ten milliliters of the overnight culture were centrifuged for 30 min at 2600g  and 

resuspended in the same volume of M9 minimal media (96). The resuspended cells were 

centrifuged again and the supernatant was discarded. The cell pellet was resuspended in 

1 L M9 minimal media containing 15NH4Cl (1g/L), thiamin (1 mg/L), and ampicillin 

(100 mg/L). The cells were allowed to grow until the A600 reached a value between 0.9 

and 1.0. Protein expression was induced by the addition of isopropyl β-thiogalactoside 
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(IPTG) at a final concentration of 120 mg/mL. After 6 h at 37 °C the cells were 

harvested by centrifugation for 30 min at 2600g. The cell pellet was kept at -80 °C until 

purification. Selectively labeled samples were prepared following a similar protocol but 

using media containing unlabeled NH4Cl and unlabeled amino acids, except for 15N-

leucine, 15N-phenylalanine, 2-15N-Lysine or 15N-tyrosine, using the concentrations 

described by Davis et al. (97). 

2H,13C,15N-Labeled CvPheH was prepared by inoculating 1 L of fresh LB with 

10 mL of overnight culture. When the A600 reached a value of 0.7 the cells were 

centrifuged for 30 min at 2600g. The cell pellet was carefully resuspended in 1 L of M9 

salts (96) without any carbon or nitrogen source, and the cells were centrifuged for 30 

min at 2600g. After the wash, the cell pellet was resuspended in 500 mL of M9 minimal 

media containing 75% D2O, thiamin (1 mg/L), 15NH4Cl (1 g/L), and [13C6]-D-glucose (4 

g/L). The culture was allowed to grow for an additional 1 h after which expression was 

induced with IPTG (1.2 g/L). After 6 h the cells were harvested by centrifugation and the 

cell pellet stored at -80 °C. 

The purification of labeled CvPheH was carried out as described in Chapter II. 

Protein yield was about 50 mg of more than 95% pure protein per liter of minimal 

media. In order to remove metals, the enzyme was incubated 2 hours on ice with 5 mM 

EDTA and 5 mM NTA. The chelators were removed by dialysis against a 100-fold 

excess of 50 mM Hepes buffer (pH 6.5) containing 100 mM NaCl with buffer changes 

every 4 h and a total of 5 buffer changes. The purified protein was concentrated to 400 – 

500 µM using a 10,000 molecular weight cutoff centrifugal filter (Millipore, Billerica, 
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MA) and then dialyzed against 20 mM sodium phosphate buffer (pH 6.5) and 50 mM 

NaCl. For protein concentrations above 500 µM, 100 mM arginine was included in the 

final buffer to increase the stability of the protein at the higher concentrations (98, 99). 

The enzyme activity was measured using a spectrophotometric assay as previously 

described (43, 61). 

NMR spectroscopy. The backbone resonance assignments of CvPheH were 

obtained using a suite of TROSY-based three-dimensional triple resonance experiments 

applied to samples of 13C-15N-CvPheH grown in 75 % D2O. 1H-15N HSQC (100), 

HNCACB, and HN(CO)CACB experiments (101, 102) were performed at the University 

of Houston using a Bruker 800 MHz spectrometer equipped with a cryogenically cooled 

probe. HNCO, HN(CA)CO, HNCA, HN(CO)CA, HN(CA)CB, and HN(COCA)CB 

experiments (101, 102) were performed  at the University of Texas Health Science 

Center (San Antonio, Texas) using a Bruker 600 or 700 MHz spectrophotometer 

equipped with either a cryogenically cooled (600 MHz) or a conventional (700 MHz) 5 

mm 1H probe with a 13C and 15N decoupler and pulsed field gradient coils. 

Data analysis. Backbone resonance assignments of CvPheH were obtained by 

collecting and analyzing data from TROSY-based HNCA, HN(CO)CA, HNCACB, 

HN(CO)CACB, HNCO, HN(CA)CO, HN(CA)CB, and HN(COCA)CB experiments as 

applied to a deuterated, 13C-15N-labeled protein (101, 102). All spectra were processed 

using NMRPipe (103) and analyzed using the program Sparky (104). Initial rates 

obtained as a function of phenylalanine concentration were fit to the Michaelis-Menten 
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equation to obtain values for kcat, kcat/KM, and KM using KaleidaGraph (Synergy 

Software, Reading, PA). 

Ligand Titrations of CvPheH. The ligands were added to a solution of 380 µM 

15N-labeled CvPheH and a series of 1H-15N HSQC spectra were recorded at 

concentrations of phenylalanine or 6-methyl-5-deazaptetrahydropterin ranging from 0 to 

1200 µM. The perturbations of backbone amide hydrogen and nitrogen chemical shifts 

were monitored as a function of increasing ligand concentration, and the weighted 

average chemical shift change, ∆avg (ppm), was calculated using Equation 5.1 (105). The 

calculated weighted average chemical shift change was normalized by ∆avg/∆max = 1.0, 

where ∆max is the maximum shift change at the final ligand concentration. 

 

∆avg = ((∆δ2
HN + (∆δ2

N/25))/2)1/2       (5.1) 
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RESULTS 

NMR assignments. In order to assign the amide backbone resonances of CvPheH, 

a heteronuclear single quantum coherence (HSQC) spectrum of the 1H-15N labeled 

sample was analyzed. The HSQC showed a combination of well dispersed peaks, as 

expected for a structurally order protein, in addition to regions of overlapping peaks 

(Figure 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Two-dimensional 1H-15N HSQC spectrum of 0.3 mM 15N-labeled CvPheH. 

The sample was in 20 mM phosphate buffer (pH 6.5) with 50 mM NaCl. Data were 

collected at 27 °C with a Varian 800 MHz spectrometer. 
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Due to the size of the protein we constantly found more than one residue 

resonating in the same 1H-15N plane. In order to identify carbon signals in heavily 

overlapped N-H planes, HSQC spectra of selectively labeled 15N-leucine (Figure 5.2), 

15N-tyrosine (Figure 5.3), 15N-phenylalanine (Figure 5.4), and 2-15N-lysine (Figure 5.5) 

were collected. The HSQC spectrum of the 15N-leucine-CvPheH showed 29 signals out 

of the expected 32 from the protein sequence. From the 29 pairs of N-H signals we were 

able to assign 22 to leucine residues. The unassigned signals correspond to leucine 

residues with carbon signals in heavily overlapped regions of the HNCACB spectrum 

likely to come from residues in the core of the protein. The spectra of both 15N-tyrosine-

CvPheH and 15N-phenylalanine-CvPheH showed the expected number of signals, and 

we were able to assign all to the corresponding amino acids in the sequence. Finally, the 

spectrum of 2-15N-lysine-CvPheH showed 10 signals out of the expected 11, and we 

assigned 8 of them to the corresponding lysine residues. The HSQC spectra of the 

selectively labeled samples were also used to confirm the assignments made using the 

triple resonance experiments.  
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Figure 5.2: Two-dimensional 1H-15N HSQC spectrum of 0.3 mM 15N-leucine labeled 

CvPheH. The sample was in 20 mM phosphate buffer (pH 6.5) with 50 mM NaCl. Data 

were collected at 27 °C with a Bruker 700 MHz spectrometer.  



 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Two-dimensional 1H-15N HSQC spectrum of 0.3 mM 15N-tyrosine labeled 

CvPheH. The sample was in 20 mM phosphate buffer (pH 6.5) with 50 mM NaCl. Data 

were collected at 27 °C with a Bruker 700 MHz spectrometer.  
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Figure 5.4: Two-dimensional 1H-15N HSQC spectrum of 0.3 mM 15N-phenylalanine 

labeled CvPheH. The sample was in 20 mM phosphate buffer (pH 6.5) with 50 mM 

NaCl. Data were collected at 27 °C with a Bruker 700 MHz spectrometer. 
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Figure 5.5: Two-dimensional 1H-15N HSQC spectrum of 0.3 mM 15N-lysine labeled 

CvPheH. The sample was in 20 mM phosphate buffer (pH 6.5) with 50 mM NaCl. Data 

were collected at 27 °C with a Bruker 700 MHz spectrometer. 
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Excluding proline residues CvPheH contains a total of 278 assignable residues. 

However, the HSQC spectrum of CvPheH contains 291 signals. The extra signals come 

from the side chains of asparagine and glutamine residues as well as the aromatic 

protons of tryptophan and histidine. Combining all the available NMR data, we were 

able to assign 224 signals in the HSQC spectrum to their corresponding amino acid 

residues in the CvPheH sequence. The assigned residues constitute 81 % of the 

assignable CvPheH protein sequence (Appendix-A).  

Titrations of CvPheH with phenylalanine. The residues of CvPheH affected by 

binding of phenylalanine were identified by titrating the enzyme with increasing 

amounts of the amino acid and monitoring the perturbation of the protein backbone 

amide nitrogen and amide hydrogen chemical shifts. Consistent with the specific 

interaction with a small molecule we observed a subset of residues showing chemical 

shift changes in addition to the total disappearance of multiple signals with increasing 

amounts of phenylalanine. Figure 5.6 shows an example of the characteristic responses 

observed. The HSQC signals of residues Asp245 and Val77 shift progressively during 

the titration, indicating fast exchange, while the signal of residue Asp26 remained 

unvaried at all the phenylalanine concentrations and the signal of Asp252 was lost after 

the addition of 25 µM phenylalanine, consistent with a line broadening effect most likely 

due to a strong direct interaction with the ligand or a conformational change. In Figure 

5.7 the changes in chemical shifts are displayed through the use of the normalized 

weighted chemical shift average ∆avg between the free CvPheH and its complex with 
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phenylalanine. Gly162 showed the maximum chemical shift perturbation and was used 

to normalize the perturbations of the other amino acids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Example of a subset of residues of CvPheH showing different responses to 

phenylalanine titration. At a constant CvPheH concentration of 380 µM, spectra were 

recorded at 0 µM (blue), 25 µM (purple), 50 µM (turquoise), 100 µM (maroon), 200 µM 

(orange), and 600 µM (red) phenylalanine. 
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Figure 5.7: Normalized chemical shift perturbation of 1H and 15N chemical shifts of 

CvPheH as a function of residue number upon tritration with phenylalanine (1200 µM). 
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Titrations of CvPheH with 6-methyl-5-deazatetrahydropterin. The amino acid 

residues of CvPheH showing chemical shift perturbations upon tetrahydropterin binding 

were identified by titrating the enzyme with the redox-inactive analog 6-methyl-5-

deazatetrahydropterin. The perturbations of the protein backbone amide nitrogen and 

amide hydrogen chemical shifts were monitored for each of the ligand concentrations 

used. We observed that upon binding of 6-methyl-5-deazatetrahydropterin multiple 

residues located throughout the protein showed significant chemical shift changes. In 

addition, we observed the total disappearance of the signals for multiple residues. The 

residue displaying maximal perturbation was Val106 and its chemical shift perturbation 

value was used to normalize the perturbations of the rest of the amino acids. The 

normalized weighted chemical shift average ∆avg is plotted as a function of assigned 

residue number in Figure 5.8.  
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Figure 5.8: Normalized chemical shift perturbation of 1H and 15N chemical shifts of 

CvPheH as a function of residue number upon titration with 6-methyl-5-

deazatetrahydropterin (1200 µM).  
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DISCUSSION  

To analyze the consequences of ligand binding to CvPheH we assigned the 1H, 

13C, and 15N resonances of the free enzyme. Despite the size of CvPheH (32 kDa) The 

HSQC spectrum of the 1H-15N labeled enzyme (Figure 5.1) shows a combination of well 

dispersed peaks in addition to regions of overlapping peaks. The crowded regions most 

likely come from amino acids at the core of the protein and around the iron binding 

pocket. There are three main regions of the protein where no assignments could be made 

(Figure 5.9). Two of the unassigned protein regions comprise the segments of residues 

His138 to Val144, and Gly200 to Ser208. The first contains the iron ligands His138 and 

His143, and the second is close to the iron center in the tertiary structure. The presence 

of paramagnetic metals in the iron pocket could be the reason for the lack of NMR 

signals from those residues (106, 107). This hypothesis is supported by the ability of 

CvPheH to bind copper and iron (36, 38) and the fact that when assayed without extra 

added Fe(II) the apo-CvPheH shows up to 5% the activity of iron containing enzyme. 

The third unassigned region is an α-helix comprising residues Lys165 to Leu178 that is 

not close to the iron center; there is no obvious reason for the lack of signals from these 

residues.  

 



 101 

 

 

Figure 5.9: Crystal structure of CvPheH (PDB 1LTZ). The unassigned residues of the 

protein are shown in gray. The Fe(II) is represented as a red sphere and the iron ligands 

are shown as sticks. 
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The 1H, 15N correlation spectrum of a protein can be regarded as a fingerprint of 

its structure. The HSQC signals of individual nuclei report on the electronic and/or 

conformational environment of specific amino acids. Mapping the perturbations of the 

chemical shifts of a protein upon complexation with a ligand allows the identification of 

residues involved in binding sites and/or identifying conformational rearrangements 

triggered by ligand binding. However, there is no quantitative correlation between the 

size of the perturbation and the strength of the binding or the conformational 

rearrangement. In addition, complete disappearance of signals can occur upon 

complexation, but this information has to be taken into consideration when analyzing the 

data. A comparison of the chemical shifts of all the cross-peaks in the presence and 

absence of the ligand is required to define the area of the protein directly involved in 

binding in addition to those residues that are indirectly affected as a result of 

conformational rearrangements. 

Crystal structures of the catalytic domains of both CvPheH and human PheH are 

available (39). Both enzymes have a similar fold in the catalytic domain and the 

structures can be superimposed with 1.2 Å RMSD. The residues of CvPheH that interact 

with phenylalanine can be inferred from the structure of the complex of the 

phenylalanine analog 3-(2-thienyl)-L-alanine and human PheH (48). Based on that 

structure, the corresponding residues in CvPheH that interact with phenylalanine through 

electrostatic forces are Arg123 and the backbone of Leu131. Interestingly, this last 

residue is a threonine in the human enzyme and the side chain hydroxyl group hydrogen 

bonds with the amino group of the substrate. Additionally, a conserved hydrophobic 
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cage is made up by Trp180, Phe185, and Pro134. As expected from the crystal structure, 

we observed significant chemical shift changes in these residues. However, the effect of 

phenylalanine binding expands beyond these few amino acids (Figure 5.7). Upon 

binding of phenylalanine residues throughout the protein show chemical shift changes in 

addition to the total disappearance of multiple signals. In Figure 5.10 the residues 

affected by phenylalanine binding are mapped onto the structure of CvPheH (PDB 

1LTZ). In this figure the residues are color-coded according to their chemical shift 

perturbations. Residues with chemical shift perturbations below the overall average 

(0.17) were considered not significantly shifted and are colored blue. Residues with 

perturbations between 0.17 and 0.60 were considered moderately shifted and are colored 

orange. Finally, residues with chemical shift perturbations above 0.60 were considered 

highly shifted and are colored red. We included the residues whose signals disappeared 

during the titration in the analysis since they represent strong direct interactions or 

conformational rearrangements. Those residues are also colored red in Figure 5.10. 
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Figure 5.10: Chemical shift perturbations of the amide signals in CvPheH upon titration 

with phenylalanine. The chemical shift differences between free CvPheH and in the 

presence of 1200 µM phenylalanine were mapped onto the structure of CvPheH (PDB 

1LTZ). The residues are colored according to the following scheme: unassigned residues 

are shown in gray; residues with a chemical shift perturbation (∆avg) smaller than the 

average (0.17) are colored blue. Residues with an ∆avg between 0.17 and 0.6 are colored 

orange. Residues displaying an ∆avg above 0.6 are colored red. Also, residues whose 

amide signals disappeared during the titration are colored red. The iron is shown as a 

purple sphere. 
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The binding of phenylalanine to CvPheH affects multiple residues located 

throughout the enzyme. The structure of CvPheH is characterized by three protein loops 

that cover the entrance to the iron center. When viewed as represented in Figure 5.10, 

two loops formed by residues Thr119 to Asp135 and Gln229 to Thr240 lie above the 

iron center. The corresponding loops in the human enzyme close upon binding of the 

amino acid; consistent with a similar phenylalanine binding site in CvPheH we observed 

significant chemical shift perturbations in some of the residues that form those loops. 

Binding of the amino acid to human PheH causes the enzyme to become more compact 

(48) and probably some of the perturbations that we observed on surface residues are 

product of a similar conformational rearrangement in CvPheH. However, we also 

observed significant chemical shift perturbations on specific residues located at the core 

of the protein and on secondary structure elements that form the frame of the enzyme. 

Some of these residues, although not in the active site, might be important for catalysis. 

The perturbation map generated upon phenylalanine binding sets the basis for site-

directed mutagenesis studies aimed at identifying those residues away from the active 

site that are important for catalysis in CvPheH. 
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The crystal structure of CvPheH with BH2 shows the residues that directly 

interact with the pterin (39). The main interactions occur with the protein back bone of a 

loop comprising residues Pro99 to Pro103. Also, the side chain of Phe107 π-stacks with 

the pterin. We used the redox-inactive analog 6-methyl-5-deazatetrahydropterin to map 

the residues that are affected by the binding of the pterin to CvPheH. Consistent with the 

crystallographic information, we observed complete disappearance of the signals of 

Gly100, Leu101, and Ile102. However, as in the case of phenylalanine, the effect of 

pterin biding is not localized to the binding site but it is spread throughout the enzyme 

(Figure 5.8). With this substrate, the overall average chemical shift perturbation was 

0.24 and perturbations below that threshold were considered not significant. In Figure 

5.11 the residues affected by 6-methyl-5-deazatetrahydropterin binding are mapped onto 

the structure of CvPheH (PDB 1LTZ). In this figure, residues with chemical shift 

perturbations below 0.24 are colored blue, residues with perturbations between 0.24 and 

0.60 are colored orange and residues with perturbations above 0.60 are colored red. 

Also, the residues with signals that disappeared during the titration are colored red.  

 



 107 

 

 

Figure 5.11: Chemical shift perturbations of the amide signals in CvPheH upon titration 

with 6-methyl-5-deazatetrahydropterin. The chemical shift differences between free 

CvPheH and in the presence of 1200 µM 6-methyl-5-deazatetrahydropterin were 

mapped onto the structure of CvPheH (PDB 1LTZ). The residues are colored according 

to the following scheme: unassigned residues are shown in gray; residues with a 

chemical shift perturbation (∆avg) smaller than the average (0.24) are colored blue. 

Residues with an ∆avg between 0.24 and 0.6 are colored orange. Residues displaying an 

∆avg above 0.6 are colored red. Also, residues whose amide signals disappeared during 

the titration are colored red. The iron is shown as a purple sphere.  
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6-Methyl-5-deazatetrahydropterin is a competitive inhibitor for 

tetrahydrobiopterin (Ki = 30 µM) and we observed significant chemical shift 

perturbation of the residues that form the pterin biding site. However, Figure 5.11 shows 

that upon binding of the pterin multiple residues of CvPheH show significant chemical 

shift perturbations. Interestingly, binding of the pterin affects the two protein loops that 

interact with phenylalanine whereas binding of the latter does not affect the pterin 

binding loop, suggesting a specific synergism between the two substrates. Despite 

having different binding sites, comparison of Figures 5.10 and 5.11 shows that the 

pattern of perturbations generated upon binding of the amino acid or the pterin are very 

similar. The fact that similar residues, located throughout the enzyme, are affected by the 

binding of either substrate suggests that some of those residues might belong to networks 

that orchestrate catalysis.  

The assignment of the NMR backbone resonance signals from CvPheH and the 

ligand binding studies presented here set the basis for site directed mutagenesis studies 

aimed at discerning the role of specific residues in catalysis in addition to relaxation 

studies that could correlate protein dynamics with the catalytic process. The similar 

tertiary structure and catalytic properties of bacterial and eukaryotic aromatic amino acid 

hydroxylases validate the extrapolation of the results from those studies to the other 

members of the family of aromatic amino acid hydroxylases. 
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CHAPTER VI 

SUMMARY 

 

The purpose of this study was to characterize the phenylalanine hydroxylase 

from Chromobacterium violaceum (CvPheH) mechanistically and structurally. The 

results from this study place the enzyme in context of the better understood eukaryotic 

aromatic amino acid hydroxylases. Chapter II described the use of kinetic isotope effects 

(KIEs) to study the mechanisms of hydroxylation of phenylalanine and 4-

methylphenylalanine by CvPheH. The temperature dependence of the KIE and the iron 

requirement for catalysis of tetrahydropterin oxidation by CvPheH both demonstrate that 

the reactivity of the hydroxylating intermediate in this bacterial amino acid hydroxylase 

is indistinguishable from that of the eukaryotic enzymes. Thus, for mechanistic, if not 

regulatory studies, the bacterial enzyme is a valid model for the eukaryotic enzymes. 

Chapter III described the use of KIEs effects as a probe of the chemical 

mechanism of aliphatic hydroxylation by CvPheH. The results are consistent with 

hydrogen atom abstraction as the mechanism. The magnitude of the isotope effect on 

aliphatic hydroxylation reported here is comparable to that found for benzylic 

hydroxylation by CvPheH and all the eukaryotic enzymes (40, 41, 74). Thus, for both 

reactions a similar mechanism of hydrogen atom abstraction followed by radical rebound 

can be proposed.  

Chapter IV describes spectroscopic evidence for an Fe(IV) intermediate in the 

catalytic cycle of CvPheH. The intermediate is similar to those observed in other 
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enzymes using a 2-his 1-carboxylate triad motif (27, 28, 81). Rapid quench experiments 

and stopped-flow spectroscopy established the kinetic competency of the Fe(IV) species 

as the hydroxylating intermediate for phenylalanine hydroxylase. 

Chapter V described the assignment of the NMR backbone resonance signals of 

CvPheH. The amide signals in the HSCQ spectrum of CvPheH were assigned using a 

suite of TROSY-based three-dimensional triple resonance experiments. From the 278 

assignable residues in CvPheH we were able to assign 224. This constitutes 81 % of the 

assignable protein sequence. Unassigned residues were due mainly to heavy overlap or 

the lack of signals from the carbon atoms. The assignment of the backbone signals from 

CvPheH sets the basis for ligand binding studies as well as relaxation dynamics on this 

enzyme. The similar tertiary structure and catalytic properties of bacterial and eukaryotic 

aromatic amino acid hydroxylases validate the extrapolation of the results from those 

studies to the other members of the family. 
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Table A-1: Amino acid sequence of C. violaceum phenylalanine hydroxylase. The 

nitrogen and hydrogen resonances for the assigned residues are listed. 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

M1 − − G19 − − 

N2 − − L20 121.45 8.08 

D3 121.375 8.386 S21 119.026 8.158 

R4 121.422 8.191 H22 116.88 7.677 

A5 125.691 8.298 D23 124.047 9.406 

D6 119.026 8.158 A24 − − 

F7 120.732 7.836 N25 113.167 8.513 

V8 124.616 7.872 D26 120.057 9.277 

V9 127.249 8.216 F27 113.842 7.925 

P10 − − T28 106.611 8.214 

D11 121.45 8.08 L29 118.559 8.204 

I12 123.035 8.735 P30 − − 

T13 119.794 7.795 Q31 126.089 8.815 

T14 119.949 7.839 P32 − − 

R15 121.035 8.051 L33 124.991 7.688 

K16 117.114 8.391 D34 114.626 8.562 

N17 113.127 7.146 R35 117.671 7.732 

V18 121.787 6.977 Y36 118.786 6.741 
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Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

S37 123.144 9.375 L55 117.369 7.615 

A38 122.828 8.931 P56 − − 

E39 119.222 8.309 G57 114.47 9.153 

D40 122.143 7.798 R58 116.384 8.225 

H41 119.247 7.546 A59 121.498 8.682 

A42 121.436 7.71 C60 117.171 8.281 

T43 122.498 8.874 D61 126.145 10.177 

W44 123.035 8.735 E62 119.728 10.344 

A45 120.499 8.312 F63 122.637 7.823 

T46 117.226 8.229 L64 − − 

L47 − − E65 120.694 8.536 

Y48 120.977 8.851 G66 109.094 7.695 

Q49 118.274 8.39 L67 121.714 7.482 

R50 119.949 7.839 E68 118.01 7.075 

Q51 116.409 7.985 R69 119.938 8.567 

C52 117.561 8.51 L70 115.736 7.8 

K53 117.566 7.34 E71 113.829 7.369 

L54 118.509 7.083 V72 118.509 7.083 
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Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

D73 127.607 8.653 T91 103.857 7.864 

A74 122.458 8.168 G92 111.83 8.061 

D75 113.436 8.227 W93 121.692 6.865 

R76 116.229 7.011 K94 111.375 7.806 

V77 121.688 9.516 I95 − − 

P78 − − V96 − − 

D79 121.222 8.283 A97 127.365 9.183 

F80 129.384 9.79 V98 112.148 8.169 

N81 117.01 8.539 P99 − − 

K82 121.975 7.593 G100 101.930 6.649 

L83 120.965 7.549 L101 125.235 8.157 

N84 118.772 8.601 I102 118.664 7.88 

E85 119.968 7.408 P103 − − 

K86 117.399 6.996 D104 123.757 8.507 

L87 123.044 8.436 D105 114.851 8.688 

M88 119.872 8.87 V106 121.843 6.861 

A89 119.809 6.665 F107 122.971 7.853 

A90 118.942 7.459 F108 115.461 8.503 
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Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

E109 118.216 7.349 Q127 122.155 7.695 

H110 − − L128 118.858 7.066 

L111 − − D129 114.452 8.283 

A112 118.324 8.625 Y130 119.738 7.377 

N113 116.19 7.536 L131 127.436 7.716 

R114 114.128 7.587 Q132 124.207 8.49 

R115 118.966 7.718 E133 121.444 8.31 

F116 124.802 9.512 P134 − − 

P117 − − D135 119.241 6.852 

V118 115.023 7.081 V136 118.324 8.625 

T119 − − F137 121.337 6.994 

W120 120.239 7.576 H138 − − 

W121 120.463 5.699 D139 − − 

L122 122.164 8.679 L140 − − 

R123 124.772 9.402 F141 − − 

E124 119.839 8.234 G142 − − 

P125 − − H143 − − 

H126 112.273 7.836 V144 − − 
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Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

P145 − − G163 112.565 7.96 

L146 120.048 8.276 V164 122.161 7.636 

L147 120.602 8.119 K165 − − 

I148 − − A166 − − 

N149 − − K167 − − 

P150 − − A168 − − 

V151 117.317 6.85 L169 − − 

F152 122.81 8.165 G170 − − 

A153 120.524 8.366 A171 − − 

D154 117.730 7.711 L172 − − 

Y155 124.767 8.381 P173 − − 

L156 − − M174 − − 

E157 − − L175 − − 

A158 122.384 8.053 A176 − − 

Y159 122.438 9.057 R177 − − 

G160 107.941 8.491 L178 − − 

K161 121.44 8.579 Y179 122.739 8.21 

G162 108.261 8.055 W180 120.578 8.719 

 



 132 

Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

Y181 112.498 8.453 A199 130.070 8.495 

T182 112.538 7.558 G200 − − 

V183 − − I201 − − 

E184 − − L202 − − 

F185 114.018 7.482 S203 − − 

G186 110.049 7.623 S204 − − 

L187 121.711 7.653 K205 − − 

I188 119.433 9.121 S206 − − 

N189 127.748 8.723 E207 − − 

T190 114.756 7.208 S208 − − 

P191 − − I209 119.229 6.48 

A192 117.909 7.353 Y210 120.571 6.625 

G193 107.994 7.639 C211 111.219 8.13 

M194 123.063 8.693 L212 120.729 6.448 

R195 125.794 9.309 D213 117.819 7.598 

I196 119.993 8.527 S214 113.443 7.529 

Y197 122.613 7.761 A215 130.092 8.911 

G198 108.776 7.639 S216 121.039 8.942 
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Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

P217 − − T236 109.741 7.145 

N218 116.629 9.488 F237 117.819 7.598 

R219 120.386 8.898 Q238 − − 

V220 124.044 8.783 K239 118.710 7.349 

G221 111.901 9.446 T240 115.094 7.139 

F222 122.579 8.291 Y241 117.334 7.774 

D223 − − F242 121.389 10.358 

L224 129.347 8.516 V243 125.784 9.112 

M225 116.846 7.902 I244 124.664 8.843 

R226 120.813 7.777 D245 120.206 9.52 

I227 122.971 7.853 S246 108.373 7.14 

M228 114.203 7.743 F247 121.204 8.628 

N229 116.142 7.356 K248 124.664 8.843 

T230 118.431 7.758 Q249 119.776 7.656 

R231 122.069 7.96 L250 117.351 6.611 

Y232 115.913 8.125 F251 119.370 7.672 

R233 115.274 7.764 D252 121.155 9.359 

I234 115.454 8.451 A253 121.711 7.653 

D235 120.255 8.401 T254 103.935 7.424 
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Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

A255 125.79 7.105 G274 134.368 8.505 

P256 − − D275 122.915 7.081 

D257 119.058 7.925 I276 118.664 7.88 

F258 126.714 8.578 A277 102.987 8.437 

A259 124.381 8.377 P278 − − 

P260 − − D279 113.979 7.832 

L261 − − D280 120.947 7.213 

Y262 117.730 7.711 L281 124.476 8.713 

L263 117.123 7.349 V282 129.057 8.712 

Q264 118.942 7.459 L283 132.28 8.555 

L265 117.730 7.711 N284 114.455 8.21 

A266 123.826 7.495 A285 130.871 8.839 

D267 114.934 7.799 G286 115.883 9.402 

A268 124.026 7.227 D287 124.574 8.808 

Q269 122.584 8.319 R288 111.56 7.699 

P270 − − Q289 123.25 8.391 

W271 124.477 9.052 G290 − − 

G272 110.804 9.116 W291 121.975 7.593 

A273 124.92 8.847 A292 126.016 8.498 
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Table A-1: Continued 

Residue N (ppm) H (ppm) Residue N (ppm) H (ppm) 

D293 119.938 8.567    

T294 109.383 6.93    

E295 123.641 8.755    

D296 122.177 8.276    

V297 124.204 8.285    
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 Table A-2: Amino acids in C. violaceum phenylalanine hydroxylase showing significant 

chemical shift perturbations upon binding of phenylalanine.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance  

 0.17< ∆avg <0.6 ∆avg > 0.6  

T13 - - � 

H22 0.25   

F27 0.21   

T46 0.22   

Y48 - - � 

Q49 0.37   

Q51 - - � 

C52 0.29   

L54   - - � 

R58 0.29   

A59 0.27   

D61 0.31   

E62 0.46   

F63 - - � 

E65 0.30   

G66 0.33   
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Table A-2: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.17< ∆avg <0.6 ∆avg > 0.6  

L67 0.52   

L70 0.29   

E71 0.23   

A74 0.20   

D75 0.18   

V77 0.23   

D79 0.31   

L83 0.29   

L87 0.26   

M88 0.27   

D105  0.99  

V106 - - � 

F108 0.35   

R114 0.24   

R115 0.24   

V118 0.48   

W120 0.19   
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Table A-2: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.17< ∆avg <0.6 ∆avg > 0.6  

R123 0.54   

E124 0.19   

Q127 0.24   

L128 - - � 

Y130 0.29   

L131 - - � 

Q132 0.32   

L146 0.36   

V151 0.29   

D154 - - � 

Y155 - - � 

Y159 - - � 

G160 - - � 

K161 - - � 

G162  1.00  

G163 0.51   

Y179 - - � 
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Table A-2: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.17< ∆avg <0.6 ∆avg > 0.6  

W180 0.24   

Y181 0.29   

T182 0.58   

I188 0.42   

N189 0.19   

T190  0.77  

M194 0.19   

R195 0.21   

A199 - - � 

Y210 - - � 

L212 0.32   

R219 0.21   

V220 0.41   

G221 0.18   

L224 0.35   

M225 0.54   

R226  0.70  

I227 0.20   
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Table A-2: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.17< ∆avg <0.6 ∆avg > 0.6  

M228 0.28   

N229 0.23   

R233 - - � 

D235 0.35   

T236 0.18   

Y241 0.29   

V243 - - � 

I244 0.41   

D245 0.54   

S246 - - � 

F247 - - � 

Q249 - - � 

L250 - - � 

D252 - - � 

T254 - - � 

A255 - - � 

D257 - - � 

F258 - - � 
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Table A-2: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.17< ∆avg <0.6 ∆avg > 0.6  

A259 - - � 

L263 0.35   

A266 0.25   

D267 0.25   

L281 0.42   

N284 0.35   

A285 0.42   

G286 0.43   

D287 0.19   
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Table A-3: Amino acids in C. violaceum phenylalanine hydroxylase showing significant 

chemical shift perturbations upon binding of 6-methyl-5-deazatetrahydropterin.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.24<∆avg <0.6 ∆avg > 0.6  

V9 0.29   

T14  0.30   

D23  0.79  

N25 0.36   

L29 0.47   

Q31 0.34   

L33 0.25   

S37 0.26   

H41 0.33   

A42 0.33   

Q49 0.25   

Q51 0.44   

C52 0.24   

R58 0.28   

F63 0.38   

E65 0.37   
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Table A-3: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.24<∆avg <0.6 ∆avg > 0.6  

L70 0.41   

E71 0.26   

D73 0.24   

D75 0.25   

D79 0.27   

F80 0.51   

L83  0.68  

N84 0.30   

L87 0.50   

M88  0.70  

A89 0.41   

T91 0.25   

W93 0.59   

K94  0.89  

A97 0.37   

V98 0.51   

G100 - - � 
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Table A-3: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.24<∆avg <0.6 ∆avg > 0.6  

L101 - - � 

I102 - - � 

D104 0.56   

D105  0.66  

V106  1.00  

F108  0.85  

E109 0.59   

A112 0.33   

N113 0.40   

F116 0.50   

V118 0.58   

W120 - - � 

R123 0.57   

Q127 0.47   

L128 0.47   

L131  0.77  

Q132 0.55   
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Table A-3: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.24<∆avg <0.6 ∆avg > 0.6  

V151 0.34   

F152 0.25   

A153 0.38   

D154 0.40   

Y155 0.46   

A158 0.37   

Y159  0.89  

G160 0.31   

K161 0.41   

G162  0.76  

V164 0.28   

Y179 0.49   

W180 0.26   

Y181  0.80  

Y197 0.25   

I209 0.27   

Y210 0.58   
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Table A-3: Continued.  

Residue Normalized weighted average Chemical 

shift Perturbation (ppm) 

Signal 

disappearance 

 0.24<∆avg <0.6 ∆avg > 0.6  

C211 0.34   

D213    0.36   

M228 0.33   

T230       0.67  

R231 0.26   

Y232 0.44   

R233 0.41   

I234 0.44   

D235  0.73  

T240 0.45   

F242 0.26   

I244 0.33   

D252 0.33   

T254 0.44   

L263 0.45   

D267 0.26   

G274    0.25   
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