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ABSTRACT 

 
Experimentally Validated Compatibility Strut and Tie Modeling of  

Reinforced Concrete Bridge Piers. (August 2010) 

Reece M. Scott, B.E. (Hons), University of Canterbury 

Co-Chairs of Advisory Committee: Dr John B. Mander 
                                           Dr Joseph Bracci 

 

A compatibility-based strut-and-tie model C-STM is proposed for analyzing deep beams 

and disturbed regions with particular emphasis on reinforced concrete bridge piers. In 

addition to the normal strut-and-tie force equilibrium requirements the model accounts 

for non-linear behavior through displacement compatibility using inelastic constitutive 

laws of cracked reinforced concrete. The model is implemented into widely used 

commercial structural analysis software and validated against results from previously 

conducted large scale experiments. A near full-scale experiment on a reinforced concrete 

sub-assemblage that represents cantilevered and straddle pier bents is conducted to 

investigate the shear-flexure performance of deep (disturbed) regions. Insights into the 

development of nonlinear behavior and the final collapse failure mechanism are then 

evaluated and accurately modeled using the C-STM. It is concluded that the proposed C-

STM serves as an advanced method of analysis that can predict with suitable accuracy 

the force-deformation response of both D- and B- regions, deep beams, and beam-

columns. This provides engineers with a supplementary analysis tool that can be used to 

assess the nonlinear behavior of bridge piers with stocky members and/or large disturbed 

regions. 
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CHAPTER I 

INTRODUCTION 

1.1  Research Motivation 

It is well known that the behavior of deep beams or disturbed (D-) regions in structural 

systems can no longer be described according to conventional Bernoulli beam theory 

alone. The high irregularity of internal stress and strain distributions, accompanied by 

the interaction of flexure and shear make it exceedingly difficult to evaluate the response 

of such structural elements. As a result, the shear analysis of structural concrete deep 

beams and beam-columns has been a contentious issue to both researchers and structural 

engineers for decades.  

In order to address this problem, this thesis primarily focuses on developing a 

computational analysis method based on rational mechanics that can be used to 

demystify the current anomalies associated with analyzing the internal stress and strain 

fields of D-regions in reinforced concrete bridge piers. Building upon the existing body 

of knowledge, a compatibility based strut-and-tie model (C-STM) is presented that can 

be used to accurately model the force-deformation response and interrogate the internal 

response of highly cracked reinforced concrete members. Satisfying equilibrium, 

compatibility, and nonlinear constitutive laws of cracked reinforced concrete, the 

proposed C-STM serves as a minimalist computational model that will provide a  
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framework for the performance assessment of reinforced concrete bridge piers with deep 

or stocky members whose behavior is governed by D-regions.  

This research also lays a pathway for further research to be conducted in order to 

evaluate: i) the effects of cyclic loading in D-regions; and ii) the structural integrity of 

reinforced concrete structures when subjected to premature concrete deterioration. This 

is presented in Chapter IV.   

 

1.2  Research Objectives 

To provide an adequate means of assessing the structural performance of reinforced 

concrete bridge piers, the major objectives of this research are outlined below: 

1) To develop a computational means of analyzing reinforced concrete bridge piers 

using compatibility truss modeling techniques that is derived from rational 

mechanics. Existing theories are either heavily computationally involved and are 

difficult to implement, or are simplified to the point of providing over 

conservative estimations of the structures behavior. Hence the proposed model 

must be sufficiently accurate to capture the full nonlinear response, as well as 

elegantly simplified in order to be to be implemented by practicing engineers. 

2) To then validate the proposed model through a direct and in-depth comparison 

between experimental and computational results based on previous and current 

research.  
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1.3  Organization of Thesis 

This thesis is divided into four chapters that progressively describe the development, 

validation, and application of the proposed compatibility based strut-and-tie-model (C-

STM).  

The remainder of this chapter reviews the historical developments to date of 

shear analysis for deep beams and D-regions. This existing body of knowledge is used as 

a basis for developing the proposed C-STM.  

Chapter II presents the theory and development of the proposed C-STM, which is 

then validated against previously conducted large-scale bent cap experiments.  

Chapter III presents an experimental study on large scale bridge specimens. The 

experimental design, setup and results are presented and then analyzed using code-based 

methods and the proposed C-STM analysis for comparison.  

Finally, Chapter IV provides a general summary, overall conclusions and 

recommendations of how the C-STM can be applied for future applications.  

 

1.4  Historic Developments 

A comprehensive review on the historical developments of truss modeling approaches 

was presented by the ASCE-ACI Committee 445 (1998). Based on this pre-existing 

body of knowledge, this section focuses on three truss modeling approaches that were 

considered to be applicable to the research presented in this thesis. This includes plastic 

truss modeling; shear panel modeling; and compatibility truss modeling (N.B. neither 
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finite element modeling (FEM) nor shear friction theory was considered in this study as 

they do not specifically pertain to truss modeling). Each modeling type is presented in 

chronological order. Subsequent to this is an overview of different methods that have 

been proposed for defining the geometry of truss models.  

   

Plastic Truss Modeling 

For concrete structures, the difficulty in dealing with flexure-shear interaction has long 

been recognized. More than 100 years ago, Ritter (1899) and Mӧrsch (1909) 

independently dealt with the problem by converting a reinforced concrete beam into an 

equivalent reinforced concrete truss. This design problem is arguably the 

commencement of early plastic truss (or strut-and-tie) methods.  

 The Strut-and-Tie Model (STM) was later presented as a consistent modeling 

solution for the design of D-regions by Marti (1985). Schlaich et al. (1987) defined the 

behavior of beam (B-regions) and disturbed (D-) regions and recommended a strut-and-

tie modeling approach based on the uncracked elastic force path as a consistent modeling 

solution. This lead to the development of STM theory and was extensively promoted by 

MacGregor (1992) in his widely-used textbook. STM is also well suited for designing 

anchorage regions in prestress concrete structures as presented by Collins and Mitchell 

(1991). 

 Marti (1999) shows how STM, compression field, and limit analysis can be used 

to supplement each other in order to provide a consistent and rational means of 

evaluating the shear strength of structural concrete members. He concludes by stating 
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that the treatment of shear problems should correspond to the context to which they are 

applied, where different methods should be used depending on the task at hand. 

 Sritharan and Ingham (2003) developed a force transfer method (FTM) for the 

design and assessment of bridge joints subjected to in-plane seismic actions. This was 

based on similar principles to STM, but specifically used in the seismic performance of 

bridge joints subjected to shear and bending, as well as accounting for post-tensioning.  

 Alcocer and Uribe (2008) investigated the monolithic and cyclic behavior of four 

simply supported deep beams in order to validate the adequacy of using STM 

approaches for seismic design. They concluded that the response of each specimen 

exceeded the STM expectations in terms of strength, stiffness, and deformation capacity, 

and hence STM is appropriate for seismic design provided that the reversed cyclic shear 

and inelastic deformation demands do not exceed a specified criterion. This conclusion 

is flawed because only strength based predictions were made in comparison to 

experimental results, thus demonstrating that STM is insufficient for assessing the 

deformation demands of a structure. Instead, this research shows that inherent 

conservatism in STM design procedures was the reason for the acceptable cyclic 

response. This conservative approach should not be blindly used to design structural 

elements subjected to seismic conditions as deep beams are typically shear critical, 

hence brittle failure mechanisms may result if not carefully identified and 

accommodated for accordingly through capacity design principles. 

 Collins et al. (2008) uses an extensive database of previously conducted 

experimental shear tests to discuss the safety of shear provisions used in North America. 
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He concluded that current ACI shear provisions were unconservative for members with 

large effective depths or higher reinforcement ratios. An example of a thick transfer slab 

is used to illustrate that when using ACI 318-08 design procedures, a ductile flexural 

failure is predicted. Whereas in reality a brittle shear failure is more likely to occur using 

their recommendations. This further signifies the dangers associated with using STM 

design procedures purely as a means of design without truly understanding interacting 

and interdependent failure mechanisms (flexure, bond, anchorage etc) associated with 

shear behavior.  

 Kuo et al. (2010) presents a rational approach for defining the force transfer 

mechanism and shear strength of reinforced concrete beams. Their proposed analytical 

model considers the force transfer in beam (B-) and disturbed (D-) regions, thus different 

shear failure modes were defined for each region. Although their analytical model is 

based on a detailed flow chart that considers the member geometry, making it more 

cumbersome than current design methods, it was shown to be a more accurate approach 

for the shear analysis of structural elements.  

In summary, since the development of the reinforced concrete truss analogy by 

Ritter (1899) and Mӧrsch (1909), plastic truss modeling has predominantly been 

developed using strut-and-tie models. Typically used as a design tool, STM is purely a 

force-based approach that implicitly assumes a lower bound solution by establishing a 

plastic truss consisting of concrete compression struts and steel tension ties, satisfying 

both equilibrium and ultimate material strength requirements. Consequently the eventual 

mode of failure and overall deformability is often illusive to the designer as deformation 
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compatibility requirements are not part of the design or analysis process. Therefore, as 

shown by Collins et al. (2008), the incorrect application of STM could lead to the 

formation of an undesirable brittle shear failure mechanism.  

 
Shear Panel Modeling 

Mitchell and Collins (1974) first introduced the Compression Field Theory as a means to 

solve the unknown variables associated with the variable-angle truss model for an 

idealized reinforced concrete element. By applying equilibrium, compatibility, and 

constitutive stress-strain relationships of reinforced concrete materials, the angle of 

inclination of concrete struts θ  and thus the concrete stresses can be determined (Collins 

1978; Collins and Mitchell 1980).  

Vecchio and Collins (1986) rectified the omission of the concrete tensile strength 

contribution with the proposed Modified Compression Field Theory (MCFT), where 

following parameters where proposed: (i) a constitutive material model for concrete in 

compression that accounted for compression softening effects; and (ii) a constitutive 

material model for cracked concrete in tension that accounted for tension stiffening 

effects. 

 In parallel to this, Mau and Hsu (1987) developed the Softened Truss Model 

assuming a uniform state of stress in a web shear element and idealizing the concrete 

compressive stresses as a series of parallel compressive struts. This model is also based 

on axioms of equilibrium and compatibility, and can be used to analyze a member 
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subjected to any combination of bending, axial load, shear and torsion (Hsu 1994; Hsu 

1996). 

 The models above mentioned have been experimentally validated and have been 

demonstrated  to accurately model reinforced concrete panel elements subjected to 

different applied states of stress. However, the practical application of these models 

remains irksome due to the mathematical implementation required. Moreover, the well-

know arch and truss actions for shear resistance in beams cannot be easily uncoupled 

when the analysis essentially takes place on small panel elements.   

  

Compatibility Truss Modeling 

An extensive study was conducted by Dilger (1966) on the formulation of cracked 

elastic shear stiffness of reinforced concrete beams using constant angle continuum truss 

models. Using strain energy concepts of the analogous truss, the inclination of the 

compression struts can be determined and the shear distortions calculated using Williot’s 

principles.  

Paulay (1971a) investigated the interaction between flexure and shear demands, 

mechanisms of shear resistance, deformation characteristics, and elastic stiffness of thin 

webbed deep coupling beams. He was the first to model the contribution of truss action 

using a variable angle truss model where the elastic components of rotation were 

characterized as: Truss action, Arch action, Flexural rotations, and Beam elongation; 

where Truss action refers to the transfer of shear force to the transverse reinforcement 

through diagonal concrete struts that resembles a truss; Arch action pertains to the shear 
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force resisted by a single diagonal concrete strut; Flexural rotations is the flexural 

rotation of a plane section owing to the longitudinal reinforcement strains; and Beam 

elongation is the total elongation of the flexural reinforcement.   

Kim and Mander (1999; 2000a; 2000b; 2005; 2007) extensively studied 

compatibility-based compound truss models to analyze the flexure-shear interaction of 

disturbed regions and thereby derive an analytic solution for the cracked elastic shear 

stiffness of concrete elements. They considered both constant and variable angle 

compound truss models, where the former is applicable to B-regions and the later 

represents the distribution of cracks in a D-region. Cyclic Inelastic Strut-Tie (CIST) 

modeling was introduced as a means of modeling the shear-flexure behavior of 

reinforced concrete beams using general-purpose inelastic computer software (Kim and 

Mander 1999; 2000a). This required the use of numerical integration schemes to 

effectively and efficiently select element models and the associated dimensioning of 

truss members.  

Hwang et al. (2000) presented a softened strut-and-tie model for analyzing the 

shear strength of deep beams. Their truss model is composed of a diagonal, horizontal, 

and vertical shear resisting mechanism, where the diagonal mechanism consists of one 

diagonal concrete strut, and the horizontal and vertical mechanisms consist of one tie 

and two struts that engage the transverse steel. Although this method effectively 

considers compatibility, constitutive material relations, and softening effects of cracked 

reinforced concrete, it is unable to provide the global deformational behavior. Hence the 

model is still limited to predicting the overall force-displacement response. 
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To et al. (2001) developed a nonlinear strut-and-tie computational model to 

assess the behavior of reinforced concrete beams and rectangular hoops when subjected 

to monotonic loading. This was later developed to model the behavior of circular column 

(To et al. 2002). Their proposed modeling approach was experimentally verified against 

large-scale columns and portal frame experiments. Although the model effectively 

predicted the experimental force-deformation behavior, a trial-and-error procedure was 

required for defining the contribution of the concrete members in compression and 

tension, where some factors where based on comparisons between experimental and 

analytical results.  

To et al. (2003) further refined their nonlinear strut-and-tie computational model 

to account for cyclic behavior of reinforced concrete structures using an idealized 

uniaxial fiber model. This was extended to modeling the hysteretic behavior of large 

scale interior beam-column joints as well as the dynamic response of a multistory 

concrete frame building system (To et al. 2009). This approach was demonstrated to be a 

very effective and efficient way of modeling the hysteretic response of structures. 

However, some of the definitions used for area and stiffness assignments where either 

arbitrarily reduced or based on comparisons between experimental and analytical results, 

making it difficult to be replicated by practicing engineers. 

Zhu et al. (2003) proposed a compatibility-aided strut-and-tie model for 

predicting the diagonal crack widths at re-entrant corners of structures such as the 

dapped ends of bridge girders and ledges of inverted T bent caps. Using a stiffness based 

approach, two sub-trusses where used to obtain the combined response of inverted T 
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bent caps with flexural and diagonal rebars. This method illustrated how two truss 

mechanisms could be combined using displacement compatibility to predict the overall 

response. There model was used to predict the behavior of seven full-scale specimens 

each showing good agreement with experimental results. 

 Salem and Maekawa (2006) presented a computer-aided nonlinear strut and tie 

model to predict the response of one-quarter-scale simply supported bottom-loaded deep 

beams. They compared using linear and nonlinear finite element modeling techniques to 

establish the nonlinear STM geometry. They found that a linear-based nonlinear STM 

was 37% conservative in predicting the ultimate load, while the nonlinear-based 

nonlinear STM was only 8% conservative. Thus, they concluded that a nonlinear-based 

approach for defining the STM geometry provides a more economical design solution, as 

it allows for the internal redistribution of stresses due to material nonlinearity. The 

dilemma of this approach is that two separate models are required to get the final 

analysis: one FEM model to define the truss geometry; and then the nonlinear STM to 

analysis the response. This approach is not appealing to practicing engineers; 

furthermore, their proposed model did not show good post-yield agreement with all the 

experimental results. 

 

Geometry of Truss Model 

The primary difficulty associated with truss modeling approaches is the limitation of 

selecting a single truss model that captures the full force-deformation over a range of 

both elastic and inelastic response. Due to the highly complex nature of D-regions and 
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the inelastic redistribution of internal forces at ultimate failure, the issue of defining a 

truss geometry that is appropriate for analysis of shear critical members has been 

disputed among researchers. 

Drucker (1961) first introduced the concept of stress fields as a limit analysis for 

structural concrete members. Later developed by Thϋrlimann et al. (1983),  stress fields 

were used to establish effective concrete nodal and strut stresses based on the theory of 

plasticity, truss geometry, and the type of stress field within the structure. An application 

of this method was proposed by Schlaich et al. (1987), where elasticity considerations 

were used to provide a simple an consistent strut-and-tie model. Hwang et al. (2000) 

define the lever arm between the tension and compression chord truss members using 

elastic bending theory. They justify this by stating that it simulates a situation where 

deep beams fail in shear with reserve flexural capacity still remaining.  

In contrast to this, other researchers [eg., MacGregor (1992), Yun (2000), 

Sritharan and Ingham (2003), Salem and Maekawa (2006)] contend that the use of 

elastic stress analysis is inappropriate when assessing the ultimate limit state of a 

structure due to highly nonlinear development of strains associate with D-regions. To et 

al. (2009) proposed using a first yield limit state analysis corresponding with B-regions, 

and an ultimate limit state analysis in D-regions. However the exact method of 

identifying the truss geometry is not specifically presented.  

Current design codes are also vague on the definition of the compression chord 

(or CCC node) location. This is typically achieved by satisfying effective nodal stresses 
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in the concrete.  As a result, classical STM practice typically neglects the contribution of 

compression steel, resulting in unduly large node sizes and conservative plastic truss 

solutions.  

 
Summary 

This section has demonstrated that previously proposed shear panel and compatibility-

based truss models (or strut-and-tie models) can be used as very powerful analysis tools 

for accurately predicting the shear behavior of deep beam and D-regions in comparison 

to the plastic truss. However the majority of these models are either: computationally 

involved and difficult for practicing engineers to replicate; require nonlinear structural 

analysis software not commonly available to engineering firms; or are not versatile and 

thus cannot be applied to a variety of structures.  

In light of this, the primary objective of this research is to develop a 

compatibility-based strut and tie model that is sufficiently accurate to capture the full 

nonlinear response or reinforced concrete structures, as well as elegantly simplified in 

order to be to be implemented by practicing engineers. This research is an extension of 

the research conducted by Kim and Mander (1999; 2005; 2007) and is adapted 

specifically for the behavior of bridge piers with stocky members and/or large disturbed 

regions.  
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CHAPTER II 

COMPUTATIONAL TRUSS MODELING OF SHEAR CRITICAL  

STRUCTURAL CONCRETE SYSTEMS 

This chapter presents a Compatibility Strut-and-Tie Model (C-STM) that is intended for 

analyzing the nonlinear force-deformational behavior of disturbed regions and structural 

concrete deep beams and beam-columns. The model is implemented in commercially 

available structural nonlinear analysis software in order to predict the structures 

nonlinear response. An in-depth comparison between experimental and computational 

results is made to validate the model and illustrate how it can be used to predict the 

hierarchy of failure mechanisms of the structure. Supplementary to this chapter is a user 

manual for implementing the C-STM into structural analysis software, this can be found 

in Appendix A.  

2.1  Chapter Scope and Background 

Due to the complex nature of shear behavior in reinforced concrete deep beams and D-

regions, conventional U.S. design standards have historically been based on empirically 

derived expressions. The concept of strut-and-tie modeling (STM) was introduced as a 

method of strength design in the AASHTO LRFD Bridge Design Specification in 1994, 

and ACI 318 in 2002 for bridges and buildings, respectively. However, as STM only 

satisfies force equilibrium and is intentionally formulated as a lower bound (plastic) 

solution, the critical mode (flexure, shear, bond, anchorage) or location of failure (i.e. 

element or node failure) is often illusive to the designer. Thus the ultimate failure 

mechanism might be an undesirable brittle collapse due to imposed overload scenarios. 



 

 

15 

Current nonlinear models of shear analysis in structural concrete deep beams, 

previously discussed, are generally complicated to use and have limited applicability or 

appeal to practicing engineers. Clearly, it is desirable to have a model that is derived 

from rational mechanics, validated with experimental evidence, and easy to implement 

as a supplementary tool for capacity analysis purposes.  

This chapter presents a Compatibility Strut-and-Tie Model (C-STM) that is 

implemented in commercially available structural analysis software, SAP2000 (1995), to 

predict the nonlinear response of reinforced concrete deep beams and D-regions. The 

model is used to analyze the behavior of previous experimental studies in order to 

validate the model and illustrate how it can be used to predict the hierarchy of failure 

mechanisms of the structure. This research supplements previous work by Kim and 

Mander (1999; 2005; 2007), and is adapted specifically for the behavior of cantilevered 

bridge bents.  

  

2.2  Research Significance 

Current U.S. practice for the design of deep beams and D-regions applies strut-and-tie 

principles to evaluate the shear strength of a structure. As a result, current codes 

(AASHTO LRFD, 2008; and ACI 318-08, 2008) use an iterative lower bound (plastic) 

truss method that satisfies force equilibrium and stress checks of the elements and nodal 

regions. Consequently the eventual mode of failure and overall deformability is often 

illusive to the designer as deformation compatibility requirements are not part of the 

design or analysis process. This research presents a computational method of analyzing 
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the flexure-shear interaction of deep beams and disturbed regions with particular 

emphasis on cantilevered reinforced concrete bridge bent caps. In addition to the normal 

strut-and-tie force equilibrium requirements, the proposed C-STM accounts for non-

linear behavior through displacement compatibility using inelastic constitutive material 

relations for cracked reinforced concrete. The intention of this research is to provide a 

minimalist computational model that can accurately assess the structural force-

deformation response of a structure, identifying the progression of nonlinear behavior 

that results in an ultimate collapse mechanism. The C-STM is not intended to supplant 

present force-based strut-and-tie design methods, but rather supplement existing design 

approaches as an advanced performance-based analysis method for checking and 

identifying failure modes and overall deformability. 

 
2.3  Numerical Truss Modeling 

As described by Paulay (1971a), the total shear of a deep reinforced concrete beam is 

resisted by truss and arch action. This section specifically focuses on truss modeling 

pertaining to the force transferred to the transverse reinforcement through diagonal 

concrete struts that resembles a truss. 
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Discrete Truss Modeling 

Figure 2.1 (a) illustrates the variable angle crack pattern that typically forms in disturbed 

regions of reinforced concrete deep beams. After the development of first cracking, 

compression struts acting through the concrete form diagonal concrete struts that are tied 

together by the reinforcing steel thus forming a truss model. Starting with a differential 

truss, Kim and Mander (1999; 2007) integrated this to form a so-called “continuum 

truss” where cracking is implicitly smeared. By separating the elastic and flexural 

deformation contributions of their truss model, they were able to show that the shear 

stiffness of a cracked fixed-fixed beam can be assessed as follows: 

 
2

, 2 2

cot
1 4 (1 0.39cot )

continuum v
s approx c v

v

nK E A
n

ρ α
ρ α

=
+ +

 (2.1) 

in which n =  the modular ratio of steel to concrete (where s cn E E= , sE  and cE  are 

Young’s Modulus for steel and concrete, respectively); wshv sbA /=ρ  is the volumetric 

ratio of shear steel to concrete area over one hoop spacing (where shA =  area of one set 

of stirrups; s =  stirrup spacing; and wb =  section width); cot /L jdα = =  section aspect 

ratio (where jd =  internal lever arm, and L =  member length); v wA b d=  is the shear 

area of concrete; and d =  effective section depth.  

To enable the analysis of specific structures, alternative numerical integration 

schemes were also considered by Kim and Mander (1999) and explored further herein. 

For a fixed-fixed beam, the simplest of these numerical integration schemes uses two-

point Gaussian quadrature leading to a so-called two-point Gauss Truss shown in Figure  
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(a) Discrete representation 

 

 
(b) Two-point Gauss truss 

 

Figure 2.1: Truss model idealization adapted from Kim and Mander (1999)  
for a fixed-fixed beam 
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2.1 (b); where the solid lines represent tension ties, and the dashed lines represent 

 diagonal concrete struts in compression. Through experimental and analytical 

validation, this two-point Gauss Truss was found to be a suitably accurate numerical 

integration scheme for capturing both shear and flexure deformations of disturbed 

regions with fixed-fixed end conditions. Higher order numerical schemes were also 

considered by Kim and Mander (1999), however the two-point Gauss Truss model has 

the appeal of being statically determinate (due to anti-symmetry). 

The ultimate shear resistance was decomposed into the well-known three-

component sectional shear model and proportioned according to strength: 

 u s c pV V V V= + +  (2.2) 

in which sV =  shear contribution of the transverse reinforcement; cV =  shear 

contribution of tensile stress in the concrete; and pV =  shear carried by the axial 

compression, where 

 θcot
s
jdfAV yhshs =  (2.3) 

 θβ cot' dbfV wcc =  (2.4) 

 tanpV P α=  (2.5) 

in which yhf = yield strength of transverse reinforcement; θ =  crack angle measured to 

the longitudinal axis of the element; β =  strength factor depending on the tensile 

capacity of the concrete; d =  effective section depth; and P =  applied axial load. 
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 Paulay (1971a; 1971b) related a portion of the vertical shear force resisting 

mechanism in shear coupling beams to a concrete corner-to-corner ‘arch action’ 

mechanism. The pV  contribution in Eq. (2.5) refers to the enhanced shear strength with 

an applied axial load via a combination of this corner-to-corner arch action and the 

postulated compression field of a diagonal strut from an applied axial load. As a result, 

the model proposed by Kim and Mander (1999) is more specific for modeling axially 

loaded beam and column members, and may not sufficiently capture arch action for deep 

beam members without axial load. This research aims to rectify this absence of arch 

action in deep beam members and D-regions without an applied axial load, and derives 

an alternative approach to define the interaction of arch to truss action.  

 

Truss Modeling Integration Schemes for Cantilevered Beams 

By taking only one-half of an anti-symmetric fixed-fixed beam that is represented by the 

two-point Gauss Truss, a statically determinant cantilever remains which can be 

represented by a so-called Single-Point Gauss Truss. However, due to its simplicity, the 

question of numerical accuracy remains.  

A convergence study of higher order numerical integration schemes was 

conducted in order to verify the accuracy of the proposed single-point Gauss truss. 

Based on recommendations of Kim and Mander (1999, 2007), the axial rigidities 

assigned to each truss member at the thi  integration point are given by: 
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 ( )Ti i s sh
LEA E A
s

ω=  (2.6) 

 
2

0.5( )
tan

i
di c v

i

EA E A
x

ω

α
=

+
 (2.7) 

 ( )L L sEA A E=  (2.8) 

in which ( )TiEA =  axial rigidity of the vertical transverse ties; ( )diEA =  axial rigidity of 

the diagonal concrete struts; ( )LEA =  axial rigidity the longitudinal tension ties; ix  = 

normalized coordinate of the thi  integration point, iω =  numerical weight factor for 

transverse reinforcement; and LA =  is the sectional area of steel assigned to the 

longitudinal tension tie.  

Table 2.1 presents the four different numerical integration schemes that were 

considered: single, two, and three-point Gauss quadrature, and Boole’s rule, where an 

illustration of each integration scheme is provided in Figure 2.2. The right column of 

Table 2.1 presents the relative elastic shear stiffness (K) of each truss normalized with 

respect to the two-point Guass Truss. Although some variability between schemes exists, 

it can be concluded that any reasonable integration scheme may be used to provide a 

satisfactory representation of shear stiffness. However, a more in-depth study should be 

considered to compare the flexure-shear interaction between truss models. 
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Table 2.1: Convergence study of higher order truss  
models for a cantilever beam 

Numerical 
Scheme i xi ωi 

Truss

2-point

K
K

 

Single-Point 
Gauss 

1 
2 

0.42265 
0.57735 

1 
1 1.0429 

Two-Point 
Gauss 

1 
2 

0.21132 
0.78868 

0.5 
0.5 1.0000* 

Three-Point 
Gauss 

1 
2 
3 

0.11270 
0.50000 
0.88730 

5/18 
8/18 
5/18 

1.0007 

Boole’s Rule 

1 
2 
3 
4 
5 

0.00 
0.25 
0.50 
0.75 
1.00 

7/90 
32/90 
12/90 
32/90 
7/90 

0.9371 

* Continuum model, Eq. (2.1), calculated a relative stiffness of 1.0431 
 

 

A 3ft. by 2ft. illustrative cantilevered deep beam is considered for analysis with 

longitudinal and transverse reinforcing ratios of 0.010 and 0.003 respectively. Figure 2.2 

shows the force-deformation responses of each truss model normalized with respect to 

the two-point Gauss Truss solution considering the following nonlinear failure 

mechanisms: (a) flexure steel yielding; (b) transverse steel yielding; and (c) concrete 

crushing. Each truss is modeled using commercial structural analysis software (SAP2000 

1995), and considers nonlinear stress-strain relationships for steel and concrete as a bi-

linear response with a 3% strain hardening stiffness, and an elasto-plastic response with 

a maximum compression stress of 0.85 'cf  respectively.  
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(a) Flexural failure 
(Tension chord yield) 

(b) Tensile shear failure 
(Hoop yield) 

(c) Compressive shear failure 
(Strut crushing) 

 

Figure 2.2: Results of convergence study for different numerical integration  
schemes for C-STM analysis 
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When nonlinear behavior is governed by longitudinal tensile steel yielding 

(Figure 2.2 (a)), the post-yield response is ductile. Despite similar yield strengths, the 

single-point Gauss Truss model resulted in a slightly more flexible elastic stiffness than 

the higher order Gauss quadrature truss models. The Boole’s truss was the most flexible 

of the truss models and provided a slightly lower initial yield strength, but had a similar 

post yield response.  

When nonlinear behavior is governed by transverse steel yielding (Figure 2.2 

(b)), similar stiffness results were obtained. However the post yield stiffness was less 

than that with longitudinal steel yielding. This shows that yielding of the transverse 

reinforcement can increase shear deformations which can result in the formation of other 

shear critical mechanisms such as sliding shear or concrete softening, discussed in 

subsequent sections. 

When nonlinear behavior is governed by strut crushing (Figure 2.2 (c)), the 

ultimate strength had a variation up to 30% with the single-point truss giving the largest 

difference. An elasto-plastic response of concrete was used for illustrative purposes only 

and does not accurately model concrete crushing, hence the response of each was 

stopped at a ductility of two.  

In summary, the single-point Gauss Truss proved to be a sufficiently accurate 

model for considering the nonlinear flexure-shear interaction relative to the higher order 

truss models. However, if strut crushing is expected, a convergence study is 

recommended to ensure the single-point Gauss Truss does not over-estimate the failure 

mechanism.  
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2.4 Arch vs. Truss Action in C-STM 

It is well known that concrete shear resistance can be conceived of as two 

complementary resistance mechanisms: arch and truss action (Park and Paulay 1975; 

Paulay 1971a). To model each of these shear resisting mechanisms, the load path for an 

applied point load can be decomposed into: (a) arch action through the center of the 

section, and (b) truss action engaging the transverse steel along with a tube of concrete 

around the member perimeter, as illustrated in Figure 2.3.  

 Arch action (presented in Figure 2.3 (a)), consists of a compressive stress field 

forming the main diagonal concrete strut (idealized as a dashed line in Figure 2.3 (a)) 

that passes through the center of the section.  Following the approach of Holden et al. 

(2003) the strut is assumed to have a parabolic stress distribution  with  a  width AW  that 

is proportional to the depth and length of the beam and is defined in subsequent sections. 

This approach is similar to that proposed for coupling beams by Paulay (1971a). The 

free end of the strut is connected to the tension tie (longitudinal reinforcement, idealized 

as a solid line). 

 Truss action (presented in Figure 2.3 (b)), specifically pertains to the shear 

mechanism engaging the transverse reinforcement as defined by Paulay (1971a). 

Diagonal compression struts are ‘smeared’ along the line of the stirrup legs (idealized as 

dashed lines) and are tied back into the member by transverse reinforcement ties 

(idealized as solid lines). Truss action can be represented through any valid truss model. 

However, in light of the foregoing convergence study, a single-point Gauss truss will be 

adopted for the remainder of this chapter.  
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(a) Arch action (b) Truss action (c) Combined C-STM 

 

Figure 2.3: Composition of classic arch and truss action that leads to the  
overall compatibility strut and tie model  

 

  

VU = VA+VT 
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The combined C-STM (presented in Figure 2.3 (c)), is the amalgamated response 

of arch and truss action, where displacement compatibility is inherently accounted for 

such that the two mechanisms work in parallel to one another. A method of apportioning 

the relative contributions of arch and truss action is described below.  

 Different methods of allocating the shear resisting mechanisms have previously 

been proposed based on the following parameters: (i) strength (Kim and Mander 1999; 

Paulay 1971a); (ii) stiffness (Zhu et al. 2004); (iii) geometry (Hwang et al. 2000); or (iv) 

the shear span-to-internal lever arm ratio (in accordance with the FIP-Commission 3. 

(1996) recommendations). An investigation into the merits of each of these strategies 

was conducted, and the following conclusion was drawn: the relative proportions of arch 

and truss action was minimal with respect to the elastic force deformation response, 

however significant differences in the nonlinear response of the flexure and shear failure 

mechanisms were observed. Similar observations were concluded by Paulay (1971a), 

who found that the total elastic rotations owing to truss and arch actions for a given 

beam were about the same, irrespective of the relative proportions.  

Hence it is considered necessary to apportion the arch and truss mechanisms 

according to the longitudinal and transverse reinforcement ratios, in order to accurately 

model the flexure and shear responses, respectively. An arch breadth scalar η  was used 

to apportion the section breadth (shown in the cross-sections of Figure 2.3), and is 

defined by the following ratio: 
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 2cot
Arch L

Arch Truss L T

V
V V j

ρη
ρ ρ α

= =
+ +

 (2.9) 

in which ArchV =  shear resisted by arch action over the entire section and is proportional 

to the longitudinal reinforcement given below; and TrussV =  shear resisted by truss action 

over the entire section and is proportional to the transverse reinforced given below: 

 tan tanArch y L L y wV f A f b dα ρ α= =  (2.10a) 

 / cotTruss y sh T y wV f A L s f b jdρ α= =  (2.10b) 

where L L wA b dρ =  is the volumetric ratio of longitudinal steel to concrete; LA =  is the 

area of longitudinal reinforcement contributing to the tension tie; T sh wA b sρ =  is the 

volumetric ratio of transverse steel to concrete over one hoop spacing; and j =  the 

internal lever arm coefficient which in lieu of a more precise analysis may be taken as 

0.9j = . It should be noted that Eq. (2.9) is based on the assumption that yf  is constant 

for longitudinal and transverse steel.  

The total shear resistance of the combined C-STM, as shown in Figure 2.3 (c), 

can now be defined as:
 

 u A TV V V= +   (2.11) 

where uV =  the total applied shear force; AV = is the contribution of arch action; and 

TV =  is the contribution of truss action.  
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In order to maintain deformation compatibility and equilibrium between the arch 

and truss mechanisms, it is assumed that the section breadth bw is proportioned 

according to the component strength as follows  

 
(1 );a w t w

u w u w

V b V b
V b V b

η η−
= =  (2.12) 

where wbη =  the arch breadth, and (1 ) wbη− =  the truss breadth as shown in the cross 

sections of Figure 2.3 (c). 

 Figure 2.4 illustrates the results of the arch breadth scalar η  (Eq. (2.9)) when 

plotted against L jd  with varying ratios of transverse to longitudinal reinforcement. As 

one might intuitively expect, this relationship shows that arch action is more prominent 

in beams with smaller L jd  and T Lρ ρ  ratios, while truss action has more of an effect 

in beams with larger L jd  and T Lρ ρ  ratios. Others have made similar conclusions 

(Hsu 1996). 

 

 
  



 

 

30 

 
 
 
 
 
 
 
 

 

  
(a) Proportionality scalar vs. L/jd ratio (b) Proportionality scalar with increasing 

reinforcement ratios 
 

Figure 2.4: Graphical illustration proportionality scalar in relation to L/jd and 
reinforcement ratios  
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2.5  Stress and Strain Transformation for Flexural Equivalence 

A primary difficulty associated with accurate truss modeling approaches is the limitation 

of selecting a single truss model that captures the full force-deformation over a range of 

both elastic and inelastic response. In reality, the concrete neutral axis depth varies with 

increasing moment demand, thus shifting the centroid of the concrete resultant force.  

However, when using numerical truss modeling techniques, the compression and 

tension flexural chord members (member 1-3, and 2-4-5, respectively in Figure 2.3 (c)), 

have a fixed internal lever arm jd throughout the analysis. Hence it is not possible to 

replicate the increasing lever arm associated with the concrete force resultant. Therefore, 

for the C-STM, an internal lever arm depth must first be assumed, and then the stress-

strain constitutive material relationships need to be transformed accordingly in order to 

provide an equivalent force that provides a comparable sectional moment.  

The significance of this transformation is to ensure that concrete compression 

force obtained by the C-STM chord member is in accordance with standard stress-block 

analysis and incorporated over the entire range of loading. Given the limitations of truss 

modeling, the method described in the following provides a rational solution to modeling 

the combined response of steel and concrete in the compression chord members.  

In comparison, previously proposed models either: ignore the presence of 

compression steel [MacGregor (1992) and other classical strut and tie modeling 

approaches]; or assumes a uniform strain in the concrete compression zone by modeling 

the concrete compression chord axial rigidity as EA = Ec(cb), thus over predicting the 

chord members stiffness [To et al. (2001, 2009)]. 
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The following presents the theory for defining the top and bottom chord 

members for doubly and singly reinforced sections using stress block analysis techniques 

to make this required transformation.  

 

Stress Block Analysis for Doubly Reinforced Beams and Columns 

For doubly reinforced sections, it is proposed that the C-STM flexural chord members be 

aligned with the respective steel centroids so that the internal lever arm is represented as 

'jd d d= − , where d  and 'd  are the respective centroids of the tension and 

compression steel. A similar approach was used and validated by Kim and Mander 

(1999) in order to incorporate cyclic behavior. However, because the centroids of the 

steel compression force (Cs) and the concrete compression force (Cc) may not coincide, 

it is necessary to adjust the concrete constitutive material properties accordingly so that 

the transposition of the concrete element force Cc will provide a similar moment in order 

to satisfy the sectional moment capacity throughout the analysis.  

Figure 2.5 (a) shows an elastic stress block analysis preformed on a doubly 

reinforced concrete section assuming plane sections remain plane purely for the purposes 

of defining the concrete compression force. The neutral axis depth c can be defined such 

that c kd= , where k is the well-known elastic compression zone coefficient for beams 

given by Eq. (2.13) (Park and Paulay 1975) 

 ( ) ( ) ( )2 2' 2 ' ' 'k n d d n nρ ρ ρ ρ ρ ρ= + + + − +  (2.13) 
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(a) Stress block analysis of a doubly reinforced concrete section after cracking 

 

 

 
 

  
 
 
 
 
 
 
 
 
 

 
  

(b) Transformed stress block for strains measured at compression steel centroid 

 

Figure 2.5: Equivalent stress block analysis for doubly reinforced sections    
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For column members an additional modification is made to allow for the axial force 

given by Eq. (2.14) (Arnold 2004). 

2

2' ' ''' 2 ' '
' ' '

c c c

c s c s c s

f f fP d P Pn n n
f bd f d f bd f f bd f

k ρ ρ ρ ρ ρ ρ
              = + + + + + − + +                                 

 (2.14) 

where d =  the effective depth of the beam from the extreme concrete compression fiber 

to the centroid of the tension steel; 'd = the depth from the extreme compression fiber to 

the centroid of the compression reinforcement; ρ =  the ratio of tension reinforcement; 

'ρ =  the ratio of compression reinforcement; n = the modular ratio of steel to concrete; 

b =  the section breadth; 'cf =  concrete compression strength; and P =  column axial 

force. 

Because the C-STM compression chord member is located at the steel centroid, a 

transformation of the concrete stress block force Cc is required to convert it to an 

equivalent C-STM force as shown in Figure 2.5 (b). Section equilibrium requires 

 ( )*
s cP C C T= + −  (2.15) 

in which s s sT A E ε=  (where sA = representative area of longitudinal tension steel, and 

sε = tensile steel strain); ' 's s s sC A E ε=  (where 'sA = representative area of longitudinal 

compression steel, and sε = compression steel strain); and *
cC =  transformed concrete 

force discussed below. This analysis assumes concrete tensile effects are zero at the 

ultimate limit state.  
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The effective concrete strain *
cε  measured by the C-STM chord member can be 

defined in terms of the extreme compressive concrete strain using the following strain 

compatibility relationships: 

 
* '

' '
c c s

kd kd d kd d
ε ε εφ = = =

− −
 (2.16a) 

 *
'' 1c s c

d
kd

ε ε ε  ∴ = = − 
 

 (2.16b) 

Hence, the concrete compression force can be expressed in terms of equivalent concrete 

stress block and related to *'s cε ε=   as follows:  

 
*' ( . )c c c c cC f kd b E Aαβ ε ψ= =  (2.17) 

where cA kd b=  is the area assigned to the concrete chord element; ψ =  a compatibility 

correction scalar; *
cε =  concrete compression chord strain; and αβ =  the stress block 

parameters used to define the equivalent stress block, where α =  effective average 

concrete stress ratio, and β =  effective stress block depth factor.  

Rearranging Eq. (2.17) and substituting Eq. (2.16b), the compatibility correction 

scalar can be expressed as: 

 
*

' '

' '1 1

c c

cc c coc

co

f f
d dE E xn
kd kd

αβ αβ αβψ
ε εε
ε

= = =
   − −   
   

 (2.18) 
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in which c cox ε ε=  is the normalized concrete compression strain at the extreme 

compression fiber; 0.002coε = ; and n is defined as: 

 
'

' ' ' '

5000 ( ) 0.002 10 120
( ) ( )

cc co

c c c c

f MPaEn
f f f MPa f psi
ε

= = = ≡  (2.19) 

where 5000 '( ) 60000 '( )c c cE f MPa f psi= =  is the initial tangent modulus in 

accordance with Mander et al. (1988). 

Now the only remaining unknown variables in Eq. (2.18) are αβ  and x . The 

nonlinear relationship between these two stress block variables is shown in Figure 2.6 

according to research conducted by Reddiar (2009) (note: concrete strengths are in 

metric). This shows a linear relationship between αβ  and x  up to the coordinates  

( x ,αβ ) = (0.7, 0.5). 

Substituting these coordinates into Eq. (2.18) as well as the expressions defined 

in Eq. (2.19), the elastic compatibility correction scalar Eψ  can be expressed as: 

 ( ) ( )

' '( ) ( )
168 1 ' 14 1 '

c c
E

f psi f MPa
d kd d kd

ψ = ≡
− −  (2.20) 

The original expression in Eq. (2.17) shows that the force measured in the C-

STM concrete is directly related to the compression chord strain *
cε , where the concrete 

stiffness is modified using the elastic compatibility correction scalar.  
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(a) Stress-strain relationship f’c = 60 MPa 

 

 
(b) Alpha-Beta and Beta stress block parameters 

Figure 2.6: Stress block variables as defined by Reddiar (2009) 



 

 

38 

 ( )*
c c E c cC E Aε ψ=  (2.21) 

where the axial rigidity assigned to the C-STM concrete element is E c cEA E Aψ= . 

Further detail of the transformed nonlinear constitutive material relationships 

applied to the concrete chord members is provided in subsequent sections.  

 

Stress Block Analysis for Singly Reinforced Beams  

For singly reinforced beams that do not exceed the elastic limit in the concrete 

compression stress block, the internal lever arm can be represented using an elastic 

analysis such that / 3jd d kd= −  (as shown in Figure 2.7 (a)). In a similar manner to 

before, the resultant concrete compression force can be defined as: 

 ( )* *0.75c c E c c c c cC E A E Aε ψ ε= =  (2.22) 

where cA kd b=  is the area assigned to the concrete chord element; 0.75Eψ =  is the 

compatibility correction scalar obtained from the assumed triangular elastic stress block; 

*
cε =  C-STM concrete compression chord strain measured at a depth of / 3kd  below the 

extreme compression fiber. 

For nodes where compression failure is likely, a more appropriate representation 

of the internal lever arm may be defined using an ultimate limit state analysis such that 

1 / 2jd d cβ= −  (as shown in Figure 2.7 (b)), where 1β  is the normal code-based stress 

block factor, and c is the neutral axis depth calculated by satisfying section equilibrium.   
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(a) Stress block analysis of singly reinforced section in service load rage  

 

 

 
(b) Stress block analysis of singly reinforced section at ultimate limit state  

 

Figure 2.7: Equivalent stress block analysis for singly reinforced sections   
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For this case, a similar stress block analysis to that conducted for the doubly reinforced 

case can be used. It is important to note that 1β  is used to approximate the location of the 

C-STM compression chord member in order to obtain an internal lever arm that is 

representative of the ultimate limit state. Whereas αβ  is used to approximate the force 

of the equivalent concrete stress block as the strain increases.  

In a similar manner to the derivation of the doubly reinforced concrete stress 

block, the effective concrete strain *
cε  measured by the C-STM chord member can be 

defined as: 

 
* 11

2c c
βε ε  = − 

   (2.23) 

Thus the elastic compatibility correction scalar Eψ  can be expressed as: 

 ( ) ( )1 1

'( ) '( )
168 1 2 14 1 2

c c
E

f psi f MPa
ψ

β β
= ≡

− −  (2.24) 

 

2.6  C-STM Truss Geometry and Axial Rigidity Assignments 

The C-STM shown in Figure 2.3 (c) can be adapted for any deep beam or disturbed 

region and modeled using structural analysis software. Each member in the C-STM is 

comprised of two elements that model the individual behavior of steel and concrete in 

that member. The two elements are constrained together in order to give the combined 

steel-concrete response. The C-STM requires the following parameters to be defined in 

order to model the constitutive behavior of truss members: (i) truss geometry to define 
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the member force; and (ii) axial rigidities of the steel and concrete elements to define 

elastic deformations.   

 
Truss Geometry 

As previously discussed, the primary difficulty associated with accurate truss modeling 

is the limitation of selecting a single truss model that captures the full force deformation 

over a range of both elastic and inelastic response. The truss geometry is defined by first 

locating the compression and tension chord members in the beam and column members. 

This is done in accordance with the foregoing section, where the location of the 

compression chord member varies for doubly and singly reinforced sections.   

 The horizontal positioning of the boundary nodes is either defined by: (i) an 

applied load/bearing support (i.e. Node 5 in Figure 2.3 (c) is defined by the centroid of 

the applied load); or (ii) at the intersecting lines of thrust from the beam and column 

members (i.e. Node 1 in Figure 2.3 (c) is defined at the intersection of the compression 

steel in the beam and supporting column). The transverse tension ties in the truss 

mechanism are then located according to the selected numerical truss as defined in 

Figure 2.2 (i.e. Nodes 3 and 4 in Figure 2.3 (c) are defined by single-point Gauss 

quadrature). 

 
Axial Rigidity 

For each C-STM truss member, the expected composite steel-concrete response is 

modeled using separate elements for steel and concrete, respectively. Each element is 
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assigned elastic axial rigidities as specified in Table 2.2, where the member numbers 

refer to Figure 2.3 (c). Some comments on Table 2.2 follow. 

For tension and compression chord members (row 1 and 2 of Table 2.2), the 

concrete area is assumed to be the same so that cyclic effects can to be accounted for, if 

necessary.  

 

 

Table 2.2: Elastic truss member axial rigidities 

Member 
Steel Element Concrete Element 

Comments E A E A 
2 – 4 
4 – 5 sE  sA  cE  .b kd  Tension Chord 

1 – 3 sE  'sA  E cEψ  .b kd  * Compression 
Chord 

3 – 4 sE  h shN A  cE  ( ) sNdc hhc 24 +  

~ Active Hoop steel 
including tension 
stiffening effect 

1 – 5 – – cE  0.375
cos

wb jdη
α

   Concrete Strut in 
Arch Mechanism 

1 – 4 – – cE  
2

0.5(1- )
0.423 tan

wb jdη

α+
 Concrete Strut in 

Truss Mechanism 

3 – 5 – – cE  
2

0.5(1- )
0.577 tan

wb jdη

α+
 Concrete Strut in 

Truss Mechanism 
 

* Eψ = strain compatibility coefficient = ( ) ( )

' '( ) ( )
168 1 ' 14 1 '

c cf psi f MPa
d kd d kd

≡
− −

 

In lieu of a more precise analysis it is recommended that 0.6Eψ =  

~ [ ]int 1hN L s= −  is the integer part of active hoops in truss mechanism 
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For transverse truss members (row 3 of Table 2.2), the total area of transverse 

reinforcement is evaluated as the number or hoops actively participating in the truss 

mechanism hN , where [ ]int 1hN L s= −  is the number of hoopsets. Also, the 

embedment area of concrete for the transverse tie is taken as twice the cover depth (cc) 

plus the stirrup hoop diameter (dh), multiplied over the length of actively participating 

hoops ( )hN s , thus defining the area of concrete surrounding the stirrup legs.  

For the concrete arch member (row 4 of Table 2.2), the strut width is assumed to 

have a parabolic stress distribution that is proportional to the depth and length defined by 

Holden et al (2003) as ( ) ( )23 8 1AW jd jd L= + . This is multiplied by the apportioned 

arch strut width wbη  and simplified accordingly to obtain the strut area. 

For the concrete truss strut members (row 5 and 6 of Table 2.2), the strut width is 

defined using the expression derived by Mander et al. (1999) in Eq. (2.7), where the 

normalized coordinate of the ith integration point xi is taken as 0.423 and 0.577 (in 

accordance with Table 2.1) for the concrete elements 1-4 and 3-5, respectively. These 

are multiplied by the apportioned truss strut width wb)1( η−  to obtain the respective strut 

areas. 
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2.7  Constitutive Material Relations of Truss Elements 

The elastic parameters of the C-STM model are defined by the truss geometry and axial 

rigidities. In order to define the strength of each truss element, nonlinear constitutive 

material relationships are applied in accordance with Figure 2.8 and described as 

follows. 

 

Reinforcing Steel  

Reinforcing steel (Figure 2.8 (a)) is approximated using a bi-linear stress-strain 

relationship with 3% strain hardening beyond yielding. Where necessary, a more 

accurate material model may be applied in order to allow for bond slip or steel fracture.  

 

Diagonal Concrete Struts 

Concrete in compression for the diagonal web compression struts for both the arch and 

truss mechanisms (Figure 2.8 (b)), is defined by the well-known Mander model (Mander 

et al. 1988), or suitably approximated using a tri-linear stress-strain relationship as 

shown.  

 

Concrete Tension Stiffening Effects 

The contribution of concrete tensile strength, referred to as “tension stiffening”, was first 

observed by Considère (1899). Neither the original compression field theory (Collins 

1978) nor conventional strut-and-tie models consider the tensile contribution of concrete,  
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(a) Reinforcing steel (b) Concrete modeling for web members 

 
 

(c) Proposed tension stiffening models  (d) Stress-block parameters for unconfined concrete 

 
 

(e) Concrete modeling for chord members (f) Compression chord stress-strain illustration 

Figure 2.8: Constitutive stress-strain relationships  
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thus lower bound solutions are inevitable. It is contended that to provide accurate 

estimates of real behavior using a full truss model, such a tension-stiffening modification 

is required. 

Assuming strain compatibility between the concrete and steel, the overall 

member tensile force is simply the summation of the steel and concrete forces for a 

given strain (Collins and Mitchell 1991; Vecchio and Collins 1986). Thus the combined 

steel and concrete elements that make up the tension members 2-4-5, and 3-4 in Figure 

2.3 (c), intrinsically provide the overall tension stiffened response. 

Tension stiffening models vary for different situations and structures, hence the 

following three approaches are recommended for the C-STM:  

1) For longitudinal and transverse reinforcing steel bars, tension stiffening is modeled 

by considering a fracture energy method proposed by Rots et al. (1985) and adopted 

by Kim and Mander (1999), as shown in Figure 2.8 (c). The fracture energy fG  is 

defined as the energy required to create one unit area of cracking in which  

f fG h g= , where 3 ah d=  is the crack band width taken as three aggregate 

diameters; and fg =  shaded area under the stress-strain softening diagram. The 

stress-strain relationship is defined using a tri-linear stress-strain relationship given 

by 

 't c t t tf E forε ε ε= ≤  (2.25) 

 ' 2
3 3
t

t t u
ff for ε ε= =  (2.26) 
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 0t t uf for ε ε= =  (2.27) 

in which tf =  average concrete tensile stress; tε =  average concrete tensile strain;  

'tε =  strain at peak tensile stress; )('' psifxf ct =  is used to define the concrete 

tensile strength, where 4x =  is typically assumed for standard concrete (Collins and 

Mitchell 1991), but can be as large as 7.5 for flexural tension members (Reddiar 

2009); and uε =  ultimate tensile strain where stress can no longer be transferred 

given below 

 
18
5 '

f
u

t

G
f h

ε =  (2.28) 

Based experimental results, the fracture energy fG  for normal-weight concrete 

typically ranges from ( ) ( )0.343 0.571 / 60 100 /lbs in N m− ≡ −  (Petersson 1980). 

Alternatively uε  may be assumed as the steel yield strain for simplicity. 

2) In the case of panel and wall structures with a dense network or reinforcing steel, the 

decending branch model proposed by Vecchio and Collins (1986) may be more 

appropriate as shown in Figure 2.8 (c). That is,  

 1 2 ' '
1 500

t
t t t

t

ff forα α ε ε
ε

= >
+

 (2.29) 

where 1α  and 2α =  factors to account for bond characteristics of reinforcement.  

3) For structures with experimental results, parameterized models can be applied to 

model the stress-strain relations used for concrete tension stiffening. 
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Concrete Compression Chord Members 

Section 2.5 presents the transformation of the elastic properties for concrete compression 

chord members in order to modify the concrete resultant force according to the stress 

block analogy. This theory can be extended to model the full stress-strain constitutive 

material relations using the stress block parameters derived by Reddiar (2009) shown in 

Figure 2.6. 

The relationship between αβ  and x to can be approximated using a tri-linear 

relationship (shown in Figure 2.8 (d)), thus the full stress-strain relationship for concrete 

compression chord elements in the C-STM can be obtained through an axis 

transformation of cf  and *
cε , respectively as shown in Figure 2.8 (e). The compatibility 

correction scalar ψ can be defined for the three tri-linear slopes using the change in 

coordinates ( x∆ , αβ∆ ), such that: 

 '1 d x n
kd

αβψ ∆
=
 − ∆ 
 

 (2.30) 

For 0 0.7x< ≤  
( ) ( )

' ( ) ' ( )(0.5 0)
1 ' (0.7 0) 120 168 1 '

c c
E

f psi f psi
d kd d kd

ψ −
= =

− − −  (2.31) 

For 0.7 1.5x< ≤  
( ) ( )

' ( ) ' ( )(0.7 0.5)
1 ' (1.5 0.7) 120 480 1 '

c c
P

f psi f psi
d kd d kd

ψ −
= =

− − −  (2.32) 

For 1.5 4x< ≤  
( ) ( )

' ( ) ' ( )(0.5 0.7)
1 ' (4 1.5) 120 1500 1 '

c c
PP

f psi f psi
d kd d kd

ψ −
= = −

− − −  (2.33) 
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where Eψ =  the initial elastic slope; Pψ =  the slope prior to the peak; and PPψ =  the 

post peak slope. 

For illustrative purposes, assume that ' 5000 ( )cf psi= , Ec = 4030 (ksi); and 

' 0.25d kd = . The corresponding compatibility correction scalars can be defined as: 

0.56Eψ = , 0.20Pψ = ; and 0.06PPψ = − , thus the coordinates for the equivalent C-STM 

compression chord stress-strain relationship can be defined below (shown in Figure 2.8 

(f)): 

 ( )*
1 1

0.5 '( , ) ,0.5 ' 0.0011, 2.5)c
c c c

E c

ff f
E

ε
ψ

 
= = 
 

 (2.34) 

 ( )* *
2 2 1

(0.7 0.5) '( , ) ,0.7 ' 0.0024, 3.5c
c c c c

P c

ff f
E

ε ε
ψ

 −
= + = 
 

 (2.35) 

 ( )* *
3 3 2

(0.5 0.7) '( , ) ,0.5 ' 0.0063, 2.5c
c c c c

PP c

ff f
E

ε ε
ψ

 −
= + = 
 

 (2.36) 

The area of the corresponding concrete element is defined as cA kd b= . 
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2.8  Ultimate Strength and Softening of Constitutive Relations 

The exact failure mechanism for deep beams or disturbed regions is difficult to define 

due to unknown (a priori) hierarchy of failure mechanisms; particularly given the fact 

that shear failure alone can be of four types: diagonal tension, web crushing, nodal 

failure, or sliding shear. In reality the type of failure is heavily dependent on the member 

geometry and detailing, and is often a combination of events that lead to the formation of 

the final collapse mechanism. In the C-STM, steel yielding and concrete crushing is 

intrinsically accounted for through the material constitutive relationships previously 

described. However a more thorough post analysis assessment is required in order to 

assess other possible critical failure mechanisms, further discussed in this section. 

  

Compression Softening 

According to Vecchio and Collins (1986) softening of the principal compression 

concrete struts is due to orthogonal tensile strains in cracked reinforced concrete that can 

be modeled by the equation: 

 2,max

1

1 1.0
'

0.8 0.34c

co

f
f

ζ
ε
ε

= = ≤
+

 (2.37a) 

where ζ =  the softening coefficient; 2,maxf =  the “softened” concrete strength shown in 

Figure 2.9 (a); coε =  is the principal compression strain typically taken as 0.002; and 

1ε =  is the principal tensile strain acting perpendicular to compression strut.  
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(a) Compression softening  (b) Illustrative application of compression softening 

 

 
 

Figure 2.9: Mohr’s circle for defining the principal tensile strain 
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Eq. (2.37a) can be conveniently recast as  

 2,max

1

1
' 0.00121

3
c

co

f
f

ζ
ε

ε

= =
−

+
 (2.37b) 

where •  are Macaulay brackets; and the value 0.0012 can be thought of as a fracture 

strain such that when 1 0.0012ε >  the concrete softens.  

Figure 2.9 (b) illustrates the compression softening effects acting on the diagonal 

corner-to-corner arch strut. As 1ε  is difficult to assess directly, particularly in 

commercial software (SAP2000), it can be inferred by assuming out-of-plane 

compatibility such that 1ε  is proportional to the transverse tie strain tε . Hence, if the 

compressive axial strain of a strut 2ε  and the transverse tie strain tε  acting across the 

strut are known, then the principal tensile strain 1ε  can be determined using Mohr’s 

circle, as shown by the transformation in Figure 2.9 (c). Solving the expression derived 

from the radius R for ε1 gives 

22
1 2 2tan (2.38)

cos
tε ε

ε ε θ
θ

 
= + 

 

 in which θ =  the diagonal strut angle relative to the longitudinal direction. 

 Thus, in terms of Eq. (2.37b), the compression softening coefficient can be 

rewritten as 
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 2,max

2

1
' 0.0012

1
3

c

co

f
f Cε

ζ
ε

ε

= =
−

+
 (2.39) 

where Cε =  a principal tensile strain constant defined as 

 22
2tan

cos
tCε

ε ε
θ

θ
= +  (2.40) 

To evaluate εC , the ratio of 2tε ε  can be determined from an elastic analysis 

with no tension stiffening effects where εC  remains constant. Modified stress-strain 

relations are then found from the modified ascending branch of a power-type stress-

strain curve proposed by Mander (1983) and given by 

 2' 1 1
n

c c
co

f f εζ
ζε

  
 = − −    

 (2.41) 

where / 'c co cn E fε= . This softens both the concrete stress and strain according to the 

secant stiffness. As an example, consider the case of 2 2.1tε ε = , and 38θ = ° . From Eq. 

(2.40) 4Cε = , and from Eq. (2.39) ( )21 1 666.7 0.2ζ ε= + − . This result is now 

applied to Eq. (2.41) and plotted in Figure 2.10. 

 The softened stress-strain relationship can then be applied to the constitutive 

material model for the diagonal compression struts. The analysis is then re-run to 

provide the response that includes the effects of the softened diagonal struts.   
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Figure 2.10: Illustration of concrete softening 
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Strut-and-Tie Strength Checks 

Strut-and-tie modeling predisposes itself to defining failure as either: yielding of 

reinforcing ties, crushing of a strut, anchorage failure of reinforcing ties, or nodal failure. 

The first two failure modes are accounted for with the constitutive material models, 

however other failure modes need to be checked in a post analysis assessment. The 

member forces in the C-STM can be used to check that the force does not exceed the 

strength defined using conventional STM design procedures for anchorage and nodal 

failures. 
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2.9  Experimental Verification 

The proposed C-STM was used to predict the force-deformation response and internal 

strain behavior of previously tested reinforced concrete bridge bent caps (Bracci et al. 

2000; Powanusorn and Bracci 2006a; Powanusorn and Bracci 2006b; Young et al. 

2002). This study is used to verify the accuracy of the proposed C-STM and demonstrate 

how the C-STM can be applied to reinforced concrete structures. The model was 

implemented using standard commercial nonlinear structural analysis software 

(SAP2000 1995). 

 Bracci et al. (2000) investigated the causes of excessive cracking in deep 

reinforced concrete bent caps. The specimens were full-scale models of prototype bents 

used in Texas that developed cracking near the column-to-bent cap region under service 

loading. Three out of 16 specimens were selected herein for modeling verification; the 

selection was based on a variety of transverse to longitudinal reinforcement ratios and 

clarity of reported results. Figure 2.11 shows the general details of the selected 

specimens. 

Figure 2.11 (a) presents the reinforcing layout and cross-sections of the three 

specimens, along with their corresponding distribution breadths of “Arch” (inner fill) 

and “Truss” (outer fill) action. Each cross-section specifies the longitudinal and 

transverse reinforcement used in each specimen. All bents had compression 

reinforcement consisting of 8 – #8 bars and a specified cover concrete depth of 2.25 in. 
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(a) Front elevation and sections of specimens used for validation 

 
(b) C-STM of Bent Cap showing selected strain gages 

Figure 2.11: RC-Bent cap model used to verify C-STM 
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The measured yield strength of the longitudinal (#8) and transverse (#4) steel was 

65yf ksi= . Specimen 5D had a larger amount of longitudinal steel resulting in a higher 

contribution of arch action; conversely, Specimen 8G had twice the amount of transverse 

reinforcement resulting in a higher contribution of truss action, as shown in Figure 2.4. 

Figure 2.11 (b) illustrates the C-STM used to analyze each specimen overlaid 

with the reinforcement details. Also shown is the location of the longitudinal and 

transverse strain gages used to compare experimental vs. predicted results. The modeling 

procedure of the C-STM and parameters are defined in Appendix A. 

 Table 2.3 shows the measured 28 day concrete strengths and the factors used to 

calculate the arch breadth scalar, η . No test day strength results were provided hence the 

28 day strength was assumed for each analysis.  

Table 2.3: Concrete strengths and arch breadth scalar 

Specimen 2A 5D 8G 

f '28 (ksi) 6.2 5.5 5.3 

T Lρ ρ  0.408 0.314 0.816 

L jd  1.52 1.50 1.52 

η 0.555 0.625 0.384 
 

General observations reported during testing where as follows: 1) flexural 

cracking initiated near the column face of the bent cap around 100 kips; 2) at 

approximately 160 kips the vertical flexural cracks began to incline toward the column 

support; 3) with increased loading, inclined flexure-shear cracks initiated, propagated, 

and widened while the original flexural cracks stabilized; 4) ultimate failure was very 
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sudden and typically occurred along a shear plane, extending from the load point 

inclined toward the column support (Bracci et al. 2000). These experimental results 

serve as the basis for the initial verification of the C-STM analysis. 

 

C-STM Analysis Results 

Figure 2.12 presents results of the nonlinear response as predicted by C-STM analysis 

for Specimen 2A. These results are compared with experimentally observed longitudinal 

and transverse reinforcement results, and the overall force-deformation response. Here, a 

chronological breakdown of the progression of nonlinear behavior is used to illustrate 

the corresponding member stress-strain relationships as they develope during the 

computational modeling. It should be noted that the C-STM concluded that the responses 

of each end where within 3% of each other despite their geometric differences, hence 

only the cantilevered end is reported from the C-STM analysis. 

LC = Longitudinal cracking (see graphs in row 1 of Figure 2.12) first occurs in 

the longitudinal concrete elements when the member stress exceeds the concrete tensile 

strength 'tf , thus indicating vertical flexural cracking in the top chord. As the force 

increases, the longitudinal tension stiffened member’s exhibit tension softening effects 

where the concrete between cracks still have some ability to contribute in resisting 

tensile strains.  

TC = Transverse cracking (see graphs in row 2 of Figure 2.12) then occurs in the 

tension stiffened transverse truss elements. This correlates to the diagonal shear cracking 

observed as a result of the flexure-shear interaction.   
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Figure 2.12: Progression of nonlinear behavior for Specimen 2A  
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 LY = Longitudinal steel yielding (see graphs in row 3 of Figure 2.12) occurs 

when the reinforcing steel yield stress yf  is exceeded, and correlates to the flexural 

moment capacity of the member.  

 TY = Transverse steel yielding (see graphs in row 4 of Figure 2.12) may occur if 

the member has insufficient transverse reinforcement and correlates to the widening of 

the inclined shear cracks. Post-yield behavior of transverse reinforcement is governed by 

the anchorage of the hoops: if open 90° hooks or U-bars are used then loss of anchorage 

may occur at high strains; if closed 135° hooks are used then a full post-yield behavior 

may be assumed. Here open hooks were used thus a loss of anchorage is assumed after 

yielding. 

The ultimate collapse mechanism formed along the main diagonal corner-to-

corner shear plane as shown in Figure 2.13 (a). In order to predict this failure 

mechanism, a post-analysis investigation was conducted and concluded that the corner-

to-corner arch strut was prone to a compression softening failure. This was determined 

through the following steps:  

1. The principal tensile strain was evaluated using Eq. (2.38) based on the strains in 

the compression arch strut 2ε  and transverse steel tε . 

2. The “softened” concrete strength is then calculated using Eq. (2.37b), thus 

defining the struts capacity. 
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Figure 2.13: Compression softening failure of Specimen 2A 

  

 
 

 
 

(a) Experimental photo of Specimen 2A at failure 
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3. The stress in the strut is defined as 2 ci cf Eε=  in accordance with the stress-strain 

profile (alternatively 2 /ci cif F A=  can be used in the elastic region), thus defining 

the struts demand. 

4. The demand and capacity lines are then plotted against the actuator load for 

every analysis time step as shown in Figure 2.14 (d). The intersection of the two 

lines defines when compression softening effects are critical, and can be 

projected onto the force-displacement diagram to predict the ultimate failure load 

(Figure 2.14 (b))   

The drastic change in slope of the capacity line (at approximately 400 kips) is due to the 

onset of transverse steel yielding, thus showing the rapid deterioration of the arch strut 

confinement. This analysis was in good agreement with the observed ultimate load. 

Figure 2.14 presents a summary of experimental versus theoretical results for the 

overall force-deformation, longitudinal, and transverse responses of Specimens 5D and 

8G. The longitudinal and transverse force vs. strain diagrams (column (b) and (c) of 

Figure 2.14 respectively) identifies the nonlinear behavior in a similar manner to Figure 

2.12. It is interesting to note that the C-STM provided a closer approximation of the 

elastic stiffness than the FEM proposed by Bracci et al. (2000). However the predicted 

response tended to be a little stiffer than the experimental response for Specimen 5D and 

8G.  
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(a) Force-Displacement (b) Longitudinal steel (c) Transverse steel 

 
 

Figure 2.14: Experimental vs. analytical results for Specimen 5D (top row) and 8G  
(bottom row), where (LC) – Longitudinal Cracking; (TC) – Transverse Cracking;  

(LY) – Longitudinal Yield; (TY) – Transverse Yield 
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The longitudinal steel response (column b of Figure 2.14) shows good agreement 

with the experimental response capturing both cracking and yield strengths well. The 

transverse steel response (column c of Figure 2.14) also shows good agreement with the 

experimental response, considering that the C-STM provides an averaged response of 

the overall transverse behavior. Stirrup 2 (third stirrup from the column face) 

consistently had the highest experimental strain response and is the closest stirrup to the 

vertical tension tie approximated by the C-STM. The initially vertical response observed 

in the transverse steel gages prior to diagonal or shear cracking is a result of tension 

stiffening effects in the transverse stirrups. This phenomenon was accurately modeled 

using the C-STM. 

 

2.10  Discussion 

The C-STM provided an accurate representation of each specimen’s behavior in terms of 

overall force-deformation, internal strains, and the progression of nonlinear behavior. 

The C-STM also provides promising results to demystifying the internal stress and strain 

fields of highly cracked reinforced concrete structural elements, particularly in relation 

to using the composite arch and truss mechanisms to model the interaction of flexure and 

shear. The C-STM provides a minimalist computational analysis, with only 12 nodes (24 

degrees of freedom) and a computation time less than two minutes, without sacrificing 

modeling accuracy as shown in this verification study. In comparison the FEM analysis 

consisted of 2968 nodes (8900 DOF).  
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For the purpose of comparison, Figure 2.15 shows the force-deformation 

responses of each specimen overlaid with code-based prediction based on:  

• Flexural bending theory at the first yield moment ( yM ) of the longitudinal steel, 

aMV yy /= , where =−= ina 39  the span between the applied load and critical 

section 

• Flexural bending theory at the nominal ultimate moment ( nM ) capacity, aMV nn /=  

• Sectional shear U sh yV A f d s= + 2 ' ( )c wf b d psi units   

• Strut-and-Tie Model ( )STMV predictions based on the AASHTO LRFD (2008) Bridge 

Design Specifications.  

N.B. The exact calculations for each case can be found in Appendix D. 

Interestingly, the separate flexural ( )yV  and shear ( )uV  capacities can be used 

together to provide some insight into flexural-shear interaction and its hierarchy, 

whereas STM gives no clues. Specimen 2A yields first in the longitudinal reinforcement, 

followed by a loss of shear capacity in the post-yield response as a result of 

compression-softening in the arch strut. Specimen 8G had additional transverse steel 

relative to 2A, thus confining the arch strut and allowing a ductile response.   

 The STM analysis was conducted without any reduction factors and was based 

on the maximum nodal stress conditions defined in the AASHTO LRFD (2008) Bridge 

Design Specifications. Yielding of the longitudinal reinforcement governed the  
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(a) Specimen 2A 

 
(b) Specimen 5D 

 
(c) Specimen 8G 

Figure 2.15: Flexure, shear, and STM strength comparison 
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maximum design shear force; hence similar results for flexural yield and STM were 

obtained with STM consistently lower. As post yield behavior is not considered in force 

based predictions, the reserve capacity subsequent to longitudinal yielding was not 

accounted for when assessing the ultimate load.  

This discussion illustrates that when present conventional stength-based analysis 

techniques are used alone, they are unable to provide satisfactory insight into the 

expected behavior to identify failure modes and their progression along with any reserve 

capacity. The C-STM serves as a straight-forward method to remedy this shortcoming. 

Finally, this chapter has presented the C-STM in the form of a generic 

cantilevered beam that uses a rational approach to defining the truss geometry and 

element area assignments. The intention of chapter is to provide a fundamental 

understanding of computational truss modeling so that the methodology can then be 

applied to modeling the response of other reinforced concrete structures. The correct 

implementation of the C-STM is at the discretion of the Engineer; hence good 

engineering judgment is required to apply the C-STM principles to the task at hand. For 

unique details that are not specifically addressed in this thesis, it is recommended that a 

sensitivity analysis is conducted by changing one parameter at a time in order to 

determine how critical that particular parameter is.  
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2.11  Chapter Closure 

This Chapter presented a compatibility based strut and tie model for the shear analysis of 

reinforced concrete D-regions, specifically applied to bridge pier caps. A progressive 

development of the modeling parameters required to construct the C-STM was 

presented. The proposed C-STM was used to analyze previous experimental testing to 

validate the modeling approach in comparison with code-based analysis techniques.   

Based on the research presented in this Chapter, the following conclusions can be 

drawn: 

1. By considering equilibrium, compatibility, and nonlinear constitutive laws of 

cracked reinforced concrete members, the C-STM serves as an advanced method of 

analysis that can predict with suitable accuracy the force-deformation response of D-

regions and deep beams. Additionally, insights into internal member strains and the 

hierarchy of failure mechanisms can be calculated.  

2. The C-STM was applied to large-scale experimental bridge cap specimens and 

showed good agreement between the experimental and predicted response was 

observed.  

3. Using stress-block theory, a rational solution to modeling the combined response of 

steel and concrete in compression chord members is proposed. This approach also 

enables the nonlinear behavior of the concrete compression stress block and steel in 

compression to be modeled.   

4. The C-STM is a minimalist computational method of analysis that can be 

implemented into commercial available structural nonlinear analysis software such 
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as SAP2000. This provides consulting engineers with a supplementary design tool 

that can be used to accurately assess the force-deformational response and nonlinear 

behavior of D-regions and deep beams.  

5. When modeling truss action, any defendable numerical integration scheme can be 

adopted to size and locate the truss elements. However, if strut crushing is expected, 

a convergence study may be warranted to accurately capture failure. 
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CHAPTER III 

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF  

REINFORCED CONCRETE BRIDGE BENTS 

3.1  Chapter Scope and Research Motivation 

Over the past decade, the structural longevity of a large number of reinforced concrete 

bridge bent caps has been compromised as a result of premature concrete deterioration. 

Figure 3.1 shows two bridge bents indicating signs of distress in the disturbed (D-) 

regions. The cantilever bent (San Antonio, TX) shown in Figure 3.1 (a), exhibits flexural 

cracking on the tension fiber of the column and one large shear crack propagating from 

the applied load to the internal knee joint indicated by the staining patterns shown as 

white dotted lines. The straddle bent (Houston, TX) shown in Figure 3.1 (b), exhibits 

distinct shear cracks through the beam and beam-column joint indicated by the white 

dotted lines.  

In order to assess the structural integrity of such structures, a thorough 

understanding of the structural behavior in the disturbed regions is required. Current 

code design methods are purely force-based approaches that are conservative lower 

bound solutions (AASHTO, 2008; and ACI 318-08). Hence they are not appropriate for 

modeling the complex behavior of D-regions as a means of assessing the degradation in 

strength. Clearly it is desirable to have an advanced method of analysis that can be 

adopted by practicing engineers and implemented as a means of assessing the structural 

nonlinear behavior of reinforced concrete bridges and D-regions. 
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(a) Cantilevered bent 

  
(b) Straddle bent 

  

 
(c) Experimental C-Specimen 

 
Figure 3.1: Prototype bridge bents and the evolution of the experimental specimen 
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This research presents an experimental investigation on the structural 

performance of large-scale reinforced concrete specimens specifically designed to 

replicate typical bridge bents currently used in practice. The advanced compatibility-

strut and tie model (C-STM) described and verified in the preceding chapter is used to 

assess the force-deformation response, as well as the nonlinear internal flow of stress 

that eventually leads to the ultimate collapse mechanism.  

 

3.2  Experimental Investigation 

Representative Prototypes to be Physically Modeled 

Figure 3.1 shows the two bridge bents selected as the basis for designing the specimens 

to be tested in this research based on current bridge structures typically used in Texas. 

Cantilever bents (Figure 3.1 (a)) are typically designed with minimal compression steel 

using strut-and-tie design methods, hence a similar singly reinforced beam was 

considered in the specimen design. Straddle bents (Figure 3.1 (b)) typically have more 

compression steel at the column/pier face due to the positive and negative moments in 

the beam section, hence a doubly reinforced beam was considered accordingly.  

 
Experimental Design 

The experimental specimens in this research were designed as a “C” shape sub-

assemblage such that two large-scale bridge bent components were placed back-to-back 

so they could be tested as a self-reacting system as shown in Figure 3.1 (c). This 

provided an axis of symmetry at the specimen’s centerline. The C-specimens had a 

constant cross-section of 3ft deep and 2ft wide, that was symmetrical with the exception 
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of the beam compression steel. More specifically the physical model scale factors 

representing the singly reinforced cantilevered bent and the doubly reinforced straddle 

bent were approximately 0.5 and 0.75, respectively.   

 
Reinforcement Details 

Reinforcing details of the C-Specimen are shown in Figure 3.2. The reinforcement 

layout was scaled to replicate the cantilever and straddle bents described previously. The 

longitudinal reinforcement consisted of 10 No. 8 bars running continuously around the 

outside and hooked at the end of each beam. The singly reinforced beam (S) had 2 No. 8 

straight compression bars for construction purposes. The doubly reinforced beam (D) 

had symmetrical compression and tension reinforcement.  

The longitudinal beam distribution steel (distributed along the beam web) 

consisted of 3 sets of No. 4 straight bars equally spaced. Transverse beam reinforcement 

consisted of closed stirrups with a center-to-center spacing of 4.5-in. starting at the 

column face. The longitudinal column distribution steel consisted of 5 sets of No. 8 bars 

equally spaced. Transverse column reinforcement had overlapping No.4 stirrups spaced 

4.5-in. centers. The beam-column joint (herein referred to as the joint) was reinforced 

with 4 No.4 U-bars at 8-in. centers continuing from the transverse beam reinforcement. 
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Figure 3.2: Reinforcement details 
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Materials 

The concrete mix used in this research was custom batched using aggregates containing 

high silica content, and sodium hydroxide to accelerate premature concrete deterioration 

mechanisms. This did not affect the performance of the control specimen as it was 

maintained in a controlled lab environment unexposed to water. Measured compressive 

strength of standard 4 x 8 in. concrete cylinders at 28 days and at the time of the test are 

presented in Table 3.1 

Table 3.1: Mechanical properties of concrete 

Beam f'c (ksi) Ec (ksi) f't (ksi) f's-t (ksi) 
28 day 4.5  3850  0.3  0.3  
Test 5.4  4260  0.45 0.57 

 

Concrete tensile strengths were obtained using two test methods: (i) embedded 

bar tensile (t) test; and (ii) splitting tensile (s-t) test. Further details of the tested material 

properties may be found in Appendix E along with steel coupon test results.  

The steel properties were taken as an average of three coupon tests providing an 

average yield stress and strain of 65 ksi, and 0.0024, respectively, with a post-yield 

strain-hardening of modulus of 3% of the elastic stiffness.  

 

3.3  Experimental Testing  

This section describes the experimental test setup, procedure, loading history, and 

instrumentation layout (both internal and external) for the control specimen.   
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Test Setup 

The C-Specimen was designed as a self-reacting system concurrently representing two 

bridge bent types, with potentially two comparative results obtained from one sub-

assemblage. Figure 3.3 shows a detailed plan and elevation of the experimental test 

setup. For experimental convenience, the specimens were oriented so that the column 

was placed horizontally while the cantilevered beams were oriented vertically. The 

column was seated on two hinge supports located a distance of D/2 from the beam face. 

Equal and opposite loads were applied to the beams at a distance of 3 ft. from the 

column face using two 220 Kip MTS (model 244.51S) actuators placed in parallel. The 

actuators were connected to header beams using 1 3/8” diameter high strength Dywidag 

bars, and were operated using servo hydraulic control (displacement control). A third 

actuator operated in force control was placed between the 220 kip actuators and 

maintained at 100 kips in order to provide a total capacity of 540 kips. 

In order to maximize the performance of the C-Specimen, one end was 

“protected” using external post-tensioning to prevent yielding of the longitudinal steel 

and minimize cracking, thus focusing the other end as the principal “test” subject. In this 

way two “tests” could be performed on the one specimen as discussed in subsequent 

sections. As shown in Figure 3.3, the protection consisted of two 1-3/8-in. high strength 

(DYWIDAGTM) high alloy thread-bars, eccentrically positioned 12-in. from the beam 

centerline towards the tension steel and post tensioned to a total axial load of 300 kips. 

This was designed to reduce the strain in the tension steel and minimize cracking. 
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Figure 3.3: Details of the experimental setup 

 



 

 

79 

Instrumentation  

One objective of the experiment was to investigate the specimen’s structural 

performance and model the overall force-deformation behavior by means of a 

compatibility strut-and-tie model. It was therefore deemed necessary to monitor the 

internal and external response accordingly. Figure 3.4 shows the external and internal 

instrumentation layout plans used to obtain experimental results that could be used to 

compare analytical modeling results. Specimens were externally instrumented using 

linear variable differential transformers (LVDT’s), string pots (SP), internally 

instrumented using strain gages (SG) attached to steel, and embedded concrete gages 

(KM).  

The global displacement at the applied load was obtained by taking an average of 

the measured displacements above and below the header beam. The drift of the beam 

relative to the column was measured using two LVDT’s mounted to a rigid column that 

was fixed to the surface of the column and offset from the beam face 3 in. The overall 

deflected shape was obtained by externally mounted string pots secured to external 

reaction columns or mounted on the strong floor.  

Experimental deformations associated with the analytical C-STM members 

where measured using LVDT’s mounted to aluminum truss members that were 

connected between node points as shown in Figure 3.4 (b). This consisted of 10 

members with 6 node points for the tested beam, and 4 members with 4 node points for 

the protected beam each labeled as LV#. Embedded DEMEC points defined each  
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(a) External instrumentation layout (b) LVDT truss setup 

 
 

 

(c) Internal instrumentation elevation (d) End elevation (e) Longitudinal stress 
 

Figure 3.4: Specimen instrumentation 
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node point and were connected with aluminum members that had pinned-slotted end 

connections in order to measure deflections. 

 Crack widths or inferred principal tensile strains perpendicular to the corner-to-

corner arch struts in the beams and joints were measured with 4 LVDT’s mounted 

perpendicular to the expected crack angles (55° and 45° in the beam and joint 

respectively) with a 9” gage length. 

 In order to provide insight into the internal deformation strains, an assortment of 

strain gauges were affixed to rebars at locations shown in Figure 3.5 (c) and (d) (N.B. to 

distinguish between the doubly reinforced and singly reinforced beams, a suffix of D or 

S is used subsequent to the strain gage number, respectively). To measure the strain in 

the corner-to-corner concrete struts of the beam and joint regions, concrete gages were 

embedded at the center of the cross section and oriented in the three principal directions 

relative to the arch strut.  

 

Test Procedure and Loading History 

The experiment was conducted in two Phases in order to assess the performance of both 

cantilevered beams of the specimen through the effective use of post-tensioning, as 

depicted in Figures 3.5 to 3.7. 

Phase I focused on the virgin performance of the singly reinforced beam, where 

the doubly reinforced beam was protected using post tensioning (PT). An applied service  
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(a) Doubly reinforced beam (b) Singly reinforced beam 

 
Figure 3.5: PHASE I – Serviceability loading (200 kip) 
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(a) Doubly reinforced beam 

 
(b) Singly reinforced beam 

 
Figure 3.6: PHASE I – Yield (440 kip)  

 Doubly Singly  
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(a) Doubly reinforced beam (b) Singly reinforced beam 

 
Figure 3.7: PHASE II – Ultimate load at (474 kip) 

 Doubly Singly  
 Reinforced  Reinforced 
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load of 200 kips was initially applied, held for approximately 2 hours to take 

measurements, and then unloaded. The specimen was then reloaded to yeild (440 kip).  

Phase II focused on the pre-cracked performance of the doubly reinforced beam 

until the ultimate failure load, where the singly reinforced beam was strengthened via the 

application of post-tensioning to the beam. 

 

3.4  Test Results and Discussion 

Figures 3.5 to 3.7 show experimental test photos of the control specimen at the 

conclusion of phases I and II, highlighting the primary crack patterns. Experimental 

observations during testing were reported as follows. 

 

Experimental Observations 

Phase I – Tested Beam region: Flexural cracking was first observed at 110 kips shortly 

followed by flexural cracks in the column. Distinct diagonal cracking in the joint was 

observed at approximately 170 kips. Diagonal cracking through the beam slowly 

propagated when held at 200 kips. Upon reloading to 440 kips, existing cracks in the 

beam and joint propagated towards the internal knee joint (CCC node) with the largest 

crack width observed in the beam of 0.05 in. at a load of 440 kips.  

 Phase I – Protected Beam region: Flexural cracking was first observed in the 

column at approximately 120 kips shortly followed by diagonal cracking in the joint 

propagating form the post-tensioning header beam to the internal knee joint. One hair 
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line crack was observed in the beam column face at 200 kips. A distinct diagonal crack 

in the beam formed at approximately 360 kips with a crack width of 0.02 in. 

 Phase II: Due to the pre-cracked state of both beams, existing cracks propagated 

with the formation of a few new cracks in the joint and beam at higher loads. At 440 kips 

the largest diagonal cracks in the beam and joint was approximately 0.025 in. and 0.035 

in., respectively. The ultimate failure mechanism occurred in the tested beam-column 

joint along the main corner-to-corner diagonal in a sudden collapse. The maximum 

applied force was 474 kips. 

The applied post tensioning successfully protected the longitudinal reinforcement 

from prematurely yielding by offsetting the measured strain to approximately zero at the 

applied service load of 200 kips. This not only protected the beam from yielding, but 

also delayed concrete cracking, thus resulting in a stiffer response as seen in the force-

displacement responses below.  

 
Failure Assessment 

The failure mechanism was classified as a brittle joint shear failure. Evidently, failure 

was initially triggered by concrete softening of the joint corner-to-corner diagonal strut 

(arch action), thus redistributing the force to the transverse reinforcement in the joint 

(truss action). Because the joint was under-reinforced, this redistribution of force to the 

truss mechanism further intensified the arch compression softening. The brittle nature of 

the failure was attributed to the insufficient confinement of the transverse U-bars used in 

the joint due to the lack of 135-degree hooks. The initiation of concrete cover cracking 
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resulted in a loss of bond in the U-bars thus allowing a complete collapse (failure) 

mechanism to form. This failure proposition is validated with experimental and 

analytical results discussed in subsequent sections.  

The joint reinforcement consisted of 4 U-bars and straight longitudinal 

distribution steel from the beam and column that were not anchored sufficiently well to 

confine the core concrete. U-bar and other open hook type reinforcement details do not 

form a complete load path in the structure as they rely on bond strength provided by the 

cover concrete to transfer the force. Under the high-strain overload conditions imposed, 

the cover concrete (due to spalling) typically provides very little, if any, restraint. This 

reduces the ability of the U-bars to provide confinement and ultimately results in a very 

rapid and brittle collapse mechanism. It is not uncommon to specify this type of detailing 

in bridge structures particularly in non-seismic regions. Such a failure could easily be 

inhibited by specifying a fully enclosed perimeter hoop with 135-degree anchorage 

hooks.    

Figure 3.8 shows the joint failure before and after removal of the loose and 

spalled concrete. Upon closer examination, sufficient debonding was observed around 

the U-bars, and signs of pullout were evident from the direction of the steel ties (Figure 

3.8 (c)) as a result of the cover concrete spalling (verifying that previously discussed). 

Out-of-plane splitting/bursting in the joint was also observed by the crack patterns on the 

exterior face of the column along with bulging of the U-bars (Figure 3.8 (d)).  
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(a) Failure in joint 
 
(b) Removal of loose and spalled concrete 

 
 
 

  
 

(c) Debonding of transverse U-bars  
 

(d) Exterior face of column showing bulging of U-
bars  

 
Figure 3.8: Experimental photos of failure mechanism 

  

see (c) 

see (d) 
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Behavior and Code Force-based Predictions 

Figure 3.9 presents the force versus overall displacement response for both the singly 

and doubly reinforced cantilever beams, where a thick black line represents the tested 

response and a thin light line represents the “protected” response. The experimental 

response is overlaid with code-based prediction based on:  

• Flexural bending theory at the first yield moment ( yM ) of the longitudinal steel, 

aMV yy /= , where =−= ina 36  the distance between the applied load and critical 

section 

• Flexural bending theory at the nominal ultimate moment ( nM ) capacity, aMV nn /=  

• Sectional shear U sh yV A f d s= + 2 ' ( )c wf b d psi units   

• Strut-and-Tie Model ( )STMV predictions based on the AASHTO LRFD (2008) Bridge 

Design Specifications.  

N.B. The exact calculations for each case can be found in Appendix D. 

From these code-based predictions, one is led to believe that this bridge specimen 

is shear-critical in the beam because both uV  and STMV  are smaller than yV . This 

observation is quite deceptive; clearly a more insightful analysis method is needed. This 

is now the subject of the following section. 

 

 



 

 

90 

 
 
 
 
 
 

 

 
 

  
(a) Doubly reinforced beam (b) Singly reinforced beam 

 

 

Figure 3.9: Force vs. overall displacement in conjunction with code based predictions 
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3.5  Compatibility-based Strut and Tie Application 

The compatibility based strut and tie model (C-STM) proposed in Chapter II was 

adopted as an advanced means of analyzing the C-Specimens force-displacement 

response and internal strain behavior. 

 
C-STM Model 

Figure 3.10 shows the C-STM overlaid with the reinforcing steel of C-Specimen. The C-

STM was constructed using the techniques developed in Chapter II, where a detailed 

explanation of the truss geometry, member sizes, and constitutive material models is 

appended in Appendix B. To simulate the experimental test setup as accurately as 

possible, initial loads (shown as PT in Figure 3.10) were applied to the tension chord 

members of the protected beam in order to replicate post-tensioning effects in 

accordance with Phase I and Phase II testing.  

The cantilevered beams were modeled using a single-point Gauss quadrature 

model. The joint were modeled using a two-point model where the transverse ties were 

aligned with the U-bar reinforcement to provide a more exact representation of the 

reinforcement. Phase II was modeled using a reduced concrete tensile strength tf '  in 

order to allow for the pre-cracked concrete state; however, the bilinear tension softened 

response shown in Figure 2.8 (c) remained the same.  

The results of the C-STM are directly compared to the experimental response and 

were used to provide a detailed interrogation of the force-deformation and nonlinear 

response behavior.  
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Figure 3.10: Applied C-STM of C-Specimen – Phase I modeling 
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Force-displacement Response 

Figure 3.11 overlays the predicted response using the C-STM (thin red line) with the 

experimental force versus overall displacement response (thick black line) shown in 

Figure 3.9. For clarity, the two phases of testing are shown separately in order to clearly 

distinguish between the protected and tested responses. Columns (a) and (b) refer to the 

doubly and singly reinforced beam responses, and rows 1 and 2 refer to testing Phases I 

and II, respectively. The C-STM prediction models well both the protected and tested 

response of both beams. The initial tension-stiffening effects observed are also captured 

well by the C-STM.  

  Figure 3.12 shows a similar comparison of the beam-only response that is 

measured with respect to the column. The drift is defined as the percentage of 

displacement relative to the top of the column section divided by the beam length (L = 

36 in.). Good agreement between the experiment and the C-STM is evident.  

Appendix C presents a comprehensive comparison of the experimental results 

and C-STM predictions, focusing on critical sections of the C-Specimens. 
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Figure 3.11: Global force-deformation behavior 
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Figure 3.12: Beam only (drift) response  
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Internal Behavior of the Specimen 

Figures 3.13 and 3.14 present the development of nonlinear behavior in the C-STM with 

increasing levels of force. The predicted behavior is compared with experimentally 

observed instrumental results. The notation in the left-hand column first describes the 

type of nonlinear mechanism in parentheses (a description of each follows), followed by 

the member it refers to (e.g. beam, joint or column). The instrumentation used for each 

graph is labeled in the bottom corner of each graph and can be referred to in Figure 3.4. 

 The first nonlinear mechanism is concrete cracking of the concrete truss elements 

as shown in Figure 3.13. Subsequent nonlinear mechanisms are shown in Figure 3.14 

consisting of concrete chord and arch inelastic compression, followed by steel yielding. 

The progression of nonlinear behavior can be described as follows.  

LC = Longitudinal Cracking (see graphs in row 1 & 2 of Figure 3.13) first 

occurred in the beam, shortly followed by the column. This is when the member stress 

exceeds the concrete tensile strength 'tf , thus initiating flexural cracking in the beam at 

the column face, and along the column respectively. Tension softening refers to the 

concretes ability to resist tensile strains after the development of the primary cracks.  

TC = Transverse Cracking (see graphs in row 3 and 4 of Figure 3.13) then 

occurred in the transverse concrete elements, starting in the beam column joint and then 

in the beam element. This corresponds with diagonal shear cracking observed as a result 

of the flexure-shear interaction and is agreement with experimental observations. 
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Figure 3.13: Nonlinear response and early concrete cracking effects 
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 Experimental Results SAP2000 Constitutive Model 
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Figure 3.14: Nonlinear concrete and steel response 
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  CC = Chord Compression (see graph in row 1 of Fig. 3.14) occurred in the 

column compression chord elements indicating that the concrete had exceeded the elastic 

limit as specified in Section 2.5. It is evident that the C-STM prediction agrees well with 

the strain gage observations located on the column compression steel at the beam face. 

AC = Arch Compression (see graph in row 2 of Fig. 3.14) shortly followed in the 

joint arch (corner-to-corner diagonal strut) which also indicated that the concrete had 

exceeded the elastic limit (defined as 0.5 'cf ) where a reduction in stiffness commenced. 

The predicted response is in good agreement with the embedded strain gages and the 

external LV truss member response. The drop in response at 440 kips corresponds to a 

pause in loading. However, following the pause, a definite change in stiffness was 

observed upon reloading that agrees with the C-STM prediction.  

LY = Longitudinal Yielding (see graph in row 3 of Fig. 3.14) occurred in the 

longitudinal beam reinforcement when the stress exceeds the specified yield stress yf . 

The C-STM prediction agreed well with the steel strain gage response of SG5_D 

(located at the column face), and the corresponding LV2_D truss member response.  

TY = Transverse joint steel Yielding (see graph in row 4 of Fig. 3.14) in the joint 

U-bars were the next member in the C-STM to respond nonlinearly. Although this was 

not so accurately predicted by the initial analysis, what is important to note is the change 

in the elastic slope observed at 430 kips (before yielding at +500 kips) in both the 

predicted and experimental response. This clearly is not a result of yielding as the 

measured strain was approximately half the yield strain. Instead the change in slope 
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corresponds to the softening of the arch strut (as indicted by CC in row 2 of Fig 3.14). 

As the arch strut softens, more force is transferred into the truss mechanism as a result of 

the displacement compatibility requirements between the arch and truss mechanism. 

This observation is validated by the experimental strain gage located on the second U-

bar in the joint (SG21_D). This observed softening of the joint arch (corner-to-corner 

strut) is further intensified by companion orthogonal tensile strain (ε1), eventually 

resulting in ultimate failure which is discussed further as follows. 

 

Failure Mechanism 

Figure 3.15 presents the post analysis investigation conducted to check compression 

softening failure in accordance with Section 2.8. The joint arch strut was determined to 

be the critical element that was prone to compression softening failure as illustrated by 

Figure 3.13 (a). The inferred principal tensile strain 1ε
 
was calculated from the C-STM 

using the obtained strains from the arch and the transverse ties in the joint using Eq. 

(2.38). Figure 3.13 (b) compares the predicted 1ε  with the experimental results obtained 

from the embedded concrete gage (KM5_D) and LVDT 1 mounted with a 9-in. gage 

length orthogonal to the corner-to-corner strut as shown in Figure 3.4 (b). The inferred 

tensile strain agrees well with the corresponding surface gage LVDT 1. However, the 

embedded concrete gage had a higher measured internal tensile strain that eventually 

exceeded the capacity of the gage. This higher tensile strain could either be indicative of  
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Figure 3.15: Failure analysis of compression softening effects 
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greater tensile strains in the concrete core, or a discrete crack crossing the gage resulting 

in higher strains. 

Figure 3.15 (d) shows the compression softening results of Eq. (2.37b) using the 

principal tensile strains defined by the C-STM, thus defining the capacity of the concrete 

as a function of 1ε  with respect to the actuator load. The demand line was defined using 

strain in the joint arch strut (experimentally verified in row 2 of Figure 3.14) to calculate 

the concrete arch stress with respect to the actuator load.  Hence, the intersection of the 

two lines indicates the ultimate failure load. For Phase II, this was determined as 490 

kips (1.03 Fexp) as indicated by the horizontal lines projected back onto the force-

displacement plot in Figure 3.15 (c). 

Although the C-STM 1ε  agreed well with the experimental results prior to 

ultimate, it over-predicted the failure response because it does not account for the 

softening of the concrete strut strain prior to failure as indicated by the change in slope at 

approximately 460 kips in Figure 3.15 (b). Hence, in order to accurately model this, a 

second analysis would need to be run with the concrete strut stress-strain relationships 

adjusted according to the softening effects.   

 
Discussion of Interaction between Arch and Truss Action 

A common trend was observed between the analytical and experimental results related to 

the interaction of force transfer between arch and truss action. Figure 3.16 presents the 

analytical and experimental results obtained for selected truss members shown in Figure 

3.16 (a).  
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Figure 3.16: Interaction of arch and truss action 
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The arch and truss mechanism can be thought of as two shear resisting springs 

acting in parallel and constrained by displacement compatibility. The force transferred 

into each mechanism from an applied load is thus going to be function of the 

mechanisms stiffness. For example, the truss mechanism is initially stiffer due to 

concrete tension stiffening of the transverse ties, hence it attracts more force relative to 

the arch mechanism. Once the transverse concrete element cracks, the stiffness of the 

truss mechanism reduces, thus redistributing more force into the arch mechanism. This is 

observed in graphs (b) to (f) of Figure 3.14, where each plot shows the analytical C-STM 

predictions with and without tension stiffening, overlaid with the corresponding 

experimental results.  

Figure 3.14 (b) shows the response for the transverse tension tie in the truss 

mechanism where diagonal flexure-shear cracking was observed by the sudden change 

in slope at approximately 200 kips. 

Figure 3.14 (c) shows the response of the diagonal corner-to-corner arch 

mechanism. A distinct change in slope is observed at approximately 200 kip that 

represents the redistribution of force from the truss mechanism to the arch mechanism 

after transverse cracking occurs.   

Figures 3.14 (d), (e), and (f), show an equivalent but converse observation to the 

arch mechanism. Initially, the diagonal concrete struts (LV4 and LV7) and the 

compression chord member (LV10) in the truss mechanism showed a greater rate of 

force transferred to the members due to tension stiffening effects. This is evident by the 

initially higher strains observed when compared to that without tension stiffening before 



 

 

105 

transverse cracking occurred at 200 kip. Subsequent to transverse cracking, the change 

in response represents the force being transferred into the arch mechanism due to 

reduced stiffness of the truss mechanism. 

This interaction of arch and truss action further verifies the compression 

softening observation described in the previous section. In this case, the loss of corner-

to-corner arch stiffness (due to compression softening effects) resulted in a greater 

transfer of force into the truss mechanism. However, because the joint was under-

reinforced and the transverse U-bars were unable to sustain yield strains due to the lack 

of proper anchorage (including no135-degree hooks), this in turn caused major distress 

to the corner-to-corner joint strut eventually resulting in a system failure. 

 
3.6  Chapter Closure  

This chapter presented an experimental and analytical investigation on the shear strength 

of large-scale reinforced concrete bridge bents. The experimental specimens were 

designed to replicate current bridges in Texas, where an increasing need to accurately 

assess the structural integrity of the structure is required. Code-based analysis techniques 

and an advanced Compatibility based Strut-and-Tie Model (C-STM) were used to assess 

the experimental specimen’s response. 

Based on the research described in this chapter, the following conclusions can be 

drawn: 

1. The near full scale C-specimens tested in this experimental research provided an 

accurate representation of the shear-flexure performance associated with deep beams 
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and disturbed regions, and provided some insight into the internal stress and strain 

fields. Based on scaled reinforcing details of the representative cantilevered and 

straddle pier bents, the joint was insufficiently reinforced to confine the main 

diagonal corner-to-corner concrete strut and a brittle failure mechanism ensued as a 

result of inadequate detailing. Recommendations for exterior beam-column joint 

reinforcement detailing includes: providing transverse reinforcement in both beam 

and column directions to sufficiently confine the core concrete; and using well-

anchored perimeter hoops (with 135-degree hooks). 

2. Code-based shear analysis under-predicted the specimens response and provides 

inadequate detailing for designing against the observed brittle failure mechanism, 

thus presenting a need for a more advanced method of analysis. To which the 

proposed C-STM presents itself as an advanced analysis tool that can be adopted and 

implemented by practicing structural engineers. 

3. The C-STM provided an accurate representation of the structures force-deformation 

response, providing a detailed evaluation of the internal nonlinear behavior that was 

verified through experimental instrumentation. A thorough interrogation of the 

ultimate failure mechanism was also accurately modeled. 

 



 

 

107 

CHAPTER IV 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

4.1  Summary 

This research has primarily focused on the development of a compatibility-based strut-

and-tie model (C-STM) for the purpose of analyzing the complex shear-flexure behavior 

associated with deep beams and disturbed regions. In addition to the normal strut-and-tie 

force equilibrium requirements the model accounts for non-linear material behavior 

through displacement compatibility using inelastic constitutive laws for reinforced 

concrete. The model was implemented into the widely used commercial structural 

analysis software SAP2000. As such it is ideally suited for design checks routinely 

conducted by practicing bridge engineers. 

The proposed C-STM focuses particularly on the behavior of reinforced concrete 

bridge piers through an applied experimental investigation of previously conducted 

research. Additionally, an experimental investigation was conducted on a near-full scale 

subassembly representing two distinctive types of bridge pier construction in Texas – 

namely, cantilever (hammerhead) bents and straddle (frame) bents. The C-STM was also 

applied and compared to the experimental results, where good agreement between the 

two was observed. 
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4.2  Conclusions  

Based on the research presented in this thesis, the following major conclusions may be 

drawn 

1. The proposed Compatibility-Strut and Tie Model serves as an advanced method of 

analysis that can predict with suitable accuracy the force-deformation response of 

both D- and B- regions, deep beams, and beam columns. By considering equilibrium, 

compatibility, and nonlinear constitutive laws of cracked reinforced concrete 

members, insights into internal nonlinear member strains and the hierarchy of failure 

mechanisms can be assessed with reasonably good accuracy. The C-STM was 

verified by analyzing the behavior of large-scale experimental bridge cap specimens, 

where good agreement between the experimental and predicted response was 

observed.  

2. The near full scale C-specimens tested in this experimental research provided an 

accurate representation of the shear-flexure performance associated with deep beams 

and disturbed regions, and provided some insight into the internal stress and strain 

fields. Code-based analysis under predicted the specimens response and brittle 

failure mechanism, whereas the applied C-STM provided an accurate representation 

of the specimen’s force-deformation response, providing a detailed evaluation of the 

internal nonlinear behavior that was verified through experimental instrumentation. 

3. The C-STM is a minimalist computational method of analysis that can be 

implemented into commercial available structural nonlinear analysis software such 

as SAP2000. This provides both consulting and state bridge design engineers with a 
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supplementary analysis tool that can be used to augment the design process and 

accurately assess the force-deformation response and nonlinear behavior of bridge 

piers with stocky members and/or large disturbed regions. 

 
4.3  Recommendations and Future Work 

The developed C-STM in this research lays a pathway for further research to be 

conducted in the following two areas of interest: (i) implementing the effects of cyclic 

loading in C-STM; and (ii) modeling the effects of aging and material deterioration 

specifically the effects of ASR/DEF on the performance of bridge piers. These are 

discussed as follows.  

 

Modeling of Cyclic Loading  

The effect of cyclic loading on C-STM performance is considered to be the first 

challenge to be undertaken. Although much work in this direction has been done by Kim 

and Mander (1999; 2000a; 2000b), there are some new features, discovered as part of 

this research, that need to be implemented. Specifically the concrete softening of the 

arch/struts requires proper treatment under cyclic loading, and the interaction of concrete 

and steel in the compression chord member. The approach should first be validated 

against cyclic quasi-static tests and the extended into the time domain to conduct non-

linear time history analysis similar to the approach used by To et al. (2009).  

Cyclic loading effects can be modeled through the successful application of 

nonlinear material stress-strain relationships that consider the cyclic unloading reverses 
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using appropriate hysteresis models. In order to model reversal loading, symmetrical 

diagonal concrete struts are required in order to allow for the transfer of compression 

through the web in both loading directions. This can be achieved in SAP2000 through 

the application nonlinear link elements that encompass hysteretic models, where the 

back-bone of the stress-strain relationship can be inputted by the user. The alternative 

nonlinear frame hinge elements provided in SAP2000 were found to be sensitive and 

somewhat difficult to apply when modeling the hysteretic behavior of non-symmetrical 

stress-strain curves (i.e. concrete stress-strain compression and tension effects).  

  
Modeling of Concrete Deterioration 

The ingress of moisture that accelerates physical-chemical concrete deterioration 

mechanisms such as Alkali Silica Reaction (ASR) and Delayed Ettringite Formation 

(DEF) are typically the main causes of premature deterioration in modern reinforced 

concrete structures. These mechanisms induce internal swelling strains that potentially 

result in concrete cracking, loss of bond, internal excessive steel strains, thus reducing 

the concretes compression and tensile strength, and elastic stiffness.  

 The following two methods are proposed as preliminary methods of modeling 

premature concrete deterioration when using C-STM techniques: 

1. The deterioration of concrete strength and stiffness can be altered through the 

assigned member axial rigidities and the specified nonlinear constitutive material 

models. A preliminary investigation is provided below in Figure 4.1, where the  
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Figure 4.1: Illustrative force-deformation response of deteriorated concrete 
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concrete material parameters for the C-Specimen discussed in Chapter was altered 

according to Table 4.1. 

 

Table 4.1: Illustrative deteriorated concrete strengths  

 Sound Concrete 3 months 
Deterioration 

1 year 
Deterioration 

f 'c (ksi) 5.6 4.9 4 
Ec (ksi) 4265 3990 3620 
f 't (ksi) 0.425 0.3 0.24 

Failure Load (kips) 469 400 345 
 

 

2. Deterioration of ASR/DEF is typically a function of the expansion strains that arise 

over time. Now suppose ASRε =  the deteriorated expansion strain, then the 

compression softening equation Eq. (2.37b) could simply be modified by adding in 

the deterioration expansion, thus  

 2,max

1

1
' 0.00121

3
c ASR

co

f
f

ζ
ε ε

ε

= =
+ −

+
 (2.37b) 

This equation implies that when 1200ASRε µε> , the concrete is already subject to 

softening without load induced strains, hence this would further decrease the 

capacity of the diagonal concrete struts. To validate the accuracy of this relationship, 

experimental research into the deteriorated performance of concrete cylinders could 

be conducted as a function of the swelling strain.  
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APPENDIX A  

IMPLEMENTATION OF COMPUTATIONAL C-STM 

This Appendix describes how to implement the proposed Compatibility-Strut and Tie 

Model (C-STM) using structural analysis software. Because of its commercial 

availability and nonlinear capabilities, SAP2000 was selected in this research to model 

the C-STM. The cantilevered beam presented in the convergence study of Chapter II 

(shown in Figure A.1 (a)) is presented as an example to define the step-by-step 

procedure used to construct the C-STM. Each section refers to the theory presented in 

Chapter II, demonstrating how each step is carried out in SAP2000. A design application 

concludes this appendix where this step-by-step procedure is applied to the reinforced 

concrete cantilevered bent caps presented in Section 2.9   

  

A.1  Proportion C-STM Truss Members (Section 2.6) 

The basic premise for computational truss modeling is to use truss elements which are 

only capable of sustaining either axial tensile or compressive loads. Thus each structural 

member must be assigned an appropriate elastic axial rigidity EA from which member 

stiffness ik  is assembled 

 i
EAk
L

=  (A-1) 

where E = elastic material modulus; A =  cross sectional area of assumed prismatic 

member; and L =member length. 
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Step 1. Assign Node Points 

Refering to Figure A.1 (a), for doubly reinforced sections the tension and compression 

chord members 2-4-5 and 1-3, are vertically located at the respective steel centroids. The 

horizontal positioning of the truss node points (nodes 3 and 4) are positioned according 

to the single-point Gauss quadrature truss model. Each node is then assigned the 

appropriate constraints based on the boundary conditions. 

The steel and concrete components of the C-STM can be modeled using separate 

elements that are constrained together to give the combined steel-concrete member 

response. In order to model this, two trusses are required: one for steel and one for 

concrete. Hence the nodal geometry is replicated in the out of plane axis in order to 

create two separate trusses as shown in Figure A-1 (b) and (c). Parallel nodes are then 

constrained together using equal constraints in order to satisfy displacement 

compatibility between the steel and concrete truss node points.  

 
Step 2. Assign Steel and Concrete Elements  

Steel and concrete truss elements (referred to as Frame Sections in SAP2000) are then 

drawn with pinned-end conditions as shown in Figure A-1 (d) and (e). Table A-1 is used 

to define the stiffness and axial area for each steel and concrete element associated with 

each C-STM member, referred to in Section 2.6.  
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(a) C-STM of cantilevered beam 

 
(b) Steel nodes             (b) Concrete nodes 

 
(d) Steel elements (e) Concrete elements 
Figure A-1: Node and element construction in SAP2000 

0.423L 
     L 
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Table A-1: Elastic truss member axial rigidities 

Member Steel Element Concrete Element Comments E A E A 
2 – 4 
4 – 5 sE  sA  cE  .b kd  Tension Chord 

1 – 3 sE  'sA  E cEψ  .b kd   Compression Chord 

3 – 4 sE  h shN A  cE  ( ) sNdc hhc 24 +  

Active Hoop steel 
including tension 
stiffening effect 

1 – 5 – – cE  0.375
cos

wb jdη
α

   Concrete Strut in Arch 
Mechanism 

1 – 4 – – cE  
2

0.5(1- )
0.423 tan

wb jdη

α+
 Concrete Strut in Truss 

Mechanism 

3 – 5 – – cE  
2

0.5(1- )
0.577 tan

wb jdη

α+
 Concrete Strut in Truss 

Mechanism 

 

 

 

 

Element areas are defined in the Frame Properties form, and are assigned as the 

Cross-sectional (axial) area as shown in Figure A-2 (a). Individual properties can be 

defined for each concrete and steel element, and then assigned to the appropriate 

elements. 

Element stiffness’s is defined in the Define Materials form, and are assigned as 

the Modulus of Elasticity as shown in Figure A-2 (b). This is defined as the material 

property, and is assigned to the appropriate steel and concrete members. Note that a 

minimum of three materials should separately be defined: Steel, Concrete struts, and 

Concrete chord members. 
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(a) Area assignment 
 
 

 
 

(b) Stiffness assignment 
 

Figure A-2: Area and stiffness assignments 
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A-2.  Constitutive Material Relations of Truss Elements (Section 2.7) 

Step 3. Assign Nonlinear Constitutive Material Relationships. 

The elastic response of the C-STM is defined by steps 1 & 2. The nonlinear behavior of 

the elements can be modeled using Frame Hinges. Frame hinges define the plastic 

stress-strain (or force-axial displacement) relationships after the maximum allowed 

elastic stress (or force) is exceeded in an element. Note: Hinge properties in SAP2000 

define only the plastic behavior of the hinge. The elastic behavior of the frame element 

is determined by the frame section (and hence material properties) assigned to the 

element.  

Frame hinges are defined in the Define Frame Hinge Properties form as shown 

in Figure A-3 (a). In order to define the plastic stress-strain relationship, Ductile and 

Axial hinges should be specified, thus leading to the Frame Hinge Property Date – Axial 

P form where the stress-strain back-bone curve can be defined. Figures A-3 (b) and (c) 

show the stress-strain relationships and corresponding plastic hinge relationships used to 

model steel in accordance with Figure 2.8.  

Additional examples of stress-strain and corresponding plastic hinge 

relationships for concrete struts, concrete chord members, and concrete tension 

stiffening effects are provided in Figure A-4. 

 Nonlinear frame hinges are then assigned to the respective steel and concrete 

elements, thus defining the C-STM nonlinear behavior. 
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(a) Frame Hinge form  

 
 

  
(b) Bilinear stress-strain relations for steel  (a) Plastic stress-strain relation for steel  

 
Figure A-3:  Nonlinear frame hinge assignment for steel 
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(a) Concrete compressive struts 

  
(b) Concrete compressive chord elements 

  
(c) Concrete tension stiffening 

Figure A- 4: Frame Hinge form 
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A-3  Assigning Loads and Running C-STM 

Step 4. Assign Load Cases 

Load cases are first defined in the Define Load Pattern form, and are then assigned to 

the appropriate nodes as either a force or displacement. Load cases are defined in the 

Define Load Cases form, as shown in Figure A-5 (a). The load case type typically used 

in this research was a Static-Nonlinear analysis. The desired load patterns are selected in 

the load pattern input tab. The other parameters inputs define the following: loading 

control either specified as load or displacement control; incremental step size; results 

saved at final load or incremental load steps; and other nonlinear parameters.  

 
Step 5. Run Analysis 

The analysis can now be run for the desired load cases as inputted by the user. Once 

complete, the user can progressively step through the deformed shape to see the 

formation of nonlinear behavior as shown in Figure A-5 (b). 
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(a) Defining load cases 

 
 
 

 
(b) Deformed shape showing formation of frame hinges 

 
Figure A- 5: Defining and running load cases 
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A-4  Ultimate Strength and Softening of Constitutive Relations (Section 2.8) 

Step 6. Post Analysis Investigation 

Axial forces, displacements, and other output parameters can then be exported as an 

excel spreadsheet so that a post analysis investigation can be conducted. The axial force 

in each member can be individually assessed in order to make sure that the force does 

not exceed any other stress conditions (i.e. anchorage failure, nodal crushing, concrete 

softening, etc).  

 In order to model compression softening effects, the strain of the compression 

struts and transverse tension ties is required. Because element strains are not given as an 

output in SAP2000, an alternative means of defining the strain is required. This can done 

using one of the following techniques: 

1. The element strain can be defined in terms of the element force divided by the axial 

rigidity as shown below 

 F
EA

ε =  (A-2) 

where EA is constant in the elastic range, hence this can only be applied prior to 

nonlinear behavior. 

2. For members that reach nonlinear deformations, the elastic range of strain is defined 

using the method above. The plastic strain is obtained from the frame hinge output 

files. These are typically defined as element force vs. displacement relationships, 

hence the displacement can be divided by the length to obtain strain.  
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3. Alternatively to the previous methods, a third truss called the strain-meter truss, can 

be defined in parallel to the steel and concrete trusses in a similar fashion to Step 1, 

such that each node is constrained accordingly. Truss elements with a unit axial 

rigidity (i.e. 1EA = ) can be drawn between the desired nodes as Strain Members so 

that the (small) force resisted is equal to the strain as shown in Eq. (A-2). This will 

provide the composite steel-concrete axial strain associated between the selected two 

node points. Note: this method was verified in this research using the previously 

mentioned methods providing identical comparisons for vertical and horizontal 

members, however some discrepancies were found in diagonal members with highly 

nonlinear behavior.   

 

A-5  Design Application: C-STM for Reinforced Concrete Bridge Caps 

A design application of the C-STM modeling parameters used to analyze the structural 

response of the reinforced concrete bridge baps tested by Bracci et al. (2000) is given in 

this section. The step-by-step procedure presented in the foregoing is used to construct 

the C-STM as follows. 

 

Step 1. Assign Node Points 

Table A-2 shows the cross-section parameters used to define the effective steel centroids 

for the three specimens selected in this research: specimen 2A, 5D, and 8G. All sections 

are doubly reinforced, hence the vertical positioning of the tension and compression 

chord members were located at the respective steel centroids.  
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Table A-2: Effective steel centroids for tension and compression chord members 

SPECIMEN 2A 5D 8G 

CROSS-
SECTION 

   
Tension 
Chord 

8-#8 Bars 
3 sets of 2-#4 

11-#8 Bars 
3 sets of 2-#4 

8-#8 Bars 
3 sets of 2-#4 

d (in) 31.00 31.43 31.00 

sA (in2) 7.46 9.82 7.46 
Compression 

Chord 8-#8 Bars 8-#8 Bars 8-#8 Bars 

'd (in) 3.25 3.25 3.25 
'sA (in2) 6.28 6.28 6.28 

Internal Lever 
Arm (jd) 27.76 28.18 27.76 

 
 

The representative areas of reinforcement for the tension chord were defined as 

the sum of longitudinal steel and three sets of web distribution steel for tension. The 

compression chord was defined as the compression longitudinal steel. The internal lever 

arm of the column support was taken as the internal diameter of the longitudinal 

reinforcement, 30 (2 3.25) 23.5 .jd in= − × = −   

 Figure A-6 (a) shows the outline of the C-STM overlaid with the reinforcing 

details of specimen 2A. The top and bottom chord members were first drawn using the 

values in Table A-2. For the tapered cantilever, it was assumed that the compression 

chord followed the same profile as the taper. The two vertical chord members from the  

d' 

d 

Compression Chord 

Tension Chord 
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(a) C-STM of Specimen 2A, where C – Cantilever and B – Beam 

 
(b) Steel nodes (c) Concrete Nodes 

 
(d) Steel elements (e) concrete elements 

Figure A-6: Specimen 2A node and element construction 
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column where then drawn, thus defining the length of the cantilevered C-STM beam as 

42.25-in. with an internal lever arm of 27.75-in. The horizontal positioning of the truss 

node points was defined according to the single-point Gauss quadrature model, where 

1 0.423 beamL L=  is the distance from the column to the vertical transverse tie, hence 

1 0.423 42.25L = × -in. 17.87= -in. Figure A-6 (b) and (c) show the assigned node points 

for the steel and concrete trusses, respectively.  

 

Step 2. Assign Steel and Concrete Elements 

To expedite the construction of the C-STM, the material properties and element axial 

areas (defined below) where defined first so that they could be directly applied when 

assigning members. Once each element axial rigidity was defined, steel and concrete 

element members were then assigned between there appropriate node points using 

pinned-end connections as shown in Figure A-6 (d) and (e). 

 Three material types were required to be defined for the following C-STM 

members: steel, concrete, and modified chord concrete. Table A-3 shows the material 

properties used for each type, where ' 4 '( )t cf f psi=  is the concrete tensile strength 

used by Bracci et al. (2000);  57000 '( )c cE f psi=  is the concrete elastic modulus; 

( ) ( ) ( )2 2' 2 ' ' 'k n d d n nρ ρ ρ ρ ρ ρ= + + + − +  is the elastic compression depth 

defined by Eq. (2.13); and ( )'( ) / 168(1 '/ )E cf psi d kdψ = −  is the concrete chord 

compatibility correction scalar defined by Eq. (2.20).   
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Table A-3: Material properties for steel, concrete and concrete chord members 

Material 
Type Parameter 

Specimen 
2A 5D 8G 

Steel 
yf (ksi) 65 65 65 

Es (ksi) 29000 29000 29000 

Concrete 

'cf (ksi) 6.2 5.5 5.3 
'tf (ksi) 0.32 0.30 0.29 

Ec (ksi) 4490 4225 4150 

Concrete 
Chord 

ρ  0.00729 0.00947 0.00729 
'ρ  0.00614 0.00606 0.00614 

n  6.46 6.86 6.99 
k  0.245 0.281 0.252 

Eψ  0.82 0.70 0.74 

ψEEc (ksi) 3680 2960 3070 
 

 

 Before defining the area assignments, the arch breadth scalar η  was defined in 

order to apportion the contribution of arch and truss action according to Eq. (2.9). Table 

A-4 shows the longitudinal and transverse reinforcement ratios and other parameters 

used to define the respective arch and truss widths. Using the above mentioned 

parameters, the axial areas were defined using the equations shown in Table A-1. Table 

A-5 shows the final calculated properties of the truss member axial rigidities for 

Specimen 2A.  
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Table A-4: Arch breadth scalar 

Specimen 2A 5D 8G 

No. of hoops 1 1 2 

shA  0.614 0.614 1.23 

Tρ  0.0030 0.0030 0.0059 

Lρ  0.0073 0.0095 0.0073 
α  33.3° 33.7° 33.3° 

cot /L jdα =  1.52 1.50 1.52 
η 0.55 0.62 0.38 

Arch Breadth (in) 18 21 13 
Truss Breadth (in) 15 12 20 

 

 

Table A-5: Specimen 2A elastic truss member axial rigidities 

Member Steel Element Concrete Element Comments E A E A 

C
an

til
ev

er
ed

 B
ea

m
 

2 – 4 
4 – 5 29000 7.46 4490 250.6 Tension Chord 

1 – 3 29000 6.28 3675 250.6  Compression Chord 

3 – 4 29000 2.45 4490 256.3 
Active Hoop steel 
including tension 
stiffening effect 

1 – 5 - - 4490 224.2 Concrete Strut in Arch 
Mechanism 

1 – 4 - - 4490 225.2 Concrete Strut in Truss 
Mechanism 

3 – 5 - - 4490 207.6 Concrete Strut in Truss 
Mechanism 

B
ea

m
-C

ol
 

2C – 2B 29000 7.46 4490 250.6 Tension Chord 

1C – 1B 29000 6.28 3675 250.6  Compression Chord 
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Step 3. Assign Nonlinear Constitutive Material Relationships 

Figure A-7 shows the the nonlinear material constitutive relationships for steel and 

concrete defined using the material properties defined in Table A-3.  

 

Step 4. Assign Load Cases 

A static-nonlinear force control analysis was defined with two point loads of 500 kips 

assigned at the applied loads. 

 

Step 5. Run Analysis 

The analysis was run using 200 incremental step sizes, and took approximately two 

minutes to conduct the analysis. 

 

A-6  Summary 

This Appendix presented a step-by-step set of instructions that can be used to apply the 

C-STM theory described. Each section refers to the theory described in Chapter II and 

shows how each step is implemented into SAP2000. This theory can be applied to other 

structural analysis software packages as well.   
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(a) Reinforcing Steel 

  
(b) Concrete compressive struts 

 
 

(c) Concrete compressive chord elements 

  
(d) Concrete tension stiffening 

Figure A- 7: Specimen 2A material properties: Idealized (left) and actual (right) 
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APPENDIX B 

DESIGN APPLICATION: C-STM FOR EXPERIMENTAL C-SPECIMENS 

A design application of the C-STM modeling parameters used to analyze the structural 

response of the reinforced concrete C-Specimens tested in this research experimental 

program is given in this appendix. The step-by-step procedure presented in the Appendix 

A is used to construct the C-STM as follows. 

 

Step 1. Assign Node Points 

Table B-1 shows the cross-section parameters used to define the effective steel centroids 

for the three sections of the C-Specimen: Doubly reinforced, column, and singly 

reinforced. All sections are doubly reinforced, hence the vertical positioning of the 

tension and compression chord members were located at the respective steel centroids.  

The representative areas of reinforcement for the tension chord were defined as 

the sum of longitudinal steel and three sets of web distribution steel for tension. The 

compression chord was defined as the compression longitudinal steel. The internal lever 

arm of the column support was taken as the internal diameter of the longitudinal 

reinforcement, 30 (2 3.25) 23.5 .jd in= − × = −   
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Table B-1: Effective steel centroids for tension and compression chord members 

Section Doubly Reinforced Column Singly Reinforced 

CROSS-
SECTION 

   
Compression 

Chord 10-#8 Bars 5-#8 Bars 2-#8 Bars 

'd (in) 2.25 2.25 2.25 
'sA (in2) 6.28 3.93 1.57 

Tension 
Chord 

10-#8 Bars 
2 sets of 2-#4 

10-#8 Bars 
2 sets of 2-#4 

10-#8 Bars 
2 sets of 2-#8 

d (in) 32.2 32.2 31.14 

sA (in2) 8.64 8.64 11.00 
Internal Lever 

Arm (jd) 30.0 30.0 28.9 

 
 

  

  

d ' 

d 

Compression Chord 

Tension Chord 
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(a) C-STM of C-Specimen  

 
(b) Steel nodes (c) Concrete Nodes 

 
(d) Steel elements (e) Concrete elements 

Figure B-1: Specimen 2A node and element construction 
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Figure B-1 (a) shows the outline of the C-STM overlaid with the reinforcing details of 

the C-Specimen. The top and bottom chord members were first drawn using the values 

in Table B-1 for the beam and column elements. The intersection of the column and 

beam steel defined the length of the beam elements as 38.25-in. with an internal lever 

arm of 30-in. The horizontal positioning of the truss node points for the cantilevered 

beam elements was defined according to the single-point Gauss quadrature model, where 

1 0.423 beamL L=  is the distance from the column to the vertical transverse tie, hence 

1 0.423 38.25L = × -in. =16.2-in. The beam column joint was defined using a two-point 

truss model where the transverse reinforcement was defined at the location of the 

stirrups. Figure B-1 (b) and (c) show the assigned node points for the steel and concrete 

trusses, respectively.  

 

Step 2. Assign Steel and Concrete Elements 

To expedite the construction of the C-STM, the material properties and element axial 

areas (defined below) where defined first so that they could be directly applied when 

assigning members. Once each element axial rigidity was defined, steel and concrete 

element members were then assigned between there appropriate node points using 

pinned-end connections as shown in Figure B-1 (d) and (e).  

 Three material types were required to be defined for the following C-STM 

members: steel, concrete, and modified chord concrete. Table B-2 shows the material 

properties used for each type, where ' 0.42tf ksi=  was the measured concrete tensile 
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strength from the embedded bar test;  57000 '( )c cE f psi=  is the concrete elastic 

modulus; ( ) ( ) ( )2 2' 2 ' ' 'k n d d n nρ ρ ρ ρ ρ ρ= + + + − +  is the elastic compression 

depth defined by Eq. (2.13); and ( )'( ) / 168(1 '/ )E cf psi d kdψ = −  is the concrete chord 

compatibility correction scalar defined by Eq. (2.20).  

Figure B-2 shows the node labels used to define the C-STM for the C-Specimen. 

Before defining the area assignments, the arch breadth scalar η  was defined in order to 

apportion the contribution of arch and truss action according to Eq. (2.9). Table B-3 

shows the longitudinal and transverse reinforcement ratios and other parameters used to 

define the respective arch and truss widths. Using the above mentioned parameters, the 

axial areas were defined using the equations shown in Table A-3.  Table B-4 shows the 

final calculated properties of the truss member axial rigidities for the Doubly Reinforced 

Section.  



 

 

143 

Table B-2: Material Properties for steel, concrete and concrete chord members 

Material 
Type Parameter 

Section 
Doubly 

Reinforced Column Singly 
Reinforced 

Steel 
yf (ksi) 65 65 65 

Es (ksi) 29000 29000 29000 

Concrete 

'cf (ksi) 5.4 5.4 5.4 
'tf (ksi) 0.42 0.42 0.42 

Ec (ksi) 4190 4190 4190 

Concrete 
Chord 

ρ  0.0112 0.0147 0.0112 
'ρ  0.00812 0.00525 0.00203 

n  6.92 6.92 6.92 
k  0.411 0.411 0.315 

Eψ  0.59 0.54 0.67 

ψEEc (ksi) 2472 2263 2907 
 

 
Figure B-2: C-STM labeling 
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Table B-3: Arch breadth scalar 

Specimen 
Doubly 

Reinforced Column Singly 
Reinforced 

No. of hoops 1 1 2 

shA  0.393 0.614 0.393 

Tρ  0.00364 0.0030 0.00364 

Lρ  0.0011 0.0095 0.0011 
α  38.1° 30.0° 38.1° 

cot /L jdα =  1.28 0.96 1.28 
η 0.677 0.9 > 0.75 0.677 

Arch Breadth (in) 16.2 18 16.2 
Truss Breadth (in) 7.8 6 7.8 

 

 

Table B-4: Doubly reinforced elastic truss member axial rigidities 

  
2) STRONG BEAM 

Comments 
  

Steel Concrete 

 
MEMBER E A E A 

Be
am

 

A-E 29000 8.64 4190 243.42 Tension Chord 

B-D 29000 6.28 2455 72.71 Compression Chord 
BC 29000 2.36 4190 162.00 Transverse Steel 
AD - - 4190 232.00 Concrete Arch  
AB - - 4190 114.08 

Concrete Truss  
CD - - 4190 106.45 

Be
am

-C
ol

um
n 

E-K 29000 8.64 4190 243.42 Tension Chord 

D-H 29000 6.28 2455 72.71 Compression Chord 
FG&HI 29000 0.39 4190 54.00 Transverse Steel 

DK - - 4190 348.18 Concrete Arch  
DG - - 4190 30.79 

Concrete Truss  
DI - - 4190 28.26 
FK - - 4190 31.71 
HK - - 4190 29.03 

Co
lu

m
n JJ 29000 11.00 4190 307.33 Tension Chord 

LL 29000 3.93 2264 307.33 Compression Chord 
Tran 29000 2.36 - - Transverse Steel 
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Step 3. Assign Nonlinear Constitutive Material Relationships 

Figure B-2 shows the nonlinear material constitutive relationships for steel and concrete 

defined using the material properties defined in Table B-2.  

 

Step 4. Assign Load Cases 

A static-nonlinear force control analysis was defined with two point loads of 500 kips 

assigned at the applied loads. 

 

Step 5. Run Analysis 

The analysis was run using 200 incremental step sizes, and took approximately two 

minutes to conduct the analysis. 
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(a) Reinforcing Steel 

  
(b) Concrete compressive struts 

 
 

(c) Concrete compressive chord elements 

  
(d) Concrete tension stiffening 

 

Figure B- 2: Specimen 2A frame hinge properties 
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APPENDIX C 

C-SPECIMEN EXPERIMENTAL RESULTS AND C-STM COMPARISONS 

This appendix provides the experimental results for selected instrumentation in 

comparison to the predicted C-STM. At the top of each page is an illustration of the 

instrumentation results shown for that particular page, where the results in columns (a) 

and (b) refer to the doubly and singly reinforced beam, respectively. The results in the 

top and bottom rows refer to Phase I and Phase II testing, respectively.    
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Global Force-Displacement 
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Beam Only Response (Drift) 
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Longitudinal – Beam (column face)  
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Longitudinal – Column 
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Transverse – Beam 
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Transverse – Beam Column Joint 
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Compression Chord – Beam 
 

 

 

 

 

PH
A

SE
 I 

  

PH
A

SE
 II

 

  
 (a) Doubly Reinforced Beam (b) Singly Reinforced Beam 

 
  

Steel Strain Gage LVDT Truss C-STM

 
 

 

0

100

200

300

400

500

-0.0006-0.0004-0.000200.0002

A
cu

tu
at

or
 F

or
ce

 (k
ip

s)

C i  St i

0

00

200

300

400

500

-0.0006-0.0004-0.000200.0002

 
 

C i  St i

0

100

200

300

400

500

-0.0006-0.0004-0.000200.0002

A
cu

tu
at

or
 F

or
ce

 (k
ip

s)

Compressive Strain

0

00

200

300

400

500

-0.0006-0.0004-0.000200.0002

 
 

Compressive Strain

LVDT Truss 
(Phase II only) 

Steel Gage 
(Beam bar) 

LVDT Truss 
(Phase I only) 
Steel Gage 
(Beam bar) 

Doubly Reinforced Singly Reinforced 



 

 

155 

Compression Chord – Column 
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Arch Struts – Beam 
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Arch Struts – Beam Column Joint 
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Truss Strut – Beam 
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Principle Tensile Strain – Beam Column 
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Principle Tensile Strain – Beam Column Joint Crack Width 
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APPENDIX D 

CODE FORCE-BASED PREDICTIONS 

D.1  Reinforced Concrete Bridge Caps 

 Flexural Bending Theory at First Yield 

Assuming plane sections remain plane, the critical section moment capacity was defined 

at the column face ( .39 ina −= ). The strain profile was defined at first yielding of the 

longitudinal tension steel only (i.e. no longitudinal distribution steel), where the neutral 

axis depth was set using the elastic compression zone coefficient specified in Eq. (2.13). 

Table D-1 shows the values used to calculate kd , from which the compression steel sC  

and concrete cC  resultant forces can be calculated, thus the summation of moments 

about the tension steel will define the moment capacity at first yield: 

)'()3/( ddCkddCM scy −+−= , finally the shear force is defined as aMV yy /=  

Table D-1: First yielding shear force 

Specimen 2A 5D 8G 
a (in) 39 39 39 

bw (in) 33 33 33 
d' (in) 3 1/4 3 1/4 3 1/4 
ρ' 0.00581 0.00581 0.00581 

d (in) 32 3/4 32 3/4 32 3/4 
ρ 0.00581 0.00799 0.00581 
n 6.46 6.86 7.31 

k  (in) 0.222 0.261 0.232 
Cc (kip) -344 -472 -338 
Cs (kip) -64 -89 -71 
T  (kip) 408 562 408 
Check 0 0 0 

My(kip.in) 12332 16755 12289 
Vy (kip) 316 430 315 
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Flexural Bending Theory at Nominal Ultimate Moment 

The nominal bending theory was calculated using a computational algorithm that 

incorporated each level of steel at its respective section depth. Standard ultimate flexural 

applied where the maximum concrete strain in the compression fiber was taken as 

003.0=cε , and a Whitney stress block was assumed. Table D-2 shows the calculated 

section moments and equivalent shear forces.  

Table D-2: Nominal moment shear force 

Specimen 2A 5D 8G 
Mn(kip.in) 14365 18795 14364 
Vn (kip) 368 482 368 

 
Sectional Shear 

The classical sectional shear design is taken as the nominal shear capacity, CSU VVV +=  

where S sh yV A f d s=  is the shear capacity provided by the transverse steel implicitly 

assuming Ritter’s 45 degree truss, and 2 ' ( )C c wV f b d psi units=  is the concrete shear 

strength. Table D-3 shows the calculated concrete and transverse steel shear strengths, 

and the final sectional shear capacity. 

Table D-3: Sectional shear force 

Specimen 2A 5D 8G 
d (in.) 32.75 32.75 32.75 

Ash (in2) 0.614 0.614 1.227 
fc’ (ksi) 6.2 5.5 5.3 
fy (ksi) 65 65 65 

Vc (kip) 170  160  157  
Vs (kip) 209 209 418 
Vu (kip) 379 369 575 
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Strut and Tie Analysis 

STM analysis was conducted based on the provisions of the AASHTO LRFD (2008) for 

bridge design specifications and summarized as follows.  

1. Estimate the height of the CCC node based on flexural force equilibrium, where a is 

the height of the equivalent stress block: 

  
bf

fA
a

c

ys

'85.0
=  

2. Define the angel of the corner-to-corner diagonal strut sθ  shown in Figure D-1. 

Apply equilibrium of horizontal forces to define maximum applied vertical load 

 sVT θcot=  

 
s

TV
θcot

=  

where ys fAT =  

3. Calculate diagonal strut force (below) to ensure that the diagonal strut and nodal 

stresses are not exceeded in accordance with AASHTO (2008). If satisfied then the 

calculated applied shear force is that calculated above. 

 
s

VD
θsin

=  

Table D-4 shows the calculated STM steps described above, and the final STM capacity. 
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Figure D-1: STM of reinforced concrete bridge caps 

 

 

 

 

Table D-4: Strut-and-tie shear force 

 
Specimen 2A 5D 8G 

a (in) 2.4 3.7 2.4 

θs 36.75 36.17 36.75 

T (kip) 408 562 408 

D (kip) 510 696 510 

V (kip) 305 410 305 

C L 

θs 

a 
C 

T 

D 
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D.2  C-Specimens 

 Flexural Bending Theory at First Yield 

Assuming plane sections remain plane, the critical section moment capacity was defined 

at the column face ( .36 ina −= ). The strain profile was defined at first yielding of the 

longitudinal tension steel only (i.e. no longitudinal distribution steel), where the neutral 

axis depth was set using the elastic compression zone coefficient specified in Eq. (2.13). 

Table D-5 shows the values used to calculate kd , from which the compression steel sC  

and concrete cC  resultant forces can be calculated, thus the summation of moments 

about the tension steel will define the moment capacity at first yield: 

)'()3/( ddCkddCM scy −+−= , finally the shear force is defined as aMV yy /=  

Table D-5: First yielding shear force 

Specimen Doubly 
Reinforced 

Singly 
Reinforced 

a (in) 36 36 
bw (in) 24 24 
d' (in) 2.75 2.25 
ρ' 0.00984 0.001968 

d (in) 33.25 33.25 
ρ 0.00984 0.009842 
η 6.80 6.80 

k  (in) 0.270 0.297 
Cc (kip) -380 -477 
Cs (kip) -131 -33 
T  (kip) 511 511 
Check 0 0 

My(kip.in) 15280 15330 
Vy (kip) 430 426 
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Flexural Bending Theory at Nominal Ultimate Moment 

The nominal bending theory was calculated using a computational algorithm that 

incorporated each level of steel at its respective section depth. Standard ultimate flexural 

applied where the maximum concrete strain in the compression fiber was taken as 

003.0=cε , and a Whitney stress block was assumed. Table D-6 shows the calculated 

section moments and equivalent shear forces.  

Table D-6: Nominal moment shear force 

Specimen Doubly 
Reinforced 

Singly 
Reinforced 

Mn(kip.in) 17126 16936 
Vn (kip) 476 470 

 

 

 

Sectional Shear 

The classical sectional shear design is taken as the nominal shear capacity, CSU VVV +=  

where sdfAV yshS =  is the shear capacity provided by the transverse steel implicitly 

assuming Ritter’s 45 degree truss, and 2 ' ( )C c wV f b d psi units=  is the concrete shear 

strength. Table D-7 shows the calculated concrete and transverse steel shear strengths, 

and the final sectional shear capacity. 
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Table D-7: Sectional shear force 

Specimen Doubly 
Reinforced 

Singly 
Reinforced 

d 33.25 33.25 
Ash 0.393 0.393 
fc’ 5.4 5.4 
fy 65 65 
Vc 164 164 
Vs 189 189 
Vu 353 353 

 

 

Strut and Tie Analysis 

STM analysis was conducted based on the provisions of the AASHTO LRFD (2008) for 

bridge design specifications and summarized as follows.  

1. Estimate the height of the CCC node based on flexural force equilibrium, where ab is 

the height of the equivalent stress block in the beam: 

  
0.85 '

s y
b

c

A f
a

f b
=  

2. Estimate the height of the prismatic column compression strut based on flexural 

force equilibrium, where ac is the height of the equivalent stress block in the beam: 

  
0.85 '

s y
c

c

P A f
a

f b
+

=  
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Figure D-8: STM of reinforced C-Specimen 
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3. Define the angel of the corner-to-corner beam diagonal strut bθ  shown in Figure D-

8. Apply equilibrium of horizontal forces to define maximum applied vertical load 

 cotb bT V θ=  

 
cot

b

b

TV
θ

=  

where b s yT A f=  

4. Calculate diagonal strut force (below) to ensure that the diagonal strut and nodal 

stresses are not exceeded in accordance with AASHTO (2008). If satisfied then the 

calculated applied shear force is that calculated above. 

 
s

VD
θsin

=  

Table D-8 shows the calculated STM steps described above, and the final STM capacity. 
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Table D-8: Strut and tie shear force 

 

Specimen Doubly 
Reinforced 

ab (in) 2.3 

P (kip) 320 

ac (in) 3.3 

θs 38.2 

T (kip) 408.2 

D (kip) 519 

V (kip) 321 
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APPENDIX E 

EXPERIMENTAL MATERIAL PROPERTIES 

E.1  Concrete Tension Stiffening Effects 

Concrete provides tensile strength before the section is cracked as shown by the force-

strain plot in Figure E-1 (a) of a reinforcing steel bar with concrete stiffening. Region I 

represents the uncracked state where concrete behaves elastically in tension, followed by 

the tension-softening effects as the section begins to crack in region II. In region III, the 

interfacial bond stress between rebar and concrete provides the remaining tension in the 

concrete. 

In order to model this behavior, a simple experiment was conducted where a half 

in. coil rod (high strength steel) was embedded in a 3-in. x 3-in. x 36-in. prism of 

concrete and subjected to uni-axial tension as shown in Figure 6 (b). Strains were 

recorded across a 30-in. gage length on the member and a 3in. gage length across the 

steel. This experiment was modeled using the stress-strain relationships presented in 

Section 2.7 to model tensile behavior of concrete.  

Figure E-2 graphically shows the individual force contributions of steel (1) and 

concrete (2) verse strain. By assuming a uniform strain distribution across the section 

when the bar is pulled in tension, one can then apply the theory of superposition to the 

forces in the member to obtain a combined force-strain response of the entire member 

(3).  

 
 



 

 

172 

 

(a) 

 
(b) 

 

Figure E-1: (a) Tension-stiffening effects of a reinforcing steel  
(b) Embedded bar test setup 
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1) Stress-strain of bare reinforcing steel 
 
 
 
 

As = 0.1385 in2 

 
2) Stress-strain of bare concrete 

 
 
 
 

Ac = 8.8615 in2 

 
3) Combined stress-strain of 
reinforcing steel and concrete 

 
 
 
 

Aeff  = 0.1385 in2 

  
Figure E-2: Focre vs. Strain plots used to model embedded bar test 
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Figure E-3 shows the results from an embedded bar test specimen where f’c = 4.5 ksi, 

335.0)(45005' == psif t  ksi, Ec = 3825 ksi, fy = 110 ksi, Es = 29000 ksi. This plot is 

overlaid with the tri-linear tension stiffened approximation. This constitutive model 

provided a very accurate approximation of the embedded bar test response, thus 

validating the model for use in the C-STM. 

 

E.2  Experimental Material Properties for C-Specimens 

Figure E-4 (a) shows the embedded bar test results tested approximately at the time of 

testing for the C-Specimen. The following material parameters were defined for the 

concrete tensile constitutive material model: ksif t 42.0'= ; 0001.0'=tε ; and 

ksiEc 4180= . 

Figure E-4 (b) shows concrete compression strength results of five cylinder tests 

tested at the time of testing for the C-Specimen. The following material parameters were 

defined for the concrete tensile constitutive material model: ksifc 2.4'= ; 002.0=cε ; 

and ksiEc 4180= . 

Figure E-4 (c) and (d) shows the steel strength results of three longitudinal and 

transverse rebars, respectively, used to construct the C-Specimen. The following 

material parameters were defined for the steel constitutive material model: ksif y 65= ; 

00224.0=yε ; ksiEs 29000= ; and 03.0/ =shs EE  
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Figure E-3: Embedded bar test results compared with constitutive model 

 
  



 

 

176 

 
 
 
 

  

(a) Concrete Compression strength 
(compression cylinders) 

 
 

(b) Concrete tensile strength 
(embedded bar test) 

  

(c) Longitudinal steel strength 
(tensile test) 

(a) Transverse steel strength 
(tensile test) 
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