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ABSTRACT

Direct Information Exchange In Wireless Networks:

A Coding Perspective. (August 2010)

Damla Ozgul, B.S., METU, Ankara,Turkey

Chair of Advisory Committee: Dr. Alex Sprintson

The rise in the popularity of smartphones such as Blackberry and iPhone creates a

strain on the world’s mobile networks. The extensive use of these mobile devices leads

to increasing congestion and higher rate of node failures. This increasing demand

of mobile wireless clients forces network providers to upgrade their wireless networks

with more efficient and more reliable services to meet the demands of their customers.

Therefore, there is a growing interest in strategies to resolve the problem and reduce

the stress on the wireless networks.

One strategy to reduce the strain on the wireless networks is to utilize cooperative

communication. The purpose of this thesis is to provide more efficient and reliable

solutions for direct information exchange problems. First, algorithms are presented to

increase the efficiency of cooperative communication in a network where the clients

can communicate with each other through a broadcast channel. These algorithms

are designed to minimize the total transmission cost so that the communication will

be less expensive and more efficient. Second, we consider a setting in which several

clients exchange data through a relay. Our algorithms have provable performance

guarantees. We also verify the performance of the algorithms in practical settings

through extensive simulations.
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CHAPTER I

INTRODUCTION

Wireless technology has become an increasingly popular way to gain network

access. Wireless networks are expected to provide an efficient and reliable service in

many applications, such as multimedia streaming and video conferencing. The novel

technique of network coding has a significant potential to improve the throughput,

reliability and efficiency of wireless networks by taking advantage of the broadcast

nature of the wireless medium. Network coding is a generalization of network oper-

ation beyond traditional routing or store-and-forward approaches. In the traditional

approach, coding is employed at source nodes to compress redundant information or

to protect the network against losses. It can also be employed at the link level to

protect against random errors or erasures on individual links. On the other hand,

the usual task of networks is to transport information supplied by source nodes with-

out any modification. Network coding, in contrast, allows interior network nodes to

combine or mix information from different sources.

The first study highlighting the utility of network coding was performed by

Ahlswede et al.[1] where the term network coding was coined. In this work, the

advantage of network coding over routing, the traditional way of operating a net-

work, was pointed out for the first time by means of a very simple example known

as the butterfly network. Since their work, the topic of network coding has been

undergoing an active development in the research community [2, 3, 4, 5].

The technique of network coding has a significant potential for improving the

performance of wireless networks by exploiting their broadcast nature. For example,

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Wireless Network Coding.

consider the wireless network coding scheme depicted in Figure 1. In this example,

two wireless clients need to exchange packets x1 and x2 through a relay node (clients

cannot communicate directly, e.g., due to power constraints). The network coding

approach requires three transmissions: two from the clients to the relay node as shown

in Figure 1(a) and Figure 1(b) and one from the relay node to the clients as shown in

Figure 1(c). In contrast, the traditional approach would require four transmissions.

Wireless ad-hoc networks are one of the main areas where the network cod-

ing technique is expected to be most beneficial. In particular, the network cod-

ing technique allows to exploit the broadcast nature of the wireless medium. The

underlying principle of wireless network coding architectures is opportunistic listen-

ingopportunistic listening [6, 7]. With this approach each network node is snooping

on all communications over the wireless medium. The overheard packets are stored

for a limited period of time. The key idea is to take advantage of the overheard

packets, also referred to as side information, to achieve a higher rate of the infor-

mation exchange. For instance, Index Codes introduced in [8] utilize from prior side
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information to satisfy more efficient and reliable information exchange.

Recently, increasing demand of mobile wireless clients has resulted in a chal-

lenging problem of achieving efficient and reliable information exchange on mobile

networks. There is a considerable stress on cellular networks in terms of bandwidth

provision and network cost. This creates a growing interest in cooperative wireless

communication [9] which is a promising strategy to resolve the problem providing

energy efficiency [10], increased coverage [11] and enhanced data rates [12].

In this thesis, we have considered several direct information exchange problems

that are mostly utilizing the side information to satisfy efficient information exchange

via cooperative wireless communication. In each scenario, the main goal is to improve

efficiency and reliability of the transmissions to exchange information. Indeed, these

problems can be classified in two major groups according to the decision whether

clients are allowed to communicate with each other or not.

One scenario could be the case when clients are allowed to directly communicate

with each other. In this problem, some wireless clients are interested in the same

large file (such as an audio file). Initially, a base station broadcasts the file to the

mobile clients. The long-range link between the base station and the mobile clients

can be expensive, slow and unreliable, which causes some clients to receive only

some parts of the whole file. Indeed, partial reception results from channel fading

or shadowing, connection loss or network saturation and congestion such as in peer-

to-peer systems. Although the clients have received some portion of the file, if the

whole file is collectively known by the mobile clients, they can cooperate with each

other to obtain the whole file using direct communication which is more reliable and

faster. However, each client could be associated with different transmission costs.

The costs can capture different factors, such as the quality of the communication

channel, residual battery charge, etc. For example, a client with a low residual charge
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will have a higher transmission cost, whereas a client with a higher charge will have a

lower cost. In fact, if a client with low battery is requested to have a large number of

transmissions, it will find itself with a empty battery. Since our algorithm minimizes

the total transmission cost, it would give a preference for clients with higher residual

charge in the transmission order.

On the other hand, there could be some networks where the clients cannot di-

rectly communicate with each other. Suppose again that the clients collectively hold

a large file and each client would like to obtain the whole file. The clients exchange

data using a relay node to obtain the missing parts of the large file. Since the clients

collectively have the file, then it is possible that all clients will obtain the whole file.

This thesis is organized as follows. In Chapter II, we describe the basic algebraic

model and introduce different scenarios that are mainly taking the advantage of side

information of the clients, i.e., the opportunistic listening technique. In addition,

Index Codes are explained in detail as a leading study utilizing opportunistic listen-

ing in networks. In Chapter III, we examine Data Exchange with Costs (DEWC)

problem in detail and establish randomized and deterministic algorithms to satisfy

efficient information exchange. We also examine the performance of the randomized

algorithm when there is a restriction on the number of transmissions. Furthermore,

simulation results are presented to corroborate the analytical results. In Chapter IV,

we study Data Exchange through Relay (DETR) problem, in which the clients cannot

communicate with each other, in detail and state our results. Finally, we present our

conclusions and some directions for further work in Chapter V.
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CHAPTER II

BASIC MODEL

A. Fundamental Model

A general instance of the basic model of the direct information exchange problems

includes a set of information messages (data packets) P = {p1, p2, . . . , pm}, a set of

receivers (clients) C = {c1, . . . , cn}. Each one of the clients, ci, has a side information

set, H(ci) ⊆ P , represented by a subset of P , and a demand set, W (ci) ⊆ P , which is

another subset of P . After the completion of the transmissions, the clients will obtain

the packets in their demand set. In addition, the demand set could be the set which

is the complement of side information set, i.e., W (ci) = H(ci) and W (ci)∪H(ci) = P

as well as it could be some other set whose size is smaller than the complement of

side information set, i.e., the client could be interested in some specific packets in P .

We have considered two settings in this thesis. In the first one, there is no

server/base station; that is, the clients can communicate among themselves to com-

plete the communication and ensure that all the clients eventually obtain their de-

mand packets. On the other hand, in the second setting there is a server through

which the communication between the clients takes place. The server and the clients

can broadcast encodings of messages in P over a noiseless broadcast channel. In

other words, we assume that transmissions of the packets between the clients and/or

between a client and the server occur without an error. The objective of all scenarios

is to ensure that all of the clients eventually possess the packets in their demand sets

in an efficient and inexpensive way.

The generic model is the underlying part of all the scenarios studied in this the-

sis. Although the basic properties are the same for all the problems, they differ in



6

Fig. 2. Index Coding Problem

some aspects. Therefore, each scenario is studied separately. In the remainder of this

chapter, each problem is introduced and explained briefly. Then, Index Coding prob-

lem is examined in detail since it considers a basic setting that utilize opportunistic

listening and all other scenarios studied in this thesis are built upon this problem.

B. Direct Information Exchange Problems

Index Codes utilize prior side information [8]. An instance of the Index Coding

problem includes a set of wireless clients and a set of packets that need to be delivered

to clients, and a server node, base station, that holds these information packets. Each

client has a demand set which is the set of packets required by the client and a

side information set which is the set of packets available at the client, as shown in

Figure 2. In each round of communication, base station can transmit a single packet

or a combination of the packets. We assume that all packets transmitted by the server

are received by all clients without an error. The goal is to allow each client to decode

the packets it requested while minimizing the number of transmissions.
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Fig. 3. Cooperative Data Exchange Problem

Cooperative Data Exchange(CDE) Problem is another scenario utilizing the over-

heard packets which was introduced by El Rouayheb et al.[13]. An instance of the

CDE Problem includes a set of wireless clients and a set of packets that need to be

delivered to all clients. This problem differs from the Index Coding problem in the

following way; there is no server in this scenario, rather clients try to communicate

with each other. In other words, they exchange the packets in a cooperative manner

as shown in Figure 3. In addition, unlike the Index Coding problem, in this scenario

all clients require all the packets; not some specific packets. In each round of com-

munication, a client can transmit a single packet or a combination of the packets.

Assuming that the transmitted packets are received by all clients without an error,

the aim is to guarantee that all the clients eventually obtain all the packets with

minimum the number of transmissions.

Data Exchange with Costs (DEWC) Problem is similar to the CDE Problem

except that in this problem each client is associated with a cost value as shown in

Figure 4. An instance of the DEWC Problem includes a set of wireless clients and
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Fig. 4. Data Exchange with Costs Problem

a set of packets that need to be delivered to all clients as in the case of CDE. The

major difference between these problems is that in the CDE Problem the goal is

to guarantee that at the end all clients will get all the packets with the minimum

number of transmissions whereas in the DEWC Problem the goal is to minimize the

total transmission cost.

A closely-related problem is that of Data Exchange Through Relay (DETR) Prob-

lem. An instance of this problem includes a set of wireless clients and a set of packets

that need to be delivered to clients, and a server node as shown Figure 5. At the

end, all clients require all the packets as in the CDE Problem. In each round of com-

munication, base station or a client can transmit a single packet or a combination of

the packets. Again, we assume that the transmitted packets are received without an

error. The goal is again to ensure that all the clients eventually get all the packets

with minimum the number of uplink and downlink transmissions through the server

node.

Figure 6 shows general properties of all the problems considered in this thesis.
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Fig. 5. Data Exchange through Relay Problem

Although these direct exchange problems are similar, they differ in some properties

as shown in the Figure 6.

C. Index Coding

Index Coding problem has been recently introduced in [8] and it is one of the

fundamental problems in wireless network coding. Index Coding problem has been

studied in several recent works [8, 14, 15, 16, 17, 18, 19, 20, 21] and it has several

applications in wireless networking and distributed computing. In addition, these

codes are instrumental in satellite communication networks in which the clients have

limited storage and save only some part of the received information [18]. An instance

of the Index Coding problem includes a server/base station that holds a set of infor-

mation packets P and a set of receivers(clients) C, each one of them has some side

information represented by a subset of P , known to the server, and demands another

subset of P . The server can broadcast encodings of messages in P over a noiseless

channel. The objective is to identify an encoding scheme that satisfies the demands
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Fig. 6. General Properties of Direct Wireless Exchange Problems

of all clients with the minimum number of transmissions.

Figure 7 demonstrates an instance of the Index Coding problem in which the

overheard packets can be used to minimize the number of transmissions. In this

example, the sender node needs to deliver four packets p1, . . . , p4 to its neighbors.

The figure shows, for each neighbor, the required packets, as well as the packets

available through opportunistic listening. The standard technique would require four

packets to be transmitted by the central node, while the network coding approach

requires only two transmissions p1 + p2 + p3 and p1 + p4, all operations are performed

over GF (2n). In other words, the encoding technique decreases the total number of

transmissions by 50%, resulting in a coding gain of 2. The problem of minimizing the
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Fig. 7. The Index Coding Problem.

number of required transmissions is referred to as the Index Coding problem.

More formally, an instance of the Index Coding includes a relay node r, a set

C = {c1, . . . , cn} of wireless clients and a set P = {p1, p2, . . . , pm} of packets that need

to be delivered to clients in C. Each client ci ∈ C is associated with two sets:

• demand set W (ci) ⊆ P - the set of packets required by ci

• side information set H(ci) ⊆ P - the set of packets available at ci

In each round of communication the relay can transmit a single packet. We

assume that all packets transmitted by the relay are received by all clients without

an error. The j’th round of communication is specified by an encoding function

gj : Σm → Σ. The objective is to find the set of encoding functions Φ = {gi}`i=1 that

will allow each client to decode the packets it requested while minimizing the number

of transmissions ` = |Φ|. Client ci ∈ C can decode packets in W (ci) if there exists a

decoding function γi : Σ` × (Σ)|H(ci)| → (Σ)|W (ci)| that allows ci to obtain all packets
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in W (ci).

The study of Index Codes by Bar-Yossef, Birk, Jayram and Kol, [8], has at-

tracted a significant amount of attention in the research community. The problem

also motivated us to investigate various problems related to Index Coding problem

and to design effective algorithms satisfying efficient information exchange to solve

the problems.
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CHAPTER III

DATA EXCHANGE WITH COSTS (DEWC) PROBLEM

A. Background

In this chapter, we consider the problem of cooperative data exchange between

clients each having an associated transmission cost value. As a motivation of the

problem, consider some wireless clients interested in the same large file. Initially, a

base station broadcasts the file to the mobile clients. The long-range link between

the base station and the mobile clients can be expensive, slow and unreliable, which

causes some clients to receive only some parts of the whole file. Indeed, partial recep-

tion results from channel fading or shadowing, connection loss or network congestion

such as in peer-to-peer systems. Although the clients have received some portion of

the file, if the whole file is collectively known by the mobile clients, they can commu-

nicate among each other to obtain the whole file using direct communication which

is more reliable and faster. However, each client could be associated with different

transmission costs. The costs can capture different factors, such as residual battery

charge. For example, a client with a low residual charge will have a higher trans-

mission cost, whereas a client with a higher charge will have a lower cost. In fact,

if a client with low battery is requested to have a large number of transmissions, it

will find itself with a empty battery. Since our algorithm minimizes the total trans-

mission cost, it would give a preference for clients with higher residual charge in the

transmission order.

To illustrate the problem further, consider four wireless clients that are interested

in obtaining three packets of m bits each, p1, p2 and p3 ∈ GF (2m). The second, third

and fourth clients have received packets {p1, p3}, {p2, p3} and {p1, p2}, respectively,
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Fig. 8. Possible Transmission Schemes.

i.e., each of these clients misses one packet. However, the first client has only {p1} and

misses two packets due to channel imperfections. Each client is associated with a cost

value; for example the transmission cost when the first client, c1 sends its packet {p1}

is 4. The transmission costs associated with c2, c3 and c4 are 2, 1, and 3, respectively.

Assume that each client can broadcast the packets via a noiseless broadcast channel

and is fully aware of the packets available to other nodes. Now, the clients can try to

complete the communication among themselves. Since they have collectively known

all the packets, it is possible to choose a transmission scheme which ensures that all

the clients eventually obtain all the packets with a total minimum cost value.

A simple cooperation scheme would consist of three uncoded transmissions with

a minimum cost of four; the third client first sends p2 and then p3 separately costing

1 + 1 = 2 and the second client sends p1 letting the total cost as 2 + 2 = 4. However,

this is not an optimal solution not only for minimum number of transmissions but also

for the total minimum transmission cost. Since the clients can send coded packets
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Fig. 9. Optimal Transmission Scheme.

and help multiple clients with a single transmission, the number of transmissions for

this problem can be decreased to two letting only two clients among second, third

and fourth clients send packets as shown in Figure 8. Indeed, an optimal solution

can be obtained if (c2, c3) or (c2, c4) or (c3, c4) are the clients that transmit packets.

However, since we are interested in the total minimum cost, we need to choose (c2, c3)

as transmitters as in Figure 9. Because, if the third client sends p2 + p3 while the

second client sends p1, then the total cost will be 1 + 2 = 3 which is the minimum

cost that could be obtained. It can be verified that all four mobile clients can then

decode all the packets.

A closely-related problem is that of Cooperative Data Exchange problem which

was introduced by El Rouayheb et al.[13] in which the main goal is to minimize the

number of transmissions rather than to minimize the total cost.

In the following, we present efficient algorithms to find optimum transmission

schemes for cooperative data exchange with costs and verify the effectiveness of our
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algorithms through simulation studies. We first define the problem and present the

model. Then, we present and analyze the algorithms. We also show the performance

results of our algorithms.

B. Model

Consider a set C = {c1, . . . , ck} of k wireless clients. Each client ci is associated

with a transmission cost δ(ci). A set P = {p1, . . . , pn} of n packets needs to be

delivered to k clients in C. The packets are elements of a finite field, F . Initially,

each client ci ∈ C is associated with side information set H(ci) ⊆ P while the clients

collectively know all packets in P , i.e., ∪ci∈CH(ci) = P . The demand set of the client

ci, which is the set of packets required, is denoted as W (ci) = ¯H(ci) = P \H(ci) ⊆ P .

We assume that each client knows the indices of packets that are available to other

clients.

To ensure all clients will obtain all packets in P , the clients exchange packets

over a lossless broadcast channel. The information packets are transferred in com-

munication rounds, such that at round j one of the clients, cij , broadcasts a packet,

pj ∈ F , to other clients in C with a transmission cost of δ(cij). Packet pj could be

one of the packets in H(cij), or it could be a combination of packets in H(cij) and the

packets that are previously transmitted over the channel. This is only restricting cij

to use the information it knows at the start of round j. The aim is to find a scheme

that satisfies each client ci obtains all packets in W (ci) while minimizing the total

cost of transmissions. The scheme uses linear coding over the field F . In other words,

each packet is an element of a finite field F and all coding operations are also linear

over the field, F .

The number of packets initially possessed by the client, ci, is denoted by ni = |Pi|,
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while the number of unknown packets to the client, ci, is therefore, n̄i =
∣∣ ¯H(ci)

∣∣ =

n− ni. We denote by nmin = min1≤i≤k ni the minimum number of packets known to

a client.

A client ci is said to have a unique packet pj if pj ∈ H(ci) but pj /∈ H(cl) for all

l 6= i. A client who owns a unique packet can broadcast the packet in an uncoded

fashion at any stage without any penalty in terms of optimality. Therefore, without

loss of generality, it can be assumed that there are no unique packets in the system.

C. Randomized Algorithm

1. Algorithm

In this section, we present an efficient randomized algorithm for the data ex-

change with costs problem. Our algorithm assumes a large finite field F of size q and

provides an optimal solution with high probability. The algorithm uses linear coding

in which any packet, pj, transmitted by the algorithm is a linear combination of the

original packets in P ;

pj =
∑
pi∈P

αj
ipi (3.1)

where αj
i ∈ F are encoding coefficients and αj =

{
αj

1, . . . , α
j
n

}
is the encoding vector

of pj. We denote ui = {u1
i , . . . , u

n
i } as the unit encoding vector corresponding to

the original packet pi where uii = 1 and uji = 0 for i 6= j. Moreover, we denote by

U(ci) the set of unit vectors that corresponds to packets in H(ci). In the analysis of

the algorithm which runs in rounds, instead of expressing the original packets we use

encoding vectors. In other words, rather than saying that a packet pj =
∑

pi∈P α
j
ipi

has been transmitted by a client cij at round j, we state that the client transmits

the encoding vector αj =
{
αj

1, . . . , α
j
n

}
. The transmitted vector αj is a random

linear combination of the unit vectors in U(cij), i.e., αj
i = 0 for pi /∈ H(cij). Other
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elements of αj are selected at random from the field F . Then, the set of encoding

vectors that have been transmitted up to and including round j can be expressed as

Aj = {α1, . . . , αj}.

Let T is the number of transmissions with which minimum total cost for the

overall transmissions can be obtained, that is, it is the number of the transmissions for

the optimal solution of the problem. Assume that we have made a good guess on the

value of T . Indeed, it is not hard to find the exact value of T . Since n−nmin ≤ T ≤ n,

i.e., the value of T is upper bounded by n, we can implement exhaustive search to

find its value. So, if the randomized algorithm assuming that the value T is known

is a low complexity algorithm, the overall algorithm with the exhaustive search will

not be an algorithm with high complexity.

At each iteration j of the algorithm, we denote by nj
i the number degrees of

freedom available for client ci. More specifically, nj
i is defined as follows:

nj
i = rankU(ci) ∪ Aj−1, (3.2)

where Aj−1 = {α1, . . . , αi−1} is the set containing the packets that have been trans-

mitted so far. Note that n − nj
i is a minimum number of packets that needs to be

received by client ci to satisfy its demands.

At the iteration j of the algorithm we divide the clients in C into two groups Cj
1

and Cj
2 .

• Set Cj
1 =

{
ci ∈ C| n− nj

i = T − (j − 1)
}

contains clients that require T − (j−

1) packets at iteration j,

• Set Cj
2 =

{
ci ∈ C| n− nj

i < T − (j − 1)
}

contains clients that require less than

T − (j − 1) packets at iteration j.

Since the clients in Cj
1 need at least T − (j− 1) transmissions to decode the
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required packets, they can not transmit at the current iteration. Therefore, at each

round j, our algorithm selects a client with lowest cost in Cj
2 as the transmitter, i.e,

cij = arg min
ci∈Cj

2

δ(ci).

The steps performed by the algorithm can be summarized as follows:

Randomized Algorithm

1 for T ← n− nmin to n

2 for j ← 1 to T

3 Determine sets Ci
1 and Cj

2 as defined above,

4 Select a client cij ∈ C
j
2 with minimum

transmission cost,

5 Create an encoding vector αj by randomly

combining unit vectors in U(cij),

6 Transmit the packet pj =
∑

pi∈P α
j
ipi.

7 Calculate the total transmission cost for chosen T ,

i.e., ∆T =
∑T

i=1 δ(cij).

8 return the total minimum cost among all T values,

i.e., ∆ = arg minT∈[n−nmin,n] (∆T ).

2. Analysis

We proceed to analyze the correctness and optimality of the algorithm. Consider

an iteration j of the algorithm. We denote OPTj as the minimum total transmission

cost of completing the information transfer after round i, provided that at least T − j

transmissions are allowed after round j. In other words, in addition to the first j

transmissions, at most T − j transmissions of total cost OPTj are needed to satisfy
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the demands of all clients.

Lemma 1 With a probability at least 1− k
q
, OPTj = OPTj−1 − δ(cij).

Proof: We denote Ωj−1 as an optimal set of encoding vectors which are necessary to

complete data transfer. In other words, Ωj−1 has T − (j − 1) encoding vectors such

that:

• each vector is a linear combination of U(ci) for some ci ∈ C

• for each client ci ∈ C it holds that the set Aj−1 ∪ Ωj−1 ∪ U(ci) is of rank n

where Aj−1 = {α1, . . . , αj−1} is the set containing the packets that have been

transmitted so far.

Let µ = rank (Aj−1) be the rank of the set of packets transmitted so far and

µj = rank
(
U(cij) ∪ Aj−1

)
be the rank of the set of encoding vectors which a client

cij own at the beginning of iteration j. Assume that cij is the client which has a

minimum cost among the set Cj
2 . Observe that T − (j − 1) is at least T − µj which

is strictly larger than 0. This follows from the fact that cij is in the set Cj
2 meaning

that it has a demand set strictly smaller than the solution set. So, T − (j − 1) could

be at least 1. Therefore, we can remove at least one packet,v, from Ωj−1 so that

Ω̃j−1 = Ωj−1\ {v} such that Aj−1 ∪ Ω̃j−1 ∪ U(cij) still remains of rank n.

Assume that ci is a client in C\
{
cij
}

. We prove that with probability at least

1 − k
q

it holds that Aj−1 ∪ Ω̃j−1 ∪ U(ci) ∪ {αj} is of rank n. Note that the rank of

vector set Si = Aj−1 ∪ Ω̃j−1 ∪U(ci) is at least n− 1. Indeed, if ci is a client in the set

Cj
1 , then since all of the transmissions, T , are necessary to get all the packets; when

we remove a packet v from Ωj−1 we decrease its rank to n− 1. But if ci is a client in

Cj
2\
{
cij
}

, then the rank of the set Si = Aj−1∪ Ω̃j−1∪U(ci) could still be n. Because,

the vector,v, which is removed from Ωj−1 may not be necessary for the client ci. If
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it is useful for the client ci ∈ Cj
2\
{
cij
}

, then the situation will be same as previous

case, a client which is in the set Cj
1 . Therefore, the rank of vector set Si is at least

n− 1 and we only need to consider the case in which Si is of rank n− 1 since a client

with Si of rank n will not be affected by the removal of packet v.

We denote γi as the normal vector to the span of Si which can be written as

γi =
∑

ug∈U(cij ) βgug +
∑

ug∈Ū(cij ) βgug, where Ū(cij) is the set of unit encoding vectors

that correspond to W (cij) = P\H(cij). In fact, If we show that γi and αj are not

orthogonal with high probability, then we prove the claim that Aj−1 ∪ Ω̃j−1 ∪U(ci)∪

{αj} is of rank n with high probability at most 1 − k
q
. In other words, to prove the

claim it will suffice to show that the inner product 〈γi, αj〉 between γi and αj is not

equal to zero with probability at least 1− k
q
.

We can show that there exists ug ∈ U(cij) such that βg 6= 0 by contradiction.

If that is not the case, then we can write γi as γi =
∑

ug∈Ū(cij ) βgug. For each

ug ∈ Ū(cij), the span of αj−1 ∪ Ω̃j−1 must include a vector vg = ug +
∑

ut∈U(cij ) αt

which is orthogonal to γi. However, since this means that βg is equal to zero for each

ug ∈ Ū(cij), we will have a contradiction with the fact that γi is not identical to zero.

We can write the inner product 〈γi, αj〉 as 〈γi, αj〉 =
∑

ug∈U(cij ) α
j
gβg since αj is

a random linear combination of vectors in U(cij) , i.e., Aj =
∑

ug∈U(cij ) α
j
gug where

αj
g are random coefficients over a field F . Let Û be a subset of U(cij) such that for

each ug ∈ Û it holds that βg 6= 0. Using the statement we have showed above, we can

be sure that the set Û is not empty and so, 〈γi, αj〉 =
∑

ug∈Û α
j
gβg. Since for each

ug ∈ Û , αj
g is a random variable chosen independently of

{
βgug ∈ Û

}
the probability

that 〈γi, αj〉 is equal to zero is at most 1
q
.

Finally, we can prove that the probability that 〈γi, αj〉 = 0 for some client ci ∈ C

is bounded by k
q

by utilizing the union bound. Therefore, for each client ci ∈ C, it

is true that Aj−1 ∪ Ω̃j−1 ∪ U(ci) ∪ {αj} is of rank n, with probability at least 1− k
q
.
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This means that after iteration j of the algorithm, the data transfer can be completed

within T − (j − 1)− 1 = T − j transmissions by using vectors in Aj−1 ∪ Ω̃j−1 ∪U(ci).

Note that at the iteration j, only the clients in the set Cj
2 are allowed to transmit.

Thus, both client cij and the client that transmits vector v belong ∈ Cj
2 . Since cij

has the lowest transmission cost among all clients in Cj
2 , this implies that the cost of

Ω̃j−1∪{αj} is equal to OPTj−1. Note that after iteration j the information exchange

can be completed by broadcastings vectors in Ω̃j−1, hence the cost of Ω̃j−1 is equal to

OPTj. This, in turn, implies that OPTj = OPTj−1 − δ(cij) and the lemma follows.

More formally, Lemma 1 states that after each iteration, the optimality of the

DEWC problem holds with a probability at least 1− k
q
. Since the information transfer

will be completed after T iterations, the algorithm computes an optimal solution for

Data Exchange with Costs problem with probability at least(
1− k

q

)T

≥
(

1− k

q

)n

≥ 1− nk

q
(3.3)

provided that q > n. Indeed, probability of success can be increased by performing

multiple iterations and by averaging the total minimum cost values among all the

iterations.

3. Numerical Results

In this section, we verify the performance of the algorithm presented in the

previous section. We have compared the minimum total cost value without coding

and the minimum total cost value obtained by the algorithm. In the analysis, total

minimum cost values for both traditional approach and network coding are calculated.

In traditional approach, for each packet, pi, the client, cj, who owns that specific

packet and has the smallest associated cost value, δ(cj), is found and let that client

transmit the packet, pi. This value is compared with the total minimum cost found
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Fig. 10. Performance Results for Randomized Algorithm with k = n.

by the randomized algorithm.

Figure 10 and Figure 11 show numerical results of minimum total cost values for

n = (5, 10, . . . , 40) packets. In our numerical analyses, each client has different cost

values starting from 1 to k to make the analyses more convenient. In addition, each

cost value is calculated by averaging over 100 random initializations of the problem.

In Figure 10 the upper line represents total minimum cost values for traditional

approach; on the other hand the lower line shows the total minimum cost values when

network coding technique is utilized. In this analysis, the number of clients are chosen

to be equal to the number of packets. Remarkably, the algorithm performs better

than traditional approach for all the cases.

We have observed similar trends when we fix the number of clients, k, and
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Fig. 11. Performance Results for Randomized Algorithm with k = 5.

changed the number of packets, n. In particular, Figure 11 shows the performance

comparison between traditional approach and the randomized algorithm for 5 clients.

As in Figure 10 the upper line represents total minimum cost values for traditional

approach while the lower line shows the total minimum cost when network coding

technique is considered. The algorithm again performs better than traditional ap-

proach for all the cases. Indeed, in Figure 11 the gap between the lines is wider than

the one in Figure 10 meaning that coding assures higher gain for the case of fixed

client number. In other words, when we hold the number of clients stabile, then

the performance gain of network coding can be better especially for large number of

packets.
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D. Deterministic Algorithm

1. Algorithm

The randomized algorithm explained in the previous part gives an optimal solu-

tion for Data Exchange with Costs Problem with a high probability when the field

size is large. However, this randomness creates ambiguity in the solution even if the

probability of failure is so small for a very large field. Therefore, it is important to

get rid of this indeterminacy and modify the algorithm such that the problem can be

solved in a deterministic way. In this section, we present a deterministic algorithm

for Data Exchange with Costs Problem.

We again describe and analyze the algorithm in terms of encoding vectors, rather

than the original packets, i.e., rather than saying that a packet pj =
∑

pj∈P α
j
ipj has

been transmitted by a client cij at round j, we state that the client transmits the

encoding vector αj =
{
αj

1, . . . , α
j
n

}
as in the previous part.

The algorithm runs over a finite field Fq where the size q must be larger than

2k for k is the number of clients. Let U(cij) be the set of encoding vectors available

to client cij . For a client ci ∈ C we define A(ci) as the set of all possible encoding

vectors in F n
q that can be generated by client ci. In other words, A(ci) = span(U(ci))

such that each vector αj ∈ A(ci) can be expressed as αj =
∑

ug∈U(cj) α
j
g · ug.

As in the randomized algorithm the clients are divided into two subsets
{
Cj

1 , C
j
2

}
where only the clients in Cj

2 are allowed to transmit. The deterministic algorithm also

executes in iterations like the randomized algorithm. In each iteration a client in the

set Cj
2 that will be transmitting at that round is determined but not the coefficients

of the encoding vector. The encoding coefficients of each transmitted packets will be

determined at the last stage of the algorithm.

More formally, for each client ci ∈ C a counter bi is saved to specify the number of
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the packets that will be transmitted by that client. In the beginning of the algorithm

bi = 0 for all ci ∈ C. Indeed, since the a client cl ∈ Cj
1 is not allowed to transmit

any packet, bl value for a client cl ∈ Cj
1 will always be zero. Once it is determined

that a client cij ∈ Cj
2 is transmitting a packet in jth iteration, we increment the

corresponding counter bcij . Assume Bj is the vector that specifies the number of

transmissions made by each client ci ∈ C at round j.

Assume for a client ci ∈ C we define A(ci) = span(U(ci)), i.e., A(ci) is the set of

all possible encoding vectors in F n
q that can be generated by client ci. Also, we say

that the set A fits Bj if it is a union of b1 vectors from A(c1), b2 vectors from A(c2),

... and bk vectors from A(ck).

Deterministic algorithm utilizes the max-rank concept. Let M(Bj) as the collec-

tion of all sets of encoding vectors that fit Bj. Then, given Bj and U(ci) and M(Bj),

Maxrank(Bj;U(ci)) can be defined as Maxrank(Bj;U(ci)) = maxA∈M(Bj)rank(A ∪

U(ci)). For given Bj and U(ci) , it is possible to compute efficiently the value

of Maxrank(Bj;U(ci)) in polynomial time by constructing a bipartite graph G =

(V1;V2;E) where the set of nodes in V1 correspond to packets in P . For each client

ci ∈ C, the nodes in V2 are composed of bi nodes which are connected to all nodes

in V1 that correspond to packets in H(ci) and |H(ci)| = |Ui| nodes each of which is

connected to a corresponding packet in V1. Indeed, each node in V2 corresponds to

a linear combination of packets in P . It is in fact easy to verify that the value of

Maxrank(Bj;U(ci)) is equal to the maximum size of a matching in G = (V1;V2;E).

Like in the randomized algorithm, let T is the number of transmissions with

which minimum total cost for the overall transmissions can be obtained,that is, it

is the number of the transmissions for the optimal solution of the problem. Assume

that we have made a good guess on the value of T . Indeed, it is not hard to find the

exact value of T . Since n − nmin ≤ T ≤ n, i.e., the value of T is upper bounded by
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n, we can implement exhaustive search to find its value.

The steps performed by the algorithm can be summarized as follows:

Deterministic Algorithm

1 for T ← n− nmin to n

2 B0 = (b1, . . . , bk) where all of them are zero.

3 for i← 1 to T

4 Choose the client cij ∈ C2 with min. transmission cost.

5 Let bcij ← bcij + 1,

Bj = (b1, . . . , bk).

6 Update the sets Cj
1 and Cj

2 .

7 Find a vector set Â ∈M(BT ) such that

rank(Â ∪ U(ci)) = n for all ci ∈ C.

8 Calculate the total minimum cost for chosen T value, i.e.,

∆T =
∑T

i=1 δ(cij).

9 return the total minimum cost among all T values, i.e.,

∆ = arg minT∈[n−nmin,n] (∆T ).

2. Analysis

We proceed to analyze the correctness and optimality of the algorithm. Consider

an iteration j of the algorithm. We denote OPTj as the minimum total transmission

cost of completing the information transfer after round j, provided that at least T −j

transmissions are allowed after round j. Recall that the vector Bj = (b1, b2, . . . , bk)

specifies the number transmissions made by each client ci during iterations 1, . . . , j.

Also, assume Lj = (l1, l2, . . . , lk) is the number of additional transmissions that each

client needs to do to achieve optimum T−j, i.e., T−j =
∑k

i=1 li. As in the randomized
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algorithm we try to show that for each iteration j it holds OPTj = OPTj−1 − δ(cij)

in order to prove the optimality of the algorithm.

Lemma 2 For each iteration i, OPTj = OPTj−1 − δ(cij).

Proof: Consider iteration j of the algorithm. Let cij be the client selected at that

iteration. Consider first the case in which lcij > 0. Let Bj be a vector formed from

Bj−1 be incrementing bcij by one and Lj be a vector formed from Lj−1 be decrementing

bcij by one. Since Bj + Lj = Bj−1 + Lj−1, after iteration j we need T − (j − 1) − 1

transmissions to satisfy Maxrank(BT ;U(ci)) = n for each client ci ∈ C. Since δ(cij) is

the client having minimum cost value among from all the clients allowed to transmit,

it holds that OPTj = OPTj−1− δ(cij). Consider now the case in which lcij = 0. Note

that for each client ci ∈ C it holds that Maxrank(Bj−1 + Lj−1;U(cj)) = n. Then,

there exist vector sets Aj−1 ∈M(Bj−1) and Ωj−1 ∈M(Lj−1) satisfying the conditions;

rank(Aj−1 ∪U(ci)) =Maxrank(Bj−1;U(ci)) and rank(Aj−1 ∪Ωj−1 ∪U(ci)) = n. Since

we choose the client cij with minimum cost among from the set Cj
2 , it is true that

we can remove at least one packet,v, from Ωj−1 so that Ω̃j−1 = Ωj−1\ {v} such that

Aj−1 ∪ Ω̃j−1 ∪ U(cij) still remains of rank n. Indeed, the proof of this statement is

shown in the previous section.

Let ci be a client in Cncij and denote γi as the normal vector to the span of Si

which can be written as γi =
∑

ug∈U(cij ) βgug +
∑

ug∈Ū(cij ) βgug, where Ū(cij) is the set

of unit encoding vectors that correspond to W (cij) = P\H(cij). For γ̄i is a projection

of γi to span U(cij) and w ∈ span(U(cij)) is a vector for which 〈w, γ̄j〉 6= 0 for each

ci ∈ C, it is true that Aj ∈ M(Bj) and Ωj ∈ M(Lj) where Aj = Aj−1 ∪ w and Ωj =

Ωj−1nv. Note that for each client ci ∈ C it holds that Maxrank(Bj + Lj;U(ci)) = n.

Thus, after iteration j we need T − (j − 1) − 1 = T − j transmissions to satisfy

Maxrank(BT ;U(ci)) = n for each client ci ∈ C. Since at the iteration j, only the
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clients in the set Cj
2 are allowed to transmit, both client cij and the client that

transmits vector v belong ∈ Cj
2 . Since cij has the lowest transmission cost among

all clients in Cj
2 , this implies that the cost of Ω̃j−1 ∪ {αj} is equal to OPTj−1. Note

that after iteration j the information exchange can be completed by broadcastings

vectors in Ω̃j−1, hence the cost of Ω̃j−1 is equal to OPTj. This, in turn, implies that

OPTj = OPTj−1 − δ(cij).

3. Numerical Results

In this section, we verify the performance of the deterministic algorithm together

with the randomized algorithm. We have compared the minimum total cost value

without coding and the minimum total cost value obtained by both the randomized

and deterministic algorithms. In the analysis, total minimum cost values for both

traditional approach and network coding are calculated. In traditional approach, for

each packet, pi, the client, cj, who owns that specific packet and has the smallest asso-

ciated cost value,δ(cj), is found and let that client transmit the packet, pi. This value

is compared with the total minimum cost found by the randomized and deterministic

algorithms.

Figure 12 shows numerical results of minimum total cost values for a total num-

ber of 5 clients and n = (5, 10, . . . , 40) packets. In the analysis, each client has

different cost values starting from 1 to k to make the analyses more convenient. In

addition, each cost value is calculated by averaging over 100 random initializations

of the problem.

In Figure 12 the upper line represents total minimum cost values for traditional

approach; on the other hand the lower lines show the total minimum cost values

when network coding technique is utilized. Remarkably, the deterministic algorithm
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Fig. 12. Performance Comparison for DEWC Problem.

performs nearly same as the randomized algorithm. Indeed, there is a really small

difference for some cases which is caused by the fact that the randomized algorithm

gives optimal results that are really close to 1 but not exactly, however deterministic

algorithm always gives optimal total transmission cost value.

E. Randomized Algorithm with Restrictions on Number of Transmissions

1. Algorithm

The randomized algorithm explained in the first part gives an optimal solution

for Data Exchange with Costs Problem with a high probability if the field size is

large enough where there exists no limit in the number of transmissions each client

can make. However, each client can have different battery lives, i.e., the number of
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Fig. 13. DEWC Problem without any Restrictions.

transmissions each client is allowed to make could be restricted. In this part of the

thesis, we improved the randomized algorithm for Data Exchange with Costs Problem

when there exists a restriction on the number of transmissions of the clients. This

algorithm also assumes a large finite field F of size q and provides an optimal solution

with high probability.

Figure 13 is an example with four wireless clients that are interested in obtaining

four packets of m bits each, p1, p2, p3 and p4 ∈ GF (2m). Each client lacks some

packets, however they collectively know all the packets. Also, each client is associated

with a transmission cost. Assume again that each client can broadcast the packets

via a noiseless broadcast channel and is fully aware of the packets available to other

nodes.

Figure 13 shows the solution which is composed of three coded transmission

two of which is from the client, c3 and one of which is from the client , c1. The

randomized algorithm first choses the number of transmission as three, then in the



32

Fig. 14. DEWC Problem with Restrictions on the Number of Transmissions.

first and second rounds it will chose the client, c3 as transmitter since it has the

minimum cost. However, in the last round the client, c3 will be in the set C1, so it

can not broadcast a packet anymore. Therefore, the algorithm will chose the client,

c1 which is the one with minimum cost in the set C2. Therefore, total minimum cost

obtained from the algorithm will be 1 + 1 + 2 = 4.

In this scenario the client, c3 is responsible for two transmission. If we restrict all

the clients to make at most 1 transmissions, then the solution of the problem should

be changed. Figure 14 gives the optimal solution for the problem when the number of

transmissions of each client is restricted to at most 1. Now, in the first round c3 will

transmit a packet, then in the second round since it cannot transmit anymore, c1 will

broadcast a packet and finally c2 will be responsible for the final round. Therefore,

total minimum cost obtained will increase to 1 + 2 + 3 = 6. Even though the total

cost is increased, we can still find the optimal solution for Data Exchange with Costs

problem even there exists restrictions on the number of transmissions allowed.

In the construction of the problem DEWC with restriction, we assume that τ(ci)
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is the value specifying the number of transmissions that a client ci is allowed to make.

Therefore, a client, cij with the minimum cost can transmit information to the other

clients at round j if τcij ≥ 1. In the beginning, for each client, ci, τ(ci) value is

chosen randomly. However, we put a lower and an upper bound on the number of

total transmissions that all the clients can make such that n−nmin ≤
∑k

i=1 τ(ci) ≤ 2n.

It is worth to state that this problem is not feasible for all various scenarios, so we

only consider and analyse the scenarios that have feasible solutions.

The algorithm works in the same way as the randomized algorithm. We can

partition the clients as Cj
1 and Cj

2 such that only the clients in the set, Cj
2 can

transmit. Then, at each iteration j a client, cij ∈ C2, with a minimum cost value is

chosen. However, the client, cij can transmit data only if it is allowed to transmit,

i.e., τ(cij) ≥ 1; otherwise the algorithm finds another client cl ∈ Cj
2 which has the

second minimum cost among the clients that are allowed to transmit information,

i.e., τ(cl) ≥ 1. Therefore, we have updated the allocation of the clients for jth round

as;

• a set Cj
1 =

{
ci ∈ C| n− nj

i = T − (j − 1)
}

of clients whose demand set has a

size of T − (j − 1);

• a set Cj
2 =

{
ci ∈ C| n− nj

i < T − (j − 1)
}

of clients whose demand set has a

size strictly smaller than T − (j − 1).

– a subset Cj
21

=
{
τ(ci) < 1 | ci ∈ Cj

2

}
of clients that are not allowed to

transmit

– a subset Cj
22

=
{
τ(ci) ≥ 1 | ci ∈ Cj

2

}
of clients that are allowed to transmit

At each round of the algorithm, a client in Cj
22

with the minimum cost value will

be responsible for the transmission. Since this client has the minimum cost among the
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clients that are allowed to transmit, at the end the algorithm gives optimal solution

for the problem if the problem has a feasible solution.

If an instance of the problem has a feasible solution, when the algorithm executes

we will get the total minimum cost as the sum of the transmission costs of each of T

transmissions.

The steps performed by the algorithm can be summarized as follows:

Rand. Alg. with Restrictions

1 for T = n− nmin to n

2 for i = 1 to T

3 Select a client cij ∈ C
j
22

with min. trans. cost value.

4 Create a new encoding vector αj, with random coefficients.

5 Transmit the packet pj, let

τ(cij)← τ(cij)− 1,

6 Update the sets Cj
1 , Cj

21
and Cj

22
.

7 Calculate the total minimum cost for chosen T value, i.e.,

∆T =
∑T

i=1 δ(cij).

8 Check if the problem has a feasible solution;

9 If for all T values there is no solution, the problem is unfeasible.

10 Otherwise, return the total minimum cost among all T values, i.e.,

∆ = arg minT∈[n−nmin,n] (∆T ).

This algorithm is also constructed on linear coding in which αj =
{
αj

1, . . . , α
j
n

}
is the encoding vector of any packet, pj. In the analysis of the algorithm which runs

in rounds, instead of expressing the original packets we again use encoding vectors.
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2. Analysis

We now analyze the correctness and optimality of the algorithm. As in the ran-

domized algorithms, let OPTj as the minimum total transmission cost of completing

the information transfer after round j, provided that at least T − j transmissions are

allowed after round j.

Lemma 3 With a probability at least 1− k
q
, OPTj = OPTj−1 − δ(cij).

Proof: We again denote Ωj−1 as an optimal set of encoding vectors necessary for the

data transfer. µ = rank (Aj−1) is the rank of the set of packets transmitted so far

and µj = rank
(
U(cij) ∪ Aj−1

)
is the rank of the set of encoding vectors which client

cij ∈ C
j
22

own at the beginning of iteration j, Assume that cij is the client which is

allowed to transmit, τ(cij) ≥ 1, and has a minimum cost among the set Cj
2 . Note

that if we could not find such a client, then either our guess on T is wrong or the

problem does not have a feasible solution. Otherwise, T − (j − 1) is at least T − µj

which means that it is at least 1. So, we can remove at least one packet, v, from Ωj−1

so that Ω̃j−1 = Ωj−1\ {v} such that Aj−1 ∪ Ω̃j−1 ∪ U(cij) still remains of rank n.

We prove that for another client ci in C\
{
cij
}

, it holds that Aj−1∪Ω̃j−1∪U(ci)∪

{αj} is of rank n with probability at least 1− k
q
. Note that, for the client ci the rank

of the set Si = Aj−1 ∪ Ω̃j−1 ∪U(ci) is at least n− 1 as explained in the previous part.

Therefore, again we only need to consider the case in which Si is of rank n− 1 since

a client with Si of rank n will not be affected by the removal of packet v.

To prove the claim that Aj−1∪Ω̃j−1∪U(ci)∪{αj} is of rank n with high probability

at most 1− k
q
, we show that γi and αj are not orthogonal with high probability where

γi =
∑

ug∈U(cij ) βgug +
∑

ug∈Ū(cij ) βgug is the normal vector to the span of Si. In other

words, we will show that the inner product 〈γi, αj〉 between γi and αj is not equal to

zero with probability at least 1− k
q
.
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We can show that there exists ug ∈ U(cij) such that βg 6= 0 by contradiction.

If that is not the case, then we can write γi as γi =
∑

ug∈Ū(cij ) βgug. For each

ug ∈ Ū(cij), the span of αj−1 ∪ Ω̃j−1 must include a vector vg = ug +
∑

ut∈U(cij ) αt

which is orthogonal to γi. However, since this means that βg is equal to zero for each

ug ∈ Ū(cij), we will have a contradiction with the fact that γi is not identical to zero.

We can again write the inner product 〈γi, αj〉 as 〈γi, αj〉 =
∑

ug∈U(cij ) α
j
gβg since

αj is a random linear combination of vectors in U(cij) , i.e., Aj =
∑

ug∈U(cij ) α
j
gug

where αj
g are random coefficients over a field F . Let Û be a subset of U(cij) such that

for each ug ∈ Û it holds that βg 6= 0. Using the statement we have showed above, we

can be sure that the set Û is not empty and so, 〈γi, αj〉 =
∑

ug∈Û α
j
gβg. Since for each

ug ∈ Û , αj
g is a random variable chosen independently of

{
βgug ∈ Û

}
the probability

that 〈γi, αj〉 is equal to zero is at most 1
q
.

Finally, we can prove that the probability that 〈γi, αj〉 = 0 for some client ci ∈ C

is bounded by k
q

by utilizing the union bound. Therefore, for each client ci ∈ C, it

is true that Aj−1 ∪ Ω̃j−1 ∪ U(ci) ∪ {αj} is of rank n, with probability at least 1− k
q
.

This means that after iteration j of the algorithm, the data transfer can be completed

within T − (j − 1)− 1 = T − j transmissions by using vectors in Aj−1 ∪ Ω̃j−1 ∪U(ci).

Note that at the iteration j, only the clients in the set Cj
22

are allowed to transmit.

Thus, both client cij and the client that transmits vector v belong ∈ Cj
22

. Since cij

has the lowest transmission cost among all clients in Cj
22

, this implies that the cost of

Ω̃j−1∪{αj} is equal to OPTj−1. Note that after iteration j the information exchange

can be completed by broadcastings vectors in Ω̃j−1, hence the cost of Ω̃j−1 is equal

to OPTj. This, in turn, implies that OPTj = OPTj−1 − δ(cij). Since, the algorithm

has a total of T iterations, then the optimal solution for the DEWC with restrictions

problem can be obtained by the modified randomized algorithm with a probability

at least 1− nk
q

for all feasible scenarios.
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Fig. 15. Performance Comparison for DEWC with Restrictions.

3. Numerical Results

In this section, we compared the performance of the algorithms for Data Ex-

change with Costs Problem with and without restrictions on the number of trans-

missions. Since there now exists unfeasible cases, we will ignore these cases and just

consider the scenarios in which all clients will eventually obtain all the packets.

Figure 10 shows numerical results of minimum total cost values for n = (5, 10, . . . , 40)

packets with k = 5 clients. In addition, each cost value is calculated by averaging over

100 random initializations of the problem. It is worth to note that, in the analysis,

we have ignored the scenarios that are not feasible for the Data Exchange with Costs

Problem with restrictions on the number of transmissions.

In Figure 15 the upper line represents total minimum cost values calculated by
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the randomized algorithm when the number of transmissions each clients can make

is restricted.On the other hand, the lower line shows the total minimum cost values

calculated by the randomized algorithm without any restrictions on the number of

transmissions. Remarkably, the restriction decreases the performance of the random-

ized algorithm, but if the problem is feasible we could still get the optimal solution

for Data Exchange with Costs Problem.
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CHAPTER IV

DIRECT INFORMATION EXCHANGE THROUGH RELAY PROBLEM

A. Data Exchange Through Relay (DETR) Problem

1. Background

In this chapter, we consider Data Exchange through Relay (DETR) Problem.

In this problem, clients can not communicate among each other and communica-

tion takes place through a server. Initially, the server has no information about the

clients. First, the clients send packets or combinations thereof to the server(uplink

transmissions). Then, the server broadcasts linear combinations of the packets to

clients(downlink transmissions). Each client needs all the lacking information pack-

ets. In other words; at the end all clients would obtain all the packets in the packet

set. Our goal is again to minimize the number of uplink and downlink transmissions.

This problem is very similar to Cooperative Data Exchange (CDE) Problem

studied in [13] which is introduced in Data Exchange with Costs (DEWC) Problem.

In this part of the thesis, we consider Cooperative Data Exchange (CDE) Problem in

a more detailed manner.

Figure 16 demonstrates the problem studied in [13]. There are four wireless

clients who had requested m = 4 packets, p1, . . . , p4 ∈ GF (2m), from the base station.

However, due to channel imperfections, the third client could have received packets

{p1, p2, p3}, while first, second, and fourth clients received packets {p3, p4}, {p1, p4},

and {p1, p2}, respectively. Since they have collectively received all the packets, they

can now try to communicate among themselves to complete the communication and

ensure that all the clients eventually possess all the packets. Here, it is assumed that:

1. Each mobile client can broadcast data to all other clients at a rate of one packet
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Fig. 16. The CDE Problem.

per transmission and every one receives this transmission error-free;

2. Each client knows which packets were received by others.

An optimal solution to this problem would require three transmissions as shown

in Figure 16 where the second, and third clients send the coded packets p1 + p4,

p1 + p2 + p3, respectively and the fourth client sends p2. It can be verified that all the

mobile clients can then decode all the packets.

On the other hand, for the DETR case, clients cannot communicate with each

other; rather there is a relay node to provide information transfer among the clients.

The relay node acts a server such that it will collect all the necessary packets with

the minimum number of uplink transmissions and after encoding the packets prop-

erly, it will broadcast to the clients. Figure 17 demonstrates the same problem in

Figure 16 but with a relay node. Indeed, an optimal solution to this problem could

be constructed using the solution of the previous problem; first the second, and third

clients send the coded packets p1 + p4, p1 + p2 + p3, respectively and the fourth client
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Fig. 17. Data Exchange Through Relay (DETR) Problem.

sends p2 to the relay node as uplink transmissions. For the downlink solution, two

transmissions will be enough; the relay node first creates a linear combination of first

and second coded packets; p1 +p4 and p1 +p2 +p3 and broadcasts p2 +p3 +p4. Then,

it creates a linear combination of second coded packet and the packet sent by the

fourth client; p1 + p2 + p3 and p2 to broadcast p1 + p3 as shown in Figure 18. It can

again be verified that all the mobile clients can then decode all the packets. That is,

it is possible to create an optimal solution for the DETR Problem using the solution

of the CDE problem studied in [13] as uplink transmission solution and the solution

of the Index Coding Problem as downlink solution.

2. Model

More generally, an instance of the DETR problem includes a relay node r, a set

C = {c1, . . . , cn} of wireless clients and a set P = {p1, p2, . . . , pm} of packets that

need to be delivered to clients in C. Each client ci ∈ C is associated with only one

set: side information set H(ci) ⊆ P - the set of packets available at ci. Indeed, the
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(a) Uplink solution for problem DETR (b) Downlink solution for problem DETR

Fig. 18. Uplink (a) and Downlink (b) Transmissions for Problem DETR

demand set will simply be W (ci) = P \H(ci) ⊆ P . In each round of communication

the relay or a client can transmit a single symbol of Σ (i.e., a single packet). We

assume that transmissions of the packets between the clients and the relay occur

without an error. We also assume that Index Coding solutions are known. In other

words, letting the j’th downlink round of communication be specified by an encoding

function gdj : Σm → Σ, the set of encoding functions Φd = {gdi }`
d

i=1 that will allow each

client to decode the packets it requested while minimizing the number of downlink

transmissions `d = |Φd| are well known. On the other hand, the j’th uplink round of

communication is specified by an encoding function guj : Σm → Σ. Now, the objective

of DETR problem is to find the set of encoding functions Φu = {gui }`
u

i=1 that will

allow the relay to construct the set of encoding functions Φd = {gdi }`
d

i=1 which are the

required Index Coding solutions while minimizing the number of uplink transmissions

`u = |Φu|.
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3. Main Results

In this part of our work, we have showed that we can find an optimal solution for

DETR Problem if we consider the problem as the combination of Cooperative Data

Exchange and Index Coding Problems. We have illustrated the equivalence of the

DETR Problem with these problems using Network Information Flow concept which

is the main topic of [1].

Fig. 19. The Graph Representation of Problem CDE.

Figure 19 demonstrates the graph representation of the example shown in the

Figure 16. In this graph G = (V,E), there are four sources which are the packets in

the set P = {p1, p2, p3, p4}. These packets are connected to client nodes according to

the set of packets available at each client; if there is an edge between pi and cj then

pi ∈ H(cj). For example, first client c1 has the packets {p3, p4} so there should be

edges going from p3 and p4 to c1. In the figure, it is easy to see that this construction is

also true for other clients. After the encoding in the clients, the coded packets will be
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forwarded to the other clients. In the graph {ce1, ce2, ce3, ce4} are the nodes representing

the transmitter part of the clients in which the encoded packets are broadcasted

to the other clients. On the other hand, {cd1, cd2, cd3, cd4} are the nodes representing

the receiver part of the clients such that the transmitted packets are received for

decoding. Since each client ci broadcasts its coded(or uncoded) packet(s); there are

edges between cei and cdj where i 6= j. For the decoding part, we have again for sinks

{t1, t2, t3, t4} each will be able to obtain all the packets except for the ones it has

using the received coded packets and the packets they have. Therefore; as shown in

the figure for a client ci there is a sink ti which is connected to cdi and some source

nodes in {p1, p2, p3, p4} specified by its side information set H(ci) ⊆ P . In the graph,

the flow of the solution of the problem is also shown. If each sink is examined, it is

easy to see that incoming flows of each sink is equal or greater than the total number

of packets, which is four for this specific example, meaning that each client could

recover all the packets. Indeed, in [22], it is shown that this solution is optimal for n

clients and m packets case meaning that this flow is the max-flow with a value of |P |

for each client.

On the other hand, Figure 20 demonstrates the graph representation of the exam-

ple shown in the Figure 17. In this graph G′ = (V ′, E ′), again there are four sources

and sinks in the graph and up to encoding part of the packets in the clients will be

exactly the same. However, now since there is a server which is responsible for the

communication between clients, the encoded packets will be picked up by the server

node τ e and linear combinations of the packet combinations will be broadcasted from

the node τ d to the receiver nodes of the clients; {cd1, cd2, cd3, cd4}. Then, the decoding

part will again be same as the graph G. In fact, if the graph is examined, it can be

verified that with the flow values given we have the optimal solution for each sink

which has max-flow value of four which is the total number of packets available. Now,
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Fig. 20. The Graph Representation of Problem DETR.

our goal is to prove that this can be generalized for n clients and m packets case such

that the graph G′, which is the graph representation of Problem DETR, has also a

max-flow value of |P | = m for each client so that the solution is optimal using the

equivalence of the graphs G and G′.

In general we can construct the multicast graph of the CDE problem with edge

capacities {b1, . . . , bn} for the transmissions of the clients. Each edge capacity bj

represents the number of transmissions the client cj makes which is found by the

algorithm explained in [22]. Finally, all clients will get a total number of b =
∑n

j=1

transmissions letting each edge between cdj to tj as b. Indeed, a client cj is interested

in all m packets but it has some packets as side information, which can be represented

as direct edges from the packet nodes. In [22] it is shown that it is possible to find

a network coding solution to the problem with a field size |Fq| ≥ n for this standard

multicast problem using the results in [23]. In other words, it is possible to find m

disjoint paths for each tj. Since each tj has mj packets as a side information which

are already represented by disjoint paths, then for the client cj it will be enough to
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get only m−mj packets. Since the minimum number of packets among all the clients

have is mmin, then b should be greater than or equal to m−mmin. Indeed, for DETR

problem, rather than a total of b transmissions the base station will make m−mmin

transmissions which is a linear combination of the transmission vectors from all the

clients determined the algorithm in [13]. Indeed, this will be just to decrease the

number of downlink transmissions without disturbing the multicast problem.

More formally, let Q is the solution matrix for the CDE problem obtained from

the randomized algorithm in [22], i.e., Q =
∑b

i=1

∑m
j=1 qij where qij is 1 if in the ith

transmission the packet mj is transmitted, 0 otherwise. Then, it is possible to obtain

a new matrix Z which will be the solution matrix for the downlink transmissions

of the DETR problem in which the number of total transmissions is decreased to

m−mmin. In other words, Z =
∑m−mmin

i=1

∑m
j=1 qij where qij is 1 if in the ith downlink

transmission the packet mj is transmitted, 0 otherwise. Indeed, the matrix Z can be

obtained from the row vectors of Q1, . . . , Qb using a proper conversion matrix ξ, i.e.,

Z(m−mmin)×m = ξ(m−mmin)×b ·Qb×m.

In the example shown in Figure 17, the matrix for the downlink transmissions of

DETR problem can be obtained from the solution matrix of CDE as;

Z = ξ ·Q =

 1 1 0

0 1 1

×


1 0 0 1

1 1 1 0

0 1 0 0

 =

 0 1 1 1

1 0 1 0

 (4.1)
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CHAPTER V

CONCLUSIONS

In this chapter, we summarize the work discussed in the thesis and suggest pos-

sible future research topics.

A. Summary of the Thesis

To summarize, this thesis has considered direct information exchange problems

in which the clients can communicate in a cooperative manner to satisfy efficient and

reliable information exchange utilizing opportunistic listening technique.

First, the Index Coding problem has been examined to understand the fundamen-

tal model of direct information exchange problems with opportunistic listening. Then,

the efficiency of information exchange has been considered in networks where clients

are allowed to communicate directly with each other. Cooperative Data Exchange

(CDE) and Data Exchange with Costs (DEWC) Problems have been introduced.

Randomized and deterministic algorithms have been presented to ensure efficient

information exchange between the clients in Data Exchange with Costs (DEWC)

Problem. The performance analyses of the algorithms have also corroborated with

simulation results.

Next, the efficiency and reliability of information exchange have been considered

in networks where clients are not allowed to communicate directly with each other.

Data exchange through relay (DETR) has been modeled. Data Exchange through

Relay (DETR) Problem is studied and utilizing the network information flow concept

the equivalence of the problem with the combination of Cooperative Data Exchange

(CDE) and Index Coding problems has been shown.
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B. Future Works

There are numerous directions for future research work. One direction is to

explore the Data Exchange with Costs (DEWC) problem when the clients require

some selective packets rather than all the packets. Another direction is to consider

direct wireless exchange problems with lossy channels. All the problems discussed

in this thesis assume that the transmissions are error-free. However, in general,

the channels could be lossy. Therefore, the extension of these problems to a lossy

environment can be considered as a interesting future work.
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