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ABSTRACT

Mobile Home Node: Improving Directory Cache Coherence Performance in NoCs

via Exploitation of Producer-Consumer Relationships. (August 2010)

Tarun Soni, B. Tech., Indian Institute of Technology Roorkee, India

Chair of Advisory Committee: Dr. Paul V. Gratz

The implementation of multiple processors on a single chip has been made

possible with advancements in process technology. The benefits of having multiple

cores on a single chip bring with it a new set of constraints for maintaining fast

and consistent memory accesses. Cache coherence protocols are needed to maintain

the consistency of shared memory on individual caches. Current cache coherency

protocols are either snoop based, which is not scalable but provides fast access for

small number of cores, or directory based, which involves a directory that acts as

the ordering point providing scalability with relatively slower access. Our focus is on

improving the memory access time of the scalable directory protocol.

We have observed that most memory requests follow a pattern where in one

of the processors, which we will dub the Producer, repeatedly writes to a particular

memory location. A subset of the remaining cores, which we will dub the Consumers,

repeatedly read the data from that same memory location. In our implementation

we utilize this relationship to provide direct cache to cache transfers and minimize

the access time by avoiding the indirection through the directory. We move the

directory temporarily to the Producer node so that the consumer can directly request

the producer for the cache line. Our technique improves the memory access time by

13% and reduces network traffic by 30% over standard directory coherence protocol

with very little area overhead.
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CHAPTER I

INTRODUCTION

Performance improvements which can be achieved through increasing the chip fre-

quency have greatly reduced due to the memory wall and the power wall. The

Memory wall is the increasing disparity between processor and memory speeds. The

improvements in memory access time have not been keeping pace with the improve-

ments in computational logic frequency, greatly reducing the improvement in sys-

tem performance. Power wall is a manufacturing limit to the maximum operating

frequency of a chip caused by the exponential increase in power consumption with

factorial increase in frequency. The continuous increase in clock frequency leads to

rise in power consumption and heat dissipation to levels too expensive to cool. The

current rise in highly parallelizable applications and the need to run multiple appli-

cations simultaneously gives an opportunity for thread level parallelism. Multiple

cores, running at lower frequency can efficiently utilize this thread level parallelism

to achieve good performance improvements.

Chip multi-processors(CMP) [1, 2, 3] have been made realizable with the in-

creased gate density available in current technology and have become the focus of

recent research to enhance performance. One type of CMP is the Shared Memory

multi-processor system which provides a single memory image to the programmer so

that parallel programs can exchange information and synchronize with one another

to achieve better performance. In large scale CMPs, the memory of a shared memory

system is physically distributed across different sites to have faster memory accesses

for better performance. Memory access latency, the time taken by a core to access

The journal model is IEEE Transactions on Automatic Control.
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data, is still high and further reduced by attaching a cache to each core. Caching

allows shared data to be replicated in multiple sites simultaneously which makes it

imperative to have a mechanism to ensure a coherent memory. This mechanism is

referred to as the cache coherence protocol.

The primary goal of a cache coherence protocol is to provide an uniform memory

image such that a modification in data is observed semantically by all the processors.

Therefore, the cache coherence protocol has to notify all caches sharing a copy about

any modifications done to the data by a processor. The coherence protocol construc-

tion plays a crucial role in the overall performance of the Shared memory system.

The design of a cache coherence protocol is split into two parts: a specification of

state changes of cache blocks and the implementation that is used to accomplish that

specification.

A. Cache Coherence Protocols

Various protocols have been devised for maintaining cache coherence, like MSI, MESI,

MOESI [4], write-once [5], Synapse [6], Berkeley [7] and many more [8]. They can be

broadly classified into write-invalidate and write-update protocols. A write-invalidate

protocol has the writing processor invalidate copies of all other processors whereas

write-update has the writing processor force other processors to update their copies.

Write-invalidate has lower traffic in the connection compared to write-update but has

more remote misses.

I have used MOESI protocol [4] in my thesis. MOESI is a type of write invali-

date protocol which has all of the possible states commonly used in other protocols.

Modified state means the cache has the only, most recent, correct copy of the data

and the memory has incorrect (stale) data. Owned state implies the cache line holds
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the most recent, correct copy and the memory stale but there are other cache lines

sharing a copy of the data. This avoids the need to write modified data back to

memory before sharing it. Exclusive cache line holds the only copy which is same as

the data in memory and the processor can modify and change it to Modified state.

Shared state means there are multiple copies of the data and the memory also shares

the same data. Invalid cache line means it does not hold a valid copy of the data.

The implementation of transition between these states is explained later in the thesis.

B. Cache Coherence Implementations

The coherency protocol implementation in a CMP can be broadly categorized into

Snoop based [5, 9, 10, 11] and Directory based [12, 13, 14, 15] cache coherence.

The selection of the implementation generally depends on the connection mechanism

amongst the cores which could be either a shared bus or a packet switched type

interconnection network.

Snoop based protocols are generally used for shared bus architectures. Shared-

Bus based architectures [16] have all the processors connected to a single bus. Any

transaction by a core is visible to all the remaining cores, and appropriate action can

be taken if an operation threatening the coherence is detected. All the cores snoop on

the bus and update their state machines on every transaction happening on the bus.

When a core reads an address not in its cache, it broadcasts a read request on the

snoopy bus. Memory or the cache that has the updated copy responds to the request

by supplying the data. If a core wishes to write to an address its cache does not own

exclusively, the other cores need to invalidate their copy or update it to the new value.

The bus also provides ordering of transactions since a request must first gain access of

the bus as master which can be done by only one core at a time. The main drawback
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of this implementation is that only a single core at a time can broadcast data access

requests on the bus. As the number of cores increase, the contention for bus increases

causing an increase in access latency. Also a bus also has a physical limitation on

the number of cores it can be connected to while transferring data at a certain rate.

These drawbacks makes the bus based architecture limited in the number of cores it

can support.

Network on Chip (NoC) [17, 18] based architectures have each core connected

to a router and all the routers are connected through a packet switched network.

This architecture is highly scalable since the network can route multiple requests

at the same time. The drawback of this network is maintaining cache coherency is

relatively difficult as cores do not have visibility for all the transactions. Snoop based

protocols can be extended to a NoC but this would mean a request would need to be

broadcasted on the packet switch network to all the cores for them to be able to snoop

an the request. The other problem is ordering of requests received at a core, since in

a packet switched network we cannot know which request was sent first. There have

been implementations to provide this ordering of requests in snoop based protocols

in NoCs. The main advantage with Snoop Based protocols is you can have faster

direct cache to cache transfers as all cores snoop on a request. A core having a copy

of the requested cache line can directly respond back. The drawback is even with the

implementation on scalable NoCs as the number of cores increases the performance

degrades. As the number of cores increase so does the number of packets broadcasted,

increasing the network traffic drastically.

Another implementation of coherence protocols is the Directory-based coherence

protocols. A directory node acts as an ordering point and all the transactions go

through the directory point. We can store information of all the sharers of the cache

line as an entry at the ordering point. A request then does not need to be broadcasted
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throughout the network and is only sent to the relevant cores that share the partic-

ular cache line. Directory based coherence protocols [13] involve sending a memory

access request to a directory which then grants permission, stalls or denies the trans-

action based on the current state of the memory address. The directory maintains

a directory entry for each cache block and records the cache locations in which the

block is stored. The elimination of broadcast cache coherence messages overcomes

the major limitation of scaling machines to large-scale multiprocessor systems. This

implementation is scalable as there is no rapid rise in packets with increase in num-

ber of cores. The drawback being each transaction has to go through a directory.

There are large amounts of packet going to the directory from all the cores which can

slow down the directory access and congestion around the router connected to the

directory. This drawback is taken care by having smaller distributed directory caches

servicing requests for different memory locations. One drawback for both centralized

and distributed directory coherence protocol is, as the number of cores scale the av-

erage distance to the directory node increases thereby worsening the directory access

time which in turn slows down memory access.

In this thesis, we provide an enhancement over the distributed directory cache

coherence protocol by having direct cache to cache transfer using Producer-Consumer

relationships. The drawback of a directory based protocol is the indirection through

a directory which could possibly be located very far from the actual core sharing

the data. In our work we try to tackle this problem by avoiding this indirection

wherever possible to get performance benefits. This reduction is done by temporary

movement of the directory from the Default home node to the Producer node which

provides the data. This is possible because of a temporally stable Producer-Consumer

relationship observed amongst different cores. Once a Consumer is formed it directly

requests the Producer for the required data avoiding the indirection needed through
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the directory. We explain the implementation of this Mobile Home Node Directory

Coherence protocol (Mobile Directory Coherence Protocol) in the later sections.

C. Organization

The rest of the thesis is organized as follows. Chapter II talks about previous relevant

work in this area. Chapter III gives a background for the work and Chapter IV ex-

plains the mobile directory coherence protocol. Chapter V talks about the evaluation

and Chapter VI the conclusion and the direction of future work.
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CHAPTER II

PREVIOUS WORK

CMPs allow for integration of all system functions including compute processor,

caches, communications processor, interconnection networks, and coherence hardware

onto a single die [1, 2, 3]. Traditional approaches to cache coherence are broadcast-

based snoopy protocols and directory-based protocols.

A. Snoop-Based Coherence

Broadcast-based snoopy protocols have been the most commonly used approach to

building symmetric multiprocessors (SMPs) [9, 10, 11]. Snooping keeps caches coher-

ent using a totally ordered network to broadcast coherence transactions directly to

all processors and memory [5]. Snooping protocols are successful because they obtain

data quickly (without indirection) and avoid the overhead of sequencing invalida-

tion and acknowledgment messages. However, the main limitation of these protocols

is that they rely on ordered interconnects, which do not scale beyond a moderate

number of cores. They also have the bandwidth overhead of broadcasts.

In the past, there has been considerable effort to retain and scale snoopy pro-

tocols by adapting them for split transaction buses [10], hierarchical buses [11], and

address broadcast trees [9] that provide a logical bus ordering. Expanding further, ex-

isting products, like the IBM Power4 and Power5, retain and scale snoopy coherence

protocols onto a ring interconnect [19]. One of the reasons why so much effort has

been devoted towards continuously scaling and supporting snoopy protocols, initially

designed for bus-based systems, is that they enable direct cache-to-cache transfers

and thus do not incur directory indirection for cache misses. For workloads that have

fine-grain sharing, direct cache-to-cache transfers provide a huge advantage over go-
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ing to an ordering point and suffering indirection. But the limitation of scalability

is still a major concern and there is a shift towards having packet switch on chip

interconnects for CMPs.

There have been techniques to have a total order of snoop requests over unordered

networks for achieving the best of both scalability from unordered networks and

direct cache-to-cache transfer. Bilir et. al. [20], Marty et. al. [21] have previously

shown that snoopy protocols depend on the logical order and not the physical time

at which requests are processed, i.e., the physical time at which a snoop request

arrives at nodes is not important, as long as the global order in which all nodes

in the system observe a particular request remains the same. Much of the work is

focused on achieving this logical ordering over unordered networks. Logical ordering

of broadcasted messages is achieved through globally-ordered numbers attached to the

snoop requests [22, 23], or through a response message traversing the entire logical

ring, collecting responses from all nodes [24]. These techniques provide an in-network

ordering technique that enables broadcast based snoopy coherence protocols to scale

on unordered interconnects. There are other methods that used broadcast for direct

cache-to-cache transfer [25] or hybrid of broadcast and directory [20]. But still these

implementations require broadcasting of requests over the network for direct cache-

to-cache transfers. This adds unnecessary traffic to the network leading to power

wastage and may also lead to heavy traffic slowing down the network all together. It

is not really feasible for very large scale systems with hundreds of cores on a chip.

B. Directory Based Coherence

Directory-based protocols [12, 13, 14, 15] on the other hand transmit coherence trans-

actions over an arbitrary point-to-point network to distributed ordering points which,
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in turn, redirect the transaction to a superset of processors caching the block. This

implementation does not need an ordered interconnect because it uses explicit message

acknowledgements to achieve request ordering and update the directory in a manner

that appears atomic. This enables highly scalable interconnects, such as packetized

meshes allowing larger systems. Directory protocols are also not broadcast in nature.

This imposes lower bandwidth requirements on the interconnect fabric. However, they

have higher unloaded latency because of the overheads of directory indirection, along

with an additional cost associated with the storage and manipulation of directory

state.

Modifications to Directory based protocols have been proposed to use the shar-

ing patterns and other data access patterns to get faster accesses. Bilir et. al. [20]

propose a hybrid of directory and broadcast. Jerger et. al. [26] propose a combina-

tion of modification in network and directory coherence protocol following sharing

patterns for low traffic applications. Prefetching was proposed by Byrd et. al. [27],

and Nesbit and Smith [28] to hide long miss latencies but if overly aggressive can

increase network traffic. Producer initiated mechanisms were proposed by Abel-Shafi

et. al. [29] and Koufaty et. al. [30], in which data is sent to the Consumer caches

directly through remote writes or speculative updates to try and update even before

the data is requested, leading to wastage in cases where the data is not needed. An-

other such speculative update mechanism, proposed by Cheng et. al. [31], is used

where once a Producer-Consumer relationship is formed when data written in the

Producer is sent directly to the Consumer. These implementations have a stricter

sense of Producer-Consumer relationship to avoid wasted speculative updates.
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In our work we provide both direct cache-to-cache transfer by avoiding the indi-

rection through the directory point and also reduced network traffic since number of

packets needed from request to response are reduced. We form a Producer-Consumer

relationship as soon as a sharer is invalidated due to a write request. We use this re-

lationship only to avoid the indirection through the directory. There is no prefetching

or speculative updates involved avoiding any wasted packets and wasted power. A

Consumer directly requests the Producer on a read miss allowing for cache-to-cache

transfer. Since no broadcasting is involved it provides good scalability and prevents

unnecessary packets in the network thereby reducing the traffic as well as saving

power.
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CHAPTER III

BACKGROUND

In this chapter we will discuss the MOESI protocol model and the Baseline Directory

Coherence Protocol with which we compare our Mobile Directory Coherence Protocol.

We now discuss the detailed state transition diagrams for MOESI protocol used in

both the implementations.

A. MOESI Protocol

The protocol states stand for Modified, Owned, Exclusive, Shared, Invalid.

I

O

M

S E

WriteMiss

ReadHit

WriteMiss

W
rit

eM
iss

ReadHit

ReadHit
WriteHit

R
e

a
d

M
is

s

ReadHit

W
ri
te

H
itReadM

iss

Excl.

Fig. 1. State Transition Diagram for MOESI Protocol for CPU Requests

The Figure 1 shows the various states and the transition mechanism between

each of the MOESI states for misses sent to the cache controller by the core directly

connected to it.

The Figure 2 shows the various states and the transition mechanism between each
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Fig. 2. State Transition Diagram for MOESI Protocol for Network Requests

of the MOESI states for requests received at the cache controller from the network.

Now we describe each of the states in detail.

• Modified State: In this state the cache line stored in the cache has both a dirty

and an exclusive copy. Dirty copy means the cache line has the most current

data and the copy in memory is stale. Exclusive copy means no other cache

has a copy of the cache line. On a read request from another core a cache line

in Modified state shares the dirty copy and the state changes to Owned. The

exclusive bit is reset but the dirty bit is still set in the owner cache. The cache

line in this state when removed from the local cache due to block replacement,

or an invalidation caused by read exclusive or a write request from a different

core causes a writeback to the upper level of storage.

• Owned State: In this state the owner cache still has a dirty copy of the cache

line. Again this could lead to a writeback same as in the Modified state case

if the copy in the local cache is invalidated. The copies in other caches remain
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in shared state after the cache line is removed from the owner cache unlike

Modified which does not have any copies in other caches since it is the only

copy. On a write request the cache line changes back to Modified state on

receiving the invalidation acknowledgements and setting the exclusive bit.

• Exclusive State: In this state there is a single but a clean copy of the cache

line. It does not need a writeback if invalidated and changes to Shared state on

a read request. It changes to Modified state on a write hit. A cache line when

read from memory for the first time and has no sharers the directory responds

back with an exclusive message, with data response for a read request, to set

the cache line to Exclusive state.

• Shared State: In this state only the valid bit is set and the cache has a clean

copy. There are multiple clean copies in other caches for the cache line in

this state. It invalidates all the copies on a write request or read exclusive

request and changes to Modified or Exclusive state respectively on receiving

the acknowledgements. It remains in the same state if there is a ReadReq from

another core on this state. It invalidates without any writeback to the memory.

• Invalid State: There is not a copy of the cache line at this local level. The data

is read from the higher level of storage or local caches of other cores for read,

write or read exclusive requests and changes to Shared, Modified or Exclusive

states respectively.

B. Baseline Directory Coherence Protocol

The standard directory coherence protocol is based on the Stanford DASH [13] co-

herence protocol. The block diagram for this implementation is shown in Figure 3.
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L1 I and D Cache

Processor

Directory

cache

L2 Cache

Fig. 3. Block Diagram of 4x4 Mesh

The directory is distributed across all the nodes and each cache line maps to one of

the directory nodes. A core, depending on the address of the cache line, sends its

requests to the corresponding directory. The types of message requests from cores

and the coherence traffic that ensues are shown as follows.

• Read Request:

The read request mechanism is shown in the Figure 4. When there is a read

miss on the local cache line for a read done by a processor, the core sends out

a read request to the directory home node. If the directory entry is missing it

looks for it in the upper level of cache and updates its local entry. The directory

forwards the request to one of the sharers or to the memory depending on the

directory entry for the cache line and awaits response. The sharing core or

the memory on receiving the request responds back with the data in its reply

message. The directory core on receiving the reply sends the data back to the

requesting core and updates the sharer information. The responding core resets
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Fig. 4. Read Request Coherence Mechanism in DCP

the exclusive bit if it has been set. The dirty bit is not changed on the core and

depending on the dirty bit value the state becomes either Owned or Shared.

• Write Request:

The Write request mechanism is shown in the Figure 5. When the local cache

does not own an exclusive copy of the cache line, it is a write miss and a write

request message is sent to the directory. The directory forwards an invalid re-

quest to all the sharers with a data request to one of the sharers and waits

for the acknowledgements. The core receiving an invalid request invalidates its

local copy and sends back an acknowledgement and the core receiving the data

request sends back a copy of the cache line with its acknowledgement. The

directory while it is waiting for acknowledgements marks the directory entry as

busy. Once the directory receives all the acknowledgements, the directory state

is updated and it sends acknowledgement and the data response back to the
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Fig. 5. Write Request Coherence Mechanism in DCP

requesting core. The requesting core on receiving the data and acknowledge-

ments updates the cache line with new data and sets the exclusive bit and the

dirty bit. The cache line with both the dirty and the exclusive bit being set is

in Modified state.

• Writeback:

When the local copy of a data is being replaced in a cache it sends a request

to the directory to remove it from the sharers list. And if it is the owner of a

dirty cache line a Writeback to the upper level of cache or the memory occurs.

Even on Invalidate request initiated by directory due to another core requesting

exclusive access can cause a dirty cache line to initiate a Writeback.
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CHAPTER IV

MOBILE DIRECTORY COHERENCE PROTOCOL

The Mobile Home Node Directory Coherence Protocol we have designed and im-

plemented exploits the Producer-Consumer relationship to get better access times.

The number of cores and the topology uses is same as the Baseline Directory Co-

herence Protocol. The only difference is in the composition of the directory cache.

We try to remove the indirection through the directory for data accesses by modify-

ing the Baseline Directory Coherence Protocol. The indirection is removed by using

the Producer-Consumer relationship observed amongst memory references. Producer

node is the core which writes to a cache line multiple times without any other node

writing to it in between. A node is deemed as a Consumer node if it accesses the

cache line written by the Producer node in between the various writes. We utilize this

relationship and make the Consumer node directly request the Producer node for the

latest data avoiding any indirection through the directory node. We use small caches

to store the Producer node and Consumer node information on every core. We see

negligible overhead and a great amount of benefit by defining a Producer node for

every exclusive request instead of waiting for multiple writes.

A. Composition of Directory Cache

We divide the standard directory cache into a set of four new smaller caches as shown

in Figure 6. Firstly the standard directory cache which is used same as in the Baseline

Directory Coherence Protocol. The Producer cache which stores the cache line state

at the new node to which the directory has been moved. The Consumer cache which

stores the location of the Producer at a particular core deemed as a Consumer based

on it being an old sharer. The New Home Node cache stores the location of the new
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Fig. 6. Core Block Diagram for Mobile DCP

home node at the default directory location.

B. Producer - Consumer Formation

Figure 7 shows the formation of Producer-Consumer relationship on a write request.

A write request is sent to the directory which responds back with the directory entry

and also sends out invalidates to other sharers. The sharers invalidate their cache

copy and send out the acknowledgements to the requesting core. The requesting core

on receiving the directory entry and all the acknowledgements knows the cache line

is now exclusive and ready for writing. The sharers on invalidating also update the

Consumer cache with the requesting core which now becomes the Producer cache.

The Requesting core stores the directory entry in the Producer cache and can receive

direct requests from the Consumer caches.
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C. Coherence Traffic

The type of messages and the coherence traffic that ensues for the Mobile Directory

Coherence Protocol is shown as follows.

• Read Request:

The read request mechanism is shown in the Figure 8. On a read miss in the

local cache of a core, the cache controller checks for any Producer information

for the address in the Consumer cache. If there is a hit on the Consumer cache

a Read Producer Request is sent to the Producer core as shown by path 1b,

else a Read Request is sent to the directory core as shown by path 1a. The

directory core checks both the directory cache and the home node cache for

that particular address. If there is a hit on the directory cache it works same

as the Baseline Directory Coherence Protocol and forwards the request to one
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of the sharers which responds with data. The directory sends a read response

back to the requesting core. But if there is a miss in the directory cache and

a hit in the home node cache it sends a Read Producer Request as shown by

path 2a to the new home node. If there is a miss on both the caches it requests

for directory entry information to the upper levels of cache. And if there are no

sharers it requests for data from memory same as Baseline Directory Coherence

Protocol.

We save on the indirection of accessing the directory if there is a hit in the

Consumer cache and it directly requests the Producer cache to respond back

for the data. This method allows you to have direct cache to cache transfers if

the data sharing follows the Producer-Consumer pattern.

In the scenario the request is forwarded to the default directory and the directory

entry is found, then the request is sent to one of the sharers. The network traffic

follows the same pattern as the Baseline Directory Coherence Protocol.
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• Read Producer Request:

The Producer core on receiving a read Producer request responds back with the

data and adds the requesting core to the directory entry stored in its Producer

cache. In the case the local cache does not have a copy, that would mean the

core is no longer the Producer then a read request is forwarded to the default

directory node.

• Write request:

Core

to req core

Sharers

Invalidates to all sharers 

1

Write request
sent to home 

Ack from
 all sharers

2a

2b
Dir entry

3a

Prod

Add directory
entry to
Producer cache

Add Req Core
to Consumer
Cache

Req

Dir

2c

Update Home
Node to Req
Core

Fig. 9. Write Request Coherence Mechanism for Mobile DCP

The write request mechanism in Mobile Directory Coherence Protocol is shown

in the Figure 9. When there is a write happening in the core, first the local data

cache is checked for an exclusive copy. If there is no exclusive copy but there

is an entry in Producer cache it sends invalidation requests to all the sharers

pointed by the directory entry and speeds up the write process. Since the write

is happening at the new home node the invalidate messages can be directly

sent and acknowledgements can be directly received avoiding indirection. The
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sharers on receiving invalidation requests invalidate their local copy and update

their Consumer cache with the requesting core. The Producer awaits acknowl-

edgement before setting the exclusive bit and dirty bit in the local cache and

updating the state in the Producer cache.

If there is an entry in the Consumer cache of the requesting core, it forwards

a write request to the Producer pointed by the entry otherwise it forwards the

request to the default directory node. In this scenario the default node needs

to be informed of the movement of directory entry by an explicit message.

If there is no entry in the Producer cache then the request is sent to the default

directory which can work like in the case of Producer Consumer formation. If

there is an entry in the new home node cache then it forwards the request to

the new directory location.

Now, at the Producer node or the directory node it checks for a directory entry

and it sends out invalidation requests to all the sharers and the entry back to

the requesting core. The sharers on receiving invalidation requests invalidate

their local copy and update their Consumer cache with the requesting core

location before sending out their acknowledgements to the requesting core. At

the requesting core on receiving the entry and the acknowledgements from all

the cores it updates its Producer cache and the local cache. After the update

an Update Home Node request is sent to the default directory node if the entry

came from the requested Producer cache.

If there is no entry at the Producer cache a write request is forwarded to the

default directory cache. And if there is no entry in the default directory cache

but an entry in the home node cache, it forwards the request to that particular

Producer updating its own home node cache. If there is no entry in both the
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caches then a directory entry request is sent to upper level of cache.

• Update Home Node:

When a requesting core gains exclusive access through a direct request to a

Producer core then an update home node request is sent to the default directory

node to update its new home node cache with this new Producer.

• Writeback:

If a cache line in local data cache is swapped out and the dirty bit is set. It

checks for an entry in the local Producer cache, and is updated before sending

to the default directory node. But if there is no entry in Producer cache an

update request is sent to the directory. There is writeback to memory in either

case. If the local cache line being swapped out does not have a dirty bit set

then there is no writeback.

D. Exceptions and Correctness

We need to take care of special exception cases or race conditions that might arise in

the Mobile Directory Coherence Protocol. We now explain the issues or exceptions

that can occur and how we handle them in our implementation.

Stale data in Consumer Cache: In the case there is stale data in Consumer cache

and it points to a Producer core which no longer has the directory entry, we

address this issue by forwarding the request to the default directory node. The

default home node can process the request itself or forward the request to any

new home node to which the directory entry might have been moved. Finally,

the Consumer cache entry is removed or updated to point to the new Producer

node depending on the response message.
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Acknowledgements or Requests received at the Producer core: A race condition

occurs when there are multiple messages reaching a particular node whose order

affects the output of the system. For Baseline Directory Coherence Protocol the

directory acts as the ordering point for such messages and there are no races

by design. In our Mobile Directory Coherence Protocol all the messages are

also ordered by directories except for the scenario when the directory entry is

in motion. Such race conditions can only happen for our protocol in Producer

Consumer formation when the directory entry is in motion. A problem occurs

if an acknowledgement is received before the directory entry has been received

at the Producer node. We address this problem by adding an entry at the

Producer cache as soon as an acknowledgement is received with all the presence

vector bits set and on receiving the acknowledgements the bits corresponding

to that core are reset. On receiving the new directory entry we bitwise and the

current presence vector with the presence vector from the directory entry to

check if all the acknowledgements have been received. We wait for all the bits

to be reset before the new directory core knows it has an exclusive copy. Until

all the bits are reset the write request on the cache line is still being processed

which would mean any new requests on the cache line are stalled. This also

ensures any new requests from the Consumer caches arriving at the Producer

node before the directory entry is updated do not get sent back to the default

node instead wait at this node for the write request to complete.
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CHAPTER V

EVALUATION

A. Experimental Methodology

The performance of a memory system, consisting of the memory, cache and the in-

terconnection network, can be considered to be the amount it contributes to the time

needed to run a program. The time it contributes is the number of processor cycles

wasted for a memory access due to memory system delays. In a multiprocessor, the

performance is affected by the frequency of memory accesses and the latency of the

memory system. The latency of the memory system depends on many factors like

the network topology and speed, the number of processors and the size of the system,

the frequency and size of the messages, and the memory access latency. The cache

coherence protocol impacts the network traffic which added with the regular mem-

ory fills and spills determines the request rate, message frequency and size thereby

impacting the overall latency of the memory system. In order to obtain the accurate

latency of the memory system for both the protocols we need to implement detailed

models of the cache coherence protocol and the interconnection network. Figure 10

shows the flow of the analysis methodology implemented. The steps involved in the

evaluation are as follows:

• Generating the traces using M5 simulator: M5 simulator [32] is a modular

platform in which major simulation structures like CPUs, Caches, etc. are

represented as objects. M5’s object orientation makes it easy to instantiate

multiple CPU objects. We instantiate CPUs with ALPHA ISA and run PAR-

SEC benchmarks [33] to generate the memory access traces. M5 is run in full

system mode which simulates a complete system including a kernel, I/O devices
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Table I. CMP Configuration Parameters

Parameter value
Number of cores 16
Clock frequency 2GHz

L1 D cache 64kB
L1 I cache 32kB
Line Size 64B

etc. The parameters passed to the M5 simulator are shown in the Table I. We

use cross compiled binaries for the PARSEC benchmark for ALPHA ISA. The

PARSEC benchmark applications are divided into three phases: initial serial

phase, a parallel phase, and a final serial phase. The parallel phase is marked

as the region of interest and we run the benchmarks in this region for the cycle

accurate simulations [34].

• Cache Coherence simulator: We have designed a simulator to accurately im-

plement the protocols described in this thesis to get the access latency . The

simulator determines the state of the cache block and the corresponding direc-

tory entry for each of the memory reference in the trace. This state consists of

the cache tags and the directory pointers to all the sharers. First, we run the

coherence simulator stand alone and compared the reduction in latency, assum-

ing a fixed latency per hop, for the complete benchmark. We calculate the hop

counts assuming dimensional order routing. This gives us an estimate of the

performance improvement that can be expected and the simulations run time

is lower compared to cycle by cycle simulation so a quick simulation is feasible.

The parameters passed to the coherence simulator are shown in the Table II.

• Cache Coherence simulator with network simulator: We have integrated tsim ocin [35]

a network simulator which runs cycle accurate simulations. We generate the net-
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Table II. Cache Coherence Parameters

Parameter Baseline DCP value Mobile DCP value
L2 Cache size 2MB 2MB
Associativity 4 4

L2 Latency(cycles) 8 8
Block Size 64B 64B

Directory size(entries) 16k 4k
Dir Latency(cycles) 4 4

Producer Size(entries) - 8k
Consumer Size(entries) - 256
New Home Size(entries) - 16k

Table III. Interconnection Network Parameters

Parameter value
Number of terminals 16

Hops/cycle 1
Wire delay(cycle) 1

Routing algo xydor

work traffic based on the cache coherence traffic. The cache coherence simulator

creates the messages to be sent over the network and the network depending

on the cycle and the dependencies injects those packets. The request packets

are injected based on the cycles obtained from the traces. The response or re-

ply packets are injected into the network when the request packets reach the

destination. This implementation gives us a much more accurate model of the

traffic that will be seen over the network. Since the run time is very high we run

only the region of interest for the benchmark traces. The network parameters

passed to the simulator are shown in Table III.

We have used the values obtained from the network simulator to make an estimate

of improvement in runtime and energy consumption. For runtime improvement we

use the Average L2 access time as feedback in M5 simulator as L1 miss latency and

estimate the runtime. For energy savings we normalize the product of total number
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of flits and the average hop count for Mobile Directory Coherence Protocol(Mobile

DCP) with respect to Baseline Directory Coherence Protocol (Baseline DCP).

B. Results

The simulations were run on the PARSEC Benchmarks. GM stands for Geometric

Mean which was calculated for computing the average of the Normalized values across

all benchmarks.

1. Average L2 Cache Miss Latency

Fig. 11. Normalized Average L2 Cache Miss Latency

Figure 11 shows average L2 cache miss latency for all the benchmarks for the

Mobile DCP normalized with respect to Baseline DCP. We see a maximum improve-

ment of 45% and an average improvement of 22% across all benchmarks. This latency

reflects the actual improvement offered by the Mobile DCP with respect to the Base-

line DCP. The latency for the remote misses is reduced by removing the directory
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indirection thereby improving our overall L2 miss latency.

For Canneal benchmark we see latency degradation for the Mobile DCP com-

pared to Baseline CP. The increase in access time is because there are very few

Producer-Consumer relationships formed to get the benefit from the modification.

The L2 cache miss rate is high implying a lot of block replacements at L2 cache level

which breaks the Producer Consumer relationships if any formed. Another factor that

can cause degradation for Mobile DCP is that the Directory cache for default home

node is smaller and since the larger Producer Directory cache is not fully utilized due

to lack of Producer-Consumer relationships resulting in many directory misses.

2. Average L2 Cache Access Latency

Fig. 12. Normalized Average L2 Cache Access Latency

Figure 12 shows the normalized average L2 cache access time. We see upto

a maximum improvement of 35% and an average improvement of 13% across all

benchmarks for the average L2 cache access latency for Mobile DCP with respect to
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the Baseline DCP. This improvement reflects the possible improvement that can be

seen in the overall performance of the system. These values are given as feedback to

M5 simulator as L1 miss latency to estimate the runtimes for the benchmarks.

3. Injection Rates and Average Packet Latency

Fig. 13. Normalized Injection Rate

Figure 13 shows the better injection rates for all the benchmarks in the Mobile

DCP implementation. We also see an improvement in average packet latency as

show in the Figure 14. We see the improvement in network performance parameters

like injection rate and average packet latency because the Mobile DCP reduces the

network traffic by reducing the request and response packets. This reflects the overall

improvement in network traffic.
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Fig. 14. Normalized Average Packet Latency

Fig. 15. Normalized Runtime
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Fig. 16. Normalized Network Energy Consumption

4. Estimated Runtime and Energy Savings

Figure 15 shows the Normalized estimated runtimes and Figure 16 shows the Nor-

malized estimated energy consumptions. We see an average runtime improvement

close to 8% across all benchmarks and a maximum improvement of 18% in one of

the benchmarks. We do not have runtime values for three benchmarks due to long

run time and simulator issues with the modified direct miss latencies. The average

energy savings are around 30% across all benchmarks. These estimates show the

overall improvement the Mobile DCP provides over the Baseline DCP both in terms

of performance and energy consumption.

5. Summary

We see an improvement in the average L2 miss and access latencies which improves

the overall performance of the system. The average network packet latency and injec-

tion rates also improve due to the reduction in network packets needed for directory
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indirection. The improvement in network traffic leads to improvement in energy con-

sumption of the network modules.
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CHAPTER VI

CONCLUSIONS

The performance improvement and the energy and power consumptions depend on

the network traffic depend on the cache coherence protocol. The coherence protocol

can provide faster response to local cache misses and the coherence traffic impacts

the network traffic and power consumptions drastically.

The previous work that has been done to minimize cache miss latencies by direct

cache to cache transfers is based on ordering of snoop broadcasts [22] or use tokens

with broadcast [25]. Most of the work for direct cache to cache transfers involves some

sort of broadcasts which always causes an increase in traffic that could be detrimental

with further scaling to more number of cores and leads to higher energy consumptions.

There are also methods that use Producer Consumer relationships or other such

data sharing relationships for speculative updates in the form of prefetch or Producer

initiated writes. These methods try to reduce the number of local misses by making

speculative updates but causes wasted data transmissions causing increase in network

traffic and thus increasing the energy consumed. They provide better performance

by reducing the number of remote misses but the energy and power consumptions are

increased.

In our Mobile Directory Coherence Protocol we see an improvement in network

performance parameters like injection rate and average flit latency because the pro-

tocol reduces the network traffic by reducing the number of request and response

packets. The network traffic reduction is reflected in the energy savings of close to

30% average across the benchmarks. We also see an improvement in the Memory ac-

cess times by faster and direct cache to cache transfers through Producer-Consumer

relationships. The improvement in memory access times is apparent from the re-
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duction in L2 miss latency by 22% and L2 access latency by 13% which results in

improvement of estimated runtime by 8% average across the benchmarks. We not only

have better access times through direct cache transfers but also reduce the network

traffic improving both performance and provide energy savings.

We see an increase in directory misses for benchmarks that have a high miss rate

due to the smaller directory cache size in our Mobile DCP. A possible future direction

is to reduce these directory misses by investigating methods to merge the directory

cache and the Producer cache. We can use a single larger cache for storing both default

and mobile directory entries reducing the number of directory misses by providing

a larger pool of cache lines reducing conflict misses. If the mobile directory entries

are occupying a lower number of cache lines the remaining larger set of cache lines

can be used for directory entries. The degradation caused by more directory misses

due to larger cache miss rate can be tackled and we can get better performance even

for Canneal Benchmark. Another direction to investigate for improving Mobile DCP

is restricting the movement of directory by having better sharing patterns. We can

use techniques like keeping a count of writes done by a particular core and have a

threshold point for the count before the directory entry can be moved to that core.
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