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ABSTRACT 

 

Hillslope Dynamics in the Paonia-McClure Pass Area, Colorado, USA. 

 (August 2010) 

Netra Raj Regmi, B.S.; M.S., Tribhuvan University 

Chair of Advisory Committee: Dr. John Rick Giardino 

 

Mass movement can be activated by earthquakes, rapid snowmelt, or intense 

rainstorms in conjunction with gravity. Whereas mass movement plays a major role in 

the evolution of a hillslope by modifying slope morphology and transporting material 

from the slope to the valley, it is also a potential natural hazard. Determining the 

morphology of the mountain slopes and the relationships of frequency and magnitude of 

landslides are fundamental to understanding the role of landslides in the study of 

landscape evolution, and hazard assessment.  

Characteristics of the geomorphic zones in a periglacial landscape were 

evaluated by plotting local slopes and the drainage areas in Paonia-McClure Pass area of 

western Colorado. The study suggested that the steepness and concavity of mountain 

slopes and stream channels in the study area are related by an exponential equation. 

Seven hundred and thirty five shallow landslides (<160,000 m2) from the same study 

area were mapped to determine the frequency-magnitude relationships of shallow 

landslides and to develop an optimum model of mapping susceptibility to landslides. 

This study suggests that the frequency-magnitude of the landslides in Paonia-McClure 
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Pass area are related by a double pareto equation with values α = 1.1, and β  = 1.9 for 

the exponents.  The total area of landslides is 4.8×106 m2 and the total volume of the 

landslides is 1.4×107 m3. The areas (A) and the volumes (V) of landslides are related by 

V = 0.0254×A1.45. The frequency-magnitude analysis shows that landslides with areas 

ranging in size from 1,600 m2 - 20,000 m2 are the most hazardous landslides in the study 

area. These landslides are the most frequent and also do a significant amount of 

geomorphic work.  

Three quantitative approaches: weight of evidence; fuzzy logic; and logistic 

regression; were employed to develop models of mapping landslides in western 

Colorado. The weight of evidence approach predicted 78% of the observed landslides, 

the fuzzy-logic approach also predicted 78% of the observed landslides, and the logistic 

regression approach predicted 86% of the observed landslides. 
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CHAPTER I 

INTRODUCTION 

 

Introduction 

Mass movement is a dynamic gravitational process that can be activated by 

earthquakes, rapid snowmelt, or intense rainstorms. Whereas mass movement plays a 

major role in the evolution of a hillslope by modifying slope morphology and 

transporting material from the slope to the valley, it also poses as a potential natural 

hazard. In recent years landslide studies primarily focused on: acquisition of landslide 

data, contribution of landslides in the evolution of hillslopes, frequency and magnitude 

of landslides, and risk and hazard/susceptibility of landslides to human.  Identification, 

mapping, and prediction of the landslides and the volume of mass transported by 

landslides on potentially unstable slopes are considered as the most important steps in 

such studies.  

 Two common methods of acquisition of landslide and landslide dependent data 

are field survey and classification of remotely sensed imagery. Data acquisition by field 

survey is time consuming and may be almost impossible in highly rugged terrains and 

remote areas. Likewise, data acquisition from the remotely sensed imagery is limited by 

the resolution of the imagery. High resolution satellite data are expensive and only 

limited information can be obtained from the low resolution satellite imagery. 

Furthermore, some characteristics of landslides such as type, volume of mass transported, 

___________ 
This dissertation follows the style of Geomorphology. 
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and  the  depths  of   the  slip  surface  are  impossible  to  determine  from  even  high 

resolution  satellite imagery.  Therefore,  a  method  which  integrates field  survey and 

remote sensing techniques is necessary to map landslides.  

 Fluvial incision, glacial erosion, and mass movement modify the topography of a 

mountain by changing relief, slope, and slope length. Although many studies have been 

conducted to understand the morphology of incised channels in tectonically active areas, 

very few studies are focused on the study of channel and hillslope morphology in the 

areas severely impacted by the mass movements. Furthermore, very few studies are 

conducted to evaluate the relationship of landslides to other surface processes in regards 

to the role in hillslope modification.  

 In recent years mapping susceptibility to landslides and risk has become a topic 

of major interest among geoscientists, engineering professionals, and community and 

local administrators in many parts of the world. Remote sensing and GIS techniques 

have been vigorously used to map landslide hazard/susceptibility and to perform stability 

analysis of slopes. Combinations of GIS, remote sensing, statistics and computer 

programming have proven mapping susceptibility to landslides in multiple scales is 

possible. The current need in landslide studies is a method of mapping landslides in 

multiple scales and visualizing landslides in three-dimensions.  

 

Problem statement 

 Similar to the glacial erosion and river incision, landslides modify the relief, 

slope and slope length of a mountain by transporting material from the slope to the 
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valley. Not enough observation-based studies have been completed to understand the 

morphology of the hillslopes developed by landslides. Furthermore, no studies have been 

carried out to compare the role of landslides and other surface geological process in the 

evolution of hillslopes.  

 Previous studies on the frequency and magnitude of landslides suggest that 

frequency-magnitude of landslides can be explained by an inverse power relationship 

with two different power values for large landslides and small landslides. The rollover in 

the value of power function is considered as: the result of undersampling of landslide 

data, physical condition of the landscape, and geotechnical properties of the materials 

involved. But we still need to understand what factor is the most responsible for such 

relationship between landslide frequency and magnitude, and what range of sizes of 

landslides are most frequent and perform the most geomorphic work.         

 Similarly, geomorphologists have developed various qualitative and quantitative 

techniques to map landslide hazards/susceptibility. The qualitative maps of landslide 

hazard/susceptibility are decision based, and not reproducible. Quantitative maps of 

landslide hazard/susceptibility, on the other hand, are reproducible, but they contain 

large uncertainties in dealing with multi-scale landslides. Thus, what is needed is a 

reproducible and cost effective scale-independent methodology to map susceptibility to 

landslides. I will develop quantitative methods of mapping landslides for one region of 

western Colorado, but the methods will be independent of geographic location. In other 

words, the method should have application to any region without significant error.   
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 Western Colorado, particularly the area ranging from Grand Mesa to McClure 

Pass, is severely affected by mass-movement of various spatial dimensions. These mass 

movements damage real estate and destroy structures. From a scientific point of inquiry, 

one can ask what mass movement processes operate in this area of western Colorado? 

And, from a practical point of view, one can ask did no one know this place was 

unstable?  Such destruction highlights the need for understanding the processes and for 

mapping of the landslides in these areas to ensure proper future planning and landslide 

hazard mitigation.  

 I will discuss above mentioned issues of landslides in this dissertation based on 

the landslide and landslide related data collected from western Colorado. 

 

Goals and objectives 

 The goal of the dissertation research is to understand the dynamics of the 

hillslope in Paonia-McClure Pass area and use this information to develop valid methods 

that can be used to map at various scales, ranging from individual landslides to a 

complete region impacted by mass movement, as part of an overall landslide 

susceptibility mapping scheme. The focus of this dissertation will be on landslides 

specifically.  I will map other types of mass movement phenomena, but the focus will be 

the landslides. 

To fulfill the goal of the proposed research, the following objectives have been 

established: 

 Create a GIS database of landslides and factors predisposing landslides; 
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 Plot slope and drainage areas for different landforms developed by the different 

surface geological processes, and compare the morphology of each types of 

landforms ;  

 Determine the frequency-magnitude relationships of landslides; and 

 Create a landslide susceptibility map of the area to understand and evaluate the 

distribution of the unstable zones in the region;  

 

Description of the dissertation 

 This dissertation presents new perspectives to evaluate the geomorphology of a 

periglacial landscape, frequency and magnitude of landslides, mapping landslides and 

susceptibility to landslides, and visualizing pre-and post- failure three-dimensional 

morphology of a landslide in immersive technology. In addition to the introduction, the 

six chapters have been written to fulfill the objectives of the study.  

 The composition of this dissertation is different than a traditional dissertation. It 

consists of seven chapters in which five chapters are written in the form of articles for 

the journal Geomorphology. Chapter II presents a methodology to evaluate the 

morphology of valley heads, colluvial channels, bedrock channels and alluvial channels. 

The chapter describes how the landscape organizes in response to the different surficial 

geological processes. Chapter III presents frequency and magnitude of landslides in 

Paonia-McClure Pass area. The chapter explains major factors behind the rollover effect 

in inverse power relationship of landslide frequency and magnitude. The chapter also 

describes the spatial distribution of the landslides in the study area and determines sizes 



6 
 

of landslides which are frequent and perform more geomorphic work. Chapters IV, V, 

and VI present three methodologies of mapping susceptibility to landslides. These 

chapters determine major factors causing landslides in western Colorado; calibrate 

models of mapping susceptibility to landslides; and then validate these models. Chapter 

IV presents a weight of evidence approach of mapping landslides. Chapter V integrates 

weight of evidence and fuzzy-logic approaches to prepare maps of susceptibility to 

landslides. Chapter VI prepares maps of susceptibility to landslides based on the logistic 

regression approach. Chapter VII presents the conclusion of the study and future 

directions for the research on landslides. The conclusion involves main results 

addressing the objectives that were established to answer the problem stated in the 

Chapter I. 
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CHAPTER II 

CONTRIBUTION OF MASS MOVEMENTS TO LANDSCAPE EVOLUTION 

 

Synopsis 

Fluvial incision, glacial erosion, and mass movement, modify topography of a 

mountain by changing relief, slope and slope length. Under steady state conditions (dz/dt 

= 0) the local gradient of a channel slope (S) decreases as a power law function of 

drainage area (A).  The intercept of the equation provides information on steepness (ks), 

and the power of the equation provides information on concavity (θ ) of the channel. A 

slope-area plot exhibits the geomorphic zones or process domains in mountain 

topography and provides information about where channels begin.  

I employed the slope-area approach to evaluate the morphology of a periglacial 

landscape in Paonia-McClure Pass area of western Colorado. Forty-six glacial cirques, 

fifty rock avalanches, nine slope units finely dissected by streams and less influenced by 

glacial and large deep-seated mass movements, eighty-one landslides including bedrock 

slides (45)  and debris flows (36), and seventy-five channels (17 colluvial channels, 31 

bedrock channels influenced by glacial processes, 15 bedrock channels influenced by 

landslides, and 12 bedrock channels)  were mapped at 1:12,000 scale from NAIP 1m 

resolution orthorectified color aerial photograph and 10m horizontal resolution USGS 

DEM. The concavity and steepness of these landforms were evaluated and used to 

interpret the geomorphic changes of the channels as a result of the flux of large amounts 

of materials from the mountain slopes.  
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The slope-area plot showed that the study area has five geomorphic zones or 

process domains: hillslopes (A = 0-0.00085 km2); valley head (A = 0.00085-0.008 km2); 

colluvial channel (A = 0.008-1 km2); bedrock channel (A = 1-25 km2); and alluvial 

channel (A = 25-2500 km2). The steepness-concavity relationship of these zones can be 

defined by an exponential relationship. The intercept of this equation defines the 

processes operating on the mountain slope and the geology, whereas the exponent 

defines the stability of the landform.  The contributing area needed to initiate the channel 

is the lowest for rock avalanche and the highest for glacial cirques. Average index of 

steepness and the concavity of the bedrock and alluvial channel is the highest and the 

colluvial channel is the lowest. The concavities of the colluvial and bedrock channels are 

found either convex or slightly concave in the river basin where the densities of 

landslides, glacial cirques, and rock avalanches are high.  

 

Introduction 

Fluvial incision, glacial erosion, and mass movement, modify topography of a 

mountain by changing relief, slope, and slope length (Ahnert, 1970; Brocklehurst and 

Whipple, 2002; Burbank et al., 1996; Carson and Petley, 1970; Hooke, 2003; Kirkbride 

and Mathews, 1997; Kuhni and Pfiffner, 2001; Lague and Davy, 2003; Montgomery, 

2002; Montgomery and Brandon, 2002; Roe et al., 2003; Roering et al., 2001; Schmidt 

and Montgomery, 1995; Small and Anderson, 1998; Stock and Dietrich, 2003; Whipple, 

2004; Whipple and Tucker, 1999; Whipple and Tucker, 2002). Generally mountain 

slopes have five types of geomorphic zones or process domains: hillslopes, valley heads, 
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colluvial channel, bedrock channel and alluvial channel (Montgomery, 2001). The 

morphology of these zones is the function of the rate of upliftment, and the rate of 

bedrock incision by the surface processes such as, stream erosion, glacial erosion, and 

mass movements. Mass movement moves material from the hillslope and valley heads to 

the channels and modifies the morphology of hillslopes and channels. The modification 

depends on the flux of the sediments depleted from the hillslope and deposited in the 

channels. If the sediments from mass movement is debris dominated and the steepness 

and or energy of the channel is not enough to move the sediments downstream, the 

morphology of the channel changes.  

In this study, I have tested two hypotheses which are very important in 

understanding the evolution of the periglacial landscape. The first hypothesis is: in a 

mountainous region impacted by periglacial processes the large amounts of slope 

material cascading downslope by mass movement can significantly change the 

morphology of the channels. The second hypothesis is that the valley heads in such 

terrain tend to remain in a hillslope threshold condition. This study evaluates the role of 

Earth surface processes in shaping the morphology of landscapes in the basin of North 

Fork of the Gunnison River in western Colorado. 

 

The study area 

The morphology of the North Fork Gunnison River basin and (Fig. 1) its 

surrounding areas in western Colorado can be described by: a) steep high elevation 

mountains in which glacial and periglacial processes shaped the Tertiary igneous rocks 
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including basalt and batholiths of granodiorite (e.g. Chair Mountain, West Elk Mountain, 

Elk Mountain); b) upland plateaus (e.g., Grand Mesa, Blue Mesa) capped by fluvial 

deposits and Tertiary basalts; c) mass movement dominated gentle to steep slopes of 

upland plateaus formed by Cretaceous sedimentary rocks, including shale, mudstone and  
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Fig. 1. Location map of Paonia-McClure Pass study area. The dashed line represents the North Fork 
Gunnison River basin. 

 

sandstone and Quaternary deposits including alluvium, colluvium and mixed deposits; d) 

river terraces and flood plains; and e) canyons (e.g., Grand Canyon, Gunnision River 

Canyon) developed by the incision of the major rivers. 
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Although the geologic setting of western Colorado is a culmination of more than 

1.8 billion years of geologic processes, the present topography of the area is dominated 

by a major period of uplift, erosion, and deposition that started in early Miocene, 

significantly disrupting and dissecting an Eocene regional erosion surface and continued 

into the Quaternary time following Canyon cutting and pedimentation until a stable base 

was achieved (Epis et al., 1980). A major climatic cooling event initiated glaciation, 

which continued from about 500,000 years ago into the late Pleistocene, ending 

approximately 15,000 years ago (Epis et al., 1980). The high elevation alpine 

topography with deep U-shaped valleys, prominent glacial cirques, and sharp peaks and 

ridges in the study area are largely a product of glacial erosion. Glacial advances 

deposited numerous sheets of till and outwash gravel in stream valleys. Fluvial 

geomorphology in the study area is largely characterized by climatically controlled 

cycles of aggradation and incision (Darling et al., 2009) and result in a series of terraces. 

The study area includes many upland plateaus, which are relict topography of the 

Quaternary Period. Some of the plateaus exhibit Quaternary fluvial deposits. The total 

relief of one of the plateaus near Somerset, with respect to the nearest point at the North 

Fork of Gunnison River, is ~ 800 m which indicates that the river incised at least 800 m 

during the Quaternary period. The rate of incision of the Gunnison River, based on the 

study at and around the Black Canyon of Gunnison and Unaweep Canyon in western 

Colorado, varies from 61 to 142 m/Ma (Aslan et al., 2008). Similarly, I assessed the total 

incision of the Gunnison River as ~1,550 m over 10 Ma based on the elevation of the 10 

Ma old basalt capped Grand Mesa (3,050 m) and Delta (1,500 m) which indicates that 



12 
 

the rate of incision of the Gunnison River is at least 155 m/Ma. The present landforms in 

the study area developed by the Quaternary climate change, river incision and associated 

mass movement are glacial cirques, highly dissected regions, and large and deep seated 

landslides and rock avalanches. 

Many glacial cirques, developed on Chair Mountain and West Elk Mountain, are 

occupied by rock glaciers, and talus deposits. Some cirques have been impacted by river 

incision. Talus deposits have accumulated at the base of the cirques and steep slopes. 

Steep slopes on Chair Mountain and West Elk Mountain exhibit zones of many active 

rock avalanches. These processes developed small linear gullies on the slopes and 

deposited huge amounts of debris at the base of the slope.  

The study area has a finely dissected landscape around the Somerset (Figs. 1 and 

2). The area has a higher value of drainage density and standard deviation of elevation 

(100 m diameter window) in comparison to its surrounding regions. The area is 

comprised of inter-layered sandstone and mudstone of the Mesaverde Formation. I 

believe the landscape is mainly the result of the stream erosion. Although very shallow 

landsliding and surface erosional features are present, the area has no signatures of 

glacial erosion and large deep-seated mass movements.  High shear resistance to erosion 

is the main reason the area preserved the dissected landscape. 

Whereas the study area has steep and stream dissected slopes on the lowland, the 

upland slopes have bench-like, low-gradient topography with poorly developed drainage 

networks. Landslides are common on slopes of Quaternary deposits. On the middle and 

the lowland slopes, the valley network facilitates the delivery of sediment from 
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hillslopes and topographic hollows to higher-order channels via active small debris 

flows, debris slides, rock slides and soil slides. The edges of the upland with a gentle to 

flat landscape are degraded by the large bedrock landslides and debris flows. Large 

landslides are mostly stable and dormant and occurred at the heads of the streams 

incising uplands. The headscarps of some landslides are still active and producing 

shallow landslides. In this study only large landslides (>160,000 m2) were included in 

the analysis. Among the landslides studied, most of the large landslides are very old. The 

surfaces of these landslides are covered by dense vegetation, whereas small landslides, 

including debris flows and shallow bedrock slides, occurring at the headscarps of large 

deep-seated landslides are active and devoid of vegetation.  Most of the large landslides 

originated from the ridge of the basin and extended to the major channels. Landslides are 

clustered and found at the head of the upland incising streams and show typical 

characteristics of upland steepening. Other examples of large landslides are at the edges 

of a plateau at the central area of the map (Fig. 2).  These large landslides show an 

example of how an upland plateau degrades because of the retrogression of the large 

landslides as well as how landslides modify the topography by upslope steepening and 

the downslope becoming a gentle.  

 

Methods 

The morphology of a landscape can be described by its: a) concavity, and b) 

steepness. Under steady state conditions (dz/dt = 0) the local gradient of a channel slope 

(S) decreases as a power law function of drainage area (A). The intercept of the equation  



14 
 

0 10 km

 

Fig. 2. Distribution of landforms developed by different surface geological processes in and around the 
North Fork Gunnison River (NFGR) basin. The types of channels were mapped on 1m NAIP color aerial 
photographs. Colluvial channels are defined as the channels which are in the colluvial deposits and are not 
deeply incised. Bedrock channels are incised up to the bedrock. Bedrock channels were further classified 
as influenced by landslides (bedrock channels_landslides) and influenced by glacial processes (bedrock 
channel_glacial). Landslides (bedrock slides and debris flows), rock avalanches, glacial cirques, and 
stream dissected areas were mapped. Stream dissected areas are defined as slope units which were mainly 
developed by the incision of the river and were not affected by glacial processes and large deep-seated 
landslides. Quaternary deposits (Qd), comprised of unconsolidated colluvium, alluvium and glacial drift. 
Wasatch Formation (WF), comprised of sandstone and mudstone. The WF rocks are exposed in many 
localities, where the valley heads are active and producing large deep-seated and shallow landslides, 
within the upper left section of the map. Mesaverde Formation (MF), comprised of sandstone and 
mudstone, is exposed around Somerset (see Fig. 1). Tertiary igneous rocks (Td) are exposed on the high 
elevation mountains. The mountains are carved by the glacial processes. 
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is known as steepness (ks), and the power of the equation is known as concavity (θ ) of 

the channel. Steepness and concavity can be determined by the regression of the slope 

and drainage area (Flint, 1974; Moglen and Bras, 1995; Sklar and Dietrich, 1998; Snyder 

et al., 2000; Tarboton et al., 1988).  

AkS s  (1) 

Comparing values of ks measured on different profiles can be confounded by the inherent 

scale-dependent co-variance of regression intercept with regression slope. Dependence 

of ks on (θ ) can be removed by normalizing the drainage area (A) by the representative 

area (Ar) (Sklar and Dietrich, 1998). Eq. 1 can be rewritten as:  

)A/A(SS rr  (2) 

From equations (1) and (2): 

rsr AkS  (3) 

where Sr is a representative slope, considered as an index of steepness.  Sr in Eq. 3, is a 

dimensionless index which depends on the reference area (Ar). To reduce this effect, Ar 

can be chosen as the representative area of the entire area studied. Sr can be used to 

check the assumption of uniformity in rate of incision, relief, and lithology within a 

drainage basin by comparing Sr values obtained from individual sub-basin profiles (Sklar 

and Dietrich, 1998). 

Forty-six glacial cirques, fifty rock avalanches, nine slope units which are finely 

dissected by streams and less influenced by glacial erosion and large deep-seated mass 

movements, eighty-one landslides including bedrock slides (45)  and  debris flows (36), 
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and seventy-seven channels (17 colluvial channels, 31 bedrock channels influenced by 

glacial processes, 15 bedrock channels influenced by landslides, and 12 bedrock channel 

segments)  were mapped at 1:12,000 scale from NAIP 1m resolution orthorectified color 

aerial photograph and 10 m horizontal resolution USGS DEM (Fig. 2). Some of these 

landforms were verified by the field reconnaissance. Slope and drainage area for each 

landform (glacial cirque, avalanche, stream dissected slope unit, and landslide) were 

plotted and indices of concavity and steepness were determined by the random axis 

regression (RMA) method. Then, these indices were evaluated.  

 

Results 

 

Generalized slope-area plot of the study area 

This study developed slope-area curves of the entire North Fork Gunnison River 

watershed (Fig. 3) and selected landforms within the watershed (Fig. 4). The slope-area 

plot provided information on the overall location of the points of colluvial channel 

initiation, bedrock channel initiation, and alluvial channel initiation. Furthermore, the 

curve provided information on the overall steepness and concavity of the different types 

of geomorphic zones within the entire watershed and the selected landforms (debris 

flows and bedrock slides, glacial cirques, rock avalanches, and stream dissected areas) 

(Fig. 3).  

The slope-area plot indicates that five geomorphic zones are present in the study 

area: hillslopes (A = 0-0.00085 km2); valley heads (A = 0.00085-0.008 km2); colluvial 
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channels (A = 0.008-1 km2); bedrock channels (A = 1-25 km2); and alluvial channels (A = 

25-2500 km2). Each geomorphic zone has a characteristic morphology, and one or more 

surface geological processes were responsible for the development of these geomorphic 

zones. The steepness, concavity, and relief of these zones depend on the processes 

operating and the lithology.  

 

 

Fig. 3. Plot of log-bin averaged drainage area versus slope for the entire North Fork Gunnison River basin. 
Data derived from 10 M DEM. The plot shows the mean slope for the individual 10 m grid cells for each 
0.1 log interval in drainage area. Numbers shows the exponent for a power function regression of values in 
the segments of the plots indicated by bars connecting open squares. These values can be considered as 
generalized indices of concavities of these geomorphic zones. Dashed vertical lines divide the plot into 
areas considered to reflect different geomorphic zones or the process domain in the study area. The 
exponent values were determined by the random major axis (RMA) regression. 
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Fig. 4. Plot of log-bin averaged drainage area versus average slope for the entire North Fork Gunnison 
River and associated landforms. Data were extracted from 10 m USGS DEM. Similar to Fig. 2, the plot 
shows the mean slope for the individual 10 m grid cells for each 0.1 log interval in drainage area. 

 

 I defined the topographic relief as: a difference in elevations of the location of 

the channel initiation and the head of the landform. The slope-area curves also provided 

information on topographic relief of different landforms developed by different 

processes. Assuming the contributing areas needed for the initiation of channels in 

studied landforms are not significantly different, the steepness of each curve can be used 

to compare the reliefs of these landforms. Higher the steepness suggests higher the relief. 

These curves imply that the glacial cirque has the highest relief which is followed by the 

bedrock slides and rock avalanches. The relief produced by the debris flow is the least. 
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But these curves do not take into account the frequency and magnitudes of the forces in 

the geomorphic processes that operated on these landforms. Shallow landslides and rock 

avalanches occur mostly in a single event, such as an earthquake, or a heavy rainfall, 

whereas the glacial cirques, and the stream incised slopes are the results of multiple 

events of glacial erosion and stream erosion, respectively, over a long period of time. 

This study discusses only large deep-seated landslides and rock avalanches (>160,000 

m2). These landforms are considered as very old, because the landslides are covered by 

the dense vegetation, and the rock avalanches deposited large amounts of talus at the 

base of the slope. Furthermore many shallow landslides occur at the headscarps of the 

large landslides. Although these characteristics imply that the landforms are very old and 

developed by multiple events, it is still not prudent to compare the relief produced by 

each of these landforms. 

 

Where do channels begin? 

The location of the channel initiation in a landscape depends on many factors, 

including: contributing area; morphology of the landscape (i.e., concavity, steepness, 

relief, and slope); lithology; and the processes operating on this landscape. The location 

of channel initiation controls the overall morphology of the landscape. The closer 

channels begin to drainage divides, the greater the number of channels that occupy a unit 

area, and consequently the more finely dissected the landscape becomes. Channels begin 

closer to the drainage divide in concave landforms because surface water converges and 

develops a channel right at the base of the valley heads. Channels begin at longer 
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distances from the drainage divide on planar slopes. Similarly, channels may initiate at 

significantly different locations in soil mantled landscape and rocky terrain.  

Based on the breaks in the slope of area-slope curves (Fig. 4), the locations of 

channel initiation in different landforms were calculated (Table 1). The data shows that 

the channel initiation depends on local gradient and contributing area. The contributing 

area for the beginning of a colluvial channel varies from 0.008± 0.004 km2 to 0.025± 

0.024 km2. A channel begins at the least contributing area in rock avalanches and at the 

largest contributing area in glacial cirques. But it is necessary to understand that the 

locations of channel initiation proposed in this study is only based on the analysis of the 

DEM. In some cases the approach provides the wrong results; for example, in some rock 

avalanches the gullies developed by the avalanching of slope material downstream rarely 

contain water. Similarly, debris flows do not develop well defined gullies at the heads of 

the debris flow scar but contain water.  

 

Table 1 Concavity, average drainage areas, and the average gradients at the locations of initiations of the 
colluvial and bedrock channels. 
 

 
 

Landform θ  
Colluvial channel initiation Bedrock channel 

initiation 
A S A S 

Retreated glacial cirque 0.1761±0.027 0.014±0.009 0.49±0.10 0.19±0.17 0.30±0.12 
Glacial cirque with rock 

glaciers 0.1709±0.056 0.025±0.024 0.34±0.09 NA NA 

Bedrock slides 0.1577±0.11 0.008±0.004 0.36±0.10 0.31±0.24 0.35±0.23 
Rock avalanche 0.0852±0.047 0.0086±0.006 0.54±0.14 0.21±0.12 0.50±0.10 

Debris flows 0.1385±0.058 0.009±0.006 0.21±0.07 0.48±0.36 0.15±0.076 
Stream dissected regions 0.0932±0.041 0.0097±0.003 0.47±0.08 0.50±0.47 0.32±0.11 
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The average local gradient of the locations of channel initiation in retreated 

glacial cirques is 0.49±0.10 whereas the average gradient for glacial cirques with rock 

glaciers is 0.34±0.09. The concavity of the cirque increases and the steepness and relief 

decreases when the wall of the cirque is incised by the streams. Results show channels 

begin at a location closer to the crown of the cirque.   

The average local gradient of the channel location in a rock avalanche is 

0.54±0.14. Rock avalanches occur on steep slopes underlain by resistant rocks. They 

have higher indices of steepness and lower indices of concavity (0.0852±0.047). 

Furthermore, the drainage area needed for the initiation of channels is far less than other 

landforms described in this study. The interpretation is: on steep slopes the soil thickness 

is low so that the overland flow easily can exceed the water absorbing capacity of the 

soil and rock and can converge to create a channel. Furthermore, the high frequency of 

the avalanches create gullies on the slope which help to converge the overland flow. 

 

Table 2 Concavity and steepness of stream channels. 
 

 

Landform θ  
Sr (Ar = 4 km2) 

Colluvial channel 0.4662±0.36 0.058±0.02 
Bedrock and alluvial channels_glacial 0.4768±0.17 0.19±0.09 
Bedrock and alluvial channels_landslides 0.3913±0.29 0.19±0.21 
Bedrock and alluvial channels 0.4853±0.39 1.92±5.68 
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Fig. 5. Steepness and concavity of: A) valley heads and deposits of the selected landforms, and B) 
channels. The reference area (Ar) for the valley head is taken as 4 km2 (drainage area of the landforms 
ranges from 0.001 – 1 km2). 
 
 

channels influenced by  
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Fig. 6. Steepness and concavity indices of valley heads and deposits of the selected landforms, and 
different types of channels. The reference area is taken as 1km2 for the range of the drainage area from 
0.01 km2 to 2500 km2 (see Fig. 3). 

 

The average of the local gradient required for the initiation of channels in a 

bedrock slide is 0.36±0.10. The concavity and the steepness of the slopes having 

bedrock slides are intermediate. Similarly, the drainage area and the local gradient 

needed for the initiation of the channel in a bedrock slide is intermediate in comparison 

to other forms. The stream dissected area (Fig. 2) is comprised of the same rock types 

observed in most of the bedrock slides. The steepness of these landforms is slightly 

higher than the steepness of the bedrock slides whereas the concavity is slightly lower 

than that of bedrock slides. The location of the channel initiation is somewhat similar. 

s Including deposits 
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Debris flows included in this study are very much younger than the bedrock 

slides. The concavity and steepness of these landslides are slightly higher than the 

surrounding stable regions but are the lowest in comparison to other landforms. 

 

Concavity and steepness distribution  

The steepness-concavity plots for the channels and the selected landforms 

indicate that the relationship is exponential (Figs. 5 and 6). Furthermore, each type of the 

landforms and channels studied have upper and lower boundaries in the relationship. The 

steepness-concavity relationship for channels obtained in this study (Fig. 5B, and Table 

2) is similar to Brocklehurst and Whipple (2002), and Sklar and Dietrich (1998).  The 

relationship can be expressed by:  

γ

r βeS  (4); 

and 

γ
r βeS  (5) 

In these equations β and  are non-dimensional parameters. The first parameter is the 

intercept of the exponential curve controlled by the processes and lithology, whereas the 

second parameter, the slope of the exponential curve, defines the stability of the form. 

The steepness-concavity plot of the landforms away from the best-fit line, suggests 

either the associated process of the landform is changing or the landform is just on the 

beginning stage of the evolution or changing to an another form. One form can change 
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into another when the process is changed. Similarly, a change in the form can change the 

process.  

 

Concavity and steepness of studied landforms 

The concavity and steepness of landforms are related by the negative exponential 

function (Figs. 5 and 6). This suggests that the hillslope with gentle gradient or with a 

wider drainage basin has higher concavity. Slopes with the steepness-concavity curves 

for the studied landforms are quite similar whereas the intercepts are different (Fig. 5). 

This means the processes are different and most of the landforms are stable (Eqs. 4 and 

5). For example, glacial cirques which are retreating are unstable and are being modified 

into another form. The steepness-concavity of these landforms is quite different than the 

glacial cirque, and indicates that two different processes are operating on them. The 

result also suggests that a change in a dominant process changes the concavity and 

steepness of the hillslope.  

The generalized steepness-concavity relationships of the different landforms 

indicate that the steepness of the debris flow is the lowest among all other landforms. 

Similarly, the steepness of the rock avalanches is the highest among others. Concavities 

for all landforms, however, are not significantly different.  

 

Concavity and steepness of channels 

 The concavity and steepness relationship of the channels are significantly 

different than that of landslides, glacial cirques, and rock avalanches. When the 
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reference area to calculate steepness index is selected as mean drainage area (Ar = 4 km2) 

in the data range (Fig. 3), the steepness-concavity of the bedrock and alluvial channels 

relate by a positive relationship whereas the steepness-concavity of colluvial channels 

relate by the negative relationship with a very small negative exponent value. The 

distribution also shows that the exponent value for the bedrock channels is the highest 

among all kinds of channels. These graphs indicate that the steepness and the concavity 

of the colluvial, and bedrock and alluvial channels are significantly different, but when 

colluvial channels are modified by river incision the steepness increases. In contrary 

when bedrock channels are loaded by the huge amounts of sediment from the hillslope 

the concavity of these channels decreases (Fig. 7). The selection of the appropriate 

representative area (Ar) is very important because Sr depends on Ar. If the reference area 

increased, the exponent becomes smaller, and for a very high reference area it becomes 

negative. In contrast, if the reference area decreased, the value of the exponent increases.  

 

Controls of lithology and processes  

Hillslope and channel organization are always controlled by the combining effect 

of processes, geology, and the instability state of the landscape. For example, bedrock 

slides occur on the rocks with higher discontinuities, debris flows occur at topographic 

convergence where soil and debris is accumulated, glacial cirques are stable only where 

hard rock is present, and rock avalanches mostly occur because of the freezing and 

thawing of rocks on steep slopes. In my study area glacial cirques and rock avalanches 

are located in Tertiary igneous rocks, rockslides are located in the sandstone and 
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mudstone of Mesaverde and Wasatch Formations, and debris flows are located in 

Quaternary unconsolidated deposits.  

 

0 10 km

 

Fig. 7. Concavities of the channels in and around the North Fork Gunnison River (NFGR) watershed.  

 

The instability state of the slope controls the organization of the landform 

morphology. The distribution of slopes (Fig. 8) suggests that slopes of selected 

landforms, except debris flows, are almost normally distributed. If the normal 
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distribution of the slope of a landscape suggests the landscape is in hillslope threshold 

condition (Burbank et al., 1996), my studied landforms are in hillslope threshold 

condition. Whereas the bases of the channels are in stable condition, this should be the 

major reason for difference in the steepness-concavity relationships of these two 

different geomorphic zones.  

 

 

Fig. 8. Smoothed histogram of slopes of debris flow, bedrock slide, rock avalanche, glacial cirque, and 
retreated glacial cirque. The interval of the data point is 1°. Values in the brackets are the mean and 
standard deviation of the slopes. 

 

Geology also controls the morphology of the channels. Channels can be convex 

around knickpoints (Kirby et al., 2003) or at the transition of the hard rock and 

unconsolidated deposits. In this study some of the convex channels are observed in 

unconsolidated deposits (Qd) and Meseverde and Wasatch Formations. The density of 

the landslide is also higher in these regions; therefore, I believe the channels are convex 
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in these localities because of the large flux of sediments from landslides to the channels 

as well as the geological complexity. Furthermore, most of the bedrock and alluvial 

channels in areas affected by glaciation (eastern half of the map) have lower concavity 

than the bedrock and alluvial channels in North Fork Gunnision River basin. Although 

major bedrock and alluvial channels in the eastern section are as large as the major rivers 

in North Fork Gunnison River basin, the concavity is lower. The area has a higher 

density of glacial cirques, most of which were occupied by rock glaciers. Assuming 

uniform incision of the river as a response to the uniform tectonic uplift and similar 

lithology at the lower slope of the river basins in both sections, I concluded that the large 

amount of the glacial erosion and mass movement derived sediments from hillslopes to 

the channels is the major factor responsible for the lower concavity of these channels. 

Overall the clustering of the landslides, rock avalanches, and areas of huge potential for 

sediment production modified the concavity of the channels.  

 

Discussion and conclusions 

Landscape organization in a periglacial environment is quite complicated and 

very difficult to understand. Change in surface geomorphic processes either because of 

the change in climate, or tectonic uplift, and or change in base level modifies the shape 

of the landscape. Intense river incision as a response to the high rate of tectonic uplift 

creates steep and concave stream channels. Climate change and landscape tendency to 

achieve isostatic equilibrium increases the frequency of mass movement by different 

types of surface geological processes, such as glacial erosion, fluvial erosion, and mass 
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movement. The Paonia-McClure Pass area of western Colorado has a history of a fast 

rate of uplift during the Quaternary period. Intensely incised channels along with many 

river terraces reveal the incisional and aggradational history of the area. Presence of 

glacial valleys suggests that the region also experienced glaciations. Huge amounts of 

unconsolidated Quaternary deposits, and a large number of scars of large and deep 

seated landslides, rock glaciers, and glacial cirques suggest that over time sediments 

moved from the hillslopes to the channels. I have tested an approach to evaluate the 

effect of all these processes in channels and found that in Paonia-McClure Pass area 

mass movement contributed to the modification of channel morphology. Furthermore, I 

evaluated the morphological organization of the different geomorphic zones or process 

domains in the study area. This study suggests that the steepness-concavity of the valley 

heads relates by the negative exponential relationship while the steepness-concavity of 

the channels is related by the positive exponential relationship. The normally distributed 

slopes in the active valley heads (i.e., rock avalanche landslide, glacial cirque) suggest 

that these landforms are in a hillslope threshold condition. When the concavity of these 

landforms increases because of the upslope incision by different surface geological 

processes, the valley heads decrease the steepness by moving material from the slope to 

the channels to remain within the threshold condition.  

I also observed that the concavity of the streams which received large fluxes of 

sediment from mass movements is comparatively low. The colluvial and bedrock 

channels in Quaternary deposits and recent landslide deposits in the study area have low 

concavities. Similarly the bedrock channels in basins which have higher density of 
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glacial cirques (eastern half part of the study area) also have comparatively low 

concavities.  

In addition, I have studied the steepness and concavity of the landforms 

developed by different types of surface geological processes. Rock avalanches have the 

highest steepness, and debris flows have the lowest steepness. Similarly glacial cirques 

have the highest concavity and the rock avalanches have the lowest concavity.  
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CHAPTER III 

CHARACTERISTICS OF LANDSLIDES IN PAONIA TO MC-CLURE PASS  

AREA, COLORADO, USA 

 

Synopsis 

 Mass movement can be activated by earthquakes, rapid snowmelt, or intense 

rainstorms in conjunction with gravity. Whereas mass movement plays a major role in 

the evolution of a hillslope by modifying slope morphology and transporting material 

from the slope to the valley, it is also a potential natural hazard. Determining the 

relationships of frequency and magnitude of landslides are fundamental to understanding 

the role of landslides in the study of landscape evolution, hazard assessment, and 

determination of the rate of hillslope denudation.  

 I mapped 735 shallow and active landslides in the Paonia to McClure Pass area 

of western Colorado from aerial photographs and field surveys. The study area covers 

~815 km2. The frequency-magnitude relationships of the landslides illustrate the flux of 

debris by mass movement in the area. The comparison of the probability density of the 

landslides with the double pareto curve, defined by α  (power scaling for negative slope), 

β  (power scaling for positive slope) and t (location of rollover), shows that α = 1.1, β  = 

1.9 and t = 1,600 m2 for areas of landslides, and α = 1.15, β  = 1.8 and t = 1,900 m3 for 

volumes of landslides. The total area of landslides is 4.8×106 m2 and the total volume of 

the landslides is 1.4×107 m3. The areas (A) and the volumes (V) of landslides are related 

by V = 0.0254×A1.45.  The frequency-magnitude analysis shows that landslides with areas 
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ranging in size from 1,600 m2 - 20,000 m2 are the most hazardous landslides in the study 

area. These landslides are the most frequent and also do a significant amount of 

geomorphic work.  

 I also developed a conceptual model of hillslope development to upland plateau 

driven by river incision, shallow landsliding and deep-seated large landslides. The gentle 

slope to flat upland plateau that dominated Quaternary landscape of the study area was 

modified to the present steep and rugged topography by the combined action of fluvial 

incision and glacial processes in response to rock uplift, very frequent shallow 

landsliding and less frequent deep-seated landsliding. 

 

Introduction 

 Landslides, complex natural phenomena, are the results of the variety of 

geomorphic, geologic and hydrologic factors which predispose hillslopes to instability. 

Events like earthquakes, intense rainfalls, and snowmelt trigger cascading mass from 

slopes (Keaton, 1988; Santi, 1988). Landslides play a significant role in the modification 

of the hillslope by transporting sediments from a slope to the base of that slope. Most 

shallow landslides result from triggering by rainfall and earthquakes and are important 

tools in contributing to sediment yield (Burton and Bathurst, 1998; Glade, 2003). 

Landslides and landslide gully complexes in the upland catchment are the sources of the 

stream deposits in lakes and swamps (Eden and Page, 1998; Hicks et al., 2000; Page et 

al., 1994). The amount of debris mobilized by landslides depends on a combination of 

the spatial distribution and frequency of triggering events, the number of failures 
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triggered in a given event, the probability distribution of landslide volume for such a 

triggering event and the flux of the debris from landslides into the channel network 

(Stark and Guzzetti, 2009). 

 For at least four decades researchers have been investigating the relationships of    

magnitudes and frequencies of landslides in different lithological and geomorphological 

terrains to understand the role of landslides in sediment yield, landscape evolution, and 

as hazards (Fujii, 1969; Whitehouse and Griffiths, 1983; Noever, 1993; Somfai et al., 

1994; Hovius et al., 1997; Pelletier, 1997; Crozier, 1999; Crozier and Glade, 1999; 

Hovius et al., 2000; Dai and Lee, 2001; Stark and Hovius, 2001; Guzzetti et al., 2002; 

Martin et al., 2002; Brardinoni and Church, 2004; Guthrie and Evans, 2004a, 2004b; 

Malamud et al., 2004; Korup, 2005; Guthrie and Evans, 2007; Guzzetti et al., 2008; 

Stark and Guzzetti, 2009). The magnitude of a landslide, defined as the capability to 

produce change and or the energy associated with the detached mass (Corominas et al., 

2003), is represented by the area of a landslide scar (Hovius et al., 1997; Hovius et al., 

2000), or the total area of a landslide (Pelletier, 1997; Guzzetti et al., 2002), or the 

volume of the material displaced by a landslide (Hungr et al., 1999; Dai and Lee, 2001). 

Frequency of landslides is defined as the number of landslides related to a single event 

or the various events that occurred in the past. Almost all investigators obtained a power 

relationship between the frequencies and magnitudes of landslides. Interestingly, a 

rollover effect appears on a graph of frequencies and magnitudes. A rollover is a point 

from where the frequency-magnitude relationships of smaller landslides cannot be 

explained by the power law representing the frequency-magnitude relation of large and 
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medium sized landslides. Reasons for the rollover have generally been attributed to an 

inability to consistently resolve and map all small landslides at a given scale (Hungr et 

al., 1999; Stark and Hovius, 2001; Brardinoni et al., 2003; Brardinoni and Church, 

2004), physical condition of the hillslope on which the landslides occur (Pelletier, 1997; 

Hovius et al., 2000; Guzzetti et al., 2002; Martin et al., 2002; Brardinoni and Church, 

2004; Guthrie and Evans, 2004a, 2004b), consequence of material strength limiting the 

number of small slides and the overall slope geometry that limits the number of very 

large slides (Pelletier, 1997; Guzzetti et al., 2002), and self organized criticality (Noever, 

1993; Hergarten and Neugebauer, 1998). Pelletier (1997) suggested that the rollover 

might represent the transition from a resistance controlled by friction (large landslides) 

to a resistance controlled by cohesion (small landslides). The same explanation has been 

adopted to interpret frequencies and magnitudes of landslides in a study of snowmelt 

triggered landslides in central Italy (Guzzetti et al., 2002). 

 The geomorphological expression of the landscape develops by the transfer of 

mass from unstable zones on steep slopes and highlands to fluvial and coastal lowlands 

by integrated erosional processes of wind, water or ice, and mass movements. 

Comparatively, landslides transfer considerable volumes of slope material and play an 

important role in the shaping the landscape. In many humid upland landscapes, evolution 

of the hillslope is dominated by landsliding across a wide range of length scales 

(Anderson, 1994; Gerrard, 1994; Greenbaum et al., 1995; Schmidt and Montgomery, 

1995; Burbank et al., 1996). This nature of landslides can be quantified in terms of the 

geomorphic work. The work performed by a landslide is defined in terms of 



36 
 

destructiveness (Evans, 2003; Malamud et al., 2004), fragmentation energy (Locat et al., 

2006), runout (Hungr and Evans, 2004; McClung, 2000), volume (Innes, 1983; Hovius 

et al., 2000; Martin et al., 2002), combination of volume and expected velocity 

(Cardinali et al., 2002; Reichenbach et al., 2005), or the product of magnitude and 

frequency or probability of landslide occurrence (Guthrie and Evans, 2007). Geomorphic 

work of landslides over time depends on magnitudes (area, volume, runout length, and 

width), and frequencies of the landslides. Large landslides displace large volumes of 

materials and leave geomorphic signatures for many years (Korup, 2006). But the 

frequency of occurrence of large landslides is very low. In contrast, small landslides are 

frequent but displace only very small amounts of slope material at a time. Furthermore, 

the signatures of the small landslides disappear in a short period of time (Guthrie and 

Evans, 2007). Although much research has been done to document the morphology and 

mechanics, susceptibility and slope stability of landslides, research into the role of 

frequencies and magnitudes of landslides on the evolution of the landscape is still 

needed. Recently, a few studies have been conducted on a regional scale to understand 

the contribution of landslides to landscape evolution (Korup 2006, Guthrie and Evans, 

2007).  

 The primary goals of this study are: (a) to determine the characteristics of the 

shallow landslides in Paonia-McClure Pass area of western Colorado by using 

frequency-magnitude relationships; (b) assess the area-volume relationships; and (c) 

assess the geomorphic work of these landslides. To achieve these goals the following 

objectives must be met: 1) prepare a landslide inventory map; 2) develop a model that 
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approximates the hillslopes before the landslides occurred and calculate the volume of 

soil displaced by the landslides; 3) obtain frequency-magnitude relationship curves and 

compare the frequency-magnitude relationship curves with a double pareto model to 

determine the power scaling parameters for small, medium and large sized shallow 

landslides; and 4) determine the most important range of the sizes of shallow landslides 

which yielded most of the sediments. Moreover, the study also estimates the rate of 

hillslope denudation based on the shallow landslides occurring for the last 65 years and 

discusses the geomorphic evolution of the area in terms of the channel incision, shallow 

landsliding as a process-response of channel incision, and the upslope steepening of the 

hillslopes by deep-seated large landslides.  

 

The study area 

 The study area, located in west-central Colorado (Fig. 9), extends from Paonia to 

McClure Pass (N 38o 43’ 00”, W 107
o 37’ 30” to N 39

o 10’ 30” W107 10” 00”) and 

encompasses ~ 815 km2. General access to Paonia-McClure Pass is gained by Colorado 

Highway 133. Foot trails and forest roads provide access from the highway. 

 The climate of the study area has average annual temperatures ranging from 1.8 

°C (minimum) to 18°C (maximum) based on the 1905-2005 data of Paonia 1SW 

climatic station (Western Regional Climate Center, 2009). Precipitation is primarily the 

result of summer convective thunderstorms. The area also receives winter precipitation 

in the form of snow. Average annual precipitation is 400 mm based on the 1905-2005 

data of Paonia 1SW climatic station (Western Regional Climate Center, 2009). 
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Vegetation of the area consists of grasses, aspen groves (Populus tremuloides), and pines 

(Pinus edulis). The landcover/landuse in the area is forest, grassland, ranching and 

grazing.  
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Fig. 9. Paonia-McClure Pass study area. W: Wyoming, NE: Nebraska, UT: Utah, CO: Colorado, KS: 
Kansas, AZ: Arizona, NM: New Mexico, and OK: Oklahoma. 

 

 Very few studies on landslides have been conducted in the study area. 

Reconnaissance research on mapping landslides and landslide hazards from Paonia to 

the Hotchkiss area was completed by Junge (1978) and cover part of the study area. A 

study on human susceptibility to shallow landslides in the area between Paonia and 
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McClure Pass has been performed by Regmi et al. (2010b). But, no study, has focused 

on the frequency-magnitude characteristics of the landslides and the contribution to 

sediment yield and landscape evolution. This study area includes Paonia, the biggest city 

of the area, and Somerset, a residential area originally settled by coal miners (Fig. 9).  

 

Geomorphology and geology 

 The area has rugged topography and a dendritic drainage pattern (Fig. 10). The 

North Fork of the Gunnison River is the major river and drains about 2,500 km2 of 

forested mountainous terrain into the Gunnison River (Jaquette et al., 2005). The 

elevation ranges from 1,712 m to 3,883 m with the lowest elevation on the flood plain of 

the North Fork of the Gunnison River at Paonia and the highest elevation at Chair 

Mountain (Fig. 10). The hillslope morphology in the area varies. Slopes are not 

controlled by the hillslope elevation; gentle slope is dominant. Most of the small 

mountains have steep slopes and flat mesa like tops, whereas mountain highlands have 

sharp ridges and steep slopes in the form of horns, arêtes and glacial cirques. 

The study area exhibits three different lithologies: 1) sedimentary rocks including 

shale, mudstone, and sandstone; 2) igneous rocks, including basalt and granodiorites; 

and 3) various Quaternary deposits all with different geological ages. Limestone and 

sandstone were deposited during the Cretaceous period and plutonic and volcanic 

deposits are Tertiary units (Dunrud, 1989). Basalt caps many mountains, whereas rocks 

adjacent to the basalt cap have been stripped away by glaciation, mass movements, and 

river erosion. These processes left till and colluvium on most of the lowlands and middle 
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slopes. Bedrock is dominant along the steep ridges and fluvial deposits fill the valleys. 

All processes over long geological time formed the river valleys. 

 

 

Fig. 10. A hillshaded map showing topography of the study area. The area comprised of river floodplains 
and upland plateaus, steep slopes in the close proximity of the North Fork Gunnison River and associated 
tributaries, upland slopes comprised of large deep-seated landslides (DL), and tall and steep mountains. 
The elevations of the river floodplains at different locations and plateaus are shown.  

  

Landslides 

 The area exhibits two major groups of landslides: 1) shallow landslides; and 2) 

large deep-seated landslides. Shallow landslides are defined as modern (<100 years) and 

have an area of <160,000 m2. Large deep-seated landslides are defined as 

paleolandslides (probably hundreds to thousands of years) and have an area of > 160,000 

m2. Only shallow landslides (Fig. 11) were used to study the frequency-magnitude 
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relationship, area-volume relationship, sediment yield and geomorphic work of 

landslides. The large deep-seated landslides (Figs. 10 and 12) were excluded because 

huge uncertainties will be incorporated into the analysis if landslides of ages ranging 

from a year to thousands of years were analyzed together. In this study, large deep-

seated landslides were used only to discuss the contribution of landslides to landscape 

evolution.  

 

0 5 km

 

 

Fig. 11. Distribution of shallow landslides in the study area. The landslides were mapped as polygons. 
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Shallow landslides (Modern landslides) 

 I mapped 735 distinguishable boundaries (Fig. 11)  of historical shallow 

landslides (<160,000 m2) including debris flows, debris slides, soil slides, and rockslides 

(Fig. 12) from NAIP (National Agriculture Imagery Program) orthorectified color aerial 

photographs of 1:12,000 scale acquired in 2005 and USGS (United States Geological 

Survey) black and white orthorectified aerial photographs of 1:12,000 scale acquired in 

1993. Small landslides are mostly found on 15° to 40° slopes (Fig. 13), comprised of 

sandstone, mudstone and colluvial deposits in close proximity to rivers. Small and 

medium sized landslides occur in divergent and convergent parts of the slopes whereas 

large landslides occur in almost planar parts of the slopes. Debris flows mostly occur on 

the convergent parts of the slopes, rock slides and debris slides occur mostly on planar 

slopes, and soil slides occur everywhere. The area of these landslides ranges from 85 m2 

to 1.6×105 m2. Interestingly, most of the larger landslides are rock slides and most of the 

smaller landslides are soil slides. Only shallow landslides from these zones were mapped 

for the analysis. The largest river in the area flowing east–west is the North Fork of the 

Gunnison River; Colorado Highway 133 trends parallel to the river. The vertical scale of 

the image is exaggerated twice. 

In areas where soil slides, debris slides and debris flows occurred, the thin cover 

of the regolith above the bedrock moved under the effect of gravity and increased pore-

water pressure (Fig. 14). In most of the rock and soil landslides, the boundary between 

the soil and the underlying bedrock is abrupt. The regolith is cohesionless, has low bulk 

density, and contains fragments of rocks. The underlying rock is highly fractured, gently 
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Fig. 12. Shallow and deep-seated landslides around the small community of Somerset. The image shows a 
3-D view towards the west. Rockslides (Rs) occur mostly on steep slopes. Zone A is dominated by 
shallow and deep-seated landslides. The hummocky landform in Zone B and the southern slope of 
Somerset (Zone C) are dominated by active debris flows. The entire hillslope, shown in A, B and C, is 
active. Zones A and B also include deep-seated landslides. 

 

 

Fig. 13. A map showing the distribution of the slope on the landslide surface and entire area. The average 
slope of the landslide surface is ~26° and entire area is 21°. 
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dipping and has considerable cohesion as well as frictional strength. The loose regolith 

conducts more water than the bedrock. Because the highly fractured underlying bedrock 

may conduct large amounts of water (Wilson and Dietrich, 1987; Johnson and Sitar, 

1990; Montgomery et al., 1997), I consider that the rockslides in the area are probably 

the result of the weathering and pore-water pressure generated by subsurface flow. The 

main reason for the rock fractures is sufficient moisture coupled with great depth of the 

frost penetration in winter. Furthermore, many landslides occurred between the 

boundary of hard rocks (sandstone and plutonic rock) and soft rocks (mudstone and  

 

(A)

0 200 m0 200 m

(B) (C)

 

Fig. 14. Distribution of landslides on the southern uphill slope of Somerset on an aerial photograph. A) An 
aerial photograph acquired in 1993. B) An aerial photograph acquired in 2005. C) A photograph of the 
part of the area taken in 2006. These photographs indicate the area is quite active. Although the area has 
very low frequency of new landslide occurrence the photographs show that the old landslides were 
reactivated and expanded in 12 years of time period.  

 



45 
 

shale). An interface of differential shear strength and differential rates of weathering also 

contributed to these landslides.   

Only very limited sources describe the occurrence of shallow landslides prior to 

1993. Debris flows occurred in many parts of the area during intense rainfalls in 1975, 

1983, 1984, 1985, 1986, and 1987 (Rogers, 2003). Based on these events and the lack of 

vegetation, I assumed many of the medium and small landslides were initiated then. One 

large shallow landslide in the area has been dated back to the 1940 (Rogers, 2003). I 

assumed almost all of 735 landslides occurred after 1940. 

 

 Large deep-seated landslides (Paleolandslides) 

 I also identified and mapped locations of large deep-seated landslides (>160,000 

m2) from NAIP orthorectified color aerial photographs 1:12,000 scale acquired in 2005 

and USGS DEM of 10 m horizontal resolution (Figs. 10 and 13).  These landslides are 

found on the gentle slope of higher elevations and along the edges of the upland 

plateaus. The surfaces of these landslides are densely vegetated and indicate the 

landslides are very old (probably hundreds to thousands of years) and relatively stable 

now. The headscarps of some of the large landslides are still active and producing 

shallow landslides. These landslides exhibit how shallow landslides contribute to the 

upslope propagation of steep edges of upland plateaus and steep heads of rivers and 

tributaries in the study area. The information on the large and deep-seated landslides was 

not included in magnitude and frequency analysis but yielded information about 

landscape evolution.  
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Materials and methods 

 The first objective of the study was to map landslides in the study area. Seven 

hundred and thirty five shallow landslides were mapped by employing a GIS 

(Geographic Information System) technique on orthorectified aerial photographs of 

1:12,000 scale acquired for 1993 and 2005. Landslides were identified visually by 

distinguishing tone, shape, size and texture and subsequently digitized in an ArcGIS® 

program. Although landslides occurred as clusters in many locations, individual 

landslides were mapped by identifying distinct boundaries by employing three-

dimensional visualization in ArcGIS® and stereo visualization techniques in Terrain 

Navigator Pro® programs. The spatial information of landslides and attributes of area, 

perimeter, volume, length, width, type, activity, position on the hillslope, vegetation, 

main causes and damage were collected from aerial photographs, historical archives and 

field surveys. All of these attributes were linked with spatial information from the 

landslides and stored in ArcGIS®. After extraction of landslide data, the location, type 

and activity of all landslides were verified by field mapping.  

 The second objective of this study was to determine the volume of slope material 

displaced by each landslide. Volume, one of the important aspects in the analysis of 

geomorphic roles of landslides, can be used as an indicator of the magnitude of a 

landslide. Furthermore, additional information includes the rate of erosion/denudation, 

sediment yield, and the degree of hazard and risk of landslides. But, determination of 

accurate volumes of landslides on a regional scale is quite difficult. Researchers have 

used length, width, thickness or area of a landslide as a surrogate for volume. The length, 
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width, and area of a landslide can be measured easily from aerial photographs and 

topographic maps. Often, however, these parameters may not provide an accurate 

estimation of volume. Calculation of volume from aerial photographs and topographic 

map is almost impossible. Volume can be determined by: 1) visual approximation in the 

field (Simonett, 1967); and 2) analysis using a high resolution digital elevation model 

(DEM) (Regmi et al., 2007). Acquiring field measurements is expensive, time 

consuming and depends on the judgment of an expert. Estimating volume from a DEM 

can create numerous errors, including: 1) the errors in the DEM itself (Claessens et al., 

2005); 2) errors caused by algorithms used in the analysis (Wise, 2000); 3) the resolution 

of DEM; 4) technique used for DEM resampling; and 5) the quality of the available data 

(Claessens et al., 2005). Use of DEM analysis and expert’s judgment based on field 

observation would be a better approach. The volume of each landslide was calculated by 

integrating the analysis of the USGS DEM with 10 m horizontal resolution and field 

observations. The concept behind this approach is: if an elevation surface is created by 

interpolating elevations of the landslide boundaries, the surface approximates the 

elevation of the slope prior to the slide. When the elevation of a landslide surface is 

subtracted from the elevation of slope prior to the slide, the positive value of each pixel 

gives the depth of depletion for that pixel and the negative value gives the depth of 

deposit for that pixel. If the depth is multiplied by the cell size, volume of the debris 

moved onto that pixel can be determined. The summation of the positive and negative 

values gives the total volume of depletion and accumulation attributable to a landslide. 
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 The third objective of the study was to determine the probability distribution of 

magnitudes (area and volume) of landslides in the study area. Calculation of the 

probability of magnitudes for landslide has been discussed in the literature. Widely used 

techniques are: cumulative probability curve (e.g., Guthrie and Evans, 2004a, 2004b), 

logarithmic binning (Stark and Hovius, 2001), derivative of cumulative frequency (e.g., 

Guzzetti et al., 2002), kernel density estimation (e.g., Guzzetti et al., 2008), inverse 

gamma distribution (e.g., Malamaud et al., 2004) and double pareto distribution model 

(Stark and Hovius, 2001). In this study, cumulative probability of the landslides and the 

probability density function (pdf) of landslide magnitudes were determined. The 

cumulative probability is calculated by dividing the cumulative number of a landslide for 

each size of landslide in descending order by the total number of landslides. The pdf is 

calculated based on the Gaussian kernel density estimation method (Eq. 6) in which the 

estimate of the bandwidth is determined based on the Silverman’s Rule of Thumb 

(Silverman, 1984) (Eq. 7). Then the pdf was plotted against the size of the landslides and 

the data were fitted with a double pareto curve. The double pareto curve is developed 

based on Eqs. 8 and 9 (Stark and Hovius, 2001).  By using Eq. 8, data for the uniform 

sizes of landslides, ranging from 1 to m (the maximum size of the landslides), were 

simulated in which the probability ( ) of the simulated sizes of landslides range from 0 

to 1. Data for the sizes of simulated landslides were used in Eq. 8 to determine the 

probability density of given simulated sizes of landslides. The double pareto curve is 

compared with the pdf curve of the real landslide data. To make a close match between 

these two curves variables in the double pareto equation as  (positive slope of the 
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distribution curve),  (negative slope of the distribution curve) and t  (rollover of slope) 

were changed until these curves match. 
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 The fourth objective of the study was to determine the sizes of the landslides 

which occur frequently and assess how much sediment they moved in the study area. I 

followed Guthrie and Evans (2007) and used magnitudes and frequencies of landslides 
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to determine the geomorphic work performed. The logic behind this concept is based on 

the concept of Wolman and Miller (1960). Processes associated with rivers are mostly 

continuous in nature, whereas processes associated with landslides are discontinuous 

(Guthrie and Evans, 2007). In this approach the frequency of landslides is considered as 

lognormally distributed and the geomorphic work done by a landslide of a certain size is 

determined by multiplying the probability or frequency and the mean magnitude or size 

of the given range of sizes. The size of an event is determined by converting the sizes of 

landslides into logarithmic form and dividing the logarithmic values into equally spaced 

classes, as done by Wolman and Miller (1960) and Guthrie and Evans (2007). The work 

and the probability of landslides were plotted together with the magnitude of landslides. 

This plot is used to evaluate the size range of landslides responsible for observed 

geomorphic work. 

  

Results 

 

Frequency-magnitude relationships of landslides 

 The relationships of the frequencies and the magnitudes of the shallow landslides 

were studied at two different scales. The first is the study of landslides at the local scale 

(Fig. 15A) and the second is the study of landslides on a regional scale (Fig. 11).  Fig. 

15A shows the distribution of landslides, including debris flows, debris slides, soil slides 

and rock slides, on two north facing slopes near Somerset. The distribution of landslides 

on those slopes indicates that the sizes of landslides vary although the geomorphological 
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and geological conditions are similar. The lower slope contains predominantly shale and 

the upper slope contains sandstone over mudstone. Among 31 landslides, only two 

landslides are relatively large landslides (20,000 m2 -83,000 m2), 11 landslides are 

medium sized landslides (1,600 m2-20,000 m2) and 18 landslides are small landslides 

(<1,600 m2). The probability distribution of the landslides on these slopes (Fig. 15B) 

shows that the probability of occurrence or the frequency for large landslides is small 

than compared to medium and small landslides. The probability of landslide occurrence 

and the landslide area (i.e. landslide magnitude) are related by a negative inverse power 

function for landslide areas from 1,600 m2 to 83,000 m2 whereas the probability-area 

relationship for the landslides smaller than 1,600 m2 is different. 

 A question regarding the frequency-magnitude relationship is: what causes the 

difference in the scaling power of the large and small landslides? All resolvable 

landslides were mapped from the photographs shown in Fig. 15A. The probability curve 

shows that the scaling is different for small and large landslides with rollover at ~1,600 

m2. The photograph (Fig. 15A) is oblique and represents a very small part of the 

landscape. It is possible that I could have missed some very small landslides from the 

upper slope, for example, the white patches indicated by the arrows without “?” symbol. 

Furthermore, the persistence time of smaller landslides is very low (Guthrie and Evans, 

2007), because the hillslope processes and vegetation modifies them very quickly. The 

topographic depressions shown with “?” symbols possibly are modified landslide scars. 

Therefore, failing to map all small landslides, a reason for the rollover effect proposed 

by many authors, could have played a role in the difference of power scaling. Based on 
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Fig. 15. Distribution of landslides on a slope nearby Somerset. The area shows the variation of the size of 
the landslides. The bold texts represent the areas of the landslides. Areas indicated by “?” symbols are 

probably landslide surfaces which were modified by the growth of the vegetation and other surface 
processes.  A graph on the lower right quarter of the photographs is the plot of the probability density of 
the landslides with magnitudes of the landslides. 

 

my observations and the large value of t (1,650 m2) in Fig. 15B, I believe undersampling 

is not the only one reason. In Fig. 15, if the characteristics of the landslides are observed 

in detail, slope morphology is as a factor that controls the sizes of landslides. Small 

landslides occur on slopes with relatively smaller slope length and smaller slope angle. 

Larger landslides occur, however, on relatively steeper slopes with large slope lengths. 

Similarly, the size of a landslide probably depends on the curvature of the slope. Smaller 

landslides can be observed on slopes that have small radius of plan curvature or large 

plan curvature (very convex or very concave). Larger landslides occur on slopes with 
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large radius of plan curvature or small plan curvature (nearly planar). In this regard it 

can be inferred that the physical condition of slopes also influences the size of 

landslides.  

Other possible factors that determine the size of landslides can be the 

characteristics of the slope material and the magnitude and frequency of triggering 

factors. If the characteristics of the slope material are the major reason, as described by 

Pelletier (1997), a question arises about the spatial variation of the soil characteristics. 

Evaluating the evenly distributed sizes of the landslides in each slope unit of Fig. 15, a 

local area having relatively similar lithologies, provides suspicion about the sole 

dependency of magnitude of landslides on the characteristics of regolith (cohesive or 

frictional). Magnitude of a landslide is the response of the coupling effect of the spatial 

variability of the soil characteristics and the geometric characteristics of the slope. 

Following this example I studied the distribution of the areas and volumes of 735 

landslides in the region from Paonia to McClure Pass (Fig. 16A) and developed 

frequency-magnitude curves (Fig. 8). Fig. 8A shows the cumulative percentage 

distribution of sizes of landslides (area and volume). Fig. 8B shows the plot of 

cumulative probability versus the sizes of landslides.  Figs. 16C and 16D show the plot 

of pdf versus the sizes of landslides. All curves show the rollover effect, but the curves 

developed by plotting pdf versus the sizes of landslides show negative power scaling for 

medium to large landslides and positive power scaling for small landslides separated by 

a rollover point. The cumulative distribution curve flattens rapidly and could be 

described  by  several  relations.  I  observed  in  the  field  that  the  sizes of  the most of 



54 
 

 

Fig. 16. Probability distribution of landslide areas and volumes. A) A graph showing the distribution of 
the landslide volume and the area in terms of the cumulative percentage.  B) A graph showing the 
cumulative probability distribution of landslide areas and volume. C) A graph showing the distribution of 
the probability density of landslide areas. D) A graph showing the distribution of the probability density of 
landslide volumes. 

  

landslides are controlled by the slope length, curvature of the slope, and the 

characteristics of the materials. The change in the slope profile from steeper to gentle 

slopes causes most of the landslides to stop on the slope and immediately deposit the 

displaced material. Many landslides ended in the rivers and on roads. Zones of 

convergence are the sites of the frictional regolith where most of the medium and large 
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sized debris flows and debris slides occur. Large rockslides and debris slides occur on 

nearly planar slopes having shattered rocks and frictional regolith. Soil slides, mostly 

small events, occur on all kinds of slope curvatures (convex, concave and planar) with 

soils of slightly cohesive nature.  

 Figs. 16C and 16D show that the double pareto models fit well with the 

probability distribution curves for the areas and volumes of landslides. The probability 

curve for landslide area rolls at t = 1,600 m2, with power scaling for large and medium 

landslides as α = 1.1 and for small landslides as β  = 1.9. The probability plot for 

landslide volume rolls at 1,900 m3 with the power scaling value for large and medium 

landslides as α = 1.15 and the scaling for smaller landslides as β  = 1.9. Both curves 

show similar trends of power scaling. A small value of α  and a large value of β  indicate 

that the distribution has a long tail, which means the mass movement process in the area 

is debris dominated. Although 328 landslides have an area less than the area at rollover 

point (1,600 m2), the total area of these landslides is only 6% of the total area of all 

landslides and the total volume of the material displaced by these landslides is only 1.5% 

of the total volume of debris mobilized by all landslides (Fig. 16A). This indicates that 

the slope material mobilized by small landslides is very insignificant in comparison to 

the amount of slope material mobilized by medium and large landslides.  

 

Area-volume relationship of shallow landslides 

 Precise or even approximate calculation of the volume of landslides is quite 

difficult in the study area. Mountainous regions of western Colorado are densely forested 
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and inaccessible. The best way to estimate the volumes of landslides is by the analysis of 

aerial photographs and DEMs. Similar to the other studies, this study shows that the 

areas and the volumes of landslides are related by a power relationship (Table 3 and Fig. 

17). An empirical equation was obtained (Eq. 10) to estimate the volumes of landslides 

based on the least square regression (R2 = 0.87) of areas (A) and the estimated volumes 

(V) of 735 landslides.  

 

V = 0.0254×A1.45  (10) 

 

 The area-volume relationships of landslides described in six articles (Table 3) are 

compared with my results (Fig. 17B). The result is not significantly different from 

Hovius et al., (1997), Guzzetti et al. (2008), Innes, (1983) and Simonett, (1967) whereas 

the result is significantly different than those obtained by Korup (2005) and Guthrie and 

Evans (2004a) (Table 3 and Fig. 17B). The equation obtained by Korup (2005) is for 

very large landslides (A>1 km2) and may be the reason for results different than this 

study. 

The areas of recorded landslides ranged from 85 m2 to 1.6×105 m2.  The total area 

eroded by all landslides is 4.8×106 m2 with the average area of 6,600 m2 and a standard 

deviation of 1.36×104 m2. The average thickness of the landslides studied is 1.9 m and 

the total volume of the soil displaced by all landslides is 1.4×107 m3 with the average 

volume of 20,000 m3 and standard deviation of 7×104 m3. This is a lower estimate of the 

total volume of landslides because only distinguishable landslides were considered in the 
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analysis. Only 36 landslides have a volume large than 1×105 m3 and these landslides 

contribute 62% of the total volume of all landslides. The three largest landslides 

(landslide area 1×105
– 1.6×105 m2) mapped in the area (~0.4% of total number) account 

for ~17% of the total landslide volume; 58 landslides (landslide area 20,000 
– 1×105 m2) 

mapped  in  the  area  (~8 % of  total number)  account  for ~54%  of  the  total  landslide  
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Fig. 17. A) A graph showing the relationship of the landslide volumes and the landslide areas. B) Figure 
showing the relationships of landslide area and volume obtained by different authors.  

 

volume; 346 landslides (landslide area 1,600 - 20,000 m2) mapped in the area (~47 % of 

total number) account for 28 % of the total landslide volume and 328 landslides 

(landslide area 85 – 1,600 m2) mapped in the area (~44 % of total number) account for 

~1.4 % of the total landslide volume. These data confirm the importance of large 

landslides in determining the total volume of landslide material in the study area. 

8 
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Table 3 Comparison of the statistical values of the landslide volumes and areas with the results obtained 
by many researchers around the world. 
 

Equation
Landslide area 

range (m
2
)

Source Area of study
Mean volume 

(m
3
) 

Landslide type

V= 0.0254×A
1.45

85-1.6×10
5

This study western Colorado 2×10
4  

Shallow 

V = 0.0844×A
1.43

170 - 5.5×10
6

Guzzetti et al., 2008 central Italy 3.9×10
5 

Shallow and large

V = 0.024×A
1.36

NA Simonett, 1967 central Italy 3.2×10
5

Shallow and large

V= 0.05×A
1.5

100 -1×10
6

Hovius et al., 1997 central Italy 5.4×10
5

Shallow and large

V = 0.02×A
1.95

5×10
4
-5×10

6
Korup, 2005 central Italy 1.43×10

5
Large 

V = 0.0329×A
1.39 30-900 Innes, 1983 Scottish Highlands NA Shallow

V = 0.1549×AL
1.09 1124-4.09×10

6
Guthrie, 2004a,b British Columbia NA Shallow and large

 

The geomorphic work performed by the shallow landslides of different sizes 

 The probability and work curves indicate that smaller landslides have higher 

probability of occurrence and do less work while larger landslides have lower 

probability of occurrence and perform more work (Fig. 18). These curves show that the 

size of a landslide ~1,600 m2 (3.2 in log value) has the highest probability of occurrence 

but the landslide size ~20,000 m2 (4.3 in log value) creates the most work. A range of 

sizes of landslides which have high probability and high work are the important 

landslides for geomorphic effectiveness. This means the landslides with the range of 

sizes lying between these two peaks have potential roles in creating significant 

geomorphic change from sediment yield in Paonia-McClure Pass area. About 226 

landslides are found within the area range of 1,600 m2 to 20,000 m2.  These landslides, 

the medium sized landslides, mobilized about 30% of the total volume attributed to 

landslides.  
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Fig. 18. Histograms showing the probability distribution of the landslide areas in logarithmic intervals and 
the work performed by the landslides of each logarithmic interval. 

 

Spatial distribution of shallow landslides and sediment yield 

 Landslides are not distributed uniformly in the study area but are clustered in 60 

regions among which only eight zones are major (Fig. 19). Major areas of the landslides 

are A to G in Fig. 19A. Shallow landslides in zone A and B are influenced by the deep-

seated landslides. The flow structures in zones C, D, E and G indicate that the landslides 

were triggered by intense rainstorms. Landslides in zone F are related to the weathered 

and highly fractured rocks. Landslides in zone H occur in colluvium, glacial till and 

highly weathered rocks. The maximum density of landslide is 13 landslides per square 

kilometer (Fig. 19A). In terms of the area, the maximum density of a landslide is 0.347 
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sq km of landslide area per sq km of the study area (Fig. 19B). Similarly, maximum 

volume of material displaced is 1.3×106 m3 from one sq. km area (Fig. 19C).  

 A map showing the standard deviation of the elevation (SDE) for each pixel 

within the circle of 100 m diameter implies that the geomorphic expression of the area 

can be differentiated into four categories (Fig. 20). Zone I, the area of low relief 

variability (SDE = 0-2 m), is comprised of river floodplains and upland plateaus. Zone II 

is the rough and steep zone in close proximity to the streams and is defined by a 

contributing area > 10 km2 (SDE = 5-20 m). The slopes of the zone result from river 

incision, erosion and toe cutting of the slopes. Furthermore, the height and the width of 

the zone increase downstream. Most of the shallow landslides in the study area occur in 

this zone.  The geology of the zone II is sandstone and mudstone that are highly 

fractured and weathered. The average slope of this zone is 25.6°±10° whereas the 

average slope of the entire study area is 17°±11°. This indicates that many of the slopes 

within zone III are more unstable than the slopes of other areas. Zone III, the upland 

gentle slope (SDE = 2-5 m), contributes to deep-seated large landslides. Zone IV is the 

steep slopes formed by the rocks and the tall mountains developed by the igneous 

intrusions (SDE = >20 m). Rock glaciers, horns and arêtes are the characteristic 

landforms of this zone. Figs. 20A and 20B show that a relief variability map alone can 

be used to predict the landslides in the area with 75% accuracy because most of the 

shallow landslides in the study area occurred on steep slopes in close proximity to the 

rivers and associated tributaries. Most of the small and medium sized debris flows 

occurred  on  the  convergent  zones of  the  first order tributaries whereas rock slides and 
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Fig. 19. Spatial distribution of the landslides in the study area. A)   The density of the landslides. B) The 
density of the landslide area. C) The density of the landslide volume. 
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Fig. 20. A) A map showing the standard deviation of the elevation (SDE) within a roving circular window 
of 100 m. B) The map A is quite effective in predicting existing landslides with 75% of prediction 
accuracy. 
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debris slides occurred on the nearly planar steep slopes. 

 The shallow landslides studied are historical and almost all of those landslides 

occurred after 1940 and as recent as 2005. The shallow landslides that occurred before 

1940 were either modified by the surface processes or covered by dense vegetation.  

Based on the analysis of the shallow landslides that occurred from 1940 to 2005, the 

volume of the soil displaced by landslides each year is ~2.2×105 m3 and the contribution 

of shallow landslides to the rate of denudation for the entire area is at least 0.27 mm yr-1. 

The calculated overall rate of denudation yields a very rough estimate based on a 

number of assumptions: 1) each year the same number of landslides occurred, which is 

not true, because most of the rainstorm influenced landslides occurred during 1980s and 

only 35 landslides occurred after 1993; 2) The landslides are distributed uniformly 

within the study area, which is also false because landslides are clustered in many 

locations; and 3) all landslides were not mapped because of the scale of the study and 

modification of some landslides by vegetation and erosional processes. 

 As mentioned above, the approximated rate of denudation in the entire area is 

0.27 mm yr-1. Whereas most of the landslides occur in zone II, the rate of denudation 

from this zone is 0.33 mm yr-1. This suggests that zone II is very unstable in comparison 

to the other areas.  

 

Contribution of landslides to landscape evolution 

 In addition to the frequency-magnitude relationship, geomorphic work, and 

sediment yield of landslides, this study briefly describes the evolution of the landscape 
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in the study area from incision of the North Fork of Gunnison River and associated 

streams and the contribution of shallow and deep-seated landslides in the appearance of 

the landscape. Fluvial geomorphology in western Colorado is largely characterized by 

climatically controlled cycles of aggradation and incision (Darling et al., 2009). Cycles 

of aggradation and incision are generally linked to the glacial and interglacial 

oscillations (Sinnock, 1981, Dethier, 2001, Sharp et al., 2003) and result in a series of 

terraces. Older terraces are higher in elevation than younger terraces (Bull 1991). The 

study area, comprised of many upland plateaus, shows relict topography of the 

Quaternary Period. Some of the plateaus exhibit Quaternary fluvial deposits (probably 

the deposits of the ancient Colorado River). The total relief of one of the plateaus near 

Somerset, with respect to the nearest point at the North Fork of Gunnison River, is ~ 800 

m which indicates that the river incised at least 800 m during the Quaternary period and 

the response of the incision is zone II type of geomorphic form. The rate of incision of 

the Gunnison River, based on the study at and around the Black Canyon of Gunnison 

and Unaweep Canyon in western Colorado, varies from 61 to 142 m/Ma (Aslan et al., 

2008). Similarly, the study assessed the incision of the Gunnison River as ~1,550 m 

based on the elevation of the 10 Ma old basalt capped Grand Mesa and Delta (Fig. 9) 

which indicates that the rate of incision of the Gunnison River is at least 155 m/Ma. 

Based on the field observations of landslides and the history of incision by rivers 

in the study area, I developed a simple conceptual model of the landscape evolution 

contributed by the incision and toe cutting of the North Fork Gunnison River and 

associated tributaries, shallow landslides and the deep-seated landslides (Fig. 21). 
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Fig. 21.  A simple model of landscape evolution in Paonia-McClure Pass area. Although the present slopes 
in the area around the rivers and tributaries are not perfectly symmetrical as shown in the figure, the 
sketches present a concept of how the landscape in the area was modified over time from Quaternary to 
present. A) Figure shows the beginning of the river incision with a large region of upland plateau. B) As 
rivers undergo incision the regions in close proximity to the rivers develop steep slopes and the slopes tend 
to stabilize by the shallow landslides. C) The relief of the upland plateaus increases (h3>h2) with two 
distinct slopes (SC2>SC1). The steep slopes retreats by the shallow landslides and the upland slopes reach to 
the instability threshold because of the high potential energy. D) Because the incision processes are 
continuous, the high potential energy upland exceeds the instability threshold and under the effect of the 
gravity produces deep-seated large landslides. E) These deep-seated landslides steepened the upland gentle 
slope by propagating upslope. Figure E is the recent condition of the topography nearby Somerset. 

 

Although the present slopes around the rivers and tributaries of the study area are not 

perfectly symmetrical, as shown in Fig. 21, the sketches present a concept of how the 

landscape was modified during the Quaternary to the present time. It is hypothesized that 
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during Quaternary Period the topography of the area was very gentle with large plateaus 

most probably developed by the incisional and aggradational nature of Ancient Colorado 

River (?) from Early Miocene to the Quaternary time (Epis et al., 1980). This concept is 

supported by a 10 Ma basalt flow and the existence of ancient fluvial deposits capping 

many plateaus (e.g., Grand Mesa) around the study area. The first figure (Fig. 21A) 

shows the beginning of the river incision into a large region of upland plateau. The 

second figure (Fig. 21B) shows river incision in close proximity to steep slopes 

(SB2>SB1) because of the base level being lowered. These slopes also tend to be 

stabilized by shallow landslides. The upslope regions change to a more unstable 

condition because of the increasing energy (Energy = mgh2) on steeper slopes. The 

shallow landslides are a process-response reaction to river incision and frequent toe 

cutting. With continuous lowering of the base level, the area develops two distinct slopes 

(SC2>SC1) and the relief of the upland plateaus increases (h3>h2) (Fig. 21C). The steep 

slopes retreat as shallow landslides occur and the upland slopes reach an instability 

threshold because of the high energy (mgh3). Because incision processes are continuous, 

the high levels of energy present in the uplands exceeds (mgh1<mgh2<mgh3) the 

instability threshold. Under the effect of the gravity deep-seated large landslides are 

produced (Fig. 21D). These deep-seated landslides steepen the upland gentle slope by 

propagating upslope (Fig. 21E) and form three types of slopes (SE1>SE2<SE3). Fig. 21E is 

similar to the topographic profile of the recent topography nearby Somerset and areas 

around the center of the study area. This model suggests that the frequency of the 

shallow landslides is larger than the frequency of deep-seated large landslides. The dense 
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vegetation on the surface of the deep-seated landslides also suggests that the frequency 

of these landslides is very small in comparison to the frequency of shallow landslides. 

No deep-seated large landslides occur on some of the plateaus in the study areas (e.g., 

upper right center of Fig. 10). Low relief (h) and hard rock lithology, i.e. sandstone and 

mudstone, contribute to this condition. In contrast, this model supports deep-seated large 

landslides along the edges of the Grand Mesa and other mesas having relatively high 

relief. 

The geology of the study area also plays a major role in the present 

physiographic expression of the area. Zone II is comprised of fractured and weathered 

sandstone and mudstone, whereas zone III is underlined by thick colluvium and glacial 

till. Geology, also, supports the model. Further study is needed to enhance and confirm 

these observations and this model. 

 

Discussion and conclusions 

 Seven hundred and thirty five shallow landslides were analyzed to evaluate the 

frequency-magnitude relationship and geomorphic work of landslides. These landslides 

were mapped on aerial photographs acquired in 1993 and 2005. Seven hundred 

landslides were identified on the aerial photographs from 1993 and 35 more landslides 

were identified on the aerial photographs acquired in 2005. Many landslides were 

reactivated between 1993 and 2005 (e.g., Fig. 14). The slope varies with the lithology. 

Most of the medium to gentle slopes are observed in mudstone and shale whereas steep 

slopes are observed in sandstone and intrusive rocks. The distribution of the slope angles 
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of the landslide surfaces is different than the distribution of slopes in the total area (Fig. 

13). Slope zone 10°-20° is dominant in the entire area whereas slope zone 20°-30° is 

dominant on landslide surfaces. Most of the landslides were observed on slopes ranging 

from 15°-40° with mean value of 26°. Many of the landslide scars connect to the 

sediment deposited at the toe. The total volume deposited for all landslides, however, is 

lower than the total volume transported, which indicates that the sediments were washed 

down the slope. The ratio of the mass moved down slope to the mass accumulated on the 

toe of landslides for small landslides is less than for large landslides.  

 All curves of probability and magnitude of landslides show a rollover effect. The 

double pareto model of the relationship of landslide frequency and magnitude (landslide 

area) shows that the value of power law scaling for larger landslides is 121.α  and 

power law scaling for smaller landslides is 901.β  and the rollover in slopes of power 

curves is at 600,1t m2 (Fig. 16C). Similarly, values of these parameters for volume of 

mass moved as magnitudes of landslides are: 151.α , 801.β  and 900,1t m3 (Fig. 

16D). In both cases, values of power law scaling parameters are quite similar. These 

values along with the relationship of areas and volumes of landslides (Fig. 17) first 

indicate that the calculation of volume is acceptable. Second, the curves with high values 

of the scaling for smaller and relatively low values of power scaling for larger landslides 

indicate that the movement of the mass is dominated by debris rather than erosion. The 

methodology used to determine the volume is appropriate for medium sized landslides, 

but is inappropriate for very small and very large landslides. The prior slope of these 

landslides may not be smooth and the resolution of DEM is not sufficient to detect the 
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signature of very small landslides. Furthermore, if the landslide surface is reactivated, 

the method gives the volume transported for the history of the slide. This problem was 

corrected based on the field observation of landslide volumes. Landslide area and 

depleted volume are also related by power function (Fig. 17). The result is consistent and 

not significantly different from the result determined in other studies around the world 

(Table 3).  

 Landslides contributing major amounts of work for the geomorphic effectiveness 

in the area are mostly medium landslides (size ranging from 1,600 m2 to 20,000 m2) 

which have medium probability of occurrence (0.6-0.8) or medium frequency (Fig. 18). 

Landslides falling within this range have higher probability and perform more work 

compared to landslides of other sizes. The total volume displaced by the landslides is 

1.4×107 m3. Assuming most of these landslides occurred after 1940 and based on the 

total volume of materials displaced by the landslides, the average rate of denudation of 

the hillslope is 0.27 mm yr-1. This amount is based on the volume of the soil mass 

displaced by 735 landslides. Although only 735 landslides were observed in the last 65 

years, this total cannot be true. The study failed to map many landslides which occurred 

after 1940 because the landslides were either modified by the surface processes or 

covered by the dense vegetation so that the signature of these landslides on aerial 

photographs and a DEM is not extractable. Therefore, the rate of denudation should be 

higher than the observed value.  

 First, comparison of the equation for area-volume relationships of landslides with 

the equations obtained by others suggests that the approach used to calculate volume for 
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landslides is valid. Second, the double pareto relationship of frequencies and magnitudes 

of landslides in Paonia-McClure Pass area indicates that the mass movement in the area 

is debris dominated. Although the frequency of the landslides is low (735 landslides in 

~65 years or ~11 landslides in a year on average), they produce debris that is fluxed into 

the rivers. Landslides of sizes ranging from 1,600 m2 to 20,000 m2 are the most 

hazardous because they occur frequently and play a major role in the modification or 

evolution of landscape. 

 The model describing the contribution of landslides to the evolution of 

landscapes in Paonia-McClure Pass area is supported by the location of the observed 

deep-seated landslides, observed and predicted shallow landslides, and the landslides 

doing much of the geomorphic work. Most of the deep-seated landslides are located on 

the circumference of the upland plateau. The observed and predicted shallow landslides 

along with the landslides  doing much of the geomorphic work are found on the steep 

slopes in close proximity to the rivers and tributaries, slopes of inner gorges and heads of 

the first order streams as well as circumference of the plateaus. The characteristics of 

these landslides demonstrate how landslides contribute to the conversion of a large 

plateau or mesa into a rugged mountainous topography by upslope propagation of steep 

slopes.  Furthermore, these landslides are well-clustered and indicate areas that are 

currently unstable. Toward the center of the study area, landslides cluster on the slopes 

of inner gorges around a plateau. Evidence suggests that the landscapes evolve by river 

incision and the dominance of the low frequency deep-seated large landslides towards 
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the upper portion of the slopes whereas the middle and the lower portion of the slopes 

tend to reach stabilization by frequent shallow landslides. 
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CHAPTER IV 

MODELING SUSCEPTIBILITY TO LANDSLIDES USING THE WEIGHT OF 

EVIDENCE APPROACH: WESTERN COLORADO, USA* 

 

Synopsis 

 The Paonia-McClure Pass area of Colorado is well known for active mass 

movements. I examined 735 active shallow movement features, including debris flows, 

debris slides, rock slides and soil slides, in this area. Identification of the hazardous areas 

is a fundamental component of disaster management and an important basis for 

promoting safe human occupation and infrastructure development in landslide prone 

areas. Bayes’ theorem, based on the weight-of-evidence (WOE), was used to create a 

map of landslides that could be hazardous. The modeling was accomplished by 

employing a geographical information system (GIS) and a statistical package. 

 Seventeen factors that cause landslides were measured and weighted using the 

WOE method to create a map of areas susceptible to landslides. The maps of weighted 

factors were summed on a pixel-by-pixel basis after performing chi-square tests to 

determine factors that are conditionally independent of each other. By combining factors 

that represent topography, hydrology, geology, land cover, and human influences, six 

models were developed. The performance of each model was evaluated by the 

distribution of the observed landslides. The validity of the best map was checked against 

___________ 
*Reprinted with permission from “Modeling susceptibility to landslides using the weight 
of evidence approach: Western Colorado, USA” by Regmi N.R., Giardino J.R., and 

Vitek J.D., 2010. Geomorphology, 115, 172-187, Copyright (2010) by Elsevier B.V. 
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landslides, which were not entered in the analysis. The resulting map of areas susceptible 

to landslides has a prediction accuracy of 78%.  

 

Introduction 

 Landslides on steep slopes are always a major concern because of the affect on 

human lives and economic losses. In the US, landslides alone have an estimated annual 

economic cost of more than $2 billion (Spiker and Gori, 2003). Landslides are among 

the most damaging natural hazards in the Rocky Mountains of Colorado (Rogers, 2003). 

Identification of the hazardous areas associated with landslides is an important 

geomorphological component of disaster management and an important basis for 

promoting safe human occupation, infrastructure development and environmental 

protection in these mountains. This study maps landslides and identifies areas 

susceptible to landslides in the Paonia-McClure Pass area of western Colorado.  

 In this study, landslide is defined following Varnes (1978). Mass movements like 

soil slides, debris slides, rock slides and debris flows are incorporated into the term 

landslides. A landslide hazard is defined, according to Varnes (1984, pp. 10), as “the 

probability of a landslide occurrence within a specified time and within a given area of 

potentially damaging phenomenon”.  

 Many studies have been undertaken to assess susceptibility to landslides through 

heuristic, deterministic, and statistical approaches (Carrara et.al, 1995; Wu and Sidle, 

1995; Gökceoglu and Aksoy, 1996; Van Westen and Terlien, 1996; Atkinson and 

Massari, 1998; Pachauri et al., 1998; Van Westen, 2000; Dai et al., 2001; Van Westen et 
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al., 2003; Xie, 2004; Zêzere et al., 2004; Concha-Dimas et al., 2007; Neuhäuser and 

Terhorst, 2007; Dahal et al., 2008a). A heuristic approach is a direct or qualitative 

approach based on field observations and an expert’s priori knowledge. In this approach, 

an expert uses geomorphological and topographical maps to identify landslides and then 

makes a priori assumptions about those sites where movement has occurred and is likely 

to occur again. In this way, the expert develops decision rules or assigns weighted values 

for the classes of index maps and overlays them to develop a map of hazards. 

Deterministic approaches are based on slope stability analyses (Wu and Sidle, 1995; 

Gökceoglu and Aksoy, 1996; Xie, 2004), and are applicable when the ground conditions 

across a study area are relatively homogeneous and the types of landslides are known 

and relatively simple (Dahal et al., 2008a). Statistical approaches are indirect and are 

based partly on field observations and expert’s priori knowledge and partly on statistical 

computation of the weight or probabilities of occurrence of a landslide. This approach 

uses statistical methods and/or map algebra to assess the role of various factors that 

cause landslides. The importance of each factor is determined on the basis of observed 

relationships with landslides.  

 The current study evaluates the susceptibility to landslides through GIS 

techniques using Bayes’ theorem based on weights-of-evidence (WOE). The WOE 

method was initially applied to non-spatial, quantitative, medical diagnoses to combine 

evidence from clinical diagnoses to predict diseases (Lusted, 1968; Spiegelhalter and 

Knill-Jones, 1984). In geosciences the method is applied extensively. Within the GIS 

environment, it was used in assessing mineral potentials (Bonham-Carter et al., 1988, 
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1989; Agterberg, 1992; Agterberg et al., 1993; Emmanuel et al., 2000; Harris et al., 

2000; Bonham-Carter, 2002; Carranza and Hale, 2002), predicting the locations of 

flowing wells (Cheng, 2004) and groundwater springs (Corsini, et al., 2009), 

determining spatial associations between faults and seismicity (Goodacre et al., 1993; 

Daneshfar and Benn, 2002), mapping cliff instabilities associated with land subsidence 

(Zahiri et al., 2006) and mapping of landslide hazard and susceptibility (Lee et al., 2002; 

Van Westen et al., 2003; Lee and Choi, 2004; Lee and Sambath, 2006; Neuhäuser and 

Terhorst, 2007; Dahal et al., 2008a). For mapping susceptibility to landslides, the WOE 

method calculates weight for each causative factor of a landslide based on the presence 

or absence of landslides within the area. The fundamental assumption of this method is 

that future landslides will occur under conditions similar to those contributing to 

previous landslides. It also assumes that causative factors for the mapped landslides 

remain constant over time.  

 The times of the occurrences of all the landslides in this study were not 

identified. Based on the report of Rogers (2003), most of the landslides occurred in the 

1980s and one of the old landslides occurred in 1940. The study included intrinsic and 

anthropogenic factors in the analysis of landslides. Intrinsic variables include bedrock 

geology, topography, soil depth, soil type, slope gradient, slope aspect, slope curvature, 

elevation, engineering properties of the slope material, land cover, and drainage. The 

anthropogenic factors include roads and settlements. Although landslide triggers, like 

rainfall and snowmelt, are generally related to mass movements, this study does not use 

these factors in the analysis. A study of forty precipitation related landslides all over 
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Colorado suggests that 50% of them occurred during periods of intense rainfall and 50% 

occurred because of snowmelt. Because of the insufficient numbers of exactly dated 

landslides, I was unable to determine what rainfall (mean, max or min) for what period is 

appropriate to include in this analysis. Furthermore, I was unable to include snow as a 

factor because snowmelt occurs over a long period of time, and the landslide occurs by 

the coupling effect of runoff from snowmelt and ground water hydrology. 

 

The study area 

 The study area is located in west-central Colorado (Fig. 22). The area extends 

from Paonia to McClure Pass (N 38o 43’ 00”, W 107
o 37’ 30” to N 39

o 10’ 30” W 107 

10” 00”) and encompasses ~ 815 km2. Access to Paonia-McClure Pass is gained by 

Colorado Highway 133. Foot trails and forest roads provide direct access off the 

highway.  

 The climate of the study area is predominantly semi-arid with average annual 

temperatures ranging from 1.8°C to 18°C based on the 1905-2005 data of Paonia 1SW 

climatic station (Western Regional Climate Center, 2009). Precipitation is primarily the 

result of summer convective thunderstorms. The area does receive snow as winter 

precipitation. Average annual precipitation is 400 mm based on the 1905-2005 data of 

Paonia 1SW climatic station (Western Regional Climate Center, 2009). Vegetation of 

the area consists of grasses, aspen groves (Populus tremuloides), and pines (Pinus 

edulis). The land cover in the area is forest and grassland, with landuse dominated by 

ranching and grazing. 
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Fig. 22. The study area. W: Wyoming, NE: Nebraska, UT: Utah, CO: Colorado, KS: Kansas, AZ: 
Arizona, NM: New Mexico, and OK: Oklahoma. 

 

The area has rugged topography and a dendritic drainage pattern. The North Fork 

of the Gunnison River is the major river that drains ~2,500 km2 of forested mountainous 

terrain (Jaquette et al., 2005) into the Gunnison River. Elevations in the study area range 

from 1,712 m to 3,883 m. The lowest elevation is along the flood plain of North Fork of 

the Gunnison River at Paonia, and the highest elevation is Chair Mountain. The hillslope 

morphology in the area varies. Slope angles are not controlled by hillslope elevation; 

slopes are mainly controlled by geology. The terrain consists of igneous intrusive rocks, 

dikes of basalt and gabbros, and sandstone and has steeper slopes than the terrain 
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comprised of mudstone, shale and Quaternary deposits of glacial, colluvial, alluvial and 

mixed origin (Dunrud, 1989). Most of the hills have steep slopes and flat mesa like tops, 

whereas the highland areas have sharp ridges and steep slopes with horns, arêtes and 

glacial cirques developed during Pleistocene glaciation (Fig. 23). Key controls on the 

evolution of these hillslopes are the incision of the North Fork of the Gunnison River 

and its associated tributaries, Pleistocene glaciation and mass movement attributed to the 

coupling effect of snowmelt, rainfall and river erosion.  

 

Study area

N

Somerset

McClure Pass

Paonia reservoir

Chair Mountain

Paonia

3 km0

 

Fig. 23. A hillshaded map of the study area showing variations in topography. 
 



78 
 

 The matrix of the landslides consists mainly of sandstone, mudstone and shale.  

Shallow translational and rotational landslides, the subject of the present study, 

dominate; deep seated landslides, rock falls, topple blocks and rock glaciers are also 

present.  The gentle slopes of the area are mostly covered by glacial moraine, colluviums 

and alluvium deposits. Stream flow is primarily driven by the snowmelt, which is 

greatest in May (Jaquette et al., 2005). 

 

Theory of weights-of-evidence (WOE)  

 WOE is a data-driven method (Bonham-Carter, 1994), which is basically the 

Bayesian approach in a log-linear form (Spiegelhalter, 1986) and uses prior 

(unconditional) probability and posterior (conditional) probability. The method is 

applicable when sufficient data are available to estimate the relative importance of 

evidential themes via statistical means (Bonham-Carter, 1994). The prior probability is 

the probability of an event, determined by the same types of events that occurred in the 

past, for a given period of time. For example, the probability of a unit area (or pixel) of 

land sliding in the future can be estimated based on the frequency of the unit area (or 

pixel) of land that moved in the past. This can be determined by taking the ratio of the 

area or the total number of landslide pixels to the area or the total number of the pixels in 

the study area. The prior probability can be modified using other sources of information 

or evidence. This revised probability of past events, based on new evidence, is called 

posterior probability. In this way, the prior probability can be successively updated with 

the addition of new evidence, so that the posterior probability from adding one piece of 
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evidence can be treated as the prior for adding a new piece of evidence. For example, if a 

landslide causing factor “F” exists (Fig. 24A), the probability of occurrence of landslides 

based  on  this  factor  might  change. Then,  the favorability for predicting the landslides,  
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Fig. 24. Figures illustrating the relationships of landslides and factors used in WOE. A) Illustrating the 
presence and absence of a factor in relation to the landslide (Modified after Bonham-Carter, 2002). B) A 
Venn diagram showing the relationship of a landslide and two factors F1 and F2 (Modified after Bonham-
Carter, 2002). 
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given the presence of the evidence factor, can be expressed by the conditional 

probability (P{L|F}) (Bonham- Carter, 2002): 

}{

}{
}|{

FP

FLP
FLP  (11) 

In terms of the number (N) of the cells occupied by L and F, the equation can be 

rewritten as: 

}{

}{
}|{

FN

FLN
FLP  (12) 

Similarly, the conditional probability of landslides based on factor F is: 

}{

}{
}|{

LP

FLP
LFP  (13) 

}{ LFP  and }{ FLP  are same, so from Eqs. (11) and (13)  
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}|{
}{}|{

FP

LFP
LPFLP  (14) 

This states that the conditional (posterior) probability of a landslide, given the presence 

of the factor F, equals the prior probability of the landslide P{L} multiplied by the factor 

P{F|L}/P{F}. Similarly, the posterior probability of a landslide, given the absence of the 

factor, can be determined as:  
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}|{
}{}|{

FP

LFP
FPFLP  (15) 

A similar model can be expressed in an odds form, the ratio of P/ (1-P). The odds of a 

landslide is expressed as:  
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}{1
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Likewise,  
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Dividing both sides of the Eq. (14) by }|{ FLP  

}{}|{

}|{}{

}|{

}|{

FPFLP

LFPLP
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Similar to Eqs. (11) and (14), from the definition of the conditional probability is: 
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LPLFP
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FLP
FLP  (19) 

Substituting the value of }|{ FLP  in the right side of Eq. (18), produces: 

}|{}{

}|{}{

}|{

}|{
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LFPLP

FLP

FLP
 (20) 

From Eqs. (16), (17), and (20), it can be rewritten as: 

}|{

}|{
}{}|{

LFP

LFP
LOFLO  (21) 

where O{L|F} is the conditional (posterior) odds of L given F, and O{L} is the prior 

odds of F. }|{/}|{ LFPLFP is known as the sufficiency ratio LS (Bonham- Carter, 

2002). In WOE, the natural logarithm of the sufficiency ratio is W +. 

Thus,  

}|{

}|{
log

LFP

LFP
W e  (22) 

Similarly, taking the natural log of Eq. (21) on both sides, produces: 
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}{

}|{
log

LO

FLO
W e  (23) 

Similar algebraic manipulation leads to the derivation of an odds expression for the 

conditional probability of L given the absence of the factor. Thus, 

}|{

}|{
}{}|{

LFP

LFP
LOFLO  (24) 

The term }|{/}|{ LFPLFP is known as the necessity ratio, LN (Bonham- Carter, 

2002). W − is the natural logarithm of LN. 

Thus,  

}|{

}|{
log

LFP

LFP
W e  (25) 

Similarly, taking the natural log of Eq. (21) on both sides gives: 

}{

}|{
log

LO

FLO
W e  (26) 

LN and LS are also referred to as likelihood ratios. If the pattern is positively 

correlated, LS is greater than 1 (W + = positive) and LN ranges from 0 to 1 (W − = 

negative). If the pattern is negatively correlated, LN would be greater than 1 (W − = 

positive) and LS ranges from 0 to 1 (W + = negative). If the pattern is uncorrelated with a 

landslide, then LS = LN = 1 (W + = W − = 0) and the posterior probability would equal 

the prior probability, and the probability of a landslide would be unaffected by the 

presence or absence of the factor. I used Eqs. (23) and (25) to calculate weights of the 

factors. When more than one factor occurs, it is necessary to combine weights of all the 

factors.  
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For example, 

}{
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Based on the Bayes’ theorem, if factors F1 and F2 are assumed conditionally 

independent, Eq. (27) can be rewritten as: 
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Again if F1 and F2 are conditionally independent 
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Thus, from Eqs. (28) and (29), 
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For the odds formulation:  

}{

}{
}{

21

21
21

L|FFP

|LFFP
O{L}FL|FO  

21

21

21 **}{
}|{}|{

}|{}|{
}{ LSLSLO

LFPLFP

LFPLFP
LO  (31) 

2121 }{}{ WWLLogitFL|FLogit  (32) 

Therefore, the general expression for combining i =1, 2, .n maps containing data on 

factors is:  

n

i

n WLLogit.......FFFL|FLogit
1

321 }{}{  (33) 

In  this  equation,  if  the  i-th  pattern  is absent instead of present, the W + becomes W − 
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where the data are missing in any layer, the weight values for the missing part are set to 

0. All of these equations are similar to the equations derived by Bonham-Carter (2002) 

and Dahal et al. (2008a).   

 Based on Eq. (26), the WOE method requires only the factors conditionally 

independent of each other. The meaning of the conditional independence is that if two 

factors (F1 and F2) are conditionally independent with respect to a set of landslides (Fig. 

24B), Eq. (29) should be satisfied. The equation can also be written in terms of the 

number of pixels (N) as:  

}{

}{}{
}|{ 21

21
LN

FLNFLN
LFFN  (34) 

The left hand side of the equation is the observed number of cells where factors F1 and 

F2 and landslides are present and the right hand side of the equation is the predicted or 

expected number of landslides in this overlap zone, which should equal the number of 

landslide on F1 times on F2 divided by the total number of landslide, if the two 

parameters are conditionally independent.  

 Different types of statistical tests can be employed to test the dependency of the 

factors with respect to the landslides. Pairwise comparison, principal component analysis 

and logistic regression are some of the tests commonly used in landslide studies. Among 

them, pairwise comparison is the most employed method for testing conditional 

independence in the modeling approach using WOE.  
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Fig. 25. Flow chart of methodology. 

 

Materials and methods 

 

Data preparation 

 The first phase of this study entailed collection and preparation of landslide 

related spatial and attribute data. This step was followed by the assessment of areas 

susceptible to landslides using the relationship between landslides and causative factors, 

and the final phase was the accuracy assessment, verification, and validation of the 

results (Fig. 25). The landslide related spatial and attribute data were collected from 

USGS topographic maps of 1:24,000 scale, 1 m resolution NAIP (National Agriculture 

Imagery Program) aerial photographs, a 1:50,000 scale USGS geological map (Dunrud, 

1989), 10 m resolution USGS digital elevation model (DEM), ETM+ (Enhanced 
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Thematic Mapper Plus) satellite data provided by University of Maryland and USDA 

(United States Department of Agriculture) and USFS (United States Forest Service) soil 

data. Field surveys were carried out for verification of the existing data and collection of 

additional data. These data sources were used to generate 17 thematic layers using 

ArcGIS® (Table 4).  

 

Table 4 Sources and significances of the factors used in the analysis. TWI: Topographic Wetness Index, 
SPI: Stream Power Index, FA: Flow Accumulation, FL: Flow Length. 
 
Data Type Factors Source Significance 

Geologic 
Geological map USGS  Characteristics of the slope material 
Proximity to Fault USGS  Co-seismic landslide triggering 

Land cover Land cover Landsat ETM+ Root reinforcement of soil, surface 
runoff regulation 

Soil 
Soil plasticity index, 
coarseness USDA, USFS Shear strength of soil 

Topographic 

Elevation  DEM Climate, vegetation, potential energy 

Slope DEM Overland and subsurface  
flow velocity 

Aspect DEM 
Solar insolation, evapo-transpiration, 
flora and fauna distribution and 
abundance 

Plan Curvature DEM Converging, diverging flow, soil water 
content, soil characteristics 

Profile Curvature DEM Flow acceleration, erosion/deposition, 
geomorphology 

Tangent Curvature DEM Erosion/deposition 

Solar Radiation DEM Weathering, soil moisture, flora and 
fauna distribution and abundance 

Water-related 

FL DEM Runoff velocity, potential energy 

FA DEM Runoff velocity, runoff volume, 
potential energy 

SPI DEM Erosive power of water flow 

TWI DEM Soil water content 

Proximity to rivers DEM Susceptible to hillslope undercutting 

Anthropogenic Highway and roads Aerial photo 
Landslide triggering by the road 
cutting and vibration generated by the 
vehicles 

Landslides Landslide inventory Aerial photographs, 
field surveys Spatial pattern of unstable zones 
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Landslide characteristics and inventory maps 

 In mapping the susceptibility of landslides using the WOE approach many 

researchers (e.g., Neuhäuser and Terhorst, 2007; Dahal et al., 2008a) commonly use 

point locations of landslides, as shown by either the center of the polygon or the scarp, 

and represent the area of the landslide by the size of the unit pixel at that location. In this 

scenario, the probability of a landslide occurrence is the ratio of one landslide pixel from 

each existing landslide to the total number of the pixels in the entire area. This 

calculation ignores the sizes or magnitudes of the existing landslides. Furthermore, if the 

analysis does not have sufficient locations of landslides, the results obtained, based on 

the analysis of the parameters at the center of the landslides, might yield a biased result. 

These uncertainties can be reduced by entering the number of the pixels covered by the 

landslide polygons. I use this approach in this study. 

 Seven hundred and thirty five shallow landslide polygons were mapped on 1991 

and 2005 orthorectified aerial photographs of 1:12,000 scale using GIS (Geographic 

Information System). The aerial photographs are 1 meter ground sample distance ortho 

imagery rectified to a horizontal accuracy of within ± 5 m of reference digital ortho 

quarter quads (DOQQS) from the National Digital Ortho Program (NDOP). The 

positional accuracy of the landslide polygons is within ± 5 m of the aerial photograph. 

Landslides were identified visually based upon distinguishing tone, shape, size and 

texture of landslides on aerial photograph (Fig. 26), and then digitized and entered into 

ArcGIS®. Although landslides were clustered in many locations, individual landslides 

were mapped by identifying the distinct boundary of each (Fig. 27). Three-dimensional 
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visualization techniques and stereo-visualization techniques were employed to determine 

the types of landslides. These techniques help to identify landslides from features having 

a landslide appearance on a two-dimensional non-stereo visualization of an aerial 

photograph. For example, an observer may have difficulty distinguishing between a 

snow-avalanche track and a landslide when observing Fig. 28A and between a landslide 

and a non-vegetated slope when observing Fig. 28B. 
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Fig. 26. Landslides around the small community of Somerset on a 2005 aerial photograph. The image 
shows a 3-D view towards west. Rockslides (Rs) occur mostly on steep slopes. Zone A is dominated by 
shallow and deep seated landslides.  Hummocky landform in Zone B and southern slope of Somerset 
(Zone C) are dominated by active debris flows. The entire hillslope, shown in A, B and C, is active. Zone 
A and B also includes deep-seated landslides. Only shallow landslides from these zones were mapped for 
the analysis. The largest river in the area flowing east-west is the North Fork of Gunnison River; Colorado 
Highway 133 trends parallel to the river. The vertical scale of the image is exaggerated twice.  
 

After mapping locations of landslides on aerial photographs, field mapping 

verified the data. Most of the attributes of the landslides were collected from aerial 
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photographs, historical archives and field surveys. The attribute data of a landslide 

includes area, perimeter, volume, length, width, type, activity, position on the hillslope, 

vegetation, main causes, damage, and preventive measures taken. All these attributes 

were linked with the spatial information of the landslides. The landslides mapped range 

in area from 85 m2 to 160,000 m2 with average area of 6,600 m2; about 50% of the 

landslides are smaller than 2,000 m2. Based on the analysis of the profiles of 735 

landslides developed from DEM, the average depth of the landslides is calculated as 1.9 

m; the mean slope of the landslide surface is 26°. 
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Fig. 27. Distribution of shallow landslides in the study area. 
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Fig. 28. A panoramic view of the SE slope near Somerset. The entire slope is moving downslope. The 
topography indicates mass movement is the major process that modified the slope.  Landslides comprised 
of unconsolidated materials. B) A large slump indicated by a dashed line in the photograph is comprised of 
Mancos Shale. Arrows without “?” symbols also represent landslides. Arrows with “?” symbol indicate the 

unvegetated part of the landscape which looks like landslides in non-stereo two-dimensional visualization 
of an aerial photograph.  C) A landslide (debris slide) in the study area. The entire slope is moving 
downslope. The landslides are comprised of unconsolidated materials.  

 

Geological factors 

 The study area is mainly comprised of only five types of rocks but the geology of 

the area is differentiated into 13 classes of lithology based on the dominance of the types 

of rocks and deposits. Using the geological map of Dunrud (1989), some of the 

geological formations were combined to simplify the relationship of geology to 

characteristics and frequencies of landslides. Most of the landslides were observed in 
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interbedded sandstone, shale and mudstone and unconsolidated colluvial, alluvial and 

glacial deposits (Fig. 28).  

 Twenty surface and subsurface faults were mapped. Many landslides are found in 

the close proximity of these faults. The distances from these faults are divided into 

different categories (Table 5) based on the variation in weight contrast values (WC = Wi
+ 

− Wi
−) with distances (Fig. 29A).  

 

 

Fig. 29. Approach of categorizing continuous factor data. The continuous data were categorized using the 
values of continuous data at which the slope of the weight contrast graph breaks. The graph shows weight 
contrasts for the cumulative values of the continuous data. A) Graph showing the variation of weight 
contrasts with distances from fault. The weight contrast is maximum at 350 m distance from a fault. B) 
Graph showing the variation of weight contrasts with slope aspects. C) Graph showing the variation of 
weight contrasts with distances from river. The weight contrast is maximum at 250 m distance from a 
river. D) Graph showing the variation of weight contrasts with distances from road. The weight contrast is 
maximum at 40 m distance from a road.  
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Table 5 Factors, factor classes, number of factor class pixels and landslide pixels and weights of the factor 
classes. Weights represented by the bold text are underestimated values. During the analysis, these values 
were replaced by 0 to reduce the effect of the underestimation. Acronyms: sst: sandstone, mst: mudstone 
and clst: claystone. 
 

Factor Class Class pixels
Landslide 

pixels
% Class % Landslide W

+
W

-
W

+
-W

-

<10° 2,631,299 1,868 32 4 -2.10 0.40 -2.50
10-20° 2,778,671 12,566 34 26 -0.30 0.10 -0.40
20-30° 1,532,209 17,400 19 36 0.70 -0.20 0.90
30-40° 956,744 12,703 12 26 0.80 -0.20 1.00
40-50° 216,809 3,513 3 7 1.00 0.00 1.00
50-60° 31,890 377 0 1 0.70 0.00 0.70
>60° 7,189 21 0 0 -0.70 0.00 -0.70
Flat (-1°) 68,073 12 1 0 -3.52 0.01 -3.53
North (337-360°, 0-22°) 806,660 5,048 10 10 0.05 -0.01 0.06
North East (22-67°) 998,178 2,239 12 5 -0.98 0.08 -1.06
East (67-112°) 1,054,092 5,565 13 11 -0.12 0.02 -0.14
South East (112-157°) 961,195 4,509 12 9 -0.24 0.03 -0.27
South (157-202°) 1,033,415 8,776 13 18 0.36 -0.06 0.42
South West (202-247°) 1,136,000 9,866 14 20 0.38 -0.08 0.46
West (247-292°) 1,157,728 7,316 14 15 0.06 -0.01 0.07
North West (292-337°) 939,470 5,117 12 11 -0.09 0.01 -0.10
<1,800 m 59,546 250 1 1 -0.35 0.00 -0.35
1800-2000 m 381,734 4,941 5 10 0.79 -0.06 0.85
2000-2200 m 1,067,871 9,356 13 19 0.39 -0.07 0.47
2200-2400 m 2,426,731 13,029 30 27 -0.10 0.04 -0.14
2400-2600 m 2,178,609 10,621 27 22 -0.20 0.06 -0.26
2600-2800 m 1,133,622 7,378 14 15 0.09 -0.02 0.11
2800-3800 m 906,698 2,873 11 6 -0.63 0.06 -0.69

<600 kwh/m
2 2,168 0 0 0 0.00 0.00 0.00

600-800 kwh/m
2 15,980 84 0 0 -0.12 0.00 -0.12

800-1000 kwh/m
2 119,325 1,809 1 4 0.95 -0.02 0.97

1000-1200 kwh/m
2 371,934 5,883 5 12 0.99 -0.08 1.07

1200-1400 kwh/m
2 830,039 7,373 10 15 0.41 -0.06 0.46

1400-1600 kwh/m
2 2,378,225 9,975 29 21 -0.35 0.11 -0.46

1600-1800 kwh/m
2 3,865,732 16,697 47 34 -0.32 0.22 -0.54

>1800 kwh/m
2 571,408 6,627 7 14 0.67 -0.07 0.75

<-5 m
-1 26,531 335 0 1 0.76 0.00 0.76

 -5--2 m
-1 299,059 2,998 4 6 0.53 -0.03 0.55

-2-0 m
-1 3,039,226 18,117 37 37 0.00 0.00 0.01

0 m
-1 1,406,670 4,617 17 10 -0.60 0.09 -0.69

0-2 m
-1 3,085,047 18,854 38 39 0.03 -0.02 0.05

2-5 m
-1 265,601 3,101 3 6 0.68 -0.03 0.71

>5 m
-1 32,677 426 0 1 0.79 0.00 0.80

<-5 m
-1 29,897 298 0 1 0.52 0.00 0.52

-5--2 m
-1 219,985 2,586 3 5 0.69 -0.03 0.72

-2-0 m
-1 2,726,472 18,226 33 38 0.12 -0.07 0.18

0 m
-1 1,911,300 6,600 23 14 -0.55 0.12 -0.67

0-2 m
-1 3,123,923 19,288 38 40 0.04 -0.02 0.06

2-5 m
-1 127,701 1,306 2 3 0.55 -0.01 0.56

>5 m
-1 15,533 144 0 0 0.45 0.00 0.45

<-5 m
-1 151,092 1,875 2 4 0.74 -0.02 0.76

-5--2 m
-1 1,426,520 9,754 17 20 0.14 -0.03 0.17

-2-0 m
-1 1,392,935 8,072 17 17 -0.03 0.01 -0.03

0 m
-1 2,109,470 10,237 26 21 -0.20 0.06 -0.27

0-2 m
-1 2,590,590 14,151 32 29 -0.08 0.04 -0.12

2-5 m
-1 417,858 3,633 5 7 0.38 -0.03 0.41

>5 m
-1 66,346 726 1 1 0.62 -0.01 0.62

<20 m 139,258 1,518 2 3 0.61 -0.01 0.63
20-40 m 105,648 1,208 1 2 0.66 -0.01 0.67
40-100 m 300,766 2,607 4 5 0.38 -0.02 0.40
100-350 m 971,971 6,040 12 12 0.05 -0.01 0.05
>350 m 6,637,168 37,075 81 77 -0.06 0.23 -0.30
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Table 5 continued. 
 
Factor Class Class pixels

Landslide 

pixels
% Class % Landslide W

+
W

-
W

+
-W

-

Glacial Drift 112,072 786 1 2 0.17 0.00 0.17

Alluvial Terrace 73,624 84 1 0 -1.65 0.01 -1.66

Colluvium 37,250 960 0 2 1.49 -0.02 1.50

Talus and Rock Glacier Deps. 127,298 1 2 0 -6.63 0.02 -6.65

Unconsolidated alluvium 172,579 458 2 1 -0.81 0.01 -0.82

 Mixed Alluvium and colluvium 781,043 3,256 10 7 -0.36 0.03 -0.39

Landslide and Mudflow Deps. 1,453,863 17,902 18 37 0.74 -0.27 1.00

Unconsolidated Deps. (mixed) 878,963 4,304 11 9 -0.19 0.02 -0.22

Basalt and gabbros 1,486 97 0 0 2.46 0.00 2.46

Plutonic rock (granodiorite) 264,197 2 3 0 -6.67 0.03 -6.70

Wasatch Fm. (clst, mst, sst) 2,651,560 6,606 33 14 -0.87 0.25 -1.12

Mesavarde Fm. (sst, mst, shale) 1,534,501 13,192 19 27 0.37 -0.11 0.48

Mancos Shale 51,216 800 1 2 0.98 -0.01 0.99

<25 m 45,726 556 1 1 0.72 -0.01 0.73

25-75 m 78,361 1,151 1 2 0.91 -0.01 0.93

75-150 m 121,788 1,421 1 3 0.68 -0.01 0.70

150-350 m 342,546 5,211 4 11 0.95 -0.07 1.02

350-10,653 m 7,566,390 40,109 93 83 -0.11 0.88 -0.99

Forest 3,378,384 11,581 41 24 -0.55 0.26 -0.82

Shrub/bush 3,236,247 30,241 40 62 0.46 -0.48 0.93

Grassland 711,441 1,677 9 3 -0.93 0.06 -0.98

Woodland 395,505 3,514 5 7 0.41 -0.03 0.43

Agriculture 209,061 123 3 0 -2.32 0.02 -2.34

Rock cliff and barren land 176,481 1,273 2 3 0.20 -0.01 0.20

Water 28,305 0 0 0 0.00 0.00 0.00

Residential 19,557 26 0 0 -1.50 0.00 -1.50

Rock 96,412 1,139 1 2 0.70 -0.01 0.71

Non-plastic-very low plastic 815,150 18,633 10 38 1.36 -0.38 1.75

Low plastic 4,710,787 21,313 58 44 -0.27 0.28 -0.56

Medium Plastic 2,282,552 7,864 28 16 -0.55 0.15 -0.70

High plastic 227,026 595 3 1 -0.82 0.02 -0.84

Water 21,122 43 0 0 -1.08 0.00 -1.08

<11 m 2,023,344 7,664 25 16 -0.45 0.11 -0.57

30 m 1,131,536 5,468 14 11 -0.21 0.03 -0.24

300 m 4,224,709 29,171 52 60 0.15 -0.19 0.34

1000 m 631,820 5,341 8 11 0.36 -0.04 0.39

75,158 m 143,402 804 2 2 -0.06 0.00 -0.06

1 Cells 1,606,771 5,760 20 12 -0.51 0.09 -0.60

3 Cells 1,445,479 7,093 18 15 -0.19 0.04 -0.23

7 Cells 1,532,847 8,939 19 18 -0.02 0.00 -0.02

50 Cells 2,729,873 20,425 33 42 0.23 -0.14 0.37

700 Cells 655,731 5,101 8 11 0.27 -0.03 0.30

16,262,011 Cells 184,110 1,130 2 2 0.03 0.00 0.03

0-3 1,514,627 1,991 19 4 -1.52 0.17 -1.69

3-12 1,905,600 8,183 24 17 -0.33 0.08 -0.42

12-50 2,485,090 15,513 31 32 0.04 -0.02 0.06

50-400 1,814,457 18,641 22 38 0.54 -0.23 0.78

400-5000 268,044 3,450 3 7 0.77 -0.04 0.81

5,000-97,269,664 99,050 658 1 1 0.10 0.00 0.11

0-2 3,338 18 0 0 -0.11 0.00 -0.11

2-4 1,189,006 10,042 15 21 0.35 -0.07 0.42

4-6 4,173,081 23,860 52 49 -0.05 0.05 -0.10

6-8 1,935,985 10,944 24 23 -0.06 0.02 -0.08

8-10 536,021 2,500 7 5 -0.25 0.02 -0.27

10-12 143,660 686 2 1 -0.23 0.00 -0.23

12-23 105,777 386 1 1 -0.50 0.01 -0.50
<25 m 1,386,867 8,004 17 17 -0.03 0.01 -0.04

25-50 m 1,253,719 6,983 15 14 -0.06 0.01 -0.08

50-100 m 1,923,620 10,858 24 22 -0.05 0.02 -0.07

100-250 m 3,055,075 19,942 37 41 0.09 -0.06 0.16

250-614 m 535,530 2,661 7 5 -0.18 0.01 -0.19D
is

ta
n

ce
 t

o
 

st
re

a
m

  
(D

S
)

S
tr

ea
m

 p
o

w
er

 

in
d

ex
 (

S
P

I)

T
o

p
o

g
ra

p
h

ic
 

w
et

n
es

s 
in

d
ex

 

(T
W

I)

G
eo

lo
g

y
 (

G
E

O
)

S
o

il
 p

la
st

ic
it

y
 

(S
P

)

D
is

ta
n

ce
 t

o
 

fa
u

lt
 (

D
F

)
L

a
n

d
 c

o
v

er
 (

L
C

)
F

lo
w

 l
en

g
th

 

(F
L

)
F

lo
w

 a
cc

. 
(F

A
)

 



94 
 

Land cover 

 Land cover is also one of the key factors responsible for landslides in the study 

area. Vegetated areas are less prone to shallow landslides (Greenway, 1987; Styczen and 

Morgan, 1995) because vegetation prevents erosion through the natural anchorage 

provided by roots. Based on the unsupervised classification of the ETM satellite image 

acquired in 2002, evaluation of aerial photograph acquired in 2005 and field surveys, 

seven land cover classes were mapped: forest (41%), woodland (5%), shrub (40%), 

grassland (9%), agricultural land (3%), rock cliffs and barren land (2%), and human 

settlement (0.2%). Among these classes, shrubland and woodland are the classes where 

most of the landslides occurred.  

 

Soil 

 Grain size and plasticity index of the soil or regolith up to a depth of about 1.5 m 

were collected. Grain size of the soil is classified based on the percentage of soil passing 

through number 200 sieve (0.075 mm). The soil size is classified in to three classes as 

fine grained, medium grained and coarse grained. Fine soil is classified if more than 

66% passes through the sieve, medium grained if 33% to 66% passes through the sieve 

and the coarse grained with 0 to 33 % passing through the number 200 sieve. Soil 

plasticity index is classified as non-plastic, low plastic (PI = 0-5), medium plastic (PI = 

5-20), and high plastic (PI >20). Most of the landslides are observed in medium to 

coarse and non-plastic to low plastic soils. The spatial pattern of the classes of both 
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factors is quite similar. Therefore, only the plasticity index is used in the analysis of the 

susceptibility to landslides. 

 

Topographic factors 

 DEMs with a horizontal resolution of ten meters have been used to derive various 

topographic factors including slope, aspect, elevation, profile curvature, plan curvature, 

tangential curvature, and mean hourly solar radiation using inbuilt algorithms in 

ArcGIS®. All of these data were initially continuous, but were converted into different 

categories based on the variation in weight contrast values with values of the 

topographic data (e.g., Fig. 29B) as well as the frequency distribution of different 

topographic values on the surface of the landslides and for the entire area. Both 

approaches provided similar results. 

 

Water-related factors 

 Surface water, sub-surface water and groundwater are the major hydrological 

causes of landslides. Surface water promotes landslides by undercutting and eroding 

slopes. Fluctuation of sub-surface water and groundwater changes the pore water 

pressure in soil and changes the stability of the slope. The factors of drainage network, 

topographic wetness index (TWI), stream power index (SPI), flow accumulation and 

upstream flow length, were derived from a DEM as a measure of surface water, sub-

surface water and groundwater. Topographic wetness index and stream power index can 

be defined by Eqs. (35) and (36), where A (m2) is the upstream catchment area or flow 
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accumulation, b (m) is the width of a cell through which water flows and β (radian) is 

the slope. 

β)(A/bTWI e tanlog  (35) 

bβASPI /tan  (36) 

 Researchers suggest that soil moisture can be estimated by topographic wetness 

index (Moore et al., 1991; Beven, 1997; Blyth et al., 2004). The stream power index is a 

measure of the erosive power of water flow based on the assumption that discharge is 

proportional to specific catchment area (Moore et al., 1991). Flow accumulation in its 

simplest form is the number of upslope cells that flow into each cell. The flow length is 

the longest upslope distance along the flow path from each cell to the top of a drainage 

divide. The flow accumulation and flow length were created using inbuilt algorithms in 

ArcGIS®. The algorithm uses an eight direction (D8) flow model proposed by Jenson 

and Domingue (1988).  

 I observed many landslides in the proximity of the North Fork of the Gunnison 

River and its associated tributaries. To include the effect of the stream in the assessment 

of susceptibility to landslides, the drainage map of the study area, which consists of 

drainage orders up to the 8th order based on Strahler (1957), was created from the DEM. 

A cell is considered to have a stream if more than 500 upslope cells (50,000 m2 

catchment) flow through it. Distances from the streams were calculated and the map was 

divided into different categories (Table 5) based on the variation in weight contrast 

values with distances (Fig. 29C). Similarly, topographic wetness index, stream power 

index, flow accumulation and flow length were divided into different classes (Table 5).   
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Distance to road 

 Excavating slopes for the construction of roads and frequent vibrations generated 

by vehicles predispose hillslopes to failure (Ayalew and Yamagashi, 2005; Mittal et al., 

2008). Around the Paonia-McClure Pass area numerous landslides were observed along 

Colorado Highway 133 and various forest roads. To include the role of roads in the 

assessment of hazardous landslides, Highway 133 and the forest roads were mapped 

within ± 5 m positional accuracy of the aerial photograph and distances from these roads 

were calculated. The distances from roads are divided into different categories based on 

the variation in weight contrast values with distances (Fig. 29D and Table 5). Some 

roads, including those around residential areas, on flat terrains, and in areas with little 

potential for landslides, were excluded from this study.  

 

Calculation of weighted values 

 Weighted values for the classes of 17 factors were calculated using Eqs. (37) and 

(38) which are derived from Eqs. (22) and (25):  

43

3

21
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AA
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AA

A

LogW e
 (37) 
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where, A1 is the number of the landslide pixels present on a given factor class, A2 is the 

number of the landslide pixels not present in the given factor class, A3 is the number of 

the pixels in the given factor class in which no landslide pixels are present and A4 is the 

number of the pixels in which neither landslide nor the given factor is present.  

 The calculation is performed in ArcGIS 9.2® by using the spatial analysis tool. A 

positive weight (Wi
+) indicates presence of the causative factor in the landslide, and the 

magnitude of this weight is an indication of the positive correlation between presence of 

the causative factor and landslides. A negative weight (W i
−) indicates an absence of the 

causative factor, and the magnitude indicates negative correlation. The difference 

between the two weights is known as the weight contrast, WC (WC = Wi
+ 

− Wi
−), and the 

magnitude of the contrast reflects the overall spatial association between the causative 

factor and landslides. If the weight contrast is positive, the factor is favorable for the 

landslides, and if it is negative, it is unfavorable for the landslides. If the weight contrast 

is close to zero, this indicates that the factor shows little relation to the landslides. A 

problem with this method is that when very few pixels of a landslide are present in a 

given factor class, the weighted value of the class becomes very low. While summing 

this value with the weighted values of other factors, the high negative values might cause 

the region to fall into a low susceptibility category, although the weighted values of 

other factors imply that the zone is hazardous. In this case it is better to assign a zero 

weighted value to this class or combine the class with other classes. 
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Test for conditional independence 

 The conditional independence of the factors assigned to given landslides was 

tested before the integration of the weighted map to create a total weight map by 

pairwise comparison using chi-square statistics.  

 First, for the ease of the analysis, all of the factors causing landslides were 

converted into a binary pattern (presence or absence of landslides) based on weight 

contrast and expert’s knowledge. Categorical data, like geology, land cover, soil size and 

soil plasticity index, were first separated into the binary pattern based on the expert’s 

judgment and the weight contrasts of each factor class. Continuous data, like slope, 

aspect, elevation, curvature, wetness index, stream power index, were first divided into 

classes and then categorized into binary patterns based on the weight contrasts of each 

class. In both cases, mostly the factor classes having positive values of weight contrasts, 

were assigned as presence and factor classes having negative weight contrast values 

were assigned as absence. These binary classes were cross-verified by a priori judgment 

based on the personal evaluation of the hazards and the distribution of the landslides. 

Continuous data, like distance to roads, drainage, and faults, have different meanings. If 

these features are responsible for the landslides, the weighted values should be relatively 

higher nearby these features. I classified distance to faults, roads and drainage into the 

binary pattern based on the maximum value of weight contrast from the cumulative 

weight contrast curve (Fig. 29). Areas within 350 m of faults are categorized as 

presence, and the areas beyond this distance are categorized as absence. The areas within 

40 m of the roads are categorized as presence and the areas beyond this distance are 
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categorized as absence. Likewise, the areas within 250 m of the drainage are categorized 

as presence and the areas beyond this distance are categorized as absence. 

 

Table 6 2×2 contingency table showing observed frequencies (Oi) and expected frequencies (Ei) of 
landslides (L) in binary factors F1 and F2. The expected frequencies (Ei) are determined by multiplying the 
marginal frequencies together and dividing by the total. 
 

  Binary pattern F1  
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 Totals }{ 1 LF  }{ 1 LF  }{L  

 

 Second, 2×2 contingency tables for all possible pairs of 17 binary factors (similar 

to Table 6) were prepared and chi-square tests were performed with 1 degree of freedom. 

The observed chi square value for each pair is compared with the table value for 1 

degree of freedom at the 99% confidence level (6.64). Chi-square values, greater than 

the table values, suggest that the pairs are not significantly different, given the 

occurrence of landslides.  Chi-square values were determined by employing Eq. (39), in 

which the observed frequencies (Oi) and the expected frequencies (Ei) are determined 

from the contingency table (Table 6). One hundred and thirty six pairs were tested. 

Among 136 pair-wise comparisons, 103 of the pair-wise comparison couples were found 

independent of each other for all the landslides examined (Table 7).  
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 The chi-square test evidenced relationships of different factors. Geology, 

distance to a fault, and soil plasticity index are conditionally dependent on each other. 

Slope and soil plasticity index are dependent on land cover. Slope is dependent on its 

derivatives solar radiation, profile curvature and plan curvature. Likewise hydrologic 

factors, soil plasticity index, topographic wetness index, flow accumulation and flow 

length are related to each other. Therefore, a major question to be answered from the 

WOE method of mapping susceptibility of landslides is what factors are important to 

prepare an accurate map of susceptibility to landslides? To answer this question, I 

designed six models, which include combinations of different independent factors 

representing topographic, hydrologic, geologic, land cover and anthropogenic factors 

(Table 8). 

 

Combination of weighted maps and selection of the best model 

 Maps of susceptibility to landslides were prepared from each model by summing 

the weight contrast values of different factors pixel by pixel (e.g. Figs. 30A, 30B). The 

accuracy of each model was tested using the observed landslides (Fig. 30C). 

In addition, the validity of the models was tested by creating maps of 

susceptibility to landslides (e.g., Figs. 31A, 31B) based on randomly selected 368 

observed landslides (training sets) and checking the accuracy of these models using 

training sets (Fig. 31C) and validity of these models (Fig. 31D) against the remaining 
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367 landslides (validation sets). The prediction capability of each model is determined 

by the area under the curve (Table 9). Based on these values, model 1 and model 2 are  

 

Table 7. Pairwise chi-square statistics of 17 factors. GEO: Geology, DF: Distance From Faults, SP: Soil 
Plasticity, LC: Land cover, SL: Slope, AS: Aspect, EL: Elevation, SR: Solar Radiation, PRC: Profile 
Curvature, PLC: Plan Curvature, TC: Tangential Curvature, FL: Flow Length, FA: Flow Accumulation, 
SPI: Stream Power Index, TWI: Topographic Wetness Index, DS: Distance From Streams, and DR: 
Distance From Roads. 
 

GEO DF LC SP SL AS EL SR PRC PLC TC FL FA SPI TWI DS DR

GEO 8.5 0.2 9.3 6.2 0.0 0.8 2.0 1.6 1.9 6.0 6.5 10.4 7.3 0.7 2.2 0.5

DF 21.2 9.0 2.5 19.3 15.5 2.9 0.2 0.0 0.0 1.2 11.2 0.2 0.9 0.5 34.3

LC 10.8 24.4 6.6 2.5 6.5 1.7 0.0 0.8 0.2 0.0 0.1 3.7 3.8 10.3

SP 6.0 0.0 37.0 4.6 3.3 4.9 7.7 0.0 1.5 0.2 1.9 0.8 1.0

SL 4.6 0.0 28.8 12.7 14.2 3.2 1.5 0.0 31.6 16.5 0.2 1.2

AS 0.0 2.1 0.0 0.1 0.8 0.7 4.3 0.5 4.4 0.9 3.1

EL 37.6 0.3 0.3 1.9 89.0 1.0 0.0 0.5 8.1 128

SR 24.5 0.3 0.2 0.4 0.6 0.6 0.7 0.1 3.5

PRC 347 30.8 0.1 0.1 0.3 1.1 0.2 0.3

PLC 27.7 1.6 0.0 1.9 1.3 1.7 0.0

TC 0.6 0.0 0.7 0.1 4.6 2.2

FL 288 372 443 0.4 0.4

FA 187 236 0.1 0.0

SPI 237 0.3 0.0

TWI 3.1 0.3

DS 0.2

DR  

 

Table 8 Six possible combinations of the factors based on the chi-square statistics. Acronyms same as 
table 6. 
 

Factors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Geology/ 
soil/land cover SP GEO SP GEO 

LC GEO  

Topographic 
SL 
AS 
TC 

SL 
AS 
TC 

SR 
AS 
PLC 

SR 
AS 
TC/*PLC 
 

SL 
AS 
TC 
EL 

SL 
AS 
TC 

Hydrologic *FA/FL 
DS 

FL 
DS 
 

*SPI/TWI/FA
/FL 
DS 

TWI 
DS 

DS 
 

SPI/TWI/*F
A/FL 
DS 

Anthropogenic DR DR DR   DR 
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considered as accurate models.  These two models have five factors in common; and 

only two factors are different. Although most of the distribution patterns of the total 

weight in these two models (Figs. 30A, 30B) are quite similar, the difference results 

from two factors in each model. Flow accumulation and flow length are measuring the 

same topographic character as shown by the very high chi-square statistics of this pair. 

Thus, the difference in these models solely depends on the difference in the patterns of 
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Fig. 30. Accuracy assessment of the models. A) Total weight map developed using model 1 factors and 
735 landslides. B) Total weight map developed using model 2 factors and 735 landslides. C) Accuracy 
assessment of the four models of susceptibility to landslides. The total weights for these models were 
based on 735 landslides and the performance of the models was evaluated by all 735 landslides. 
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classes between geology and soil plasticity. A prudent judgment to obtain a better result 

would be the combination of these two factors, but in the WOE method the combination 

of these factors is logically impossible because they are conditionally dependent on each 

other.  
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Fig. 31. Validity assessment of the models. A) Total weight map developed using model 1 factors and 368 
landslides (training set). B) Total weight map based on model 2 factors and 368 landslides (training set). 
C) Accuracy assessment of the four models of susceptibility to landslides. The total weights for these 
models were based on 368 landslides (training set) and the performance of the models was evaluated by all 
368 landslides. D) Test of validity of the four models. The total weight maps were based on the 368 
landslides (training set) and the accuracy is assessed by using the remaining 367 landslides (validation 
set). Models 1 and 2 predict more landslides in zones of high susceptibility than the other models. 
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Fig. 32. Susceptibility to landslides based on model 1 factors and 735 landslides. This model has the 
highest rate of prediction. The high susceptibility (HS) area consists of 28% of the study area; it includes 
70% of the total area of landslides. The medium susceptibility (MS) area, consists of 42% of the study area 
and comprises 27% of the total area of landslides. The low susceptibility (LS) area, consists of 30% of the 
study area and contains 3% of the total area of landslides. 
 
 

 Test of validity implies that model 1 is the best model. The total weighted map of 

model 1 was converted into three classes representing high susceptibility, medium 

susceptibility and low susceptibility (Fig. 32). The classification is based on the natural 

break in the frequency distribution curve of the total weight (Fig. 33). These values were 

slightly modified so that optimum amount of landslides falls into zones of high 
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susceptibility and flat terrain like river floodplain and upland plateau falls into zones of 

low susceptibility. 

 

 
 

Fig. 33. The frequency distribution of the total weight values. Natural breaks of the curve were used to 
classify the total weight map (Fig. 30A) into a map of susceptibility (Fig. 32). The high susceptibility zone 
has a value of weight ranging from 5 to 0, the medium susceptibility has a value of weight ranging from 0 
to -2.5 and the low susceptibility has a value of weight ranging from -2.5 to -8.2. 

 

Table 9 Accuracy assessments of the six models of susceptibility to landslides based on the area under the 
curve approach. Case A) the prediction accuracy of the models represented by the curves in Fig. 30C. Case 
B) the prediction accuracy of the models represented by the curves in Fig. 31C. Case C) the prediction 
accuracy of the models represented by the curves in Fig. 31D. 
 

Models Predicted area % under the 
curve  (Case A) 

Predicted area % under the 
curve  (Case B) 

Predicted area % under the 
curve  (Case C) 

1 78.3 77.4 78.4 
2 78.7 77.2 77.6 
3 75.7 72.3 75.0 
4 77.0 72.5 73.8 
5 79.0 76.5 77.0 
6 75.2 76.9 73.9 
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Results and discussion 

 The predictive capability of model 1 for known and unknown landslides (Table 

9) suggests that slope, aspect, tangential curvature, soil plasticity index, flow 

accumulation, distance to streams and distance to roads are sufficient to create an 

optimum and valid map of susceptibility to landslides of the study area. The high 

susceptibility zone has a value of weight ranging from 5 to 0, the medium susceptibility 

has a value of weight ranging from 0 to -2.5 and the low susceptibility has a value of 

weight ranging from -2.5 to -8.2. On the susceptibility map, 28% of the area is shown as 

high susceptibility, 42% is shown as medium susceptibility and 30% is shown as low 

susceptibility (Fig. 32). Most of the high susceptibility zones are primarily located in the 

areas adjacent to streams and roads, have steep slopes with shrubland and woodland 

vegetative covers and consist of non-plastic to low plastic soils. Observed and predicted 

landslides are found on the slopes of the inner gorges of North Fork Gunnison River and 

its associated streams which are incising into plateaus upland. These characteristics of 

landslides represent potential for the first order prediction of the landslides in this 

landscape.   

 Based on my results, some of the pros-and-cons of the WOE method in 

predicting zones of landslide susceptibility are as follows. Advantages of the method are: 

1) the method calculates the weighted value of the factor based on the statistical formula, 

i.e. Eqs. (22) and (25), and avoids the subjective choice of weighting factors; 2) in GIS 

these multiple weighted maps can be combined by a writing GIS script; 3) weighted 

values, calculated from Eqs. (22) and (25), can be used to categorize the continuous data; 
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4) input maps with missing data (incomplete coverage) can be accommodated in the 

model; 5) undersampled landslide data does not significantly impact the results; and 6) 

the method provides a technique to avoid the use of data that are intercorrelated.  

 The WOE method has three major disadvantages: 1) Because the weight is 

dependent on the number of landslide pixels used on the modeling, the method 

overestimates or underestimates weights if the area of a factor class is very small and the 

landslides are not evenly distributed. 2) The method creates a number of possible 

combinations of the conditionally independent factors. To determine what combination 

of factors is appropriate, assessment of the performance of each combination is 

necessary, which is a lengthy process. 3) The weight values calculated for different areas 

are not comparable in terms of the degree of susceptibility. This is possible only if the 

weights are standardized or converted to the probability. The effect of overestimation 

and underestimation of weights can be reduced either by excluding the factor class from 

the analysis by assigning 0 weight value or by reclassifying the factor maps. In this study 

I excluded two classes of geology (plutonic rock and talus and rock glacier deposits) 

from the analysis by assigning them 0 weight value. The cutoff values of weight depend 

on the priori knowledge of the study area.  The commonly used method for the test of 

the conditional independence in the WOE method is pair-wise comparison. When the 

analysis consists of a large number of factors and factor classes, the pairwise comparison 

becomes complicated because of the numerous possible combinations of the classes of 

the factors. For example, I observed only seven factors being conditionally independent 

of each other, but we can combine the factors in different ways to develop different 
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models (Table 8). So which model performs better? A solution is to assess the prediction 

capabilities of the possible models based on the landslides considered in the analysis, as 

well as landslides not considered in the analysis. I observed that model 1 is the best 

model for my study area.  In this regard, this method is more complicated than variable 

selection by factor analysis or linear and non-linear regression analyses. Other 

limitations of the method are: 1) the method is only applicable in areas where the 

landslides are fairly well known, and 2) it is impossible to enter the interaction of two 

different factors in the analysis. 

 I think this method can provide a better result if the landslides are classified into 

different types, and a map of weighted values is created for each landslide type. For 

example, using the WOE method Neuhäuser and Terhorst (2007) obtained ~95% 

prediction accuracy for a single type of landslide in south-west Germany; Dahal et al. 

(2008a) obtained 85.5% prediction accuracy for newly formed debris flows in the Lesser 

Himalaya of Nepal; Dahal et al. (2008b) obtained 80.7% and 77.6% prediction accuracy 

for landslides comprising the translational and flow types of slides in the Moriyuki and 

Monnyu catchments in Japan, respectively. Although a WOE-based map of 

susceptibility to a single type of landslide performs better then a map of susceptibility to 

various types of landslides, a map showing zones of susceptibility to all kinds of 

landslides would be the choice of the decision makers. Combination of maps of 

susceptibility to landslides of different types into a single map would be a solution, but 

in the WOE method the combination of two or more maps of weighted values is 

impossible because the weighted values are not comparable.  
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 Nevertheless, the map of susceptibility to landslides developed by this method is 

effective in predicting known and unknown landslides. The prediction accuracy of my 

best model is 78.4%. The model predicts 70% of the known as well as unknown 

landslides in high susceptibility zones when 28% of the study area is defined as high 

susceptibility (Figs. 30C, 31D). The performance of my model is slightly different than 

the performance of the models suggested by other investigators (e.g., Lee et al., 2002, 

2004; Van Westen et al., 2003; Mathew et al., 2007; Dahal et al., 2008a, 2008b). It 

should be understood that model performance depends on the correct identification of 

the major factors of landslides, quality of the data collected, number of landslides, scale 

and size of the study and uncertainties associated with the digitization of the data. 

Moreover, highly generalized data, like geology and the soil plasticity index, do not 

distinguish individual soil and rock types, which may introduce large amounts of 

uncertainties in the analysis. The study consisted of a large area and highly generalized 

geology and soil data. Furthermore, I was unable to evaluate the role of rainfall and 

snowmelt in landslides of my study area. Many rainfall and snowmelt induced landslides 

have been reported in Colorado (Rogers, 2003). In spite of not being able to evaluate the 

role of rainfall and snowmelt in my area, I think the result I obtained from the analysis is 

satisfactory for a regional-scale (815 km2) study.  
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CHAPTER V 

ASSESSING SUSCEPTIBILITY TO LANDSLIDES: USING MODELS TO 

UNDERSTAND OBSERVED CHANGES IN SLOPES* 

 

Synopsis 

 A map of landslide susceptibility is a necessary tool for proper planning and 

selection of sites for agriculture, infrastructure and other human developments. The 

Paonia-McClure Pass area of Colorado, USA, is well known for active mass movements. 

Large losses of property and risks to people highlight the need to accurately map 

susceptibility to shallow landslides and to identify safe locations for infrastructure and 

residential development. 

 The study mapped 735 active mass movements and 17 factors about each one. 

The weights of evidence, frequency ratio of landslides, and fuzzy-logic method were 

used to create an optimum map of landslide susceptibility. Weights of the evidence were 

used to categorize continuous factor data, frequency ratios of shallow landslides were 

used to assign the membership values for the categories of the factors, and the fuzzy-

logic method was used to integrate the membership values. Four models from the fuzzy-

inference network of mapping susceptibility to shallow landslides were developed based 

on the combination of factors using five types of fuzzy operators. The first inference-  

___________ 
*Reprinted with permission from “Assessing susceptibility to landslides: Using models 

to understand observed changes in slopes” by Regmi N.R., Giardino J.R., and Vitek J.D., 

2010. Geomorphology, 122, 25-38, Copyright (2010) by Elsevier B.V. 
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network model was comprised of the combination of factors, which are independent of 

each other. The second, third and the fourth inference-network models were developed 

such that factors are not necessarily independent of each other. These models combine 

all dependent and independent factors, based on the expert’s knowledge. Intermediate 

steps in the second, third and fourth models were developed by combining the fuzzy 

factors in the first step by fuzzy-OR, fuzzy-AND, and fuzzy-OR plus fuzzy-AND 

operations, respectively.  

 All models predicted similar percentages of observed shallow landslides with the 

fuzzy-gamma operation. Although the prediction capabilities of all the models are not 

significantly different, the fourth model is the best because it is the only model that 

accommodates the undersampled and missed landslide data and the effect of increasing 

and decreasing gamma values. The first and third models create a problem if a category 

of a factor has a 0 membership value because of the absence or under-sampling of 

shallow landslides. The second model incurs the highest increasing effect of gamma 

values, and the third model incurs the highest decreasing effect of gamma values. The 

approaches described in this chapter reduce the uncertainties associated with the 

categorization of continuous data, determination of fuzzy-membership values, and the 

combination of factors that cause shallow landslides.  

 

Introduction 

 Maps of landslide hazards/susceptibilities and risks are necessary tools for 

engineers, earth scientists, engineering geologists, planners and decision makers to select 
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appropriate sites for development of agriculture, construction and other human activity. 

Numerous articles have been published on mapping hazards and susceptibilities to 

landslides. The methods of mapping landslide susceptibility can be categorized into 

qualitative or knowledge-based (Carrara and Merenda, 1976; Kienholz, 1978; Fenti et 

al., 1979; Ives and Messerli, 1981; Rupke et al., 1988, Regmi et al., 2010a), quantitative 

or statistical (Carrara, 1983; Carrara et al., 1991, 1999; Anbalagan, 1992; Juang et al., 

1992; Maharaj, 1993; Gokceoglu and Aksoy, 1996; Van Westen et al., 1997; Atkinson 

and Massari, 1998; Pachauri et al., 1998; Guzzetti et al., 1999; Rautela and Lakhera, 

2000; Gritzner et al., 2001; Sakellariou and Ferentinou, 2001; Gorsevski et al., 2003; 

Cevik and Topal, 2003; Tangestani, 2004; Lee, 2004; Ayalew and Yamagishi, 2005; 

Regmi et al., 2010a,b) and deterministic methods (Chowdhury, 1976; Chowdhury and 

Bertoldi, 1977; Wu and Sidle, 1995; Gokceoglu and Aksoy, 1996). In summary, 

qualitative or knowledge-based methods are based on field observations and a priori 

knowledge of the expert, in which the expert identifies landslides and makes a priori 

assumptions about those sites where movement has occurred and is likely to occur again. 

The expert then develops decision rules or assigns weighted values for the classes of 

index maps and overlays them to develop a map of landslide susceptibility.  

 The quantitative-based methods are mostly statistical analyses, neural networks 

and fuzzy logic. Deterministic methods mainly focus on slope geometry, shear strength 

data (cohesion and angle of internal friction), and pore-water related data. A 

deterministic approach considers angle of slope, strength of the slope material, structure 

(rock discontinuities, rock and soil stratification), moisture content of the slope material, 
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and depth of the groundwater table in a physics-based equation to determine an index of 

the stability of the slope such as the factor of safety. This method usually ignores 

climatic and human induced factors, which also can contribute to landslides. 

Furthermore, this method only determines the stability of a slope at the time of data 

collection. It does not account for the changes or modifications of the factors that cause 

landslides, the spatial and temporal frequency of the landslides, and the magnitudes of 

the landslides. A method that analyzes the environment of the failed slope, based on the 

relationship between past landslides and the factors that cause landslides, and calculates 

the probability/index of the slopes to fail in the future is more appropriate for planners 

and decision makers.  

 This study made some assumptions to develop an appropriate method of mapping 

susceptibility to landslides in a fuzzy-logic framework. These assumptions are: 1) the 

past environmental conditions at the time of a landslide can be used as indicators for the 

identification of potential sites for future landslides; and 2) the factors responsible for 

landslides can be quantified and spatially overlaid to prepare a map of landslide 

susceptibility. Thus, the objectives of the study are to: 1) prepare an inventory map of 

landslides and maps of the factors causing landslides; 2) categorize continuous data 

using the weight of evidence approach; 3) use a bivariate chi-square test to determine 

dependency of the factors; 4) calculate fuzzy-membership values for each factor; 5) 

apply fuzzy operators and a GIS (Geographic Information System) to develop models of 

susceptibility to landslides; 6) validate an accuracy assessment of each model; and 7) 

identify the best model that creates an optimum map for landslide susceptibility.  
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The study area 

 The study area, located in west-central Colorado (Fig. 34), covers ~815 km2 area 

between Paonia and McClure Pass (N 38o 43’ 00”, W 107
o 37’ 30” to N 39

o 10’ 30”, 

W107o 10’ 00”). The area is accessible via Colorado Highway 133 and forest roads. In 

addition to rugged topography the area possesses a dendritic drainage pattern. The North 

Fork Gunnison River is the major river of the area. Elevations in the study area range 

from 1712 to 3883 m with the lowest elevation being the flood plain of the North Fork  
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Fig. 34. Location of the study area. W: Wyoming, NE: Nebraska, UT: Utah, CO: Colorado, KS: Kansas, 
AZ: Arizona, NM: New Mexico, and OK: Oklahoma. 
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Gunnison River at Paonia, and the highest elevation is Chair Mountain. The morphology 

of the hillslopes varies with most of the lower elevations having steep slopes and gentle 

to flat tops whereas mountains at higher elevations have sharp ridges and steep slopes 

with horns, arêtes and cirques attributable to glacial processes (Fig. 35). Slopes are 

controlled by geology rather than elevation. Sandstone and plutonic rocks have steep 

slopes, and the mudstone, shale, alluvial and colluvial deposits have medium and gentle  
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Fig. 35. A three-dimensional hillshade map of the study area showing variation in the topography. The 
geomorphic expression of the area can be divided into four forms. The first form is the flat topography of 
the river floodplains and upland plateaus. The elevations of the river floodplains at different locations and 
plateaus are shown. The second form is the steep slopes in the close proximity of the North Fork Gunnison 
River and associated tributaries. The third form is the gentle upland slopes comprised of large deep-seated 
landslides (DL). The fourth form is the tall and steep mountains. The vertical scale is exaggerated twice. 
Large deep-seated landslides (DL) were not considered for the study. 
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slopes. Major geomorphic processes, involved in the evolution of the hillslopes and in 

the incision of the North Fork Gunnison River and its associated tributaries, include 

Pleistocene glaciation and mass movement from the coupling effect of snowmelt, 

rainfall and river erosion. The area frequently receives intense rainfall and snowstorms. 

Stream flow is primarily driven by the snowmelt, which is greatest in May (Jaquette et 

al., 2005). Shallow translational slides dominate; rotational slides, deep-seated slides, 

rock falls, topple blocks and rock glaciers are also present in the area. The gentle slopes 

of the area are covered mostly by glacial till and colluvium. 

 

Characteristics of landslides 

 Varieties of mass movements, ranging from imperceptibly slow moving rock 

glaciers and soil creep to rapidly moving rockslides and debris flows, are present in the 

Paonia‒McClure Pass study area. The landslides, defined according to Varnes (1978), 

contain mainly sandstone, mudstone, shale, alluvial, colluvial and mixed deposits. The 

shallow landslides are mostly found in steep and convergent parts of the landscape. 

These landslides occur in sandstone, mudstone and colluvial deposits, shrubland and 

woodland, non-plastic to low plastic soil, 20° to 40° slopes, and in close proximity to 

rivers and roads. Lack of vegetation suggests that these landslides are recent and active. 

Large deep-seated landslides, mostly found on the edges of the upland plateau (Fig. 35), 

are related to the structural failure of bedrock as opposed to the failure of surficial 

deposits, including soil, colluvium, glacial till and outwash, and weathered bedrock. 

Deep-seated events occur rarely in contrast to the rapidity at which shallow landslides 



118 
 

occur. The surfaces of these landslides are densely vegetated and indicate that the 

landslides are very old and relatively stable now. The headscarps of some of the large 

deep-seated landslides contain active shallow landslides. This study focuses only on the 

mapping and analysis of the shallow landslides (Fig. 36). I have selected this focus 

because of the different processes responsible for the shallow landslides versus deep-

seated events. The average depth of the slip surface of the shallow landslides is ~1.9 m. 

The average slope, area, transported volume, length, width and height of these landslides 

 

0 5 km

 

Fig. 36. An inventory map of shallow landslides in the Paonia-McClure Pass study area. 
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 are calculated as 26°, 6600 m2, 33,500 m3, 120 m, 85 m, and 60 m, respectively. 

 This study shows that most of the shallow landslides are smaller than 1000 m2, 

and none exceed 160,000 m2. In most of the areas where soil slides, debris slides and 

debris flows occurred, the thin cover of the regolith/soil above the bedrock moved under 

the influence of gravity and increased pore-water pressure (Fig. 37A-C). In most of the 

landslides, the boundary between soil and the underlying bedrock is abrupt (Fig. 37D). 

The soil/regolith is cohesionless, has low bulk density, and contains fragments of rocks. 

The underlying rock is highly fractured, gently dipping and has considerable cohesion as 

well as frictional strength. The loose soil is more conductive than the bedrock. Because 

highly fractured underlying bedrock may conduct large amounts of water (e.g., Wilson 

and Dietrich, 1987; Johnson and Sitar, 1990; Montgomery et al., 1997), the rock slides in 

the area are probably the result of the weathering and pore-water pressure generated by 

subsurface flow. The main reason for the rock fractures probably is frost shattering 

because the area receives sufficient snow in the winter and the temperature fluctuates 

above and below freezing. Furthermore, many landslides occurred between the boundary 

of hard rocks (sandstone and plutonic rock) and soft rocks (mudstone and shale). An 

interface of differential shear strength and differential rates of weathering are also 

possible contributing factors for these shallow landslides. 
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Fig. 37. Photographs of landslides in the study area. A) Landslides on west-facing slopes located between 
Paonia and Somerset. B) Shallow landslides (mostly debris flows) on the north-west facing slopes nearby 
Somerset Village. C) A rockslide on a north-facing slope near Somerset, Co. Weathered and highly 
fractured bedrock is covered by a thin regolith. D) A close up view of a rockslide at Somerset. Thin 
regolith has an abrupt contact with weathered and fractured bedrock.   

 

Fuzzy set theory and fuzzy operators 

 The fuzzy set theory, introduced by Zadeh (1965), facilitates analysis of non- 

discrete natural processes or phenomenon (Zimmermann, 1996). It employs the concept 

of a membership function, which expresses the degree of membership with respect to 

some attributes of interest. It is flexible, allows for combinations of the categorical and 

continuous data, and deals with the uncertainties (fuzziness, vagueness, and imprecision) 

inherent in the ways experts approach a problem. The attribute of interest is measured 

over discrete intervals, and the membership function of a discrete category can be 
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expressed in terms of membership values. For example, if x is the number of landslides 

in a category of a given factor, then µ(x) is the fuzzy-membership function. Every value 

of x is associated with a value of µ(x), and the ordered pairs [x,µ(x)] are collectively 

known as a fuzzy set. This theory is different from the classical set theory. Whereas, the 

classical set theory defines an object as a member of a set if it has a membership value of 

1, or is not a member if it has a membership value of 0,  the membership of a fuzzy set is 

expressed on a continuous scale from 1 (full membership) to 0 (full-non-membership). 

Membership values for a factor causing landslides can be chosen based on the data-

driven method (relationship of the past landslides with factors causing landslides) or by 

expert-based judgments (use of if-then rules). A single map can have more than one 

fuzzy-membership value and several maps can have membership values for the same 

proposition or hypothesis (Bonham-Carter, 1994). No practical constraints limit the 

choice of fuzzy-membership values; values are chosen to reflect the degree of 

membership of a set. Furthermore, values need not increase or decrease monotonically 

with class number (Bonham-Carter, 1994). 

 The fuzzy-logic method allows flexible combinations of weighted maps derived 

from any measurement scale. Given two or more maps with fuzzy-membership functions 

for the same set, five fuzzy operators, namely: 1) fuzzy OR, 2) fuzzy AND, 3) fuzzy 

algebraic sum, 4) fuzzy algebraic product, and 5) fuzzy gamma, can be employed to 

combine membership values (An et al., 1991; Bonham-Carter, 1994; Chung and Fabbri, 

2001). The method has been used in various fields within the geosciences. For example, 
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it has been used to map gold potential (Bonham-Carter, 1994) and landslide hazards 

(Anabalgan, 1992; Gorsevski et al., 2003, 2006; Tangestani, 2004; Lee, 2007).  

 A script can be written in GIS to employ this method. Five fuzzy operators can 

be expressed mathematically as: 

,......)μ,μ,μMAX( CBAORμ  (Fuzzy OR)  (40) 

,......)μ,μ,MIN(μ CBAANDμ  (Fuzzy AND)  (41) 

n

i

μ

1

isum )μ1(1  (Fuzzy algebraic sum) (42) 

n

i 1

iproduct μ1μ  (Fuzzy algebraic product) (43) 

1
gamma product] algebricFuzzy [sum] algebricFuzzy [μ  (Fuzzy gamma) (44) 

where, iμ  is the fuzzy-membership function for the i-th map, and i = 1, 2, ..., n. Output 

membership values are controlled by various pieces of evidence.  

 In the fuzzy OR operator (Eq. 40), the combination output membership value for 

any particular location is controlled by the maximum fuzzy-membership value of the 

input maps occurring at that location. In the fuzzy-AND operator (Eq. 41), the output 

membership value for any particular location is controlled by the smallest fuzzy-

membership value of the input maps occurring at that location. These operators are 

appropriate if the combined membership value at a location is controlled by the most 

suitable evidence maps. If two pieces of evidence favor a hypothesis so that the 
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combined evidence is more supportive than one piece of evidence, then the fuzzy 

algebraic sum, fuzzy algebraic product, and fuzzy-gamma operators are appropriate.  
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Fig. 38. A graph showing an example of combination of three fuzzy factors (µA = 0.8, µB = 0.6, µC = 0.4) 
by fuzzy-gamma operation. The decreasing effect is the zone where the result of fuzzy-gamma operation is 
smaller than the minimum membership value of the factors and the increasing effect is the zone where the 
result of the fuzzy-gamma operation is larger than the maximum value of the fuzzy factors.   
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In the fuzzy algebraic sum (Eq. 42), the output value is always larger than or 

equal to the largest contributing fuzzy-membership value (Fig. 38). The maximum limit 

of the output value is 1.0. The fuzzy algebraic product is complementary to the fuzzy 

algebraic sum (Eq. 43), and the output value is always smaller than or equal to the 

smallest contributing fuzzy-membership value (Fig. 38). The maximum limit of the 

value is 1.0. The fuzzy-gamma operation is defined in terms of the fuzzy algebraic sum 

and the fuzzy algebraic product (Eq. 44). In the fuzzy-gamma operation, when gamma is 

1, the combination is the same as the fuzzy algebraic sum, and when gamma is 0 the 

combination equals the fuzzy algebraic product. Therefore, the appropriate choice of 

gamma produces output values that ensure a flexible compromise between effects of the 

fuzzy algebraic sum and the effects of the fuzzy algebraic product (Fig. 38). 

 

Materials and methods  

 The method proposed here is time-consuming and requires attention to detail, but 

facilitates differentiation of complex landslide landscapes. The overall method includes: 

1) mapping landslides and factors causing landslides; 2) categorizing continuous data 

based on the weight of evidence (Regmi et al., 2010b); 3) calculating frequency ratios of 

landslides for each category of factors; 4) implementing frequency ratio to fuzzy-

membership values of each category; and 5) combining all factors based on fuzzy 

operators to create maps of susceptibility to landslides.  

 To prepare spatial and non-spatial databases of landslides and landslide related 

factors, aerial photographs and available data sources were collected. This step was 
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followed by extensive field work. A handheld GPS was used to map the location and the 

dimensions of landslides easily accessible. In addition, slope angle, direction of 

movement, soil and rock characteristics, and length, width and area of each landslide 

were measured in the field. Similar characteristics of landslides inaccessible in the field 

were determined from interpretation of orthorectified NAIP (National Agricultural 

Program) aerial photographs and a USGS (United States Geological Survey) digital 

elevation model (DEM). Other characteristics such as land use, vegetation cover, aspect 

and curvature of slope, and mode of failure were documented, and all data were recorded 

on landslide inventory sheets. Ten-meter resolution USGS DEMs were used to extract 

topographic factors and water-related factors. Geologic factors were extracted from a 

USGS geological map (Dunrud, 1989) of the area as well as from field work, and soil 

factors were extracted from soil data collected by the USDA (United States Department 

of Agriculture) and the USFS (United States Forest Service). Data for land cover were 

extracted from an ETM+ (Enhanced Thematic Mapper Plus) satellite image. 

Anthropogenic factors, such as road network, were extracted from aerial photographs.  

 

 GIS database of landslides and landslide causing factors 

 An inventory of landslides was created to show the distribution of observable 

landslides. Although some researchers prefer to represent locations of landslides by 

points on a regional scale, I mapped all landslides as polygons. I mapped via polygons 

because an inventory map of landslides, which consisted of location of a landslide 

represented by a point either in the center of the whole landslide or in the center of 
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landslide scarp only provides information about the frequency of landslides, but not the 

magnitude. An inventory map, in which all landslides are represented by polygons, 

represents the frequency and magnitude of landslides.  

 Seven hundred and thirty five landslide polygons were mapped (Fig. 36) using 

1991 and 2005 aerial photographs with scales of 1:12,000. Landslides were identified 

visually by distinguishing tone, shape, size and texture and were then digitized in 

ArcGIS®. The identification of types of landslides was facilitated by a 3D visualization 

technique in ArcGIS® and a stereo-visualization technique in Terrain Navigator Pro®. All 

landslides were classified based on the classification scheme of Varnes (1978). After 

extraction of landslides, the location, type and movement activity of all landslides were 

verified by field mapping. Attribute information of all landslides was also collected from 

aerial photographs, historical archives and field surveys. For each landslide, the attribute 

data include: area, perimeter, volume, length, width, type of slide, current activity, 

position on hillslope, percent vegetation cover, main causes of movement, damage to 

infrastructure, and preventive measures taken. All these attributes were linked with the 

spatial information of each landslide and stored in ArcGIS®.  

 The study area contains three different lithologies: 1) sedimentary rocks 

including shale, mudstone, claystone and sandstone; 2) igneous rocks including basalt 

and batholiths of granodiorite; and 3) various Quaternary deposits. Shale, mudstone, 

claystone and sandstone are Cretaceous and volcanic deposits are Tertiary (Dunrud, 

1989). Bedrock is dominant along the steep ridges; till and colluvium cover most of the 

middle slopes and lowlands; and fluvial deposits fill the stream valleys. Twenty surface 
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and subsurface faults were mapped using the USGS geological map and field work data. 

Numerous landslides are found in close proximity to these faults.  

 Land cover of the area is separated into eight categories: 1) forest (41%), 2) 

shrub/bush (40%), 3) woodland (5%), 4) grassland (9%), 5) agricultural land (2.8%), 6) 

barren land (2%), and 7) settlement (0.2%). Most of the landslides occur in shrubland 

and woodland. Shrub land cover has the highest percentage of landslides and settlement 

land cover has the lowest percentage.  

 USDA and USFS have geotechnical information for the soils; these data are 

compiled to a depth of ~1.5 m. Soil data was categorized based on the plasticity index 

(PI). The soil plasticity index includes four classes: non-plastic to very low plastic, low 

plastic (PI = 0‒5), medium plastic (5‒20), and high plastic (>20). Most of the landslides 

occur in non-plastic to low plastic soils. 

 Topographic factors such as slope, aspect, measures of curvature and slope 

heating from solar radiation, were developed in ArcGIS® from USGS DEMs of 10 m 

resolution. Profile curvature affects the acceleration and deceleration of flow and, 

therefore, influences subsequent erosion and deposition; whereas, the plan and tangential 

curvatures control the convergence or divergence of landslide material and water in the 

direction of landslide motion (Carson and Kirkby, 1972; Mitasova and Hofierka, 1993, 

Ohlmacher, 2007). Solar radiation directly or indirectly relates to the landslides because 

it contributes to variations in microclimate, including factors like patterns of snowmelt 

and soil moisture. The variation in solar radiation depends on elevation, orientation of 

the slopes (slope and aspect of slope), and shadows cast by upslope topographic features.  
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 Water-related factors, such as flow accumulation, flow length, topographic 

wetness index (TWI), and stream power index (SPI) were developed from a USGS DEM 

using ArcGIS®. TWI and SPI, are steady-state indices of wetness and stream power 

(Moore et al., 1991), which are a function of slope and the upstream contributing area 

per unit width orthogonal to the flow direction: 

ln( / tan )TWI A b β  (45) 

tan /SPI A β b  (46) 

where A is the upstream contributing area expressed as m2, b is the width of a cell 

expressed as m, and  is the slope angle of that cell expressed as radians. 

 TWI correlates with soil moisture (Moore et al., 1991; Beven, 1997; Blyth et al., 

2004), and SPI is a measure of the erosive power of water flow based on the assumption 

that discharge is proportional to catchment area (Moore et al., 1991). Moore et al. (1988) 

found the ephemeral gullies could be predicted from the magnitude of these indices.  

 Flow accumulation and upstream length of flow can also be taken as predictors 

of landslides. Streams and associated tributaries are important factors in the occurrence 

of landslides. Streams and gullies in a basin can erode the surface and undercut the slope 

toe, which, in turn, causes surficial mass movement in areas adjacent to drainage 

channels (Barredo et al., 2000). In the study area, I observed many landslides initiated by 

streams undercutting slopes.  

 Human influence is one of the major factors causing landslides world-wide.  

Road-cuts are usually sites of anthropologically-induced instability. Landslides may 

occur on the slopes adjacent to the roads (Pachauri and Pant, 1992; Pachauri et al., 1998;  
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Table 10 Area of landslides and landslide-causing factors, frequency ratio and fuzzy-membership values. 
 

Factor Class Class pixels
Landslide 

pixels
% Class % Landslide

Frequency 

ratio Membership value

<11 m 2,023,344 7,664 25 16 0.64 0.45

30 m 1,131,536 5,468 14 11 0.81 0.57

300 m 4,224,709 29,171 52 60 1.16 0.82

1000 m 631,820 5,341 8 11 1.42 1.00

75,158 m 143,402 804 2 2 0.94 0.66

1 Cells 1,606,771 5,760 20 12 0.60 0.46

3 Cells 1,445,479 7,093 18 15 0.83 0.63

7 Cells 1,532,847 8,939 19 18 0.98 0.75

50 Cells 2,729,873 20,425 33 42 1.26 0.96

700 Cells 655,731 5,101 8 11 1.31 1.00

16,262,011 Cells 184,110 1,130 2 2 1.03 0.79

<25 m 1,386,867 8,004 17 17 0.97 0.88

25-50 m 1,253,719 6,983 15 14 0.94 0.85

50-100 m 1,923,620 10,858 24 22 0.95 0.86

100-250 m 3,055,075 19,942 37 41 1.10 1.00

250-614 m 535,530 2,661 7 5 0.84 0.76

0-3 1,514,627 1,991 19 4 0.22 0.10

3-12 1,905,600 8,183 24 17 0.72 0.33

12-50 2,485,090 15,513 31 32 1.04 0.48

50-400 1,814,457 18,641 22 38 1.72 0.80

400-5000 268,044 3,450 3 7 2.15 1.00

5,000-97,269,664 99,050 658 1 1 1.11 0.52

0-2 3,338 18 0 0 0.90 0.64

2-4 1,189,006 10,042 15 21 1.41 1.00

4-6 4,173,081 23,860 52 49 0.95 0.68

6-8 1,935,985 10,944 24 23 0.94 0.67

8-10 536,021 2,500 7 5 0.78 0.55

10-12 143,660 686 2 1 0.80 0.57

12-23 105,777 386 1 1 0.61 0.43

Mesavarde Fm. (sst, mst, shale) 1,534,501 13,192 19 27 1.45 0.26

Unconsolidated deps. (mixed) 878,963 4,304 11 9 0.82 0.15

Unconsolidated alluvium 172,579 458 2 1 0.45 0.08

Mixed alluvium and colluvium 781,043 3,256 10 7 0.70 0.12

Colluvium 37,250 960 0 2 4.34 0.77

Landslide and mudflow deps. 1,453,863 17,902 18 37 2.07 0.37

Mancos shale 51,216 800 1 2 2.63 0.46

Glacial drift 112,072 786 1 2 1.18 0.21

Alluvial terrace 73,624 84 1 0 0.19 0.03

Wasatch Fm. (clst, mst, sst) 2,651,560 6,606 33 14 0.42 0.07

Basalt and gabbros 1,486 50 0 0 5.66 1.00

Plutonic rock (granodiorite) 264,197 0 3 0 0.00 0.00

Talus and rock glacier deps. 127,298 0 2 0 0.00 0.00

Rock 96,412 1,139 1 2 1.99 0.52

Non-plastic-very low plastic 815,150 18,633 10 38 3.85 1.00

Low plastic 4,710,787 21,313 58 44 0.76 0.20

Medium plastic 2,282,552 7,864 28 16 0.58 0.15

High plastic 21,122 43 0 0 0.34 0.09

Water 227,026 595 3 1 0.44 0.11

<25 m 45,726 556 1 1 2.05 0.80

25-75 m 78,361 1,151 1 2 2.47 0.97

75-150 m 121,788 1,421 1 3 1.96 0.77

150-350 m 342,546 5,211 4 11 2.56 1.00

350-10,653 m 7,566,390 40,109 93 83 0.89 0.35

Shrub/bush 3,236,247 30,241 40 62 1.57 1.00

Grassland 711,441 1,677 9 3 0.40 0.25

Forest 3,378,384 11,581 41 24 0.58 0.37

Woodland 395,505 3,514 5 7 1.50 0.95

Agriculture 209,061 123 3 0 0.10 0.06

Residential 19,557 26 0 0 0.22 0.14

Rock cliff and barren land 176,481 1,273 2 3 1.21 0.77

Water 28,305 0 0 0 0.00 0.00
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Table 10 continued. 
 

Factor Class Class pixels
Landslide 

pixels
% Class % Landslide

Frequency 

ratio Membership value

<10° 2,631,299 1,868 32 4 0.12 0.04

10-20° 2,778,671 12,566 34 26 0.76 0.28

20-30° 1,532,209 17,400 19 36 1.91 0.70

30-40° 956,744 12,703 12 26 2.23 0.82

40-50° 216,809 3,513 3 7 2.73 1.00

50-60° 31,890 377 0 1 1.99 0.73

>60° 7,189 21 0 0 0.49 0.18

Flat (-1°) 68,073 12 1 0 0.03 0.02

North (337-360°, 0-22°) 806,660 5,048 10 10 1.05 0.72

North East (22-67°) 998,178 2,239 12 5 0.38 0.26

East (67-112°) 1,054,092 5,565 13 11 0.89 0.61

South East (112-157°) 961,195 4,509 12 9 0.79 0.54

South (157-202°) 1,033,415 8,776 13 18 1.43 0.98

South West (202-247°) 1,136,000 9,866 14 20 1.46 1.00

West (247-292°) 1,157,728 7,316 14 15 1.06 0.73

North West (292-337°) 939,470 5,117 12 11 0.92 0.63

<1,800 m 59,546 250 1 1 0.71 0.32

1800-2000 m 381,734 4,941 5 10 2.18 1.00

2000-2200 m 1,067,871 9,356 13 19 1.47 0.68

2200-2400 m 2,426,731 13,029 30 27 0.90 0.41

2400-2600 m 2,178,609 10,621 27 22 0.82 0.38

2600-2800 m 1,133,622 7,378 14 15 1.10 0.50

2800-3800 m 906,698 2,873 11 6 0.53 0.24

<600 kwhm
-2 2,168 0 0 0 0.00 0.00

600-800 kwh m
-2 15,980 84 0 0 0.88 0.33

800-1000 kwh m
-2 119,325 1,809 1 4 2.55 0.96

1000-1200 kwh m
-2 371,934 5,883 5 12 2.66 1.00

1200-1400 kwh m
-2 830,039 7,373 10 15 1.50 0.56

1400-1600 kwh m
-2 2,378,225 9,975 29 21 0.71 0.27

1600-1800 kwh m
-2 3,865,732 16,697 47 34 0.73 0.27

>1800 kwhm
-2 571,408 6,627 7 14 1.95 0.73

<-0.05m
-1 26,531 335 0 1 2.13 0.97

-0.05--0.02 m
-1 299,059 2,998 4 6 1.69 0.77

-0.02-0 m
-1 3,039,226 18,117 37 37 1.00 0.46

0 m
-1 1,406,670 4,617 17 10 0.55 0.25

0-0.02m
-1 3,085,047 18,854 38 39 1.03 0.47

0.02-0.05 m
-1 265,601 3,101 3 6 1.97 0.90

>0.05 m
-1 32,677 426 0 1 2.19 1.00

<-0.05 m
-1 29,897 298 0 1 1.68 0.85

-0.05--0.02 m
-1 219,985 2,586 3 5 1.98 1.00

-0.02-0 m
-1 2,726,472 18,226 33 38 1.13 0.57

0 m
-1 1,911,300 6,600 23 14 0.58 0.29

0-0.02 m
-1 3,123,923 19,288 38 40 1.04 0.53

0.02-0.05 m
-1 127,701 1,306 2 3 1.72 0.87

>0.05 m
-1 15,533 144 0 0 1.56 0.79

<-0.05 m
-1 151,092 1,875 2 4 2.09 1.00

-0.05--0.02 m
-1 1,426,520 9,754 17 20 1.15 0.55

-0.02-0 m
-1 1,392,935 8,072 17 17 0.98 0.47

0 m
-1 2,109,470 10,237 26 21 0.82 0.39

0-0.02 m
-1 2,590,590 14,151 32 29 0.92 0.44

0.02-0.05 m
-1 417,858 3,633 5 7 1.46 0.70

>0.05 m
-1 66,346 726 1 1 1.84 0.88

<20 m 139,258 1,518 2 3 1.83 0.95

20-40 m 105,648 1,208 1 2 1.92 1.00

40-100 m 300,766 2,607 4 5 1.46 0.76

100-350 m 971,971 6,040 12 12 1.05 0.54

>350 m 6,637,168 37,075 81 77 0.94 0.49
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Ayalew and Yamagishi, 2005) because slope excavation for construction of the road and 

vibrations generated by vehicles results in unstable slopes. In this study, many landslides 

occur adjacent to Colorado Highway 133 and the various forest roads. I used field 

mapping and GIS to measure the distances from roads to the various landslides. The 

distances were grouped into five categories (Table 10). 

 

Categorization of the continuous data 

 All continuous data were categorized by employing the weight of evidence 

approach (Bonham-Carter, 1994, Dahal et al., 2008, Regmi et al., 2010b). The weight of 

evidence approach calculates the weight for a certain category of a factor map based on 

the following equations: 

}|{

}|{
log

LFP

LFP
W e  (47) 

}|{

}|{
log

LFP

LFP
W e  (48) 

Weight contrast (WC) = W+
− W¯  (49) 

A positive weight (Eq. 47) is the logarithmic ratio of probability of a factor 

category (F) in the area where a landslide is present (L) to F in the area where a 

landslide is absent ( L ). A negative weight (Eq. 48) is the logarithmic ratio of the 

probability of a factor class not present ( F ) in the area where a landslide is present (L) 

to F  in the area where a landslide has not occurred ( L ). The categorization was 

performed based on the variation in the weight contrast values (Eq. 49) of the continuous 
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data with cumulative values of the continuous data. The natural breaks in the weight 

contrast distribution curves were used to categorize the continuous data (Fig. 39). 

 

 

Fig. 39. Plots of cumulative distribution of weight contrast vs. factor value for classes of very narrow 
ranges of the continuous data. A) Cumulative weight contrast for aspect. B) Cumulative weight contrast 
graph for topographic wetness index. C) Cumulative weight contrast graph for distance from fault. D) 
Cumulative weight contrast graph for distance from road. These four continuous data were categorized 
based on the natural breaks on these graphs (see Table 10 for the categories). Cumulative weight contrast 
graphs for other continuous data are not shown here.  

  

Assignment of membership value 

 The frequency ratio of landslides was used to calculate the membership value for 

each factor category (Table 10). It is the ratio of the percentage of the landslides in each 

category to the percentage of each category in the study area: 
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)()(

)()(

map entire thefordensity  landslide

classpredictor in density  Landslide
ratioFrequency

cellcell

cellcell

ii

ii

CN/LN

C/NLN  (50) 

where Ncell(Li) = Number of cells of landslides in a given predictor category, and Ncell(Ci) 

= Total number of cells in a given predictor category. 

 The frequency ratio explains the relationships of factor categories and landslides. 

If the ratio for a category is >1, the density of landslides in this category is higher than 

the norm (density for the entire map) and, if the ratio is <1, the density of landslides in 

this category is lower than the norm. Then, the frequency ratio was normalized between 

0 and 1 by dividing the frequency ratio of each factor by the maximum frequency ratio. 

These values, ranging from 0 to 1, were termed membership values. The category having 

the highest value of the membership has a major role in landslide occurrence, and the 

category having the lowest value of membership has a minor role in landslide 

occurrence. 

 

Fuzzy-inference network models 

 In cases of mapping landslide susceptibility by using fuzzy operators, an 

important question arises: how should the factors be combined to achieve an optimum 

result? Depending on the number of factors available, a number of combinations can be 

established using the five types of fuzzy operators (Eqs. 40-44). This study introduces 

the use of four different combinations of factors. Among these, the inference-network 

model 1 (Fig. 40A) uses only those factors that are independent of one another. Models 

2, 3 and 4 (Similar to Fig. 40B) combine the factors in such a way that the dependency  
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Fig. 40. Fuzzy-inference network for A) Model 1, and B) Model 4. Models 2 and 3 are not shown. These 
models are similar to the model 4, except the fuzzy operators used in the first step to combine the raw 
factors. In model 2 only fuzzy AND is used in the first step, and in model 3 only fuzzy OR is used in the 
first step. SL: slope, AS: aspect, EL: elevation, SR: solar radiation, PRC: profile curvature, PLC: plan 
curvature, TC: tangential curvature, GEO: geology, DF: distance from faults, SP: soil plasticity, LC: land 
cover, FL: flow length, FA: flow accumulation, SPI: stream power index, TWI: topographic wetness index, 
DS: distance from streams, and DR: distance from roads. 
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of factors does not have a major significant impact on the results. In each model, 11 

maps of susceptibility to landslides were created based on the fuzzy-OR, fuzzy-AND, 

fuzzy algebraic sum, fuzzy algebraic product and fuzzy-gamma operators. Fuzzy OR and 

fuzzy AND maps are the same for all models because these operations combine all 17 

factors together at one time. Furthermore, these operations do not require the factors to 

be independent of each other because these operations assign the minimum or the 

maximum of the membership values of all the factors in a cell (pixel). A cell defines the 

susceptibility of a landslide based on the minimum or maximum value of all the factors 

in that cell. The fuzzy-sum, fuzzy-product and fuzzy-gamma operations are based on the 

multiplication of the membership values of all the factors in that cell. Therefore, the 

factors, combined using these operators, need to be independent of each other, otherwise 

the effect of one factor can be counted more than once.  

 The first model uses the fuzzy-product, fuzzy-sum and fuzzy-gamma operators. 

This model only considers the factors, which are independent of each other. Thus, 

dependency of all 17 factors were tested by employing pair-wise comparison by making 

a 2×2 contingency table and using chi-square statistics in one degree of freedom and 

99% confidence (χ
2 = 6.64). To perform this step, first, all the factors were converted 

into binary forms based on the frequency ratios (Table 10). Classes having a frequency 

ratio ≥1 were assigned to one class, and classes having frequency ratios <1 were 

assigned to another class. Then, the number of landslides were counted within the four 

combination zones of each pairs of factors combined. These numbers were used to 

develop a 2×2 contingency table. Out of 136 pairs of factors, 103 pairs were found 
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independent of each other. Of the 17 factors, only seven factors were found independent 

of each other. These seven factors, slope, aspect, tangential curvature, flow 

accumulation, soil plasticity index, distance from streams and distance from roads, were 

used for mapping susceptibility to landslides based on model 1.  

 The second model was developed from the combination of the factors without 

determining dependency. In this approach, first, all the factors were grouped in such a 

way that each group was comprised of factors that were likely dependent on each other, 

based on the expert’s a prior knowledge (similar to Fig. 40B). Factors from each group 

were combined by the fuzzy-OR operation to create a new fuzzy map from each group. 

Then, newly developed fuzzy maps were combined by the fuzzy product and fuzzy sum 

operators. Lastly, the fuzzy product and fuzzy sum maps were combined by a fuzzy-

gamma operator with values of gamma as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 

0.95.  

 In the third model, factors from each group were combined by the fuzzy-AND 

operator in the first step. Then, similar to the second model, newly created fuzzy maps 

were combined by the fuzzy-sum, fuzzy-product, and fuzzy-gamma operators. 

 The fourth model was the combination of the second and third models in which 

all the groups, except geological and land cover, were combined in the first step by the 

fuzzy-OR operator, and geology and land cover group were combined by the fuzzy-

AND operator. Other processes are similar to those used in the second and third models. 
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Results 

 

 Performance of the models of landslide susceptibility 

 Forty-four maps of landslide susceptibility were created from the four models. 

All of the maps predicted similar percentages of observed landslides with fuzzy-gamma  
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Fig. 41. Results of fuzzy-gamma operation based on 735 landslides and different fuzzy-inference network 
models. A) Fuzzy gamma map (γ = 0.8) for model 1 combination. B) Fuzzy gamma map (γ = 0.5) for 
model 2 combination. C) Fuzzy gamma map (γ = 0.8) for model 3 combination. The white zone in the 
eastern end of the map occurs because of the 0 membership value of one of the geological categories that 
results from the undersampling of landslides. D) Fuzzy gamma map (γ = 0.8) for model 4 combination.  
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Fig. 42. Accuracy assessment of the four models based on 735 landslides. A) model 1, B) model 2, C) 
model 3, D) model 4. In all maps the fuzzy product and fuzzy sum graphs show smaller percentage of 
prediction than fuzzy-gamma operation (Table 11), because of the decreasing and increasing effects of 
fuzzy-product and fuzzy-sum operations. The percentage calculation is based on the analysis of fuzzy 
values only in two decimal places.  
 

operation (Fig. 41 and Table 11). The approach of area under the curve (AUC), in which 

percentage of the predicted landslides was plotted along the x-axis and the percentage of 

the observed landslides was plotted along the y-axis, was used to assess the performance 

of each model (Fig. 42). For all models the fuzzy-gamma operation is the best for 

predicting observed landslides (Table 11). The first model has a 78.6% prediction 

accuracy with fuzzy-gamma operation (γ = 0.8); the second model has a 77.7% 

prediction accuracy with fuzzy-gamma operation (γ = 0.5); the third model has an 80.2% 
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prediction accuracy with fuzzy-gamma operation (γ = 0.8); and the fourth model has a 

79.4 % prediction accuracy with fuzzy-gamma operation (γ = 0.8) (Table 11). 

 

Table 11 Accuracies of the maps of landslide susceptibility developed based on the four models. 
 

Operation 
Model 1 

(%) 

Model 2 

(%) 

Model 3 

(%) 

Model 4 

(%) 

Validity of 

model 4 (%) 

Fuzzy product 74.66 77.68 75.80 74.17 72.60 

Fuzzy gamma 

0.1 76.94 77.68 78.00 76.85 75.89 
0.2 78.10 77.70 79.86 78.29 77.30 
0.3 78.40 77.72 80.15 78.94 78.01 
0.4 78.55 77.70 80.16 79.21 78.30 
0.5 78.60 77.71 80.16 79.27 78.32 
0.6 78.62 77.71 80.17 79.32 78.36 
0.7 78.64 77.71 80.19 79.32 78.40 
0.8 78.64 77.71 80.21 79.35 78.42 

0.9 78.63 77.69 80.10 79.34 78.37 
0.95 78.60 77.60 80.16 79.30 78.29 

Fuzzy sum 59.09 57.33 56.95 61.16 60.91 
Fuzzy AND 71.47 71.47 71.47 71.47 71.47 

Fuzy OR 57.46 57.46 57.46 57.46 57.46 
  
 

Whereas the first model requires independent factors as input, the second, third 

and fourth models do not require factors to be independent of each other. The third 

model combines factors based on fuzzy AND at first. This approach does not work if a 

category of a factor has a 0 membership value because of the absence or under-sampling 

of landslides. In this case, the model is inappropriate. Similarly, the first model also has 

the same problem with missed and under-sampled data. The second model has the 

highest increasing effect of gamma values and the third model has the highest decreasing 

effect of gamma values. The fourth model has relatively moderate effect of increasing 
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and decreasing gamma values and is appropriate to deal with missed or under-sampled 

landslide data. Other characteristics of the models are listed in Table 12. After evaluating 

all the models, the fourth model was considered the best model because it accommodates 

the undersampled and missed landslide data as well as the effect of increasing and 

decreasing gamma values. 

 

Table 12 Comparison of the four models based on seven characteristics. The fourth model is considered as 
the best. 
 

Characteristics Model 1 Model 2 Model 3 Model 4 

Factors needed to be independent Yes No No No 
Expert's choice of factor combination No Yes Yes Yes 
Increasing effect of gamma values Moderate High Low Moderate 
Decreasing effect of gamma values Moderate Low High Moderate 
Problems with undersampled/missed  
landslide data Yes No Yes No 

Time for data processing and analysis High Low Low Low 

 

Validity of the best model and the final map of landslide susceptibility 

 The validity of the best model (model 4) was assessed by dividing the 735 

landslides into training and validation sets. The training data consisted of 367 landslides 

and the validation data consisted of 368 landslides. The frequency ratios of each 

landslide-causing factor were calculated based on the training data. Maps of landslide 

susceptibilities were created based on training data and five fuzzy operators. The 

predictive capabilities of these maps were tested using a validation set of landslides. The 

susceptibility map developed by fuzzy-gamma operation with the value of gamma as 0.8 

indicates that the model has a 78.4 % predictive capability (Table 11). The map of 
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susceptibility to landslides, based on the training landslides, is quite similar to the 

susceptibility map based on the 735 landslides (Figs. 41D and 43). This suggests that 

this method of mapping susceptibility to landslides, based on the integration of weight of 

evidence, frequency ratio and fuzzy operators, is accurate and applicable to the study 

area. 
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Fig. 43. Accuracy assessment of the map of landslide susceptibility developed based on model 4 
combination and 367 landslides (training landslides). A) fuzzy-gamma (γ = 0.8) map, B) assessment of the 
prediction of the 368 landslides (validation landslides).  

 

 The fuzzy gamma map (Fig. 41D) based on model 4 was used to classify the 

study area into three zones of landslide susceptibility (Fig. 44). The classification is 

based on the frequency distribution of the fuzzy-gamma values (Fig. 45). The fuzzy-

gamma value from 0.38 to 0.81 is classified as high susceptibility, 0.26 to 0.38 as 

medium susceptibility and 0 to 0.26 as low susceptibility. 
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Fig. 44. A map of landslide susceptibility based on 735 shallow landslides and the combination of the 
landslide causing factors according to model 4 fuzzy network inference. This model has the highest rate of 
prediction. The high susceptibility area consists of 34% of the study area; it includes 78% of the total area 
of landslides. The medium susceptibility area, consists of 35% of the study area and comprises 19% of the 
total area of landslides. The low susceptibility area, consists of 21% of the study area and contains 3% of 
the total area of landslides. 

 

Discussion and conclusions 

 The approach in this research divides the continuous data into different 

categories and calculates membership values for each category of the factors based on 

the frequency ratio. The first model is a method only appropriate when an expert tests 

the dependency of the factors. The other models do not require independent factors, if 
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the combinations of the factors are based on the expert’s knowledge and appropriate 

choice of the fuzzy operators (Table 12). All of the four models developed are 

acceptable for the assessment of landslide susceptibility. The maps of landslide 

susceptibility developed by this method are effective in predicting known and unknown 

landslides. The prediction accuracy of the best model is ~80%. The methodology 

described in this paper reduces the uncertainties associated with the determination of 

fuzzy-membership values and manipulation of the continuous data. This method can 

provide better results if the landslides are classified into different types; a map of 

landslide susceptibility is created for each landslide type, and all maps of landslide 

susceptibility are combined in a single map using fuzzy operators.  

 

 

Fig. 45. Distribution of the fuzzy-gamma  (γ = 0.8) based on model 4. The fuzzy-gamma value from 0.38 
to 0.81 is classified as high susceptibility (HS), 0.26 to 0.38 as medium susceptibility (MS), and 0 to 0.26 
as low susceptibility (LS). 
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The selection of the fuzzy operators is one of the most important aspects of fuzzy 

logic. An evidence map can be combined in a series of steps, as depicted in Fig. 40. 

Thus, instead of combining all the maps in one operation, it is appropriate to link some 

maps with different kinds (fuzzy OR or fuzzy AND) of fuzzy operators to support 

different intermediate hypotheses and finally linking raw evidence and intermediate 

hypotheses with a fuzzy-gamma operation. Many combinations are possible, and a quite 

complex inference network can be implemented. The inference network becomes an 

important means of simulating the logical thought process of an expert. 

 Thus, from this study it is apparent that the fuzzy operator approach to landslide 

mapping is a positive step in mapping landslide susceptibility. I believe this approach 

has world-wide application. Although the approach used was applied to a specific 

geographic location, it is suggested that the approach should be tried in other locations to 

validate its applicability. 

 The corridor of the North Fork Gunnison River has a history of serious and 

frequent landslides along its entire length. Observed and predicted shallow landslides are 

found on the slopes of the inner gorges of the North Fork Gunnison River and its 

associated streams, which are incising into upland plateaus. Furthermore, numerous, 

large deep-seated landslides are found on the edges of the upland plateaus. These 

characteristics of landslides represent potential for a first-order prediction of the 

landslides in this landscape.  

 Landslides in the study area have occurred in the past and activity continues. 

Landslides in the area have damaged Colorado Highway 133 and the D&RGW Railroad 
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(now Union Pacific). A possibility exists of landslides damming the North Fork 

Gunnison River, which could cause potential serious problems to communities 

downstream. The river flows parallel to Colorado Highway 133 and has been affected by 

landslides from the high hazard zones several times in the past. This hazard will exist 

into the future and all land use decisions should consider the potential destruction that 

may result. 
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CHAPTER VI 

MAPPING LANDSLIDES WITH LOGISTIC REGRESSION  

 

Synopsis 

 The area between Paonia and McClure Pass in Colorado was evaluated by 

coupling geographic information system (GIS) and logistic regression methods to assess 

susceptibility to landslides. Seven hundred and thirty five shallow landslides including 

debris dominated flows, debris dominated slides, rock dominated slides and soil 

dominated slides were mapped. Seventeen factors, as predictor variables of landslides, 

were mapped from aerial photographs, available public data archives, ETM+ satellite 

data, published literature and frequent field surveys. Landslides are shown on a binary 

map in which landslide cells were represented by 1 and non-landslide cells were 

represented by 0. A logistic regression model was run using landslides as dependent 

factor and landslide causing factors as covariates (independent factors).  

 Different techniques of sampling landslide and non-landslide data were 

developed and the capabilities of this information to assess landslide susceptibility were 

evaluated. Landslide data were collected from the landslide masses, landslide scarps, 

landslide mass centers, landslide scarp centers, and an equal amount of data were 

collected from areas free of landslides. First, with all landslides, models of susceptibility 

to landslides for each sampling technique were developed. Second, landslides were 

classified as debris dominated flows, debris dominated slides, rock dominated slides and 

soil dominated slides and then models of susceptibility to landslides were created for 
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each type of landslide. For this study landslide data were collected from the landslide 

masses and landslide scarps. Fourteen models of susceptibility to landslides were created 

from both parts of the study. The prediction accuracies of each model were compared 

using the ROC curve technique.  

 The model using samples from landslide scarps has the highest prediction 

accuracy and the model using samples from centers of the landslide masses has the 

lowest prediction accuracy among models developed from the four techniques of data 

sampling to assess susceptibility to landslides. Likewise, the model developed for debris 

dominated slides has the highest prediction accuracy and the model developed for soil 

dominated slides has the lowest prediction accuracy among four types landslides. 

Furthermore, prediction of the model developed by combining four models of four types 

of landslides is better than the prediction from the model developed by using all 

landslides together.    

     

Introduction 

 Landslides, complex natural phenomenon, pose a serious natural hazard and play 

a significant role in the evolution of the hillslope. Landslides modify slope morphologies 

by transporting sediments from a slope toward the base of the slopes. Landslides 

represent ~9% of the worldwide natural disasters that occurred during 1990s (Gomez 

and Kavzoglu, 2005). Landslides, a major geologic hazard in the United States, occur in 

all 50 states and U.S. territories; cause $1-2 billion in damages and more than 25 

fatalities on average each year (USGS, 2010). In Colorado, landslides are one of the 
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major natural hazards, which cause large economic losses (Rogers, 2003). The study 

area, the basin of North Fork of Gunnison River, is one of the areas affected by 

landsliding in Colorado. The Colorado Geological Survey listed the basin as sixth on the 

2002 priority list for the Colorado landslide hazard mitigation plan (Rogers, 2003). The 

total cost of direct landslide losses and excess maintenance in this corridor is estimated 

to be at least $1 million a year (Rogers, 2003). 

 Landslides mostly result from triggering events, like earthquakes, intense 

rainfall, and snow melt. Besides triggering factors, other factors can be responsible for 

the instability of the hillslopes, including: geology, landcover, slope geometry, solar 

radiation, surface and subsurface hydrology, and the role of people. When assessing 

susceptibility to landslides, the role of each of these factors needs to be evaluated. 

Besides these factors, landslide frequency and magnitude are also necessary in an 

assessment. Frequency and magnitude of landslides are rarely introduced in the 

assessment of susceptibility to landslides.  

 Maps of the susceptibilities and risks of landslides are necessary tools to select 

appropriate sites for development of agriculture, construction and other human 

endeavors. Engineers, Earth scientists, planners and decision makers can use this 

information. Maps for susceptibility to landslides can be prepared in three ways: 1) 

deterministic approach; 2) probabilistic approach; and 3) qualitative or heuristic 

approach. A deterministic model considers slope geometry, characteristics of slope 

materials, and pressure generated by surface and subsurface water in a physical equation. 

The approach is commonly used to map slope instability (Chowdhury and Bertoldi, 
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1977; Chowdury, 1976; Gokceoglu and Aksoy, 1996; Wu and Sidle, 1995). The 

probabilistic approach, establishes statistical relationships among the preexisting 

landslides with the factors responsible for the occurrence and assumes future landslides 

will occur in similar environments where landslides occurred in the past (Anbalagan, 

1992; Atkinson and Massari, 1998; Ayalew and Yamagashi, 2005; Carrara et al., 1991; 

Carrara et al., 1999; Cevik and Topal, 2003; Gokceoglu and Aksoy, 1996; Gorsevski et 

al., 2000; Gorsevski et al., 2003; Gritzner et al., 2001; Guzzetti et al., 1999; Juang et al., 

1992; Lee, 2004; Maharaj, 1993; Pachauri et al., 1998; Tangestani, 2004; Van Westen et 

al., 1997). The qualitative or heuristic approach, in which an expert differentiates zones 

susceptible to landslides based on his/her priori knowledge of landslide instability, is 

also employed in many studies (Fenti et al., 1979; Ives and Messerli, 1981; Kienholz, 

1978; Rupke et al., 1988).  

 The primary goals of this study are to evaluate the effect of data sampling and 

landslide types on the prediction accuracy of the models. To achieve these goals the 

major objectives were: 1) prepare maps of landslides and landslide causing factors; 2) 

develop database for landslides and non-landslide areas; 3) Develop probabilistic models 

of susceptibility to landslides in a logistic regression framework and evaluate the 

accuracy of the models using an ROC curve approach; and 4) test the validity of the best 

model. 
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Fig. 46. Location map of the study area. W: Wyoming, NE: Nebraska, UT: Utah, CO: Colorado, KS: 
Kansas, AZ: Arizona, NM: New Mexico, and OK: Oklahoma. 

 

Location and the geomorphology 

 The study area, located in west-central Colorado (Fig. 46), extends from Paonia 

to McClure Pass and encompasses ~ 815 km2. General access to Paonia-McClure Pass is 

gained by Colorado Highway 133. Foot trails and forest roads provide direct access 

around the highway. The climate of the study area is predominantly semi-arid with 1.8 

°C (minimum) to 18°C (maximum) average annual temperatures, 400 mm average 

annual precipitation and 1,220 mm average annual snowfall based on the 1905-2005 data 
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of Paonia 1SW climatic station (Western Regional Climate Center, 2010).  Precipitation 

is primarily the result of summer convective thunderstorms.  

 

 

Fig. 47. A hill shadow image of the study area showing rugged topography. In some places the top of 
some hills can be seen as flat. 

 

The area has rugged topography and a dendritic drainage pattern. The North Fork 

of Gunnison River drains the area into the Gunnison River. The elevation in the study 

area ranges 1,712 m to 3,883 m. The lowest elevation is the flood plain of North Fork of 

Gunnison River at Paonia and the highest elevation is Chair Mountain. The hillslope 

morphology is controlled by geology rather than elevation. Sandstone and plutonic rocks 

have steep slopes and the mudstone, shale, alluvial and colluvial deposits have medium 
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and gentle slopes. Most of the small mountains have steep slopes and flat mesa like tops, 

whereas tall mountain highlands have sharp ridges and steep slopes sculpted into horns, 

arêtes and cirques developed by alpine glaciers (Fig. 47). Major processes involved in 

the evolution of these hillslopes are the incision of the North Fork of Gunnison River 

and its streams and tributaries, Pleistocene glaciation, and mass movement from the 

coupling effects of snowmelt, rainfall and river erosion. Stream flow is primarily driven 

by the snow melt, which is greatest in May (Jaquette et al., 2005). 

 

Landslides 

 In Colorado frequent landslides are widely distributed in the study area. Seven 

hundred and thirty five shallow landslides (Fig. 48) were mapped by employing a GIS 

(Geographic Information System) technique on 1991 and 2005 aerial photographs with a 

scale of 1:12,000. Landslides were identified visually by the distinguishing tone, shape, 

size and texture and digitized in ArcGIS® by identifying the scarp or zone of landslide 

material source and zone of transportation and deposition A three-dimensional 

visualization technique in ArcGIS® and stereo-visualization technique in Terrain 

Navigator Pro® were employed to determine the type of landslides; debris dominated 

flows, debris dominated slides, rock dominated slides and soil dominated slides.  After 

mapping landslides on aerial photographs, the location, type and activity of all landslides 

were verified by field mapping. Other data such as area, perimeter, volume, length, 

width, position on the hillslope, vegetation, main causes, damage and preventive 
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measures taken were also collected from aerial photographs and field surveys. All these 

attributes were linked with spatial information of the landslides and stored in ArcGIS®.  

 

0 5 km

Landslide Inventory

 

Fig. 48. A map showing distribution of different types of landslides in the study area. Soil slides are 
evenly distributed and other types of landslides are clustered in some places. 

 

 Among 735 landslides, 155 landslides were identified as debris dominated flows, 

86 landslides were identified as debris dominated slides, 139 landslides were identified 

as rock dominated slides, and 324 landslides were identified as soil dominated slides. 

The smallest landslide mapped is 85 m2 and the largest landslide mapped is 160,300 m2. 
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Debris dominated flows mostly occur in topographic convergence covered by 

unconsolidated deposits. Debris dominated slides mostly occur in planar and concave 

slopes covered by unconsolidated alluvium and colluvium. Rock dominated slides 

mostly occur in steep and convex to planar slopes (Fig. 49). Soil dominated slides, the 

most dominant type of landslde, are distributed everywhere, but are smaller in size in 

comparison to the other types. 

 

(A) (B)

(C)

 

Fig. 49. Photographs of typical landslides in the study area. A) A debris flow on the north facing slope 
lying west of Somerset Village. The landslide is located on a concave slope. B) A rock dominated slide on 
north facing slope lying southeast of Somerset Village. The landslide occurred on a convex slope. C) A 
soil dominated slide on a north facing slope located about 6 km downstream from Somerset Village.  

 

Materials and methods 

 Two major assumptions are made in a probabilistic approach of mapping the 

susceptibility of landslides: 1) landslides will occur in similar environments in which 
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landslides occurred in the past; and 2) the areas which are predicted as having landslide 

potential are only true if the factors used in the analysis will not significantly change in 

the future.  

 The methodology of this study can be classified broadly into three steps. First, 

landslide and landslide causing factors were collected and converted into GIS formats. 

Second, sampling techniques of data were developed; landslides were classified; and 

landslide and non-landslide data were extracted from maps of landslide causing factors. 

Third, logistic regression was run for different scenarios of data sampling and types of 

landslides.  

 

 GIS data layers 

 First step in mapping susceptibility to landslides is to identify factors responsible 

for the existing landslides. Extensive field work was completed to evaluate the roles of 

geologic, hydrologic, geomorphic and anthropogenic factors in the formation of 

landslides. Furthermore, the values of these factors on landslide and non-landslide areas 

were statistically compared. Most of the landslides are observed in sandstone and 

mudstone, shrubland and woodland, fine to medium grained loose regolith having non-

plasticity index to low plasticity index, 20° to 40° slopes, south facing slopes, 

topographic convergence, and close proximity of rivers faults and roads. Based on the 

field survey, major factors of the landslides were determined as slope, the aspect of 

slope, solar radiation, streams, roads, geology, landcover and soil. Minor factors were 
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topographic curvature, geological structure, the topographic wetness index and the 

stream power index.   

 

Geology and landcover 

 Cretaceous sedimentary rocks, including shale, mudstone and sandstone; Tertiary 

igneous rocks, including basalt and batholiths of granodiorite; and various Quaternary 

deposits including alluvium, colluvium and mixed deposits are the main lithologies of 

the study area. The basalt, formed by extensive volcanic eruption, capped many 

mountains. Colluvium and moraines occur on gentle mountain slopes, bedrock is 

dominant along the steep ridges, and the fluvial deposits occupy the stream valleys.  

 Movements along faults weakens rocks and soil and triggers landslides. I mapped 

20 exposed and unexposed (sub-surface) fault lines from a USGS geological map 

prepared by Dunrud (1989).  Many landslides are located in the close proximity to these 

fault lines.  

 Soil data, obtained from USDA (United States Department of Agriculture) and 

US Forest Service, contains information about the soil or regolith up to a depth of 1.5 m. 

I classified the soil based on the plasticity index (PI) as non-plastic, low plastic (PI = 

<5), medium plastic (PI = 5-15), high plastic (PI = 15-20), and very high plastic (PI = 

>20). Most of the landslides are observed in non-plastic to low plastic soils.  

 Vegetation in the area consists of grasses, aspen groves (Populus tremuloides), 

and pines (Pinus edulis). The landcover of the area, extracted from a LANDSAT ETM+ 

satellite image acquired in 2002, was categorized into: 1) forest, 2) woodland, 3) 
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shrubland, 4) grassland, 5) agricultural land, 6) barren land, and 7) settlement. Most of 

the landslides occurred in shrubland.  

 

Hillslope geometry and solar radiation 

 Slope, aspect of slope and curvature of slope are geomorphic attributes of 

landslides in the study area. All of these factors were developed in ArcGIS® from USGS 

DEM of 10 m horizontal resolution.  

 Total annual global solar radiation was calculated for each pixel in the study area 

by using the inbuilt algorithm in ArcGIS®. The total global solar radiation is the 

summation of the total direct solar radiation, total diffuse solar radiation and total 

reflected solar radiation. Direct solar radiation is defined as the unimpeded interception 

of the solar radiation directly from the sun. Diffuse radiation is defined as the radiation 

scattered by atmospheric constituents, such as clouds and dust. Reflected solar radiation 

is defined as the radiation reflected from surface features. Direct radiation is the largest 

component of total radiation, and diffuse radiation is the second largest component. 

Reflected radiation generally constitutes only a small proportion of total radiation, 

except for locations surrounded by highly reflective surfaces such as snow cover. The 

reflected radiation is ignored in this study. 

 

Water-related factors 

 Flow accumulation, flow length, topographic wetness index (TWI) and stream 

power index (SPI) are water-related factors derived from the DEMs and used as 
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predictors of landslides in this study.  Flow accumulation is the number of cells flowing 

through a point. It provides information on upstream contributing area of that point. 

Flow length is defined as the length of stream from drainage divide to the point of 

interest. TWI, a steady state wetness index (Beven and Kirkby, 1979), is a function of the 

slope and the upstream contributing area per unit width orthogonal to the flow direction. 

This index is used in this study as a predicting factor of landslides because it correlates 

in some degree with the groundwater condition and soil moisture, areas with the higher 

values of TWI are most likely to become saturated during a rain or snowmelt event 

(Moore et al., 1991). The topography index was created from a DEM using Eq. 51.  

tan
ln

b

A
TWI    (51) 

where A is the upstream contributing area expressed as m2, b is the width of a cell 

expressed as m and and  is the slope angle of that cell expressed as radians. The 

variable was created from DEM using Eq. 51.  

 SPI, a steady state index, assumes that every point in the catchment has reached 

sub-surface drainage equilibrium, and the upslope contributing area can be quite large. 

When a steep slope has a large upstream contributing area, the SPI value becomes larger. 

The higher value of SPI is generally found at the foot of the slope and it seems 

reasonable to believe that higher values of SPI at the foot of slopes make the triggering 

of landslides much more probable (Conoscenti et al., 2008). SPI is calculated from DEM 

using Eq. 52 (Moore et al., 1991).  

b

Atanβ
SPI  (52) 
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 Irregular flow regimes of the streams and gullies can be the cause of intense, 

superficial mass movement phenomena in areas adjacent to drainage channels (Barredo 

et al., 2000). Rivers induce failure of banks because of slope undercutting. I observed 

many landslides in the study area caused by rivers undercutting banks. To include the 

role of rivers in the assessment of susceptibility, a map showing distances from rivers 

was created. 

 

Human related factors 

 Worldwide, human influence is one of the major factors causing landslides.  

Road-cuts are usually sites of anthropologically induced instability (Ayalew and 

Yamagashi, 2005; Pachauri et al., 1998; Pachauri and Pant, 1992). Construction of a 

road on a hillslope increases the slope above the road and stress on the back of the slope. 

Furthermore, the hillslope that was in equilibrium before the road is constructed may 

become unstable because of water ingress. In the study area many landslides occurred in 

close proximity to roads. Because of these reasons, proximity to roads is also considered 

as landslide causing factor. Roads and residential areas were extracted from aerial 

photographs and an ETM satellite map. A map showing distance from roads was created 

and the relationships of the number of landslide cells and the distance from roads were 

evaluated. I observed that the density of landslide cells is the highest in close proximity 

to roads. The distance map was considered as one of the independent factors of 

landslides in this study.   
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Variable selection and model development using logistic regression 

 Logistic regression is generally used when the predictor variables are not 

normally distributed (Allison, 1999; Johnson, 1998). The dependent variable in this 

approach is sampled as a binary variable (i.e. presence or absence of landslide). 

Therefore, the method determines the probability of the presence or absence of 

landslides. Logistic regression fits a s-shaped curve by taking a linear regression, 

between binary dependent variable and continuous or categorical independent variables 

(covariates). The logistic regression equation can be expressed as:  

)x........βxβxβexp(β1

)x........βxβxβexp(β
1|x)p(y

nn22110

nn22110  (53) 

where x is the data vector of an independent variable, β is the coefficient(s) of the 

independent variable(s), and y is the value of the binary outcome variable. 

 Preparation of the database for logistic regression includes collection of the 

independent data at the selected locations of landslide and non-landslide experimental 

units. Mainly three types of selection of landslide and non-landslide experimental units 

are common. First one is collecting data from each cell of the entire study area, which 

undoubtedly leads to unequal proportions of landslide and non-landslide cells (Guzzetti 

et al., 1999; Ohlmacher and Davis, 2003). A large volume of data is included in this 

method. The second method is random selection of unequal proportion of landslide and 

non-landslide cells (Garcia-Rodriguez et al., 2008). Third method is using all or part of 

the landslide cells and equal number of randomly selected non-landslide cells (Ayalew 

and Yamagashi, 2005; Duman et al., 2006; Mathew et al., 2009). This may decrease data 
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number and eliminate bias in the sampling process. In this study the third approach was 

applied.  

 A forward likelihood ratio method was employed to select important variables of 

landslides. In this method, the covariates (landslide independent variables) specified on 

forward logistic regression were tested for entry into the model one by one based on 

significance level.  A variable with a significance value less than 0.05 was entered into 

the model. After each entry, variables that were already in the model were tested for 

possible removal based on the significance of the likelihood ratio. In the likelihood ratio, 

the variables with the largest probability greater than 0.1 were removed, and the model 

was re-estimated. The final model was achieved when no more variables met entry or 

removal criteria.   

 

Effect of data sampling  

 Use of an appropriate technique of sampling landslide data is always essential to 

create an accurate map of susceptibility to landslides. A very difficult problem is the 

identification of the location on the slope where the value of the landslide causing factor 

exceeded the threshold value of stability and caused the slope to become unstable. A 

landslide can possibly occur at any location on the slope. For example, 1) seeding of 

landslides is possible at the toe of the slope because of the unloading of the slope toe by 

road cutting or river undercutting; 2) seeding of a landslide is possible at the head of the 

slope because of the steep slope; 3) likewise, the seeding of a landslide is possible at the 

center of the slope because of the loading of slope materials and increase in pore-water 
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pressure. Wherever the seeding occurs, a landslide can extend upslope, downslope and 

sidewise from the seeding location regardless of the characteristics of the factors causing 

the landslide. This creates a difficult problem for an expert to identify the exact location 

of landslide seeding. Furthermore, for a large region with a large number of landslides, it 

is almost impossible to determine such locations either by field work or by the analysis 

of remotely sensed images. Therefore, when assessing susceptibility to landslides, an 

expert should be aware of uncertainties associated with the sampling technique. In many 

studies of assessing landslides this uncertainty is commonly ignored. Only a few studies 

described the effectiveness of the sampling techniques. Some studies used data from 

centers of the landslide masses and landslide scarps or source regions (Dahal et al., 

2008; Neuhauser and Terhorst, 2007). In some studies landslides are differentiated into 

body rupture areas or source areas and the deposition areas or runout zones (Atkinson 

and Massari, 1998; Dai and Lee, 2003). In some studies only depositional areas of 

landslides are analyzed to determine susceptible zones of landslides (Fernandez et al., 

2003; Remondo et al., 2003). Likewise, some studies considered only zones of rupture or 

the upper edges of main scarp to evaluate susceptibility to landslides (Clerici et al., 

2006; Santacana et al., 2003). Moreover, undisturbed morphological conditions from the 

close vicinity of the landslide polygons were also used to sample landslide data (Suzen 

and Doyuran, 2004), pre-landslide hillslope was constructed to extract pre-landslide 

slope angle (den Eeckhaut et al., 2006) and a seed cell approach was used (Nefeslioglu et 

al., 2008). Results show all of these methods are reliable in mapping the susceptibility of 
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a surface to landslides. But a question still exists is: did these studies collect the data in 

the same proportion of size or magnitudes of the landslides? 

 To show the difference in results of different sampling techniques, four 

techniques to sample landslide and non-landslide data were employed (Fig. 50): A) 

samples from each cell of the landslide mass and an equal number of random samples 

from areas free of landslides; B) samples from each cell of the landslide scarps and an 

equal number of random samples from areas free of landslides; C) samples from the 

centers of the landslide masses and an equal number of random samples from areas free 

of landslides; D) samples from centers of the landslide scarps and an equal number of 

random samples from areas free of landslides. Number 1 does not ignore the information 

on landslide magnitude. Number 2 also does not ignore the information on landslide 

magnitude because the scarp area of a landslide relates to the area of landslide mass (Fig. 

51A). Number 3 and number 4 ignore information on the magnitude of landslides. 

 

 

(A) (B) (C) (D)

Crown

Toe

Landslide mass

Scarp

 
 
Fig. 50.  Techniques of landslide data sampling.  A) From landslide mass; B) from landslide scarp; C) 
landslide mass center; D) landslide scarp center. 
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Fig. 51. Figures showing A) ROC curves for models developed based on the four techniques of data 
sampling, and B) the relationships of landslide scarp areas and landslide mass areas. 

 

 Effect of landslide types 

 The sampling techniques and the type of landslides may cause inconsistency in 

the result of mapping the susceptibility to landsides. Different mechanisms cause 

different types of landslides. A factor mostly responsible for one type of landslide can be 

different than for another type of landslide.  For example, intense rainfall or snowmelt 

can induce saturation of soil or regolith and cause the slope to experience debris 

dominated flow or mud dominated flow. An unfavorable condition of the orientation of 

rock discontinuities can be a major cause of a rock dominated slide. Similarly, debris 

slides and soil slides can have different major causes. Therefore, a map of susceptibility, 

created for each type of landslides, should be more accurate than a map created based on 

the analysis of landslides not differentiated by factors of formation. Furthermore, if these 

individual maps are then combined into a single map of susceptibility, the prediction 



165 
 

accuracy of the combined map should be better than the prediction accuracy of a map 

prepared by analyzing all landslides together.  

 

Landslide probability based on 

sample from landslide mass

0 5 km 0 5 km

0 5 km 0 5 km

Landslide probability based on 

sample from landslide mass 

center

Landslide probability based on 

sample from landslide scarp 

center

Landslide probability based on 

sample from landslide scarp

(A) (B)

(C) (D)
 

Fig. 52. Maps of landslide probability developed based on the four techniques of data sampling. A) 
Sampling from the landslide masses; B) sampling from the landslide scarps; C) sampling from landslide 
mass centers; D) sampling from landslide scarp centers. 

 

Models of susceptibility to landslides  

 Among four techniques of data sampling (Fig. 50), the first model consisted of 

48,000 (100%) data points collected from landslide masses and 48,000 (~0.5 %)   data 



166 
 

points collected from areas free of landslides. The second model consisted of 22,000 

(100%) data points collected from landslide scarps and 22,000 (0.025%) data points 

collected from areas free of landslides. The third model consisted of 735 landslide data 

points collected from centers of landslide masses and 735 non-landslide data points 

collected from areas free of landslides. Similarly, the fourth model consisted of 735 

landslide data points collected from centers of the landslide scarps and 735 non-landslide 

data points collected from areas free of landslides. Using these data, four maps of 

landslide probability were created (Fig. 52) and the validity of these maps were tested 

(Fig. 53). 
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Fig. 53. ROC curves for different types of landslides. A) Landslide data were sampled from the landslide 
masses, and B) landslide data were sampled from the landslide scarps. 

 

 To evaluate the effect of landslide type, landslides were classified as debris 

dominated flows, debris dominated slides, rock dominated slides and soil dominated 
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slides. Then, a landslide and non-landslide database for two techniques of sampling were 

developed for each type of landslide.  The samples for landslide data were collected 

from the landslide masses and landslide scarps and non-landslide data were randomly 

collected from areas free of landslides. Four maps of landslide probability were created 

for each technique of sampling. As an example, probability maps created based on the 

data sampled from the landslide scarps are shown in Fig. 54. Finally, all of four landslide  
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Fig. 54. Probability maps of A) debris dominated flows; B) debris dominated slides; C) rock dominated 
slides; and D) soil dominated slides. Landslide data were sampled from the landslide scarps.  
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Table 13 Selected factors, logistic regression coefficients and significance of Wald statistics for four 
techniques of sampling landslide data. G1: Tertiary igneous rock (Td and Tmi), G2: Wasatch Formation 
(Tw), G3: Quaternary alluvial, glacial, and talus deposits (Qac, Qa, Quwa, Qtr, Qg, Qd, Qdo), G4: 
Mesaverde Formation (Kmv, Kmvr, Kmvo, Kmvb, Kmvc), G5: Quaternary unconsolidated colluvial 
deposits (Quwe, Quwi, Qc, Qls), G6: Mancos shale (Km), G7:Qa  L1: forest, L2: water, L3: agricultural 
land, L4: grassland, L5: rock, L6: woodland, L7: shrub/bush, S1: high plastic soil, S2: medium plastic soil, 
S3: low plastic soil, S4: rock, S5: non-plastic to very low plastic soil. 
 

model 

factors
B p

model 

factors

B p model 

factors
B p

model 

factors
B p

× 0.14 0.00 × 0.12 0.00 × 0.11 0.00 × 0.11 0.00

× 0.00 0.00

× 0.00 0.00 × 0.00 0.00

× -0.03 0.04 × -0.02 0.00

× -0.04 0.00

× 0.00 0.00 × 0.00 0.00 × 0.00 0.00 × 0.00 0.00

× 0.09 0.01 × 0.07 0.00 × 0.03 0.00

× 0.00 0.02

× 0.00 0.00 × 0.00 0.00

× 0.00 0.01 × 0.00 0.00

× 0.00 0.00 × 0.00 0.02

× 0.00 × 0.00 × 0.00 × 0.00

L1 -1.34 0.00 -1.26 0.00 -1.02 0.00 -0.91 0.00

L2 - - - - -1.02 0.00 -1.36 0.02

L3 -1.47 0.17 -1.24 0.24 -1.71 0.00 -3.72 0.00

L4 0.13 0.64 -0.01 0.96 -0.46 0.00 -0.43 0.00

L5 -2.35 0.00 -2.11 0.00 -0.28 0.00 -0.36 0.00

L6 -0.35 0.25 -0.39 0.21 -0.47 0.00 -0.49 0.00

L7 ** ** ** ** ** ** ** **

× 0.00 × 0.00 × 0.00 × 0.00

G1 -4.96 0.00 -4.24 0.00 -5.07 0.00 -5.94 0.00

G2 -2.51 0.02 -2.35 0.03 -0.98 0.00 -0.96 0.00

G3 -2.63 0.02 -2.53 0.02 -0.54 0.00 -0.93 0.00

G4 -3.12 0.00 -2.81 0.01 -0.99 0.00 -1.15 0.00

G5 -2.21 0.04 -2.11 0.05 0.37 0.00 0.04 0.75

G6 ** ** ** ** ** **

× 0.00 × 0.00 × 0.00 × 0.00

S1 -0.37 0.40 -0.34 0.43 -1.87 0.00 -1.51 0.00

S2 -0.66 0.00 -0.74 0.00 -1.37 0.00 -1.51 0.00

S3 -0.16 0.45 -0.21 0.31 -0.91 0.00 -1.07 0.00

S4 -2.95 0.00 -3.71 0.00 -0.29 0.00 -0.86 0.00

S5 ** ** ** ** ** ** ** **

Constant × -2.31 0.07 × -1.35 0.27 × -0.22 0.10 -1.61 0.00

Distance to stream

Distance to fault

Geology

Landuse 

soil plasticity index

Distance to road

slope

aspect

elevation

Profile Curvature

Plan Curvature

Tangential curvature

Solar Radiation

Wetness Index

Stream Power Index

Flow Accumulation

Flow Length

Landslide mass 

centroid

Scarp centroid landslide mass Landslide scarp

Independent Factors

** reference category 
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Table 14  Selected factors, logistic regression coefficients and significance of Wald statistics for four 
types of landslides. Acronyms same as table 13. 
 

model 

factors
B p

model 

factors

B p model 

factors
B p

model 

factors
B p

× 0.06 0.00 × 0.12 0.00 × 0.13 0.00 × 0.14 0.00

× 0.00 0.00 × 0.00 0.00

× 0.00 0.00 × 0.00 0.00 × 0.00 0.00 × 0.00 0.00

× -0.11 0.00 × 0.05 0.01

× -0.21 0.00 × -0.07 0.02

× 0.05 0.00

× 0.00 0.00 × 0.00 0.00 × 0.00 0.00 × 0.00 0.00

× 0.10 0.00 × 0.12 0.00 × -0.15 0.00

× 0.00 0.00 × 0.00 0.00 × 0.00 0.00

× 0.00 0.00 × 0.00 0.00 × 0.00 0.00

× 0.00 0.00 × 0.00 0.00 × 0.00 0.00 × 0.00 0.00

× 0.00 × 0.00 × 0.00 × 0.00

L1 -2.27 0.00 -0.01 0.93 -0.78 0.00 -0.65 0.00

L2 -20.10 1.00 -0.75 0.51 0.23 0.74 -19.02 1.00

L3 -2.90 0.00 -18.35 1.00 -20.18 1.00 -18.94 0.99

L4 -1.10 0.00 -0.13 0.36 -0.21 0.05 -0.30 0.01

L5 -20.80 0.99 -20.45 0.99 -21.50 0.99 0.46 0.00

L6 -1.24 0.00 0.52 0.00 -0.16 0.21 -1.07 0.00

L7 ** ** ** ** ** ** ** **

× 0.00 × 0.00 × 0.00 × 0.00

G1 -21.14 0.99 -22.24 0.99 -22.72 0.99 -4.24 0.00

G2 -1.86 0.00 -2.28 0.00 -0.91 0.01 0.95 0.01

G3 -2.12 0.00 -2.77 0.00 -0.55 0.09 1.18 0.00

G4 -0.67 0.01 -2.29 0.00 -1.99 0.00 0.46 0.21

G5 -0.10 0.68 -0.47 0.11 -0.73 0.02 0.53 0.15

G6 ** ** ** ** ** ** ** **

× 0.00 × 0.00 × 0.00 × 0.00

S1 -3.58 0.00 -21.98 0.99 0.74 0.00 -0.57 0.00

S2 -0.58 0.00 -1.74 0.00 -0.37 0.00 -1.84 0.00

S3 -0.24 0.00 -1.19 0.00 0.11 0.25 -1.51 0.00

S4 -20.53 1.00 -21.10 1.00 0.03 0.97 -0.32 0.06

S5 ** ** ** ** ** ** ** **

Constant 3.66 0.00 -1.99 0.00 -3.52 0.00 -4.95 0.00

Rock dominated slide

slope

Solar Radiation

Independent Factors

Debris dominated flow Debris dominated slide Soil dominated slide

aspect

elevation

Profile Curvature

Plan Curvature

Tangential curvature

Distance to fault

Landuse 

Geology

soil plasticity index

Wetness Index

Stream Power Index

Flow Accumulation

Flow Length

Distance to road

Distance to stream

 
** reference category 
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0 5 km

Map of landslide probability

 

Fig. 55. Landslide probability map prepared by combining all probability maps shown in Fig. 54. 

 

probability maps for each technique of data sampling were combined in such a way that 

each cell was represented by the maximum landslide probability of four maps at that 

cell. A combined probability map, developed from landslide data sampled from scarps of 

landslides, is shown in Fig. 55. The final combined map of landslide probability is 

classified into three types of susceptibility based on the classification scheme as areas 

having probability greater than 0.6 is high susceptibility, 0.2 to 0.6 is medium 

susceptibility and less than 0.2 is low susceptibility. The final map of susceptibility to 
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landslides from the techniques of sampling landslide data from scarps of landslides is 

shown in Fig. 56. 

 

 

Map of susceptibility to 

landslides

0 5 km

 

Fig. 56. A map of susceptibility to landslides. The map is developed by classifying Fig. 55. High 
susceptibility is classified as landslide probability >0.6, medium susceptibility is classified as landslide 
probability 0.2 – 0.6, and low susceptibility is classified as landslide probability <0.2.  

 

In all cases, the probabilities of landslides were calculated for each cell of the 

study area by using Eq. 53, where 0β  is constant, 1β , 2β … nβ  are the coefficients of 

independent factors (Tables 13 and 14) and x1, x2…xn are the values of the independent 
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factors. A common assumption is: the distributions of the non-landslide database of all 

factors in all cases are similar to each other and similar to the non-landslide database for 

the entire area. The variability of all databases, the distribution curve and the mean 

values of each factor are not significantly different. 

 

Accuracy assessment by ROC curve 

ROC  (Receiver  Operating  Characteristic)   curve  analysis   is  a   commonly 

used method for assessing the accuracy of a diagnostic test (Egan, 1975; Søreide, 2009; 

Swets, 1988; Williams et al., 1999). It provides a diagnostic statistic that may be used to 

distinguish between two classes of events. The curve is a plot of the probability of a 

correctly predicted event response (true positive) versus the probability of a falsely 

predicted event response (false positive) as the cut-off probability varies. For example, a 

correctly predicted event response is a prediction of a landslide for a location where a 

landslide occurred, whereas a falsely predicted event response is a prediction of a 

landslide for a location where a landslide did not occur. If all landslides are correctly 

predicted, the area under the curve would equal 1. The ROC curve also helps an expert 

to make decisions. Each point on the ROC curve may be associated with a specific 

decision criterion for how much risk the user is willing to take regarding the accuracy of 

the prediction (Gorsevski et al., 2006). In modeling based on logistic regression, ROC 

curves are very useful for evaluating the predictive accuracy of the model. The predicted 

probabilities generated for a binary response variable can be viewed as a continuous 

indicator and plot as a ROC curve to determine the prediction accuracy of the model 
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(Gorsevski et al., 2006). Although ROC analysis provides an overall value of accuracy 

independent of a cutoff value and occurrence, it does not provide the optimal cutoff 

value nor does it illustrate how occurrence affects cutoff selection (Mcfall, 1999).  

 

Results 

 Table 13, the important factors needed to prepare an accurate model of 

susceptibility to landslides, depends on sampling techniques. For example, factors 

selected for models relying on landslide data sampled from the landslide masses and 

landslide scarps are not similar to the factors selected for models relying on the landslide 

data collected from centers of the landslide masses and landslide scarps. Similarly, ROC 

curves and prediction accuracies, shown in Fig. 51B and Table 15 imply that the 

accuracy of the model depends on techniques of sampling the landslide data. The model 

depending on landslide data sampled from the landslide scarps has the highest prediction 

accuracy (85%) and the model depending on landslide data sampled from centers of the 

landslide masses has the lowest prediction accuracy (83%). 

Table 14 shows that important factors needed to prepare an accurate model of 

susceptibility of landslides also depends on the types of landslides.  Factors selected for 

the models created by different types of landslides are not same. The ROC curve and 

prediction accuracies (Figs. 54A and 54B and Table 15) of different kinds of landslides 

are also different. In both cases of sampling, the model for the debris dominated slide 

has the highest prediction accuracy (91% for sampling from mass and 92% for sampling 
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from scarp) and the model for soil dominated slides has the lowest prediction accuracy 

(92% for sampling from mass and 93% for sampling from scarp).  

In all cases the prediction of the models developed by sampling data from the 

landslide scarps is better than others (Figs. 51B, 54A, 54B and Table 15). The areas of 

the landslide scarps preserve the magnitude of the landslides (Fig. 51A). Therefore, this 

technique of sampling is considered to be the best. 

 If the probability maps of different landslides are combined, the prediction of the 

final map (Figs. 55 and 56) is better than the prediction of the probability map prepared 

by using all landslides together (Fig. 52 and Table 15). 

 

Table 15 Prediction accuracies of 14 models of susceptibility to landslides based on area under ROC 
curves. 
 
Landslides Models Sample from landslide Prediction accuracy 

(%)

1 mass 83.78

2 scarp 84.95

3 scarp center 83.34

4 mass center 82.83

5 mass 87.51

6 scarp 88.08

7 mass 91.00

8 scarp 91.79

9 mass 88.76

10 scarp 91.30

11 mass 82.06

12 scarp 82.72

Combination of models  5, 7, 9, and 11 13 mass 85.09

Combination of models  6, 8, 10, and 12 14 scarp 86.34

All Landslides

Debris dominated flows

Debris dominated slides

Rock dominated slides

Soil dominated slides

 

 

Validity test 

 The validities of the combined models were tested by dividing each type of 

landslide into training data (50% of each landslide types) and validation data (50% of 
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each landslide types). Using training data and the same factors used in models 13 and 14, 

four maps of landslide probability were created for each type of sampling technique. All 

maps of same sampling techniques were combined. The ROC curves of the final maps 

were developed and compared with the ROC curves of models 13 and 14. The 

comparison of ROC curves (Fig. 57) suggests that both models 13 and 14 were valid and 

provided similar results. 
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Fig. 57. ROC curves for the final landslide probability map developed by data sampling from the landslide 
masses and landslide scarps; and ROC curves for the assessment of validity. 

 

Discussion and conclusions 

 The literature shows variations in the techniques of sampling landslides in most 

of the probabilistic approaches to mapping susceptibility to landslides. In this study, the 

inconsistencies in maps of susceptibility to shallow landslides based on the commonly 
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used techniques of sampling landslide data were evaluated. Differences in the prediction 

accuracies of the maps were noted, although the accuracy values are not significantly 

different. It is concluded that this inconsistency is the result of uncertainty associated 

with the techniques employed to sample the data.  What sampling technique is best is a 

difficult question yet appropriate. Samples from landslide masses and landslide scarps 

yield better data than samples from centers of the landslide masses and landslide scarps. 

Data from centers of the landslide masses and landslide scarps definitely incurs 

uncertainty because of the insufficient number of landslides and non-landslides in the 

database. Furthermore, data from centers of the landslide masses and scarps do not 

provide information on the magnitude of landslides although this factor can be 

represented by landslide area. The area of a scarp is directly proportional to the area of a 

landslide mass; therefore, sampling from scarps of landslides preserves the magnitude of 

landslides. In this aspect sampling from the landslide masses and scarps are equally 

appropriate for mapping susceptibility to shallow landslides. But prediction accuracy of 

the model is best when developed based on samples obtained from the scarp. With this 

result, it was assumed that most of the shallow landslides in the study area occurred 

because of an unfavorable condition at the slope heads. Therefore, collection of the data 

from the scarps reduced uncertainties.  

 The map of debris dominated slides has the highest prediction accuracy (92 %) 

and the map of soil dominated slides has the lowest prediction accuracy (83 %) (Fig. 53).  

I believe prediction of debris dominated slides is the highest because these slides mostly 

occur in concave to planar steep slopes covered by unconsolidated deposits. Prediction 
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of rock dominated slides and debris dominated slides are also excellent because rock 

dominated slides are mostly found in steep slopes, region of convex to planar curvature, 

and they are larger in size. Debris dominated flows predominantly occur in zones of 

topographic convergence and areas covered by unconsolidated soil/regolith. The 

prediction accuracy for soil dominated slides is the lowest because they are smaller in 

size and occur in diverse environments. This implies that landslide types which have 

well defined environments of occurrence are easier to predict.  

 The study also suggests that classification of landslides, creation of probability 

maps for each type of landslide and combination of these maps is a better method to 

prepare an accurate map of potential susceptibility to landslides. This study shows, the 

prediction of the susceptibility map is 84.95 % when all landslides were used together 

and 86.34% when landslides were classified into different types and maps of 

susceptibility for each type of landslide were combined (Table 15).  

 A better result can be achieved if an expert is able to approximate a database for 

pre-failure conditions of the slopes. In a simple way this can be achieved by buffering 

certain distances around scarps of landslides and collecting landslide data from the 

buffer zone. This approach still needs to be tested; future work will focus on this 

approach.  
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CHAPTER VII 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

 Conclusions for the present research and directions for future research are 

discussed in this chapter. In the previous chapters, the entire research was motivated by 

the major deficiencies in the understanding of the contribution of mass movements to the 

modification of mountain hillslopes. I have added more information on how landscape is 

modified by different surface geological processes and where landslides occur in a 

periglacial landscape based on the analysis of DEMs and the mass movement and 

associated features in Paonia-McClure Pass area. The study focused primarily on three 

topics of mass movement. The first study established an understanding of how different 

types of mass movements modify the morphology of hillslopes and channels. The 

second established the frequency-magnitude relationships and relationships of the 

morphometrric parameters of the shallow landslides. This study established an empirical 

equation to determine the volume of the landslides given the area of the landslides. The 

third study developed and tested the performance and validity of four probabilistic 

(quantitative) approaches of mapping susceptibility to landslides in a regional scale in 

western Colorado.  

 The study of the drainage area and the local slope of the hillslopes in Paonia-

McClure Pass area suggest that: 1) the drainage area and local slope in a landscape is 

related by an inverse power relationship, 2) the slope-area plot is a viable technique to 
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evaluate and compare the morphologic characteristics of different geomorphic zones of a 

landscape, and 3) the plot is very effective in determining the locations of  colluvial, 

bedrock and alluvial channel initiation; evaluating the response of channels to the 

tectonic upliftment; and determining the flux of the hillslope materials to the channels. 

Results from the study of Paonia-McClure Pass area suggest that the colluvial channels 

in the area are initiated at the location of ~0.008 km2 contributing area. Similarly the 

colluvial channels are transformed into bedrock channels at ~0.7 km2 contributing area 

and the bedrock channels are modified into alluvial channels at ~25 km2 contributing 

area. The location of the colluvial channels are found just at the base of the valley head 

where most of the shallow landslides occurred. Furthermore, the study suggests that the 

steepness and concavity of the landforms at the valley heads developed by major mass 

movement processes and are related by the negative exponential relationship whereas the 

steepness and the concavity of the bedrock and alluvial channels are related by the 

positive exponential relationships. The study also suggests that each landforms 

developed by a specific surface geological process has an upper and lower boundary of 

steepness-concavity relationship. I hypothesized that the steepness and the concavity of 

the landscape are controlled by the processes and the lithology. The glacial cirques have 

the highest index of concavity (0.17±0.02) whereas the   rock avalanche has the lowest 

index of concavity (0.08±0.04). Similarly, the landforms developed by rock avalanches 

have the highest index of steepness and the debris flows have the lowest index of 

steepness. I further concluded that the valley heads are in a hillslope threshold condition. 

When the concavity of the valley heads increases because of upslope incision by mass 
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movement and streams, steepness decreases. The increase in concavity tends to increase 

the steepness of the valley heads but because of exceeding the hillslope threshold, the 

valley heads dominate the mass movement processes and result in sediments from the 

valley heads being deposited at the base of the slope, steepness, therefore decreases. This 

does not apply for bedrock and alluvial channels. The steepness and the concavity of the 

bedrock and alluvial channels are higher than colluvial channels because of the higher 

energy associated with higher flow of water and more stable base. But the concavity and 

steepness of these channels changes if the hillslopes deliver huge amounts of materials to 

the channels. Many of the bedrock channels in the study area have lower indices of 

concavity and steepness because of the deposit of huge amount of the sediments from 

landslides, rock avalanches and glacial processes.  

 The third chapter of this dissertation focused on the frequency-magnitude 

relationships of shallow landslides in Paonia-McClure Pass area. The results from this 

study suggest that the frequency (probability of occurrence of a landslide of a given size) 

and the magnitude (area or volume) of shallow landslides are related by an inverse-

power relationship with a rollover of the power at 1600 m2 or 1900 m3. The relationship 

can be described by the double pareto curves. The higher value of the power for the large 

sized shallow landslides in the study area indicates that the area is dominated by the flux 

of large amounts of debris. The response of these characteristics is distinctly observed in 

many bedrock channels. Bedrock channels of the basin, where the density of landslides 

is high, have either convex or very low values of concavity indices. The frequency-

magnitude analysis also suggests that the size of the landslides which are frequent and 
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perform more geomorphic work ranges from 1,600 m2 to 20,000 m2. Moreover, this 

study established the relationship of area-volume, length-width, length-area, and width-

area of the landslides. All of these relationships can be expressed by positive power 

equations. 

 The fourth, fifth, and sixth chapters of this dissertation focused on the 

identification of the major landslide causing factors and development of an optimum 

model of mapping susceptibility to shallow landslides. These studies made extensive 

progress in the pre-existing techniques of mapping landslides. Among three quantitative 

methods of mapping landslides introduced in this dissertation, the logistic regression 

method predicted most of the landslides. The first approach of mapping susceptibility to 

landslides, the weight of evidence (WOE) approach, determines the weight of the 

landslide contributing factors based on the probability of the landslides occurring in the 

given category of the factor and the probability of the landslides not occurring in the 

given category of the factor.  This approach is based on the prior probability, posterior 

probability and Bayes’ theory. The approach take into account the magnitude and 

frequency of the landslides but it overestimates or underestimates if not enough landslide 

data are collected. A method to deal with the undersampled landslides in WOE 

framework has been explained in this dissertation. The additional techniques of the 

WOE method introduced in this dissertation are: a technique of categorizing continuous 

data and development of the models of susceptibility to landslides based on the results 

from the test of independence of the factors. In this study six models, comprising 

different combinations of factors, were developed and an optimum model which has the 
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best prediction of landslides has been proposed. The best model predicted 78% of the 

observed landslides. The model includes six factors that cause landslides: soil plasticity 

index, slope, aspect, tangential curvature, flow accumulation, distance to stream, and 

distance to road.  

 The second approach of mapping susceptibility to landslides, the fuzzy-logic 

approach, is excellent because data need not be independent from each other. The 

method is compared with the weight of evidence method and I found that both 

approaches have similar prediction performance (~78%). The method also needs the 

continuous data to be categorized and is the major deficiency of the method. This 

deficiency has been solved by integrating weight of evidence approach with the fuzzy 

logic. Another major disadvantage of the approach is that the approach does not provide 

information on what minimum factors are necessary to obtain an optimum model of 

mapping landslides.  

 The third approach of mapping susceptibility to landslides is logistic regression. 

The method has two advantages over other methods: the continuous data does not need 

to be categorized, and the output value is the probability rather than a summed value of 

weights or fuzzy memberships. The method determines the minimum number of factors 

required to achieve an optimum model for mapping landslides. The performance of the 

model primarily depends on the techniques of landslide and non-landslide data sampling. 

In this study four techniques of data sampling were introduced. The first technique 

samples an equal number of landslides from the center of the landslide body and areas 

free of landslides. The second technique samples an equal number of landslides and non-
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landslide data from the center of the scarps of the landslides and areas free of landslides. 

The third technique samples data from the entire body of the landslides and areas free of 

landslides. The fourth technique samples an equal number of landslides and non-

landslide data from the entire scarp of the landslides and areas free of landslides. The 

performance of the model based on the approach of sampling data from the entire scarp 

of the landslides is the best (86%). Furthermore, maps of susceptibility to landslides 

were developed for different types of landslides. The model with debris slides predicted 

92% of the observed landslides whereas the model with soil dominated slides predicted 

83% of the observed landslides.  

 All models of mapping susceptibility to landslides suggest that the major factors 

of the landslides are: slope, landuse, soil plasticity index, solar radiation, curvature, 

distance to stream, distance to fault, distance to road, and wetness index. The majority of 

the observed and predicted landslides occur on 20-30° slopes, with south and southwest 

facing aspect, slightly concave and slightly convex slopes, within 300 m of flow length, 

5000 (50 cells) m2 contributing area, <400 stream power index, 4-6 topographic wetness 

index, landslide and mudflow deposits, non-plastic to low plastic soils and shrub and 

bush landcover.   

   

Future directions 

 Although the research described in the second chapter of this dissertation has 

added more information on the current understanding of the characteristics of the 

geomorphic zones of a landscape and characteristics of the landforms developed by 
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different surface geological processes, information is lacking on how a landform 

responds with change in process. Similarly, does a process changes with change in a 

landform for example rock avalanches can occur on slopes of the glacial cirque and 

completely change the characteristics of the glacial landform. Again an important 

question is the validity of my results of the steepness-concavity relationship. Is this 

relationship is consistent in other periglacial landscapes of Colorado and even other 

periglacial areas of the world?  

 Although the present study of the landslide frequency-magnitude relationships 

and study of the relationships of landslide morphologic parameters supported current 

knowledge of landslide dynamics, understanding is lacking on why the frequency-

magnitude relation curve rolls and what are the major controlling factors? The study 

showed that undersampling of the landslides is not the only reason, the size of the 

shallow landslides also controls by the morphology of the topography, such as plan 

curvature, slope length, and slope concavity. Geotechnical properties of the associated 

slope materials were not studied in this research. This is a possible direction for future 

research. Furthermore, the proposed range of sizes of the landslides which are frequent 

and perform more geomorphic work is only applicable for shallow landslides. 

Frequency-magnitude study of large landslides is needed to fully understand the total 

geomorphic work of all landslides.    

 The distribution of the observed and predicted landslides in this study suggest 

that the shallow landslides tends to occur on the slopes of river gorges and valley heads 

and the deep seated large landslides tend to occur on the edges of the upland plateau and 
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ridges. This study did not include the frequency-magnitude relationships and the 

geomorphic work of the large deep-seated landslides. The next step in this research is to 

understand such relationship for the large deep seated landslides and evaluate again what 

size of landslides are frequent and perform more geomorphic work. Furthermore, it is 

necessary to fill the gap in the understanding and linking of landslide frequency and 

magnitude, persistence, and geomorphic work in the context of the evolution of 

landscape as well as input of these variables in the model of mapping landscape 

susceptibility to landslides. One more question needs an answer: what process of mass 

movement does more geomorphic work and produces more hillslope relief over a 

specific period of time?  
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APPENDIX A 

 

 

Relationships of shallow landslide areas and its morphologic parameters. A) Relationship of landslide 
areas and landslide runout lengths. The runout length of a landslide is defined as the planimetric length of 
a landslide from its crown to the toe. B) Relationship of landslide areas and the widths. C) Relationship of 
landslide areas and landslide heights. Landslide height is defined as a difference in elevation of the 
landslide toe and crown. D) Relationship of landslide areas and the plan curvatures of landslidse surfaces. 
The plot suggests that large landslides occur mostly in planar surface.   
 



214 
 

 

A) Distribution of average depths of shallow landslides. These depths are average depths of each 
landslide. The depth is calculated as the perpendicular distance from the surface of the landslide to the slip 
surface. B) Distribution of length-width ratios of each type of shallow landslides. 
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APPENDIX B 

 

 

 

Distribution of geology and landcover in the entire area and landslides. A) Geological map, B) 
Distribution of lithology, C) Landcover map, and D) Distribution of landcover 
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Geology of the study area 
 

Symbol Formation Age Lithology

Qa Alluvium Holocene Clay silt sand gravel and boulders; large components are subangular to rounded; well sorted to

poorly sorted, commonly stratified; deposited in stream channels

Qac Alluvium and 

colluvium 

undifferentiated

Holocene and 

pleistocene

May locally include alluvium, terrace deposits, and bedrock.

Qc Colluvium Holocene Clay, silt, sand, gravel, and boulders; large components are subangular to subangular; commonly

derieved from bedrock above or beneath deposit, deposited by sheet wash or slow downslope

movement. May locally include landslides, alluvial deposits and bedro

Qd Quaternary Glacial drift

Qdo Quaternary Glacial drift

Qg Quaternary Gravel, alluvium

Qls Landslide and 

mudflow deposits

Holocene and 

pleistocene

Clay, silt, sand, gravel, and boulders; heterogeneous to poorly sorted; cracks and scraps are locally

common in upper part, hummocky topography and local closed depressions are common near base

of deposits; formed by various combinations of slumping, slid

Qt Alluvial terrace 

deposit

Holocene Clay silt, sand and gravel and boulders which commonly are sorted and stratified. Occurs about 30-

120 m above the present stream drainage; may locally include small deposits of alluvium and

colluvium

Qtr Talus and rock glacier 

deposits 

holocene Locally include areas of bedrock and colluvial, alluvial and landslide deposits

Quwa Major alluvial deposit Pleistocene Surfaces of deposit are formed on Tertiary volcanic rocks and Wasatch Formation. Surfacew dips

towards modern drainages, such as North Fork Gunnison River

Quwe Unconsolidated 

deposits

Pleistocene Derived from late Tertiary extrusive rocks and Wasatch Formation. Clay, silt and sand are primarily

derived from the Wasatch Formation; gravel and boulders are primarily derived from the extrusive

rocks (basalts) capping Grand Mesa. Heterogeneous to moder

Quwi Unconsolidated 

deposits

Pleistocene Similar to unconsolidated deposit (unit Quwe) except derieved from rocks of the Wasatch

Formation and from intrusive rocks of the West Elk Mountains (Middle Tertiary granodiorites,

quartz monzonites). May locally be composed primarily of material derieved

Td Mafic dikes and dike 

like bodies

Tertiary consists of basalt gabbros and associated rocks

Tmi Tertiary plutonic rock (phaneritic)

Tw Wasatch formation Eocene and 

Paleocene 

(Tertiary)

Varicolored (mostly various shades of brown, gray and red) claystone and mudstone with local

lenses of sandstone, volcanic sandstone, and basal conglomerate. Large landslides and mudflows

are common in claystone in steep slopes. Locally may contain small 

Kmvb Barren member Upper 

Cretaceous

Interbedded sandstone, mudstone and shale; light brown to light gray. Sandstone is fine to veryfine

grained; beds are lenticular and commonly range from a few feet to about 100 feet (30m) thick.

Thin, non commercioal coal beds are locally present. About 7

Kmvo Ohio creek member Upper 

Cretaceous

Interbedded sandstone, mudstone and shale. Stratigraphic rank assignment is that of Johnson and

May (1980). Sandstone is fine to coarse grained; locally conglomeratic, particularly in upper part;

lenticular; and ranges from a few feet to about 200 ft (60 

Kmvc Coal bearing member Upper 

Cretaceous

Interbedded sandstone mudstone, shale and siltstone. Contains coal beds and coal zones as much as

9m thick. Sandstone is fine to very fine grained, pale yellowish brown with calcareous cement,

lenticular, beds commonly range from a few feet to 

Kmvr Rollins sandstone 

member

Upper 

Cretaceous

Sandstone, fine to veryfine grained, becomes coarser grained and more quartzose in upper part,

silicious and some calcareous cement common and commonly uncemented, tan to very light gray;

graditional contact with underlying Mancos Shale; elongate iron con

Kmv  Mesaverde 

Formation 

Upper 

Cretaceous

Includes (from higher to lower). The Ohio Creek member (Kmvo), barren member (Kmvb), coal

bearing member (Kmvc), and Rolling Sandstone Member (Kmvr). Consist of sandstone, shale,

mudstone and coal. Commonly forms moderately steep slopes where underlain by

Km Mancos shale Upper 

Cretaceous

Shale and mudstone, light gray to medium gray and local thin impure limestone bed. Locally

contain small deposits of unmapped alluvium and colluvium about 1200 - 1375 m thick 
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Distribution of soil plasticity index and soil grain size in the entire area and landslides. A) Soil plasticity 
map, B) distribution of soil plasticity index, C) soil grain size map, and D) distribution of soil grain size 
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Distribution of slope and aspect in the entire area and landslides. A) Slope map, B) distribution of slope, 
C) aspect map, and D) distribution of aspect 
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Distribution of elevation and solar radiation in the entire area and landslides. A) Elevation map, B) 
distribution of elevation, C) solar radiation map, and D) distribution of solar radiation 
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Distribution of plan curvature and profile curvature in the entire area and landslides. A) Plan curvature 
map, B) distribution of plan curvature, C) profile curvature map, and D) distribution of profile curvature 
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Distribution of tangential curvature in the entire area and landslides. A) Tangential curvature map, B) 
distribution of tangential curvature 
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Distribution of topographic wetness index (TWI) and stream power index (SPI) in the entire area and 
landslides. A) TWI map, B) distribution of TWI, C) SPI map, and D) distribution of SPI 
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Distribution of flow length and flow accumulation in the entire area and landslides. A) Flow length map, 
B) distribution of flow length, C) flow accumulation map, and D) distribution of flow accumulation 
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Distance from road and stream in the entire area and landslides. A) Distance from road map, B) 
distribution of distance from road classes, C) distance from stream map, and D) distribution of distance 
from stream 
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