
REAL-TIME TASK SCHEDULING UNDER THERMAL CONSTRAINTS

A Dissertation

by

YOUNGWOO AHN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2010

Major Subject: Computer Engineering

REAL-TIME TASK SCHEDULING UNDER THERMAL CONSTRAINTS

A Dissertation

by

YOUNGWOO AHN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Riccardo Bettati
Narasimha Reddy

Committee Members, Weiping Shi
Deepa Kundur

Head of Department, Costas Georghiades

August 2010

Major Subject: Computer Engineering

iii

ABSTRACT

Real-Time Task Scheduling under Thermal Constraints. (August 2010)

Youngwoo Ahn, B.S.; M.S., Seoul National University

Co–Chairs of Advisory Committee: Dr. Riccardo Bettati
Dr. Narasimha Reddy

As the speed of integrated circuits increases, so does their power consumption.

Most of this power is turned into heat, which must be dissipated effectively in order

for the circuit to avoid thermal damage. Thermal control therefore has emerged as an

important issue in design and management of circuits and systems. Dynamic speed

scaling, where the input power is temporarily reduced by appropriately slowing down

the circuit, is one of the major techniques to manage power so as to maintain safe

temperature levels.

In this study, we focus on thermally-constrained hard real-time systems, where

timing guarantees must be met without exceeding safe temperature levels within the

microprocessor. Speed scaling mechanisms provided in many of today’s processors

provide opportunities to temporarily increase the processor speed beyond levels that

would be safe over extended time periods. This dissertation addresses the problem

of safely controlling the processor speed when scheduling mixed workloads with both

hard-real-time periodic tasks and non-real-time, but latency-sensitive, aperiodic jobs.

We first introduce the Transient Overclocking Server, which safely reduces the

response time of aperiodic jobs in the presence of hard real-time periodic tasks and

thermal constraints. We then propose a design-time (off-line) execution-budget al-

location scheme for the application of the Transient Overclocking Server. We show

that there is an optimal budget allocation which depends on the temporal character-

iv

istics of the aperiodic workload. In order to provide a quantitative framework for the

allocation of budget during system design, we present a queuing model and validate

the model with results from a discrete-event simulator.

Next, we describe an on-line thermally-aware transient overclocking method to

reduce the response time of aperiodic jobs efficiently at run-time. We describe a mod-

ified Slack-Stealing algorithm to consider the thermal constraints of systems together

with the deadline constraints of periodic tasks. With the thermal model and temper-

ature data provided by embedded thermal sensors, we compute slack for aperiodic

workload at run-time that satisfies both thermal and temporal constraints. We show

that the proposed Thermally-Aware Slack-Stealing algorithm minimizes the response

times of aperiodic jobs while guaranteeing both the thermal safety of the system and

the schedulability of the real-time tasks. The two proposed speed control algorithms

are examples of so-called proactive schemes, since they rely on a prediction of the

thermal trajectory to control the temperature before safe levels are exceeded.

In practice, the effectiveness of proactive speed control for the thermal man-

agement of a system relies on the accuracy of the thermal model that underlies the

prediction of the effects of speed scaling and task execution on the temperature of

the processor. Due to variances in the manufacturing of the circuit and of the envi-

ronment it is to operate, an accurate thermal model can be gathered at deployment

time only. The absence of power data makes a straightforward derivation of a model

impossible.

We, therefore, study and describe a methodology to infer efficiently the thermal

model based on the monitoring of system temperatures and number of instructions

used for task executions.

v

To my family

vi

ACKNOWLEDGMENTS

I would like to thank my research advisor, Dr. Riccardo Bettati, for his guid-

ance and support during all these years. I am greatly indebted to him for his constant

inspiration, encouragement, and patience throughout my doctoral study. His excep-

tional commitment to research and strong demand for excellence have guided me this

far. And his valuable feedback contributed greatly to the improvement and progress

of my research and dissertation.

I thank the rest of my dissertation committee members: Dr. Narasimha Reddy,

Dr. Weiping Shi, and Dr. Deepa Kundur. I also thank Dr. Paul Gratz, who substi-

tutes for Dr. Weiping Shi at my defense. Their insightful comments and constructive

criticism helped me to improve the dissertation in many ways.

I would like to thank Dr. Lauren Cifuentes for her support with my graduate

assistantship, and Mr. Willis Marti for his kind guidance in the VTECH project.

Many thanks also go to my fellow workers for the project. They are: Mr. Omar

Alvarez, Ms. Rene Mercer, Mr. Hutson Bets, Mr. Garg Kapil, Mr. Gaurav Yadav,

and Ms. Jillian Michelle.

I would like to express my appreciation to Dr. Inchoon Yeo. His constant

eagerness for research always stimulated me to work harder and the discussion with

him improved my research as well. In addition, I thank my friends and fellow students

at Texas A&M University for numerous discussions related to my research work. I

sincerely thank all the current and previous members in Real-Time Systems Group:

Dr. Shenquan Wang, Dr. Pubali Banerjee, Mr. Omar Alvarez, Mr. Ja-Ryeong Koo,

Mr. Chien An Lai, Mr. Tuneesh Lella, Mr. Saswat Mohanty, and Mr. Animesh

Pathak. Special thanks to Dr. Shenquan Wang for his comments and guidance in

this research field.

vii

Last but not least, I thank my parents and my family members for their contin-

uous support and encouragement. I am especially grateful to my wife for her endless

support and love. Without their tremendous sacrifices and great love, I would not

have chance for successfully accomplishing my Ph.D.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation . 1

1. Increasing Power Density of Microprocessors 1

2. Thermal Impact on Microprocessors 3

3. Thermal Management of Microprocessors 3

4. Thermal Issues in Real-Time Systems 5

B. Overview of Research Problems and Contributions 6

C. Dissertation Organization 9

II BACKGROUND AND RELATED WORK 10

A. System Model . 10

1. Power Model . 10

2. Thermal Model . 12

B. Task Model . 13

1. Periodic Tasks . 13

2. Aperiodic Tasks . 14

C. Scheduling of Mixed Task Set 14

D. Dynamic Speed Control for Thermal Management 17

E. Thermal Parameter Calibration 20

III TRANSIENT OVERCLOCKING FOR APERIODIC TASK

EXECUTION IN HARD REAL-TIME SYSTEMS 22

A. Introduction . 22

B. System Model . 23

1. Thermal Model . 23

2. Periodic Hard Real-Time Tasks 24

3. Aperiodic Tasks . 24

4. Thermal Steady State of System 26

C. Aperiodic Task Servers and Transient Overclocking 28

1. Bandwidth Preserving Server under Thermal Constraint 29

2. Design of Transient Overclocking Server 29

3. Budget Computations 30

a. Overclocking without Periodic Tasks 31

ix

CHAPTER Page

b. Combining Periodic and Aperiodic Jobs 36

D. Queueing Model . 39

1. Arrivals and Computation Times of Aperiodic Task . 39

2. Modeling Transient Overclocking Server in Ther-

mally Constrained Environment 40

3. M/G/1 Queueing Model 42

E. Performance Evaluation 43

1. Simulations . 43

2. Queueing Model Validation 46

F. Conclusion . 47

IV ON-LINE THERMALLY-AWARE TRANSIENT OVERCLOCK-

ING FOR MIXED-WORKLOADS 51

A. Introduction . 51

B. System Model, Assumptions and Notation 52

1. Assumptions and Notations 52

2. Periodic Hard Real-Time Task Execution 53

3. Aperiodic Task Execution 55

C. Aperiodic Task Server with Transient Overclocking 63

1. Slack Stealing Server under Thermal Constraints . . . 63

2. Thermal Slack Computation 65

3. Speed Control . 69

4. Dynamic Slack Reclamation 74

D. Experimental Evaluation 77

1. Simulation Model . 77

E. Conclusion . 80

V EFFICIENT CALIBRATIONOF THERMALMODELS BASED

ON APPLICATION BEHAVIOR 82

A. Introduction . 82

B. System Model . 84

1. Thermal Model . 85

C. Thermal Prediction Based on Relative Utilization 86

1. Temperature Predictions for Tasks with Dynamic

Utilization . 91

D. Extensions of Thermal Prediction Model for Multicore . . 92

E. Results and Analysis . 94

1. Experimental Setup 94

x

CHAPTER Page

2. Experimental Results 94

F. Conclusion and Future Work 96

VI CONCLUSIONS AND FUTURE WORK 99

A. Conclusions . 99

B. Future Work . 101

REFERENCES . 103

VITA . 112

xi

LIST OF TABLES

TABLE Page

I Notations for System and Task Model 11

II Notations for Task Model . 53

III Periodic Task Set . 77

IV Experimental Systems Description 94

V Average Error of Utilization Based Thermal Estimation 96

xii

LIST OF FIGURES

FIGURE Page

1 Power density of Intel microprocessors [1] 2

2 The critical instance of periodic tasks 23

3 Worst-case execution with aperiodic tasks 25

4 Thermal steady state of system . 26

5 Erroneous slack computation leads to deadline miss 27

6 Temperature curves and available clock cycles 32

7 Finding non-overclocking executing duration 33

8 Decrease of budget for aperiodic task server in period 35

9 Temperature curves and available clock cycles: integration with

periodic task . 37

10 Approximation using average processor speed savg 40

11 Comparison of average response times of aperiodic jobs without

periodic task . 43

12 Average response time of aperiodic jobs with execution of periodic

task: p = 200 msec . 44

13 Comparison of average response times between simulation and

queueing model without periodic task 47

14 Comparison of average response times between simulation and

queueing model with periodic task execution 50

15 EDF scheduling with constant speed: Γ = {(10, 2), (30, 8)} 55

16 Illustrations of slack computation: Γ = {(10, 4), (30, 14)} 57

xiii

FIGURE Page

17 EDF scheduling with aperiodic tasks: Γ = {(10, 2), (20, 8)}, λ =

0.1, µ = 0.5 . 62

18 Basic idea of thermally-aware slack-stealing algorithm 64

19 The schedule of TASS algorithm: Γ = {(5, 2), (10, 4)} 67

20 Example of TASS speed control with temperature constraint Tc =

80oC: Γ = {(10, 2), (20, 8)}, λ = 0.1, µ = 0.5 70

21 RSS scheme vs. non-RSS scheme for same amount of c[tr,NTA] 72

22 Switch of speed assignment . 73

23 Example of an NTA interval and the NTA task queue 75

24 Comparison of average response times according to various aperi-

odic task density . 79

25 Comparison of average response times of aperiodic task 80

26 Thermal trajectories with various cooling environments 83

27 Lumped RC thermal circuit model for a single-core processor 85

28 Energy density vs. average IPC . 87

29 Thermal parameter estimation & utilization based temperature

approximation . 92

30 A lumped RC thermal circuit model for dual core processors 92

31 The temperature estimation in Intel Quad-Core Q9650 processor . . 95

32 The temperature estimation of two cores: 464.perlbench & 462.libquan-

tum . 96

1

CHAPTER I

INTRODUCTION

A. Motivation

In integrated circuits, such as microprocessors and graphic chips, the power con-

sumption is related to the speed of the circuit. In fact, the power density, that is

the amount of power per area that needs to be dissipated in microprocessors has in-

creased dramatically in recent years, since circuits at the same time increase in speed

and decrease in size into sub-micron regions [2]. Because the power consumption by

the microprocessors is converted into heat, resulting in significant increase of temper-

ature and unreliability of systems, appropriate mechanisms for power management

and power dissipation are becoming increasingly important.

1. Increasing Power Density of Microprocessors

The power density of modern microprocessors has been increasing due to both increase

of total power dissipation and decrease of chip feature size.

For years, there has been significant improvement in many aspects of chip tech-

nologies (e.g. performance, size, input voltage, and etc.). In the effort to improve the

performance of microprocessors with higher clock frequency or to reduce the chip fea-

ture size, we have hardly achieved an improvement in the power density until recently

in spite of the reduced supply voltage to circuits.

Fig. 1 displays the increasing trend of Intel’s microprocessor family [1]: The

power density (i.e. power dissipation per chip area) of the latest generation of single

core processor (Pentium 4 and Itanium) is very close to the level of a nuclear reactor.

The journal model is IEEE Transactions on Automatic Control.

2

Fig. 1. Power density of Intel microprocessors [1]

Although Chip-Multi-Processor (CMP) CPUs and some mobile processors mitigate

the increase of power density by running at lower clock frequencies, the trend towards

increasing power density is expected to continue along with the request for higher

performance and more aggressive computing technologies such as 3D chips [3]. With

this rapidly increasing power density, the problem of thermal management in systems

is becoming acute. Methods to manage heat to control its dissipation have been

gaining much attention by researchers and practitioners and a number of thermal

control mechanisms are routinely being used. For example, when the temperature

of Pentium 4 CPUs exceed the configured threshold temperature, the clock throttling

mechanism which is a popular thermal management technique first kicks in to lower

the thermal level. If the temperature keeps increasing to a critical level due to any

possible failure of cooling mechanism, the processor will automatically shut down as

a safety feature. To maintain the Pentium 4 CPU temperature low while it continues

executions, very powerful CPU fans are required, thereby increasing the cooling costs

and the price of systems. Power and temperature now have become the primary

3

constraints for modern processors.

2. Thermal Impact on Microprocessors

High temperatures have a significant impact on microprocessors in terms of perfor-

mance, power consumption, and reliability. Since the mobility of electrons in semi-

conductor degrades under high thermal levels, transistors work poorer than at low

temperature. And the metal resistivity of interconnections inside chips at high tem-

peratures increases so that it results in longer interconnection delay. These two can

be the main reasons for the performance degradation of microprocessors at high tem-

peratures. Furthermore, the leakage power of microprocessors grows with increasing

temperature, which in turn causes the power consumption to grow as well. It is also

known that a higher operational temperature reduces reliability and decreases the life

time of the microprocessors.

Thus, techniques are being investigated for thermal control both at design time,

through appropriate packaging and active heat dissipation mechanisms, and at run

time through various forms of Dynamic Thermal Management [4].

3. Thermal Management of Microprocessors

The design time packaging solutions (e.g. heat sinks, cooling fans, and etc.) can be

very expensive. For example, Tiwari et al. in [5] show how the incremental packag-

ing cost per additional Watt becomes very high for processors above 35-40W power

dissipation. It is also predicted that the cooling solutions through packaging only, by

which the packaging should prepare for the worst-case thermal condition, is increas-

ingly challenging. This follows because there can be very high-level of peak power

consumption in modern processors and the power density will increase extremely high

in emerging systems-on-chips. In addition, for many high-performance embedded sys-

4

tems the packaging requirements and operating environments render expensive and

bulky packaging solutions inapplicable.

Given the cost and difficulties associated with packaging-based approaches, ther-

mal control techniques that rely on containing input power at run-time are being

used. A number of Dynamic Power Management approaches to control the tempera-

ture at run-time have been proposed, which ranges from clock throttling to Dynamic

Voltage Scaling (DVS):

• Clock Throttling [6]: The clock is stalled “on-the-fly”, either to save power

consumption or to reduce the heat generation.

• Clock Gating [7]: The clock gating is one of the power-saving techniques used on

many integrated circuits. To save power, it disables unused functional units so

that their power consumption goes to zero, which enables thermal management

of architecture-level sub-components and the whole circuit as well.

• Dynamic Voltage Scaling (DVS) [4]: DVS is used in a variety of modern pro-

cessors. Switching between different frequency and voltage operating points,

microprocessors control the power consumption level and their temperature at

run-time in response to the current thermal condition. In the Enhanced Intel

SpeedStep mechanism in the Pentium M processor, for example, a low-power

operating point is reached in response to a thermal trigger by first reducing the

frequency and then reducing the voltage [6].

Most of the above Dynamic Power Management approaches to control the tempera-

ture can be considered as various forms of processor speed control mechanisms. In the

next section, we discuss how real-time systems are affected by thermal management

schemes especially by changing the speed of microprocessors, and we will lay out the

directions of our study.

5

4. Thermal Issues in Real-Time Systems

In real-time systems, the correctness of an operation depends both on its logical

correctness, and on the time by which it is performed. The classical conception is

that in a hard real-time system, the completion of an operation after its deadline is

considered at best useless and may at worst lead to a critical failure of the complete

system. A soft real-time system on the other hand will tolerate such lateness, and

may respond with decreased service quality.

Hard real-time systems are common in embedded systems interacting with physi-

cal hardwares. As an example of a hard real-time system, we can think of a car engine

control system, where a delayed response to a signal may lead to poor performance or

to failure of the engine. Some medical systems, like heart pacemakers, and industrial

process controller are good examples of hard real-time systems as well.

Live multimedia systems are typically considered to be soft real-time systems; if

the processing of a video frame gets delayed, this causes the degradation of audio or

video quality because the system either is forced to render the frame too late, thus

giving rise to display jitter, or is forced to drop the frame all together. While this

clearly affects the quality of the rendered media, the system can continue to operate

without experiencing a failure.

The various run-time thermal management mechanisms are mostly based on the

control of the microprocessor’s speed, which has clear implications for the system’s

ability to meet real-time requirements. Dynamic speed scaling allows for a trade-off

in hard real-time systems between the following two performance metrics: To meet

the deadline constraint, we run the processor at a higher speed; To maintain the safe

temperature levels, we run the process at a lower speed.

6

B. Overview of Research Problems and Contributions

In this study, we propose dynamic speed control methods for mixed workload with

both hard real-time periodic and soft real-time or non-real-time aperiodic tasks. The

control of microprocessor speed in thermally constrained systems requires an accurate

temperature model by which the thermal variations of the system can be predicted

as a function of the speed input.

In traditional systems, aperiodic jobs are often scheduled in the background, that

is, when the CPU has no hard real-time workload to execute. Additional mechanisms

are often used to trade-off execution of periodic and aperiodic portions in order to

reduce response times of aperiodic jobs without missing deadlines of periodic jobs;

this is called Slack Stealing [8]. In conventional real-time systems, jobs executing

in the background can be largely ignored when determining the schedulability1 of

real-time tasks, except for the occasional priority inversion due to non-preemptibility

of critical sections. When temperature comes into play, new forms of blocking are

introduced which are particularly problematic because the blocking occurs potentially

long after the background job has finished executing: The low-priority background

job may well be freely preemptible by incoming higher-priority jobs; the high-priority

job, however, can be affected at a later time as a result of the additional dissipated

power and ensuing higher temperatures caused by the low-priority job. The higher

temperature in turn may force the CPU to slow down, therefore affecting the high-

priority job.

This is particularly a problem in the design of techniques to handle aperiodic

job arrivals. For example, applying Slack Stealing [9] is difficult because slack must

1We say that a system is schedulable if the given periodic application system can
indeed meet all its hard deadlines when scheduled according to the chosen scheduling
algorithm [8].

7

be managed both in the time and in the thermal domain: Even when there is slack

available in the time domain, using it for aperiodic jobs may unduly heat up the

processor and so trigger dynamic speed control, which in turn will delay the execution

of subsequent jobs. We say that in addition to the slack in the traditional sense, the

aperiodic job is using up thermal slack as well. Similarly, bandwidth preserving

algorithms, such as the Deferable Server [10] and others, must be adapted to take

into consideration the thermal effect of aperiodic jobs.

These complications are particularly unfortunate since transient increase of the

processor speed which we call transient overclocking would be an effective mechanism

to reduce response times of aperiodic jobs: While periodic jobs execute at safe exe-

cution speeds, for which all the periodic jobs satisfy their deadline constraints, the

processor speed can be transiently increased to provide significantly shorter response

times to aperiodic jobs. Due to the additional power dissipation during this period,

however, the temperature of the processor increases, and dynamic thermal manage-

ment is triggered, which reduces the processor speed to keep the temperature at safe

level. In this study we describe how transient overclocking can be applied to safely

reduce response times for aperiodic jobs in the presence of hard real-time periodic

tasks.

We propose both off-line and on-line mechanisms for overclocking aperiodic job

executions. For the off-line mechanism, we describe a method to allocate overclocking

budget to aperiodic workloads in a way that is efficient at run-time. This budget can

then be simply consumed similarly to that of a Deferrable Server without needing

to predict what the thermal effect of aperiodic-job execution is on the periodics at

run-time.

Although the off-line transient overclocking mechanism for aperiodic jobs effec-

tively reduces the response times of aperiodic workload, off-line designed budget-based

8

schemes are inherently conservative because they have to assume worst-case task exe-

cutions. Furthermore, off-line mechanisms run in open-loop mode and do not monitor

the temperature level of the processor. As a result they underestimate the currently

available thermal slack, which limits the reduction of job response times. We propose

an on-line speed control algorithm to further reduce aperiodic job response times by

taking early task termination and current processor temperature into account. We

combine on-line speed control with EDF task scheduling, and we describe how to as-

sign speed levels for periodic workload and aperiodic workload efficiently at run-time

without violating either delay or thermal constraint. Both off-line and on-line speed

control schemes are implemented in an event-based real-time simulation environment,

and the average response times of aperiodic jobs are are evaluated for the proposed

dynamic speed control algorithms.

For any dynamic thermal control to be effective, the availability of an efficient

and exact thermal model is essential. The thermal behavior of system is commonly

modeled using linear circuit models.

Generic thermal models only loosely capture the thermal behavior, due to vari-

ability in fabrication, environmental effects, or the need for special configurations of

either cooling devices or other aspects of packaging. When the thermal management

must deal with such variabilities, effective configuration and efficient calibration meth-

ods are needed to accurately parameterize the thermal models that drive the predic-

tive thermal control. Unfortunately, as thermal models describe the relation between

input power and thermal behavior, they rely on the availability of a measurement of

input power for parameterization purposes. Since such measurements are typically

not available at processor level in most systems, we need to find alternative ways for

thermal model calibration. We describe an indirect methodology for parameterization

of thermal models, which relies on the off-line analysis of the thermal behavior for a

9

reference application, for which we measure both the detailed utilization behavior of

the processor and its thermal behavior (through thermal sensors on the chip). We

determine and later exploit a linear relation between energy consumption and utiliza-

tion level to calibrate the thermal model for new target applications by comparing

relative utilization levels. This results in accurate thermal model parameters without

the need for power measurements. The proposed calibration methodology allows the

thermal model to be easily established, calibrated, and recalibrated at run-time to

account for different thermal behavior due to either variations in fabrication or to

varying environmental parameters. We validate the proposed methodology through

a series of experiments on a Linux platform.

C. Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter II, we describe the

models on which the thermal management are based. The dynamic speed control

mechanism for thermal management is reviewed with the related work of this the-

sis. Chapter III describes our implementation of design time budget-based transient

overclocking for aperiodic task execution under thermally constrained hard real-time

systems. In Chapter IV we discuss and describe the design of on-line thermally-aware

transient overclocking approach. We show that the approach minimizes the response

times of aperiodic workload accounting for the actual thermal conditions and the pe-

riodic task executions. Chapter V presents an efficient methodology of thermal model

calibration emphasizing the importance of correct thermal modeling for the applica-

tion of proactive thermally-aware speed control. Finally, we conclude this work and

discuss future research directions in Chapter VI.

10

CHAPTER II

BACKGROUND AND RELATED WORK

Our research is based on the power model, the thermal model, the thermal manage-

ment scheme, and the scheduling of mixed task set1. In this chapter, we discuss those

system models and task model reviewing the prior work in the areas of aperiodic task

scheduling, of the dynamic thermal management mechanisms, and of thermal circuit

modelings of microprocessors.

A. System Model

The thermal effects on the real-time systems are defined by the thermal characteristics

of the computational resources and by the dynamic thermal management system. In

this section, we review how the thermal model is formulated and how the CPU speed

affects the temperature.

1. Power Model

In microprocessors, the power consumption is composed of two major sources [11, 12,

13]; Dynamic power consumption and Static power consumption.

• Dynamic power consumption Pd: The dynamic power consumption is depen-

dent on charging/discharging of gates of transistors in circuits. It is therefore

modeled as the function of processor speed, s, as follows;

Pd(s) = Ceff · V 2
dd · s , (2.1)

1In the following we will make use of the notations described in Table I for system
and task model.

11

Table I. Notations for System and Task Model
Symbol Meaning

P Total power consumption of CPU
Pd Dynamic power consumption of CPU
Ps Static power consumption of CPU
T (t) CPU temperature at time t
Ta Ambient room temperature
Tc Critical temperature level (which is the thermal constraint)
s CPU speed
sH Maximum CPU speed
sE Equilibrium CPU speed (at which the final reaching temperature of CPU is

Tc)
Rth Thermal resistance
Cth Thermal Capacitance
Γi A periodic task
Γi,j The jth instance of the periodic task Γi
pi Constant period of the periodic task Γi

ci Worst-case workload of Γi expressed in CPU clock-cycles required per instance
ei The worst-case workload of Γi expressed in the execution time at the speed sE
Di The relative deadline of Γi

where s = κv
(Vdd−Vt)2

Vdd
. Ceff , Vt, Vdd, and κv denote the effective switch ca-

pacitance, the threshold voltage, the supply voltage, and a hardware-specific

constant, respectively. All hardware-specific constants and the voltage levels

have nonnegative values. We simply describe the dynamic power consumption

as Pd(s) u κ · sα, where α ≤ 3, because the CPU speed is known to be in an

approximately linear relation with the supply voltage.

• Static power consumption Ps: The static power consumption is made by the

leakage current of microprocessors. If the processor temperature is constant, this

static power consumption is modeled as constant value. When the temperature

is related and changing, however, the static power consumption is affected and

can be modeled as a linear function of temperature [12];

Ps = δT + ρ , (2.2)

12

where δ and ρ are nonnegative constants, and T is the chip temperature.

We now represent the power consumption as P = Pd+Ps = κsα+ δT +ρ considering

both the dynamic and the static power consumptions.

2. Thermal Model

The relation between processor speed and chip-level thermal behavior can be approx-

imated at first-order by the following Fourier Model [14, 15]:

T ′(t) = α̂P − β̂(T (t)− Ta)

= α̂κsα − (β̂ − α̂δ)T (t) + (α̂ρ+ β̂Ta) , (2.3)

where Ta is the environmental room temperature and assumed to have a constant

value. α̂ is the heating coefficient and β̂ is the cooling coefficient of microprocessors

and they represent the specific thermal characteristics of chips. If we define the

adjusted temperature as T̄ (t) = T (t) − α̂ρ+β̂Ta

β̂−α̂δ
, we can rewrite the equation in a

simpler form as follows,

T̄ ′(t) =
κsα(t)

Cth

− T̄ (t)

Rth · Cth

, (2.4)

where Cth = 1
α̂
and Rth = α̂

β̂−α̂δ
. T̄ (t) denotes the adjusted temperature at time t (with

respect to the ambient temperature), and s(t) denotes the processor speed at time t.

In the rest of the paper, we will omit the word “adjusted” and denote T̄ (t) simply

by T (t) except where it is unclear whether by temperature, we mean an adjusted

temperature or an actual temperature. The parameters Rth and Cth are the thermal

resistance and capacitance, respectively, and describe the thermal characteristics of

the chip. This includes packaging and heat dissipation mechanisms, such as fans.

The parameter κ and α describe the relation between speed and power requirement

13

and have some positive constant values. Typically α has a value of approximately 3.0

[14, 15].

A more compact description of the thermal behavior is as follows:

T (t) = (h⊗ sα)(t) , (2.5)

where h(t) is the impulse response function

h(t) =
1

RC
e−t/RC , t ≥ 0 . (2.6)

B. Task Model

Our research is centered on the thermally-aware speed control for mixed workload.

We discuss briefly in this section about the definitions and the specifics of periodic

and aperiodic tasks.

1. Periodic Tasks

The period is the amount of time between each iteration of a regularly repeated task.

Such repeated tasks are called periodic tasks. Every job in periodic tasks has to

be deadline-oriented, which means every job has to be accomplished within the set

deadline. The deadline is a constraint on the latest time at which the operation has

to come to the end. A job in a task that is released at t must complete D units of time

after t; D is the (relative) deadline of the task. We usually assume that D is equal

to the length of period p for all tasks in systems. This requirement is consistent with

the throughput requirement that the system can keep up with all the work demanded

of it all times.

One example of periodic tasks is the cruise control mechanism on an automobile.

The purpose of cruise control is to keep the speed of a vehicle constant automatically.

14

When the cruise control is active and a desired speed is set, the embedded control

system should monitor and adjust the vehicle speed regularly until the driver turns

off the cruise control mechanism. The frequency in which the computer checks and

adjusts the current speed is called as the control rate and it is fixed by the control

system designer. We can regard the cruise control as a periodic task and the periodic

speed monitoring/controls as jobs of the task.

For the periodic workload model, we consider the Liu and Layland periodic

task model [16] that defines a task Γ as (p, e), where p is the period of Γ and e is

the execution time requirement of Γ. If we need to consider the early deadlines of

periodic tasks specifically, we define each task as Γi as (pi, ei, Di).

2. Aperiodic Tasks

All real-time tasks need not to be periodic. Aperiodic tasks respond to randomly

arriving events. The jobs in an aperiodic task, however, need to be similar in the

sense that they have the same statistical behavior and the same timing requirement.

That is, their interarrival times and the execution times of jobs are identically dis-

tributed with some probability distributions respectively. To distinguish aperiodic

tasks from sporadic tasks, we say that a task is aperiodic if the jobs in it have either

soft deadlines or no deadlines [16]. For example, the processing of user inputs from

terminal application is considered as an aperiodic task since there is no deadline for

the task execution but the shorter response time is desirable.

C. Scheduling of Mixed Task Set

In the context of traditional and energy-constrained real-time systems, a variety of

approaches to scheduling a mixture of aperiodic tasks and periodic hard real-time

15

tasks have been proposed. The simplest and least effective of these is to execute

aperiodic tasks at a lower priority level than any of those with hard deadlines. This

effectively relegates aperiodic tasks to background processing. Although this method

satisfies the schedulability of periodic tasks, response times of aperiodic tasks are

prolonged unnecessarily.

A variety of dedicated scheduling servers have been proposed to handle aperiodic

tasks. As a general periodic task, the server is characterized by the pair (es, ps), where

es is the maximum budget and ps is period of the server. The simplest server is the

Polling Server (PS). PS is periodically activated and services the pending aperiodic

tasks until the budget is exhausted. The budget can be replenished again at every

activation of the server. If there is no pending aperiodic task in the task queue,

PS immediately suspends itself exhausting the budget out until it is reactivated in

the next period. Thus, if an aperiodic task arrives slightly after PS checks the empty

aperiodic task queue, the beginning of service for it is delayed until the next activation

of PS.

To overcome this unnecessary delay for aperiodic tasks, various bandwidth-

preserving servers have been proposed. They preserve their budgets even when there

is no pending aperiodic task in the queue instead of exhausting all remaining bud-

get. Whenever any aperiodic task arrives and there is budget remaining, the server

can activate and service the task. The Deferrable Server (DS)[10] is the simplest

of bandwidth preserving servers. DS works in the same way as PS except the fea-

ture of budget preservation. This feature improves the performance for the response

time of aperiodic tasks. This simple way of preserving budget, however, could make

the lower-priority periodic task miss its deadline. The Sporadic Server (SS)[17] was

proposed to resolve the problem. Using a rich combination of replenishment and con-

sumption rules, it guarantees that no periodic task miss its deadlines in the presence

16

of aperiodic tasks.

While the DS and SS are commonly used for Rate-Monotonic (RM) scheduling,

the Total Bandwidth Server (TBS)[18] and the Constant Bandwidth Server (CBS)[19]

are more suitable for Earliest-Deadline-First (EDF) scheduling. Assigning deadlines

for the aperiodic server dynamically and using their special budget replenishment

rules, they prevent aperiodic tasks from affecting the schedulability of hard real-time

periodic tasks.

In general, all bandwidth preserving servers mentioned improves responsiveness

over the polling approach. A number of problems are shared by these schemes, how-

ever: First, they tend to degrade to providing the same performance as the polling

server at high loads. Next, they are unable to make use of slack time which may be

present due to the favorable phasing of periodic tasks. Finally, they are also unable to

reclaim spare budget gained when hard real-time tasks require less than their worst

case execution time.

Lehoczky and Ramos-Thuel presented a different approach to service aperiodic

requests, known as the Slack Stealer[9] which partly addresses some of the issues with

bandwidth-preserving servers. The Slack Stealer addresses the problem of minimizing

the response times of aperiodic tasks guaranteeing that the deadlines of hard periodic

tasks are met. It steals all available slacks from periodic tasks and gives it to ape-

riodic tasks. Conceptually, it is known as the optimal aperiodic task server for the

minimization of response times. Practically, however, the complexity in realization

of the approach in a system limits its application. Thus, various approximate slack

stealing algorithms were proposed [20].

The traditional schemes of handling aperiodic tasks in real-time systems have

only the timing constraints for periodic tasks running with the aperiodic tasks. When

thermal constraints are considered, however, the increase of temperature by aperiodic

17

job execution affects the execution of periodic tasks. Since the increased temperature

means the higher possibility of slowing down of periodic job execution to keep system

temperature within the safe thermal level resulting in the delayed response time of

periodic task. Without the appropriate thermal slack computation for aperiodic task,

we should have the deadline violations of periodic tasks. In this study, we propose

the design of thermally-aware speed control algorithms for aperiodic job executions

and compare the performances.

D. Dynamic Speed Control for Thermal Management

For the safe operation of the system, the temperature must be prevented from reaching

the critical junction temperature and so destroying the processor. In our study,

we regard the system is thermally safe when the microprocessor’s temperature is

guaranteed to be equal or less than the critical temperature Tc at all times during

the task executions. The thermal safety of systems is achieved through various forms

of Dynamic Thermal Management, many of which are equivalent largely to forms of

controlling the CPU speed. For example, constant speed scaling uses a sufficiently

slow constant speed to keep the processor at a safe temperature. It has been shown

[21] that better system utilization can be achieved with dynamic speed scaling schemes.

Rao et al. [22] use variational calculus to find the optimal continuous-speed function

to optimize utilization over a given interval. They also show that a simple, two-speed

scheme approximates the optimal speed function well.

We first used a particular type of two-speed scheme, called Reactive Speed Scaling

(RSS) in [21, 23] to improve the schedulable utilization and reduce worst-case delays

in hard real-time systems: Whenever the CPU is busy, it is allowed to run at high

speed sH until it reaches a maximum temperature Tc at a safe margin from the

18

junction temperature. Once Tc is reached, the CPU continues execution at a reduced

equilibrium speed sE, which keeps the temperature at or below Tc. We next extend

to the continuous-speed scheme to apply to the online optimal speed control for the

minimization of aperiodic response time. In the continuous-speed scheme, we predicts

the job completion times and the instant at which the processor temperature reaches

Tc with the thermal model for the runtime optimization. In this study we make use

of RSS to formulate a scheme for transient overclocking of the processor to reduce the

response time of aperiodic jobs.

There is an extensive literature on dynamic speed control on processors both in

general-purpose and embedded applications. However, the majority of this literature

focuses on power management for the purpose of saving energy, not for maintaining

safe temperature levels [24, 25, 26, 27, 28, 29, 30]. While energy and temperature

are closely related, power control mechanisms for energy and temperature are quite

different. It has been shown that many energy-saving techniques do not work well

in reducing peak temperature [14, 15, 31]. This is due to the fact that energy-aware

techniques focus on dealing with the average power consumption while temperature-

aware ones focus on handling peak power consumption [15].

The work on dynamic speed scaling techniques to control temperature in real-

time systems was initiated in [14] and further investigated in [15]. Both [14] and [15]

focused on online algorithms in real-time systems, where the scheduler learns about

a task only at its release time. In contrast, in our work we first assume a predictive

task model (e.g., periodic tasks) and so allows for design-time delay analysis and then

propose an online algorithm for mixed workload in hard real-time systems.

In [22, 32], optimal speed profiles were derived to achieve high resource utiliza-

tion. In [4, 33, 34], the use of the feedback control theory is proposed as a way to

implement adaptive techniques in the processor architecture. In [34], a predictive

19

frame-based DTM algorithm is presented. In [33]. a predictive DTM algorithm was

designed to improve the performance of multimedia applications.

There are also many other run-time thermal management techniques studied

for general-purpose applications. The authors in [4] perform extensive studies on

empirical DPM techniques for thermal management. Their results show that DVFS

can be very inefficient if the invocation time is not set appropriately. In [35], a thermal

model was presented that is capable of modeling cooling faults such as CPU fan or

case fan failures and load-balancing algorithms were designed based on this model.

In [36, 37, 38], temperature-aware floorplanning is used to place circuit blocks, such

that an even thermal profile is obtained.

System-level solutions have been defined to reduce the temperature in MPSoCs

using different scheduling mechanisms [39]. Finally, in [40], a detailed review of

thermal management techniques for multi-core architectures is presented.

Most of existing thermal management techniques are based on temperature mon-

itoring and tuning of microprocessor speed that do not result in optimal solutions.

Moreover, they do not provide a guarantee that the temperature constraints will be

satisfied at all instances of operation, which is critical for achieving system reliabil-

ity. Zhang and Chatha [41] addressed the knapsack problem for a given execution

sequence of jobs by assigning discrete frequency/voltage states. They proved that the

problem is NP-hard and proceeded to formulate a pseudo-polynomial optimal speed

assignment algorithm and a polynomial time approximation algorithm.

In [42], it classifies existing dynamic speed control algorithms for real-time sys-

tems into two categories. One is intra-task dynamic speed control algorithms, which

uses the slack time when a task is predicted to complete before its worst-case execution

time. The other is inter-task dynamic speed control algorithms, which allocates the

slack time between the current task and the following tasks. The difference between

20

them is that intra-task speed controlling strategies adjust the microprocessor speed

during an individual task boundary, while inter-task strategies adjust the speed task

by task. In most systems, it is difficult to predict well the earlier completion of tasks

before their worst-case execution time. We, therefore, consider inter-task dynamic

speed controlling strategy and the RSS scheme for the thermal management.

In our study, we focus our work on the efficient speed control to minimize the

response time of aperiodic workload in the presence of hard real-time periodic tasks

satisfying the temperature constraints.

E. Thermal Parameter Calibration

The performance-power optimization of processors using the speed control policies has

received considerable attention. Most of these research, however, does not consider

thermal constraints of systems. In the thermally-aware design domain, two impor-

tant subproblems can be considered: 1) Modeling the thermal behavior of systems

and 2) Designing methods to control processor performance and power consumption

to meet the temperature constraints. Several recent works have addressed the issue

of on-chip thermal modeling [38, 43, 44, 45, 46, 47, 48]. At the physical level, various

methods can be used to model the heat transfer in the substrate. Finite-difference

time domain [43], finite element [38], model reduction [44], random walk [45] and

Green-function [48] based algorithms have been applied for on-chip thermal analysis.

At the architectural level, [46] presents a thermal/power model for super-scalar ar-

chitectures. The work presented in [47] investigates the impact of temperature and

voltage variations across the die of embedded cores. Based on these and other simi-

lar models, Dynamic Thermal Management (DTM) techniques have been suggested

[4, 33, 34, 49]. A major impediment when putting proactive thermal management into

21

practice is the need to develop a thermal model that is appropriate for the platform

at hand. Generic thermal models only loosely capture the thermal behavior, due to

variability in fabrication, environmental effects, or the need for special configurations

of either cooling devices or other aspects of packaging. The models must therefore

be appropriately calibrated before use. In this study we describe an efficient method-

ology for parameterization of thermal models. It relies on an off-line analysis of a

reference application for the thermal behavior, which is based on the measurement of

the utilization behavior and the thermal behavior of the system at hand running the

application.

22

CHAPTER III

TRANSIENT OVERCLOCKING FOR APERIODIC TASK EXECUTION IN

HARD REAL-TIME SYSTEMS

A. Introduction

In this chapter we describe how transient overclocking can be applied to safely reduce

response times for aperiodic jobs in the presence of hard real-time periodic tasks.

To obtain mechanisms that are efficient at run-time, design-time method to allocate

overclocking budget to aperiodic workloads is proposed. This budget can then be

simply consumed at run-time similarly to that of a Deferrable Server [10] without

heeding to predict what the thermal effect of aperiodic-job execution is on the peri-

odics. Furthermore, there is no need to monitor the temperature of microprocessors

online with the management of overclocking budget.

This chapter will be organized as follows: In Section B, we will describe the

system model used in the chapter. We will present the thermal model, which describes

the interaction between processor speed and temperature. We will also describe

a basic dynamic speed control mechanism that can be easily applied for transient

overclocking. The task model will be described. In Section C we present the Transient

Overclocking Server. We describe the principles of operation and the design-time

computation of safe budget levels. In Section E we evaluate the performance of the

Transient Overclocking Server. Finally, we conclude the chapter in Section F with

summary and an outlook on unresolved issues.

23

Fig. 2. The critical instance of periodic tasks

B. System Model

The effect of transient overclocking on periodic tasks in a thermally constrained sys-

tem is defined by the thermal characteristics of the computational resources and of

the dynamic thermal management system, the specifics of the periodic task model,

and of the characteristics of the aperiodic job arrivals.

1. Thermal Model

The relation between processor speed and chip-level thermal behavior can be approx-

imated at first-order by the following Fourier Model as shown in Chapter II:

T ′(t) =
κsα(t)

C
− T (t)

R · C
, (3.1)

where T (t) denotes the temperature at time t (with respect to the ambient tempera-

ture), and the processor speed s(t) at time t. The parameters R and C are the thermal

resistance and capacitance, respectively, and describe the thermal characteristics of

the chip.

24

2. Periodic Hard Real-Time Tasks

We consider a set of identical-period hard real-time tasks {Γi : i = 1, 2, . . . , n},

where each task Γi = (p, ci) has a minimum time period p between jobs and each job

requires ci processor cycles to complete in the worst case.1 We adopt a fixed-priority

scheduling scheme, and Γi is assigned priority i (the smaller the index, the higher the

priority).

To guarantee the schedulability of periodic tasks, we first determine the thermal

steady-state for the execution of periodic tasks. Figure 2 shows the critical instance

under the thermal constraint for identical-period tasks [21]: When the periods of

tasks are identical and no aperiodic jobs are present, the system can reach a worst-

case steady state, in which the temperature - call it T0 - at the period boundary is

maximized, and therefore the amount of time the system runs at high speed sH is

minimized. As a result, the schedulable utilization is minimized. Wang et al. proved

in [21] that, in a static-priority system, the critical instant for a medium-priority task,

say Γ2 in Figure 2, is when it is released in the thermal steady state together with all

higher-priority tasks, just after all lower-priority tasks just completed (and therefore

heated up the processor).

3. Aperiodic Tasks

The system shown in Figure 2 leads to two observations. Observation 1: The steady-

state is robust for periodic arrivals; whenever the execution time of a task invocation is

shorter than specified, or whenever the inter-arrival time of tasks exceeds the period,

the CPU may temporarily cool off. As a result, the speed control will kick in later

1We limit ourselves to identical-period tasks. The critical instance for arbitrary-
period task set is an open problem. For general arrival curves we developed a bound
on the critical instant in [23].

25

(a)

(b)

Fig. 3. Worst-case execution with aperiodic tasks

during the next busy period, and the steady state will eventually be reached again.

Observation 2: Any additional execution of (aperiodic) jobs disrupts the steady state:

the initial temperature at the beginning of the period increases, and less idle time for

processors remains. Figure 3 illustrates the effects of allowing increasing amounts of

aperiodic jobs to execute per period. Figure 3(a) shows how aperiodic and periodic

workloads can be executed together, with the aperiodic making use of transient over-

clocking in an RSS fashion2. Increasing the amount of aperiodic execution pushes the

completion time of periodic tasks back towards the end of the period. This in turn

prevents the CPU from cooling off after the busy period ends, which in turn triggers

the speed control to kick in earlier in the next period. As a result, the completion of

the periodic tasks is pushed back even further. As this happens, the opportunities for

transient overclocking disappear. Figure 3(b) shows the case where uncontrolled exe-

2In order to simplify the presentation, the illustrations in this paper display sys-
tems with a small thermal capacitance with respect to periods and execution time.
The results can be applied to thermally more inert systems by looking at multiple
periods.

26

Fig. 4. Thermal steady state of system

cution of aperiodic leads to the RSS system degenerating to a constant-speed system,

which executes at low speed throughout.

4. Thermal Steady State of System

In this section, we describe how to compute the durations of maximum and of equi-

librium processor speed to accommodate periodic and non-periodic workloads with

Reactive Speed Scheduling. We say that the temperatures at the beginning and end

of a period are equal in the thermal steady state. Based on the thermal model in Sec-

tion 1, we can derive the relations among durations, temperature, and the processor

speed.

Figure 4 shows one of the periods of a system that is in the thermal steady state

by an identical periodic task set and some amount of periodic budget consumption

for aperiodic jobs. According to the Fourier thermal model, the relationship among

the duration LH of the processor’s maximum speed execution, the temperature T0 at

the beginning of the period, and the processor speeds sE and sH can be expressed

using the following equation:

TE = TH + (T0 − TH)e
−LH/τ , (3.2)

where TH = RκsαH , TE = RκsαE, and τ = RC.

27

(a)

(b)

Fig. 5. Erroneous slack computation leads to deadline miss

From (3.2), T0 can be expressed as

T0 = TH − (TH − TE)e
LH/τ (3.3)

depending on the duration LH of the processor’s maximum speed execution in a

period. Similarly, the length of the idle time LD is also obtained from the thermal

model as follows:

LD = τ ln

(
TE

T0

)
. (3.4)

Finally, the length LE of equilibrium-speed execution is expressed simply as

LE = p− (LH + LD), where p is the period of tasks which is identical for all tasks.

Thus, for any given single-period workload, the temperature T0 at the beginning

of a period and the durations of LH , LE, and LD in the thermal steady state of system

are obtained by the above relations based on the thermal model.

28

C. Aperiodic Task Servers and Transient Overclocking

For traditional real-time systems, Slack Stealer [9] is known to be an optimal aperiodic-

task server. When the system is thermally constrained, however, conventional ways

of slack computation without special consideration for temperature do not allocate

the proper amount of slack, which can lead to deadline misses. Figure 5 shows a

situation where a deadline is missed in a system with RSS for periodic and aperiodic

jobs. This is due to a slack computation that fails to consider thermal effects. In

this example, the slack allocated to aperiodic jobs should be used to compensate for

the transient overclocking portion at the beginning of the period. If an aperiodic

job used this slack, the periodics cannot take advantage of overclocking, and misses

the deadline (Figure 5(b). Since the example in Figure 5 uses an RSS scheme that

does not differentiate between periodic and aperiodic workload, the periodic job in

Figure 5(b) is penalized as it gets “crowded out” of the overclocking period, and thus

further delayed.

Accurate slack management in systems that use transient overclocking comes at

a high run-time overhead: Upon arrival of the aperiodic job, the amount of slack

must be computed based on:

• current temperature of the processor,

• current speed of the processor,

• remaining execution time of periodic jobs.

Since the relationship between current temperature and available slack is not linear,

due to the transient overclocking, this computation is too costly to be performed at

run-time: the slack stealer would have to predict when to transition from overclocking

back to equilibrium speed before computing the available slack. We therefore do not

29

expect on-line näıve slack stealers to be used in practice, despite their optimality. We

will propose an on-line thermally-aware slack stealer with the effort of minimizing the

overhead in next chapter.

1. Bandwidth Preserving Server under Thermal Constraint

Since slack stealing cannot be applied directly, we resort to a budget-based, bandwidth-

preserving scheme: In this chapter, we present the Transient Overclocking Server,

which allows for a very efficient management at run time of allocated budget to ape-

riodic jobs. Budget management needs only O(1) online computation using simple

consumption and replenishment rules: Whenever aperiodic jobs are ready and budget

remains, the budget is consumed at a pre-determined rate, and it is periodically re-

plenished to a pre-defined amount. In order to enable this efficient run-time operation,

the budget has to be computed offline. We partition the budget into two portions, an

overclocked portion BH of length LH (we call this loosely the “overclocking budget”)

and a non-overclocked portion BE of length LE. The processor is overclocked at speed

sH during the overclocked portion and runs at equilibrium speed sE during the rest

of the time, in addition to the idle time necessary to compensate for the overclocked

portion. In next section, we describe how to compute LH and LE and how to manage

the budget amount.

2. Design of Transient Overclocking Server

The offline computation of the overclocking budget BH presupposes a worst-case

steady state for the processor temperature. Figure 3(a) and Figure 3(b) indicate how

this steady state is linked to the overclocking budget.

30

3. Budget Computations

The budget is computed at design time by determining the lengths LH and LE of the

overclocked and non-overclocked portions, respectively. At run-time, the budget is

consumed in RSS fashion: first, any available overclocking budget BH is consumed,

followed by the non-overclocking budget BE.

Theorem 1. When we apply two different speed levels in the execution of a given

job with fixed durations of high-speed and low-speed of the processor, the amount of

temperature increase is the smallest when we have the order of ‘high-speed to low-

speed.’

Proof. Since the temperature variation by the change of processor speed and the

power thereof is interpreted into the linear RC-electric circuit model [35], the tem-

perature as an output to the power input can be superposed. Thus, the comparison

between temperature increases by two different orderings of speed assignment is same

as the description of Lemma 1 in [21] with a level of offset.

Lemma 1. [21] Given a time instance t, we consider a successive execution part of

job with a starting time t0 and the completion time t1, where t0 < t and t1 < t. We

assume the system is idle during [t1, t]. Define Tt as the temperature at t. If we shift

this part of job into a starting time t∗0 and a completion time t∗1 such that t0 < t∗0 < t

and t1 < t∗1 < t. Define T ∗
t as the new temperature at t. Then we have Tt ≤ T ∗

t .

Based on the Lemma, running the processor at high-speed earlier than at the

other lower speed level increases the temperature less than the other way of speed

assignments.

Theorem 2. For a given thermal constraints, the RSS-style consumption of the bud-

get of which the budget consumption order is BH followed by BE, maximizes the

31

amount of processing clock-cycles that can be handled by the transient overclocking

server.

Proof. Suppose a fixed length of continuous CPU execution, l, composed of lH and

lE in written order, where lH is the duration of CPU runs with high speed sH and lE

is the duration of equilibrium speed sE. By the Theorem 1, if we reverse the order of

the execution durations to (lE, lH), the temperature at the end of the length becomes

higher. In the case, under thermal constraints, lH should decrease to satisfy the con-

straints. By the decrease of high-speed duration to l′H(l
′
H < lH), B

′
H becomes smaller

than BH so that the total available budget B diminishes by the reverse ordering

of budget consumption. Thus the RSS-style consumption of the budget maximizes

the amount of processing cycles for the transient overclocking server under a given

thermal constraints.

In the following section we describe how to compute the amounts BH and BE of

overclocking and non-overclocking budget, respectively. We first describe the budget

computation in the absence of periodic workload. We then explain the integration

with periodic workloads.

a. Overclocking without Periodic Tasks

Overclocking Budget BH . Figure 6 shows three scenarios of arrivals of aperiodic

jobs that are sufficiently long to make use of all the available budget. The figure also

shows the resulting temperature curves and available clock cycles within a period

under a steady-state thermal envelope for the case of no periodic tasks. In the figure,

IH and IE are the maximum durations of speed sH and equilibrium speed sE so

that a steady-state temperature of T0 can be kept at the beginning of each period.

Although the duration of the overclocking portion, LH , changes depending on current

32

(a) Case 1

(b) Case 2

(c) Other Cases

Fig. 6. Temperature curves and available clock cycles

33

Fig. 7. Finding non-overclocking executing duration

temperature, the minimum safe length can be determined at system design time to

guarantee the thermal constraints.

Lemma 2. In the overclocking without periodic tasks, the maximum safe amount of

overclocking budget BH is min(L
(1)
H , L

(2)
H), where L

(1)
H is the duration for the aperiodic

job is ready and executed from the beginning of a period until the temperature increases

to the critical level. And L
(2)
H is the duration for which the processor can run at sH

so that the temperature increases to the level T0 at the end of a period after some

processor idle duration.

Proof. We look at two cases, first.

Case 1: The aperiodic job is ready at the beginning of a period, as shown in Fig-

ure 6(a). L
(1)
H is easily computed, given the initial temperature, T0. LH then is equal

to IH in Figure 6(a). We obtain the solution from Equation (3.2):

L
(1)
H = τ · ln (TH − T0)

(TH − TE)
. (3.5)

Case 2: The processor is idle, and the aperiodic job arrives before the end of the

period. Since the processor is now overclocked until at least the end of the period,

the temperature rises quickly. As shown in Figure 6(b), the point of intersection be-

tween the decreasing thermal curve, Tdec(t), of the idling processor and the increasing

thermal curve, Tinc(t), of the overclocked processor has to be formulated to obtain

34

the length L
(2)
H . Tdec(t) and Tinc(t) are described as following equations;

Tdec(t) = T0 · e−t/τ . (3.6)

Tinc(t) = TH − TH · e−(t−δ)/τ , (3.7)

where δ = p− τ · ln(TH

TH−T0
).

Thus, the intersection happens at tx = τ · ln
(

T0+TH ·eδ/τ
TH

)
, and L

(2)
H for Case 2 is

computed as the length L
(2)
H = p− tx.

Now, for other cases when the aperiodic job is ready to execute at a moment

different from that of the above two cases, the value for LH exceeds L
(1)
H and L

(2)
H . That

is because the difference of current temperature at the moment and the temperature

it has to catch up to maintain thermal steady state is larger than that of two cases

above. No computation for other cases are therefore needed for LH . Thus, the

length LH is determined by comparing the two values for Case 1 and Case 2, LH =

min(L
(1)
H , L

(2)
H).

The overclocking budget BH is obtained by simply multiplying LH by sH .

Non-overclocking Budget BE. The duration LE is the length for which aperiodic

jobs execute at speed sE after the overclocking budget BH is exhausted. At that point,

the processor may continue to execute at speed sE for a while without violating the

thermal steady state. The amount of this non-overclocking budget BE varies over the

length of the period, as can be seen from Figures 7 and 8.

Lemma 3. In the overclocking without periodic tasks, non-overclocking budget BE is

bound approximately by the following function in a period

BE(t) = max(BE(0)− t · sE, Bmin
E), (3.8)

35

(a) No periodic tasks

(b) With periodic tasks

Fig. 8. Decrease of budget for aperiodic task server in period

where BE(0) = IE · sE.

Proof. Given the overclocking budget BH(LH), non-overclocking budget BE(LE) can

be computed to satisfy the thermal envelope built based on the pre-supposed thermal

steady state. At the beginning of the period, BE is the largest, as the processor

has the most time to cool off before the end of the period. As time progresses and

the processor idles, BE decreases, as the deferred execution of the entire budget

36

would cause T0 to be exceeded at the end of the period. Toward the end of the

period, BE is zero, as the execution of deferred overclocking budget BH would cause

T0 to be exceeded otherwise. Although the function decreases in convex shape, we

approximate it in linear fashion for the fast online computation. We denote the

approximate function as ”BE approximate” in Figure 8. That is, BE decreases at the

rate of sE (In other words, LE decreases at rate 1) while the system is in idle state

and the amount is larger than Bmin
E . It is consumed at low speed rate, sE, whenever

BE is used for aperiodic jobs.

The minimum amount of BE is computed at the moment from which the succes-

sive execution of BH and BE makes the temperature at the end of a period be equal

to T0. Figure 7 shows the case for the computation of Bmin
E .

In practice, towards the end of the period, both BH and BE are constrained by

time rather than temperature: Even for large value of B, there is not sufficient time

remaining in the period to consume the budget. For this reason, the value for BE in

Figure 8 is displayed as BE(t) = max(BE(0)− t× sE, B
min
E).

b. Combining Periodic and Aperiodic Jobs

For the integration of the Transient Overclocking Server with periodic tasks, we

make three assumptions: First, all periodic tasks are schedulable in the system with

constant-speed (sE) scaling. That is, without aperiodic workload there is no need for

overclocking. Second, the periods of periodic tasks are identical. Third, for the sim-

plicity in handling the budgets, the budget replenishment period is set to be identical

to that of the periodic tasks.

We define two strategies for dealing with periodic tasks depending on whether

we allow to overclock the execution of periodic tasks as well, in addition to that of

37

(a) Case 1

(b) Case 2

Fig. 9. Temperature curves and available clock cycles: integration with periodic task

aperiodic jobs.

In the budget-sharing approach, both the periodic and aperiodic jobs can be

overclocked. If a periodic task becomes ready when no aperiodic job is in the queue,

it can make use of the overclocking budget, in the way described in Section a. While

this approach is very simple, it penalizes aperiodic jobs (in particular short ones) by

sharing the overclocking budget to the periodic tasks, which carry no benefit from it.

In the non-budget-sharing approach, the overclocking budget is used only for

aperiodic jobs, and the periodic jobs execute only at low speed, sE. Since we reserve

38

the overclocking for aperiodic jobs only, we achieve better average response times of

aperiodic jobs.

Lemma 4. In the case of budget sharing, the maximum available budget computed

in Section a is used both for periodic task and aperiodic task without ruining the

schedulability of periodic tasks.

Proof. Since the periodic task set is schedulable at constant low speed sE, it must be

schedulable after addition of the transient overclocking server as well. This is because

the overclocking server executes the periodic task at high speed as well in the way of

budget sharing so that the response time gets shorter. In this way, periodic tasks are

always schedulable in budget sharing strategy.

Lemma 5. For the non-sharing approach, the amount of maximum safe available

budget under thermal constraints is obtained by comparing two cases: either the ape-

riodic execution directly follows the periodic task set, or it directly preceeds the periodic

task set before the beginning of next period.

Proof. On the contrary to the case without periodic tasks, the available safe dura-

tions of sH and sE execution become shorter because the processor is heated by the

execution of periodic task before the start of budget consumption. With the higher

beginning temperature, the duration until the temperature hits the critical level ear-

lier than the case with no periodic task. Therefore, we need to look into cases that

aperiodic jobs are executed after the completion of periodic jobs in each period for

the computation of the available budget in the strategy. These cases are illustrated

in Figure 9. (We do not consider the thermal effect of back-to-back executions of the

aperiodic server since we are making sure that the temperature at the beginning of

the period does not exceed the the steady-state temperature T0).

39

The resulting budget allocation is illustrated in Figure 8(b). The length δpd in

the figure describes the execution duration of the periodic tasks. The computation of

budget follows the same way as that for the budget sharing approach except for the

thermal effects of δpd by periodic tasks.

D. Queueing Model

In this section, a queueing model for budget sharing approach is developed to analyze

the performance of the server under the thermal constraints. For a simple approxi-

mation, average processor speed, savg is introduced in the analysis.

Although there must be a little amount of error for the accurate response time

computation with the use of average processor speed, the error can be canceled out

by the probabilistic characteristic of aperiodic tasks and the effect of durations of sH ,

and sE is well reflected on savg.

With the average processor speed, savg, the queueing model analysis for the

transient overclocking server can be done in the same way as that for the conventional

slack stealing algorithm.

1. Arrivals and Computation Times of Aperiodic Task

• Arrivals of aperiodic tasks form a Poisson process with rate λ, i.e., the CDF of

inter-arrival time S of aperiodic tasks is [50]

FS(s) = 1− e−λs s ≥ 0. (3.9)

• The computation times of aperiodic tasks are exponentially distributed with mean

1/µ at sH , i.e., the computation time X of an aperiodic task is random with the CDF

40

LDLS

s(t)

sH

sE

savg

LH LE LD

LS

s(t)

sH

sE

savg

Fig. 10. Approximation using average processor speed savg

[50]

FX(x) = 1− e−µx x > 0. (3.10)

2. Modeling Transient Overclocking Server in Thermally Constrained Environment

Figure 10 illustrates how we simplify the effect of reactive speed scheduling by replac-

ing the multiple speed levels by an average processor speed to compute and approxi-

mate the average response time analysis for the aperiodic tasks.

The average processor speed is obtained using following equation:

savg = (sHLH + sELE)/LS , (3.11)

where LS = LH + LE.

From this point on with average processor speed, we are able to apply the conven-

tional way analysis of slack stealer except the processor-idle duration. In the design

of transient overclocking server under thermal constraints, the effect of the duration

is reflected on the average speed savg. That is, if LH is designed to be long, savg

increases, otherwise savg decreases 3.

Let Z be the first service time duration that an aperiodic task receives from

3We note that, due to the thermal constraints, the total amount of cycles available
during interval LS is not constant with varying LH .

41

the transformed(averaged) transient overclocking server 4. Obviously, Z is a random

variable taking value between zero and SA (maximum available service duration in one

period by the transient overclocking server). The amount of Z is different depending

on the beginning moment of execution of the task in a period. The probability that

a server is busy can be approximated by λ/
(

SA

p
· η · µ

)
using an M/M/1 queueing

model, where p is the budget replenishment period, SA is the maximum available

service duration in a period, and η is the ratio between savg and sH . Then, the

probability that Z is SA is 1− λ/
(

SA

p
· η · µ

)
. The distribution of Z other than the

case that Z is SA is then assumed to be uniform. Thus, the PDF of Z is expressed as

fZ(z) =


1−M2

SA

= M1, 0 ≤ z < SA

1− λ/

(
SA

p
· η · µ

)
= M2, z = SA

. (3.12)

If a full-time server (no periodic tasks and no thermal constraints) handles aperi-

odic tasks, the mean response time can be easily obtained through an M/M/1 queueing

model. Because of periodic task execution and some idle duration, however, the ac-

tual service time is no longer an exponentially distributed variable. The actual service

time is expressed differently according to the beginning moment of execution of an

aperiodic job, as follows:

• 0 ≤ Z < SA,

X ′ = W +

(⌊
W − Z

SA

⌋
0

+ 1

)
· (p− SA) , (3.13)

• Z = SA,

X ′ =


W, W ≤ Z

W − b+

{⌊
W − Z

SA

⌋
0

+ 1

}
· (p− SA) , W > Z

, (3.14)

where X ′ is defined as the actual service time which means the delay between the

4In the development of this model we loosely follow an approach described in [51]
for the simpler case of the Immediate Server.

42

beginning and the completion of the execution of the task. b is the beginning moment

of job execution. When we define X as the execution time of an aperiodic job at the

speed level of sH without any interference from periodic tasks, we set W = X/η as

the delay at the average speed, savg through an M/M/1 queueing model.

Equations (3.13) and (3.14) describe how to obtain the actual service time for the

given aperiodic job depending on the beginning moment of the job’s execution. This

enables us to determine the average response time for aperiodic tasks using a M/G/1

queueing model as explained in following section. In Equation (3.14), the variable

for beginning moment of job execution b is also assumed to be uniformly distributed

within its possible ranges. That is, fB(b) = 1/(p− SA) when b is within [0, p− SA].

3. M/G/1 Queueing Model

As shown in the above section, since the actual service time is no longer exponentially

distributed, an M/G/1 queueing model is required to compute the mean response time

Rm for aperiodic tasks. Rm is expressed as

Rm = E[X ′] +
λE[X ′2]

2(1− λE[X ′])
(3.15)

from [50].

From the PDFs of variables and Equations (3.13) and (3.14),

E[X ′] =

∫ SA

0

∫ ∞

0

X ′fX(x)fZ(z)dxdz

=

∫ SA

0

∫ ∞

0

X ′ηfW (w)fZ(z)dwdz (3.16)

and

E[X ′2] =

∫ SA

0

∫ ∞

0

X ′2ηfW (w)fZ(z)dwdz. (3.17)

43

Fig. 11. Comparison of average response times of aperiodic jobs without periodic task

In equations (3.16) and (3.17), we use the following expansion for an integral,∫ ∞

0

⌊
W − Z

SA

⌋
0

· ηfWdw =
∞∑
n=0

∫ (n+1)SA+z

nSA+z

n · ηfWdw, (3.18)

which is a similar approach described in [51].

E. Performance Evaluation

1. Simulations

In this section we evaluate the performance of the proposed Transient Overclocking

Server for various aperiodic arrivals alone or in combination with various periodic

workloads. We do this using a discrete-event simulation of a thermally-constrained

CPU that runs a single periodic task (which represents the worst-case periodic work-

load) and a Poisson stream of incoming aperiodic jobs.

To evaluate the Transient Overclocking Server, we run it with different overclock-

ing budgets and measure the response times experienced by the aperiodic jobs. In all

experiments, we vary the overclocking budget BH by varying the steady state temper-

44

(a) Budget-sharing approach

(b) Non-budget-sharing approach

Fig. 12. Average response time of aperiodic jobs with execution of periodic task: p =

200 msec

ature T0. This is represented by the value for IH on the x-axis, which represents the

time to reach the maximum temperature TC from the steady-state temperature T0.

In all figures except for Figure 12(b), IH is equal to LH , the length of the overclocking

budget.

The thermal parameters (thermal resistance R and thermal capacitance C) for

this evaluation have been experimentally derived through thermal monitoring of a

45

Lenovo T43 notebook with an Intel Pentium M CPU running at various speeds up

to 2.0GHz. Based on these parameters, we extrapolated the behavior of the same

processor at a hypothetical overclocked speed of 3GHz. We use the performance at

1.6GHz as the equilibrium speed sE and that at 3GHz as the overclocking speed sH .

We define the critical temperature to be 25oC above ambient temperature.

Figure 11 shows the effect of overclocking on aperiodic arrivals with different

job lengths. It clearly shows that systems with short aperiodic jobs (10msec in our

experiments) benefit from overclocking. In fact, the more aggressively we overclock

(IH large,) the better are the response times. This is easy to explain: for large

overclocking budgets (LH of 10msec and above) the aperiodic jobs can be executed

entirely within the overclocking budget, and therefore fully benefits from the increased

CPU speed. Long aperiodic jobs (50msec and 100msec in our experiments) show only

negligible reduction in response times, or have worse response times. Since these jobs

do not fit in the overclocking budget, and fit increasingly less into the non-overclocked

portion of the budget the more aggressively we overclock, they get penalized by the

reduced total execution time they have available during each period, and therefore

take more than one period to complete.

Figure 12 shows the effect of varying amounts of periodic workload on the re-

sponse times of the aperiodic jobs. In both graphs we use the “short” aperiodic

jobs from Figure 11 and add increasing amounts of periodic workload, starting from

zero, to 50msec execution time at overclocking speed sH . In both graphs we see how

large amounts of periodic workloads eventually “crowd out” the aperiodic workload

from the overclocking budget, and cause an increase in response time. The graphs

also show that the non-budget-sharing approach better protects the aperiodic jobs

by forcing the periodic jobs to run at equilibrium speed. The result is lower response

times in the non-sharing case.

46

In the case of very aggressive overclocking (IH of 20msec and higher) with high

levels of periodic workload (20msec execution time at sH and higher) a weakness of the

non-sharing approach becomes apparent: Since the executing time of the periodics

must be treated separately from the aperiodics, there is not sufficient slack left to

allocate a sufficiently large overclocking budget. In such cases, increasing IH actually

reduces the overclocking budget (in such cases L
(1)
H < L

(2)
H), and therefore increases

the response times.

2. Queueing Model Validation

We validated the queueing model against the discrete event simulations. Figure 13

and Figure 14 compare average response times obtained by the queueing model and by

simulations. As a simple way to validate our queueing model, we compare the values

at IH = 0. Having zero length of IH and no workload from periodic tasks means that

a CPU runs always at equilibrium speed sE and the transient overclocking server is

able to run whenever there are aperiodic tasks to execute without any interruption

of other tasks. We can take this way of working as a general M/M/1 at service rate

of µ · sE
sH

. We can see that analytical and simulation results match the response time

by simple M/M/1 model at IH = 0. In Figure 13, we see that the results match each

other well with very small errors. With larger amounts of periodic task workload,

the effect of increasing the length of IH becomes severe, leading to large increases in

response time. From the comparison in Figure 14, we can also notice that the effect

by increase of IH is smaller than the simulations. Since we averaged two levels of

processor speed into savg, the response time appears to be less sensitive to the change

of IH relatively than simulations.

47

(a)

(b)

Fig. 13. Comparison of average response times between simulation and queueing model

without periodic task

F. Conclusion

By their very nature, embedded real-time systems are exposed to environmental ef-

fects, some of which can influence the ability of the system to provide the promised

performance guarantee levels. For example, atmospheric conditions may affect the

ability of free-space optical links to carry traffic (e.g., [52]), or electromagnetic inter-

48

ference may prevent 801.11-style networks to provide QoS guarantees [53]. Similarly,

service can be disrupted due to attacks by third-parties, software errors, changes in

security posture and other maintenance requirements, flash crowds, thermal influ-

ences, and many other reasons. Many of these environmental effects are outside of

the control of the system designer and operator5.

In contrast, other environmental effects that are triggered by system- or program

behavior, and for which therefore predictive models exist. Examples of this type

of environmental effects are: Thermal overload due to power dissipation, memory

availability in garbage-collected memory systems [54, 55], or energy availability in

battery-powered systems [56].

Such effects give rise to interesting priority inversions between tasks, where ac-

cess to the computational resource by one fully preemptible tasks may cause a higher-

priority task to miss its deadline in the future because of speed control. This interac-

tion is particularly interesting when it comes to handling of (supposedly low-priority)

aperiodic jobs. In this chapter we illustrate that traditional algorithms (such as Slack

Stealing and Deferrable Server) cannot be näıvely applied in thermally constrained

environments, as this can lead to missed deadlines. We then proceed to describe a

design-time scheme to allocate budget to accommodate aperiodic job arrivals. Finally,

we show how transient overclocking with the budget computed offline at design time

reduces response times for aperiodic jobs with a series of discrete-event simulations.

Many issues remain open after this work. For this paper we set out to define a

design-time approach to budget allocation for the Transient Overclocking Server under

thermal constraints. The benefit of using transient overclocking have been illustrated

5More precisely, we mean to say that the occurrence of events cannot be controlled
by the operator or designer; the frequency of occurrences may be in some cases
controlled: for example, one can reduce the rate of software faults by better testing.

49

through experiments. Currently we have no tools available that support the engineer’s

decision on whether and how to apply transient overclocking. Analytical tools and

models must be developed that allow to optimize the budget allocation for given

settings.

In general, the type of priority inversions caused by the use of resources that later

need to be reclaimed (either through speed control, or garbage collection, or energy-

aware DVS, or others) needs to be better understood, and appropriate resource access

protocols need to be devised.

50

(a)

(b)

(c)

Fig. 14. Comparison of average response times between simulation and queueing model

with periodic task execution

51

CHAPTER IV

ON-LINE THERMALLY-AWARE TRANSIENT OVERCLOCKING FOR

MIXED-WORKLOADS

A. Introduction

In the previous chapter we described the design-time budget based transient over-

clocking method for mixed-workloads. The budget based approach guarantees ther-

mally safe execution of aperiodic jobs, and the approach is very efficient during run-

time with low overhead in the budget management and no need for on-line tempera-

ture monitoring. Since this speed control scheme effectively runs in open-loop mode it

can, however, be too conservative in minimizing the response times of aperiodic work-

load. This follows because the scheme computes budgets based on the assumption

that the system will be fully utilized at all times with worst-case periodic workload.

In addition it must assume that aperiodic jobs are always backlogged in the task

queue. In practical systems, however, the workload is often significantly lower, and

the temperature level is usually lower than the worst-case thermal levels as well.

In this chapter we propose an on-line thermally-aware transient overclocking

method to reduce the response times of aperiodic jobs efficiently at run-time. We

describe a modified Slack-Stealing algorithm to consider the thermal constraints of

systems together with the deadline constraints of periodic tasks. With the thermal

model and temperature data provided by embedded thermal sensors, we compute

slack for aperiodic workload (slack estimation) at run-time that satisfies both thermal

and temporal constraints. The slack estimation is based on the system thermal model,

thermal management strategy, and the microprocessor’s temperature monitored by

thermal sensors embedded. For the speed control policy, we consider inter-task speed

52

control scheme which adjusts the speed task by task. We also integrate the simple

Reactive Speed Scaling (RSS) as the thermal management strategy in which the speed

is switched to the equilibrium speed sE when temperature increases and reaches the

critical temperature Tc.

We will see in this chapter that the proposed Thermally-Aware Slack-Stealing

(TASS) algorithm minimizes the response times of aperiodic jobs accounting for the

lower temperature and the early completion of periodic tasks and it satisfies both the

thermal and the deadline constraints. Furthermore, the algorithm has low computa-

tional complexity with O(1) on-line computation for slack estimation per aperiodic

task arrival.

B. System Model, Assumptions and Notation

1. Assumptions and Notations

Throughout this chapter, we adopt preemptive Earliest-Deadline-First (EDF) [8]

scheduling policy. We assume that the computational workloads has two compo-

nents: A periodic task set with hard deadlines, and a set of soft deadline aperiodic

jobs. We follow standard practice and assume that the worst-case execution times

and the arrivals of periodic tasks are known a priori, and the execution times of soft

aperiodic jobs become known upon job arrival. We first propose a static solution for

aperiodic job executions, assuming that the execution times of the instances of all pe-

riodic tasks are equal to their worst-case execution times at all times, thus maximizing

the periodic tasks’ utilization. In practice, task instances often complete well before

their worst-case execution time. In such cases, service to aperiodic workload can be

increased or power consumption decreased by accounting for the unused scheduled

processor cycles. This is generally called dynamic slack reclamation [25, 57]. We will

53

Table II. Notations for Task Model
Symbol Meaning

Ut The total utilization of periodic task set at sE , that is, Ut =
∑n

i=1
ei
pi

Ue(s) The effective utilization of periodic task set at speed s, Ue(s) = Ut · sE
s

sN Nominal CPU speed (which makes the effective utilization of the system be
equal to 1)

Ji The ith aperiodic job
tri The arrival time of Ji
tfi The finish time of Ji

NTA The earliest next arrival time of a periodic task instance in the system after
time t, which is equal to the next earliest deadline if pi = Di,∀Γi

c[t,NTA] The maximum amount of clock-cycles available from the current moment t
until NTA by RSS

cpd The amount of periodic processing clock-cycles to execute until NTA
cap The amount of aperiodic processing clock-cycles available until NTA

discuss the role of dynamic slack reclamation in the context of thermally constraint

systems and present a thermally-aware dynamic slack reclamation technique. As in

the previous chapter, all periodic tasks are assumed to be independent and in-phase.

The deadline of each periodic task instance is assumed to be at the end of the task

period.

Recall that the combination of RSS speed control and inter-task speed assignment

allows the system to adjust the processor speed at the following points: (a) at task

boundaries, (b) at each task arrival/finish instant, and (c) at the moment when the

critical temperature is reached.

In addition to the terms and notation defined in Chapter II, in the following we

will make use of the notation described in Table II.

2. Periodic Hard Real-Time Task Execution

We consider a set of hard real-time periodic tasks Γ = {Γ1,Γ2, . . . ,Γn}, where each

task Γi = (pi, ei) has a minimum time pi between job instances. Each job requires

54

ei execution time at equilibrium speed sE to complete in the worst-case. We adopt

the Earliest-Deadline-First (EDF) scheduling scheme to schedule the execution of the

periodic tasks. Given a set Γ of periodic tasks, we define the total utilization of Γ at

equilibrium-speed as Ut =
∑n

i=1
ei
pi
. It is well known that Γ can be feasibly scheduled

by EDF if and only if Ut ≤ 1.0. We assume that the total utilization of the given

periodic task set is smaller or equal to 1.0, and so the task set is schedulable and

thermally safe at speed sE. Figure 15(a) shows an example of an EDF schedule and

the resulting temperature variation for a given task set Γ = {(10, 4), (30, 8)} at the

constant equilibrium speed sE. We also define the effective utilization (Ue) of the

periodic task set at speed s as follows:

Ue(s) =
n∑

i=1

ci
s · pi

=
n∑

i=1

sE · ei
s · pi

= Ut ·
sE
s

. (4.1)

When there is no aperiodic job to consider for scheduling, we decide to use the speed

which makes Ue(·) = 1. We call this speed level the nominal speed and denote it

by sN . We know that sN = Ut · sE, and that when Ue(sN) = 1, the task set Γ is

schedulable at speed sN by EDF. Figure 15(b) shows the EDF scheduling of the given

periodic task set Γ at the constant nominal speed sN . The advantages of the use of

nominal speed sN for periodic task set can be described in three respects: 1) As

research in energy-aware DVS schemes shows, the energy consumption is minimized

when a constant lowest-possible speed is selected for task executions [58, 59]. 2)

Lower speeds reduce the peak temperature during job executions, thus delaying the

triggering of the RSS thermal management mechanism. Finally, 3) When the speed

sN at which Ue = 1 is selected for periodic task execution, it facilitates the run-time

slack estimation since the amount of slack in the periodic workload is easily computed

without any reference to precomputed slack time tables.

55

(a) Scheduling with sE

(b) Scheduling with sN

Fig. 15. EDF scheduling with constant speed: Γ = {(10, 2), (30, 8)}

3. Aperiodic Task Execution

In systems with both periodic and aperiodic workloads, the latter must be scheduled

so as to minimize their response times while at the same time not causing deadline

violations for the periodic tasks.

A popular such scheduling algorithm is the Slack Stealing scheduler [9]. Slack

stealing executes aperiodic tasks by using the available slack times of periodic tasks.

56

If there is available slack in the periodic tasks, aperiodic jobs can be serviced first

without violating deadlines of periodic tasks as long as slack is available. The slack

times are computed on-line by the slack stealer with all the information about the

periodic task executions (e.g., periods, deadlines, remaining execution times, and

etc.). We call this computation slack estimation. It can be shown that slack stealing

minimizes the response times of aperiodic jobs [9].

In the following we base our thermally-aware scheduling on the Slack-Stealing

algorithm described in [9]. The slack stealer is particularly appropriate for aperiodic

job executions in our case because the algorithm can fully utilize the temporal re-

sources made available by the on-line slack estimation, which in turn minimizes the

response times of aperiodic jobs. In systems that provide multiple speeds, transient

overclocking can be applied to further reduce the response times of aperiodic jobs. By

temporarily increasing the microprocessor speed at times, more slack can be retrieved

and more clock-cycles during the slack can be allocated to aperiodic jobs.

While this form of transient overclocking is very efficient in the minimization of

the response times of aperiodic jobs, we need to take into account the thermal safety

of systems. That is, at any time during overclocking we need to keep track of the

current temperature in order to predict how much longer we can keep overclocking.

We call this the thermal slack in the system. As a result, in a thermally aware slack

scheduling we need to keep track temporal slack and thermal slack, and - if needed -

trade them off against each other.

Thus, when the system is thermally constrained, three issues arise in the appli-

cation of transient overclocking scheme:

• How fast and how long can the processor execute aperiodic jobs before thermal

constraints are exceeded ?

57

• How to compute the thermal slack ?

We propose the following thermally-aware slack-stealing algorithm. It is based on the

traditional slack-stealing algorithm and transient overclocking in a thermally aware

fashion.

-
Γ11 Γ12 Γ13

sE

t
0 4 10 14 20 24 30

-
Γ21 Γ21 Γ21

sE

t
0 4 10 14 20 24 26 30

(a) EDF scheduling of periodic tasks

-
Γ11

Γ11
Γ12 Γ21 Γ13 Γ21

J1

sE

sH

t
0 26
J1 released

8.6 10 14 20 24 306
Γ21 missed deadline

dt

(b) Deadline miss by erroneous slack computation

-
Γ11

Γ11 Γ21
Γ12 Γ21 Γ13 Γ21

J1

sE

sH

t
0 6
J1 released

2 6 10 14 20 24 26 30

dt

(c) Conservative slack estimation: cpd = sE × (dt− tr1) = sE × 8.0

-
Γ11

Γ11 Γ21
Γ12 Γ21 Γ13 Γ21

J1

sE

sH

t
0 6
J1 released

2 10 14 20 24 30

dt

(d) Correct slack estimation

Fig. 16. Illustrations of slack computation: Γ = {(10, 4), (30, 14)}

Before providing the details of our approach, we show the necessity of using sN

58

for the slack estimation. The slack stealing algorithm estimates slack times using a

procrastination scheduling approach, where periodic task execution is delayed until

any slack is exhausted to maximize the duration of idle intervals. It therefore requires

the information of periodic task deadlines and the execution times of the tasks. The

conventional slack stealing algorithm creates a precomputed slack table and dynam-

ically updates the table to find appropriate slack time at run-time. In systems with

dynamic speed control, however, it would be very inefficient for the on-line slack es-

timation due to the computational overhead if we keep a precomputed slack table

or maintain the task execution history on the system as in the traditional way. In

this study, we propose an efficient on-line method to estimate slack in systems with

dynamic speed control. For the online slack estimation, we first need to set the instan-

taneous deadline dt by which the completion of specific amount of periodic workload

can be delayed without violating the deadline constraints of periodic tasks. In the

proposed method, we use the next task arrival NTA as the instantaneous deadline

for the slack estimation. With the instantaneous deadline dt set to NTA, we then

estimate the periodic workload amount of which we can delay the completion until dt.

When we correctly compute the periodic workload amount to complete by dt, we are

able to estimate the slack for aperiodic workload. However, the correct computation

of periodic workload to procrastinate requires the information of all the instances

of given periodic tasks and slack computation for each task instance, which will not

be appropriate for the on-line slack stealing under the system with dynamic speed

control. Instead, we decide to use the single time information of the instantaneous

deadline dt which is set to NTA. In addition, we introduce the use of the speed sN at

which Ue(·) = 1 for the on-line efficiency in slack estimation. By the use of the speed

sN , it will be shown that we can simplify the computation of how long to delay the

execution of periodic workload to benefit aperiodic job execution without having to

59

explicitly manage the slack table and the history of periodic task executions.

In the following after we describe the difficulty of correct slack estimation only

with the information of the next task arrival (NTA) by some scheduling examples, we

explain how the speed sN can be used to simplify the slack computation. We will then

illustrate why we need the thermal-awareness in the application of transient overclock-

ing scheme for the mixed-workload execution. We initially simplify the discussion by

not considering thermal constraints. Rather, we assume the aperiodic workload to be

executed at the highest speed sH (transient overclocking). To maximize the available

slack times, we also assume that CPU runs at sH for the periodic workload execution

between the release moment of aperiodic job tr and the instantaneous deadline dt.

In the proposed slack estimation method, when we do not take into thermal-

safety, the slack (in clock-cycles) can be simply computed at tr as follows:

slack = c[tr,dt] − cpd, (4.2)

where c[tr,dt] is the total number of clock cycles available at the speed sH during the

time interval [tr, dt], that is, c[tr,dt] = sH × (dt − tr). Recall that cpd denotes the

estimated periodic workload that needs to complete within the interval (tr, dt]. As

mentioned above, however, the correct computation of cpd is not trivial. First, it is

difficult to find on-line the proper set of periodic task instances to estimate slacks.

Second, the overhead of on-line slack computation for all task instances must be very

high.

In the following we illustrate the scheduling of newly arriving aperiodic tasks until

NTA to point out the issue of periodic workload estimation for the slack computation.

We use a task set with two tasks Γ1 and Γ2 :

p1 = 10, e1 = 4, p2 = 30, e2 = 14.

60

Figure 16(a) shows an EDF schedule of the periodic tasks. Suppose an aperiodic

job becomes ready at t = 2 at which point dt is set to NTA (t = 10). For the

estimation of the periodic workload that can be delayed until dt, we can think of using

the information about the periodic task instances currently in the EDF queue. The

naive use of task information in the take queue, however, results in deadline errors of

periodic tasks. Figure 16(b) shows the erroneous task schedule. In Figure 16(b), when

we take only the backlogged workload of Γ1,1 for the periodic workload cpd estimation

and do the slack estimation at t = 2, Γ2,1 would not have enough processing time to

complete and miss the deadline at t = 30. If, on the other hand, we consider both Γ1,1

and Γ2,1, which is backlogged in the EDF queue and regard them as the cpd for slack

estimation, we find no slack available until dt. In fact, the workload sum of Γ1,1 and

Γ2,1 is not able to be finished in the interval (2, 10] even at the highest CPU speed

sH if sH is assumed as sH = 1.5 · sE in this example. One possible solution for the

cpd estimation is, therefore, to simply multiply sE with the time interval between the

aperiodic job release moment tr and NTA. Although this way of periodic workload

estimation and the slack computation guarantees all periodic task deadlines, it does

poorly at reducing the response time of aperiodic workload. In fact, it significantly

overestimates the periodic workload to execute during the interval. In Figure 16(c),

we notice that very small amount of slack is retrieved at time t = 2 for aperiodic task

by estimating cpd = sE · (NTA − tr) = sE × 8.0, which leaves CPU idle during the

time interval (26, 30]. By the overestimation of periodic workload during the interval

(tr, NTA], the slack stealing algorithm becomes very conservative. On the contrary,

Figure 16(d) shows the correct slack estimation for the aperiodic job execution, which

leaves no idle time until the end of hyperperiod of Γ1 and Γ2 at t = 30. By estimating

the accurate minimum workload amount of Γ2,1 to complete until NTAs which satisfies

the deadline constraint of Γ2 in the example, we can retrieve the maximum amount

61

of slack for aperiodic workload at the moment t = 2.

However, the accurate estimation of the minimum periodic workload amount to

complete until NTA is not trivial in the case that the periodic task set is composed

of large number of periodic tasks. It should require a bookkeeping of periodic task

executions with a large memory space and high run-time computational overhead

which is not appropriate for on-line slack estimation. Furthermore, when the thermal-

awareness and the speed control scheme for thermal management is concerned, the

slack estimation becomes more complicated.

Therefore we apply the nominal speed, sN , to make the efficient and accurate

run-time estimation of periodic workload to execute for a specific time interval. By

the application of sN at which Ue(·) = 1, the periodic task set is always schedulable

under the EDF scheduling algorithm and the periodic workload to complete during a

specific interval (t1, t2] is computed simply as cpd = sN×(t2−t1). In following sections,

we will describe the slack estimation based on the nominal speed sN in detail.

Lastly, we show the necessity of thermal-awareness for the transient overclocking

scheme through another example of task scheduling. Figure 17 shows two different

EDF scheduling with aperiodic jobs with the use of sE or sH for aperiodic jobs and

sN for periodic workload. The speed assignment to periodic workload is assumed to

follow the conventional energy-aware constant speed algorithm by which the lowest-

possible constant speed is applied for given workload.

In the examples, the slack is computed simply by looking at every interval length

from the moment when an aperiodic job is released to an otherwise idle aperiodic job

server to NTA and supposing the CPU runs either at sE or sH during the interval.

In Figure 17(a) in which aperiodic workload runs at speed sE, the temperature never

reaches to the critical level Tc, it however delays the response time of aperiodic jobs.

When aperiodic jobs run at speed sH (Figure 17(b)), the response time is significantly

62

(a) Scheduling with sE

(b) Scheduling with sH

Fig. 17. EDF scheduling with aperiodic tasks: Γ = {(10, 2), (20, 8)}, λ = 0.1, µ = 0.5

reduced, but the thermal constraint cannot be satisfied. (In the example, we set

Tc = 80oC.)

In summary theses examples illustrate that the speed assignment for the exe-

cution of mixed workload must consider current thermal condition. Otherwise, it

either violates the microprocessor’s thermal constraint or unduly delays the response

times of aperiodic jobs. In the next section, we propose how to compute the slack

63

for aperiodic jobs with the application of RSS thermal management mechanism and

how to control the processor speed to minimize the response times of aperiodic jobs

satisfying both the deadline constraints of periodic tasks and the thermal constraints

of microprocessor.

C. Aperiodic Task Server with Transient Overclocking

As we showed in the previous section, any safe and effective slack computation method

must consider both the mechanism for thermal management and the temperature

variation. Although the use of the thermally safe constant speed sE guarantees both

the deadlines of periodic tasks and the thermal constraints, it is too conservative to

sufficiently reduce the response times of aperiodic jobs. We thus propose a thermally-

aware slack-stealing (TASS) algorithm to minimize the response times of aperiodic

jobs by fully utilizing the available slack without threatening the thermal safety of

systems.

1. Slack Stealing Server under Thermal Constraints

While the traditional slack stealing algorithm takes into account the slack in the

temporal dimension, any thermally aware slack-stealing algorithm must take into

consideration the thermal domain as well. [e.g. “One could informally say that such

an algorithm should account and trade-off timing slack and thermal slack.”] A slack

computation algorithm therefore requires a specific thermal model and the monitor-

ing of current temperature in addition to the available time interval to compute the

available slack. To better represent the temporal and the thermal dimensions, in

the following we will use the clock-cycles as the unit for the thermal slack. This is

in contrast to traditional slack computation algorithms, which account for execution

64

(a) Periodic workload estimation

(b) Temperature prediction

(c) Thermal slack estimation

Fig. 18. Basic idea of thermally-aware slack-stealing algorithm

time only. For the thermal model, we select the simple model represented in Equa-

tion 3.1. The thermal slack estimation is based on the projection of temperature

variations. First, the TASS algorithm predicts the temperature increase between the

current moment and NTA which is set as the instantaneous deadline. For the thermal

prediction, it considers the transient overclocking and the RSS speed control scheme

as a thermal management. It also assumes that the system is fully utilized during

the interval, that is, the CPU is continuously running in the interval. The TASS

algorithm then computes the total available clock-cycles c[tr,NTA] for the interval with

65

the reference to the projected thermal profile by which the high speed duration ∆tH

and the equilibrium speed duration ∆tE are obtained. Since the periodic workload

to complete within the interval, cpd, is estimated by the speed sN and the length of

the interval, we know the available slack amount by a simple arithmetic.

Figure 18 describes the basic idea how to find the thermal slack for aperiodic job

execution. At the release instant of aperiodic job, the system monitors the current

temperature Ttr at tr and find the moment of NTA (Figure 18(a)). With the tem-

perature Ttr , the time interval until NTA, and the thermal model, we then project

the thermal profile of RSS (Figure 18(b)). Based on the projected thermal profile,

we compute the total available clock-cycles c[tr,NTA] in the interval under RSS scheme

with the length of high speed execution ∆tH and the length of equilibrium speed

execution ∆tE. By the simple subtraction of cpd which is estimated in Figure 18(a)

from c[tr,NTA], we find the thermal slack cap (Figure 18(c)).

2. Thermal Slack Computation

Let Tss(s) denote the thermally steady-state temperature converged when the proces-

sor runs continuously for infinite time at a constant speed s. The time interval ∆tH

in Figure 18(b) after which the temperature reaches Tc at speed sH can be computed

by Equation 3.1 and is expressed as follows:

Tss(sH) = R · κsαH ,

∆tH =
1

b
ln

(
Tss(sH)− Tr

Tss(sH)− Tc

)
, (4.3)

where Tr is the monitored temperature at the moment of thermal prediction step (tr

in Figure 18). The value for ∆tH can be linearly approximated to lower the overhead

66

of run-time computation as follows;

∆t̃H =
1

b

(
Tc − Tr

Tss − Tr

)
. (4.4)

Observation 1. If we denote by ∆t̃H the value of ∆tH approximated by Eq. (4.4),

then ∆t̃H < ∆tH . The Thermally-Aware Slack-Stealing (TASS) algorithm guarantees

thermal safety of systems using the approximate value of ∆tH because it overestimate

the temperature increase while aperiodic job executes and less amount of clock-cyles

are assigned as slack to aperiodic tasks by the shorter length of maximum speed exe-

cution.

To simplify the run-time slack estimation, we decide to use ∆t̃H , the approximate

value of ∆tH , which is thermally safe according to the Observation 1. In the remaining

equations of this chapter, we use ∆tH for ∆t̃H unless there is a need to distinguish

those two terms. With the time length of the high speed duration ∆tH , the total

available clock-cycles c[tr,NTA] for the interval is computed according to the interval

length between tr and NTA as follows,

ctr,NTA =

 sH ·∆tH + sE · (NTA− tr −∆tH) if NTA > (tr +∆tH),

sH · (NTA− tr −∆tH) otherwise.

Since we use the speed sN at which Ue(·) = 1 for the periodic task execution while

the TASS server is idle and the EDF schedule is applied, we guarantee that there

is no deadline violation of periodic tasks. Considering the EDF scheduling with the

nominal speed sN , we also know that the least amount of periodic task workload to

execute until NTA is cpd = sN · (NTA − tr) as seen in Figure 18(a). The largest

amount of aperiodic processing clock-cycles available until NTA, cap, is then simply

obtained as follows,

cap = ctr,NTA − cpd. (4.5)

67

In the next section, we describe how the proposed TASS algorithm works for the

mixed workload exectutions.

-
Γ11 Γ21 Γ12 Γ21 Γ13 Γ22 Γ14 Γ22

sE

t
0 2 5 7 8 10 12 15 17 18 20

(a) EDF scheduling of periodic tasks at sE

-
Γ11 Γ21 Γ12 Γ21 Γ13 Γ22 Γ14 Γ22

sN
= 0.8× sE

t
0 2.5 5 7.5 10 12.5 15 17.5 20

(b) EDF scheduling of periodic tasks at sN

-
Γ11 Γ21 Γ12 Γ12 Γ21 Γ13 Γ22 Γ14 Γ22

sN

t
0 2.5 5 6 7.5 10 12.5 15 17.5 20

6

J1 released

cpd = 4.0 × sN

NTA

(c) An aperiodic job arrives at 6.0

-
Γ11 Γ21 Γ12

Γ12

J1
Γ21 Γ13 Γ22

Γ22J2

Γ14 Γ22

sN
sE

sH

t
0 2.5 5 6 7.5 10 12.5 15 17.5 20

6

J1 released

6

J2 released

NTA1 NTA2
RSS

(d) Speed control by TASS for aperiodic jobs

Fig. 19. The schedule of TASS algorithm: Γ = {(5, 2), (10, 4)}

68

Algorithm 1 Thermally-Aware Slack Stealing(TASS): rules and algorithm

Input: Γ and J (Periodic task set and Aperiodic jobs)
1: Compute sN by the total utilization, Ut, of periodic task set
2: At every arrival of periodic task instance, update NTA
3: begin
4: TASS is initialized to be inactive
5: while System is running do
6: if J is in task queue then
7: if TASS is inactive then
8: wake up TASS
9: cpd = sN · (NTA− tnow)

10: /* for dynamic slack reclamation */
11: if ĉpd < cpd then
12: cpd = ĉpd

13: end if
14: end if
15: TASS projects thermal envelope until NTA by RSS and computes ctr,NTA

16: cap = ctr,NTA − cpd

17: if cap > 0 then
18: /*execute aperiodic job*/
19: s=sH
20: else
21: if cpd > 0 then
22: /*execute periodic job*/
23: s=sH
24: decrease cpd at speed rate s
25: /*s may be switched to sE according to the thermal condition*/
26: else
27: /*CPU is idle*/
28: s=0
29: end if
30: end if
31: else if Γ is in task queue then
32: if TASS is active then
33: s = cpd

NTA−tnow

34: if s > sE then
35: /*execute periodic job*/
36: s = sH
37: end if
38: decrease cpd at speed rate s
39: /*s may be switched to sE according to the thermal condition*/
40: else
41: /*execute periodic job*/
42: s = sN
43: end if
44: else
45: s = 0
46: end if
47: if tnow ≥ NTA then
48: suspend TASS
49: cpd = 0
50: end if
51: /* Job selected executes at the assigned speed s. */
52: /* Speed can be switched to sE by RSS when Tc is reached. */

53: end while

69

3. Speed Control

For the speed control, we focus on each time interval composed of two adjacentNTAs.

The algorithm of Thermally-Aware Slack Stealing (TASS) aperiodic job server is

explained in Algorithm 1 and the example is shown in Figure 19. At the beginning

of NTA interval, if there is no aperiodic job ready in task queue so that the TASS

server remains idle, the processor is assigned sN to execute periodic task instance as

described in lines 41-43 of Algorithm 1. When an aperiodic job is released at tr, the

TASS aperiodic job server becomes active and it projects a thermal profile based on

the monitored current temperature, the thermal model, and the RSS scheme (line

15). The TASS aperiodic job server is active until the next NTA is reached. If there

remains thermal slack cap, it executes the aperiodic job according to RSS strategy

(lines 17-19). And the remaining periodic task workload is also executed either by the

RSS scheme continuously or at the lowest possible constant speed according to the

the amount of workload (lines 21-24 and 32-39). When the aperiodic job completes

at tf without using up cap in the interval, times that were supposed to be consumed

for aperiodic job execution are reclaimed to lower the CPU speed for the remaining

periodic task execution. Suppose TASS server is active in the NTA interval and

there is no more aperiodic job ready in the aperiodic task queue. The lowest possible

constant to finish the remaining periodic workload cpd for the remaining time interval

[tf , NTA] is computed as spd = cpd

NTA−tf
. If the speed is less than sE, we can safely

assign the speed spd for the periodic workload without any concern about the violation

of thermal constraint. Otherwise, we should make the speed control simply follow

RSS scheme for thermal safety (lines 32-39).

Figure 19 illustrates an example of TASS algorithm with the periodic task set

Γ = {(5, 2), (10, 4)}. Since Ut = 0.8, the nominal speed sN is set as sN = 0.8 · sE.

70

With sN , the effective utilization Ue becomes 1, and Figure 19(b) shows the EDF

scheduling of the given task set at the speed sN . At t = 6, we suppose an aperiodic

job is released (tr = 6.0), and TASS server becomes active to project thermal profile

until NTA (t = 10) and computes cpd(= 4.0 · sN). In Figure 19(d), we notice how

cap is estimated considering RSS thermal management mechanism. In Figure 19(d),

we also see that another aperiodic job J2 is released at t = 13 and serviced by TASS

aperiodic job server. In this case, however, it shows that there may not be the speed

switching to sE by RSS scheme during the executions of aperiodic jobs and of the

remaining periodic tasks until NTA depending on the thermal condition.

Fig. 20. Example of TASS speed control with temperature constraint Tc = 80oC:

Γ = {(10, 2), (20, 8)}, λ = 0.1, µ = 0.5

Figure 20 shows an example of aperiodic job scheduling by the proposed thermally-

aware speed control. In the example, the temperature never reaches over the critical

level Tc, while the response time of aperiodic jobs are significantly reduced by tran-

sient overclocking.

Lemma 6. Among all speed scaling scheme, the RSS minimizes the response times

71

of aperiodic jobs, when two discrete speeds are used 1.

Proof. Let acap denote the actual workload amount of aperiodic job released at tr.

From the Figure 18, suppose acap ≤ cap, then we need to run the CPU at the highest

speed possible to complete the aperiodic job at the earliest time. Thus, the RSS

scheme is the best to minimize the response time of the job.

On the contrary, if acap > cap, the aperiodic job cannot be finished by NTA and

the available slack clock-cycles within [tr, NTA] should be maximized to minimize

the remnant of the aperiodic job to execute in the following NTA intervals.

Let ĉ denote the sum of the cycles by RSS in the interval. That is, ĉ = cap + cpd.

And let TRSS be the temperature reached at NTA by RSS speed control. If there is

any other speed assignment using the two speeds (sH and sE) that retrieves ĉ clock-

cycles and makes the final temperature TNTA be lower than TRSS, the speed control

must be superior to the RSS scheme retrieving more available clock-cycles than ĉ by

the increase of high speed time length ∆tH , which increases TNTA to be equal to TRSS.

Assume that there is a way of speed assignment that is different from RSS scheme

and it satisfies the condition described above. Since the workload amount by the speed

assignment is assumed to be ĉ, total time lengths of sH and sE in the interval must

be same as those of the RSS scheme, respectively. In this respect, the assumed speed

assignment can be regarded as a different combination of speed assignment orderings

from the RSS scheme, which is illustrated in Figure 21.

The comparisons of temperature increases by various orderings of speed assign-

ment can be understood by the comparison described in the Lemma 1 in [21] with

11) We simplify the thermally-aware slack-stealing mechanism and alleviate the
overhead of new speed computation by adopting two speed approach (RSS) for the
aperiodic job execution. 2) We select two speeds sH and sE because the former is
the fastest speed when system temperature is low and the latter is the thermally safe
fastest possible speed when the temperature is at Tc.

72

(a) RSS speed control

(b) non-RSS speed control

Fig. 21. RSS scheme vs. non-RSS scheme for same amount of c[tr,NTA]

a level of offset. It is because the temperature is an output of the power input in

thermal-RC circuit model which is a linear-time-invariant system and can be super-

posed.

The Lemma 1 in [21] says that delaying some part of job execution increases

temperature more at a specific later time instance. And this can be directly inter-

preted as that running the processor at high-speed earlier decreases the temperature

lower at a moment after the execution of same amount of workload. For example,

given a current temperature Ttr and TRSS(= Tc), if we switch the speed assignment

ordering from < sH , sE > to < sE, sH > for the same amount of cycles (the execution

time length for sE and sH are ∆tE and ∆tH respectively) as shown in Figure 22, we

should see the thermal violation at NTA, that is, TNTA > Tc.

Based on the Lemma[21], we notice that there is no other speed assignment than

RSS to lower the temperature below TRSS at NTA obtaining ĉ in the given interval.

73

Fig. 22. Switch of speed assignment

This is the contradiction.

For both cases i) acap ≤ cap and ii) acap < cap, therefore, we see the RSS scheme

is optimal for aperiodic job execution under thermal constraints.

Lemma 7. TASS algorithm guarantees both deadline constraints and the thermal

constraint of thermally constrained hard real-time systems.

Proof. For the deadline constraint to be satisfied in a hard real-time system with

EDF scheduling strategy, periodic task workload assigned to every NTA-interval is

required to complete within the interval. Since the periodic task workload is obtained

from the EDF schedule with a constant nominal speed sN that makes Ue = 1, the

thermally-aware slack-stealing strategy that considers the workload amount guaran-

tees the temporal feasible condition.

In every NTA-interval, if there is no aperiodic job ready and TASS is inactive,

system temperature never increases to Tc because the proposed algorithm assigns sN

which is equal or smaller than sE based on the assumption that the total utilization

74

Ut is equal or less than 1. When there is an aperiodic job released, RSS scheme is

applied until the next NTA is reached or the aperiodic job is complete, whichever

comes first.

For the execution of periodic workload while TASS server is active, too, unless

the constant speed adjusted is larger than sE, the system remains stable in thermal

respective. For the case that the required constant speed for the remaining periodic

workload until NTA is larger than sE, the system is also thermally safe since the

speed control follows RSS.

Therefore, both thermal constraint and deadline constraint are satisfied by pro-

posed thermally-aware slack-stealing speed control scheme.

Theorem 3. TASS algorithm is optimal for minimizing the response times of aperi-

odic jobs in thermally constrained hard real-time systems.

Proof. The task scheduling of mixed workload with TASS algorithm is feasible in

the sense that periodics meet deadlines and thermal constraints are satisfied by the

Lemma 7. And the Lemma 6 proves TASS minimizes the response times of aperiodic

jobs. Thus, TASS is regarded as the optimal algorithm for aperiodic jobs in thermally

constrained real-time systems.

4. Dynamic Slack Reclamation

For thermal slack computation, we consider both the temperature level of micropro-

cessor at the release moment of aperiodic job and the remaining periodic workload

to execute.

The slack computation described in section 2 is static because it considers only

the worst-case periodic workload. It is known that, in many cases, the instances of

real-time tasks complete earlier than the worst-case scenario. The earlier completion

75

of the instances of real-time tasks contributes to more slack achievement in two ways.

Less workload execution decreases temperature level after it is finished [21]. This

lower temperature eventually delays the moment of hitting the critical temperature

Tc and increases the length of high speed duration ∆tH in the equation (4.3). Further-

more, the early completion of periodic jobs means less remaining amount of periodic

workload than the worst-case scenario. Let the sum of the remaining worst-case pe-

riodic workload be denoted as ĉpd(tr) at the release instant tr of aperiodic task. Since

ĉpd(tr) is typically less than cpd by early completions of jobs in the NTA interval, we

can safely increase the thermal slack by replacing cpd with ĉpd(tr) in the equation (4.5)

without violating the deadline constraints of systems. By the increase of ∆tH due to

the lowered temperature level and by the decrease of remaining periodic workload to

complete until NTA, the slack cap for aperiodic workload increases.

Fig. 23. Example of an NTA interval and the NTA task queue

While the temperature decreases naturally by the early completions of periodic

workload, the worst-case periodic workload amount needs to be properly updated

and estimated at run-time according to the completions of periodic tasks. For the

management of the worst-case periodic workload in NTA intervals, we propose NTA

task queue which is a virtual periodic task queue. The NTA task queue holds the

76

periodic workload scheduling information at speed sN , which is based on the workload

information from actual periodic task queue. The NTA task queue is populated at

every beginning moment of NTA intervals and it accepts the workload scheduled only

for a single NTA interval. Thus, even when a periodic job is supposed to execute for

more than one NTA interval, only the portion of the workload which is supposed to

execute within the current NTA interval is queued in the NTA task queue. Figure 23

illustrates one NTA interval and the corresponding NTA task queue populated at the

beginning instant of the NTA interval. In the figure, we see only a portion of Γ2 is

queued in the NTA task queue.

The management of worst-case workload by NTA task queue is as follows:

- NTA task queue is populated only at the beginning moment of NTA intervals

based on the periodic task information in the actual periodic task queue of

systems.

- The periodic task execution is based on NTA task queue. That is, if NTA task

queue is empty, the system scheduler is not allowed to execute any periodic

workload even when the actual periodic task queue is backlogged.

- While periodic task executes, NTA task queue is updated accordingly. When

a periodic job is complete and removed from the actual task queue, the job is

also removed from NTA task queue.

- For the run-time slack computation, the sum of worst-case periodic workload

during a NTA interval is equal to the total sum of workload in NTA task queue.

Since the NTA task queue reflects early completions of periodic workload within

each NTA interval, we are able to reclaim the unused clock-cycles of periodic tasks

77

at run-time accordingly, which can reduce the response times of aperiodic workload

significantly.

This way of dynamic slack reclamation approach is sub-optimal under the ther-

mal constraints due to the possible non-work-conserving task scheduling. It should

be very efficient at run-time, however, with low computational overhead and with the

fact that we focus simply on every single NTA interval.

D. Experimental Evaluation

1. Simulation Model

We use the similar simulation environment as that used in [60]. Aperiodic tasks are

generated by the exponential distribution using inter-arrival time (1/λ) and service

time (1/µ) with parameters λ and µ. Changing the values of µ and λ, we control the

workload (ρ = λ/µ) of aperiodic tasks under a fixed utilization of periodic tasks, Ut.

There are four periodic tasks in Table III of which the total utilization is 0.4 as in

[60].

Table III. Periodic Task Set

Task Set (second)

Task Period WCET

Γ1 6 0.5

Γ2 8 1.0

Γ3 14 2.1

Γ4 18 3.1

Ut 0.4

The actual execution time of each periodic task instance is generated by a normal

78

distribution function in the range of [BCET, WCET], where BCET is the best-case

execution time. The mean and the standard deviation were set to (WCET+BCET)
2

and

(WCET+BCET)
6

, respectively [61].

In the experiment, the time delay of speed scaling overhead is assumed to be

negligible. For the simple comparisons of our proposed approach, we fix the maximum

speed sH to be 2.0 GHz. And the scaled (letting the ambient temperature Ta = 0)

critical temperature Tc is set to be 80oC.

To evaluate our proposed thermally-aware transient overclocking algorithm, we

also implemented non-slack-reclaiming static transient overclocking solution (NSR-

TO) and a constant speed (sE) slack stealing algorithm. For the constant speed

slack stealing algorithm, we compute slack supposing the application of sE both to

aperiodic job and to periodic job until NTA. For the constant speed slack stealing

solution as well, both the slack-reclaiming (SR-CSS) and non-slack-recaliming (NSR-

CSS) mechanisms are considered and the results are displayed for the comparison.

Figure 24 shows the results of the average response times of aperiodic jobs with

same periodic task set described in in Table III and changing the aperiodic task

densities (ρ = λ
µ
). We fix BCET/WCET ratio γb/w of periodic tasks at 0.1. For

all experiments, the plots show that SR-TO scheme reduces the average response

time the most, which is very evident that SR-TO minimizes the aperiodic response

time by exploiting low thermal level and dynamic temporal slack reclamation. We also

notice that the slack-reclaiming (SR) schemes are much less sensitive to the increase of

aperiodic task density than the non-slack-reclaiming (NSR) schemes. That is because

SR schemes are still capable of getting more clock-cycles as slack by the dynamic

slack reclamation, while NSR schemes simply lose the available slacks according to

the increase of total system utilization with aperiodic jobs.

In Figure 24, we show the increase of average response times of aperiodic jobs

79

(a) 1
µ
= 1.0 (b) 1

µ
= 2.0

(c) 1
µ
= 4.0 (d) 1

µ
= 8.0

Fig. 24. Comparison of average response times according to various aperiodic task

density

according to the increase of the ratio between BCET and WCET (γb/w). Along with

the increase of γb/w, the difference of average response times between NSR schemes

and SR schemes decrease since the larger γb/w value means smaller temporal and

thermal slack to be reclaimed dynamically. In Figure 25, for the longer aperiodic

jobs (which present larger workload), we see more clearly the importance of dynamic

slack reclamations. For the short aperiodic job executions in low utilized systems, the

thermal-awareness plays an important in the reduction of response time of aperiodic

jobs (Figure 25(a)). For the long aperiodic job, on the contrary, the dynamic slack

reclamation appears to be more important (Figure 25(b)). This is because the highly

utilized systems result in higher average system temperature, and the higher the

average system temperature is, the less advantage of thermal-awareness there is.

80

(a) short aperiodic job executions, 1
µ
= 2.0

(b) long aperiodic job executions, 1
µ
= 6.0

Fig. 25. Comparison of average response times of aperiodic task

E. Conclusion

In this chapter, we have presented an Online Thermally-Aware Transient Overclock-

ing scheme for mixed workload in hard real-time systems. Under the thermally con-

strained hard real-time systems, conventional ways of aperiodic job executions with

no thermal consideration may result in either the thermal violation or very longer

delays of aperiodic job execution. If we apply the fastest thermally safe constant

speed for the aperiodic job execution as a very conservative way, it does not reduce

the response times of aperiodic jobs sufficiently because thermal slack is not used.

On the contrary, when the fastest processor speed is applied without the considera-

81

tion of thermal conditions, the aperiodic job executions should lead to critically high

temperature.

By the proposed Thermally-Aware Slack-Stealing algorithm, we compute the

slack for aperiodic jobs online efficiently considering both the temporal and thermal

constraints. A static approach which expects only the worst-case periodic workload

is first described and the dynamic approach of the slack reclamation method is pre-

sented.

Simulations results have shown that the Thermally-Aware Transient Overclock-

ing can effectively reduce the average response times of aperiodic workload and that

the thermal-awareness is more important in the minimization of aperiodic jobs when

the system is less utilized.

82

CHAPTER V

EFFICIENT CALIBRATION OF THERMAL MODELS BASED ON

APPLICATION BEHAVIOR

A. Introduction

In Chapter II, we described a number of dynamic thermal management (DTM) ap-

proaches that have been proposed, ranging from dynamic voltage and frequency scal-

ing (DVS) to clock gating and to architecture-level mechanisms that balance the load

across functional units or cores on the processor chip. Reactive DTM approaches trig-

ger appropriate thermal control actions (e.g. DVS or clock gating) whenever readings

from thermal sensors exceed a particular level [4, 21, 62, 63, 64]. Proactive DTM,

on the other hand, allows for optimal thermal control by predicting thermal trajec-

tories ahead of time as a function of CPU frequencies [65] and task executions [66].

While proactive DTM has been shown to allow for better utilization of computational

resources compared to reactive schemes [65], it is also significantly more difficult to

implement in practice. Most notably, its effectiveness relies on the accuracy of the

thermal model that underlies the prediction of the effects of speed scaling and task

execution on CPU temperature.

The thermal behavior of microelectronic circuits is typically modeled using vari-

ations of an RC circuit [67]. Examples of applications of such RC models can be

found in [35] for web farms, in [65] for optimal speed control, and in [68] as part of

the HotSpot thermal simulation.

A major impediment when putting proactive thermal management into practice

is the need to develop a thermal model that is appropriate for the platform at hand.

Generic thermal models only loosely capture the thermal behavior, due to variability

83

in fabrication, environmental effects, or the need for special configurations of either

cooling devices or other aspects of packaging. The models must therefore be ap-

propriately calibrated before use. Figure 26 illustrates the effect of different cooling

environments (high/low fan speeds vs. external fan) on the thermal trajectory. Note

that the thermal increase rate and the highest temperature level varies for different

types of cooling support even with the workload and the CPU remaining the same.

When the thermal management must deal with such variabilities, effective configu-

0 200 400 600 800 1000 1200 1400
40

45

50

55

60

65

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

Temperature pattern according to fan effects

using low fan speed
using high fan speed
usng the external fan

Fig. 26. Thermal trajectories with various cooling environments

ration and efficient calibration methods are needed to accurately parameterize the

thermal models that drive the predictive thermal control. Unfortunately, as thermal

models describe the relation between input power and thermal behavior, they rely on

the availability of a measurement of input power for parameterization purposes. Since

such measurements are typically not available at processor level in most systems, we

need to find alternative ways for thermal model calibration.

In this chapter we describe an indirect methodology for parameterization of ther-

mal models, which relies on the off-line analysis of the thermal behavior for a reference

application, for which we measure both the detailed utilization behavior (through

84

PAPI performance measure counters) and the thermal behavior (through thermal

sensors on the chip). We determine and later exploit a linear relation between en-

ergy consumption and utilization level to calibrate the thermal model for new target

applications by comparing relative utilization levels. This results in accurate thermal

model parameters without the need for power measurements.

This chapter is organized as follows: In Section B we give a brief overview of the

thermal model used in this paper and of its RC circuit representation. In Section C we

describe our indirect approach to estimate the parameters of the thermal model based

on measurements of a reference application (462.libquantum from the SPEC CPU

2006 benchmark suite in our case). We describe how we measure and use relative

utilization levels to calibrate the thermal model for new applications. Section D

describes how we expand both the thermal model and the calibration approach to

multicore processors, and Section E validates our approach with experimental results.

Finally, we conclude with a summary and an outlook in Section F.

B. System Model

Effective prediction of the thermal trajectory depends first on a faithful thermal

model and then on the accurate estimation and calibration of the specific parameters

of the model for the system at hand. In this section we describe our thermal model

and then proceed to elaborate on parameterization approaches that rely on power

measurements. In the following sections we will describe methods to estimate model

parameters at run time without the need to measure power.

85

1. Thermal Model

Thermal modeling of microprocessor circuits has traditionally applied variations of

the simple Fourier’s Law of heat conduction (e.g., [67, 62]). We assume that the

environment has a fixed temperature, and that temperature is scaled so that the

ambient temperature is zero. We define T (t) and P (t) as the temperature and the

power input at time t, respectively. Fourier’s Law is then expressed as follows:

T ′(t) =
P (t)

C
− bT (t) , (5.1)

where the parameters R and C are the thermal resistance and capacitance, respec-

tively, and capture the thermal characteristics of the processor chip under considera-

tion. The term b = 1/RC represents the power dissipation rate and is the inverse of

thermal time constant of the system.

Simple thermal situations such as described in Equation (5.1) are often repre-

sented as RC circuits. Figure 27 shows the thermal RC circuit for a single-core pro-

Fig. 27. Lumped RC thermal circuit model for a single-core processor

cessor, and it includes both the processor core and the packaging. We assume that

the initial temperature is T0, i.e., T (t0) = T0. If P is a constant power input level

86

during a task execution interval, then the core’s temperature can be approximated

by the thermal circuit model and Equation (5.1) as follows:

Tc(t) = Tss.c(1− e−bc(t−t0)) + (Tc.0 − Tp.0)e
−bc(t−t0)

+ Tss.p(1− e−bp(t−t0)) + Tp.0e
−bp(t−t0), (5.2)

where Tss.c = RcP and Tss.p = RpP are steady-state temperatures of core and package

respectively, bp is the power dissipation rate of the package, and bc is that of the core

itself. The above approximation is derived from the fact that the dissipation rate bc of

the core is much larger than that of the package, bp. This causes the core’s temperature

increase to be dominated by the core’s own thermal characteristic immediately after

the input power is first applied, and then the core’s temperature becomes dependent

on the package’s thermal characteristic [65]. Hence, the temperature increases very

quickly at the beginning and it slows down its increasing rate according to the increase

of the package temperature.

C. Thermal Prediction Based on Relative Utilization

Given a sampled thermal trajectory T (t) of a system, the thermal parameters Tss.c,

Tss.p, bc, and bp can be infered with help of Equation (5.2) if the input power P

is known. In most systems, accurate power measurements are not available, and

methods must be developed to capture the effect of input power onto the thermal

behavior of the system without relying on absolute values for power levels. In the

following we will describe how we use relative utilization levels to predict the thermal

behavior of systems with the help of off-line measurement of thermal trajectories. In

order to keep the following discussion simple, we limit ourselves to constant-speed

processors, where the power consumption is application dependent. The results can

87

be easily extended to the case of discrete processor’s speed levels, where the power

consumption is defined by the application and by the speed control module of the

system.

The application of non-linear regression of Equation (5.2) on a measured thermal

trajectory T (t) yields estimations for Tss.c, bc = 1/RcCc, Tss.p, and bp = 1/RpCp. We

note that the thermal model cannot be derived directly from the measurements, since

(a) we do not know the input power P , and (b) we would have to factorize the results

in order to get to the individual parameters. We therefore use an indirect approach

- based on relative utilizations - to predict the thermal trajectory without knowledge

of the input power level. We base our approach on the following observation:

Observation 2. Assume a system with a constant-speed processor, and two appli-

cations Γ1 and Γ2 that execute workload amounts X1 and X2 (measured in number

of instructions) during a given interval [0, t], respectively. Let E1 and E2 be the en-

ergy consumed by Γ1 and Γ2 during the same interval. The energy consumption ratio

ρe = E1/E2, is equal to the utilization ratio ρx = X1/t
X2/t

= X1/X2.

0.85 0.90 0.95 1
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1

Avg.IPC Ratio

E
ne

rg
y

D
en

si
ty

 R
at

io

Energy Density Ratio vs. Avg.IPC Ratio
(normalized by 462.libquantum measurement)

Fig. 28. Energy density vs. average IPC

The above observation is supported by experimental results. Figure 28 shows

88

that the energy ratio during a given interval is proportional to the average utilization

ratio for the same interval. The plot is derived from 30 sampled executions from 5

different benchmarks1. Li et al. make a similar observation about the relationship

between the average power and the utilization (IPC) in [69]. The energy density

(average power) was computed from Equation (5.2) and the dashed line shows a

linear regression of the data.

The simple relation between utilization ratio and energy consumption ratio can

be used to estimate the parameters T target
ss.p and T target

ss.c of a new application Γtarget as

follows:

Calibration:

Step 1: Measure the thermal trajectory Tref (t) of the reference application Γref .

(In our case we use the SPEC CPU 2006 benchmark 462.libquantum because

of its constantly high utilization level.)

Step 2: Determine the parameters T ref
ss.c , T

ref
ss.p, bc.ref , and bp.ref from Tref (t), for

example through nonlinear regression.

Step 3: Measure the average utilization level IPCref of the reference application

Γref .

Run-Time Estimation:

Step 4: Measure the utilization level IPCtarget of the target application Γtarget.

Step 5: Predict the thermal trajectory Ttarget(t) using Equation (5.2) with param-

eters T ref
ss.c ×

IPCtarget

IPCref
, T ref

ss.p ×
IPCtarget

IPCref
, bc.ref , and bp.ref .

1We measure the utilization level using the PAPI ipc function of the PAPI per-
formance monitoring library. At 1-second intervals, we call PAPI ipc to retrieve the
current instruction and cycle counter, respectively. From these values we can deter-
mine a measure for the utilization of the processor.

89

(In the following we will use the notation bc/p to denote both bc/p and bc.ref/p.ref .) We

note that Step 1 to Step 3 form the calibration of the thermal prediction system and

are performed off-line to determine a reference level. They may need to be performed

when a system is deployed to account for environmental factors affecting cooling. For

systems with multiple speed levels this calibration may need to be run once for each

processor speed level. For systems with dynamic active heat dissipation mechanisms

(e.g. fans with multiple speed levels) the calibration may need to be repeated as

well to account for the multiple levels of thermal dissipation. Step 4 and Step 5 are

executed at run time to exercise the model for the target application.

We will describe later how the accuracy can be further improved by using smaller

discrete time intervals to better track application dynamics. The following equation

or inequality shows how the temperature can be approximated in terms of energy

consumption. That is,

T (t) =
P

C

∫ t

0

e−b(t−x)dx+ T0e
−bt (5.3)

≤ P

C

∫ t

0

dx+ T0e
−bt (5.4)

=
P · t
C

+ T0e
−bt =

E(t)

C
+ T0e

−bt

⇐⇒ T (t) ≤ E(t)

C
+ T0e

−bt , (5.5)

where Equation (5.3) is the solution of the Fourier Law in Equation (5.1) for a constant

input power P . For the transition from Equation (5.3) to Equation (5.4) we take

advantage of the fact that
∫ t

0
e−b(t−x)dx = 1/b(1 − e−bt) ≤ 1/b · bt. As a result, the

temperature can be approximated with help of the energy consumed during the time

interval [0, t], which we denote by E(t). Similarly, we approximate the term (1−e−bt)

in Equation (5.2) by the term bt, which allows for the following simplifications of the

90

equation:

Tc(t) ≤ E(t)

Cc

+ (Tc.0 − Tp.0)e
−bct +

E(t)

Cp

+ Tp.0e
−bpt

= RcbcE(t) + (Tc.0 − Tp.0)e
−bct

+RpbpE(t) + Tp.0e
−bpt . (5.6)

Thus, if we discretize a task execution period with the interval of length ∆, the

temperature variation is expressed by the energy consumption as follows in a recursive

way,

Tc((i+ 1)∆) ≈ RcbcE(∆) + (Tc(i∆)− Tp(i∆))e−bc∆

+RpbpE(∆) + Tp(i∆)e−bp∆. (5.7)

We note that bc and bp have been previously determined, and therefore e−bc/p∆

are constants.

Given the above thermal approximation based on the energy consumption, we

are able to estimate the thermal trajectory of any task execution as a result of mon-

itored IPC values. The selection of the interval length ∆ depends on the thermal

parameters bc and bp so that the error between the estimated and the real temper-

ature values be acceptably small. At the ith interval, the temperature error by the

energy approximation is described as follows,

error(i∆) = RcbcE(∆) +RpbpE(∆)

+(Tc((i− 1)∆)− Tp((i− 1)∆))e−bc∆

+Tp((i− 1)∆)e−bp∆

−RcP (1− e−bci∆)−RpP (1− e−bpi∆)

≤ RcbcP∆+RpbpP∆. (5.8)

91

Thus, suppose for example that ∆ = 1
bp20

= 1
bc10

, RcP = Tss.c = 20, and RpP =

Tss.p = 15, the maximum error is 2.75oC. And the error decreases with decreasing ∆.

1. Temperature Predictions for Tasks with Dynamic Utilization

The temperature approximation method represented in Equation 5.7 can be easily

extended to predict temperatures in systems where tasks display dynamic (i.e., time-

varying) utilization levels. We exploit the relation between utilization level and energy

consumption previously determined in Step 2 of the calibration. Given the estimated

average energy consumption Eref of the reference application, Equation 5.7 for the

thermal trajectory can be modified as follows:

Tc((i+ 1)∆) ≈ RcbcEref · ρipc,i + (Tc(i∆)− Tp(i∆))e−bc∆

+RpbpEref · ρipc,i + Tp(i∆)e−bp∆ ,
(5.9)

where ρipc,i =
IPCtarget(i)

IPCref
is the utilization ratio during interval i.

Although the selection of energy as a control factor and the local linearization

of the model result in an overestimation in terms of the temperature increase, we

will show in Section E that the error is acceptable for the thermal estimation by the

appropriate choice of timing discretization length. In addition, by safely overestimat-

ing the thermal trajectory, this methodology can be applied in thermal management

systems that require conservative handling of thermal behavior.

Figure 29 shows the temperature measurement of a benchmark, 462.libquantum

and nonlinear regression of the measurement to estimate thermal parameters of pro-

cessor. The figure also shows the thermal approximation by the proposed utilization-

based approach for 462.libquantum which is the reference for thermal estimations

of other applications shown in Section E.

92

0 100 200 300 400 500 600 700 800 900
50

60

70

80

90

100

110

time (seconds)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Thermal estimation: 462.libquantum

measured
nonlinear regression
Workload based approximation

Fig. 29. Thermal parameter estimation & utilization based temperature approxima-

tion

D. Extensions of Thermal Prediction Model for Multicore

Fig. 30. A lumped RC thermal circuit model for dual core processors

In this section, we derive the estimation of thermal trajectories in dual-core

system. For the multicore systems, the RC thermal circuit can be derived as shown

93

in Figure 30. Each core’s thermal trajectory can be expressed as follows,

T1(t) = Rp(P1 + P2)(1− e−bpt) + Tp.0e
−bpt

+R1P1(1− e−b1t) + (T1.0 − Tp.0)e
−b1t

T2(t) = Rp(P1 + P2)(1− e−bpt) + Tp.0e
−bpt

+R2P2(1− e−b2t) + (T2.0 − Tp.0)e
−b2t,

(5.10)

where Cp, bp, and Tp.0 are thermal parameters and the initial temperature of the

packaging - for example the heat-sink contacts shared by both cores. Similarly to the

single-core case, we estimate the parameters as described in Section C based on the

thermal trajectory caused by a reference application (462.libquantum in our case)

on each core. Given the symmetric arrangement of cores in many architectures, one

may be tempted to use a system-level model for each core. However, due to variations

in fabrication and external asymmetries caused by the layout and the integration of

the system with external cooling mechanisms, each core is likely to have different

thermal characteristics. It is advantageous, therefore, to derive the thermal param-

eters separately for each core. Similarly to Equation (5.6), for the single-core case,

Equation (5.10) can be approximated in terms of energy consumption as well, i.e.,

T1(t) = R1b1E1 + (T1.0 − Tp.0)e
−b1t

+Rpbp(E1 + E2) + Tp.0e
−bpt

T2(t) = R2b2E2 + (T2.0 − Tp.0)e
−b2t

+Rpbp(E1 + E2) + Tp.0e
−bpt.

(5.11)

We note that Equation(5.10) indicates how the thermal behavior of each core is

affected by the other core’s input power and the temperature level throughout the

package.

94

E. Results and Analysis

1. Experimental Setup

We evaluate the proposed thermal model in a real-world CMP product. In order to

estimate each core’s working temperature individually, we develop a specific device

driver for accessing the Digital Thermal Sensor (DTS) in our multicore system at

runtime. The trigger point of these thermal sensors is not programmable by software

since it is set during the fabrication of the processor [70]. To validate our thermal

model, we conduct our experiments using the system described in Table IV.

Table IV. Experimental Systems Description
System

The number of cores 4 cores
Processor Intel Quad Core Q6600

Memory Size 1 GB
Operating System. SUSE 10.3 (Kernel Version: 2.6.27)

2. Experimental Results

Figure 31 shows the measured temperatures and the comparisons with the predicted

thermal trajectories. The results show how the approximations match the measured

thermal trajectories.

We define the error as:

error =

√∑(tf/∆)
i=0 | Tm(i∆)− Ta(i∆) |2

(tf/∆)
, (5.12)

where Tm is the measured temperature, Ta is the estimated value, and tf is the

measurement interval length in seconds. Table V shows the average error, which is

found to be at most 3.5oC for these benchmarks. Note that we should be able to

decrease the error when a shorter monitoring time interval is selected for IPC.

95

0 50 100 150 200 250 300
40

50

60

70

80

90

100
Thermal estimation : 400.perlbench

time (seconds)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measurement
workload based approximation

(a) 400.perlbench

0 50 100 150 200 250 300 350
40

50

60

70

80

90

100
Thermal estimation : 403.gcc

time (seconds)

T
em

pe
ra

tu
re

measurement
workload based approximation

(b) 403.gcc

0 50 100 150 200
40

50

60

70

80

90

100
Thermal estimation : 429.mcf

time (seconds)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measurement
workload based approximation

(c) 429.mcf

0 100 200 300 400 500 600 700 800 900
40

50

60

70

80

90

100
Thermal estimation : 464.h264ref

time (seconds)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measurement
workload based approximation

(d) 464.h264ref

0 50 100 150 200 250 300 350 400
40

50

60

70

80

90

100
Thermal estimation : 471.omnetpp

time (seconds)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measurement
workload based approximation

(e) 471.omnetpp

0 10 20 30 40 50 60 70 80 90
40

50

60

70

80

90

100
Thermal estimation : 483.xalancbmk

time (seconds)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measurement
workload based approximation

(f) 483.xalancbmk

Fig. 31. The temperature estimation in Intel Quad-Core Q9650 processor

Figure 32 shows the experimental result for the dual-core case. In the experi-

ment, two different benchmarks, 464.h264ref and 462.libquantum were executed

on core 1 and core 2 concurrently. By the measured IPCs from each processor core,

96

Table V. Average Error of Utilization Based Thermal Estimation

Benchmark Avg.Error (oC)

400.perlbench 2.09

403.gcc 3.47

429.mcf 3.49

464.h264ref 1.73

471.omnetpp 0.98

483.xalancbmk 2.74

0 200 400 600 800 1000
45

50

55

60

65

70

75

80

85

90

Thermal estimation :
464.h264ref on core1 and 462.libquantum on core2

time (seconds)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

core1 measurement
core2 measurement
core1 approximation
core2 approximation

Fig. 32. The temperature estimation of two cores: 464.perlbench & 462.libquantum

we estimated the thermal trajectory of each core based on the Equation (5.11) and

compared the results with measured values.

F. Conclusion and Future Work

Many of today’s commercial computing systems and embedded devices do not have

support for monitoring of power and energy. While this is rarely a problem for energy

awareness (when in doubt, reduce speed), it becomes critical when attempting to

97

predict the thermal behavior of a system. In this paper we develop a thermal model

and a methodology for the efficient calibration of its parameters that does not rely

on explicit information about input power. Rather, we closely monitor the thermal

behavior of a well-known reference application on the given computing platform, and

we then take advantage of the tight relationship between processor utilization and

power consumption to predict the thermal trajectory for an unknown application

at run time. The benefits of this methodology are numerous: First, the thermal

characteristic of the computing platform can be explored after deployment time. For

example, the system may run the reference application during configuration or even

boot time and derive the thermal parameters shortly before run time. Next, it is

easy to run this step for different levels of active heat dissipation if so desired. For

example, the system may have a combination of on-package fans and case fans, which

may be operated independently of each other. For each combination of such operating

fans, the thermal characteristics of the system can be captured by the model and

the parameters derived separately, thus enabling the effective prediction of thermal

trajectories with dynamic active heat dissipation mechanisms. Finally, utilization

information is readily available at run time, for example through Instructions Per

Cycle (IPC) counter in PAPI.

In order to verify our thermal prediction model, we experiment with other bench-

mark applications for the prediction of temperature variations based on the IPC data

monitored at every second. The experimental results show that the predictions are

very close to the measurement of actual temperature values measured via Digital

Thermal Sensor (DTS) embedded in each core despite the overestimation error that

results from the energy-based approximation.

In the future work, we plan to extend the model to address IO-intensive appli-

cations, by better monitoring both reference and run-time application. This requires

98

better information to be available about the proportion of computation-intensive in-

structions vs. total number of instructions at every monitoring interval. Similarly, the

model must be extended to better reflect the thermal reality on the chip. In addition

to IPC, other system information, like cache-misses or memory accesses, need to be

considered for general applications.

99

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the major results of this research and discuss future

directions of this work.

A. Conclusions

The high level of power density and the resulting heat generation has become a critical

problem in the design of modern processors. Since many static hardware-level ther-

mal solutions (e.g., fans, heat-sinks, coolants, and etc.) can be expensive and hard

to implement, in particular on small-sized embedded systems, various run-time Dy-

namic Thermal Management (DTM) mechanisms have been researched. Most DTM

mechanisms are equivalent to the speed control of the processor and take advantage of

the fact that the power consumption is the source of heat generation, and the power

is regarded as a convex function of processor speed.

In our study, we focused on the dynamic speed control for the scheduling of

mixed workloads on thermally-constrained hard real-time systems. A mixed work-

load is composed of a periodic task set and a sequence of aperiodic jobs. In such

a system, we say that the workload can be feasibly schedulable if all the deadline

constraints of periodic task instances are satisfied without the maximum safe tem-

perature of the processor being exceeded. To minimize the response time of aperiodic

jobs, we presented Transient Overclocking as an approach by which we apply the max-

imum CPU speed to the execution of aperiodic jobs. However, uncontrolled transient

overclocking would lead to excessive CPU temperatures. Thus, the speed control has

two contradictory directions to achieve two objectives: While the use of higher speed

minimizes the response times of aperiodic jobs at the cost of temperature increase,

100

the use of lower processor speeds keeps the CPU temperature at lower levels. Our

aim in the study is to propose an appropriate thermally-aware speed control mech-

anism to execute the mixed workload to minimize the response times of aperiodic

workloads while satisfying both the deadline constraints of periodic tasks and the

thermal constraint of the system.

Our attention is also on the derivation of a correct thermal model that can in

practice be efficiently applied for the thermal management. Thermally-aware speed

control requires a specific thermal model. Given such a model, we still need to

calibrate it to account for various cooling environments and different thermal char-

acteristics of each system. Without a properly calibrated thermal model, thermal

trajectories are predicted incorrectly, and any predictive thermally-aware speed con-

trol will work incorrectly. In this study, therefore, we also propose an efficient way of

thermal model calibration based on application behaviors.

For this work, in Chapter II, we reviewed briefly the power model and the thermal

model on which the speed control is based. For the mixed-workload executions, the

traditional aperiodic task scheduling algorithms were also reviewed. The various

thermal management mechanisms and thermal modelings were summarized as well.

In Chapter III, we first described how transient overclocking can be applied to

safely reduce response times for aperiodic jobs in the presence of hard real-time peri-

odic tasks. We then proposed a design-time method to allocate overclocking budget

to aperiodic workloads and the performance was compared by the discrete event-

based simulator. The proposed design-time budget based method has the advantage

of low overhead at run-time. Without the need to monitor the temperature of micro-

processors at run-time, the scheme provides a safe overclocking budget to aperiodic

jobs.

In Chapter IV, we devised the on-line thermally-aware transient overclocking

101

scheme for mixed workloads. By the design-time method which always assumes the

worst-case workload, the thermal slack and the temporal slack are not efficiently used

for the reduction of aperiodic job response times. We proposed, therefore, Thermally-

Aware Slack-Stealing algorithm to derive the maximum instantaneous slack for ape-

riodic job execution without ruining the deadline constraints of periodic tasks or

overheating the microprocessor. With the application of the conventional energy-

aware DVS scheme to periodic task executions and through the thermal prediction

approximation, we could compute the available slack conveniently with low compu-

tational overhead. We showed the proposed on-line thermally-aware transient over-

clocking method outperforms other constant speed schemes guaranteeing the thermal

and temporal constraints.

In Chapter V, we describe an indirect methodology for parameterization of ther-

mal models. Based on the analysis of a reference application along with the measure-

ment of its utilization behavior and the thermal behavior, we calibrate the thermal

model for other applications by comparing relative utilization levels. We verified the

proposed approach of thermal model calibration by some experiments with various

benchmark applications for the prediction of temperature variations.

B. Future Work

Our research goal is to devise a thermally-aware dynamic speed control scheme for

mixed workload in real-time systems. The feasible dynamic speed control should be

based on the correct thermal model. We thus proposed an efficient methodology of

thermal model calibration, too. We believe that proposed dynamic speed control

scheme based on the thermal model calibrated will be very useful for the design of

practical thermally-aware real-time systems. Some issues remain open for further re-

102

search. For either off-line or on-line transient overclocking scheme, there is no accurate

analytical tool to help engineers’ speed control decision, for example, the performance

comparisons of various schemes were dependent on simulations. Although most re-

searches and the evaluation of task scheduling algorithms for mixed workload depend

on simulations, analytical tools and models are worth being studied and developed.

We believe they will help the design of optimal thermally-aware speed control and

the task scheduling algorithm at the design-time.

For the thermal model calibration methodology, we need to extend the approach

to apply for the IO-intensive applications, too. Besides the measurement of IPC

values for applications, there should be the consideration of other metrics like the

cache-miss ratios or the number of memory accesses to correctly estimate the system

operation effects on the microprocessor temperature.

103

REFERENCES

[1] F. J. Pollack, “New microarchitecture challenges in the coming generations of

cmos process technologies,” in Proc. 32nd International Symposium on Microar-

chitecture, 1999, p. 2.

[2] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no.

4, pp. 23–29, Jul-Aug 1999.

[3] G. H. Loh, Y. Xie, and B. Black, “Processor design in 3D die-stacking technolo-

gies,” IEEE Micro, vol. 27, no. 3, pp. 31–48, 2007.

[4] D. Brooks and M. Martonosi, “Dynamic thermal management for high-

performance microprocessors,” in Proc. 7th International Symposium on High-

Performance Computer Architecture, 2001, pp. 171–182.

[5] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing

power in high-performance microprocessors,” in Proc. 35th Design Automation

Conference (DAC), 1998, pp. 732–737.

[6] E. Rotem, A. Naveh, M. Moffie, and A. Mendelson, “Analysis of thermal mon-

itor features of the Intel Pentium M processor,” in the First Workshop on

Temperature-aware Computer Systems, 2004.

[7] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-

jan, “Temperature-aware microarchitecture: Extended discussion and results,”

Tech. Rep. CS-2003-08, Department of Computer Science, University of Virginia,

2003.

[8] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

104

[9] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for scheduling soft-

aperiodic tasks in fixed priority preemptive systems,” in Proc. 13th Real-Time

Systems Symposium, 1992, pp. 110–123.

[10] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server algorithm

for enhanced aperiodic responsiveness in hard real-time environments,” IEEE

Transactions on Computers, vol. 44, no. 1, pp. 73–91, 1995.

[11] J-J Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for real-time tasks

under thermal constraints,” in Proc. 15th Real-Time and Embedded Technology

and Applications Symposium, 2009, pp. 141–150.

[12] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware scheduling and

assignment for hard real-time applications on MPSoCs,” in Proc. 11th Design,

Automation and Test in Europe, 2008, pp. 288–293.

[13] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A

Design Perspective, Upper Saddle River, NJ: Prentice Hall, 2002.

[14] N. Bansal, T.Kimbrel, and K. Pruhs, “Dynamic speed scaling to manage en-

ergy and temperature,” in Proc. 45th Symposium on Foundations of Computer

Science, 2004, pp. 520–529.

[15] N. Bansal and K. Pruhs, “Speed scaling to manage temperature,” in Proc. 22th

Symposium on Theorectical Aspects of Computer Science, 2005, pp. 460–471.

[16] J. Liu, Real-Time Systems, New Jersey: Prentice Hall, 2000.

[17] B. Sprunt, “Aperiodic task scheduling for real-time systems,” Ph.D. disserta-

tion, Carnegie Mellon University, Dept. of Electrical and Computer Engineering,

Carnegie Mellon University, Pittsburg, PA, 1990.

105

[18] M. Spuri and G. C. Buttazzo, “Scheduling aperiodic tasks in dynamic priority

systems,” Real-Time Systems, vol. 10, no. 2, pp. 179–210, 1996.

[19] L. Abeni and G. C. Buttazzo, “Integrating multimedia applications in hard

real-time systems,” in Proc. 19th Real-Time Systems Symposium, 1998, pp.

4–13.

[20] R. I. Davis, K. W. Tindell, and A. Burns, “Scheduling slack time in fixed priority

preemptive systems,” in Proc. 14th Real-Time Systems Symposium, 1993, pp.

222–231.

[21] S. Wang and R. Bettati, “Reactive speed control in temperature-constrained

real-time systems,” in Proc. 18th Euromicro Conference on Real-Time Systems,

2006, pp. 73–95.

[22] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang, “An optimal analytical

solution for processor speed control with thermal constraints,” in Proc. 11th

International Symposium on Low Power Electronics and Design, 2006, pp. 292–

297.

[23] S. Wang and R. Bettati, “Delay analysis in temperature-constrained hard real-

time systems with general task arrivals,” in Proc. 27th Real-Time Systems

Symposium, 2006, pp. 323–334.

[24] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power

embedded operating systems,” in Proc. 18th Symposium on Operating Systems

Principles, 2001, pp. 89–102.

[25] H. Aydin, R. Melhem, D. Mosse’, and P. M. Alvarez, “Dynamic and aggressive

106

scheduling techniques for power-aware real-time systems,” in Proc. 22nd Real-

Time Systems Symposium, 2001, pp. 95–105.

[26] A. Qadi, S. Goddard, and S. Farritor, “A dynamic voltage scaling algorithm for

sporadic tasks,” in Proc. 24th Real-Time Systems Symposium, 2003, pp. 52–62.

[27] Y. Liu and A. K. Mok, “An integrated approach for applying dynamic voltage

scaling to hard real-time systems,” in Proc. 9th Real Time Technology and

Applications Symposium, 2003, pp. 116–123.

[28] S. Saewong and R. Rajkumar, “Practical voltage-scaling for fixed-priority rt-

systems,” in Proc. 9th Real Time Technology and Applications Symposium,

2003, pp. 106–114.

[29] G. Quan, L. Niu, X. S. Hu, and B. Mochocki, “Fixed priority scheduling for

reducing overall energy on variable voltage processors,” in Proc. 25th Real-Time

Systems Symposium, 2004, pp. 309–318.

[30] F. Zhang and S. T. Chanson, “Power-aware processor scheduling under average

delay constraints,” in Proc. 11th Real-Time and Embedded Technology and

Applications Symposium, 2005, pp. 202–212.

[31] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-

jan, “Temperature-aware microarchitecture,” in Proc. 30th International Sym-

posium on Computer Architecture, 2003, pp. 2–13.

[32] A. Cohen, L. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy, “On esti-

mating optimal performance of cpu dynamic thermal management,” Computer

Architecture Letters, vol. 2, pp. 6, 2003.

107

[33] J. Srinivasan and S. Adve, “Predictive dynamic thermal management for multi-

media applications,” in Proc. 17th International Conference on Supercomputing,

2003, pp. 109–120.

[34] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic techniques and

thermal-RC modeling for accurate and localized dynamic thermal management,”

in Proc. 8th International Symposium on High-Performance Computer Architec-

ture, 2002, pp. 17–28.

[35] A. Ferreira, D. Mosse, and J.C. Oh, “Thermal faults modeling using a RC

model with an application to web farms,” in Proc. 19th Euromicro Conference

on Real-Time Systems, Pisa, Italy, 2007, pp. 113–124.

[36] C. C. N. Chu and M. D. F. Wong, “A matrix synthesis approach to thermal

placement,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 17,

no. 11, pp. 1166–1174, 1998.

[37] G. Chen and S. Sapatnekar, “Partition-driven standard cell thermal placement,”

in Proc. 7th International Symposium on Physical Design, 2003, pp. 75–80.

[38] B. Goplen and S. Sapatnekar, “Thermal via placement in 3D ICs,” in Proc. 9th

International Symposium on Physical Design, 2005, pp. 167–174.

[39] E. Rohou, E. Rohou, and M. D. Smith, “Dynamically managing processor tem-

perature and power,” in Proc. 2nd Workshop on Feedback-Directed Optimiza-

tion, 1999.

[40] J. Donald and M. Martonosi, “Techniques for multicore thermal management:

Classification and new exploration,” in Proc. 33rd International Symposium on

Computer Architecture, 2006, pp. 78–88.

108

[41] S. Zhang and K. S. Chatha, “Approximation algorithm for the temperature-

aware scheduling problem,” in Proc. 18th International Conference on Computer

Aided Design, 2007, pp. 281–288.

[42] W. Kim, D. Shin, H-S Yun, J. Kim, and S. L. Min, “Performance comparison

of dynamic voltage scaling algorithms for hard real-time systems,” in Proc. 8th

Real Time Technology and Applications Symposium, 2002, pp. 219–228.

[43] T-Y Wang and C. C-P Chen, “3-D Thermal-ADI: A linear-time chip level tran-

sient thermal simulator,” IEEE Trans. on CAD of Integrated Circuits and Sys-

tems, vol. 21, no. 12, pp. 1434–1445, 2002.

[44] T-Y Wang and C. Chen, “SPICE-compatible thermal simulation with lumped

circuit modeling for thermal reliability analysis based on modeling order reduc-

tion,” in Proc. 5th International Symposium on Quality Electronic Design, 2004,

pp. 357–362.

[45] H. Qian, “Random walks in a supply network,” in Proc. 40th Design Automation

Conference, 2003, pp. 93–98.

[46] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-

jan, “Temperature-aware microarchitecture: Modeling and implementation,”

ACM Transactions on Architecture and Code Optimization, vol. 1, no. 1, pp.

94–125, 2004.

[47] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leakage estimation

considering power supply and temperature variations,” in Proc. 8th International

Symposium on Low Power Electronics and Design, 2003, pp. 78–83.

[48] Y. Zhan and S. S. Sapatnekar, “Fast computation of the temperature distribution

109

in VLSI chips using the discrete cosine transform and table look-up,” in Proc.

10th Asia and South Pacific Design Automation Conference, 2005, pp. 87–92.

[49] M. Huang, J. Renau, S-M Yoo, and J. Torrellas, “A framework for dynamic

energy efficiency and temperature management,” in Proc. 33th International

Symposium on Microarchitecture, 2000, pp. 202–213.

[50] L. Kleinrock, Queueing Systems, New York: John Wiley and Sons, 1975.

[51] T-H Lin and W. Tarng, “Scheduling periodic and aperiodic tasks in hard real-

time computing systems,” in Proc. ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems, 1991, pp. 31–38.

[52] V. V. Ragulsky and V. G. Sidorovich, “On the availability of a free-space optical

communication link operating under various atmospheric conditions,” in SPIE,

2003.

[53] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans.

on Information Theory, vol. 46, no. 2, pp. 388 – 404, 2000.

[54] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, M. Turnbull,

R. Belliardi, D. Holmes, and A. Wellings, “JSR001: Real-time specification

for Java,” Java Community Process, http://www.jcp.org/en/jsr/detail?id=1;

accessed July 25, 2010.

[55] T. Mann, M. Deters, R. LeGrand, and R. K. Cytron, “Static determination of

allocation rates to support real-time garbage collection,” in Proc. 9th Languages,

Compilers, and Tools for Embedded Systems, 2005, pp. 193–202.

[56] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling with re-

generative energy,” in Proc. 18th Euromicro Conference on Real-Time Systems,

110

2006, pp. 261–270.

[57] R. Jejurikar and R. K. Gupta, “Dynamic slack reclamation with procrastination

scheduling in real-time embedded systems,” in Proc. 42nd Design Automation

Conference, 2005, pp. 111–116.

[58] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically vari-

able voltage processors,” in Proc. 3rd International Symposium on Low Power

Electronics and Design, 1998, pp. 197–202.

[59] L. Yuan and Gang Qu, “Analysis of energy reduction on dynamic voltage scaling-

enabled systems,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol.

24, no. 12, pp. 1827–1837, 2005.

[60] D. Shin and J. Kim, “Dynamic voltage scaling of mixed task sets in priority-

driven systems,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol.

25, no. 3, pp. 438–453, 2006.

[61] H. Aydin and Q. Yang, “Energy - responsiveness tradeoffs for real-time systems

with mixed workload,” in Proc. 10th Real-Time and Embedded Technology and

Applications Symposium, 2004, pp. 74–83.

[62] N. Bansal and K. Pruhs, “Speed scaling to manage energy and temperature,”

Journal of ACM, vol. 54, no. 1, pp. 1–39, 2007.

[63] A. Kumar, L. Shang, L-S Peh, and N. K. Jha, “HybDTM: A coordinated

hardware-software approach for dynamic thermal management,” in Proc. 43rd

Design Automation Conference, 2006, pp. 548–553.

[64] Y. Ahn and R. Bettati, “Transient overclocking for aperiodic task execution

in hard real-time systems,” in Proc. 20th Euromicro Conference on Real-Time

111

Systems, July 2008, pp. 102–111.

[65] R. Rao and S. Vrudhula, “Performance optimal processor throttling under ther-

mal constraints,” in Proc. International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems, 2007, pp. 257–266.

[66] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, “Dynamic thermal man-

agement through task scheduling,” in Proc. 8th International Symposium on

Performance Analysis of Systems and Software, 2008, pp. 191–201.

[67] J. E. Sergent and A. Krum, Thermal Management Handbook, New York:

McGraw-Hill, 1998.

[68] M. R. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan, and

S. Velusamy, “HotSpot: A dynamic compact thermal model at the processor-

architecture level,” Microelectronics Journal, vol. 34, no. 12, pp. 1153–1165,

2003.

[69] T. Li and L. K. John, “Run-time modeling and estimation of operating system

power consumption,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp.

160–171, 2003.

[70] “Intel 64 and IA-32 Architectures Software Developer’s Manual,”

http://www.intel.com/products/processor/manuals/index.htm; accessed July

25, 2010.

112

VITA

Youngwoo Ahn received his B.S. degree in electrical engineering from Seoul Na-

tional University, Korea in 1997 and his M.S. degree from Seoul National University,

Korea in 1999. During 1999-2004, he worked as a research engineer at LG Electron-

ics in Korea. He also worked as a researcher at Electronics and Telecommunication

Research Institute in Korea from 2004 to 2005. He graduated with his Ph.D. in elec-

trical and computer engineering from Texas A&M University in August 2010. His

research interests lie primarily in real-time operating systems, especially in designing

and analyzing task scheduling under resource constraints. He is also interested in

low-power system designs. He may be contacted at:

Department of Electrical and Computer Engineering

Texas A&M University

TAMU 3112

College Station, TX 77843-3112

U.S.A.

Phone: (979) 209-9387

Email: youngwoo.ahn@gmail.com

