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ABSTRACT

High Resolution Numerical Methods for Coupled Non-linear Multi-physics

Simulations with Applications in Reactor Analysis. (August 2010 )

Vijay Subramaniam Mahadevan, B.Tech., Bharathidasan University, India;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Jean C. Ragusa

The modeling of nuclear reactors involves the solution of a multi-physics problem

with widely varying time and length scales. This translates mathematically to solv-

ing a system of coupled, non-linear, and stiff partial differential equations (PDEs).

Multi-physics applications possess the added complexity that most of the solution

fields participate in various physics components, potentially yielding spatial and/or

temporal coupling errors. This dissertation deals with the verification aspects asso-

ciated with such a multi-physics code, i.e., the substantiation that the mathematical

description of the multi-physics equations are solved correctly (both in time and

space).

Conventional paradigms used in reactor analysis problems employed to couple

various physics components are often non-iterative and can be inconsistent in their

treatment of the non-linear terms. This leads to the usage of smaller time steps to

maintain stability and accuracy requirements, thereby increasing the overall compu-

tational time for simulation. The inconsistencies of these weakly coupled solution

methods can be overcome using tighter coupling strategies and yield a better ap-

proximation to the coupled non-linear operator, by resolving the dominant spatial

and temporal scales involved in the multi-physics simulation.

A multi-physics framework, karma (K(c)ode for Analysis of Reactor and other

Multi-physics Applications), is presented. karma uses tight coupling strategies for
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various physical models based on a Matrix-free Nonlinear-Krylov (MFNK) frame-

work in order to attain high-order spatio-temporal accuracy for all solution fields in

amenable wall clock times, for various test problems. The framework also utilizes

traditional loosely coupled methods as lower-order solvers, which serve as efficient

preconditioners for the tightly coupled solution. Since the software platform em-

ploys both lower and higher-order coupling strategies, it can easily be used to test

and evaluate different coupling strategies and numerical methods and to compare

their efficiency for problems of interest.

Multi-physics code verification efforts pertaining to reactor applications are de-

scribed and associated numerical results obtained using the developed multi-physics

framework are provided. The versatility of numerical methods used here for coupled

problems and feasibility of general non-linear solvers with appropriate physics-based

preconditioners in the karma framework offer significantly efficient techniques to

solve multi-physics problems in reactor analysis.
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1. INTRODUCTION

‘All models are wrong, but some are useful.’

– George Box

High fidelity computer simulations of coupled multi-physics problems require solv-

ing large systems of non-linear, stiff, coupled equations. Many examples of non-

linearly coupled multi-physics phenomena exist in various scientifical fields, raising a

need to develop stable and accurate numerical solution procedures. Some examples

are:

1. Radiation diffusion where the radiation energy is strongly coupled to the ma-

terial temperature field [1], [2].

2. Nuclear reactor analysis where the thermal power generated due to fission

reactions in the fuel pin is strongly coupled with the thermal-hydraulics fields

[3], [4].

3. Fluid-Structure-Interaction (FSI): the fluid and structural vibrations are cou-

pled to each other. Applications in Automotive Systems, Nuclear Power Plants

(NPP), Biomedical Applications, etc. [5], [6], [7].

4. Thermo-mechanical coupling: the temperature distribution affects the struc-

tural deformation and vice versa [8] [9].

Solution methods for non-linearly coupled multi-physics phenomena occurring

have often relied on operator-split coupling strategies that introduce several types of

errors in the solution fields. The new paradigm shift for multi-physics simulations is

to quantify and reduce the sources of the errors due to the discretizations in space

This dissertation follows the style of Journal of Computational Physics.
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and time and the resolution technique used to solve the non-linear coupling between

the physics models. This requires stable and accurate numerical schemes that can

tackle non-linearly coupled, stiff multi-physics problems arising from the discretiza-

tion of the various physics Partial Differential Equations (PDEs) with widely varying

characteristic time and length scales. The use of verified physical models for prob-

lems of interest and the accurate resolution of these characteristic physical scales are

not trivial. This Dissertation is aimed at combining consistent numerical methods

with principles in software engineering to create a coupled physics framework that is

verifiable and can help better quantify these simulation errors.

Numerical simulation using computers is considered as the third pillar of science,

besides theory and experiments. This dependence on computers as a virtual labo-

ratory has been recognized in recent years, due to rapid growth in computer speed

and affordable memory. Hence, cost effective development and design of scientific

applications can be considerably accelerated by the use of simulations on powerful

computing systems. In order to make use of solutions from computer simulations for

multi-physics problems, it is important to predict the behavior of these non-linearly

coupled systems. Predictive science, defined as the development and application of

verified and validated (V&V) computational simulations to predict the properties and

dynamic response of complex systems particularly in cases where routine, separable,

experimental tests, while important, are difficult. This definition, borrowed from the

Predictive Science Academic Alliance Program (PSAAP) of the US DOE-NNSA [10],

is applicable to a wide variety of scientific and engineering applications. This em-

phasis on predictive capabilities has resurged the need to create and utilize robust

numerical techniques for solving coupled problems with high resolution.

The current work focuses primarily on the development and usage of existing

analysis and numerical methods for creating a unified and verified tool with predic-

tive capability in the field of multi-physics nuclear reactor computation. Typically

the current practice of multi-physics simulations in reactor applications, combines
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models or algorithms from a diverse set of disciplines. The path towards the pre-

dictability of such computations requires the effective integration of both software

and numerical methods. Generally speaking, the three pillars of predictive science

include code verification, model validation, and uncertainty quantification in the

computed solution.

The Dissertation is concerned with the development of a multi-physics software

platform and the verification of numerical methods for multi-physics applications

and an application of uncertainty propagation. Verification is typically an exercise

in mathematics, where one assures that the equations are solved correctly, i.e., the

software has been coded precisely and implemented according to the physics specifi-

cations and requirements. This is an integral part of any software development cycle

for simulating physical phenomena.

The need to quantitatively predict the behavior of physical phenomena requires

that the sensitivity of the solution fields to uncertainties in the parameters involved

in the simulated physical models need to be ascertained. If not, the value of the sim-

ulations in comparison to real world experimental results is limited. Noting these as

the basic requirements for a complex multi-physics code, we shall systematically de-

velop relevant physical models and use efficient, high resolution numerical techniques

in the current work.

In the next subsection, a short background on the current state of coupling meth-

ods is provided along with an introduction to the coupling methods that are imple-

mented in the current work.

1.1 Background

Let the non-linear vector-valued function representing a coupled PDE system be

written in a general form as

F(y) = N(y)y − b = 0, (1.1)
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where y is the solution vector that is dependent on both space and time respectively

and F : Rn → Rn, F is the non-linear operator representing the coupled system

and n is the total number of unknowns. For ease of comprehension, we can write

F as in the second equality of Eq. (1.1), where N is also a non-linear operator and

b is the load vector. It helps to represent y as a vector comprised of the solution

vector for each of the M physics components involved, i.e., [y1, y2, . . . ,yM ]T . A

similar definition holds for F(y) and its m-th component is the non-linear residual

stemming from the m-th physics component and may depend effectively on all other

fields, e.g., Fm(y) = Fm(y1,y2, . . . ,yM).

In the next subsections, the application of different coupling strategies to resolve

the non-linear problem in Eq. (1.1) is presented.

1.1.1 Loose Coupling Strategies

In the past few decades, high fidelity modeling of non-linear multi-physics prob-

lems has been subdivided into several distinct domains of physics and solved individ-

ually as mono disciplinary blocks with specialized codes, without rigorous coupling

between the different physics. Although naive, this coupling strategy, mathemati-

cally described as Operator-Split (OS) technique, is widely used. With the advent

of Parallel Virtual Machines (PVM) and Message Passing Interfaces (MPI) in the

1990’s, the OS coupling of several existing specialized single physics codes has be-

come the main multi-physics paradigm in reactor analysis. This kind of modeling

is based on coupling several existing specialized mono-disciplinary codes using a

’black-box’ strategy, where the input of one code is the output of other, thereby pro-

ducing solutions that are weakly coupled. The schematics of such models is shown

on Fig. 1.1, where the system of PDEs arising from the spatial and temporal dis-

cretization of physical models is decomposed into simpler sub-problems. Each physics

component is solved by an independent, specialized single-physics code and the data

between codes is exchanged through message passing paradigms. Often, this strategy



5

is non-iterative and the non-linearities due to the coupling in between the physics

components are not resolved over a time step, reducing the overall accuracy in the

time stepping procedure to first-order O(∆t), even though high-order time integra-

tion might have been used for the individual physics components; see [11, 12]. Note

that this explicit linearization of the problem in the OS strategy does not resolve the

non-linearities between the different physics. Yet, these isolated physical models in

reality describe physical phenomena that are tightly intertwined and rely heavily on

the solution field of one another.

For illustration, consider the non-linear coupled system shown in Eq. (1.1). In

OS loose coupling strategy, the non-linear operator is linearized as follows through

an explicit treatment:

F(yℓ+1) = N(yℓ)yℓ+1 − b, (1.2)

Hence the new update to the solution is obtained by solving the system

N(yℓ)yℓ+1 = b. (1.3)

Although OS allows parts of the problem to be treated implicitly and others

explicitly, the lack of iterations in the conventional strategy degrades the solution

accuracy in time to first order and the explicit linearization imposes a conditional

stability limits for the time-step selection. The direct implication of using smaller

time steps to achieve a reasonable accuracy is that the computations need greater

CPU time and resources. Despite these drawbacks, this is still one of the major

coupling paradigms used today for solving non-linear multi-physics systems.
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(a) Simultaneous OS coupling

(b) Staggered OS coupling

Fig. 1.1. Two Low-order OS Coupling Strategies

The attractive feature of such a coupling strategy is that the legacy of many man-

years of mono disciplinary code development and V&V (validation and verification)

is preserved. It is of prime importance to analyze the coupling strategies that can

produce highly accurate solutions even in the complex scenarios usually encountered

in multi-physics applications. As mentioned before, nuclear reactor analysis is a

good example of highly non-linear, coupled multi-physics problem and the non-

linearities at the heart of reactor design, analysis and safety calculations provide a

good state-space to test high-fidelity numerical methods for multi-physics problems.
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Physical phenomena such as the ones found in reactor accidents, involve rapidly

varying transients that are represented by a stiff system of differential equations.

Stiff problems are characterized by solutions having fast varying modes together with

slower varying modes, requiring time integrators that can handle such disparate time

scales. Stiff problems necessitate the use of implicit time discretization for stability

reasons, indicating that OS coupling could prove disadvantageous in terms of efficacy

(cost for obtaining a certain accuracy in the solution).

Current examples of OS coupling in the field of nuclear reactor analysis involve the

following pairs of neutronics/thermal-hydraulics codes: CRONOS/FLICA [13, 14],

PARCS/TRACE [15] and NESTLE/RELAP [16]. Even though more advanced OS

strategies exist and can be up to second-order accurate in time, they are complicated

to use in coupled legacy codes and hence are not currently employed. For more details

regarding these higher order OS schemes, we refer the reader to [17,18,19,20]

1.1.2 Tight Coupling Strategies

An alternative to loosely coupled OS strategies is to converge the non-linearities

between the physics at every time level to obtain a tightly coupled solution that is

consistent with the non-linear system of PDEs. This preserves higher order temporal

accuracy of specialized schemes that can be used for resolving the disparate temporal

scales in the different physics. Even though the cost/time step can be larger than

that of an OS time step, it is essential to stress that the stability of the higher order

discretization scheme can be maintained using this procedure, unlike the explicit

linearization method where the solution is only conditionally stable.

To devise such a tightly coupled solution procedure, a non-linear iterative scheme

needs to be applied to solve the coupled physics and converge the non-linearities to

within user’s specified tolerances. Two techniques for non-linear system of equations

are mentioned next: the Fixed-point or Picard iteration technique and the well known

Newton’s method.
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1.1.2.1 Picard Iteration

Picard iteration technique is a simple non-linear iterative method can be used

to converge the non-linearities over the different physics when an OS coupling tech-

nique is employed to couple multiple physics codes. Picard iterations can restore the

convergence order of a higher order scheme and eliminate the loss of accuracy due to

the crude explicit linearization in loosely coupled strategy. The schematic for such

a method is shown in Fig. 1.2. This essentially involves iterating over the solution

obtained by successively solving Eq. (1.3).

Fig. 1.2. High-order, Converged OS Coupling Strategy

The advantage of such a coupling scheme is that it is non-intrusive and can

easily use existing framework of codes to obtain a tightly coupled solution. But the

primary disadvantage of using such a strategy to restore the accuracy is the increase

in computational cost and memory usage to converge the solution.

Since Picard iteration is only linearly convergent, some form of non-linear ac-

celeration techniques are necessary to make this scheme efficient and feasible [11].

Previous research using Aitken’s iterated ∆2 technique suggests that usage of such

acceleration schemes can be advantageous and efforts to apply Wynn-Epsilon [21]

and other schemes should be pursued as future extensions.
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1.1.2.2 Newton Iteration

Current OS strategies may offer flexibility in the way the different physics are

solved but involve complexities in terms of resolving the non-linearities and finding an

high-order accurate solution. Instead, the coupled non-linear problem can be tackled

by recasting it as a root finding problem, in a form amenable for the application of

Newton-type methods.

Applying a Newton’s method to system of equations in Eq. (1.1), we obtain the

following recurrence equation:

J(yℓ)δy = −F(yℓ) (1.4)

yℓ+1 = yℓ + δy, (1.5)

where ℓ is the Newton iteration index, δy is the solution update, and J(yℓ) is the

Jacobian matrix evaluated at yℓ. The Jacobian matrix is defined as

J(y) =
∂F(y)

∂y
. (1.6)

Note that in Eq. (1.6), the Newton linearization accurately accounts for the true

Jacobian of the non-linear system while the OS linearization in Eq. (1.3) neglects

a term in the Jacobian matrix expansion (J(y) = N(y) + ∂yN ·y ≈ N(y)). This

additional term contributes to the stability and robust convergence properties of the

Newton iteration as compared to the Picard iteration shown earlier.

At each Newton’s iteration, a linear system of equations involving the Jacobian

matrix, Eq. (1.4), needs to be solved. As the number of physics components grows,

so do the total number of unknowns, resulting in a large memory usage to store

the Jacobian matrix. However, employing a Jacobian-free approximation avoids the

need for the expensive Jacobian calculation and storage of the matrix since only the

action of the Jacobian on a vector is needed to solve the linear system.
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Noticing the similarities between the tightly coupled methods with Picard itera-

tion by solving recursively Eq. (1.3) and with Newton iteration by solving Eq. (1.4),

we introduce a unified framework that is referred henceforth as the Matrix-free Non-

linear Krylov (MFNK) method. Note that this is based on the Jacobian-free Newton-

Krylov (JFNK) method proposed by Brown and Saad in the early 1990’s [22], that

has enjoyed much success in recent years in several multi-physics applications [23].

When Newton’s iteration is used as the non-linear solver, MFNK reduces to the

original JFNK technique.

Several researchers have analyzed (a) the applicability of this tightly coupled

method to obtain high-order accurate solutions and (b) the feasibility of the method

in terms of total computational cost [24,25,26]. These prior results indicate that this

scheme can tackle the widely varying time scales occurring in multi-physics problems

efficiently, as compared to an OS coupling strategy. Note that the application of these

tight coupling methods based on Picard or Newton iteration is not only limited to

PDEs written in the conservative form alone as in Eq. (1.1).

With the aforementioned background ideas, the motivations for the current re-

search work is laid out next.

1.2 Research Motivation

To overcome the issues stated in section 1.1, a fully implicit treatment of the

coupling terms needs to be used to preserve accuracy and obtain unconditional sta-

bility. The difficulties in implementing such a scheme is that the spatial and temporal

discretizations of all the physics need to be non-linearly consistent. With such dis-

cretizations, the coupling terms in the physics are also treated implicitly and hence

higher order accuracy is ensured by resolving the non-linearities accurately. In the

current work, a new code system is created based on the MFNK framework with

higher order spatio-temporal schemes for all the physics in addition to the ability

to simultaneously test OS coupling schemes side-by-side. Also, most existing mono-
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disciplinary codes for reactor physics simulation were written one to three decades

ago to run on computers that existed during that period. Due to the current advances

in computing, it would be rather imprudent to develop a new multi-physics code

that does not take advantage of the state-of-the-art multi-core, multi-processor par-

allel architectures that are available now and with expandability to more advanced

technologies in the future.

Predictability of the solution is a driving factor in this research and hence it is

imperative to obtain a completely verifiable code where the numerical convergence

order from the spatial and temporal treatment of the coupled PDEs can be measured

against the theoretical orders seamlessly. With computational efficiency in mind, the

matrix-free approach through MFNK for the non-linear solve eliminates large storage

requirements of the discretized systems and competent numerical and physics based

preconditioning techniques [27] can be used to considerably reduce the cost of the

linear Krylov iterations. Previous work using JFNK for non-linear diffusion-reaction

and advection-reaction problems [28] have shown promising results and serve as the

basis for the new coupling strategy being implemented here. It is expected that such

a scheme will enable achieving the higher orders of spatio-temporal accuracy for all

coupled solutions.

The prime motivation behind the new code is not to employ high fidelity physics

models coupled to each other with high resolution but rather to create consistent

coupling methodologies that can test the feasibility of using physics-based precondi-

tioned MFNK schemes for real-world problems in reactor design and safety analysis.

1.3 Dissertation Organization

The layout for this dissertation is as follows: in Section. (2) we discuss the equa-

tions for the physics models used to describe nuclear reactor cores and the governing

relations that couple the different physics. In Section. (3) we provide a detailed

overview of the different spatio-temporal discretizations, the numerical techniques



12

based on JFNK scheme, and the preconditioning methods employed to reduce the

number of Krylov iterations. In Section. (4), a new code system that implements the

physics models of Section. (2) and the numerical methods of Section. (3) is intro-

duced and details regarding the software architecture are provided. Next, the code

system is put to test using problems created with Method of Manufactured Solutions

(MMS) and benchmarks to verify higher order treatment of all the physics models in

Section. (5). Finally, in Section. (6) we discuss the details of using the MFNK frame-

work to solve eigenvalue problems occurring commonly in nuclear reactor analysis

and compare it to state-of-art schemes like Arnoldi and Jacobi-Davidson iterations.

Also, the MFNK technique is applied to a stiff non-linear multi-physics problem

based on a radiation diffusion physics model to emphasize the flexibility of applying

the implemented code for problems not related to nuclear reactor simulations. Then,

we draw conclusions and point out avenues for future research in Section. (7).
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2. PHYSICS MODELS

‘The more you see how strangely Nature behaves, the harder it is to make

a model that explains how even the simplest phenomena actually work.’

– Richard Feynman

In this section, details regarding the physics models used in this Dissertation are

provided. All models have been deliberately chosen to be of “coarse” fidelity as the

purpose of this research work is not to validate the physical models themselves but

to present a multi-physics verification study that will help develop better intuition

regarding efficient coupling strategies. At a later stage, when the details about the

implementation code are given, a description will be provided for employing higher

fidelity physical models interchangeably within the MFNK framework, when they

are deemed necessary for the physics being solved.

In the realm of reactor analysis, there are three primary domains of physics that

play a pivotal role in determining core operation and safety. These are:

1. Neutronics - Describes the neutron population distribution and the interaction

of neutrons with the material in the reactor core. The primary solution fields

calculated is the scalar flux as a function of position, time and neutron energy.

2. Thermal conduction - Describes the distribution of temperature in the fuel

pin due to the sensible heat generated from the energetic neutron fission re-

actions. The solution fields of interest are usually the temperature profile in

the fuel element from which the peak fuel temperature and the maximum clad

temperature at the surface of the pin are obtained.

3. Coolant channel flow - Describes the flow of coolant fluid through the core that

removes the thermal energy from the fuel pins. The models used can be for

single or multi-phase fluid to calculate the density, momentum in all directions,

total energy, temperature and the pressure drop across the core.
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Other physics components include structural mechanics that describes the behav-

ior of thermal expansion in the fuel pins and structures comprising the core, kinetics

of chemical reactions occurring due to flow of borated water in PWRs. In the current

research, only the three basic physics models listed above have been used to create

a multi-physics model to analyze nuclear reactor transients.

2.1 Neutronics

Neutronics is the branch of physics that deals with the calculation of neutron flux

and neutron reaction rates in the different materials inside the reactor core. These

reaction rates need to be calculated accurately in order to determine the power

produced in a nuclear reactor and to calculate the temperature solution fields, which

are strongly coupled to thermal energy generated in the fuel.

High-fidelity description of neutronics is usually provided by a neutron balance

equation or the ‘neutron continuity equation’ for discrete energy groups that de-

scribes the neutron population in the phase-space domain. But finding a numerical

solution to the neutron scalar flux φ from the neutron continuity equation is an ar-

duous task in itself, without coupling to other physics, especially when the reactor

domain is large and heterogeneous and when many neutron energy groups G and

delayed precursor groups K are employed. We base our neutronics model on the

time-dependent Multi Group Neutron Diffusion (MGND) equation to solve for the

neutron scalar flux.

1

vg

∂φg(~r, t)

∂t
− ~∇·Dg(~r, t)~∇φg(~r, t) + Σt,g(~r, t)φ

g(r, t)

=
G∑

g′=1

Σg′→g
s (~r, t)φg′(~r, t) + χg

p

G∑

g′=1

(1 − βg′)νΣg′

f (~r, t)φg′(~r, t)

+
J∑

j=1

χg
d,jλjCj(~r, t) ∀g ∈ [1, G], ∀~r ∈ D (2.1)
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The notations used here are standard [29]. The system of equations is closed with

appropriate boundary and initial conditions. We can see that the neutron flux φ is

dependent on the position in the core, the energy of neutrons and on time.

A nuclear core is typically composed of hundreds of different materials and iso-

topes, each with different crosssections. The crosssection of a material is greatly

affected by the temperature and density of the material and depends on the energy

of the incident neutron. In this coarse grain neutron diffusion model, the heterogene-

ity of the materials have been averaged to create fuel assembly homogenized material

crosssections (piece-wise constant crosssection values per assembly) that preserve the

total reaction rates in the core. The crosssections are usually tabulated, or provided

in a closed form approximation, as a function of fuel and coolant temperatures (ex-

tension to additional parameters, such a boron concentration, void history, control

rod history, . . . , is straightforward). The tabulated crosssection values are obtained

using table look-up and Rp interpolation, where p is the total number of parameters

used.

The Ordinary Differential Equations (ODEs) for the evolution of delayed neutron

precursor concentrations are given by

dCj(~r, t)

dt
+ λjCj(~r, t) = βj

G∑

g′=1

νΣg′

f (~r, t)φg′(~r, t) ∀j ∈ [1, J ]. (2.2)

The precursor concentration balance is obtained based on the rate of production

from fission reactions and losses due to radioactive decay given by the half-life λ.

The energy production due to the fission or radiative capture events is given by

Q(r, t) =
G∑

g=1

[
κg

fΣ
g
f + κg

cΣ
g
c

]
(~r, t)φg(~r, t), (2.3)
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where the κ coefficients represent the amount of energy released per reaction event,

the subscript f represents fission reactions and subscript c represents radiative cap-

ture reactions.

The design of reactors is often carried out in Steady-State (SS) where the dis-

tribution of the neutron flux is considered to be in equilibrium. In this static state

with fissile material present and no external source, the MGND equation reduces to

an eigenvalue problem. The dominant eigenvalue of the system, called the effective

multiplication factor keff, is defined as

keff =
Number of neutrons in one generation

Number of neutrons in the preceding generation
(2.4)

The determination of this parameter is done by solving the following modified form

of the MGND equation Eq. (2.1),

− ~∇·Dg(~r, t)~∇φg(~r, t) + Σt,g(~r, t)φ
g(~r, t) −

G∑

g′=1

Σg′→g
s (~r, t)φg′(~r, t)

=
χg

p

keff

G∑

g′=1

νΣg′

f (~r, t)φg′(~r, t) ∀g ∈ [1, G]. (2.5)

with appropriate boundary conditions.

This generalized eigenvalue problem relates the fundamental eigenvalue (domi-

nant) representing the keff and its corresponding eigenmode representing the scalar

flux φg(r, t) for SS conditions. Since the flux is obtained as a solution of the eigenprob-

lem, only the shape of the flux can be ascertained and the magnitude is determined

based on the total power load chosen during operation. Criticality provides informa-

tion for the design of a reactor and also serves as a tunable parameter to determine

the conditions for continuous power output.

In the current work, the statics are governed by Eq. (2.5) and the dynamics of

solution field evolution is described by the MGND equation Eq. (2.1) and precursor
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equations Eq. (2.2). These closed set of equations, along with boundary and initial

conditions, form the neutronics model of this work.

2.2 Thermal Conduction Model

The energy production due to the fission reaction in the fuel elements generate

sensible heat energy which is deposited locally in the fuel. This energy is conducted

outward towards the surface of the fuel pellet, the gap and the outer cladding so

that it can be transferred to the coolant. The conservation equation to model this

physics in Cartesian coordinates (~r = x, y, z) can be written simply as

ρ(T )Cp(T )
∂T (~r, t)

∂t
− ~∇·k~∇T (~r, t) = q(~r, t), (2.6)

with appropriate boundary conditions on the outer trace of domain D.

Here, the density (ρ) in kg/m3, specific heat (Cp) in J/kg−◦ C, and conductivity

(k) in W/m/◦C can depend on the temperature T (~r, t) and hence Eq. (2.6) is a

non-linear equation by itself.

The boundary term coupling the conducting solid to the fluid is given by

k(T )∂nT |w = hc(Tw, Tf )(Tw − Tf ), (2.7)

where Tw (◦C) is the (solid) wall temperature, Tf (◦C) is the coolant temperature at

the interface, and hc(Tw, Tf ) (W/m2/◦C) is the convective heat transfer coefficient

obtained by means of a closure relation.

The non-linear heat conduction model employed here represents the core as a

porous medium where the fuel, the fluid flowing in the channel and the supporting

structures are homogenized together and properties found accordingly. This is stricty

used to verify and to test the code implementation since the model used is described

typically in the same space as neutronics and the equation is a simple scalar non-
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linear parabolic equation with non-constant heat source and mixed or Robin BC at

the solid-fluid interface.

As a refinement of the porous model described above, a two dimensional diffusion-

reaction equation in cylindrical coordinates can be used to find the fuel profile in a

pin with the given average power density distribution. This model is described by

∂ρCpT (~w, t)

∂t
− 1

r

∂

∂r
· (rkr

∂T (~w, t)

∂r
) − ∂

∂z
· (kz

∂T (~w, t)

∂z
) = qavg(~w, t), (2.8)

where qavg(~w, t) is the average power density in a fuel pin.

Using this model, the average temperature profile and behavior of a region (tradi-

tionally a full assembly or part of it in a lattice) can be ascertained and used to find

parameters to estimate the peak clad temperature (based on oxidation limits) and

other safety parameters such as the maximum fuel temperature in order to eliminate

the possibility of fuel melting. A sample schematic 1-d subchannel model that is

traditionally used in reactor analysis codes is shown in Fig. 2.1.
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Fig. 2.1. Subchannel Model

In such a subchannel model, the average power density corresponding to an as-

sembly location, for a given axial region can be calculated to provide the necessary

source terms for determining the temperature profile in the fuel pin. This is repre-

sentative of the average fuel behavior in that region. The fuel surface temperature

is coupled also to the coolant flow in the channel and is accounted using appropriate

boundary conditions Eq. (2.7).
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2.3 Coolant Fluid Flow Model

The coolant flowing in a channel outside the clad of the fuel element gains en-

thalpy by convection and removes heat generated and conducted in the fuel elements.

The thermal hydraulics physics and heat conduction are coupled due to the heat

transferred from the fuel pin surface to the coolant by means of convection. The

temperature of the coolant is directly dependent on the temperature of the outer

clad surface, which, in turn, is a direct function of the fission reaction rate, thereby

making all physics coupled to one another. In addition, a volumetric heat source can

also be present in the bulk of the coolant to model radiative capture energy release

and direct gamma heating.

Typically, in nuclear reactors, the flow of the coolant/moderator fluid occurs in

channels of vertical columns. Higher fidelity descriptions may use three-dimensional

Navier-Stokes equations in either the conservative or non-conservative variable sets

with appropriate turbulence models. In the current work, a simplified approach is

taken and the coolant is modeled using a single-phase fluid flowing vertically in one-

dimensional channels. The model allows for one or multiple 1-d average channels

(the maximum number of channels being the number of right prisms describing the

fuel assemblies in the neutronics model; a simple user-defined mapping is employed

to assign channels to fuel assemblies). The fluid convects the heat generated either

in the bulk of the fluid or at the fuel pin clad interface.

The governing equations for the fluid flow are solved in terms of the conservative

variables and are given as:

∂tρ + ∂z(ρu) = 0 (2.9)

∂t(ρu) + ∂z(ρu2) + ∂zP = fwρ|u|u + ρbf (2.10)

∂t(ρE) + ∂z(u(ρE + P )) = ∂zq + S, (2.11)
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where ρ is the fluid density, ρu its momentum, ρE its total energy, P the pressure,

fw is the ratio of dimensionless wall-friction factor and the hydraulic diameter Dh,

q the conduction of thermal energy in the fluid, bf is the net body force acting in

the direction of velocity v (for instance, acceleration due to gravity in the downward

direction) and S external source terms (energy from the fuel pin) through convective

transfer. An equation of state closes the system of fluid equations:

P = fEoS(ρ, ρe), (2.12)

where the internal energy is ρe = ρE − 1
2
ρu2.

An example of a closure relation for the equation of state Eq. (2.12) is given by

the ideal gas law:

P = ρe(γ − 1), (2.13)

where γ = Cp

Cv
, the ratio of specific heat at constant pressure to constant volume.

Alternately, a more generic closure relation can be written by means of a linearized

relation that is dependent on density and temperature:

P = P0 + α(ρ − ρ0) + β (T − T0) , (2.14)

where α, β are the constants that are valid about the linearization point (P0, ρ0, T0).

Note that α is related to the speed of sound in the fluid and provides a simple way

to alter the Mach number (Ma) in calculations employing manufactured solutions.

This is useful in verifying the numerical scheme used to treat this system of equations

since they are stiff in the flow regimes of concern in nuclear reactors where low Mach

flows dominate.

α =

[
∂P

∂ρ

]

0

∝ 1

Ma2
, (2.15)

As the fluid velocity becomes small in magnitude compared to the speed of sound

in the medium, it is very difficult to solve the low-speed flow equations with a con-
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ventional compressible algorithm because of their slow convergence. The difficulty

in solving the compressible equations for low Mach numbers [30] is associated with

the large disparity between the acoustic wave speed and the fluid speed, which con-

tributes to stiffness, resulting in a indefinite system of equations.

Efforts to derive schemes that can tackle all speed flows (from low Mach to super-

sonic) using physics-based semi-discrete formulations [31,32], linearized perturbation

equations [30] and methods based on asymptotic expansions (pressure separation

formulation) in terms of Ma [33] have been investigated previously. In the current

research we consider a variation of the method introduced by Harlow [31] to tackle

the stiff and low Mach flow regimes that are encountered in nuclear reactor applica-

tions. It is also important to note that the semi-discrete and asymptotic expansion

methods share similar traits in tackling low Mach flows and further investigations

to derive an elegant relation between these family of solvers is necessary to fully

understand their mathematical implications.

2.4 Closing Remarks

The aim of the research presented in this Dissertation is to focus primarily on

using better coupling techniques for a given physical equation model. Hence the

physics models chosen in the current work are coarse but descriptive enough to

analyze transient problems occurring in nuclear reactors.
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3. METHODS FOR MULTI-PHYSICS SIMULATIONS

‘Knowing thus the Algorithm of this calculus, which I call Differential

Calculus, all differential equations can be solved by a common method...

not only addition and subtraction, but also multiplication and division,

could be accomplished by a suitably arranged machine.’

– Gottfried Wilhelm von Leibniz

In this section, details regarding the numerical methods employed to tackle the

coupled physics problems are provided. In addition to these coupling techniques,

which include a discussion of solution methods for non-linear and linear systems

and preconditioners, we also describe space and time discretization techniques with

adequate references to supporting materials.

3.1 Spatial Discretization

Boundary Value problems (BVP) and Initial BVPs for PDEs are often used to

model physical phenomena and hence a consistent and accurate discretization of these

equations to resolve the length and time scales correctly is pertinent. Parabolic and

Hyperbolic systems of PDEs or mixed systems are typically encountered as governing

equations for multi-physics applications. Let the bounded solution domain Ω be in a

d-dimensional space Rd with boundary Γ. Appropriate boundary conditions should

also be prescribed in order to close the system and yield a well-posed problem.

There are several options available for treating the spatial terms in these PDEs;

Finite Difference (FD), Finite Volume (FV) and Finite Element (FE) methods. All

of these methods, in one form or other, rely on replacing the true solution for the

original differential equation with a discrete form of the solution using approximate

expansions in terms of piecewise (higher order) polynomials. This reduces the prob-

lem to a finite system of coupled equations.
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The spatial discretization of the mathematical models in the current work is

performed using FE methods. This method is based on the variational form of the

boundary value problem. The primary reasons for this choice are the ease of use for

arbitrary geometries and irregular domains, the ability to employ nonuniform meshes

to reflect sharp solution gradients, and the ability to obtain more easily high-order

approximations. Also, rigorous a-priori error estimates of the discretization error

based on the order of the polynomial basis functions are available, at reasonable costs,

and can be used to adapt the finite element mesh to automatically refine/coarsen a

subportion of the mesh based on a user-defined accuracy level.

Here, a Continuous Galerkin (cG) FE method [34] is utilized for Elliptic/Parabolic

PDEs and a Discontinuous Galerkin (dG) FE method [35] is employed for Hyperbolic

systems. Details regarding the variational form and the discrete equations obtained

by applying solution approximations for Elliptic/Parabolic and Hyperbolic systems

are given in the following subsections.

3.1.1 Elliptic Systems: Continuous Galerkin Discretization

Consider a non-linear, second-order BVP given by the following Elliptic PDE

−~∇·D(~r, u)~∇u + c(~r, u)u = q ∀~r ∈ Ω. (3.1)

where D(~r, u), c(~r, u) are smooth functions with D(~r, u) ≥ D0 > 0, c(~r, u) ≥ 0 in Ω

and q ∈ L2(Ω) with appropriate boundary conditions specified at the boundary Γ.

The Galerkin weak form of Eq. (3.1) is obtained by multiplying the equation with a

test function v and integrating by parts over domain Ω to obtain

∫

Ω

D(~r, u)~∇u · ~∇v + v(c(~r, u)u − q)dΩ −
∫

Γ

vD(~r, u)~∇u ·~nds = 0 ∀~r ∈ Ω. (3.2)
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where Green’s theorem or divergence theorem given below is employed.

∫

Ω

dΩ~∇·(vD~∇u) =

∫

Γ

vD~∇u ·~nds, (3.3)

with ~n being the outward unit normal vector on the boundary.

The variational form of the above problem is to find the solution u belonging to

the Sobolev space H1 such that

a(u, v) = (q, v), ∀v ∈ Ω. (3.4)

where

a(u, v) =

∫

Ω

(D(~r, u)~∇u · ~∇v + c(~r, u)uv)dΩ −
∫

Γ

vD(~r, u)~∇u ·~nds (3.5)

(q, v) =

∫

Ω

(qv)dΩ (3.6)

Now, for the purpose of finding the approximate numerical solution, a non-overlapping

partition of the domain Ω is introduced such that
⋃

K∈T

K = Ω and T is a Triangulation

of Ω. For simplicity, an assumption is made that the geometry is exactly represented

by the sum of the parts of the finite partition. The discrete solution is sought in

the finite dimensional trial space Sh of piecewise continuous polynomial functions of

order p. For Galerkin FE method, the trial space and the test space are the same

but continuity requirements on the test space are usually less restrictive.

Expanding the numerical solution u and the weight function v in terms of basis

functions Φ(r),

u(~r) ≈ U(~r) =
K∑

i=1

UiΦi(~r), (3.7)

v(~r) ≈ V (~r) =
K∑

i=1

ViΦi(~r), (3.8)
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where Ui and Vi are the degrees of freedom for the FE discretization. If the basis

functions Φ(r) are chosen to be interpolatory, e.g., Lagrange basis functions, then

the degrees of freedom satisfy Ui = U(~ri) and Vi = V (~ri).

The finite dimensional form of the problem can now be restated as follows: Find

uh ∈ Sh such that

ah(uh, vh) = (q, vh), ∀vh ∈ Sh. (3.9)

Inserting Eq. (3.8) in Eq. (3.9), the following weak form is obtained.

K∑

k=1

Ukah(Φk(r), Φi(r)) = (f, Φi(r)) for i = 1, . . . , K (3.10)

This discrete system of equations may be expressed in matrix-operator form as

f(U) = S + H − (K + M + B)(U) = 0, (3.11)

where the K(U), M(U), and B(U) are operators (vector functions) corresponding

to the stiffness (diffusion), mass (reaction), and boundary terms, respectively; S and

H are the volumetric load vector and boundary load vectors, respectively; and U

is the vector of unknowns that approximates the solution in the domain Ω. If the

operators are evaluated using an appropriate linearization, the Jacobian matrix for

the non-linear equations system is simply

J̃elliptic(U) = −(K + M + B), (3.12)

where K, M, and B are now the stiffness, reaction, and boundary matrices (evalu-

ated at the linearization point). Appropriate preconditioners for diffusion or reaction

dominated problems based on the knowledge of the physics can also be created based

on the above description of the spatial discretization for elliptic problems.
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3.1.1.1 Boundary Conditions: Essential and Natural Conditions

Most often in BVPs, three boundary conditions, namely Dirichlet, Neumann and

Robin, are employed. To preserve generality, let boundary Γ = ΓD + ΓN + ΓR. It is

neccessary to understand how these conditions need to be included in the variational

formulation itself in order to avoid inconsistency in the discretization. The derivation

above for non-linear Elliptic/Parabolic problems is general and does not tie itself

down to any specific boundary condition. In this section, we will discuss the methods

to impose these various conditions for second order elliptic problems for the boundary

integral term in Eq. (3.6) with a continuous Galerkin (cG) discretization.

3.1.1.2 Dirichlet BCs

On ΓD, the Dirichlet essential boundary conditions are specified as follows

u(~r, t) = α(~r, t), ~r ∈ ΓD (3.13)

There are several ways Dirichlet boundary conditions can be imposed. A simple

approach, which works for most interpolary bases like the standard Lagrange poly-

nomials used in the current work for continuous Galerkin discretization, is to assign

function values Eq. (3.13) directly to the degrees of freedom on the domain boundary

ΓD. This idea of imposing Dirichlet conditions directly on the solution is ‘strong’ in

the sense that it does not change the Dirichlet solution as a function of the mesh

discretization.

Dirichlet conditions can also be imposed with a "‘penalty"’ method. In this

approach, essentially the L2 projection of the boundary values are added to the

linear system matrix. The projection is multiplied by some large factor so that,

in floating point numeric arithmetic, the existing (smaller) entries in the matrix
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and right-hand-side load vector are effectively ignored. This leads to modifying the

boundary terms B(U), H(U) in Eq. (3.11) as

Bi(U) =

∫

ΓD

Φi

∑

k

ΦkUk(1 + ̺δik) (3.14)

Hi(U) = ̺

∫

ΓD

α(r, t)Φi (3.15)

where ̺ is the penalty parameter, such that ̺ >> 1.

3.1.1.3 Neumann BCs

On ΓN , the Neumann natural boundary conditions are specified as follows

D(~r, u)
∂u(~r, t)

∂n
= β(~r, t), ~r ∈ ΓN (3.16)

These conditions are called ‘natural’ because they are imposed as part of the varia-

tional formulation itself. Consider the boundary term in Eq. (3.6) and applying the

conditions Eq. (3.16),

∫

Γ

vD(~r, u)~∇u ·~nds =

∫

Γ

vβ(~r, t)ds, (3.17)

where ~n is the outward unit normal vector on the boundary.

This can be seen as the boundary L2 inner product on ΓN . This contribution

is added to the boundary operator H(U) and is imposed weakly on the variational

form.
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3.1.1.4 Robin BCs

On ΓR, the Robin or mixed boundary conditions are specified as follows

D(~r, u)
∂u(~r, t)

∂~n
+ γu(~r, t) = β(~r, t), ~r ∈ ΓR. (3.18)

Imposing these mixed boundary conditions is very similar to that of the Neumann

conditions since it requires same modifications on the variational formulation. Again,

take the boundary term in Eq. (3.6) and applying the conditions Eq. (3.18),

∫

Γ

vD(~r, u)~∇u ·~nds =

∫

ΓR

v(β(~r, t) − γRu(~r, t))ds. (3.19)

This boundary contribution is added to the operators H(U) and B(U).

3.1.2 Hyperbolic Systems: Discontinuous Galerkin Discretization

Consider a non-linear hyperbolic conservation equation with advection and reac-

tion of the form

~∇·~G(u,~r, t) + c(~r, u)u(~r, t) = q(~r, t) (3.20)

where ~G(u), c(~r, u) are smooth functions with c(~r, u) ≥ 0 in Ω and q ∈ L2(Ω) with

boundary conditions specified on the inflow boundary u(~r, t) = α(~r, t),∀~r ∈ Γi, where

~G(u) ·~n < 0 and ~n is the outward unit normal vector on Γi.

Then the Galerkin weak form of Eq. (3.20) is obtained by multiplying the equation

with a test function v and integrating over the domain Ω, like in the elliptic case, to

obtain

∫

Ω

v(~∇·~G(u,~r, t) + c(~r, u)u − q)dΩ −
∫

Γ

~G(u(~r, t), ~r, t) ·~nvdΩ ∀~r ∈ Ω. (3.21)



29

Let the numerical solution u be expanded in terms of basis functions (Legendre

polynomials) Φ(r) that are discontinuous functions of order p, defined on the mesh

Triangulation T of Ω,
⋃

K∈T

K = Ω.

uk(~r) ≈ Uk(~r) =

p∑

i=1

UiΦi(~r), (3.22)

where Ui are the degrees of freedom of the FE discretization.

Eq. (3.21) can now be rewritten as

∑

K

{−
∫

K

{~G(u) · ~∇v}+
∑

K

{
∫

K

{c(~r, ~u)uv}+
∫

∂K

{~G(u) ·~nv}} =
∑

K

∫

K

{v S}. (3.23)

Because of the discontinuous nature of the solution approximation, the true flux

~G(~u) ·~n is not defined at the cell’s boundaries and this quantity is usually replaced

by a numerical flux HK(u+, u−, ~n) which approximates ~G(~u). Here, u± represents

the traces on the boundary edges from the interior/exterior of an element K.

With the introduction of the numerical flux, the weak form for the dG method

can be rewritten as

∑

K

{−
∫

K

{~G(u) · ~∇v} +

∫

K

{c(r, u)uv} +

∫

∂K

{HLLF (u+, u−, ~n)v+}} =
∑

K

∫

K

{v S},

(3.24)

where HLLF (u+, u−, ~n) is the Rusanov, or Local Lax-Friedrichs (LLF), numerical flux

given by

HLLF (u+, u−, ~n) =
1

2

{
~G(u+) ·~n + ~G(u−) ·~n + λ(u+ − u−)

}
, (3.25)

with λ the largest eigenvalue (in absolute value) of the Jacobian matrix of ~G. For

the 1-dimensional non-linear conservation law used to model fluid flow for reactor

applications, the eigenvalue λ = sup{vx, vx + c, vx − c} where vx is the velocity in
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the direction of flow and c is the sound speed that depends on the medium pressure,

density and temperature.

Alternately, an Upwind flux can be used instead of the Rusanov flux, where the

numerical flux function is given as

Hup(u
+, u−, ~n) =





~G(u+) if ~u ·~n ≤ 0

~G(u−) otherwise
(3.26)

As an aside, it is interesting to note that in higher order accurate dG methods, the

choice of Riemann solver is not that crucial to resolve the spatial scales correctly [36].

Hence, in the current work, the Upwind and Rusanov flux function are used [37,38] as

the solver since it is easy and less expensive to implement, whereas many other choices

such as the Godunov, Roe, Osher, HLL, HLLC, and HLLE solvers are available.

Future tests to affirm the conclusions of these previous results for problems occurring

in nuclear reactor analysis will be necessary to validate the current choice of Riemann

solver.

In operator notation, Eq. (3.24) can be written in a general form as

f(U) = G(U) + B(U) + M(U) − S = 0 (3.27)

where the G(U),M(U), and B(U) are vector operators corresponding to the ad-

vection, reaction, and boundary terms, respectively; S is the volumetric load vector;

and U is the vector of unknowns that approximates the solution in the domain Ω. If

the operators are evaluated using appropriate linearization, the Jacobian matrix for

the non-linear equations system is simply

J̃hyperbolic(U) = −∂(G + M + B)

∂U
, (3.28)

where ∂G
∂U

, ∂M
∂U

, and ∂B
∂U

are the partial Jacobian of advection, reaction, and boundary

operators respectively, evaluated at the linearization point. Forming the Jacobian
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for the conservation law with higher order dG discretization can be expensive and

complicated. But recent work on steady state problems [39] emphasizes that accurate

evaluation of the Jacobian matrix can be crucial to speed up convergence of the non-

linear Newton iteration. Also, since the numerical flux functions can be arbitrarily

chosen for a given problem, it is only required that the derivatives of the numerical

flux H ′
u+ and H ′

u− need to be calculated to assemble the Jacobian matrix correctly.

Analytic forms for the derivative are sometimes not available directly but a numerical

finite difference procedure can be performed to obtain these values. For the Upwind

and Rusanov fluxes, these values are straightforward to compute and the analysis

for other types will be left for future work.

Apart from directly computing the Jacobian from the dG residual in Eq. (3.27),

approximate Jacobian matrix for preconditioning the linear system can be obtained

based on the Implicit Continuous Eulerian (ICE) technique [31], in which a semi-

implicit linearization treats the advection operators explicitly. The unknowns are

then eliminated through a Gaussian elimination and substitution process, yielding a

single pressure-Poisson equation [28]. This formulation is widely used for low Mach

flow regimes as a solver by itself and thus could be quite effective when utilized as a

preconditioner within the non-linear matrix-free framework used in the current work.

Detailed description of the linearized Jacobian matrix obtained via perturbation of

the numerical flux and the ICE preconditioner is provided in Section. (3.3.3).

3.1.2.1 Boundary Conditions: Inflow and Outflow

For 1-dimensional conservation laws that resemble the inviscid Euler equations,

there are three characteristic speeds corresponding to the eigenvalues of G′(u) [40],

namely

λ1 = vx − c, λ2 = vx, λ3 = vx + c (3.29)
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According to the sign of the these characteristics, four different boundary conditions

are usually employed at the inflow and outflow boundaries.

1. Subsonic Inflow: λi < 0, i = 1, 2 and λ3 > 0

2. Subsonic Outflow: λi > 0, i = 2, 3 and λ1 < 0

The supersonic inflow and outflow conditions have not been considered here since the

regimes that are dominant in reactor analysis problems for fluid flows are primarily

subsonic.

In order to provide details on the application of these boundary conditions, no-

tations regarding the boundary faces need to be specified. Let us first subdivide

the boundary Γ into the inflow boundary Γi and the outflow boundary Γo. Then

split the element boundary terms into interior and boundary face terms such that
∑
K

∫
∂K

=
∑
K

∫
∂K\Γ

⋃∑
K

∫
∂K

⋂
Γ
. Now define the bilinear form of the weak statement

to include the boundary face terms as follows:

aΓ(u, v) =
∑

K∈Γ

∫

∂K
⋂

Γ

H(u+, u−, n)v+ds (3.30)

This boundary term consists of two parts in our case:

aΓ(u, v) = aΓi
(u, v) + aΓo

(u, v) (3.31)

Depending on the domain boundary, these terms are specified in the weak form as

follows:

1. At the inflow boundary Γi, the outer trace u− is replaced by the given boundary

function g as

aΓi
(u, v) =

∑

K∈Γh

∫

∂K
⋂

Γi

H(u+, g, ~n)v+ds (3.32)
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2. At the outflow boundary Γo, only one characteristic variable need to be im-

posed. In many cases, the outflow variable specified is pressure p = po. Hence

on Γo, the outer trace u− is replaced by a modified solution u− = u−
o (u). Then

aΓo
(u, v) =

∑

K∈Γh

∫

∂K
⋂

Γo

H(u+, u−
o (u), ~n)v+ds (3.33)

Often the modified solution depends on the inner trace u+ and prescribed

pressure po such that u−
o = (ρ, ρv, ρE(ρe, po)).

The specification and implementation of these boundary terms are different from

that for elliptic PDE. Even though the Dirichlet conditions are specified for each of

the solution variables in the inflow boundary, imposing these conditions occur natu-

rally through the use of the numerical flux functions. Even time-dependent Dirichlet

conditions do not require special treatment in order to be enforced consistently.

3.1.3 Spatial Coupling Error in Multi-mesh Approaches

Often times in multi-physics applications, each physics component is discretized

on its own mesh, and the solution field from a given physics needs to be exported onto

another mesh. L2 projection or interpolation of the solution between the source and

target meshes may cause non-negligible spatial error [41]. In order to minimize the

spatial coupling error due to the data transfer between the different physics defined

on non overlapping meshes, several techniques have been developed [42]. Jiao and

Heath [43] have derived rigorous cost estimates for different remapping methods

along with the solution costs. The spatial coupling error due to, for instance, the use

of different meshes, is still an ongoing topic of research [44].

In the current research work, we employ high order quadrature rules for the

numerical integration of the terms residing on the target mesh, that approximates

the spatial integrals to capture the multi-physics solution behavior. This idea is
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applicable for arbitrary meshes, provided that the solution for a physics can be

evaluated at any point based on the expansion of the solution in terms of the basis

functions. Then, as the number of quadrature points is increased, the multi-mesh

coupling error becomes ‘small enough’ as compared to the non-linear error that is

not resolved in the coupled physics solution.

For illustration, let us consider two physics, indexed by 1 and 2. In the weak

formulation, the non-linear residual of physics 1, f1(y1,y2) is multiplied by a test

function, b
j
1. The following integral needs to be computed accurately for every cell

K1 of physics 1: ∫

K1

f1(u1(x),u2(x))bi
1(x)dx. (3.34)

Expanding the solution fields onto the basis functions, u1(x) =
∑

i b
i
1(x)ûi

1 and

u2(x) =
∑

i b
i
2(x)ûi

2, and replacing the integral by a numerical quadrature (wq,xq)

yield
∑

q

wqf1

(∑

i

bi
1(xq)û

i
1,
∑

i

bi
2(xq)û

i
2

)
bi

1(xq). (3.35)

For identical meshes, the values bi
1(xq) = bi

2(xq) are simple to obtain: mapping

K1 onto a reference element is advantageous since the basis functions need only to

be evaluated once at the quadrature points of the reference element. However, when

the meshes are different, (1) the numerical integration needs to be carried out on

the physical element K1, and, (2) all the cells of physics 2 overlapping K1 need

to be retrieved and the basis functions b2 need to be evaluated at the quadrature

points, (xq). For general unstructured meshes, one cannot obtain straightforwardly

bi
2(xq) in the reference element since this involves reverse lookups to find the correct

target element for physics 2 containing the physical point. Hence, the numerical

integration over a cell is carried out on the real geometry (the actual cell itself),

and not on its mapped reference element. Here, high order quadrature rules for each

physics are employed along with inverse mapping of the meshes in different physics in

order to evaluate the basis functions at the given physical points. This computation
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is necessary each time the residual for a given physics needs to be evaluated and

an efficient linked list data-structure is created to store the required information in

memory and speed up the integration over cells.

The current work does not delve indepth into the issues related to coupling the so-

lution fields from several completely different legacy codes developed independently.

These scenarios have solutions residing in meshes that conform to spatial scales of

each physics and the a-priori determination of the number of quadrature points to

perform the L2 projection accurately is difficult. A workaround would be to cre-

ate a ‘super’ mesh which is the union of all the individual physics meshes given by

ΩSuper
h = Ω1

h

⋃
Ω2

h

⋃
. . . ,

⋃
ΩN

h . Then, the solution at all the mesh points can be

interpolated, projected and used uniformly with affordable loss of accuracy.

It is also important to note that, making use of available degrees of freedom,

certain quantities such as total mass and energy need to be conserved through these

projections [42]. This needs special attention while devising schemes to project these

variables on a different mesh to be coupled with another physics. Since this subject

in itself involves considerable research, only the ideas have been proposed here and

demonstrations using two physics will be presented in Section. (5).

3.2 Time Discretization

Tackling the whole coupled non-linear system provides tremendous flexibility to

use high-order implicit time integrators. Implicitness is required for stability due to

the great disparity in time scales of the various phenomena involved in the simula-

tions. Even though traditional codes dealing with stiff individual physics systems

tend to use semi-implicit (treat fast scales implicitly and others explicitly), these

schemes might not be as effective when used in the context of coupled physics prob-

lems due to the introduction of time scales that cause increased stiffness. But since

the temporal treatment in single physics problems are based on intimate knowledge
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of the physics, these solution schemes and discretizations serve as excellent precon-

ditioners for fully coupled physics problems.

Consider a vector valued non-linear system of equations f , that is obtained after

appropriate spatial discretization using cG or dG FEM for the different physics.

This non-linear residual includes all the coupling details, i.e., the contributions from

one physics to another is accounted correctly. The large system of time-dependent

coupled non-linear ODEs describing the problem can be generally written as

M
dU

dt
= f(t,U). (3.36)

where M is the mass matrix resulting from the spatial discretization of the temporal

derivative term (the use of a finite difference technique in space or a lumped numerical

quadrature results in M being the diagonal matrix whose entries contain the cell

volume).

The initial BVP has an initial solution prescribed at some given time tinitial. Let

the 1-dimensional time domain Θ = [tinitial, tfinal] be partitioned in to N steps with
∑N

n=1 ∆tn = tfinal.

Without loss of generality, consider a Runge-Kutta (RK) method for temporal

discretization represented using the standard Butcher tableaux notation. Then, any

RK method can be specified using the following notation:

C A

BT

, (3.37)
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where B = [b1, . . . , bs]
T , C = [c1, . . . , cs]

T , and A = (aij)i,j=1,...,s. Let s be the

number of intermediary stages for the RK method, and ∆tn the size of step n. The

application of the RK method to Eq. (3.36) yields the solution at tn+1 as

Un+1 = Un + ∆tn

s∑

i=1

biki, (3.38)

where the intermediate vectors ki (i = 1, . . . , s) are obtained by solving the following

s non-linear systems

Mki = f

(
tn + ∆tnci , Un + ∆tn

s∑

j=1

ai,jkj

)
, (3.39)

The above equation shows that the computation of a solution at tn+1 involves per-

forming at least s non-linear iterations for one single sweep and it is necessary to

converge the stage vectors ki in order to obtain the time solution at the end of nth

step. Since the derivation is still general, no assumptions have been made about the

structure of the Butcher matrix A to simplify the equations. This will be dealt with

separately once we have a fully discrete system of equations.

Based on ideas by Hairer [45], a simple substitution of variables is introduced

next. Let

Zi = ∆tn

s∑

j=1

ai,jkj. (3.40)

Substituting Eq. (3.40) in Eq. (3.39), the modified set of s non-linear problems is

Mki = f (tn + ∆tnci , Un + Zi) , (3.41)

and, by recursion after simplification, this yields the modified non-linear ‘temporal’

residual equation defined by

F(Z) = (M ⊗ Is)Z − ∆tnAf(tn + ∆tnC, Un + Z) = 0, (3.42)
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where Z = {Z1 . . . ,Zs} and f(Z) = {f(Z1) . . . , f(Zs)}.
Now that we have arrived at a final non-linear system, the solution to Eq. (3.42)

for Z can be obtained by some form of non-linear iteration, using either Picard or

Newton method. Once Z is found and converged for all s stages, we can substitute

in Eq. (3.38) to find the solution at end of time level n using

MUn+1 = MUn + ∆tnB
T f(tn + ∆tnC, Un + Z), (3.43)

It is important to note that all derivations leading up to Eq. (3.43) are applicable

to explicit and fully-implicit RK methods. Then, the selection of the appropriate

RK methods that can handle stiff PDEs [46, 45, 28] is necessary in order to obtain

high-order accurate solutions using the above discretization method. These choices

are usually based on several optimal properties of the RK methods such as:

1. explicitness vs implicitness.

2. A-stability, (absolute stability) determines whether a method is conditionally

stable or unconditionally stable for all time step sizes ∆tn [47] (i.e., it is the

domain S ∈ ℜ(z) such that S = {z ∈ C; |ℜ(z)| ≤ 1} where ℜ(z) is the

method’s characteristic polynomial applied to Dahlquist’s equation y′ = λy

and z = ∆tnλ). In coupled physics systems, the disparity in the time scales

leads to stiff systems that require A-stable methods in order to resolve the

behavior of the physics correctly.

3. L-stability, is an essential property that indicates the rate of damping of highly

oscillatory modes independent of time step size [48] i.e., a method is L-stable

if it is A-stable and lim
z→∞

ℜ(z) = 0. This property is crucial to determine the

success of a given method for stiff systems since if all modes are not damped

quickly over a transient, the solution procedure can become unstable due to

oscillations, neccessitating smaller time steps.
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4. Efficiency: cost of solution method per time step. This is critical since there

needs to be a balance in terms of cost per step (s * Average CPU cost per

stage) versus accuracy in solution (Local Truncation Error (LTE)) for solving

the system.

A RK method of order p with s stages can be compared to the actual Taylor

series expansion of a non-linear system, to derive the order conditions. For higher

order methods, it gives the user great flexibility in deriving a scheme with optimal

order and stability properties to fit the needs of the problem. This plasticity of the

method and the ease of adjusting the coefficients to obtain embedded formulas make

them attractive to adaptive time-stepping when needed.

Next, specializations for different families of RK schemes will be discussed and

the specific changes in the non-linear equation Eq. (3.42) and step solution Eq. (3.43)

will be shown.

3.2.1 Explicit-RK (ERK) Methods

If the Butcher coefficient matrix A is strictly lower diagonal, i.e., ai,j = 0,∀i =

1 . . . , s, j ≥ i, then the RK method is said to be explicit. This is because the solution

for any time step explicitly depends only on the previous solution and stages and

hence these methods do not require any non-linear iterations.

All explicit methods are conditionally stable but due to the reduced cost in finding

the solutions, they could be valuable when the physics dictates the usage of very small

time steps to resolve the temporal scales. This ‘asymptotic regime’, when the user-

specified tolerance for LTE dominates the solution, is suitable for the usage of such

schemes.

Mki = f

(
tn + ∆tnci , Un + ∆tn

i−1∑

j=1

ai,jkj

)
∀i = 1 . . . , s (3.44)

Un+1 = Un + ∆tnB
TK (3.45)
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where K = {k1, . . . ,ks}.
Hence ERK methods are easy to implement and have cheap computational cost

per step since there are no non-linear iterations or Jacobian matrix solves other than

the Mass matrix M at the end of each stage. However, they have poor stability

properties and are unable to resolve very fast changing modes (explicit schemes

are not suitable for stiff equations). To overcome this problem and to utilize the

advantages of these one step schemes, modifications to the existing ERK schemes

can be made, as shown by Eriksson et. al. [49], to extend the stability region.

In the current work, for the sake of completeness, we have chosen to implement

Forward Euler (FE), a two stage ERK method of order 2 and the four stage ERK

method by Kutta based on 3/8th Quadrature Rule of order 4. Apart from these

standard schemes, an embedded ERK method, DOPRI by Dormand-Prince [46] with

stiffness detection, has been implemented as well.

The notation for naming each of the RK methods is usually given as RKp, p′(s)

where p is the true order of the method, p′ is the embedded order and s is the number

of stages. With this notation, the Butcher Tableaux for each of the above methods

are given below.

0 0

BT 1

(3.46)

FE 1(1)

0 0

2
3

2
3

BT 1
4

3
4

(3.47)

ERK 2(2)
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0 0

1
3

1
3

2
3

−1
3

1

1 1 −1 1

BT 1
8

3
8

3
8

1
8

(3.48)

ERK 4(4)

0 0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46832
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

BT 35
384

0 500
1113

125
192

−2187
6784

11
84

0

ET 71
57600

0 − 71
16695

71
1920

− 17253
339200

22
525

− 1
40

(3.49)

DOPRI 4,5(7)

In Eq. (3.49), ET is the error estimator coefficient that is useful in obtaining the

Local Truncation Error (LTE) for the specified RK method. This is derived along

with the optimal higher order (p) step coefficients BT for the embedded method.

Then,

ET = BT − B̃T (3.50)

where B̃T are the coefficients for the lower order (p′) method. For brevity, B̃T have

not been shown and can be easily obtained if necessary.
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The LTE (ǫ) for such an embedded method is

ǫn = ∆tnE
TK + O(∆tp

′+1
n ) (3.51)

A-priori estimates for the LTE are useful to create adaptive solution procedures

that can change the step size ∆tn and order p of the method to reduce the local and

global temporal error in the solution based on user specified tolerance. Based on

principles in control theory, Gustafsson [50] introduced the PI controller and applied

it to adaptive step-size selection for stiff ODE problems. Previous work for reactor

problems [11] using these adaptive controllers were successful and hence have been

used in the current research for use with embedded methods.

The PI controller predicts the new step size based on the evolution in LTE, the

selection of previous step size and a user specified tolerance. Then,

∆tn+1 = ∆tn

(
Tol

|ǫn|

)α( |ǫn−1|
|ǫn|

)β

(3.52)

where α and β are problem dependent constants. Gustafsson found after some nu-

merical computation that α ≈ 0.7
min|p,p′|+1

and β ≈ 0.4
min|p,p′|+1

are usually good choices

for stiff problems. The paper cited above provides detailed derivation of the controller

and the optimal parameters in Eq. (3.52).

3.2.2 Implicit RK (IRK) Methods

Implicit methods are either usually unconditionally stable (A-stable) or at least

have much larger stability regions than ERK methods. Even if an IRK method is

A-stable, it may not satisfy the required L-stability conditions that are essential to

accurately resolve stiff systems of equations. We can also classify IRK methods based

on the structure of the Butcher matrix A in to two broad categories. We will discuss



43

each family below along with the implication on the cost for obtaining a solution per

time level.

3.2.2.1 Diagonally-Implicit RK (DIRK) Methods

For DIRK methods, the Butcher coefficient matrix A is lower diagonal, i.e., ai,j =

0,∀i = 1 . . . , s, j > i. Note that the diagonal term is non-zero and hence the solution

at each stage requires an implicit non-linear solve, unlike with ERK methods.

The equations for the simplified non-linear system Eq. (3.42) at each stage can

be modified as

F(Zi) = MZi − ∆tn

i∑

j=1

ai,jf(tn + ∆tnci, Un + Zi) = 0 ∀i = 1 . . . , s (3.53)

Then, if the Jacobian matrix J(U) for the SS residual f(U) can be computed ap-

proximately, the non-linear iteration to compute the solution update proceeds as

Ĵ(Zl
i)δZ

l
i = −F(Un + Zl

i) ∀i = 1 . . . , s (3.54)

Zl+1
i = Zl

i + δZl
i (3.55)

where l is the non-linear iteration index and the transient Jacobian matrix Ĵ(Z) is

Ĵ(Zl
i) = M − ∆tnai,iJ(tn + ∆tnci, Un + Zl

i) ∀i = 1 . . . , s (3.56)

Now that we have determined the necessary components to solve the transient non-

linear system, the solution to Eq. (3.54), Eq. (3.55) for Z = {Z0 . . . ,Zs} can be

obtained. The use of either a Picard or Newton method as a non-linear solver will

be discussed in the next section and the focus will be shifted to solve this system

efficiently under constraints of memory and time.
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Once Z is found and converged for all s stages, we can substitute in Eq. (3.38) to

find the solution at end of time step n. This step involves inverting the Mass matrix

M which can be performed using a lumped-mass approach [51] that has been proven

to be quite effective for several test problems.

Several DIRK methods possess unconditional stability and optimal properties

that help improve the efficiency of solution procedure. For instance, it is advanta-

geous to have the diagonal elements of the Butcher matrix A to be the same i.e.,

ai,i = γ. These DIRK methods are popularly called Singly-DIRK (SDIRK) meth-

ods. A variation of the SDIRK methods with an explicit first stage, Explicit SDIRK

(ESDIRK), was investigated introduced by Kvaerno [52] and investigated further by

Kennedy et al. [53] for advection-diffusion-reaction equations. These methods sim-

plify the solution procedure to solving the non-linear system given in Eq. (3.54) since

the transient Jacobian matrix Ĵ(t,U) that needs to be inverted is the same in all

stages. Hence if a direct method such as LU factorization can be used, then the fac-

torization need be performed only once and utilized for all the stage computations.

Note that in this case, the Jacobian is also lagged (computed at start of step).

Based on the analysis of the properties of DIRK methods, few of them have

been chosen to be implemented: Backward Euler (BE), Implicit Midpoint (IM),

SDIRK2(2), SDIRK3(2), SDIRK3(3) [45]. Note that BE, SDIRK2(2), SDIRK3(3)

are A−, L− stable schemes but IM2(1) and SDIRK3(2) are only A−stable and not

L−stable. Since the provision for including arbitrary DIRK methods exists in the

framework introduced thus far, any DIRK/SDIRK method that can be represented

by a Butcher Tableau can be tested and used in the software implemented as part

of the current work.

1 1

BT 1

(3.57)

BE 1(1)
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0.5 0.5

BT 1

(3.58)

IM 2(1)

γ γ

1 1 − γ γ

BT 1 − γ γ

(3.59)

SDIRK 2(2) with γ = 1 − 1√
2

γ γ

1 − γ 1 − 2γ γ

BT 0.5 0.5

(3.60)

SDIRK 3(2) with γ = 3−
√

3
6

γ γ

1+γ
2

1−γ
2

γ

1 −6γ2+16γ−1
4

6γ2−20γ+5
4

γ

BT −6γ2+16γ−1
4

6γ2−20γ+5
4

γ

(3.61)

SDIRK 3(3) with γ = 0.435866521508459

3.2.3 Fully-Implicit RK (FIRK) Methods

FIRK methods have a full Butcher coefficient matrix, i.e., ai,j 6= 0,∀i, j = 1 . . . , s.

One way to solve these systems would be to consider the full block non-linear system,

all unknowns from the s stages, i.e., Z is the unknown instead of Zi for individual
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stages, and perform non-linear iterations on these. Due to memory restrictions for

large scale fully discretized problems, this could be prohibitive.

Alternately, an outer iteration can be used in conjunction with ideas for solving

DIRK methods, in order to converge the temporal step solution. This procedure

is based on splitting the block matrix operator as A = D + L + U where D,L, U

are the diagonal, strictly lower triangular and strictly upper triangular terms of the

coefficient matrix. With this splitting, a Block Gauss-Seidel (BGS) iteration can be

applied to obtain the residual as

F(Zl
ibgs) = MZl

ibgs − ∆tn(L + D) ⊗ Inf(tn + ∆tnC, Zl
ibgs) − (3.62)

∆tnU ⊗ Inf(tn + ∆tnC, Zl
ibgs−1) = 0 (3.63)

with the transient Jacobian matrix Ĵ(t,U) given by

Ĵ(Zl
ibgs) = M − ∆tn(L + D) ⊗ InJ(tn + ∆tnci, Zl

ibgs) (3.64)

where ibgs is the BGS iteration number. This iteration can also be relaxed to improve

the outer iteration convergence using block SOR scheme but due to the difficulty in

determining the optimal relaxation factor for all multi-physics problems, this is left

for future work.

Simply put, the solution procedure for FIRK methods involves performing mul-

tiple DIRK solves until convergence. Hence the cost of these methods is cost per

DIRK step*Number of outer iterations. Due to the cost involved in computing the

solution for FIRK methods, this is often not preferred unless extremely stiff problems

are encountered.

Hairer [45] notes that collocation methods based on Gauss and Radau quadrature

formulas can lead to FIRK methods with excellent stability properties. These meth-

ods are in general A− and L− stable and stiffly accurate (do not degrade convergence

for stiff problems) [54].
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An adaptive method using the RADAU5 scheme with a good error estimator was

implemented previously [11] for coupled simulations using Point Reactor Kinetics

Equations (PRKE) and lumped hydraulics models and the success of these methods

in predicting sudden changes in temporal scales make them attractive. The use of

such implicit adaptive techniques will be essential to capture complex waxing and

waning of temporal scales from different physics during critical transients [26] and

needs further investigation.

The Butcher matrix for the fourth order methods based on Gauss quadratures

and third, fifth order methods based on RADAU IIA family are given below.

1
2
−

√
3

6
1
4

1
4
−

√
3

6

1
2

+
√

3
6

1
4

+
√

3
6

1
4

BT 1
2

1
2

(3.65)

Gauss 4(2)

1
3

5
12

− 1
12

1 3
4

1
4

BT 3
4

1
4

(3.66)

Radau IIA 3(2)

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

BT 16−
√

6
36

16+
√

6
36

1
9

(3.67)

Radau IIA 5(3)

Until now, the subject of obtaining the solution of a non-linear system was only

briefly discussed. This is because the crux of the work in the temporal solution
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procedure lies solely in this non-linear solve. Details regarding the usage of Picard

or Newton iteration as non-linear solvers are provided next.

3.3 Methods for Solving Large-scale Non-linear Systems

This section discusses the numerical techniques employed for solving the non-

linear equations arising from the fully discretized coupled physics system. By con-

trolling how the non-linearities are resolved, a tight coupling or traditional loose

coupling paradigm can be obtained. This allows testing existing coupling strategies

and comparing to new tightly coupled methods in terms of accuracy and efficiency

since all of these methods can be implemented within the same framework.

The basis for this idea stems from the fact that if the linear operator represent-

ing the Jacobian matrix used for solving the non-linear system is block-diagonal, it

represents the decoupled treatment of the different physics and collapses to a Picard

iteration strategy. This procedure can be iterated to any given tolerance as long

as the spectral radius of the linearized operator is less than one i.e., ρ(Ĵ) < 1. In

other words, the convergence through Picard iterations for coupled physics problems

is guaranteed if the eigenmodes due to the linearized terms are not dominant. Then,

these iterations are a natural formulation for weakly coupled physics models. But if

ρ(J)

ρ(Ĵ)
> 1 where J is the consistent fully coupled Jacobian matrix, then the physics

are strongly coupled and much smaller time step sizes will be necessary in order to

make the linearization valid. Hence, with a combination of time step control and

appropriate linearizations, such iterative procedures over the different physics can

produce tightly coupled solutions.

The current framework employs Picard or Newton methods (outer non-linear

solves) and Krylov methods (inner linear solves) to solve the set of discrete non-linear

equations effectively and accurately. The Matrix-Free (MF) approximation can be

included such that the algorithm can be implemented without explicitly building the

Jacobian matrix needed in the linear solve. Often, building the Jacobian matrix can
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be costly in CPU time and memory, especially when different physics components

reside in multiple codes. The MF nature of the solvers relies on (i) the fact that

Krylov solvers build a solution subspace using only matrix-vector operations and (ii)

these matrix-vector operations can be approximated using a finite difference formula

that does not require knowledge of the matrix elements at all. Nevertheless, Krylov

methods may require a certain number of basis vectors to be stored in order to

find an accurate solution (i.e., the size of the subspace may be large). The Krylov

space size and the overall computing time can be significantly reduced by the use

of an appropriate preconditioner for the linear solves. Therefore, the MF non-linear

algorithm consists of 3 levels of iterations:

1. Nonlinear iteration,

2. Linear iteration,

3. Preconditioner iteration.

Since the equations and the methods provided here are generic and are applicable

to arbitrary non-linear systems, the same scheme can be utilized for solving linear,

non-linear single- and multi-physics coupled systems. The following subsections pro-

vide details on the three levels of iterations that are part of the framework used to

perform these multi-physics simulations.

3.3.1 Nonlinear Iteration Methods

Consider a system of non-linear equations of the form

F(Z) = 0 (3.68)

obtained by space-time discretization of a problem with ξ physics components cou-

pled non-linearly to each other, leading to a system of ordinary differential equations.
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Let us apply the traditional Picard iteration and the Newton iteration introduced

earlier to solve the fully-discrete non-linear problem.

3.3.1.1 Picard Iteration

Picard iteration, also known as Fixed Point Iteration (FPI), is a viable and an

easy method to implement since it makes use of existing OS coupling paradigm to

linearize the coupled physics solution terms. In solving differential equations, Picard

iteration is a constructive procedure for establishing the existence of a solution to a

discretized system of equations Eq. (3.68), that passes through the fixed point (Z0).

However, it is not very effective to iterate at every time step to converge the non-

linearities in order to restore the higher convergence order. This is due to the fact that

the Picard iterations are only linearly convergent and hence the scheme converges

slowly to the true solution. Such a solution procedure takes a high iteration cost and

usually requires longer computation times. Additional modifications could accelerate

the rate of convergence for the vanilla non-linear Picard iterations in order to make

it a viable candidate for reactor analysis problems. Schemes such as Steffensen [55]

and vector Wynn-Epsilon algorithm [56] can be used to accelerate the convergence

rate of the sequence of vectors found using Picard iterations.

Also, by the nature of the Picard linearization, the coupling between the differ-

ent physics are treated explicitly. The system matrix arising from the space-time

discretization of these physics reflect this weak coupling between different physics

components. Let ZP be the solution fields corresponding to a particular physics P .

Then, the non-linear residual equation describing the Picard linearization for each

physics P can be written by splitting the non-linear contributions from each physics,

as:

F(Zℓ+1,Zℓ) = {Zℓ+1
P − NPP (Zℓ+1

P )} −
ξ∑

P ′=1
P ′ 6=P

ÑP ′P (Zℓ) (3.69)
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where ℓ is the Picard iteration number, NPP (ZP ) represents the non-linear residual

describing the individual physics and ÑP ′P (Z) represents the non-linear residual due

to the coupling of physics P with physics P ′.

Since the diagonal coupled physics terms P ′ are computed at the previous Picard

iterate, the new solution can be obtained by performing the following sequence of

iterations:

JFPI(Z
ℓ)δZℓ = −F(Zℓ+1,Zℓ) (3.70)

Zℓ+1 = Zℓ + δZℓ (3.71)

where JFPI is simply in this case,

JFPI(Z) =




N11 0 · · · 0

0 N22 · · · 0
...

...
. . . 0

0 · · · 0 Nξξ




(3.72)

Since the blocks Nii require only the solution to the single physics itself, this fixed

point iteration procedure can be continued to generate a sequence of solutions that

converge to the true coupled physics fields ZP . This Picard iteration procedure has

a Jacobian matrix that is Block-Jacobi structured and hence could be feasible to

couple existing mono-physics codes. This OS coupling paradigm uses schematically

represented by Fig. 1.1 in Section. (1).

The Picard iteration over multiple physics explained above is the least efficient

and computationally expensive mode for performing multi-physics simulations al-

though it is easy to implement for coupling existing legacy codes. Alternately, any

level of tighter coupling can be enforced by accouting for the knowledge gained

about the physics. These variations in Picard linearization involve simply evalu-

ating the non-linear contribution ÑP ′ from physics P ′ → P at the current iterate



52

solution Zℓ+1 in Eq. (3.71) and correspondingly including the implicit contribution

of the non-linear operators in the Jacobian matrix Eq. (3.72). These modified Pi-

card variants are usually made such that the Jacobian matrix can be represented

as a Block-Lower-Triangular or Block-Upper-Triangular matrix which would involve

Block-Backward/Forward substitution respectively, in order to obtain the solution

for the Picard iteration Eq. (3.71). A representation of the Block-Lower-Triangular

Picard linearized matrix is given below.

JFPI(Z) =




N1,1 0 · · · 0

N2,1 N22 · · · 0
...

...
. . . 0

Nξ,1 · · · Nξ,ξ−1 Nξξ




(3.73)

3.3.1.2 Newton Iteration

Instead of employing Picard iterations, one can apply Newton’s method to solve

the non-linear system of equations in Eq. (3.68) and obtain the solution iteratively

as follows:

J(Zℓ)δZ = −F(Zℓ) (3.74)

Zℓ+1 = Zℓ + δZ (3.75)

where J(Zℓ) = ∂F(Zℓ)
∂Zℓ is the Jacobian matrix of the system at the current Newton

iterate Zℓ, δZ is the increment update, solution of the linear solve, and the next

Newton iterate is given by Zℓ+1.

It is clear that the Eq. (3.74) requires forming the Jacobian matrix explicitly

in order to solve the system for δZ. In the case where the coupling between the

different physics is complex and requires more memory storage, this option may
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not be feasible. Also, the convergence of Newton’s method strongly depends on the

consistency of the Jacobian matrix with respect to the residual description.

One may compute a numerical approximation to the Jacobian, based on a finite

difference procedure by perturbing F(Z). Provided that enough memory is available,

J can be built element by element or column by column. This is usually referred

to as the numerical Jacobian. If recomputed at every Newton iteration, it is very

expensive in terms of computational time, especially if the size of the non-linear

system N is quite large since F(Z) needs to be perturbed at least N times. The cost

of this numerical Jacobian is hence O(N) non-linear residual function evaluations.

Alternately, when storing the entire Jacobian is not feasible due to memory con-

straints or when the computational cost of forming the numerical Jacobian itself is

prohibitive, a matrix-free approach is preferred. Based on the ideas by Brown and

Saad [22], the Jacobian-free approach can be used to efficiently tackle the non-linear

system where the linear solve can be performed with only the action of the Jacobian

matrix on a given vector. Using only this defined operation, the linearized system in

Eq. (3.74) can be solved using an efficient linear solver.

Generally speaking, the action of the Jacobian on a given vector v can be com-

puted using the following finite-difference approximation:

Jv ≈ F(Z + ǫv) − F(Z)

ǫ
(3.76)

where ǫ is a parameter used to control the magnitude of perturbation.

Note that the accuracy of the approximation depends strongly on the choice of

ǫ. A typical simple choice is usually the square root of machine precision ǫ2 = Υ ≈
1E − 16. Other optimal equations for choosing the perturbation parameter ǫ have

been derived in the reference papers [22,23]. For completeness, this optimal form of

ǫ is given by

ǫ =

√
(1 + ||Z||)Υ

||v|| (3.77)
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Further analysis done on the optimization of this finite difference parameter by

Xu [57], in the context of coupled multi-physics problems, can also be useful to

determine the error in the approximation and increase the efficiency of the algorithm

explained above.

Other types of finite difference procedures such as, two-sided difference formulas

instead of the one-sided difference formula used in Eq. (3.76), can increase the ac-

curacy of the approximation. But such modifications involve extra computational

work and increase the number of function evaluations needed for better estimations.

Hence, we have only considered the one-sided difference approximation in this cur-

rent work and the applicability of these alternate Jacobian-free approximations can

be analysed in the future.

The exact Newton method involves solving the linear system in Eq. (3.74) exactly,

i.e., to a tight tolerance at every Newton iteration. This is a waste of computational

effort when the solution to the non-linear problem is far away from the bowl of

asymptotic convergence. Hence, an adaptive technique to change the linear tolerance

in the Newton iteration based on the non-linear residual amplitude can decrease the

CPU cost during the initial stages of the iteration. Such a formulation is super-

linearly convergent and approaches quadratic convergence in the asymptotic regime.

The linear tolerance for this inexact Newton iteration can be generally chosen as

||LinearResidual|| =
∣∣∣∣J(Zℓ)δZℓ + F(Zℓ)

∣∣∣∣
2

< γ
∣∣∣∣F(Zℓ)

∣∣∣∣
2

(3.78)

where γ is a forcing term, generally chosen to be smaller than unity. Generally the

choice of γ results in a tradeoff in the number of non-linear iterations versus linear

iterations since too large a value results in more Newton iterations or even divergence

and too small a value results in more time spent in the linear solver. Several strategies

for optimizing the computational work with a variable ‘forcing term’ γ are given in

the work by Eisenstat and Walker [58]. Due to the potential savings in this inexact

Newton strategy coupled with the Jacobian-free formulation, this non-linear iteration
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scheme to solve the coupled non-linear multi-physics problem will be used as the

primary solver algorithm in the current work. Note that as γ → 0, one recovers the

exact Newton algorithm.

In addition to the basic inexact Newton iteration, line search strategies to obtain

the global solution satisfying the non-linear system can be used. Such modifications

can avoid local stagnation and helps to stabilize Newton’s method by scaling the

update appropriately. This modification is of the form

Zℓ+1 = Zℓ + dℓδZℓ+1 (3.79)

where dℓ is the scaling factor that restricts the update. The standard Newton

algorithm is recovered when dℓ = 1. Further reading regarding these global line

search methods is available in [22,59,58]. The methods for linear systems arising in

Eq. (3.71) and Eq. (3.74) are discussed next.

3.3.2 Krylov Methods for Solving Linear Systems

The linear system obtained from the Picard or Newton linearization applied to

the non-linear equation Eq. (3.68) can be efficiently solved using a Krylov method in

which an approximation to the solution of the linear system is obtained by iteratively

building a Krylov subspace of dimension m such that

K(v,J) = span{v,Jv,J2v,J3v, . . . ,Jm−1v} (3.80)

where v is the initial Krylov vector.

Most coupled multi-physics problems produce linear systems that are block un-

symmetric, even if the individual blocks may be symmetric due to the type of spatial

discretization, e.g., Continuous Galerkin for elliptic problems. Hence robust Krylov

methods are needed to tackle these unsymmetric systems. Previous studies on the
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usage of GMRes (Generalized Minimum RESidual), BiCGStab (Bi-Conjugate Gra-

dient Stabilized) and Transpose-free Quasi Minimal Residual (TFQMR) methods to

tackle such systems [60] in the context of non-linear multi-physics problems suggest

the feasibility of these choices.

In the current work, since a general framework is required to solve large-scale

coupled linear systems, the robustness of the linear solver is an important factor

in determining the total computational time of the algorithm. It is also necessary

that the linear solver used be insensitive to the numerical roundoff and finite differ-

ence errors that are created as part of the approximations used in the Jacobian-free

formulation. It is worthwhile to note that the use of Arnoldi-type of Krylov iter-

ative methods yields the best convergence since complete orthogonalizations of all

the subspace vectors aids in correcting the numerical errors introduced by the finite

difference approximation. Although it is not possible to select one efficient linear

solver for all types of unsymmetric problems, such an Arnoldi based GMRes solver

is expected to be reliable and provide monotonically decreasing residuals.

The success of the GMRes iterative method, introduced by Saad and Schultz [61],

and its popularity due to its efficiency in solving nonsymmetric system of equations

make it attractive for the usage in tightly coupled multi-physics systems. The

GMRes algorithm generates a sequence of orthogonal vectors, and because the matrix

being inverted is not symmetric, short recurrence relations cannot be used as in the

case of the Conjugate Gradient algorithm. Instead, all previously computed vectors

in the orthogonal sequence have to be retained. In current study, the modified

Gram-Schmidt algorithm for orthogonalization is used instead of the classical Gram-

Schmidt algorithm in order to create a stable solver that is insensitive to roundoff

errors. In the GMRes algorithm, one matrix-vector product is required per iteration

and the matrix-free approximation introduced earlier in Eq. (3.76) can be used to

obtain the action of the Jacobian matrix on any vector. Detailed information on
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the exact numerics and implementation of GMRes in the MFNK framework can be

found in [23].

The cost of the GMRes algorithm strongly depends on the size of its Krylov

subspace that is created through the matrix-vector products. The memory cost in-

creases linearly with every iterations and the number of Inner-Products (IP) required

for orthogonalization increases quadratically. Hence, when solving large systems of

equations, it is necessary to limit the size of Krylov subspace used. To limit the

Krylov subspace size, a restarted variant of GMRes algorithm, GMRes(r), where r

is the size of Krylov space, can be employed.

Flexible versions of the restarted GMRes algorithm, FGMRes(r), are useful in

cases where the matrix-vector products are computed inexactly, and a need for robust

Krylov solvers that can provide monotonic convergence to the solution is necessary.

FGMRes(r) algorithm differs from the standard preconditioned GMRes(r) imple-

mentation by allowing variations in preconditioning at each iteration. This is espe-

cially important since the preconditioned solve at each Krylov iteration is performed

inexactly (varying number of iterations or tolerance for each preconditioner solve).

Because of these advantages, in the current research, FGMRes(r) is the preferred

linear solver for unsymmetric systems of equations.

Optimizations beyond restricting the size of the subspace r due to memory reasons

involve reducing the total number of linear iterations through the use of appropriate

preconditioners. A discussion of the preconditioner implementations and the options

available for different kinds of physics is provided next.

3.3.3 Preconditioners for the Linear Iteration

The preconditioner P is usually a good approximation of the Jacobian and should

be easier to form and solve as compared to the Jacobian matrix itself. The inher-

ently two-step process for this stage requires the computation of the action of P−1

on any vector v, rather than actually forming the preconditioning matrix itself. This
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algorithm can be made strictly Matrix-Free and studies for real-world problems pre-

viously [27] have shown possible increased efficiency when using this approach.

The right-preconditioned Matrix-Free Nonlinear-Krylov (MFNK) algorithm which

involves using Eq. (3.76) for the Jacobian-vector products and an appropriate nu-

merical or physics-based preconditioner results in a modified form of the non-linear

iteration. The right-preconditioned non-linear equation is given by

(JP−1)(PδZ) = −F(Z). (3.81)

The application of the right preconditioner requires only the action of JP−1 on any

Krylov vector v and has to be performed at each Krylov iteration. This is realized

in a two-step process:

1. First, apply the preconditioner and solve for w

JP−1w = −F. (3.82)

2. Next, the update is obtained by solving the linear system

PδZ = w. (3.83)

The right-preconditioned version of Eq. (3.76) is used to solve Eq. (3.82) and is

expressed as follows

JP−1v ≈ F(Z + ǫP−1v) − F(Z)

ǫ
(3.84)

where v is any GMRes vector. Upon convergence of the linear solve in Eq. (3.82),

one more preconditioner application is necessary using Eq. (3.83) to obtain the true

Newton update for the non-linear iteration.

Up until now, the algorithm has been described in a general fashion, in the

sense that the non-linear residual can be obtained after space-time discretization, the
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approximate action of the Jacobian on a vector can be computed using Eq. (3.84)

and finally an appropriate preconditioner P can be chosen to reduce the conditioning

number of the true Jacobian matrix.

Generally, preconditioners can be subdivided into two broad categories: Alge-

braic and physics-based preconditioners. The former deals with creating approximate

sparse inverse factorizations, using numerical strategies to reduce the spectral radius

of the linear system being solved. Some examples of such preconditioners include

Incomplete Cholesky(ℓ) factorization, Incomplete-LU(ℓ) factorization along with re-

verse Cuthill-Mckee (RCM) reorderings, Sparse Approximate Inverses (SPAI) [62],

Block-Jacobi splitting, Additive-Schwartz methods and Algebraic multigrid [63]. Al-

gebraic preconditioners are often times also referred to as ‘numerical’ precondition-

ers. Algebraic methods are often easier to develop and use, and are particularly well

suited for irregular problems that arise from discretizations involving unstructured

meshes of complicated geometries. Furthermore these Algebraic methods can be fine

tuned to make use of multi-processor architectures intricately in order gain improved

scalability in the solution procedure.

Alternately, with intuitive understanding of the governing physics PDEs, the ge-

ometry, boundary conditions and details of the discretization for the problem under

consideration, specialized preconditioners, usually based on physics-based OS lin-

earizations, can be devised and used as very efficient preconditioners to damp the

dominant modes, thereby leading to a well conditioned system. Multilevel methods

usually fall in this category since they solve ‘nearby’ problems based on lower order

discretizations. Few examples in this category of physics-based preconditioners in-

clude multigrid preconditioners [27], the method of Diffusion-Synthetic-Acceleration

(DSA) [64] often used as a preconditioner for Transport equation and Implicit Con-

tinuous Eulerian (ICE) [31] for near-incompressible fluid flow problems. These prob-

lems are usually optimal for specific types of problems and might not be effective as

generic preconditioners for all scenarios.
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Note that in these physics-based preconditioners, the use of Algebraic precon-

ditioners themselves is most often seen and hence such Algebraic preconditioners

can be considered as building blocks for more advanced preconditioners. In the cur-

rent work, both these approaches will be used in a mixed fashion, depending on

the problem being solved in order to reduce the total number of linear iterations in

Krylov solves. Also, care is needed while using preconditioners in a multi-processor

architecture since traditional sequential preconditioners may sometimes fail in these

scenarios. Hence, scalable preconditioners that can be used in both sequential and

parallel linear Krylov solvers are preferred. A thorough survey of many state-of-art

preconditioning methods used in computational physics problems was presented by

Benzi [65].

Below, a brief description at some specific physics-based preconditioning tech-

niques used in this research is provided and the reader is referred to previous work

on these techniques for further details.

3.3.4 Physics-based Preconditioners

Legacy codes written to tackle the mono-physics models typically contain approx-

imations for specific problems that usually result in increased efficiency even with a

little loss of generality. A physics-based preconditioner is usually derived by the lin-

earization of the non-linear physics components, in both the Elliptic and Hyperbolic

equations based on semi-implicit treatment of the stiff terms. Such intricate knowl-

edge of the physics systems for problems of interest can considerably improve the

efficiency of the simulation. In the context of utilizing the MFNK framework intro-

duced earlier, these algorithms that currently exist in such codes can accelerate the

linear solver convergence, thereby preserving man-years of testing and verification.
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3.3.4.1 Linearized Jacobian for Elliptic Systems

Consider the SS terms in the non-linear Elliptic system shown in Eq. (3.11),

linearized about the last non-linear iteration (∗) as

f(un+1) = q − (−~∇·D(~r, u∗)~∇un+1 + c(~r, u∗)un+1) ∀~r ∈ Ω. (3.85)

Let us define a new variable as δu = un+1 − u∗ which represents the true update for

the non-linear iteration. Then if the physics-based preconditioner P approximates

the Jacobian matrix for the non-linear Elliptic system, the preconditioner solve is

P(δu) = −f (3.86)

Substituting this definition into Eq. (3.85), we obtain

f(un+1) = q − (−~∇·D(~r, u∗)~∇(δu + u∗) + c(~r, u∗)(δu + u∗)) ∀~r ∈ Ω. (3.87)

Expanding and simplifying Eq. (3.87), results in a modified residual equation of

the form,

f(un+1) = f(u∗) − (−~∇·D(~r, u∗)~∇(δu) + c(~r, u∗)(δu)) = 0 ∀~r ∈ Ω. (3.88)

Hence in a Nonlinear-Krylov iteration framework, the coefficients D(r, u) and c(r, u)

are evaluated about the linearized point to yield a linear elliptic equation system

and the forcing function (source) for this linear equation for δu is f(u∗). Applying

the Continuous-Galerkin FE discretization to Eq. (3.88) results in the standard stiff-

ness and mass matrices along with appropriate boundary conditions applied to the

solution. Hence, the preconditioner iteration is simply, in this case,

(K∗ + M∗ + B∗)(δu) = f(u∗), (3.89)
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and the preconditioner matrix P = (K∗ + M∗ + B∗). Once this matrix is formed,

a Krylov method such as Conjugate Gradient (CG) or GMRes with appropriate

Algebraic preconditioners can be used to effective find the update for the solution

δu.

The linearized Jacobian matrix is an effective preconditioner when the lineariza-

tion point (*) is closer to the true non-linear solution. The use of Incomplete-

Cholesky and ILU factorization for symmetric and unsymmetric systems respectively

can considerably reduce the total cost of the preconditioner solve itself. The current

work utilizes such a linearized Jacobian matrix in conjunction with Algebraic pre-

conditioners for non-linear scalar/vector elliptic/parabolic equation systems in order

to reduce the total cost of FGMRes(r) Krylov solves.

3.3.4.2 Nearly Incompressible, Low-Mach Fluid Flow Systems

Fluid flows in reactor analysis problems fall under the low Mach (Ma) flow regime.

In the conservative variable formulation, as the flow velocity of the fluid decreases,

it is very difficult or almost impossible to solve low-speed flows with a conventional

compressible algorithm because of slow convergence. The difficulty in solving the

compressible equations for low Mach numbers is associated with the large disparity

between the acoustic wave speed and the waves propagating at the fluid speed,

which is called eigenvalue stiffness. To overcome this difficulty, several ideas have

been proposed. In the current study, we will specifically use the Implicit Continuous

Eulerian (ICE) scheme [31,32] for solving these low-speed problems. Some theoretical

asymptotic analysis on the semi-discrete Euler equations using the ICE scheme using

the implicit Backward-Euler method is shown in this section. The extension to higher

order ERK/IRK methods is trivial.
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Let us start with the non-linear inviscid Euler-like equations for unsteady fluid

flow in the conservative form. For generality, a source term is also included. The

equation system is given as:

∂U(x)

∂t
+

∂

∂x
F (U) = S(U), (3.90)

where

U =




ρ : Density

ρv : Momentum

E : Total energy


 ; F (U) =




ρv

ρv2 + P

vE + vP


 ,

and the source term S(U) is non-zero when solving manufactured problems (for

verification studies), when the effects due to friction and gravity are included or when

the fluid equations are coupled to energy transfer from a heated surface (conjugate

heat-transfer). The pressure P is usually given by the closure relation, the Equation

of State (EOS), in a linearized form as

P = P0 +
∂P

∂ρ

∣∣∣∣
0

ρ +
∂P

∂E

∣∣∣∣
0

E. (3.91)

The spatial discretization is performed using the Discontinuous Galerkin method

with appropriate numerical flux functions (Upwind flux or Rusanov flux). Higher

order spatial discretizations can be obtained by increasing the polynomial order of

the Legendre basis functions.

For simplicity, let us redefine the momentum variable as M = ρv. Then the

semi-discrete form of the equations, which are essentially the non-linear residual for

the continuity, momentum and energy equations, can be written as:

rC(n + 1) :
ρn+1 − ρn

∆t
+ ∂x (M)n+1 = SC (ρ,M,E)|n , (3.92)
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rM(n + 1) :

Mn+1 − Mn

∆t
+ ∂x

(
M2

ρ

)n

+ ∂xP
n+1 = SM (ρ,M,E)|n , (3.93)

rE(n + 1) :

En+1 − En

∆t
+ ∂x

(
Mn+1En + P n

ρn

)
= SE (ρ,M,E)|n , (3.94)

where SC , SM and SE are the continuity, momentum and energy source terms.

(Eq. (3.92))-(Eq. (3.94)) are the non-linear residual functions about the point

(n + 1). Now, choose a linearization point (*) that is typically chosen as the last

non-linear iteration, about which a change in the state variable can be defined. This

can then be given as

δρ = ρn+1 − ρ∗ (3.95)

δM = Mn+1 − M∗ (3.96)

δE = En+1 − E∗ (3.97)

δP = P n+1 − P ∗. (3.98)

Substituting these new variables in (3.92)-(3.94), the following conservation equations

for the delta form of the state variables are obtained.

δρ

∆t
+ ∂x (δM) = −r∗C (3.99)

δM

∆t
+ ∂xδP = −r∗M (3.100)

δE

∆t
+ ∂x

(
δM

(
E + P

ρ

)∗)
= −r∗E, (3.101)
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where the linearized discrete residuals evaluated at the linearization point (∗) are

r∗C =
ρ∗ − ρn

∆t
+ ∂x (M)∗ − SC(ρ∗,M∗, E∗), (3.102)

r∗M =
M∗ − Mn

∆t
+ ∂x

(
M2

ρ

)∗
+ ∂xP

∗ − SM(ρ∗,M∗, E∗), (3.103)

r∗E =
E∗ − En

∆t
+ +∂x

(
M∗E

∗ + P ∗

ρ∗

)
− SE(ρ∗,M∗, E∗), (3.104)

Note that the advection terms in the momentum Eq. (3.100) and energy Eq. (3.101)

conservation equations and along with the source terms have been linearized about

the point (*).

Rearranging the momentum equation Eq. (3.100), we obtain

δM = −∆t∂xδP − ∆tr∗M . (3.105)

This expression can then be substituted in the continuity Eq. (3.99) and the energy

Eq. (3.101) equations to obtain a system of equations in δρ, δE.

δρ = −∆t∂x (δM) − ∆tr∗C (3.106)

δE = −∆t∂x

(
δM

(
E + P

ρ

)∗)
− ∆tr∗E. (3.107)

Now using the linearized Equation of State (EOS) introduced in Eq. (3.91), we can

then substitute

δρ =
1

∂P
∂ρ

∣∣∣
0

(
δP − ∂P

∂E

∣∣∣∣
0

δE

)
. (3.108)

Substituting the above equation in Eq. (3.106), we get

δP =
∂P

∂E

∣∣∣∣
0

δE − ∂P

∂ρ

∣∣∣∣
0

(∆t∂x (δM) + ∆trC(∗)) . (3.109)
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Rearranging the above equation and substituting Eq. (3.107) and Eq. (3.105) for δM

and δE respectively, we get the semi-discrete form of the pressure Poisson equation,

given as

δP = ∆t ∂P
∂E

∣∣
0

(
∆t∂x

(
∂xδP + r∗M

(
E+P

ρ

)∗)
− r∗E

)

+∆t ∂P
∂ρ

∣∣∣
0
(∆t∂x (∂xδP + r∗M) − r∗C) , (3.110)

This system shown in Eq. (3.110) can be solved for δP and back-substituted to

obtain δM from Eq. (3.105), δE from Eq. (3.107), δρ from Eq. (3.106) respectively. It

is important to note that the new system expressed as an elliptic pressure equation is

exactly same as the original semi-discrete ICE linearized Euler equations. It is quite

clear that by doing the algebraic manipulation shown in Eq. (3.108) for EOS and

substitution of Eq. (3.105) into the continuity and energy equations, an equivalent

Gaussian elimination on a system of size 4N (δρ, δE, δM, δP ) has been performed

analytically to convert it to a block upper triangular form that is solved by back

substitution. Hence solving the original ICE system Eq. (3.99) – Eq. (3.101) and the

elliptic pressure equation Eq. (3.110) do yield the exact same result as long as the

spatial discretization of the PDE’s are consistent in both cases. Since the pressure

waves are resolved with an ICE solve, it results in eliminating all the dominant

eigenmodes occurring due to the pressure waves, i.e., acoustic scales in the medium.

Hence, the resulting system has a smaller spectral radius, especially for low-Mach

flows where the spread between the eigenvalues in the original non-linear fluid flow

equations is the quite large.

The gain in computational time when using ICE as a preconditioner and as a

solver by itself has been shown previously in [66]. Now let us consider the advantages

and disadvantages of the ICE preconditioner of size N introduced earlier (denoted

hereafter as N -ICE).
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Pros

1. The elliptic pressure matrix in the fully discrete form is clearly only N×N while

the original equation system was a 3N × 3N hyperbolic system. The gain in

terms of reduction in the size of the system, without any major approximations

or loss of accuracy therein makes this a valuable method in low-Mach regime

flow calculations.

2. Additional cost savings in terms of forming and solving the modified linear

system in Eq. (3.110) using Algebraic preconditioners can significantly decrease

total Krylov iterations for solving the Jacobian matrix.

Cons

1. It is difficult to maintain the consistency of the fully discrete ICE system w.r.t.

the original dG discretization of the non-linear hyperbolic system, due to the

requirements to evaluate the derivatives of momentum residuals in the right

hand side in Eq. (3.110). Care is needed if a consistent preconditioner is to be

created from the N -ICE system.

The N -ICE solver can typically be used as a solver by itself but the semi-implicit

treatment leads to conditional stability only. However, when used as a precondi-

tioner, the updates provided by such a linearization approximate the updates nec-

essary for the outer Newton iteration. Hence in low-Mach regimes, these schemes

are valuable to resolve the stiffness in the linear system quickly and, hence, act as

efficient preconditioners to reduce the total linear iterations, thereby requiring fewer

actions of the Jacobian on a Krylov vector.

3.4 Closing Remarks

In this section, we have covered the space-time discretization methods for dif-

ferent PDE systems and described the process along with the constraints to resolve
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the different spatial and temporal scales in multi-physics computations. Based on

these discretizations, the algorithm for a Matrix-free non-linear iteration method

based on finite-difference approximations was introduced. The available options for

using robust linear solvers along with different kinds of preconditioning techniques

to increase overall efficiency of the algorithm were presented.

The ability to precondition Newton-type iteration methods with Picard linearized

matrix falls under the category of multilevel preconditioning. This idea is at the core

of the proposed MFNK framework wherein consistent actions of a Jacobian matrix

on a vector are obtained through finite-difference approximations and inexpensive

physics-based linearizations open up the possibility to make use of existing legacy

code algorithms on top of powerful and scalable Algebraic preconditioners.

The current research implements all of these algorithms with help of some external

software, to accurately couple multi-physics models in a computationally efficient

unified code system.
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4. A NON-LINEAR MULTI-PHYSICS COUPLED CODE SYSTEM

‘The function of good software is to make the complex appear to be

simple.’

– Grady Booch

The methods for spatio-temporal discretization of different physics and the meth-

ods for tackling the non-linear system of coupled equations arising from the discretiza-

tion were introduced in Section. (3). Here, we describe the implementation of the

MFNK framework, from a software perspective.

Software engineering of a coupled multi-physics code involves several consider-

ations in the design and implementation of the interaction between different parts

of a code. Even though the numerics laid out in Section. (3) have a well defined

structure regarding coupling multi-physics models tightly, without careful planning

in the software design, even loosely coupled physics using the OS paradigm can be

quite complicated to implement. Hence, utilizing the different numerics and physics

models strongly depends on creating a software framework that is flexible, extendable

and follows a plug-in architecture that can evolve as new or better methodologies for

coupling multi-physics components are devised.

Some of the software requirements for a coupled multi-physics code framework

include:

1. To re-use existing libraries to minimize development time, and to base the

framework on already well verified discretization and non-linear/linear solver

libraries. This thought stems from the basic Object-Oriented (OO) philosophy

in avoiding code replication and modularizing implementation to accelerate

development and testing phases.

2. To provide flexible data containers and physics objects to facilitate and simplify

the evaluation of the non-linear residuals for different physics components.



70

3. To be able to use coarse grain physics models for rapid prototyping, testing and

verification and the functionality to interchangeably use higher fidelity physics

models to describe the physical phenomena in a straightforward fashion through

common API contracts, as and when required by problem constraints.

4. To be able to use within the same architecture, different kinds of multi-physics

coupling strategies with minimal changes from an end-user perspective. For in-

stance, using OS with simultaneous or staggered updates, or using OS with Pi-

card iterations to converge the coupling between physics, or employing MFNK

tight coupling approaches side-by-side without changing how the non-linear

residual describing the discretized PDEs is evaluated.

5. To have the flexibility to add different types of preconditioners, both Algebraic

and physics-based, for each of the different physics component models and

the option to choose how they are applied to reduce the total cost of linear

iterations.

6. To use of recent advances in computer engineering for state-of-the-art multi-

core, multi-processor parallel shared memory architectures that can signifi-

cantly reduce run times for simulation of a physical phenomena.

7. To make the coupled physics code system independent from any specific spatio-

temporal discretization. This involves the usage of different spatial discretiza-

tion with any temporal discretization allowing the possibility to verify the im-

plementation of the same equation system through more than one use-case.

The philosophy behind the software framework for multi-physics applications is

to “solve tightly coupled phenomena using a loosely coupled software methodology”.

The loosely coupled architecture is primarily made possible by requiring a software

contract or a defined set of methods to be implemented. This is often called the API

(Application Programming Interface) and needs to be defined clearly to allow future

extensions.
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In order to verify the numerical algorithms proposed in the current work, the

need for a new code system was inevitable. Efforts to address this has led to the

development of the karma framework (K(c)ode for Analysis of Reactor and other

Multi-physics Applications).

4.1 karma

karma is a fully implicit, non-linearly coupled multi-physics eigenvalue and tran-

sient analysis test-bed code written completely in C++ programming language. Its

primary intended application is to analyze and model coupled problems for nuclear

reactor applications although it is not only limited to this family of problems. karma

makes extensive use of the advanced OO concepts such as abstraction, encapsulation

and inheritance, to create loosely coupled objects that allow seamless integration of

new physics and numerics models.

The plug-in architecture employed in karma makes it straightforward to mod-

ify/add any number of coupled physics components. It also serves as a framework

to conduct experiments on code architectures and software design for the next gen-

eration of consistent coupled multiphysics codes. The framework can be used to

seamlessly integrate such physics models with consistent numerical algorithms that

were introduced for non-linear PDE systems. In creating such a flexible framework,

one of the prime concerns is the ability to achieve high levels of efficiency while still

maintaining the ease of development, testing and maintenance. Careful planning

of the computational domain has led to a decision to use well tested linear algebra

data-structures and methods in order to reduce the overhead in re-implementing

these standard algorithms, thereby eliminating the possibility of introducing errors

in these basic building blocks for the numerical algorithms proposed in the current

work. This also follows closely the OO principles and code re-use whenever possible,

thereby preserving man-years of effort pertaining to code verification.
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The requirements enumerated earlier are at the core of the design of the karma

framework. These abilities in a multi-physics physics code framework are considered

representative of current and future trends in solving coupled problems. Similar

motivations have also led to the recent development of other coupled multi-physics

codes like moose [67].

karma is built on top of the state-of-the-art scientific library PETSc, the Portable,

Extensible Toolkit for Scientific computation [68] from Argonne National Laboratory

(ANL), for fast, scalable and robust data-structures and solvers. It provides tools for

the parallel (and serial) numerical solution of PDEs that require solving large-scale,

sparse non-linear systems of equations. It includes non-linear and linear equation

solvers that employ a variety of Newton-type methods with line-search techniques

and Krylov subspace methods. It also offers several parallel vector formats and

sparse matrix formats, including compressed row, block compressed row, and block

diagonal storage. The primary advantage of using PETSc is that well tested black-

box methods and codes that can tackle non-linear systems arising from discretization

of Parabolic/Hyperbolic system of equations are obtained implicitly by just linking

with with the library. Also, usage of several different kinds of home-grown and ex-

ternal Algebraic preconditioners are obtained by interfacing karma with PETSc.

Since PETSc is designed to facilitate extensibility, users can incorporate customized

solvers and data structures when using the package. PETSc also provides an in-

terface to several external software packages, including Matlab, PVODE, and SPAI

and is fully usable from C and C++. Due to the advanced design, users can create

complete application programs for the parallel solution of non-linear PDEs without

writing much explicit message-passing code themselves. Parallel vectors and sparse

matrices can be easily and efficiently assembled through the mechanisms provided

by PETSc. Furthermore, PETSc enables a great deal of runtime control for the user

without any additional coding cost. The runtime options include control over the

choice of solvers, preconditioners and problem parameters as well as the generation
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of performance logs. Since karma uses PETSc, all programs using the framework

benefit from these ubiquitous options to control the program at a fine-grained level.

For instance, options can be specified whether to run a program using a completely

matrix-free approach with ‘-snes_mf’, where the action of the Jacobian is found

through Eq. (3.76) and no preconditioner is used to solve the coupled system. This

approach can lead to large number of Krylov iterations and hence adversely affect

the CPU time. Alternately, if an approximation to the Jacobian is available, then a

tightly coupled solution procedure can be used with the option ‘-snes_mf_operator’,

where the action of Jacobian is again through Eq. (3.76) but the preconditioner ma-

trix is created using the approximate Jacobian matrix representation which is usually

some form of linearization about the last Newton iteration (physics-based precondi-

tioner). Additional options using ‘-pc_type’ can be specified for the mode of solving

the preconditioner itself which can either be an Algebraic variation (ILU, ICC, AMG)

or using a much lower fidelity representation of the Jacobian matrix. Note that any

level of recursion in the level of preconditioning, depending on the problem, can be

implemented using such a MFNK technique based framework.

Efficient spatial discretizations using cG and dG FE methods along with FD and

FV methods can be implemented for each of the physics PDEs. karma currently

uses the general FEM library, libMesh [69]. It is written in C++ and provides

support for first and second order Lagrange, arbitrary order C0 hierarchic, C1 con-

tinuous and discontinuous finite element bases. libMesh also facilitates writing

dimension-independent code assembly of the non-linear residual and the Jacobian

matrix for each of the physics component, which greatly simplifies the verification

process for complex non-linear problems. libMesh has interfaces to the parallel

vector, matrices, linear algebra data-structures provided by PETSc, and hence re-

duces the overhead to write distributed algorithms that are capable of utilizing the

features inherently provided by PETSc.



74

karma also supports several different input and output formats that are conve-

nient to generate the correct geometry, assign material region attributes and specify

boundary markers. For convenience, in the current work, Gmsh [70] is used as the

primary mesh generator. Gmsh uses the popular Delaunay mesh generators namely

Triangle in 2-d and TetGen in 3-d. The parallel decomposition of the mesh can

be performed using ParMETIS [71] to minimize the net communication time for a

given geometry.

The chosen output format for writing out the solution fields is the VTK format [72]

which is supported by several visualization packages.

Optionally, karma can also be linked with a suite of eigensolvers exposed through

the SLEPc library [73] that is based on PETSc. These state-of-art eigensolvers can

handle symmetric and unsymmetric generalized eigenvalue problems that arise from

the discretization of the elliptic and hyperbolic systems. For instance, the eigenvalue

problem to find the fundamental mode in nuclear reactor design calculations is typi-

cally solved using the traditional Power Iteration method but we can also employ one

of the eigensolvers provided by SLEPc e.g., use the more efficient Krylov subspace

methods. The application of these solvers will be discussed in Section. (6).

Several other utility codes can also be optionally used to deal with XML and

CSV input/output formats. For instance, TinyXML [74], a small C++ library that

can handle reading, manipulation and writing of XML data with very little memory

overhead can be used for specifying input options through a file which is forwarded

to PETSc. And CSVParser can be employed as a parser to read and write Comma

Separated Values (CSV) to aid in reading data from spreadsheets like Excel or data

exported from MATLAB (csvwrite, csvread).

A schematic diagram showing these different parts of the karma framework and

their interaction with the above mentioned packages is shown in Fig. 4.1.
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Fig. 4.1. Schematic Diagram of karma Framework
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4.2 Modules in karma Framework

The karma framework has four modules that are responsible for the implemen-

tation of the numerical schemes discussed in Section. (3). Brief details regarding

each of these modules is given below.

1. INTERFACE: This module is the heart of karma and is responsible for manag-

ing the different physics components and applying the numerical discretizations

seamlessly to the coupled non-linear problem. Apart from maintaining a uni-

form interface to all the physics, it serves as the primary rendezvous point for

all user interactions to obtain the coupled non-linear residual or the approx-

imate Jacobian matrix. It also provides ‘C’ wrappers that serve as function

pointers in order to interface with the PETSc and SLEPc solvers for the non-

linear/linear and eigenvalue solvers respectively.

2. PHYSICS: This module contains all the physics descriptions, including the

non-linear residual, the approximate Jacobian matrix and preconditioners, if

any, that are spatially discretized forms of the corresponding physics PDE. All

the different Physics objects derive from KARMAPhysicsBase that specifies

the required methods that need to be implemented by all physics. Since this

contract is known a-priori, a generic code to solve the physics can be written

in the INTERFACE, making use of this polymorphic behavior for generating

non-linear residuals and preconditioners.

3. NUMERICS: This module comprises of the necessary spatial and temporal dis-

cretization objects that are used by the PHYSICS module to provide the dis-

cretized form of the PDE. The use of libMesh in the current work elimi-

nates additional overhead for spatial discretization. All necessary definitions

of temporal integration methods in the form of a Butcher Tableaux are avail-

able along with generic integrators for ERK, DIRK and FIRK methods with

adaptive time-stepping capability. This module also contains all the necessary
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higher level wrappers necessary to use the non-linear, linear, eigenvalue solvers

and preconditioners provided by PETSc and SLEPc libraries. These higher

level objects make use of the wrappers provided by INTERFACE internally

and hence the API provided by these objects remain the same, immaterial of

whether, say, FGMRes or CG, is used as a solver.

4. IO: As the name of the module suggests, it contains all the necessary interfaces

to the parsers and data writers to read/write the mesh format (msh), CSV,

XML, and VTK for input data processing and output data manipulation in a

generic fashion.

4.3 Solving a Non-linear Coupled Elliptic Problem

In this section, a step by step example of creating and solving a coupled elliptic

problem involving two physics components Phy1 and Phy2 is provided below.

4.3.1 Adding a New Physics

A new physics model can be added in a straightforward manner by just deriving

from the KARMAPhysicsBase class and implementing primarily three operators

that are essential to solve any physics component. These operators are given below.

1. SystemOperator: This operator implements the steady-state non-linear resid-

ual definition, which is essentially the spatially discretized PDE representing

the physics evaluated at a given time t. This operator may also optionally

provide an approximate Jacobian matrix, if it is easy to form. This matrix can

be invoked and used during a solve with the ‘-snes_mf_operator’ option. The

implementation of this operator completes the description of the SS form of

the problem.



78

2. MassOperator: This operator represents the mass matrix or a lumped ver-

sion of it, resulting from the spatial discretization of the time derivative term

for the Implicit Differential Equation Eq. (3.36). Note that this operator can ei-

ther be time dependent itself (property dependent mass matrix or mesh changes

with time) or be static, in which case it is only necessary to compute it once.

3. PreconditionerOperator: Any physics object can contain an array of

preconditioner operators. These can be viewed as multi-level preconditioners

where one could use P0 to precondition the approximate Jacobian matrix J

and P1 to precondition the solve for P0, and so on. In practice, this sort of

recursion might not be very efficient unless care is taken, for each physics, to

resolve the stiff components first and systematically reduce the modes that are

responsible for the high condition number of the true Jacobian matrix.

Once a physics system implements these three operators, the framework has all the

necessary information to solve the system. All the material properties are provided

through a problem context as function pointers and hence facilitate the use of arbi-

trary user-specified properties based on table lookups or correlations.

4.3.2 Writing a Non-linear Residual Function

The non-linear residual function that is part of the SystemOperator is at the

heart of any physics description since it represents the discretized PDE for the physics

model. Based on a sample implementation using libMesh library, a snippet C++

code is given for a single element residual assembly.

Let e be the finite element under consideration that is a subset of the discrete

mesh Γh. The local residual contribution can be computed based on the family of

basis functions used to discretize the solution field, the points and location of the

quadrature for element integration, and the degrees of freedom for the local solution
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unknowns. For a diffusion-reaction physics system, the different components of the

residual are obtained using Code Snippet 4.1.

for (unsigned int iqp=0; iqp<qrule.n_points(); iqp++)

{

qp = quadrature_point[iqp] ;

qp_solution = 0. ;

for (unsigned int i=0; i<phi.size(); i++)

qp_solution += phi[i][iqp] * solution(dof[i]) ;

// evaluate the properties at quadrature point with qp_solution

diffusion_coefficient = properties.Diffusion(qp, time,

qp_solution) ;

reaction_coefficient = properties.Reaction(qp, time, qp_solution

) ;

source_term = properties.Source(qp, time, qp_solution) ;

for (unsigned int i=0; i<phi.size(); i++)

{

Se(i) += JxW[iqp] * source_term * phi[i][iqp] ;

for (unsigned int j=0; j<phi.size(); j++)

Ae(i,j) += JxW[iqp] * (

diffusion_coefficient * dphi[i][iqp] * dphi[j][iqp] +

reaction_coefficient * phi[i][iqp] * phi[j][iqp]

);

}

}

Code Snippet 4.1 Element Residual Components

where JxW is the Jacobian for the element transformation multiplied by the quadra-

ture weight and the diffusion, reaction and source terms are computed at every
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quadrature point, based on the non-linear solution at those points. The variational

form of the diffusion-reaction problem yields the stiffness and mass matrices, which

are stored in Ae, while the source term is assembled and stored in the load vector Se.

With these computed contributions, the local SS residual is simply obtained by

performing a local assembly followed by multiplication with the local solution dofs,

as shown in Code Snippet 4.2.

for (unsigned int i=0; i<phi.size(); i++)

{

Re(i) = Se(i) ;

for (unsigned int j=0; j<phi.size(); j++)

Re(i) -= Ae(i,j)*solution(dof[i]) ;

}

Code Snippet 4.2 Residual Computation

It is obvious that all of the above steps for a single element are independent of

the next element and hence provide a great deal of inherent parallelism. Also, since

the basis functions and quadrature weights are calculated based on the problem’s

dimension, the residual contribution code is dimension-independent.

If the above physics was coupled to a solution from another physics, it is then

necessary to compute projection of the coupled physics solution on to the physical

quadrature points used in the element assembly. This is greatly simplified if the

coupled physics components use the same mesh since the projection operator is its

own interpolant but, in the case of multi-mesh scenarios Section. (3.1.3), the L2

projection of the solution with increased quadrature points will be necessary in order

to reduce the spatial coupling errors.

It is important to note that none of the above code snippets mandate any specific

discretization method to be used for the physics. A FD or FV method could have
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been implemented as well instead of the FE method shown above, as long as the

non-linear PDE is discretized accurately.

4.3.3 Obtaining Coupled Global Residuals

Once the individual physics components are computed, the driver code invokes

the residual function in the KARMAInterface object which then calls the non-linear

residual routines that are part of SystemOperator for each physics, as illustrated

in Code Snippet 4.3.

// distribute the provided solution vector to each physics

synchronize_physics_solution(X) ;

// loop over all the physics and compute the residuals

// and assemble it in the interface residual

for (; pos != end; ++pos)

{

// Get a reference to the current physics system using the

iterator

KARMAPhysicsBase* physics = pos->second ;

KARMAVector& phy_residual = physics->get_residual() ;

KARMAVector& phy_solution = physics->get_local_solution() ;

// call the residual function for the physics

physics->system_operator->residual (phy_solution, phy_residual);

}

// assemble the computed residual to the output vector

synchronize_interface_residual(R) ;

Code Snippet 4.3 Coupled Multi-physics Non-linear Residual Computation



82

The two synchronization routines namely synchronize_physics_solution

and synchronize_interface_residual merely copy data back and forth be-

tween the physics object and the interface that maintains a global vector (for all

physics). Hence, these residuals could be computed in a ‘black-box’ code and the

karma framework could be utilized to compute high-order coupled temporal so-

lution, provided that the coupled physics components are treated consistently (as

modeled in the PDE).

4.3.4 Summary

In order to compute the non-linear solution for the coupled problem, only the non-

linear residual vector is necessary. However, due to the inefficiency in this solution

procedure, a linearized form of Jacobian matrix can be computed, with a similar

implementation as 4.3.2 based on the nature of the physics.

Temporal discretization can be performed with any one of the ERK, DIRK or

FIRK methods (using constant time-stepping or adaptive time-stepping controllers)

available as part of karma package. With the SS non-linear residual f , Jacobian

matrix J and the MassOperator, Eq. (3.43) can be used to compute the time

evolution of the solution.

A pseudo-code for the calling stack from the driver to solve the coupled multi-

physics problem is shown below. This is general and can be extended easily to several

physics components:

1. Create discrete meshes for the physics: Ω1 and Ω2

2. Create physics objects: Phy1 and Phy2

3. Add coupled physics reference to one another

4. Intialize KARMAInterface and all physics objects Phyi ∀i = 1, 2

5. Set initial temporal solution
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6. Invoke the TemporalIntegrator to compute final step solution

• initialize and allocate intermediate stage vectors

• loop while time ≤ final_time

• solve the coupled non-linear problem at each stage

– use finite difference approximation for action of Jacobian on a vector

using Eq. (3.76)

– if option -snes_mf_operator is used, the approximate global Jacobian

is built based on the Jacobian matrix of the individual physics by ei-

ther ignoring the coupling terms in a Block-Jacobi fashion Eq. (3.72)

or variations of this operator with additional coupled terms in order

to resolve more stiff components. This problem-dependent precon-

ditioner formulation can be quite effective to reduce the number of

FGMRes iterations.

– if additional preconditioners are available for each physics, apply them

to the linear solves in the MFNK solution procedure

– perform non-linear Newton or Picard iteration until convergence

• if adaptive, compute new time step

• if requested, write solution fields to VTK file

• end

7. Write final solution fields to VTK file

Since command-line options are provided by karma to choose the type of cou-

pling strategy (loose (OS) or tight (MFNK)), comparisons on the performance of

each coupling strategy can be analyzed without changing any of the user code im-

plemented. This enables computation of sensitivity of a numerical method wrt the

coupling strategy for multi-physics problems.
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4.4 Closing Remarks

karma is designed with extensibility in mind and provides a flexible API to

couple an arbitrary physics modules together. These modules are written either as

part of the library itself or provided through an external code. Since different kinds

of coupling methods can be tested under one code system, karma serves as a very

valuable test-bed code to gain intuition on the optimal strategy for a particular multi-

physics simulation. Adaptive techniques in both space and time have already been

tested for few non-linear physics and these preliminary results show the feasibility of

extending these ideas to multi-physics coupled problems.
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5. RESULTS

‘What most experimenters take for granted before they begin their ex-

periments is infinitely more interesting than any results to which their

experiments lead.’

– Norbert Wiener

In previous sections, the numerical methods for coupled multi-physics problems

and the code framework implemented based on these methods to solve the non-

linear system of equations arising from the discretization of physics models have

been given. First, the verification of the methods and the code is necessary, in order

to understand the efficiency of these multi-physics coupling methods and to stress

the need for tightly coupled solution methods. Then, the efficacy of these tightly

coupled schemes will be analyzed for some problems that have multiple time scales.

The results section is organized as follows: First, each of the physics models

are tested for spatial and temporal consistency (convergence order); Next, verifica-

tion studies are performed for a conjugate heat-transfer model using semi-analytical

techniques that will be discussed in subsequent sections. For problems with widely

varying time scales, an efficacy (efficiency in terms of computational time versus accu-

racy of the solution fields) study is performed to analyze the computational gain due

to tightly coupled methods. The coupled treatment of neutronics/heat-conduction

physics is simulated next with problems that verify the implementation and quantify

the uncertainty propagation due to errors in cross-section data. In the same set-

ting, a stiff transient benchmark problem for the coupled neutronics/heat-conduction

physics is used to present the advantages in terms of accuracy and stability of using

MFNK tight coupling methods in contrast to traditional OS schemes.
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5.1 Solution Verification

Typically, the accuracy and convergence of numerical models are established by

using simplified problems for which analytical solutions are available. For time-

dependent coupled multiphysics problems, analytical solutions are more difficult to

obtain and we need to resort to (1) the Method of Manufactured Solutions (MMS) [75]

(2) semi-analytical methods [76] and (3) formal convergence order studies to check

behavior of discretization errors. In the current Dissertation, MMS problems are used

extensively to analyze and prove code correctness. The basic philosophy behind

MMS is as follows: an exact solution Uref, with enough smoothness in space and

time, is chosen a-priori and substituted into the continuous form of the PDE to

obtain a suitable forcing function (i.e., right-hand-side of the PDE) that is then

employed in the numerical simulation. Therefore, the numerically obtained values

can be compared to the exact ones, providing a measure of the error. Since the

discretization of the source terms are performed consistently in both space and time,

the discrete solution can be driven towards the exact solution as the mesh and time

step sizes are reduced. This procedure can be applied also for non-linear and coupled

physics problems and is an useful tool for verification purposes. The second leg of

the code verification is performed by using well established benchmarks involving the

physics component that need be tested.

The global error in a numerical solution Unum is usually measured in the L2 norm,

‖Error‖2 = ‖Uref − Unum‖2 = 2

√
1

|Ω|

∫

Ω

(Uref(r) − Unum(r))2 dr. (5.1)

A method is of order ps in space and order pt in time if the error varies as O(∆rps) and

O(∆tpt), respectively. The order of convergence in space is measured by computing

the global error in a transient simulation for which the spatial mesh is successively

refined. A small temporal grid is necessary to ensure that the temporal error is small

enough so that the error observed is due to the spatial grid only. A similar procedure
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holds for the temporal error calculation, where the spatial mesh is fine enough so

that the spatial errors do not pollute global error and successive simulations are per-

formed with uniformly refined time step sizes. The measurement of the error and the

comparison of the space/time accuracy orders obtained with expected convergence

rates prove that the code implementation is consistent with the mathematics and

that the numerical solution converges to the true solution of the PDE.

The MMS forcing functions used in the simulations are given in the Appendix

for different coupled physics scenarios. For further reading regarding the MMS, refer

to [75,77].

5.2 Verification of Individual Physics Models

In order to verify the implementation of the physics and the numerics models,

a step-by-step process is adopted. For verifying a coupled multi-physics code, we

first verify the single physics models, some of which are can be non-linear by them-

selves. To perform this step, analytical solution methods and/or the MMS techniques

explained earlier are utilized.

5.2.1 Nonlinear Scalar Parabolic Problem

A general scalar non-linear Parabolic PDE is considered and spatial/temporal

discretization of the equations are performed using cG with Lagrange basis functions

and ERK, IRK methods respectively. The verification studies for problems involving

such systems is shown here.
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5.2.1.1 Verification

Using the MMS technique, a dimension-independent non-linear heat conduction

problem is modeled. The thermal conductivity is chosen to be the non-linear func-

tional k(T ) = T 2. The exact solution is taken to be

T (~r, t) = tanh(t)
dim∏

i=1

sin(πri), (5.2)

where ~r = {x, y, z} and dim = 1, 2, 3. Because the exact solution is known, the

spatial and temporal error discretization can be readily quantified using Eq. (5.1).

This test is presented with linear and quadratic Lagrange basis functions for spa-

tial discretization, in a two-dimensional domain. As theoretically expected, second

and third order spatial convergence rates are observed for linear and quadratic La-

grange basis functions respectively, see Fig. 5.1(a). Using a fine spatial mesh, the

temporal order of accuracy for BE1(1), IM2(1) and the SDIRK3(2) schemes are ob-

tained and plotted in Fig. 5.1(b). We can clearly note that the non-linear solution

method based on the MFNK framework is high-order accurate in space and time

and presents the expected theoretical orders of accuracy based on the space/time

discretization.
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(b) Temporal Accuracy

Fig. 5.1. Non-linear Heat Conduction Problem: Spatial and Temporal Accuracy

5.2.2 Nonlinear Fluid Flow Problem

Next, the discretization of the problem arising from hyperbolic fluid flow equa-

tions are verified. We will consider a manufactured solution to verify accuracy and

discretization errors.After these verification studies, the efficiency of the ICE precon-

ditioner for the conservative equations is shown.

5.2.2.1 Verification

Using the MMS, profiles for the state variables are assumed and corresponding

forcing functions for the continuity, momentum and energy equations are derived.
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The exact solutions assumed for density, velocity and total energy [28] are shown

below

ρ = ρmin + (ρmax − ρmin) sech

(
x − ̟t

δ

)
(5.3)

v = vmin + (vmax − vmin) sech

(
x − ̟t

δ

)
(5.4)

E = Emin + (Emax − Emin) tanh

(
x − ̟t

δ

)
. (5.5)

The closure relation for the pressure equation was chosen to be the ideal gas equation

represented by

P = ρe(γ − 1), (5.6)

where γ = Cp

Cv
. Using these exact solutions and the equation of state, the source

terms for each conservation equation were obtained and the spatial and temporal

convergence orders were computed.
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(a) Spatial accuracy in ρ

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−10

−8

−6

−4

−2

0

2

4

LOG(∆ Ω)

LO
G

(E
rr

or
)

 

 

CONSTANT
LINEAR
QUADRATIC
SLOPE 1
SLOPE 2
SLOPE 3

(b) Spatial accuracy in ρU
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(c) Spatial accuracy in ρE

Fig. 5.2. Fluid Flow Problem: Spatial Accuracy

The 1-d Navier-Stokes equations are solved in a fully implicit manner using the

MFNK method. The spatial order of accuracy was measured for different polyno-

mial orders of Legendre basis functions with dG FEM discretization. The obtained

accuracy orders are as expected theoretically and prove that the spatial treatment

of the 1-d fluid equations are consistent. With a fine spatial mesh and second order

dG finite elements with Legendre basis functions, the temporal order of convergence

for density solution for a final time t = 2 sec. was obtained and plotted on Fig. 5.2.

The convergence plot for different methods is shown in Fig. 5.3.
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(b) Temporal accuracy in ρU
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(c) Temporal accuracy in ρE

Fig. 5.3. Fluid Flow Problem: Temporal Accuracy

5.3 Verification of Coupled Physics Models

Now that individual physics models have been verified, the next step involves

verifying the numerical solution for coupled problems based on a combination of

these single-physics models. The results obtained from these studies is shown in the

following subsections.

5.3.1 Coupled Conjugate Heat Transfer Example

Coupled conjugate heat-transfer problems are common in all thermal-hydraulic

calculations. These coupled phenomena are primarily boundary condition based and
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hence lead to locally strong coupling effects. First, the MMS is applied to verify the

implementation of such a coupled system of equations and then the efficacy of using

different kinds of coupling schemes for these problems is presented.

5.3.1.1 Verification

To verify conjugate heat transfer between a conducting solid and a fluid, we

employed a manufactured solution. A Matlab script was written to obtain the forcing

functions based on the following assumptions. The script is given in Appendix A.1.

The flow is assumed to be uni-directional along the z−direction with a constant

inlet mass flux. The Blasius correlation in the turbulent regime is used to compute

the friction factor fw:

fw =
0.3164

Re0.25
. (5.7)

where Re is the Reynolds number of the fluid.

Thermal conduction of energy in the bulk fluid is assumed to be absent and

energy is added to the fluid only at the wall surface (fluid-solid interface). The solid

heat conduction model is basically a x−z slab in Cartesian co-ordinate system which

convects the heat generated to the bulk fluid. The exact solutions for the fuel and

fluid temperatures, Tfuel and Tc, respectively, are given below.

Tfuel(x, z, t) =rF

(
1 + tanh(Ctf t)

)(
1
2

+ sin
(

π x
2LX

))

(
1 + tanh

(
2w
3
− wz

LZ

))
+ Tf0 (5.8)

Tc(z, t) =rT

(
1 + tanh (Ctc t)

)(
a + b tanh

(
−cw + wz

LZ

))
(5.9)

ρ(z, t) =ρc + f
(
1 − T (z,t)

Tc0

)
+ g
√

1 − T (z,t)
Tc0

. (5.10)
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The internal energy and total energies are given by

ρe =ρCvTc (5.11)

ρE =ρe + 1
2

G2

ρ
, (5.12)

where rT , Tf0, Ctf , rF , Tc0, Ctc, w, a, b, c, f, g are parameters to control the magnitude

and time scales of the solution. Cv is the specific heat at constant volume, G is the

mass flow rate.

The Equation of State employed to close the system of equations is a linearized

relation, dependent on density and temperature.

P = P0 + α(ρ − ρ0) + β (Tc − T0) , (5.13)

where α, β are the linearization constants. Note that α is actually related to the

speed of sound in the flowing medium and provides a simple way to manually change

the Mach number in the calculations, apart from varying the mass flux G itself.



95

−5.5 −5 −4.5 −4 −3.5 −3 −2.5
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

LOG(∆ Ω)

LO
G

(E
rr

or
)

 

 

LINEAR
QUADRATIC
SLOPE 1
SLOPE 2

(a) Spatial accuracy in ρ

−5.5 −5 −4.5 −4 −3.5 −3 −2.5
−3

−2

−1

0

1

2

3

4

5

6

LOG(∆ Ω)

LO
G

(E
rr

or
)

 

 

LINEAR
QUADRATIC
SLOPE 1
SLOPE 2

(b) Spatial accuracy in ρE
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ture

Fig. 5.4. Conjugate Heat Transfer Problem: Spatial Accuracy

Based on this manufactured solution, the forcing functions have been generated

and a convergence order study has been carried out for various levels of spatial and

temporal discretizations. The numerical solutions approach the true solutions as the

spatial and temporal meshes are refined, as expected. The convergence results, shown

in Fig. 5.4 and Fig. 5.5, prove that the implementation of the physics is verified and

demonstrate that higher-order accuracy can be obtained using the MFNK technique.
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(a) Temporal accuracy in ρ
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(b) Temporal accuracy in ρU
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(c) Temporal accuracy in ρE
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(d) Temporal accuracy in Fuel Tempera-

ture

Fig. 5.5. Conjugate Heat Transfer Problem: Temporal Accuracy

5.3.1.2 Efficacy

The conjugate heat transfer problem introduced earlier with MMS is used again

to test the efficacy of the coupling methods. By varying the temporal scales of

the exact solutions i.e., change the constants as Ctf = 1000Ctc. This forces the

evolution of the fuel temperature to occur at a much faster rate than the transient

in the fluid equations. In order to resolve this stiffness, we use the traditional OS

coupling strategy and the MFNK method with the L−stable SDIRK2(2), SDIRK3(3)

methods.
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The accuracy results obtained for a given spatial mesh is plotted against the total

computational time for the different coupling techniques in Fig. 5.6.

From the efficacy plot for the total energy field Fig. 5.6(b), it is evident that for

any given user-specified tolerance, the total cost for the solution procedure using OS

strategy with first order BE method is higher by several orders of magnitude. But

since the temporal evolution of fuel temperature occurs at a much faster rate, resolv-

ing the physical time scales required reducing the time step sizes for all the methods.

Once the asymptotic region was reached, the higher order MFNK methods quickly

reduce the error in the solution. For the temperature variable, for the same compu-

tational cost, the loosely coupled scheme is less accurate than MFNK based tightly

coupled solution by two orders of magnitude. This result indicates that for stiff

problems, once the dynamical physical scales are resolved, the higher order temporal

accuracy in the tightly coupled schemes do provide considerable computational gain.

It is also interesting to note that using a second order temporal method (CN) with

OS coupling saves computational due to the fact that there is only 1 implicit stage

while the SDIRK2(2) method has two stages per time step. These results indicate

that it is possible for OS schemes with high-order temporal methods to be feasible

in terms of efficiency, as compared to tightly coupled methods, when the time step

sizes are well below dynamical time scales of the individual physics.
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Fig. 5.6. Conjugate Heat Transfer Problem: Efficacy Study

5.3.2 Coupled Neutronics-Thermal Conduction Example

Neutronics and Heat conduction physics solution fields are strongly coupled to

each other through temperature dependent cross-section values and heat generation

from fission in the fuel. Since the coupling between these two physics models is strong,
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it is necessary to test the effectiveness of the coupling methodology to accurately

resolve the varying time and length scales. In this section, the coupled neutronics and

heat conduction physics models are verified by means of MMS. In the first case, the

same spatial discretization are applied to both physics ; in the second case, different

(non-embedded) spatial meshes are used to quantify the effect of non-conforming

meshes.

5.3.2.1 Verification: Identical Spatial Meshes

Making use of the MMS technique once again, a test problem is used to verify

convergence of the method to exact solutions. Since the coupling between neutronics

and conduction is non-linear and due to the fact that the conduction physics is

non-linear by itself, obtaining manufactured solutions can become quite intricate. A

Matlab script has been written to obtain the forcing functions based on the following

assumptions.

Two delayed neutron precursors groups are considered along with two energy

groups and one scalar temperature field. Hence, the total number of solution fields

is five. We give below the exact solution for the fields for the 2D test case:

φ1(x, y, t) =Aφ

(
1 + tanh(rφt)

)
sin(πx) sin(πy) xy (5.14)

φ2(x, y, t) =φ1(x, y, t) × Σs,1→2

(Σrem,2+D2B2
g)

(5.15)

Ci(x, y, t) =Ci(x, y, 0)e−λit +

∫ t

0

ds eλi(s−t)

g=2∑

g=1

βi,gνΣf,gφg(x, y, s) (5.16)

T (x, y, t) =AT

(
1 + tanh(rT t)

)
sin(πx) sin(πy), (5.17)

where B2
g = ( π

LX
)2+( π

LY
)2 is the geometric buckling term, LX and LY are the domain

sizes in the x and y dimensions. Aφ, rφ, AT and rT are constant parameters. Using
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the exact solutions for the fluxes, the exact solutions for the precursors, Ci, can easily

be obtained and are given by

Ci(x, y, 0) =
1

λi

g=2∑

g=1

βi,gνΣf,gφg(x, y, 0), i = 1, 2. (5.18)

Doppler feedback is accounted in the neutronics model through the removal cross-

section of group 1:

Σrem,1(T ) = Σrem,1(T0) +
∂Σrem

∂
√

T

∣∣∣∣
0

(
√

T −
√

T0). (5.19)

The following equation is employed to described the temperature-dependent conduc-

tivity:

k(T ) = k0 +
∂k

∂T

∣∣∣∣
0

(T − T0). (5.20)

The Matlab script used to obtained the forcing functions is given in Appendix

A.2. Note that here only the fast energy group’s removal cross-section is affected by

temperature variations. Additional temperature dependencies can be included in the

removal and fission cross-sections for both groups using the provided script. With the

knowledge of the exact solution profiles and the corresponding forcing functions, a

space/time convergence study is carried out. The convergence plots for this example

are shown in Fig. 5.7 and Fig. 5.8.
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Fig. 5.7. Coupled Neutronics/Heat Conduction Problem: Spatial Accuracy

It is clear from the results that the solution fields for all physics components are

high-order accurate in space and time and agree well with theoretical convergence

rates. By varying the coupling coefficient ∂Σrem

∂
√

T
in Eq. (5.19), and other free param-

eters such as rφ, rT , 1/v1, 1/v2, stiffer transients were created and convergence to the

true solution was observed still. The higher order temporal schemes are efficient and

the stiffly-accurate SDIRK schemes prove to be superior than traditional low-order

BE scheme.
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Fig. 5.8. Coupled Neutronics/Heat Conduction Problem: Temporal Accuracy

5.3.2.2 Verification: Non-embedded Spatial Meshes

Multi-physics applications often require that different physics components em-

ploy different spatial meshes, which resolve the spatial scales occurring in the spe-

cific physics. Even though a complete study of this question is not covered in this

Dissertation and requires extensive work all by itself, an example is provided here

for the coupled neutronics/heat conduction physics utilizing different spatial meshes;

see Fig. 5.9. Note that the meshes are not embedded (when meshes are embedded,

projection and interpolation operators are simpler to define).
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(a) Neutronics Mesh

(b) Conduction Mesh

Fig. 5.9. Coupled Neutronics/Heat Conduction Problem: Non-conforming Meshes

As detailed in Section 3.1.3, the spatial coupling error that may occur due to

inadequate projection/interpolation in between source/target meshes can be avoided

by employing a ‘high-enough’ numerical quadrature in the finite element setting. It

is important to verify that mitigation of the interpolation errors is possible by using
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high order quadratures. In this example, the same test problem with MMS from

Section 5.3.2.1 is considered but different spatial meshes are employed.

The exact solution profiles for the two physics components show that their spatial

scales vary differently. Without the use of high-order quadratures, the interpolation

error start to dominate and corrupt the numerical solution from reaching asymptotic

spatial convergence orders. In order to eliminate this, high-order quadrature rules are

employed to overkill the spatial errors due to solution interpolation and projection on

a target mesh, as indicated in Section 3.1.3. Fig. 5.10 shows that high-order spatial

convergence is recovered, as expected, for the MMS by using more quadrature points

to resolve the variation in the coupled solution. This is only a preliminary study with

multi-mesh for multi-physics software verification and further analysis is needed to

test the efficiency of the technique employed in the Dissertation.
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Fig. 5.10. Coupled Neutronics/Heat Conduction Problem with Non-
conforming Meshes: Spatial Accuracy

5.3.2.3 Efficacy

A rod ejection benchmark problem from the ANL problem book [78] (Identifi-

cation: 14-A1) is considered here to verify the coupling method described in this
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Dissertation. This is a super-prompt critical transient with adiabatic heating and

Doppler feedback for a thermal reactor model. In contrast with the previous MMS

test cases, the time scales change quite drastically over the transient and it is expected

that higher order time stepping schemes would outperform low-order schemes. In

this simulation, the total power level changes by over 10 orders of magnitude. The

adiabatic heating assumption is also numerically challenging: since no dissipative

terms are present, the errors introduced in computing the temperature field can

grow undamped with inconsistent numerical treatment, thereby requiring accurate

coupling and time stepping methods.

Based on the described geometry, the domain was discretized using second-order

triangular Lagrange finite element, as shown in Fig. 5.11. The initial steady state

eigenvalue obtained is keff = 0.99636 41531 80855 for the given spatial mesh and it

closely matches the reference value. The transient calculation was performed using

various combinations of coupling and temporal discretization schemes: OS-BE1(1),

OS-IM2(1), MFNK-BE1(1), MFNK-IM2(1), MFNK-SDIRK3(2). The reference so-

lution was calculated with a fine spatial mesh and a 3–rd order L−stable SDIRK

scheme SDIRK3(3) with ∆t = 0.001 secs. The results obtained from these the ref-

erence simulation for the fast and thermal flux distributions are shown in Fig. 5.12

and the transient evolution in Fig. 5.13. It is interesting to note that the profile

peak power solution does not match the benchmark solution but considering that

low order discretizations with coarse spatial meshes were used in the benchmark, it

is possible that the true converged solution is the one given here. Ryosuke et al. [79]

noticed similar temporal evolution of the solution fields and the code to code veri-

fication of karma with the PRONGHORN software gives confidence in the results

obtained here.
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Fig. 5.11. Super-prompt Critical Benchmark Problem: Geometry
and Computational Mesh

All the tightly coupled simulations (MFNK-based solves) use ∆t = 0.004 secs.

The OS simulations had to employ a much smaller time step of ∆t = 10−4 secs

in order to converge; indeed, the explicit linearization of the OS schemes led the

solution to diverge with large time steps. Fig. 5.14 shows a closer view of the power

peak due to the rod ejection transient.
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Fig. 5.12. Super-prompt Critical Benchmark Problem: Fast(left)
and Thermal(right) Flux Profiles at t = 0 (top) and t = 3 secs
(bottom)

It is clear that the first-order BE1(1) scheme, even with tight coupling, i.e.,

MFNK-BE1(1), wrongly computes the magnitude and time of occurrence in the

power peak. This trend with BE1(1) can also be seen with the OS coupled strategy,

even with the much smaller time step used for OS schemes. The higher order schemes,

IM2(1) and SDIRK3(2), approach the reference solution consistently as time step

sizes are reduced and predict the occurrence of the peak power accurately.
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Fig. 5.13. Super-prompt Critical Benchmark Problem: Power Transient

Fig. 5.14. Super-prompt Critical Benchmark Problem: Power Tran-
sient with Different Numerical Schemes

These results emphasize the usefulness of employing higher-order temporal inte-

gration schemes to predict the behavior of stiff transients that can occur in nuclear
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reactors. The usage of a tight coupling strategy allows to use larger time steps than

OS schemes, due to the fully resolved non-linearities at each time step, which can

be used in combination with adaptive time-stepping techniques to reduce the total

computational times.

5.4 Uncertainty Quantification for Multi-physics Problems

Uncertainty quantification is necessary even for single-physics simulations and it

is imperative to perform this analyses for multi-physics problems in order to gain

better understanding on weak versus strong coupling between the physics. Aleatory

and Epistemic uncertainty contributions can occur from a variety of sources. They

can stem from physical model errors, data uncertainty errors, numerical errors due to

inaccurate geometry descriptions, resolution of spatial and temporal scales, numeri-

cal errors from coupling methodologies to name a few, apart from Epistemic errors

that are inherent to the system being modeled. In the current work, uncertainty

propagation in the solution specifically due to material properties which are usually

obtained through experiments and/or higher fidelity models with necessary approx-

imations and homogenizations, is analyzed. Since the properties used in numerical

simulations depend heavily on closure relations and empirical correlations, the prop-

agation of error and uncertainty in the solution fields need to be ascertained. It is

also important to note that the uncertainities introduced in the solution obtained

from simulations are irreducible, even with a fine resolution of spatial or temporal

scales when there is an uncertainty in the data.

Uncertainty quantification in the solution due to these variables following certain

distributions can then be performed using several mature methods. One popular

and less intrusive option is the Generalized Polynomial Chaos (GPC) method [80].

GPC is in essence a decomposition method where an uncertain output variable of
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interest Z is expressed in terms of a basis Φ of a stochastic space consisting of random

variables ζ = {ζ1 . . . , ζn},

Z(t, ζ) =
∑

n

Zn(t)Φn(ζ) (5.21)

where ζ can be described by either a Gaussian, Gamma or Uniform distribution. For

most problems, where the true distribution is not known, a Gaussian distribution

can be chosen to represent the random variable. In this case, Hermite polynomials

are used as basis functions Φi and are given by

Hn(x) = Φn(x) = (−1)nex2 dn

dxn
(e−x2

) (5.22)

where n is the order of the Hermite polynomial and x is the random variable of

interest. GPC methods have exponential convergence as the order of the polynomials

p is increased. Further information can be obtained from references [81,82].

The application of a GPC method of order p, GPC(p), to the coupled neutronics-

conduction model problem is studied here. The introduction of the dependency on

the randomness of the properties adds another dimension to the system of equations.

Hence, the coupled physics solution fields are also functions of the stochastic variation

in these random input variables. In other words, Eq. (5.21) can be rewritten in terms

of random variables ζ as

Z(t, ζ) = C0 +
∑

j

Cj(t)H1(ζj) +
∑

j

Cj(t)
∏

k

H2(ζk) + . . . (5.23)

where Cj are the coefficients of the expansion and can be computed making use

of the orthogonality property of Hermite polynomials. In Eq. (5.23), the coefficients

Cj are essentially the moments of the jth order Hermite polynomial. Note that the

zero’th moment C0 represents the mean value of the physics solution Z when all

the random variables ζ are at their mean values. In order to obtain the coefficients,
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Eq. (5.23) can be multiplied by a Hermite polynomial of certain order and integrated

from −∞ to ∞, and using orthogonality relation, we have

Ci =

∫ ∞

−∞
dζe−

∑
j ζ2

j

2 Z(t, ζ)Hn(ζ) (5.24)

Note that in Eq. (5.24), the solution Z(t, ζ) is obtained from code results using a

random sample for the input variable based on its distribution. The actual integral

in Eq. (5.24) is computed using numerical quadrature rules, leading to non-intrusive

uncertainty quantification methodology. Gauss-Hermite quadrature rules are used

for the numerical integration and the order of the quadrature chosen should be high

enough to compute the integral exactly. For instance, to compute the GPC(2) coef-

ficients, a Gauss-Hermite quadrature rule that can exactly integrate a fourth order

polynomial (three point quadrature rule, qp=3) is required. Hence the total number

of simulations necessary, after optimizations to eliminate recurrent cross-term effects,

is in the order of n ∗ p ∗ qp where n is the number of input random variables. Once

the required simulations are computed, the coefficients Ci can be computed and the

output variables of interest can be found using the basis Eq. (5.23).

Alternately, Monte-Carlo based sampling procedure are efficient at providing ac-

curate statistical information regarding the uncertainty in the models. But since

Monte-Carlo based sampling methods require large number of samples (or model

runs), it is prohibitive to directly perform the simulation for every sample. We can

instead use the basis obtained through GPC(p) polynomial and then use this as

a surrogate model to obtain the required statistical data for each output variable

of interest, along with their respective Probability Distribution Functions (PDF).

Using such surrogate modeling methodology designed specifically for propagating

uncertainty from model inputs to model outputs, a quantitative analysis can be

performed and better confidence in simulation predictions can be gained.

A super prompt-critical transient problem is considered here, along the lines of the

previous ANL benchmark. This 2-d, two energy-group, two delayed-group neutron
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diffusion problem with Doppler feedback has a variation in the thermal absorption

cross-section defined by the relation:

Σrem,2(T ) = Σrem,2(T0) +
∂Σrem

∂
√

T

∣∣∣∣
0

(
√

T −
√

T0) +
∂Σrem

∂T

∣∣∣∣
0

(T − T0). (5.25)

The geometry of the problem essentially consists of a rodded fuel element surrounded

by unrodded fuel which is encompassed in a lattice of reflector assemblies. This is

shown in Fig. 5.15. The material properties are obtained from MATPRO correlations

for UO2 fuel with 95% theoretical density [83]. The transient is initiated by changing

the thermal fission cross-section for the rodded fuel element through a ramp duration

of 0.1 seconds. The solution profiles for the fast and thermal fluxes at SS conditions

is shown in Fig. 5.16.

Fig. 5.15. Uncertainty Quantification Test Problem: Geometry and
Computational Mesh
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Four random input variables are chosen with the following Gaussian distributions:

Σrem,2(T0)|rod+fuel = N(0.2231, 5%) (5.26)

Σrem,2(T0)|fuel = N(0.09194, 5%) (5.27)

∂Σrem

∂
√

T
= N(0.002043, 10%) (5.28)

∂Σrem

∂T
= N(5 × 10−6, 10%) (5.29)

and the uncertainty in three specific solution fields namely, keff, the total maximum

power in the transient, and the peak fuel temperature, are sought after.

A second order GPC expansion (p = 2) is considered along with the possible

cross-terms to account for propagation of errors due to complex interplay of different

physics. In order to efficiently compute the analytical integrals arising from the GPC

basis expansions to compute the coefficients, a high-order Gauss-Hermite quadrature

rule is used to eliminate any integration errors.
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(a) Fast flux

(b) Thermal flux

Fig. 5.16. Uncertainty Quantification Test Problem: Initial Solution Profiles

Once a reference spatial mesh is determined, the mean solution fields with all

input random variables at their probable mean values are found. Then, each random

variable is perturbed by a factor of 10−6 sequentially and the corresponding change in

the solution fields is found. This measure of the global sensitivity of the solution fields

w.r.t these random variables is given in Table 5.1. Since the current test problem is
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at hot zero power conditions (initial fuel temperature = 300 C), the eigenvalue keff

is not dependent on the coupling with temperature in the fuel. But all the transient

parameters namely, the peak power and maximum fuel temperature, are strongly

sensitive to the doppler coefficient ∂Σrem

∂
√

T
. The values themselves in Table 5.1 are

specific for the problem considered here and can change depending on the mean, the

deviation and the chosen input distribution.

Table 5.1

Relative sensitivity values for the output variables depending on the
input random variables

Output variable Σrem,2(T0)|rod+fuel Σrem,2(T0)|fuel
∂Σrem

∂
√

T
∂Σrem

∂T

keff -0.3173834 -8.4336155 0 0

Peak Total Power -12.156938 28.4867 -551.53479 -11.8566

Peak Temperature -6.74126 15.06638 -1.046647E6 -2.61168E4

For the transient simulated here, the stability limit for traditional OS coupling

was found to be around ∆t = 0.02 by experiment i.e., the OS strategy needed

time step sizes smaller than ∆t = 0.02 to obtain a stable numerical solution. We

use both the tightly coupled and OS based loosely coupled methods for the same

transient with this stability limit step size. Based on the simulation results, the

output variable expansion coefficients were computed and a surrogate model based

on the expansion in Hermite polynomial basis was created. This surrogate model was

then used with Monte-Carlo sampling techniques with 5× 106 samples to obtain the

mean and deviation in the output variables given in Table 5.2 and the corresponding

Probability/Cumulative Distribution Functions shown in Fig. 5.17 for both OS and

tight coupling based solutions.
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(a) Probability Distribution Function

(b) Cumulative Distribution Function

Fig. 5.17. Uncertainty Quantification Test Problem: Distribution
Functions for Output Variables
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It is evident from the peak total power distribution plots that the loosely cou-

pled schemes have a different distribution than the true solution distribution (tightly

coupled). As the time step size is decreased, this disparity does vanish since the

OS linearization for coupled physics terms becomes more accurate. It is possible to

use Richardson extrapolation technique to compute the time step independent coeffi-

cients Cj to eliminate the corruption of temporal errors in estimating the uncertainty

due to input random variables, which provides the new possibility to obtain better

prediction of the output uncertainty with OS coupling schemes.

Table 5.2

Mean and standard deviations for output variables

Coupling keff Peak Total Power Peak Temperature

OS N(0.9999867970, 0.019539) N(177685.35,23178.69) N(3968.08,295.6)

MFNK N(0.9999867970, 0.019539) N(167900.83,20936.29) N(3939.17,290.3)

Since traditional multi-physics codes use loose coupled schemes, the predicted

mean and the standard deviation for the range of input distribution are conservative

(mean power and temperature are higher). In reactor design and safety calculations,

the margins calculated using these can then restrict the design and reduce the total

thermal power output. Even though the problem posed here is not a full reactor

core configuration, the results obtained suggest that improvements based on tightly

coupled methods can lead to improved margin characterization. Further studies are

needed using higher order GPC expansions and different time step sizes in order to

reduce the total uncertainty in the output variables and to gain better intuition on

uncertainty quantification of multi-physics problems.
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6. APPLICATION OF KARMA TO ALTERNATE PROBLEMS

‘If you wish to advance into the infinite, explore the finite in all directions.’

– Johann Wolfgang von Goethe

In this section, the application of the karma framework to a different variety of

non-linear multi-physics problems, other than those that occur in nuclear reactors

transients, is explored. The flexibility of the framework and the versatility of the

applications of the implemented code are demonstrated using these problems. First,

the application of the Newton’s method for eigenproblems is shown followed by a stiff

system of coupled equations occurring in radiation-diffusion problems. The theory

and results obtained from these problems are shown here.

6.1 Criticality Eigenproblem and Modal Analysis

Large algebraic eigenvalue problems often arise in nuclear engineering applica-

tions. In reactor physics, criticality problems typically require the calculation of the

fundamental eigenvalue and associated eigenmode to determine cycle lengths, reac-

tivity margins and power distributions. For analyzing the unstable patterns encoun-

tered in Boiling Water Reactors (BWR) [84, 85], often modal analysis is performed

that requires solutions to large eigenvalue problems. Reactor instabilities are local

power variations occurring due to periodic flow oscillations and can sometimes grow

undamped. In stability studies, not only the fundamental mode but also higher-order

eigenmodes are needed in order to predict core behavior accurately.

Fast and accurate numerical methods to obtain the fundamental mode and to

perform modal analysis for reactor instabilities are an ongoing topic of research;

see, e.g., [86,87,88,89,90]. In the current section, we underscore the link between all

eigenproblems with constrained non-linear optimization problems and take advantage

of this reformulation to use the Newton’s method for solving the eigenproblems.
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This lends the possibility to use the existing MFNK framework introduced earlier in

Section. (3).

Now let us consider the eigenproblems encountered in reactor physics based on

the Multi-group Neutron Diffusion (MGND) equation given below:

−~∇·Dg(~r)~∇Φg(~r) + Σg
r(~r)Φ

g(~r) −
∑

g′ 6=g

Σg′→g
s (~r)Φg′(~r)

=
1

λ
χg

G∑

g′=1

νΣg′

f (~r)Φg′(~r) ∀g = 1, . . . , G, for ~r ∈ D. (6.1)

In addition to Eq. (6.1), which is defined in the reactor domain Ω, boundary con-

ditions are supplied on the domain’s boundary ∂Ω. The boundary conditions are

typically of homogeneous Dirichlet-type (zero flux) or of homogeneous Neumann-

type (symmetry lines).

After spatial discretization using cG FEM, the above multigroup equations can

be recast in a discrete operator form

Lφm =
1

λm

Fφm, (6.2)

where L is the multigroup loss operator containing leakage, absorption and scattering

terms, F is the multigroup production operator containing the fission terms, λm is

the mth eigenvalue and φm is the mth (multigroup) eigenmode associated with the
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λm eigenvalue. The pair (λm, φm) will be denoted hereafter as the mth eigenpair.

The block structure of the L discrete operator is

L =




L1 0 . . . 0

−L2,1 L2 0 . . . 0
...

...
. . . 0 . . . 0

−Lt,1 −Lt,2 . . . Lt −Lt,t+1 . . . −Lt,G

...
. . . . . .

...

−LG1 . . . −LG,G−1 LG




(6.3)

where the row index t denotes the first thermal energy group, i.e., the first group for

which up-scattering is present. The diagonal blocks Li represent the discrete form

of −~∇·Di~∇+ Σi
r whereas the off-diagonal blocks Li,j represent down-/up-scattering

operator Σj→i
s . Similarly, blocks Fi,j are the discrete representation of χiνΣj

f . Each

block in L and F is a real and sparse matrix of size n × n with n denoting the

number of spatial unknowns. It is also important to note that matrix L is not

symmetric due to the non-symmetric scattering processes in between energy groups.

The problem dimension N = n × G is large (for moderately coarse 3D 2-group

diffusion calculations, N is of the order of, at least, 50,000 unknowns.) The m-th

eigenfunction is a multigroup vector: φm = [φ1
m, . . . , φG

m]T , where each component

φg
m is a vector of length n.

The following ordering of eigenvalues is chosen: |λ1| > |λ2| ≥ |λ3| ≥ ... ≥
|λN−1| ≥ |λN |, where we have indicated the uniqueness of the largest eigenvalue

in neutronics applications [91]. Out of the N eigenmodes, the first (fundamental)

mode predicts the critical core configuration (in neutronics, it is customarily to let

λ1 = keff, where keff is the effective multiplication factor) and higher modes dictate

the behavior of the system during a transient. Since higher modes decay away in

comparatively shorter time periods as the mode index number increases, only a subset

of the higher-order modes are needed in practical applications.
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Eq. (6.2) can be symbolically transformed by left multiplication with L−1 to

obtain a standard unsymmetric eigenvalue problem of the form

Mφn = λnφn, (6.4)

with M = L−1F .

The generalized eigenvalue problem of Eq. (6.2) is only reformulated as Eq. (6.4)

for notational simplicity and M is never directly computed and stored due to the large

memory requirements (i.e., L−1 is never computed explicitly.) To simplify notations,

the standard eigenvalue problem, Eq. (6.4), will be used hereafter, although it is

important to note that each matrix-vector (matvec) product of the form z = Mx

requires (i) one matvec operation y = Fx followed by (ii) a linear solve Lz = y

for z. Traditionally, the solve of the loss operator L is performed by recursively

sweeping through the energy groups in a Block-Gauss-Seidel (BGS) fashion until

convergence. Hence, we will consider one such BGS sweep as the primary work unit

and performance parameter for the different algorithms tested in computing several

eigenmodes.

In most existing reactor analysis codes, the Power Iteration (PI) [92] method has

been used to obtain the largest eigenvalue. By using deflation techniques or spectral

shifting techniques [92] with the PI method, higher eigenmodes can be obtained,

albeit with decreasing accuracy. This is due to the fact that performing deflation

very accurately is computationally expensive and any inaccuracy introduced in this

process, i.e., in the previous modes, can result in the corruption of the deflated system

for higher-modes, thereby making it difficult to recover the true eigenmodes.

Recently, Krylov-subspace iteration methods have been proposed as alternatives

to the PI method to compute several dominant eigenmodes, e.g., the subspace pro-

jection method with locking of converged eigenvectors [93], the explicit Arnoldi it-

eration [73, 90], the implicit restarted Arnoldi method (IRAM) [94, 95, 96, 97, 98],

the Jacobi-Davidson method [99,88,100]. Subspace methods for eigenproblems have
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been described and reviewed by several authors in the mathematics and numerical

analysis communities; see, for instance, [101,102].

The approach employed in the current work aims to employ the existing frame-

work based on MFNK technique in order to find multiple eigenmodes accurately. This

methodology is based on hybridizing the traditional techniques for solving eigenvalue

problems with a variant of inexact Newton’s method. In order to underscore the link

between eigenproblems with optimization problems tackled using Newton’s method,

consider the following Rayleigh quotient functional (a non-linear functional) for a

given Hermitian matrix A, defined as:

R(φ) =
φT Aφ

φT φ
for φ 6= 0. (6.5)

The minimization of the Rayleigh quotient requires satisfying the optimality condi-

tion

∇R(φ) = 0 =
2

φT φ
(Aφ − R(φ)φ) . (6.6)

This optimality condition is solved using Newton’s method

[∇2R(φl)]δφ = −∇R(φl) (6.7)

φl+1 =φl + δφ, (6.8)

where ∇2R is the Hessian matrix of the Rayleigh quotient functional, or equivalently

the Jacobian matrix of the optimality condition, Eq. (6.6). These simple lines of

algebra may facilitate establishing the relationship between eigenproblems and New-

ton’s method, which will be discussed in section 6.1.2, where we propose a hybrid

scheme that combines Newton’s method and subspace iteration eigensolvers in order

to compute, with high accuracy, a large number of eigenmodes for nuclear reactor

analysis problems. Furthermore, the non-linear solves of Newton’s method will be

performed in a matrix-free fashion to avoid computing the possible expensive matrix
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∇2Q. Finally, recall that matrix M is never formed, and only the action of the linear

system on a vector is realized. Hence for improved efficiency, preconditioned versions

of the matrix-free Newton’s method are applied.

6.1.1 Review on Existing Schemes to Compute Multiple Eigenmodes

Various subspace iteration eigensolvers applying a Rayleigh-Ritz projection have

become popular over the recent years to determine several dominant eigenmodes

in nuclear reactor applications; several references of such work were given in the

introduction. In their simplest forms, they generate Krylov subspaces by repeatedly

multiplying matrix M with a basis vector, and in that sense can be thought of

generalizations of the power iteration method. To reduce the size of the Krylov

space needed to compute several eigenvalues near a portion of the eigenspectrum,

some appropriate shifting strategies can be employed. Similar shifting strategies can

also be used in the simple PI method to obtain eigenvalues with a faster convergence.

A brief review of the PI and Krylov-subspace family of methods are given below.

6.1.1.1 Standard Power Iteration

In most reactor design and analysis codes currently in use, some form of modi-

fied/accelerated Power Iteration (PI) technique is employed to find the fundamental

eigenvalue (λ1) and the associated eigenmode. Such a procedure is known to be

slowly convergent when the dominance ratio (λ2

λ1
) is close to 1, resulting in a large

number of operator applications, requiring many inversions of the multigroup loss

operator L.

Common schemes to accelerate the power iteration technique are the Chebyshev

acceleration [103] and the Wiedlandt shift [92].
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6.1.1.2 The Shifted Inverse-Power Iteration

The Shifted Inverse-Power Iteration (SIPI) [101] is a popular and improved vari-

ant of the PI method where a guess (shift) of the eigenvalue is known reasonably

well.

In the SIPI method,the eigenspectrum is shifted by a constant value σ while

preserving the corresponding eigenvectors. Hence, when a reasonable guess for the

eigenvalue is known a-priori, the SIPI iteration converges to the eigenpair efficiently.

Alternately, the Rayleigh quotient can be used as an improved shift at each iteration,

leading to a locally quadratic asymptotic convergence rate for unsymmetric problems

[104]. It has also been shown by Geltner that a good initial guess of the eigenvector

is necessary for local convergence of an eigenmode, particularly when the loss matrix

is not positive definite. The Rayleigh shift resembles the Rayleigh quotient shown in

Eq. (6.5) and is given by

σi =
φT

i Mφi

φT
i φi

, (6.9)

and at each SIPI iteration the following linear system needs to be solved

(M − σiI)φi+1 = φi. (6.10)

It should be noted that, as the iteration converges to the solution eigenpair, the

shifted matrix operator (M − σiI) becomes ill-conditioned and singular. This is one

of the primary disadvantages in using the SIPI method.

The linear system (M − σiI) is usually solved iteratively (inner iterations) to

a given linear tolerance. It is possible to set this linear tolerance adaptively based

on the norm of the residual of the eigenvalue problem, leading to an inexact-SIPI

method, akin to the inexact-Newton method in philosophy, which is computationally

less expensive than the exact SIPI variant. The motivation behind this is that the

linear solves need not to be extremely accurate, while the eigenvalue residual is still

large.
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The SIPI procedure is suitable to find one eigenpair. When more than one eigen-

pair is sought, e.g., when performing modal analysis, additional work needs to be

performed to remove the contribution of converged eigenmodes. In the work by De-

maziere [90], the traditional PI method is used to calculate several eigenmodes with

Wielandt deflation but this procedure involves the necessity for calculating the for-

ward and adjoint eigenvector for each mode. The accuracy of the subsequent modes

may be affected if the computed modes have a large residual error that can propa-

gate in the computation of subsequent higher modes and corrupts the deflated linear

system (in [90], a tolerance close to machine precision was used).

Alternately, a suitable locking technique through orthogonalization can be per-

formed in order to remove the contribution of an already computed mode from the

linear system [105]. In the our implementation of Rayleight quotient iteration , this

procedure is utilized for computing several dominant eigenmodes.

6.1.1.3 Krylov Subspace Iteration Methods

The basic philosophy of the PI method is to build a subspace by the repeated

action of operator M on a starting vector v, yielding a ℓ-dimensional subspace whose

span is V = {v,Mv,M2v, ...M ℓ−1v}. As the size ℓ of the subspace becomes large,

the power series spanned by the subspace does not form an appropriate basis to

extract the eigenvalue and eigenvector approximations [102]. The columns of this

subspace matrix V are not orthogonal. In Krylov subspace iteration, an orthogonal

basis is sought and the resulting Krylov matrix V̂ provides approximations to the

eigenvectors corresponding to ℓ dominant eigenvalues of M . Some advanced Krylov

subspace methods for non-symmetric system of equations include the explicit Arnoldi

[73] and Implicitly Restarted Arnoldi [95], the Jacobi-Davidson [99] and Krylov-

Schur [73] methods.

The original Arnoldi algorithm [101] is a powerful extension of the subspace

iteration in that it builds an orthonormal basis of the Krylov subspace and factorizes
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the matrix M into an upper Hessenberg matrix. The central idea behind the Arnoldi

factorization is to construct eigenpairs of the original matrix from eigenpairs of the

factorized, much smaller, Hessenberg matrix. Sorensen [106] improved the Arnoldi

method by introducing several shifted QR iterations on the Hessenberg matrix; this

reduces the overall number of required matvec operations. Several other variations

and optimizations have been added to this Arnoldi method and have been successfully

implemented in the library ARPACK [95]. The Implicitly Restarted Arnoldi Method

(IRAM) [106] is considered to be one of the state-of-the-art schemes to compute

several dominant eigenpairs for large, sparse linear systems. Several researchers

[97, 107, 98, 90] have considered the use of an Arnoldi eigensolver for k-eigenvalue

problems and found it to be a promising alternative to obtain the fundamental mode.

6.1.2 Newton Iteration Based Hybrid Algorithm

Instead of approaching the eigenvalue problem with traditional iterative tech-

niques, we recast the eigenproblem as a non-linear problem to be solved by means of

Newton’s method. Peters and Wilkinson [108] proved that the inverse iterations are

equivalent to a Newton’s iterative scheme. Saad [101] also considered the suitability

of using non-linear Newton type iteration schemes for large symmetric eigenvalue

problems and proposed several variations for the definition of the non-linear residual

function.

Let us consider the eigenvalue problem in Eq. (6.4) and formulate it as a (N +1)-

dimensional unconstrained optimization problem (recall that (i) M = L−1F is a

matrix of size N by N and that (ii) it is never explicitly formed).

Based on a formulation proposed by Wu et al. [102] for the standard eigenvalue

problem, the non-linear residual function can be written as follows

F(y) =


 (M − λI) φ

−1
2
φT φ + 1

2


 = 0 (6.11)
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where F(y) is the non-linear Newton residual vector, of size N + 1. The first N

components of F represent the linear system for the eigenproblem in Eq. (6.4) and

the last component of F is simply a 2-norm normalization of the eigenvector. The

N + 1 dimensional solution vector y contains the eigenmode and the eigenvalue and

is given by

y =


 φ

λ


 (6.12)

The eigenmode and the eigenvalue solution are then obtained using Newton’s method

δyl = −
[
J(yl)

]−1 F(yl) (6.13)

and yl+1 = yl + δyl (6.14)

where the Jacobian matrix is given by

J(y) =


 M − λI −φ

−φT 0


 (6.15)

Peters [108] proved that this augmented matrix is non-singular even when (λ, φ) is

the true eigenpair being sought. Saad [101] confirmed the proof for the symmetric

case and extended it to the non-symmetric matrix case which is considered here.

The choice of the optimization problem given in Eq. (6.11) avoids nearly singular,

ill-conditioned Jacobian matrices and hence is convergent locally to an eigenpair

without the numerical difficulties (e.g., large condition numbers) often observed in

techniques such as the SIPI method near an eigenpair solution [109]. The quadratic

convergence of the Newton scheme can be utilized to create a robust eigensolver

as long as a suitable initial guess for the eigenmode is available. It is also known

that the above Newton-type procedure for eigenvalue problems is equivalent to the

Rayleigh Quotient iteration, whose convergence behavior is well understood [102,
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109]. Nonetheless, a few points have to be addressed in order to use Newton’s

method to compute the eigenmodes:

1. the need for an appropriate initial guess close to the desired eigenpair;

2. the cost of computing the Jacobian matrix J and memory requirements for

storing it are prohibitive for large problems;

3. the need of efficient preconditioning technique to reduce Krylov subspace re-

quired for inner linear solves.

The next paragraphs address these. First, Newton’s initial guesses to compute

the dominant eigenmodes will be obtained from either a few SIPI iterations or a

Krylov subspace iteration technique, with coarse tolerances. The Newton iteration

acts as the eigensolver once it has been “bootstrapped” using a standard eigensolver

used to provide an initial guess to focus Newton’s search eigenspace around one or

several desired modes. Second, we will rely on matrix-free approaches to avoid the

computation of the Jacobian matrix. Finally, preconditioning techniques will be

employed. Details regarding the proposed algorithm are discussed below.

6.1.2.1 Starting the Newton Iteration

It is well known that Newton’s method converges quadratically to the solution

as long as the initial condition is inside the “ball of convergence”. If we are to obtain

a certain number of dominant modes, then proper initial guesses must be provided.

For our purpose, we are not interested in just any eigenmode and a procedure to

enrich the Newton’s search directions for the dominant eigenmodes is necessary in

order to focus the Newton’s search space.

One option is to perform first a few SIPI iterations (with coarse tolerance) to

obtain an approximation to the fundamental eigenmode, thus providing a starting

vector for Newton’s method. We refer to this scheme as the “SIPI-Newton” hybrid
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scheme. Note that if the shift parameter is set to 0, the standard PI is then used to

focus the search space.

A second option is to employ a subspace iteration method (we have chosen the

IRAM scheme) to bootstrap the eigenpair search with Newton’s method. This option

is more appealing than the “SIPI-Newton” scheme because the Arnoldi iteration

readily provides approximations to several dominant eigenpairs at once. They can

be obtained with a coarse tolerance without having recourse to explicit deflations

or the need for an initial eigenvalue estimate as in the SIPI method. Additionally,

the subsequent Newton iterations to solve for the different modes are completely

independent and this stage could be performed in parallel. Hereafter, we denote this

scheme, where coarse-tolerance estimates from the IRAM technique are employed as

initial iterates for the Newton solves, as the “Arnoldi-Newton” hybrid scheme.

Finally, we note that a fine tolerance is not necessary at the start of Newton

solve in Eq. (6.13) when the search direction is far away from true solution. Then,

the Jacobian solve can be performed ’inexactly’ in the sense that the linear iteration

tolerance can be made to depend on the non-linear function residual Eq. (6.13). This

Inexact-Newton iteration method results in the following convergence criteria for the

linear solve.

∣∣∣∣J(yl)δyl + F (yl)
∣∣∣∣ ≤ cl

∣∣∣∣F (yl)
∣∣∣∣ , (6.16)

where cl is a parameter chosen to tighten the linear solve convergence as the non-

linear residual is reduced. For more information on Inexact-Newton schemes and the

forcing factor cl, we refer the reader to [59].

6.1.2.2 Matrix-free Technique

In Jacobian-free variants of Newton’s method, the explicit computation of the

Jacobian matrix J is not required, which is particularly useful in our case since the
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Jacobian matrix contains matrix M = L−1F , which we do not want to compute

explicitly nor store. Since the Jacobian-free method is at the core of the tightly

coupled solution algorithm introduced for solving multi-physics problems, much of

the infrastructure for implementing the hybrid eigenvalue solver is in place.

Let the (N + 1)-dimensional Krylov vector v be written as (ϕ, µ)T where ϕ is

the portion of the Krylov vector corresponding to the eigenfunction and µ is a scalar

corresponding to the eigenvalue. Then, the action of the Jacobian matrix on a Krylov

vector v can be obtained as

Jv ≃ F (y + ǫv) − F (y)

ǫ
=


 Mϕ − λϕ − µ(φ + ǫϕ)

−φT ϕ − 1
2
ǫϕT ϕ


 (6.17)

where it should be remembered that z = Mϕ is actually the following linear solve:

Lz = Fϕ. Eq. (6.17) is based on a finite difference approximation, which can be

avoided here: since the definition of Jacobian is exactly available, albeit not explicitly,

a matrix-free solve using GMRes, with no memory allocated for the Jacobian matrix

itself, can be carried out and the (exact) matrix-vector operator is given by

Jv =


 Mϕ − λϕ − µφ)

−φT ϕ


 (6.18)

In Eq. (6.18), the effect of the perturbation ǫ has vanished. Both Eq. (3.76) and

Eq. (6.18) are Jacobian-free approaches (the Jacobian matrix is not formed) and

both forms require the same linear solve Lz = Fϕ. In our implementation, we have

chosen the exact matrix-vector operation, i.e., Eq. (6.18), over the finite difference

approximation of Eq. (3.76).
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6.1.2.3 Preconditioners for the JFNK Technique

In order to limit the size of the Krylov subspace in the linear solve at each New-

ton iteration, effective preconditioning techniques are necessary. The form of outer

(Newton) – inner (Krylov) iteration for eigenvalue problems resembles the inverse

iteration subspace family of methods and also is closely related the Jacobi-Davidson

scheme [108, 109] when the secondary equation being used as a preconditioner is

Point-Jacobi. The power of the MFNK scheme is that any number of precondition-

ers can be employed as long as (i) the cost of computing the preconditioner itself is

cheaper than the cost of computing the true operator (M) and (ii) the preconditioner

collapses the eigenspectrum so that the spread in eigenvalues is reduced. Note that

every preconditioner solve can also be performed in a matrix-free fashion rather than

actually forming the preconditioning matrix P , if memory requirements necessitate

that.

Some details on the preconditioning methods for the simple eigenproblem in

Equation (6.4) are now discussed.

6.1.2.4 Block Gauss-Seidel Preconditioner

The Block Gauss-Seidel (BGS) form of the preconditioner, where a block is de-

fined as one energy group, is a natural choice of preconditioner to invert L. In

traditional reactor analysis codes using PI method, the BGS method is typically

used to invert the loss operator solve. In the current JFNK context, we use a single

BSG sweep over all groups as a preconditioner. Since each diagonal block Li is sym-

metric (when discretized using a standard finite element or finite difference method),

efficient Krylov linear solvers such as Conjugate Gradient can be used to solve each

one-group equation. Here, the individual blocks are themselves preconditioned with
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a level-0 Incomplete Cholesky decomposition, IC(0). Therefore, the preconditioner

P is given by

P =


 L̃−1F − λI −φ

−φT 0


 (6.19)

where L̃ is the lower triangular block of L, hence discarding any upscattering terms.

A preconditioner solve requires the following solves:

Lizi = (Fϕ)i −
∑

j<i

Li,jzj for i = 1, . . . , G (6.20)

Other preconditioners such as multigrid, multilevel methods could be utilized

instead of the BGS scheme. Another idea would be to use traditional PI technique

as a preconditioner for the Newton solve, as suggested by Knoll [110].

6.1.3 Implementation

The methods presented here have been implemented in the karma code frame-

work which interfaces to external libraries such as PETSc [68], SLEPc [73] and

ARPACK [95] to make use of existing eigenvalue solvers for comparison purposes and

to bootstrap the Newton iteration by providing appropriate initial guess.

The PETSc-based Scalable Library for Eigenvalue Problem Computations (SLEPc)

library has several standard eigenvalue solvers such as PI, SIPI, Explicitly restarted

Arnoldi method and Krylov-Schur methods. Apart from the built-in solvers, SLEPc

also provides interfaces to the ARPACK eigensolver package. The IRAM algorithm

employed as bootstrapping in our hybrid method was taken from ARPACK.

For the requested number dominant eigenmodes, (nev), the computational cost

of IRAM behaves as Nℓ2 where N is the problem rank of matrix M and ℓ is the

size of the subspace. Hence for fine tolerances and large problem sizes (N), a bigger

span of Krylov space may be needed, increasing the total memory cost. Instead,

the proposed hybrid Arnoldi-Newton scheme can be implemented in a completely
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matrix-free fashion using JFNK, with IRAM to deliver the initial eigenmodes to

coarse tolerances (thus requiring only a smaller subspace) and Newton’s method

to drive the residual of the eigenproblem to a tight precision. This scheme can

compute several dominant eigenpairs (in parallel) with low memory overhead and

high accuracy with existing frameworks of PI implementation.

The hybrid SIPI-Newton scheme can also be used to converge to the dominant

eigenpairs but usually it is expected to be inferior in terms of performance in compar-

ison to advanced Krylov iteration techniques like Arnoldi to find multiple eigenvalues.

This is due to the fact that the choice of the shift parameter affects the convergence

of this scheme significantly and eigenpairs can only be found one at a time, i.e.,

sequentially. Nevertheless, the low memory requirements and the relative ease in im-

plementation of this scheme as compared to the Arnoldi-Krylov method may make it

attractive, especially since traditional reactor analysis codes already have most of the

necessary framework in place. In order to make the results shown here independent

of a user-provided shift, 20 iterations of power iteration are performed to obtain an

eigenvalue estimate to 1e-2 tolerance. This then is used as the initial shift for all

SIPI runs thereby making this hybrid scheme automated to some extent.

6.1.4 Results

Numerical results using the different eigensolvers introduced in the previous sec-

tions are presented here for three typical eigenvalue problems found in nuclear reactor

analysis. The first case is a 2-D IAEA benchmark problem that is used to analyze

the convergence of the implemented scheme for the first few eigenmodes. The next

problem considered is a homogenous 2-group, 2-d problem to compare the tradi-

tional PI, state-of-art IRAM and the current hybrid algorithms in terms of efficiency

in computing the fundamental mode, as a function of the dominance ratio.
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6.1.4.1 Case 1: IAEA 2-D Benchmark Problem

For the purpose of determining the accuracy and efficiency of the proposed nu-

merical scheme, the well known IAEA 2-D benchmark problem (ANL, 1977) with

modifications to the cross-section to account for z-leakage is used as a test problem.

This problem is a two group model of a PWR quarter core with reflective boundary

conditions on left and top sides and vacuum boundary on the remaining sides (zero

incoming current). Details on the used cross-sections for different materials and the

lattice representation is given in Appendix (B.1).

The 2-D domain is discretized using triangular mesh elements. The spatial

discretization of the generalized eigenvalue problem is performed using piecewise

quadratic, Lagrange elements on triangles. The reference results presented below

for the eigenvalue computation were from a discretization with 81940 elements and

123937 unknowns/group.

The thermal flux profiles for the first five modes of the benchmark problem ob-

tained using the hybrid Arnoldi-Newton iteration are shown in Fig. 6.1 - Fig. 6.5.

Fig. 6.1. IAEA 2D Benchmark Problem: First Eigenmode for Thermal Flux.
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Fig. 6.2. IAEA 2D Benchmark Problem: Second Eigenmode for Thermal Flux.

Fig. 6.3. IAEA 2D Benchmark Problem: Third Eigenmode for Thermal Flux.
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Fig. 6.4. IAEA 2D Benchmark Problem: Fourth Eigenmode for Thermal Flux.

Fig. 6.5. IAEA 2D Benchmark Problem: Fifth Eigenmode for Thermal Flux.
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In Table (6.1), the eigenvalues for the first 10 modes are shown for the benchmark

problem along with the L2 norm of the residual error Mφi-λiφi. The eigenvalues from

the IRAM-Newton hybrid scheme were compared to the solution from a fine tolerance

(1E-14) IRAM run that is implemented in ARPACK, interfaced through SLEPc. The

eigenvalues computed from both schemes match exactly and hence this test case

proves the convergence of the hybrid scheme to all the desired modes. In the above

run, an IRAM iteration provides a reasonable guess of the eigenmodes to a coarse

tolerance of only 1E-3 with maximum subspace size of 15 to bootstrap the inexact

Newton iteration.

Table 6.1

Eigenvalues for several modes computed using IRAM-Newton iteration scheme

Mode IRAM-Newton Residual Error

1 1.02958492118978 3.925623517e-14

2 1.00262113845152 1.665425359e-14

3 0.99162639339383 4.511323367e-14

4 0.93909498902443 3.756085782e-14

5 0.91382020547476 4.287420904e-13

6 0.90139826550461 1.052507002e-13

7 0.89045692528088 3.088887872e-14

8 0.82718775002535 1.762787579e-13

9 0.82499156741152 3.749614193e-14

10 0.81562246518003 4.042513635e-14

The results shown in Table (6.1) indicate that the new numerical scheme computes

the eigenpairs with machine precision accuracy for all the requested modes (nev=10)

of the model problem. Hence the new convergence of the Newton based hybrid

scheme to the true numerical eigenmode is guaranteed as long as the initial guess

provided is in the ‘ball of convergence’.
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Next, the same problem is solved using different eigen-methods and the cost of

computation in terms of number of BGS operator applications is listed in Table (6.2).

Also the size of the subspace indicates the memory cost requirements needed for

solving the problem. The results indicate that the SIPI based schemes are unfeasible

in terms of the total cost due to the chosen method for determining the initial shift.

If a better algorithm is available for this, the higher eigenmodes can be computed

with lesser cost. On the other hand, IRAM and IRAM-Newton hybrid scheme show

very efficient performance and the hybrid scheme only requires half the memory

requirement as compared to pure IRAM run. The results show the strength in

terms of convergence with lower memory cost of the hybrid scheme based on Arnoldi

iteration.

Table 6.2

Eigenvalues for 10 eigenmodes using different iteration schemes

Method Number of operators Subspace size

SIPI 8115 1

SIPI-Newton 6507 1

IRAM 2180 20

IRAM-Newton 2116 10

The preliminary results show that there is an optimal subspace-size for IRAM

which minimizes the total number of BGS operators. But a-priori, this size is not

known and can only be determined by experiments on the problem of interest. Also,

as the subspace-size increases, the memory requirements increase linearly and can be-

come prohibitive unless distributed systems are utilized. The IRAM-Newton scheme

alternately uses IRAM only to start the iteration and hence could gain immensely

from the usage of a much lesser subspace size to achieve coarse tolerances. And if

auxillary systems representing the Jacobian matrix can be used as preconditioners,

the total cost of the linear Krylov solve can also be reduced considerably.
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6.1.4.2 Case 2: Homogenous Infinite Medium, 2-Group Problem with

Up-scattering

Consider a 2-D, two energy group problem with non-zero, fast-to-thermal and

thermal-to-fast scattering cross-section. Hence, the Loss matrix L is a full block

matrix, unlike the IAEA 2D case which was in block-lower triangular form. The

cross-section data used for the problem are given in Appendix (B.2). The implemen-

tation was verified by checking the spatial convergence of the eigenvalue to the exact

eigenvalue, as the mesh is refined.

In the infinite medium limit, the dominance ratio for the discretized, generalized

MGND eigenvalue problem can be made to approach unity. This translates to a large

number of iterations that is needed in order to converge to the fundamental eigenpair.

If several dominant eigenpairs are desired in this context, traditional power iteration

techniques are practically infeasible.

Better Preconditioners such as multigrid, multilevel methods for such elliptic sys-

tems will significantly improve the performance of the linear solves and hence reduce

the number of operator applications for the Inexact-Newton based schemes. Such

possibilities are left for future investigation and currently only the BGS precondi-

tioner is used currently to resolve the neutronic system with upscattering.

In this setting, the problem is solved using power iteration, IRAM, SIPI-Newton

hybrid iteration and Arnoldi-Newton hybrid iteration for various dominance ratios.

The results shown below arise from the discretization of the homogenous problem

using piecewise quadratic Lagrange basis functions on a structured grid with 400

QUAD8 elements and 1281 dofs/group. The cost results obtained from various test

runs with a tolerance of 1E-10 are shown in Table (6.3). All the columns list the

total number of BGS operator applications since the total cost is a function of this

parameter.

It is quite evident that if the subspace size is increased for the Arnoldi iteration,

the number of operator count will decrease until the optimal size is used. This was
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shown by [90]. Since it is hard to calculate this optimal subspace size a-priori and

that larger memory requirements prohibit storing many vectors, the situation where

limited subspace size is prescribed has been considered here.

Table 6.3

Number of operator applications needed for different schemes as a
function of Dominance Ratio (DR)

Length DR Power CSIPI SIPI-Newton IRAM IRAM-Newton

12.255 0.3500 83 75 68 47 62

23.127 0.5000 147 121 96 73 89

85.95 0.9001 980 285 216 180 153

126.38 0.9500 1916 443 394 276 188

291.1 0.9900 7317 1133 563 353 284

926.5 0.9990 74270 5396 786 1488 692

2931 0.9999 604400 8478 1069 1899 782

The shift parameter for SIPI is found by performing several power iterations to

coarse tolerance. The hybrid SIPI-Newton and Arnoldi-Newton schemes use a coarse

tolerance of 1E-3 to obtain the initial guess and the eigenpair is converged to the user

specified tolerance by the inexact Newton algorithm. For all calculations involving

Arnoldi based schemes, the size of the subspace has been set at a fixed value of 10

for the current problem.

As expected, the results prove that as the dominance ratio approaches unity, the

number of power iterations increase exponentially. The Arnoldi iteration converges to

the dominant pair in much lesser iterations but the true power of this scheme, finding

multiple eigenpairs simultaneously, is not utilized here. On the other hand, the hy-

brid SIPI-Newton scheme performs the quite well unlike the IAEA 2-D benchmark

problem and this depends on the methodology to choose the initial shift parame-
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ter. Hence, when a guess for the dominant eigenvalue is available, the SIPI-Newton

scheme can be the optimal method of choice and but otherwise, the hybrid Arnoldi-

Newton scheme provides a gain of atleast factor of 2 as compared to just using IRAM

scheme.

Clearly, results in Table (6.3) show the better convergence of the hybrid schemes

for higher dominance ratio problems. This test result proves the feasibility of such

schemes to resolve the fundamental eigenmodes for even strongly coupled (in terms

of energy groups) problems. Further studies are necessary to improve the boot-

strapping procedure and implementation of more efficient preconditioners for these

block-symmetric system of equations.

6.1.5 Closing Remarks

The hybrid technique proposed using inexact Newton iteration is proven to be

quite effective for the problems considered and delivers performance and convergence

on-par to the state-of-art IRAM scheme. Future work is necessary to gauge the

applicability of various kinds of preconditioners, other than the ones shown in this

section, to improve computational efficiency. The flexibility of the MFNK framework

to include these ideas apart from solving tightly-coupled multi-physics simulations,

affirms that karma framework code can tackle linear, non-linear, eigenvalue and

transient problems with different preconditioning approaches and coupling methods

under "one roof".
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6.2 Non-equilibrium Radiation Diffusion Physics Problem

The Boltzmann transport equation describes the behavior of radiation traveling

through a material. It is generally considered as the most accurate model for the

statistical average density of particles in a system, with very few assumptions. Non-

equilibrium radiation transport physics deals specifically with the transport of photon

energy and its coupling with a background material. It occurs at the heart of stars

and several high energy physics systems [111], where there are steep energy and

temperature gradients.

Several approximations that can be applied to the Boltzmann equation since

solving the transport equation is computationally quite expensive. In the current

work, we use the gray diffusion approximation with flux limiters [112]. The system

of equations describing the radiation and material energy fields used here are given

as

∂E

∂t
− ~∇·(Dr

~∇E) = σa(T
4 − E), (6.21)

∂T

∂t
− ~∇·(Dt

~∇T ) = σa(E − T 4), (6.22)

where E, T are the radiation energy and material temperatures respectively, Dr, Dt

are the radiation and temperature diffusion coefficients and σa is the photon absorp-

tion coefficient.

The definitions for these material properties [113] are

σa =
z3

T 3
, (6.23)

Dr(T ) =
1

3σa + (1/E)|∂E
∂x
| , (6.24)

Dt(T ) = kT 5/2, (6.25)

with z being the material atomic number and k is a constant.
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Recently, the use of tightly coupled methods for non-equilibrium radiation diffu-

sion with Jacobian-Free Newton Krylov methods has been analyzed [27, 20, 2] and

its superiority over Operator-Split loosely coupled methods are provided. Based on

these ideas, the karma framework is used in the current work to solve problems

with different discretizations and coupling methods in a single code system.

Since radiation diffusion problems in general have strong gradients, traditional

cG FEM spatial discretization of the elliptic operator in Eq. (6.22) is unstable with-

out additional stability preserving terms added to the weak form. These family of

methods, generally referred to as Stabilized Finite Element Methods (SFEM) [114]

have enjoyed much success in advection dominated problems. The above set of equa-

tions can also be discretized with a dG(0) formulation or with the traditional Finite

Volume Method (FVM) to conserve the radiation energy solution field throughout

the transient. Preliminary studies with both these spatial treatments have shown

that SFEM necessitates the selection of an optimal parameter in order to avoid un-

physical solutions and is not guaranteed to be absolutely stable while FVM requires

the usage of fine mesh resolution in order to gain better solution accuracy. Hence,

all results shown in the current section will use FVM for spatial discretization with

high number of elements to capture the energy and temperature profiles accurately.

Once the spatial scales are resolved by an appropriate spatial treatment, the

temporal integration can be performed using L−stable schemes such as SDIRK2(2)

and SDIRK3(3). It is also possible to use adaptive time-stepping strategies to choose

a time step based on the dominating dynamical time scale of the problem. In order to

correctly resolve the solution fields from both the radiation and material temperature

accurately, a minimum of the time scales for the solution evolution is computed and

used based on the following controller.

Dynamical time scale controller:

τn
dyn =

S∣∣∣ 1φ
∂φ
∂t

∣∣∣
n

≈ ∆tn
S∣∣∣φn+1−φn

φn+1

∣∣∣
(6.26)
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where φ is the solution field for current physics and S is a safety factor.

6.2.1 One-dimensional Problem

In order to analyze the different space-time discretization and coupling methods,

we consider a one-dimensional model problem that consists of a unit radiation flux

impinging on an initially cold slab of unit depth. This results in with Robin boundary

conditions for the radiation equations at x = 0 and x = 1. These conditions are

1

4
E − 1

6σa

∂E

∂x
= 1, x = 0, (6.27)

1

4
E +

1

6σa

∂E

∂x
= 0, x = 1. (6.28)

The material temperature has homogenous Neumann conditions imposed at the

boundaries. The initial solution fields are

E(x, 0) = 10−5,∀x = [0, 1], (6.29)

T (x, 0) = E(x, 0)1/4 ≈ 0.0562. (6.30)

The material atomic number z for the homogenous medium is taken to be 1.0. Taking

k = 0.1, we replicate the results provided by Mousseau et al. [113].

6.2.2 Results

The problem shown above was discretized with FVM using 800 elements and

SDIRK3(3) method in both space and time, respectively, and solved using both

weakly and strongly coupled methods. The solution profiles at a final time of T=2.5

seconds obtained using an adaptive time step controller are shown in Fig. 6.6.
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Fig. 6.6. Non-equilibrium Radiation Diffusion Test Problem: Radi-
ation and Material Temperature Profiles.

Note that the results given by Mousseau in [113] for the same test problem do not

match the solutions shown here. The wave propagation speed of the energy source

due to the left boundary condition is resolved differently in Fig. 6.6 but it converges

consistently to a reference solution as the safety factor S is reduced.

Next, we will look at the different tight coupling strategies (Picard versus New-

ton), based on the linearized physics-based Jacobian that is lagged at the previous

step along with ILU(0) as an algebraic preconditioner. The results for the computa-

tional cost of the tightly coupled methods with constant time stepping using different

step sizes are shown below.



146

Table 6.4

CPU time for one-dimensional problem using Picard vs Newton iteration

∆ t Picard-Krylov Newton-Krylov

4 × 10−3 – 78.3

2 × 10−3 236.624 127.143

1 × 10−3 354.773 144.921

From Table 6.4, we can infer that the cost of the Newton-Krylov solution pro-

cedure increases sub-linearly as the number of steps is increased. Also due to the

usage of the linearized Jacobian as only a preconditioner, higher time step sizes can

be used to solve the system of equations. This is not the case for Picard iterations

using the linearized Jacobian as the operator with ILU(0) as its preconditioner, since

the solution starts to diverge for large time step sizes.

6.2.3 Closing Remarks

The flexibility of using the karma multi-physics code system is evident from the

experiments conducted for the problems involving radiation diffusion physics using

different spatial and temporal discretization schemes, along with a variety of consis-

tent coupling methods. Also, using high-order methods with time adaptivity enables

the ability to accurately capture the solution evolution based on its dynamical time

scales. Further investigation is necessary to ascertain the reasons for the disparity in

the results obtained here compared to Mousseau.
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7. CONCLUSIONS

‘Computers are useless. They can only give you answers.’

– Pablo Picasso

Numerical simulation of multi-physics problems are difficult due to the need to re-

solve the stiff variations in spatial and temporal scales. This Dissertation used tight

coupling methods for multi-physics problems in order to retain high-order spatio-

temporal accuracy in the computed solution fields for stiff transients occurring in

nuclear reactors and other fields (radiative transfer). The lessons learnt from using

tight coupling methods for these problems are summarized below along with envi-

sioned extensions to the karma framework that would provide further intuition for

the develop efficient methods for coupled multi-physics problems.

7.1 Lessons Learned

1. Existing coupling methods using Operator-Splitting (OS) strategies were ana-

lyzed and the deficiencies in these methods including conditional stability and

degradation of the higher order temporal accuracy were shown. In contrast,

tightly coupled methods with either Picard or Newton iterations do restore the

accuracy in the numerical solution, thereby reducing the total computation

time where stability limits do not dominate the dynamical physical scales.

2. The tightly coupled methods can be unified under a single Matrix-free Nonlinear-

Krylov (MFNK) framework that is based on a finite-differenced expression to

obtain the action of the Jacobian matrix representing the coupled system ma-

trix on a vector. Existing OS strategies offer intuitive knowledge regarding

the important length and time scales to be tackled which can be used to cre-

ate specialized schemes that serve as good preconditioners to reduce the total

computational time in the MFNK technique. Note that usually such precon-
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ditioners are used as solvers themselves if the coupling strength between the

physics terms is weak.

3. The efficacy of the tightly coupled schemes are superior as compared to the

loosely coupled OS schemes. Slight modifications on existing coupling strate-

gies by introducing Picard-like iterations or performing fewer Newton iteration

can improve the stability regions of the simple OS strategies.

4. The variations in time scales during the course of a multi-physics transient

problem are often not dominated by a single physics component alone. The

complex interplay of these temporal scales requires adaptive techniques in order

to resolve the solution fields accurately in amenable wall-clock times. Tightly

coupled schemes with adaptive time stepping procedures are excellent candi-

dates to attain better efficacy using higher order, L−stable, temporal methods.

5. Method of Manufactured Solutions (MMS) and analytical methods are effec-

tive tools for the verification of non-linear multi-physics problems. Even though

high fidelity physical models were not used in this Dissertation, the applica-

tion of these techniques to even complicated cases is possible using symbolic

mathematical toolboxes.

7.2 Future Work

The non-linear solution methods for multi-physics problems given in this Disser-

tation offers tremendous scope for future extensions. Few of the research areas that

need to be focussed in the near future are listed below.

1. Create a multi-channel analysis code within the existing karma framework in

order to apply the code system to problems in design and safety analysis of

nuclear reactors.
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2. Use the ability to create an array of varying fidelity physics models with

the karma framework in order to verify the application of efficient, fidelity-

independent coupling strategies.

3. Use spatial adaptive capabilities from hp-FEM ideas and adjoint based error

estimators. Similar principles apply to time adaptivity using adjoint based

temporal adaptivity.

4. If rigorous a-priori estimates for determining the strength of the coupling terms

can be obtained based of Jv and J̃v, where J̃ is the OS Jacobian matrix,

an adaptive solution procedure selection can be made to choose from using

either OS coupled strategy as the solver itself or as a preconditioner for the

tightly coupled solution technique. This has tremendous potential to reduce

the total runtimes in regions of the transient when the dynamical time scales

are themselves well below the stability limits for OS coupling. Such algorithms

can create computationally efficient, high accuracy schemes while making use

of the unified MFNK framework proposed here.

5. The karma framework has extensive parallel capabilities since it is based

on PETSc for all the relevant data-structures. Preliminary results for single-

physics non-linear diffusion problems and coupled neutronics/thermal-conduction

problems have shown linear speedup for up to 32 processors. Further studies

need to be performed to measure the scalability of tightly coupled methods

and for finding efficient parallel solve/preconditioning techniques for problems

of interest in reactor analysis.

6. Finally, the karma framework is implemented with a flexible API. With only

definitions of the semi-discrete non-linear residual that is consistent with the

actual PDE for the physics model, the MFNK can be used to solve the non-

linear, time-dependent problem. Improved efficiency can also be obtained if an

external code can provide a suitable preconditioner to reduce the total Krylov
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iterations. This lends the possibility to use existing single-physics codes in

order to attain tightly coupled solutions, when necessary, thereby preserving

numerous man-years of development efforts on these codes.
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APPENDIX A

MATLAB SCRIPTS FOR MANUFACTURED SOLUTIONS

A.1 MMS Script for Coupled Conduction/Fluid Problem

clear a l l; clc;

% |=========| | yMAX

% | | Tf | |

% y | 2-D | Tc (1-D: y)

% | | (x,y) | |

% |=========| | 0

% 0 --x-- xMAX

syms x y t rF rT Ctf Ctc Tf Tc rho rhoU rhoE mu hc Dh

syms xMAX yMAXw del GAMMA Cp Cv RCONST Qconst G

syms dpdrho dpde kfluid Fw a b c p0 rho0 Tf0 Nu0 mu0

% Heat conduction PDE

% Ctf and Ctc are time constants -> Basically, you could

% make Ctf >> Ctc and this will introduce fast time scales

% due to heat conduction and slower scales due to heat

% removed by fluid.

% Fuel temperature exact solution

Tf = Tf0 + (1+tanh(Ctf*t)) * rF * ((0.5+ sin(pi/2*y/yMAX) )’

* (1+tanh(w*2/3-w*x/xMAX))) ;

% Coolant temperature exact solution

Tc = (1+tanh(Ctc*t)) * rT * (a-b*tanh(c*w-w*y/yMAX)) ;

% viscosity variation with temperature

mu0 = 1.2075e-006 * subs(subs(Tc, t, 0), y, 0) ;
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% Density profile

rhoc = 219 ; f = 275.32 ; g = 511.58 ; Tc0 = 2503.7 ;

rho = rhoc + f*(1-Tc/Tc0) + g*(1-Tc/Tc0).^0.5 ;

inte = Cv * Tc ;

% Velocity constant in space-time

v = G./rho ;

% momentum = mass flux

m = rho .* v ;

% Total energy

e = rho.*inte + 0.5*m.*m./rho ;

% linearized EOS

p = p0 + dpdrho * (rho-rho0) +

dpde * (Tc-subs(subs(Tc, t, 0), x, 0)) ;

M = v ./ sqrt(dpdrho) ;

% viscosity variation with temperature

mu = 1.2075e-006 * Tc ;

% http://www.cheresources.com/convection.shtml

Nu = Nu0 * (mu./mu0).^0.14 ;

hc = Nu * kfluid / Dh ; % Heat Transfer Coefficient

Re = G * Dh / mu ; % Reynolds number

Fw = 0.3164 / Re^0.25 ; % Blasius friction factor

% Thermal conductivity for fuel.
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k = 6400.0./Tf^2 * exp(-16.35/Tf) ;

% % % % % % % FORCING FUNCTIONS % % % % % % % % % % %

STf = d i f f(Tf,t) - d i f f(k*d i f f(Tf,x), x)

- d i f f(k*d i f f(Tf,y), y)

+ hc * (subs(Tf,x,xMAX)-Tc) ;

Scont = d i f f(rho, t) + d i f f(m, y);

Smom = d i f f(m, t) + d i f f(m*v, y) + d i f f(p, y)

+ Fw * v * abs(v) ;

Sener = d i f f(e, t) + d i f f((e+p)*v, y)

- hc * (subs(Tf,x,xMAX)-Tc) ;

disp(’STf’); ccode(STf)

disp(’Scont’); ccode(Scont)

disp(’Smom’); ccode(Smom)

disp(’Sener’); ccode(Sener)

Code Snippet A.1 MMS Script for Coupled Conduction/Fluid Problem
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A.2 MMS Script for Coupled Neutronics/Conduction Problem

syms x y z LZ t s T egroups dgroups k avgnu Bg2

syms LX LY CT CF rT rF PI normalization_const

syms DEFAULT_FUEL_TEMP doppler_coeff k0 k1 rho cp

syms beta_tot PHI1 PHI2 xsrem1 xsrem2 xsfiss1 xsfiss2

syms xsrem01 xsrem02 xsnufiss1 xsnufiss2

syms xsdiff1 xsdiff2 energy_per_fission1 energy_per_fission2

syms invvel1 invvel2 xsscatt12 xsscatt21

sx = sin(x/LX*PI) ;

sy = sin(y/LY*PI) ;

T = CT*(1+tanh(rT*t))*sx*sy ;

k = k0 + k1*(T - DEFAULT_FUEL_TEMP) ;

egroups = 2 ; % energy groups

dgroups = 2 ; % delayed precursor groups

xsnufiss1 = avgnu * xsfiss1 ;

xsnufiss2 = avgnu * xsfiss2 ;

xsrem1 = xsrem01 + doppler_coeff*(

sqrt(T) - sqrt(DEFAULT_FUEL_TEMP) ) ;

xsrem2 = xsrem02 ;

beta(1) = sym(’beta[1]’) ;

beta(2) = sym(’beta[2]’) ;

lambda(1) = sym(’lambda[1]’) ;

lambda(2) = sym(’lambda[2]’) ;

beta_tot = beta(1) + beta(2) ;

% 2-D geometric buckling

Bg2 = PI*PI*(1/LX^2+1/LY^2) ;
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PHI1 = CF*(1+exp(rF*t))*sx*sy*(x/LX*y/LY) ;

PHI2 = PHI1 * xsscatt12 / (xsrem2 + xsdiff2 * Bg2) ;

for dg = 1 : dgroups

% Initial precursor concentration

PREC_0(dg) = beta(dg)*(subs(xsnufiss1*PHI1+

xsnufiss2*PHI2, t, 0))/lambda(dg) ;

% Analytically solve the precursor ODE

PREC(dg) = ( PREC_0(dg) + beta(dg)*int(

subs(

(xsnufiss1*PHI1+

xsnufiss2*PHI2)*exp(lambda(dg)*s), t, s),

s, 0, t) ) * exp(-lambda(dg)*t) ;

end

% FORCING FUNCTIONS

% Fuel Temperature

srcT = rho*cp*d i f f(T, t) - d i f f(k*d i f f(T,x),x) -

d i f f(k*d i f f(T,y),y) - normalization_const*

(energy_per_fission1*xsfiss1*PHI1+

energy_per_fission2*xsfiss2*PHI2) ;

% Fast Flux

srcFLX1 = invvel1*d i f f(PHI1,t) - d i f f(xsdiff1*d i f f(PHI1,x),x)

- d i f f(xsdiff1*d i f f(PHI1,y),y) + xsrem1*PHI1

- (1-beta_tot)*(xsnufiss1*PHI1+xsnufiss2*PHI2)

- xsscatt21*PHI2 ;

i f dgroups > 0

for dg = 1 : dgroups

srcFLX1 = srcFLX1 - lambda(dg)*PREC(dg) ;

srcPREC(dg) = d i f f(PREC(dg),t) -

beta(dg)*(xsnufiss1*PHI1+xsnufiss2*PHI2)

+ lambda(dg)*PREC(dg) ;

end



164

end

% Thermal Flux

srcFLX2 = invvel2*d i f f(PHI2,t) - d i f f(xsdiff2*d i f f(PHI2,x),x)

-d i f f(xsdiff2*d i f f(PHI2,y),y) + xsrem2*PHI2

- xsscatt12*PHI1 ;

Power = normalization_const*(energy_per_fission1*xsfiss1*PHI1

+ energy_per_fission2*xsfiss2*PHI2) ;

% Total power in the domain as a function of time

totPower = int (int (Power, y, 0, LY), x, 0, LX) ;

codeT = ccode(T)

codeFLX1 = ccode(PHI1)

codeFLX2 = ccode(PHI2)

for dg = 1 : dgroups

fpr intf(’\ncodePREC{%d} = \n\n’, dg) ;

disp(ccode(PREC(dg)))

end

codeST = ccode(srcT)

codeSFLX1 = ccode(srcFLX1)

codeSFLX2 = ccode(srcFLX2)

for dg = 1 : dgroups

codeSPREC{dg} = ccode(srcPREC(dg)) ;

fpr intf(’\ncodeSPREC{%d} = \n\n’, dg) ;

disp(codeSPREC{dg})

end

codePower = ccode(totPower)

Code Snippet A.2 MMS Script for Coupled Neutronics/Conduction Problem
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APPENDIX B

CROSS-SECTION DATA FOR EIGENVALUE PROBLEMS

B.1 2-D Two-group IAEA Benchmark Problem

This problem is based on the benchmark introduced in ANL [115] and contains

4 materials. The cross-sections are obtained from the 3D data by accounting for

leakage in z-direction with a Bg2
z = 8 × 10−5.

The lattice configuration is of the form given below with each assembly having

dimensions = [10, 10] cms.

3 1 1 1 1 1 1 3 3 1 1 1 1 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 4 4 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 4 4 4 4

3 1 1 1 1 1 1 3 3 2 2 2 2 4 4 0 0

3 1 1 1 1 1 1 3 3 2 2 2 2 4 4 0 0

1 1 1 1 1 1 1 2 2 2 2 4 4 4 4 0 0

1 1 1 1 1 1 1 2 2 2 2 4 4 4 4 0 0

1 1 1 2 2 2 2 2 2 4 4 4 4 0 0 0 0

1 1 1 2 2 2 2 2 2 4 4 4 4 0 0 0 0

2 2 2 2 2 4 4 4 4 4 4 0 0 0 0 0 0

2 2 2 2 2 4 4 4 4 4 4 0 0 0 0 0 0

4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0
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B.2 Cross-section Data for 2-D Two-group Homogenous Medium Problem

D1 = 1.0, D2 = 0.4

Σr,1 = 0.04, Σr,2 = 0.08

νΣf,1 = 0.01, νΣf,2 = 0.13

Σs,1−→2 = 0.02, Σs,2−→1 = 0.001
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