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ABSTRACT 

 

A Triple-Porosity Model for Fractured Horizontal Wells. (August 2010) 

Hasan Ali H Alahmadi, B.Sc., King Fahd University of Petroleum and Minerals 

Chair of Advisory Committee: Dr. Robert A. Wattenbarger 

 

Fractured reservoirs have been traditionally idealized using dual-porosity models. 

In these models, all matrix and fractures systems have identical properties. However, it 

is not uncommon for naturally fractured reservoirs to have orthogonal fractures with 

different properties. In addition, for hydraulically fractured reservoirs that have pre-

existing natural fractures such as shale gas reservoirs, it is almost certain that these types 

of fractures are present. Therefore, a triple-porosity (dual-fracture) model is developed in 

this work for characterizing fractured reservoirs with different fractures properties. 

The model consists of three contiguous porous media: the matrix, less permeable 

micro-fractures and more permeable macro-fractures. Only the macro-fractures produce 

to the well while they are fed by the micro-fractures only. Consequently, the matrix 

feeds the micro-fractures only. Therefore, the flow is sequential from one medium to the 

other. 

Four sub-models are derived based on the interporosity flow assumption between 

adjacent media, i.e., pseudosteady state or transient flow assumption. These are fully 

transient flow model (Model 1), fully pseudosteady state flow model (Model 4) and two 

mixed flow models (Model 2 and 3). 
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The solutions were mainly derived for linear flow which makes this model the 

first triple-porosity model for linear reservoirs. In addition, the Laplace domain solutions 

are also new and have not been presented in the literature before in this form. 

Model 1 is used to analyze fractured shale gas horizontal wells. Non-linear 

regression using least absolute value method is used to match field data, mainly gas rate. 

Once a match is achieved, the well model is completely described. Consequently, 

original gas in place (OGIP) can be estimated and well future performance can be 

forecasted. 
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CHAPTER I 

INTRODUCTION 

 

A naturally fractured reservoir can be defined as a reservoir that contains a 

connected network of fractures created by natural processes that have or predicted to 

have an effect on the fluid flow (Nelson 2001). Naturally fractured reservoirs (NFRs) 

contain more than 20% of the World’s hydrocarbon reserves (Sarma and Aziz 2006). 

Moreover, most of the unconventional resources such as shale gas are also contained in 

fractured reservoirs. Horizontal wells are becoming the norm for field development 

nowadays. In addition, nearly all horizontal wells completed in shale and tight gas 

reservoirs are hydraulically fractured. 

Traditionally, dual-porosity models have been used to model NFRs where all 

fractures are assumed to have identical properties. Many dual-porosity models have been 

developed starting by Warren & Root (1963) sugar cube model in which matrix provides 

the storage while fractures provide the flow medium. The model assumed pseudosteady 

state fluid transfer between matrix and fractures. Since then several models were 

developed mainly as variation of the Warren & Root model assuming different matrix-

fracture fluid transfer conditions.  

 

  

 

 

 

____________ 

This thesis follows the style of SPE Reservoir Evaluation & Engineering. 
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However, it is more realistic to assume fractures having different properties. This 

is more apparent in case of hydraulically fractured wells. Thus, triple-porosity models 

have been developed as more realistic models to capture reservoir heterogeneity in 

NFRs. Models for more than three interacting media are also available in the literature. 

However, no triple-porosity model has been developed for linear flow in fractured 

reservoirs. In addition, no triple-porosity (dual fracture) model is available for either 

linear or radial flow that considers transient fluid transfer between matrix and micro-

fractures. 

1.1  Motivation 

The motivation behind this research was triggered by the Barnett Shale where 

hydraulically fractured horizontal wells are drilled parallel to the pre-existing natural 

fractures. It has been documented that hydraulic fractures growth could re-open the pre-

existing natural fractures (Gale et al. 2007). Therefore, for any model to be used to 

analyze such wells, it has to account for both natural and hydraulic fractures to be 

practical. 

1.2  Objectives 

The objective of this research is to develop analytical solutions to model the fluid 

flow toward a horizontal well in a triple-porosity reservoir consisting of matrix and two 

sets of orthogonal fractures that have different properties. These fractures are the more 

permeable macro-fractures and the less permeable micro-fractures. El-Banbi (1998) 

linear flow solutions will be used and new fracture functions will be derived. 
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1.3  Organization of the Thesis 

This thesis is divided into seven chapters. The organization of these chapters is as 

follows: 

Chapter I is an introduction to the subject of this research, its motivations and 

objectives. 

Chapter II is devoted for literature review about modeling of fractured reservoirs 

using dual, triple and multiple-porosity models with emphasis on linear flow. 

Chapter III presents the new analytical triple-porosity solutions developed for 

linear flow towards a horizontal well in triple-porosity reservoirs. The solutions are 

verified for their mathematical consistency by comparing them with their dual-porosity 

counterparts. In addition, the applicability of these solutions to radial systems and gas 

flow are presented. 

Chapter IV confirms the analytical solutions by numerical simulation model built 

using CMG reservoir simulator.  

Chapter V presents the non-linear regression as a tool to match field data using 

the triple-porosity model. Two regression methods are presented: the least squares and 

the least absolute value. 

Chapter VI presents the application of the new model to shale gas horizontal 

wells. The model uses non-linear regression to match the field data and estimate 

reservoir parameters. 

Chapter VII presents conclusions and recommendations. 
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter provides a literature review of the NFRs modeling. Some of the 

available dual, triple and multiple-porosity models will be reviewed. In addition, linear 

flow solutions for fractured reservoirs will be discussed  

2.1  Dual-porosity Models 

Naturally fractured reservoirs are usually characterized using dual-porosity 

models. The foundations of dual-porosity models were first introduced by Barenblatt et 

al. (1960). The model assumes pseudosteady state fluid transfer between matrix and 

fractures. Later, Warren and Root (1963) extended Barenblatt et al. model to well test 

analysis and introduced it to the petroleum literature. The Warren & Root model was 

mainly developed for transient well test analysis in which they introduced two 

dimensionless parameters, ω and λ. ω describes the storativity of the fractures system 

and λ is the parameter governing fracture-matrix flow. 

Dual-porosity models can be categorized into two major categories based on the 

interporosity fluid transfer assumption: pseudosteady state models and unsteady state 

models. 

2.1.1  Pseudosteady State Models 

Warren & Root (1963) based their analysis on sugar cube idealization of the 

fractured reservoir (Fig. 2.1). They assumed pseudo-steady state flow between the 
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matrix and fracture systems. That is, the pressure at the middle of the matrix block starts 

changing at time zero. In their model, two differential forms (one for matrix and one for 

fracture) of diffusivity equations were solved simultaneously at a mathematical point. 

The fracture-matrix interaction is related by  

( )fm
m pp

k
q −=

µ
α     ........................................................................................ (2.1) 

where q is the transfer rate, α is the shape factor, km is the matrix permeability, µ is the 

fluid viscosity and (pm – pf) is the pressure difference between the matrix and the 

fracture. 

 

 

 

Fig. 2.1 – Idealization of the heterogeneous porous medium (Warren & Root 1963). 

 

 

 

2.1.2  Unsteady State Models 

Other models (Kazemi 1969; de Swaan 1976; Ozkan et al. 1987) assume 

unsteady-state (transient) flow condition between matrix and fracture systems. Kazemi 

(1969) proposed the slab dual-porosity model (Fig. 2.2) and provided a numerical 
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solution for dual-porosity reservoirs assuming transient flow between matrix and 

fractures. His solution, however, was similar to that of Warren & Root except for the 

transition period between the matrix and fractures systems. 

 

 

    
Fig. 2.2 – Idealization of the heterogeneous porous medium (Kazemi 1969). 

 

 

 

2.2  Triple-porosity Models 

The dual-porosity models assume uniform matrix and fractures properties 

throughout the reservoir which may not be true in actual reservoirs. An improvement to 

this drawback is to consider two matrix systems with different properties. This system is 

a triple-porosity system. Another form of triple-porosity is to consider two fractures 

systems with different properties in addition to the matrix. The latter is sometimes 

referred to as dual fracture model. 

The first triple-porosity model was developed by Liu (1981, 1983). Liu 

developed his model for radial flow of slightly compressible fluids through a triple-

porosity reservoir under pseudosteady state interporosity flow. The idealization 

Warren & 

Root Model 

Kazemi Model 
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considers two matrix systems flowing to a single fracture. Asymptotic cases were 

considered where triple-porosity medium reduces to a single or dual porosity media. 

This model, however, is rarely referenced as it was not published in the petroleum 

literature. 

In petroleum literature, however, the first triple-porosity model was introduced 

by Abdassah and Ershaghi (1986). Two geometrical configurations were considered: 

strata model and uniformly distributed blocks model. In both models, two matrix 

systems have different properties flowing to a single fracture under gradient (unsteady 

state) interporosity flow. The solutions were developed for radial system. 

Jalali and Ershaghi (1987) investigated the transition zone behavior of the radial 

triple porosity system. They extended the Abdassah and Ershaghi strata (layered) model 

by allowing the matrix systems to have different properties and thickness. In addition, 

three interporosity flow conditions were considered:  

a. both matrix systems obey pseudosteady state flow  

b. both matrix systems obey unsteady state flow 

c. one matrix obeys pseudosteady state while the other obeys unsteady state 

flow. 

Al-Ghamdi and Ershaghi (1996) was the first to introduce the dual fracture triple-

porosity model for radial system. Their model consists of a matrix and two fracture 

systems; more permeable macro-fracture and less permeable micro-fracture. Two sub 

models were presented. The first is similar to the triple-porosity layered model where 

micro-fractures replace one of the matrix systems. The second is where the matrix feeds 
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the micro-fractures under pseudosteady state flow which in turns feed the macro-

fractures under pseudosteady state flow condition as well. The macro-fractures and/or 

micro-fractures are allowed to flow to the well. 

Liu et al. (2003) presented a radial triple-continuum model. The system consists 

of fractures, matrix and cavity media. Only the fractures feed the well but they receive 

flow from both matrix and cavity systems under pseudosteady state condition. Unlike 

previous triple-porosity models, the matrix and cavity systems are exchanging flow 

(under pseudosteady state condition) and thus it is called triple-continuum. Their 

solution was an extension of Warren and Root solution. 

Wu et al. (2004) used the triple-continuum model for modeling flow and 

transport of tracers and nuclear waste in the unsaturated zone of Yucca Mountain. The 

system consists of large fractures, small fractures and matrix. They confirmed the 

validity of the analytical solution with numerical simulation for injection well injecting 

at constant rate in a radial system. In addition, they demonstrated the usefulness of the 

triple-continuum model for estimating reservoir parameters. 

Dreier (2004) improved the triple-porosity dual fracture model originally 

developed by Al-Ghamdi and Ershaghi (1996) by considering transient flow condition 

between micro-fractures and macro-fractures. Flow between matrix and micro-fractures 

is still under pseudosteady state condition. His main work (Dreier et al. 2004) was the 

development of new quadruple-porosity sequential feed and simultaneous feed models. 

He addressed the need for nonlinear regression to match well test data and estimate 

reservoir properties in case of quadruple porosity model. For the triple-porosity dual 
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fracture model, the solution was derived in Laplace domain for radial system for a 

constant rate case with the following fracture function: 

( ) ( ) ( )( )

( ) 








+⋅
⋅+⋅⋅⋅=

⋅⋅⋅⋅⋅+=

λω

λ
ωωκ

κ

s
shsf

sfsf
hhs

sf

m

mfrmDfr

frfr

frDmD

3

2

,3

33

2,,

tanh
1111

1

 ...................................... (2.2) 

The dimensionless variables definitions they used are different from these used in this 

work. 

2.3  Linear Flow in Fractured Reservoirs 

Linear flow occurs at early time (transient flow) when flow is perpendicular to 

any flow surface. Wattenbarger (2007) identified different causes for linear transient 

flow including hydraulic fracture draining a square geometry, high permeability layers 

draining adjacent tight layers and early-time constant pressure drainage from different 

geometries. 

El-Banbi (1998) developed new linear dual-porosity solutions for fluid flow in 

linear fractured reservoirs. Solutions were derived in Laplace domain for several inner 

and outer boundary conditions. These include constant rate and constant pressure inner 

boundaries and infinite and closed outer boundaries. Skin and wellbore storage effects 

have been incorporated as well. One important finding is that reservoir functions, ( )sf , 

derived for radial flow can be used in linear flow solutions in Laplace domain and vice 

versa. 
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Bello (2009) demonstrated that El-Banbi solutions could be used to model 

horizontal well performance in tight fractured reservoirs. He then applied the constant 

pressure solution to analyze rate transient in horizontal multi-stage fractured shale gas 

wells. 

Bello (2009) and Bello and Wattenbarger (2008, 2009, 2010) used the dual-

porosity linear flow model to analyze shale gas wells. Five flow regions were defined 

based on the linear dual-porosity constant pressure solution. It was found that shale gas 

wells performance could be analyzed effectively by region 4 (transient linear flow from 

a homogeneous matrix). Skin effect was proposed to affect the early flow periods and a 

modified algebraic equation was proposed to account for it. 

Ozkan et al. (2009) and Brown et al. (2009) proposed a tri-linear model for 

analyzing well test in tight gas wells. Three contiguous media were considered: finite 

conductivity hydraulic fractures, dual-porosity inner reservoir between the hydraulic 

fractures and outer reservoir beyond the tip of the hydraulic fractures. Based on their 

analysis, the outer reservoir does not contribute significantly to the flow. 

Al-Ahmadi et al. (2010) presented procedures to analyze shale gas wells using 

the slab and cube dual-porosity idealizations demonstrated by field examples. 
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CHAPTER III 

TRIPLE-POROSITY MODEL FOR FRACTURED RESERVOIRS: NEW 

SOLUTIONS 

 

3.1 Introduction 

In this chapter, a triple-porosity model is developed and new solutions are 

derived for linear flow in fractured reservoirs. The triple-porosity system consists of 

three contiguous porous media: the matrix, less permeable micro-fractures and more 

permeable macro-fractures. The main flow is through the macro-fractures which feed the 

well while they receive flow from the micro-fractures only. Consequently, the matrix 

feeds the micro-fractures only. Therefore, the flow is sequential from one medium to the 

other. In the petroleum literature, this type of model is sometimes called dual-fracture 

model. 

The problem at hand is to model the fluid flow toward a horizontal well in a 

triple-porosity reservoir. El-Banbi (1998) solutions for linear flow in dual-porosity 

reservoirs will be used. However, new reservoir functions will be derived that pertain to 

the triple-porosity system and can be used in El-Banbi’s solutions. 

Throughout this thesis, matrix, micro-fractures and macro-fractures are identified 

with subscripts m, f and F, respectively. 
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3.2  Linear Flow Solutions for Fractured Linear Reservoirs 

El-Banbi (1998) was the first to present solutions to the fluid flow in fractured 

linear reservoirs. The analytical solutions for constant rate and constant pressure cases in 

Laplace domain are given by 

Constant rate case:              
( )

( )( )
( )( )









−−

−+
=

De

De

wDL
ysfs

ysfs

sfss
p

2exp1

2exp12π
    ................... (3.1) 

Constant pressure case:       
( )

( )( )
( )( )









−−

−+
=

De

De

DL ysfs

ysfs

sfs

s

q 2exp1

2exp121 π
    ...................... (3.2) 

Detailed derivations in addition to other solutions are presented in Appendix A.  

These solutions can be used to model horizontal wells in dual-porosity reservoirs 

(Bello 2009). Accordingly, they are equally applicable to triple-porosity reservoirs 

considered in this work since linear flow is the main flow regime. The fracture 

function, ( )sf however, is different depending on the type of reservoir and imposed 

assumptions. 

3.3  Derivations of the Triple-porosity Analytical Solutions 

A sketch of the triple-porosity dual-fracture model is shown in Fig. 3.1. The 

arrows shows the flow directions where fluids flow from matrix to micro-fractures to the 

macro-fractures and finally to the well. 
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3.3.1  Model Assumptions 

The analytical solutions are derived under the following assumptions: 

1. Fully penetrating horizontal well at the center of a closed rectangular 

reservoir producing at a constant rate 

2. Triple-porosity system made up of matrix, less permeable micro-fractures 

and more permeable macro-fractures 

3. Each medium is assumed to be homogenous and isotropic 

4. Matrix blocks are idealized as slabs 

5. Flow is sequential from one medium to the other; form matrix to micro-

fractures to macro-fractures 

6. Flow of slightly compressible fluid with constant viscosity 

 

2

fL

ex

ey

Micro-

fractures

Macro-fractures

Horizontal 

Well

2

FL

 
Fig. 3.1 – Top view of a horizontal well in a triple-porosity system with sequential 

flow. Arrows indicate flow directions. 
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Four sub-models of the triple-porosity model are derived. The main difference is 

the assumption of interporosity flow condition, i.e., pseudosteady state or transient. 

These models are shown graphically in Fig. 3.2. The analytical solution for each model 

is derived in the following sections. 

 

Macro-fractureMatrix Micro-fracture

USS USS

Macro-fractureMatrix Micro-fracture

PSS USS

Macro-fractureMatrix Micro-fracture

USS PSS

Macro-fractureMatrix Micro-fracture

PSS PSS

Model 1:

Model 2:

Model 3:

Model 4:
 

Fig. 3.2 – Sub-models of the triple-porosity model based on different interporosity 

flow condition assumptions. PSS: pseudosteady state. USS: unsteady state or 

transient. Arrows indicate flow directions. 

 

3.3.2  Definitions of Dimensionless Variables 

Before proceeding with the derivations, the dimensionless variables are defined.  

[ ] cwtt

F
DAc

Ac

tk
t

µϕ

00633.0
=                   ........................................................................... (3.3) 

( )
µqB

ppAk
p

icwF

DL
2.141

−
=            ........................................................................... (3.4) 

[ ]
[ ]

tt

Ft

F
Vc

Vc

ϕ

ϕ
ω =                            ......................................................................... (3.5) 
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[ ]
[ ]

tt

ft

f
Vc

Vc

ϕ

ϕ
ω =                             ........................................................................ (3.6) 

[ ]
[ ] fF

tt

mt

m
Vc

Vc
ωω

ϕ

ϕ
ω −−== 1       ......................................................................... (3.7) 

cw

F

f

F

FfAc A
k

k

L
2,

12
=λ                   ........................................................................... (3.8) 

cw

F

m

f

fmAc A
k

k

L
2,

12
=λ                    .......................................................................... (3.9) 

2
fLD

z
z =                                  ......................................................................... (3.10) 

2
FLD

x
x =                                  ......................................................................... (3.11) 

cw

D
A

y
y =                               ........................................................................ (3.12) 

ω and λ are the storativity ratio and interporosity flow parameter, respectively. kF 

and kf are the bulk (macroscopic) fractures permeabilities  

3.3.3  Model 1: Fully Transient Triple-porosity Model 

The first sub-model, Model 1, is the fully transient model. The flow between 

matrix and micro-fractures and that between micro-fractures and macro-fractures are 

under transient condition. This model is an extension to the dual-porosity transient slab 

model (Kazemi 1969 Model). The derivation starts by writing the differential equations 

describing the flow in each medium. 
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The matrix equation: 

t

p

k

c

z

p m

m

tm

∂

∂








=

∂

∂ ϕµ
2

2

    .................................................................................. (3.13) 

The initial and boundary conditions are 

Initial condition:       ( ) im pzp =0,     

Inner boundary:       0@0 ==
∂

∂
z

z

pm  

Outer boundary:       
2

@
f

fm

L
zpp ==  

The micro-fractures equation: 

2
2

2

2
1

fL
f

z

m

f

m

L

f

f

tf

z

p

k

k

t

p

k

c

x

p

=∂

∂
+

∂

∂








=

∂

∂ ϕµ
    ..................................................... (3.14) 

The initial and boundary conditions are 

Initial condition:       ( )
if pxp =0,     

Inner boundary:       0@0 ==
∂

∂
x

x

p f
 

Outer boundary:       
2

@ F
Ff

L
xpp ==  

And the macro-fractures equation: 

2
2

2

2 1

FL
F

x

f

F

f

L

F

F

tF

x

p

k

k

t

p

k

c

y

p

=
∂

∂
+

∂

∂








=

∂

∂ ϕµ
    ..................................................... (3.15) 

The initial and boundary conditions are 

Initial condition:       ( ) iF pyp =0,     

Inner boundary:        
0=

∂

∂
−=

y

FcwF

y

pAk
q

µ
 

Outer boundary:       e
F yy
y

p
==

∂

∂
@0  
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Using dimensionless variables definitions in Eq. 3.3 to 3.12, Eq. 3.13 to 3.15 can 

be rewritten as 

Matrix:                             ( )
DAc

DLm

fmAc

Ff

D

DLm

t

p

z

p

∂

∂
−−=

∂

∂

,

2

2 3
1

λ
ωω     ............................... (3.16) 

Micro-fractures:               

1,

,

,

2

2
3

=
∂

∂
+

∂

∂
=

∂

∂

DzD

DLm

FfAc

fmAc

DAc

DLf

FfAc

f

D

DLf

z

p

t

p

x

p

λ

λ

λ
ω     .................. (3.17) 

Macro-fractures:              

1

,

2

2

3
=

∂

∂
+

∂

∂
=

∂

∂

DxD

DLfFfAc

DAc

DLF
F

D

DLF

x

p

t

p

y

p λ
ω     .......................... (3.18) 

The initial and boundary conditions in dimensionless form are as follows: 

Matrix: 

Initial condition:       ( ) 00, =DDLm zp  

Inner boundary:       0@0 ==
∂

∂
D

D

DLm z
z

p
 

Outer boundary:       1@ == DDLfDLm zpp  

Micro-fractures: 

Initial condition:       ( ) 00, =DDLf xp  

Inner boundary:        0@0 ==
∂

∂
D

D

DLf
x

x

p
 

Outer boundary:       1@ == DDLFDLf xpp  

Macro-fractures: 

Initial condition:       ( ) 00, =DDLF yp  

Inner boundary:         π2

0

−=
∂

∂

=DyD

DLF

y

p
 

Outer boundary:       
cw

e

A

y
DeD

D

DLF yy
y

p
===

∂

∂
@0  



 18

The system of differential equations, Eqs. 3.16 to 3.18, can be solved using 

Laplace transformation as detailed in Appendix B. The fracture function, ( )sf , for this 

model is given by 

( ) ( ) ( )( )

( )













+=

+=

fmAc

m

fmAc

m

FfAc

fmAc

FfAc

f

f

ff

FfAc

F

ss

s
sf

sfssfs
s

sf

,,,

,

,

,

3
tanh

33

tanh
3

λ

ω

λ

ω

λ

λ

λ

ω

λ
ω

    .......................................... (3.19) 

Using the fracture function, Eq. 3.19 in Eqs. 3.1 or 3.2 will give the triple-

porosity fully transient model response for constant rate or constant pressure cases, 

respectively in Laplace domain. The solution can then be inverted to real (time) domain 

using inverting algorithms like Stehfest Algorithm (Stehfest 1970).  

3.3.4  Model 2: Mixed Flow Triple-porosity Model 

The second sub-model, Model 2, is where the interporosity flow between matrix 

and micro-fractures is under pseudosteady state while it is transient between micro-

fractures and macro-fractures. 

Following the same steps for Model 1, the fracture function for this model is 

given by (details are shown in Appendix C) 

( ) ( ) ( )( )

( )
FfAcfmAcFfAcm

fmAcm

FfAc

f

f

ff

FfAc

F

s
sf

sfssfs
s

sf

,,,

,

,

,

33

tanh
3

λλλω

λω

λ

ω

λ
ω

+
+=

+=

    ................................................. (3.20) 
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A similar model was derived by Dreier et al (2004) for radial flow. However, 

their fracture function is different since they had different definitions of dimensionless 

variables and used intrinsic properties for the transient flow. 

3.3.5  Model 3: Mixed Flow Triple-porosity Model 

The third sub-model, Model 3, is where the flow between the matrix and micro-

fractures is transient while the flow between micro-fractures and macro-fractures is 

pseudosteady state. It is the opposite of Model 2. 

The derived fracture function for this model as detailed in Appendix D is given 

by  

( )














++














+

+=

fmAc

m

fmAc

m
fmAcfFfAc

fmAc

m

fmAc

mfmAcFfAc

FfAcf

F

ss
s

ss

s
sf

,,

,,

,,

,,

,

3
tanh

3
33

3
tanh

3
3

λ

ω

λ

ω
λωλ

λ

ω

λ

ωλλ
λω

ω     ..................... (3.21) 

3.3.6  Model 4: Fully PSS Triple-porosity Model 

The fourth sub-model, Model 4, is the fully pseudosteady state model. The flow 

between all three media is under pseudosteady state. This model is an extension of the 

Warren & Root dual-porosity pseudosteady state model. The derived fracture function as 

detailed in Appendix E is given by 

( )
( )[ ]

( )( )
fmAcmfmAcmfFfAc

fmAcmffmAcmFfAc

F
sss

s
sf

,,,

,,,

λωλωωλ

λωωλωλ
ω

+++

++
+=     .................................... (3.22) 
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This model is also a limiting case of Liu et al (2000; Wu et al, 2004) triple-

continuum model if considering sequential flow and ignoring the flow component 

between matrix and macro-fractures. 

3.3.7  Triple-porosity Solutions Comparison 

Models 1 through 4 cover all possibilities of fluid flow in triple-porosity system 

under sequential flow assumption. Comparison of the constant pressure solution based 

on these models is shown in Fig. 3.3. As can be seen on the figure, Models 1 and 4 

represents the end members while Models 2 and 3 are combination of these models. 

Model 2 follows Model 1 at early time but follows Model 4 at later time while Model 3 

is the opposite. 

Considering rate transient analysis, Models 1 and 3 are more likely to be 

applicable to field data. 
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Fig. 3.3 – Comparison of the constant pressure solutions based on the four triple-

porosity models. 

 

3.4  Mathematical Consistency of the Analytical Solutions 

In this section, the solutions mathematical consistency is checked by reducing the 

triple-porosity model to its dual-porosity counterpart. This can be achieved by allowing 

the micro-fractures to dominate the flow and assigning to them the dual-porosity matrix 

properties from the dual-porosity system. In this case, the matrix-micro-fractures 

interporosity coefficient, fmAc,λ , is very small and the triple-porosity matrix storativity 

ratio, ω, is zero. This comparison is shown for all models in the following figures. Table 

3.1 shows the data used for comparison. 
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Table 3.1 – Input parameters for dual and triple-porosity 

solutions comparison 

Dual-Porosity Parameters Triple-Porosity Parameters 

ω 0.001 ωF 0.001 

λ 0.005 ωf 0.999 

yeD 10 λAc,Ff 0.005 

  λAc,fm 1×10
-9

 

  yeD 10 

 

 

 

Models 1 and 2 are reduced to the transient slab dual-porosity model since the 

flow between micro-fractures and macro-fractures is under transient conditions in the 

two models. As shown Fig. 3.4, the triple-porosity solutions are identical to their dual-

porosity counterpart. This confirms the mathematical consistency of Models 1 and 2. 
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Fig. 3.4 –A log-log plot of transient dual-porosity (DP) and triple-porosity (TP) 

Models 1 and 2 solutions for constant pressure case. The two solutions are identical 

indicating the mathematical consistency of the new triple-porosity solutions. 
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Models 3 and 4, however, are reduced to the pseudosteady state dual-porosity 

model since the flow between micro-fractures and macro-fractures is under 

pseudosteady state condition in the two models. As shown in Fig. 3.5, the triple-porosity 

solutions are identical to their dual-porosity counterpart. This confirms the mathematical 

consistency of Models 3 and 4. 

 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1
.E

-0
7

1
.E

-0
6

1
.E

-0
5

1
.E

-0
4

1
.E

-0
3

1
.E

-0
2

1
.E

-0
1

1
.E

+
0

0

1
.E

+
0

1

1
.E

+
0

2

1
.E

+
0

3

1
.E

+
0

4

1
/q

D
L

, 
 (

1
/q

D
L
)'

tDAc

1/qDL  - Dual-Porosity (1/qDL)'  - Dual-Porosity 

1/qDL  - Triple-Porosity Model 3 (1/qDL)'   - Triple-Porosity Model 3

1/qDL  - Triple-Porosity Model 4 (1/qDL)'   - Triple-Porosity Model 4

 
Fig. 3.5 – A log-log plot of pseudosteady state dual-porosity (DP) and triple-

porosity (TP) Models 3 and 4 solutions for constant pressure case. The two 

solutions are matching indicating the mathematical consistency of the new triple-

porosity solutions. 

 

3.5  Flow Regions Based on the Analytical Solution 

Since Model 1, the fully transient model, is the most general of all the four triple-

porosity variations and shows all possible flow regions, all discussions in this section 

and the following chapters will be limited to Model 1. Based on Model 1 constant 
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pressure solution, six flow regions can be identified as the pressure propagates through 

the triple-porosity system. These flow regions are shown graphically on the log-log plot 

of dimensionless rate versus dimensionless time in Fig 3.6. Regions 1 through 5 exhibit 

an alternating slopes of – ½ and – ¼ indicating linear and bilinear transient flow, 

respectively. Region 6 is the boundary dominated flow and exhibits an exponential 

decline due to constant bottom-hole pressure. These flow regions are explained in details 

in the following sections. Appendix F shows the effect of each solution parameter on 

Model 1 response for constant pressure case. 
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Fig. 3.6 – A log-log plot of triple-porosity solution. Six flow regions can be identified 

for Model 1 constant pressure solution. Slopes are labeled on the graph. 
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3.5.1  Region 1 

Region 1 represents the transient linear flow in the macro-fractures only. The 

permeability of macro-fractures is usually high and hence, in most cases, this flow 

region will be very short. It may not be captured by most well rate measurement tools. 

This flow region exhibits a half-slope on the log-log plot of rate versus time. 

3.5.2  Region 2 

Region 2 is the bilinear flow in the macro-fractures and micro-fractures. It is 

caused by simultaneous perpendicular transient linear flow in the micro-fractures and the 

macro-fractures. This flow region exhibit a quarter-slope on the log-log plot of rate 

versus time. 

3.5.3  Region 3 

Region 3 is the linear flow in the micro-fractures system. It will occur once the 

transient flow in the macro-fractures ends indicating the end of bilinear flow (region 2). 

This flow region exhibits a half-slope on the log-log plot of rate versus time. 

3.5.4  Region 4 

Region 4 is the bilinear flow in the micro-fractures and matrix. It is caused by the 

linear flow in the matrix while the micro-fractures are still in transient flow. This flow 

region exhibits a quarter-slope on the log-log plot of rate versus time. In most field 

cases, this flow region is the first one to be observed. 
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3.5.5  Region 5 

Region 5 is the main and longest flow region in most field cases. It is the linear 

flow out of the matrix to the surrounding micro-fractures. This region exhibits a half-

slope on the log-log plot of rate versus time. Analysis of this region will allow the 

estimation of fractures surface area available to flow, Acm. 

3.5.6  Region 6 

Region 6 is the boundary dominated flow. It starts when the pressure at the center 

of the matrix blocks starts to decline. This flow is governed by exponential decline due 

to constant bottom-hole pressure. 

3.6  Triple-porosity Solutions for Radial Flow 

Although the triple-porosity solutions were derived for linear flow, they are 

equally applicable to radial flow following El-Banbi (1998) work. The differential 

equation in Laplace domain that governs the flow in the macro-fractures in case of radial 

system is given by 

( ) 0
1

=−










∂

∂

∂

∂
DF

D

DF

D

DD

psfs
r

p
r

rr
    ............................................................ (3.23) 

The constant pressure solution for a closed reservoir is given by (El-Banbi 1998) 

( )( ) ( )( ) ( )( ) ( )( )[ ]
( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]eDeD

eDeD

D rsfsKsfsIsfsKrsfsIsfs

sfsKrsfsIrsfsKsfsIs

q
1111

01101

+

+
=     ..... (3.24) 

The fractures functions, ( )sf , derived for all the models can be used in the radial 

flow solutions as well. Fig. 3.7 shows comparison between radial dual-porosity solutions 
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and the new triple-porosity solutions reduced to their dual-porosity counterpart and 

applied to radial flow. Data used for comparison are shown in Table 3.2. 

The solutions are identical indicating the applicability of the new triple-porosity 

solutions derived in this work to radial flow. 

 

Table 3.2 – Input parameters for dual and triple-porosity 

solutions comparison for radial flow 

Dual-Porosity Parameters Triple-Porosity Parameters 

ω 0.001 ωF 0.001 

λ 0.001 ωf 0.999 

reD 10 λAc,Ff 0.001 

  λAc,fm 1×10
-9

 

  reD 10 
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Fig. 3.7 – Log-log plot of dual-porosity and triple-porosity constant pressure 

solutions for radial flow. 
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3.7  Application to Gas Flow 

It is important to note that the above solutions were derived for slightly 

compressible fluids and thus are applicable to liquid flow only. However, they can be 

applied to gas flow by using gas potential, ( )pm , instead of pressure to linearize the left-

hand side of the diffusivity equation. Therefore, the dimensionless pressure variable will 

be defined in terms of gas potential as 

( ) ( )[ ]
Tq

pmpmAk
m

g

icwF

DL
1422

−
=     ...................................................................... (3.25) 

where ( )pm  is the gas potential defined as (Al-Hussainy et al. 1966)  

( ) dp
z

p
pm

p

p

∫=

0

2
µ

    ......................................................................................... (3.26) 

With the above linearization, the derived solutions are applicable to the transient 

flow regime for gas flow. However, once the reservoir boundaries are reached and 

average reservoir pressure starts to decline, the gas properties will change considerably 

especially the gas viscosity and compressibility. Therefore, the solutions have to be 

corrected for changing fluid properties. This is usually achieved by using pseudo-time or 

material balance time. An example of these transformations is the Fraim and 

Wattenbarger (1987) normalized time defined as 

( )
( ) ( )

τ
µ

µ
d

pcp

c
t

t

t

it

n ∫=
0

    ...................................................................................... (3.27) 

Thus, with these two modifications, the analytical solutions derived in this work 

are applicable to gas flow. 
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3.8  Chapter Summary 

In this chapter, four new triple-solutions have been developed to model the fluid 

flow in a triple-porosity (dual-fracture) system under sequential flow assumption. Six 

flow regions were identified based on this model. According to the best knowledge of 

the author, the triple-porosity model for linear fractured reservoirs is new and has not 

been presented in the literature before. In addition, even for radial reservoirs these 

solutions are new and have not been presented before in this form. 
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CHAPTER IV 

TRIPLE-POROSITY SIMULATION MODEL AND ANALYTICAL SOLUTIONS 

VERIFICATION 

 

4.1  Introduction 

In this chapter, a triple-porosity simulation model is built using CMG reservoir 

simulator. The objective is to understand the behavior of triple-porosity reservoirs and to 

verify the analytical solutions derived in Chapter III.  

The model considers the flow toward a horizontal well in a triple-porosity 

reservoir. One representative segment is modeled which represents one quadrant of the 

reservoir volume around a macro-fracture. 

4.2  Simulation Model Description 

The model was built with the CMG reservoir simulator. Only one segment was 

simulated representing one quadrant of the reservoir volume around one macro-fracture. 

This segment contains ten micro-fractures orthogonal to the macro-fractures at 20 ft 

fracture spacing. The model is a 2-D model with 21 gridcells in the x-direction, 211 

gridcells in y-direction and only one cell in the z-direction. A top view of the model is 

shown in Fig. 4.1. All matrix, micro-fractures and macro-fractures properties are 

assigned explicitly. In addition, the simulation model assumes connate water saturation 

for both oil and gas cases. 
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Fig. 4.1 – Top view of the CMG 2-D triple-porosity simulation model. 

 

 

4.3  Analytical Solution Validation 

The simulator was run for many cases by changing the three porosities and 

permeabilities of the three media. In order to validate the analytical solution derived in 

Chapter III, the simulation results are compared to that of the analytical solutions for 

each case. All cases were matched with analytical solutions and thus confirming their 

validity. Results of two comparison runs are presented here: one for oil and the other for 

gas as shown in Figs. 4.2 and 4.3, respectively. 
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Fig. 4.2 – Match between simulation and analytical solution results for an oil case. 

(kF,in = 1000 md, kf,in = 1 md and km = 1.5×10
-4

 md). 
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Fig. 4.3 – Simulation and analytical solution match for a gas case. The boundary 

dominated flow was matched very well after correcting for changing gas properties. 

(kF,in = 2 md, kf,in = 0.1 md and km = 1.5×10
-4

 md). 
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4.4  Limiting Cases 

In order to confirm the integrity of the simulation model and the analytical 

solution, asymptotic cases were run in which the triple-porosity system will reduce to a 

simpler system, i.e., dual-porosity or homogenous system.  

The first case is to assign a very high permeability to the macro-fractures. Thus, 

the transient flow in the macro-fracture will be very fast and the system will act as if it is 

dual-porosity system, i.e., the macro-fractures are effectively eliminated. The results are 

shown in Fig. 4.4. The triple-porosity and dual-porosity solutions are matching the 

simulation results. This indicates that the system can be effectively described by dual-

porosity model. In addition, the triple-porosity is matching the dual-porosity solution 

indicating that the new solution is valid. 
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Fig. 4.4 – Simulation and analytical solutions match for the triple-porosity system 

with high macro-fractures permeability. 
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In the second limiting case, both macro and micro-fractures permeabilities were 

assigned very high values. Thus, the transient flow in both fractures system will be very 

fast and end in less than a day. Hence, the system behaves as if it is homogenous linear 

flow, i.e., micro and macro-fractures are effectively eliminated. The results of this case 

are shown in Fig. 4.5. 

The simulation results were matched perfectly with all solutions. This indicates 

that the system can be modeled using any of the analytical solutions and more 

importantly confirms the validity of the triple-porosity solution. 
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Fig. 4.5 – Simulation and analytical solutions match for the triple-porosity system 

with high micro-fractures and macro-fractures permeability. 
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4.5  Chapter Summary 

The triple-porosity fully transient (Model 1) solution was confirmed with 

reservoir simulation for both liquid and gas flow. Correcting the time for gas properties 

before calculating the model response for gas case helps in applying the model for gas 

flow as well. Limiting cases prove the validity of both analytical solutions and the 

simulation model. 
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CHAPTER V 

NON-LINEAR REGRESSION 

 

5.1 Introduction 

The model derived in Chapter III needs at most five parameters; namely two ω’s, 

two λ’s and yDe. In addition, these calculated parameters depend on reservoir properties 

which have to be estimated. This leads to estimation of many parameters that may not be 

known or needs to be calculated. Therefore, the need for regression arises in order to 

match field data and have a good estimate of the sought reservoir or well parameters. 

In automated well test interpretations, the common regression methods are the 

least squares, least absolute value and modified least absolute value minimization. The 

least squares and the least absolute value methods are described below. 

5.2  Least Squares Method  

Least squares (LS) regression method is the most popular regression method in 

well test analysis. It minimizes the sum of squares of residuals between the measured 

and calculated values, well rates in this case. For the purpose of this research, the 

available data is series of rate and time, {ti, qmeas,i}. Defining α
r

 as the vector containing 

the reservoir/well parameters to be estimated, the objective function is then defined as 

( )[ ]∑
=

−=
n

i

iicalcimeas tqqE
1

2

,, ,α
r

    .......................................................................... (5.1) 

Since the calculated rate function is not a linear function of the parameters in the 

vector α
r

, the objective function is approximated by expanding it using Taylor series 
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expansion up to the second order term around an initial guess of unknown vector, 0α
r

 as 

(Rosa & Horne 1995) 
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*     ............................................................. (5.2) 

where  
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is the objective function gradient defined as 
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and H is the Hessian matrix defined as 
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The second order derivatives in Eq. 5.5 are neglected to ensure that the objective 

function will converge to a minimum value. This is known as Newton-Gauss method.  

In order to minimize the objective function, its derivative with respect to 

unknown vector must be zero at the solution point. That is, 

( )
0

*

=
∆∂

∂

α
r

E
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Upon substituting Eq. 5.2 in Eq. 5.6, we have 

gH
rr

−=∆α     ................................................................................................... (5.7) 
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The above equation is to be solved iteratively for α
r

∆  since E
*
 is an 

approximation of the objective function. Eq. 5.7 can be solved using Gauss Algorithm 

(Cheney and Kincaid 1985). 

The line search algorithm (Rosa and Horne 1995, 1996) is used with upper and 

lower limits for each parameter. The updated value of solution vector is then calculated 

as 

kkk αραα
rrr

∆+=+1     .......................................................................................... (5.8) 

The step length, ρ , is given by 

( )m
2/1=ρ     ..................................................................................................... (5.9) 

where m is zero at the beginning of each iteration and increases if the new value of α
r

 is 

outside the limits or if the value of the objective function fails to decrease until an 

acceptable solution is obtained. Convergence is achieved when the following criterion is 

satisfied: 

kkk ααα
rrr 41 10−+ ≤−     ..................................................................................... (5.10) 

5.3 Least Absolute Value Method 

The standard least squares method works better for smooth data. Outliers affect 

the least squares results since it assigns similar weights for all data points. This can be 

overcome by introducing a weight factor that becomes very small for outliers. However, 

a better method is the least absolute value (LAV) method (Rosa and Horne 1995). 
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While the least-squares method minimizes the sum of squares of the residuals, in 

the LAV method the sum of the absolute value of the residuals is minimized. Thus, the 

objective function is defined as 
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Therefore, starting by the equation of condition 
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Expanding the model function using Taylor series around an initial guess, 0α
r

, and 

considering only first order terms, we have 
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Rearranging Eq. 5.13, 
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Eq. 5.14 can be written as 

npinpiii vvvw ,2,21,1 ... βββ +++=     ................................................................... (5.15) 

where 

( )iicalcimeasi tqqw ,0

,, α
r
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0
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Defining the right hand side of Eq. 5.15 as 

npinpiii vvvw ,2,21,1 ...ˆ βββ +++=     ................................................................... (5.19) 

Now, the objective function becomes 

∑
=

−=
n

i

ii wwE
1
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The above system of equations (Eq. 5.15) is an overdetermined system with n 

equations and np unknowns. This system of equations is solved using L1 Algorithm 

(Barrodale and Roberts 1974). The final solution is obtained iteratively following the 

procedures described in section 5.1 for the LS method. The two methods will be tested 

using synthetic and simulated data before they are applied to field cases as explained in 

the next sections 

5.4  Regression Programming and Results 

The triple-porosity solutions and the regression methods were programmed using 

Excel VBA along with a suite of other analytical solutions. The program is inherently 

called Stehfest (Stehfest 6A) since it uses Stehfest Algorithm (Stehfest 1970) to invert 

Laplace domain solutions to real time domain. Regression has been added as an 

independent module in this program. 

The regression module reads the entire well and reservoir data for the triple-

porosity model in addition to an initial guess for the designated unknown parameters. It 
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calculates the model response function, ( )iicalc tq ,, α
r

, using Stehfest program. Once a 

converged solution is obtained, the model is completely described. That is, all well and 

reservoir properties are known. Thus, calculations can be made such as original 

hydrocarbon in place (OHIP) and well’s future performance forecasting. 

5.5  Regression Testing Using Synthetic Data  

In order to test the regression methods, a synthetic case is constructed using the 

triple-porosity fully transient model (Model 1). The input data for this case are shown in 

Table 5.1. The parameters that are assumed to be unknown are macro-fractures intrinsic 

permeability, inFk , , micro-fractures intrinsic permeability, infk , , micro-fractures 

spacing, fL , and drainage area half-width, ey . The regression program is then used to 

estimate these parameters using least-squares and least absolute value methods. 

The regression results are shown in Table 5.2 and Fig. 5.1. Only the first 500 

days of production were used in the regression. Both methods converged to the true 

solution. This confirms that the regression algorithm is working properly. The LS 

method takes less computational time as reflected on fewer iterations compared to the 

LAV method. 
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Table 5.1 – Input reservoir data for synthetic triple-porosity case 

φF 0.02 h (ft) 300 

kF,in (md) 1000 Swi 0.29 

wF (ft) 0.1 xe (ft) 2600 

LF (ft) 130 ye (ft) 200 

φf 0.01 pi (psi) 3000 

kf,in (md) 1 pwf (psi) 500 

wf (ft) 0.01 µ  (cp) 3.119 

Lf  (ft) 20 Bo (rbbl/STB) 1.05 

φm 0.06 ct (psi
-1

) 3.39×10
-6

 

km (md) 1.5×10
-3

   

 

 

Table 5.2 – Regression results for the synthetic case 

 True Solution First Guess LS Results LAV Results 

inFk ,  1000 500 1000 1000 

infk ,  1 10 1 1 

fL  20 10 20 20 

ey  200 300 200 200 

Iterations – – 15 16 
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Fig. 5.1 – Regression results for the synthetic case using LS method. LV method 

results are identical and are not shown. The desired solution was achieved although 

not all data were used in regression. 

 

 

5.6  Regression Testing Using Simulated Data 

The synthetic case in 5.4 was generated using the same program that was used 

for regression. Although the match was obtained, it is necessary to test the regression 

program using data from a different source. Thus, the data in Table 5.1 was used in 

CMG reservoir simulator to produce the same case. Regression results are shown in 

Table 5.3 and Fig. 5.2. 
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Table 5.3 – Regression results for the simulated case 

 True Solution First Guess LS Results LAV Results 

inFk ,  1000 500 1863 2562 

infk ,  1 5 1.08 1.07 

fL  20 25 21.5 21.7 

ey  200 150 205 206 

Iterations – – 7 8 

OOIP 2,319,760  2,311,366 2,324,804 

 

 

The regression results are matching for all parameters except the macro-fractures 

intrinsic permeability. Regression permeability is about two times the true value. This is 

due to the larger permeability in the macro-fractures which makes the transient flow in 

that system very fast and is not captured by the rate data. The simulation has to be run to 

report flow rate for very small fraction of a day in order to capture the flow in the macro-

fractures.  

The original oil in place for this case can be calculated by volumetric method. 

Both methods, however, gave excellent match of the OOIP since the estimated reservoir 

drainage area half-width, ye, was very close to the true value.  
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Fig. 5.2 – Regression results for the simulated case using LS and LAV methods. The 

match using both methods is almost identical. The solution was obtained without 

including all data in regression. 

 

 

5.7  Matching Noisy Data 

It is known that LS regression method is affected by outliers. Thus, some noise 

has been added to the synthetic data in section 5.5. The data was modified by changing 

the rate by10% and -5% every 5 pints alternatively. For example, the 5
th

 point rate is 

increased by 10% while the 10
th

 point rate was reduced by 5%. 

The regression results are shown in Table 5.4. The LS method was affected by 

the noise and the computational time increased dramatically as it took 467 iterations to 

converge. The converged solution, however, is very close to the true solution.  

The LAV, on the other hand, has not been affected by the noise. Thus, when 

dealing with field cases, the LAV method match will be honored. 
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Table 5.4 – Regression results for the synthetic noisy data 

 True Solution First Guess LS Results LAV Results 

inFk ,  1000 500 970 1000 

infk ,  1 10 1.07 1 

fL  20 10 19.9 20 

ey  200 300 196 200 

Iterations – – 467 15 

 

 

5.8  Matching Gas Wells Rate 

Since the analytical solutions are originally derived for liquid flow, the 

regression algorithm was modified to account for changing gas properties in case of gas 

flow. This is achieved by using gas potential and normalized time instead of the time 

variable in calculating model response function. The procedure is similar to that 

proposed by Fraim and Wattenbarger (1987). 

Fig. 5.3 shows a comparison of gas well rate match with and without using 

normalized time. As expected, the difference can be seen at later time once the boundary 

dominated flow begins. 
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Fig. 5.3 – Effect of correcting for gas properties on matching gas flow case. The 

boundary dominated flow was matched very well after this modification. 
 

5.9  Notes on Regression Matching 

As described in Chapter III, the analytical solution may have more than one flow 

region. Therefore, in order to get the most accurate results with regression, data that 

shows special trends should be included in the regression. For example, if the data that 

shows linear flow was only included in the regression and the data that shows a bi-linear 

flow just before it was ignored, the data will be matched but the solutions will not be 

representative as if that data was also included. In short, the more data included in the 

regression, the more accurate the results will be.  
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CHAPTER VI 

APPLICATION OF THE TRIPLE-POROSITY MODEL TO SHALE GAS 

WELLS 

 

6.1  Introduction 

Shale gas reservoirs play a major role in the United State natural gas supply as 

they are aggressively developed capitalizing on new technologies, namely horizontal 

wells with multi-stage fracturing. It has been observed that these wells behave as though 

they are controlled by transient linear flow (Bello 2009; Bello & Wattenbarger 2008, 

2009, 2010; Al-Ahmadi et al. 2010). According to Medeiros et al. (2008) linear flow is 

the dominant flow regime for fractured horizontal wells in tight formations for most of 

their productive lives. This behavior is characterized by a negative half-slope on the log-

log plot of gas rate versus time and a straight line on the [m(pi) – m(pwf)]/qg vs. t
0.5

 plot 

(the square-root of time plot).  

Some shale gas wells, however, exhibit a bi-linear flow just before the linear 

flow is observed. This behavior is characterized by a negative quarter-slope on the log-

log plot of gas rate versus time or a straight line on the [m(pi) – m(pwf)]/qg vs. t
0.25

 plot. 

The bi-linear flow is due to two perpendicular transient linear flows occurring 

simultaneously in two contiguous systems. These could be micro-fractures and matrix or 

micro-fractures and macro-fractures systems. 
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Previously, shale gas wells have been modeled using linear dual-porosity models 

(Bello 2009; Bello & Wattenbarger 2008, 2009, 2010; Al-Ahmadi et al. 2010). Dual-

porosity idealizations are shown in Fig. 6.1. 

In these models, the matrix was assumed to be “homogeneous” although it might 

be enhanced by natural fractures by having a high effective matrix permeability. In 

addition, orthogonal fractures are assumed to have identical properties. However, most if 

not all of horizontal wells drilled in shale gas reservoirs are hydraulically fractured. As 

the hydraulic fractures propagate, they re-activate the pre-existing natural fractures (Gale 

et al. 2007). The result will be two orthogonal fractures systems with different 

properties. Therefore, dual porosity model will not be sufficient to characterize these 

reservoirs. 

As a result, the triple-porosity model with fully transient flow assumption (Model 

1) will be used in this chapter to model horizontal shale gas wells. In this case, macro-

fractures are the hydraulic fractures while micro-fractures are the natural fractures. 

 

 

Fig. 6.1 – Dual-porosity models for shale gas horizontal wells: slab model on the left 

and cube model on the right (Al-Ahmadi et al. 2010). 
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6.2  Accounting for Adsorbed Gas 

Unlike tight gas reservoirs, gas in shale reservoirs is stored as compressed (free) 

gas and adsorbed gas. Adsorbed gas does not usually flow until the pressure drops below 

the sorption pressure. Adsorbed gas can be accounted for using Langmuir isotherm 

which defines the adsorbed gas volume as 

( )L

L
pp

p
VV

+
=     ............................................................................................. (6.1) 

where 

V: Volume of gas currently adsorbed (scf/cuf) 

VL: Langmuir’s volume (scf/cuf) 

pL: Langmuir’s pressure (psia) 

p: Reservoir pressure (psia) 

Therefore, the analytical solutions have to account for the adsorbed gas before 

applying them to shale gas wells. This can be achieved by modifying the gas 

compressibility definition to include adsorbed gas. Following Bumb and McKee (1988), 

the modified total compressibility is defined as 

( )
wwgdgft ScScccc +++=*     ........................................................................... (6.2) 

where dc  is the desorbed gas compressibility given by  
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    ................................................................. (6.3) 

Thus, to account for adsorption, *

tc  instead of tc  will be used in the analytical solutions 

to be applicable to shale gas wells. 
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For material balance calculations, the modified compressibility factor (z*) is used 

instead of z (King 1993). z* is defined as 

( )
( ) scscL

scL
wi

zTpp

zpTV
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z
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+
+−

=

ϕ
1

*     ..................................................................... (6.4) 

Then the gas material balance equation becomes 
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The OGIP accounting for free and adsorbed gas can be calculated using the following 

volumetric equation (Mengal 2010) 
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6.3  Analysis Procedure 

Due to the large number of variables involved in the triple-porosity model, non-

linear regression will be utilized to estimate a set of unknown parameters by matching 

the well’s production rate. Other parameters may be assumed or estimated through other 

methods. Including many variables in the regression may lead to non-uniqueness of the 

converged solution. 

The parameters to be found by regression are fractures intrinsic permeabilities, 

drainage area half-width (hydraulic fracture half-length) and natural fractures spacing. 

After the match is obtained, the well model is fully defined. Hence, the OGIP can be 

calculated by volumetric method and well future production can be forecasted.  
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6.4  Field Cases 

Two field cases from the Barnett Shale will be used to demonstrate the 

application of the triple-porosity model. Gas rate history for these wells is shown in Fig. 

6.2. The fully transient model (Model 1) with non-linear regression and normalized time 

will be applied. Gas adsorption will be included in the analysis as well. The following 

adsorption data are used for the Barnett Shale (Mengal 2010): 

VL = 96 scf/ton 

pL = 650 psi 

Bulk Density = 2.58 gm/cc 

The wells are matched with the analytical solutions by first assuming no adsorbed gas 

and then including gas adsorption. Comparisons are made for each well. 
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Fig. 6.2 – Log-Log plot of gas rate versus time for two horizontal shale gas wells. 

Well 314 exhibits a linear flow for almost two log cycles while Well 73 exhibit 

generally lower rate with bi-linear flow for early data and changed to linear flow at 

later time. The blue and green lines indicate a half-slope and a quarter-slope, 

respectively. 
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6.4.1  Well 314 

Well 314 is a horizontal well with multi-stage hydraulic fracturing treatment 

producing at a constant bottom-hole pressure. The well production rate exhibits a half-

slope on the log-log plot of rate versus time indicating a linear flow. However, the early 

and late data deviate from this trend. The early deviation may be due to skin effect due 

to the presence of fracturing job water in the hydraulic fractures making it difficult for 

the gas to start flowing to the well (Bello and Wattenbarger 2009; Al-Ahmadi et al. 

2010). The later deviation is due to either start of boundary dominated flow (BDF) or 

reduction of well’s drainage area due to drilling nearby well. In this work, no skin effect 

is considered and the later deviation will be dealt with as BDF. However, if the well is 

affected by skin, it results in a lower permeability value for the hydraulic fractures. 

Table 6.1 summarizes well 314 data in addition to other assumed parameters. 

From the hydraulic fractures treatment, hydraulic fractures spacing is calculated 

assuming each perforation cluster corresponds to a hydraulic fracture. In addition, 

drainage area length, xe, is the same as perforated interval. The matrix porosity and 

permeability used are the most available in the literature for the Barnett Shale. 

Representative values are assumed for fractures intrinsic porosity and width. Finally, the 

fractures intrinsic permeabilities, drainage area half-width and natural fractures spacing 

will be found by regression. 

Regression results are shown in Table 6.2 and Fig. 6.3 with and without 

adsorption. Only LAV results are presented since the LS method did not produce a good 

match and took long computational time. 
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Table 6.1 – Well 314 data 

“Known” Data Assumed Data 

LF (ft) 106 φF 0.2 

nF 28 wF (ft) 0.1 

φm 0.06 φf 0.01 

km (md) 1.5×10
-4

 wf (ft) 0.01 

h (ft) 300   

xe (ft) 2968   

µgi (cp) 0.0201 Unknown Data 

Bgi (rcf/scf) 0.00509  

cti (psi
-1

) 300×10
-6

 kF,in (md)  

pi (psi) 2950 kf,in (md)  

pwf (psi) 500 ye (ft)  

m(pi) (psi
2
/cp) 5.97×10

8
 Lf (ft)  

m(pwf) (psi
2
/cp) 2.03×10

7
   

T (°R) 610   

Swi 0.3   

 

 

Table 6.2 – Regression results for Well 314 

 First Guess 
LAV Results 

(No Adsorption) 

LAV Results  

(with Adsorption) 

inFk ,  100 10.9 9.8 

infk ,  1 0.26 0.29 

fL  10 24 22.8 

ey  300 205 178 

Iterations – 18 57 

OGIP, Bscf – 3.01 4.64 

 

From the regression results above, the hydraulic fractures intrinsic permeability 

is more than one order of magnitude compared to that of the natural fractures. In 

addition, the natural fractures permeability is about three orders of magnitude compared 
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to the matrix permeability. Furthermore, the natural fracture spacing is about 23 ft 

indicating that matrix is actually enhanced by natural fractures. 

Including adsorption did not change the estimate of fractures intrinsic 

permeabilities or the natural fractures spacing but it had a big impact on drainage area 

half-width and consequently OGIP. Thus, including adsorption reduces the reservoir size 

while increasing its gas content by more than 50% noting that the same matrix porosity 

was used in both cases. 

 

10

100

1,000

10,000

1 10 100 1,000 10,000

G
a

s
 R

a
te

, 
M

s
c

f/
D

Time, Days

Field Data

Data Used for Regression

Regression Fit

10

100

1,000

10,000

1 10 100 1,000 10,000

G
a

s
 R

a
te

, 
M

s
c

f/
D

Time, Days

Field Data

Data Used for Regression

Regression Fit

 
Fig. 6.3 – Regression results for Well 314. The left plot does not include gas 

adsorption while the right plot does. In both cases, the well’s data was match using 

500 days of production history. 

 

The calculated OGIP is 3.01 Bscf if adsorbed gas is ignored. Al-Ahmadi et al. 

(2010) estimated 2.74 Bscf for OGIP for this well using linear dual-porosity model. The 

two estimates are within 10% relative error. 

Knowing all the triple-porosity parameters, the whole well production history is 

forecasted as shown in Fig. 6.4 based on the regression results for the first 500 days. As 

Without Gas Adsorption With Gas Adsorption 
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can be seen, the model very well reproduced the well production trend with and without 

adsorption as shown on the log-log and decline curve plots. 
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Fig. 6.4 – Matching Well 314 production history using the regression results with 

(bottom) and without (top) adsorption. On the left is the decline curve plot and log-

log plot is on the right for gas rate vs. time. 

 

6.4.2  Well 73 

Well 73 is another horizontal well with multi-stage fractures treatment. Unlike 

Well 314, this well exhibits a bilinear for the first ten days followed by linear flow. No 

boundary dominated flow is observed. The well data is shown in Table 6.3. 

With Gas Adsorption With Gas Adsorption 

Without Gas Adsorption Without Gas Adsorption 
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All rate data were used for regression since no good match was obtained using 

fewer data points. The regression results are shown in Table 6.4 and Fig. 6.5. As the 

case with Well 314, LAV regression method was used. As can be seen in Fig. 6.5, the 

regression match described the well trend perfectly with and without gas adsorption. 

 

 

Table 6.3 – Well 73 data 

“Known” Data Assumed Data 

LF (ft) 79 φF 0.2 

nF 18 wF (ft) 0.1 

φm 0.06 φf 0.01 

km (md) 1.5×10
-4

 wf (ft) 0.01 

h (ft) 300   

xe (ft) 1420   

µgi (cp) 0.0201 Unknown Data 

Bgi (rcf/scf) 0.00509  

cti (psi
-1

) 300×10
-6

 kF,in (md)  

pi (psi) 2950 kf,in (md)  

pwf (psi) 500 ye (ft)  

m(pi) (psi
2
/cp) 5.97×10

8
 Lf (ft)  

m(pwf) (psi
2
/cp) 2.03×10

7
   

T (°R) 610   

Swi 0.3   

 

 

Table 6.4 – Regression results for Well 73 

 First Guess 
LAV Results 

(No Adsorption) 

LAV Results  

(with Adsorption) 

inFk ,  10 3.7 3.3 

infk ,  0.5 0.1 0.11 

fL  15 23 22 

ey  250 185 163 

Iterations – 13 13 

OGIP, Bscf – 1.32 2.05 



 58

As shown in Table 6.4, the regression results are almost the same with and 

without adsorption except for ye. The OGIP increased significantly when adsorption is 

included. 
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Fig. 6.5 – Regression match for Well 73 where it described the well trend perfectly 

with (bottom) and without (top) gas adsorption. No good match was obtained unless 

the whole data is used in the regression. On the left is the decline curve plot and 

log-log plot is on the right for gas rate vs. time. 

 

6.5  Effect of Outer Reservoir 

In shale gas wells analysis, it is common that the stimulated reservoir volume 

(SRV) is only considered. It is believed that the outer reservoir, the area beyond the 

hydraulic fractures tip, does not contribute much to the well production (Mayerhofer et 

Without Gas Adsorption 
Without Gas Adsorption 

With Gas Adsorption 
With Gas Adsorption 
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al. 2006). Ozkan et al. (2009) also concluded that outer reservoir contribution is 

technically outside the practical life-span of the well. 

However, Anderson et al. (2010) demonstrated that outer reservoir contribution 

might be significant depending on how large is the matrix permeability which 

determines when outer reservoir effect starts. Thus, the well may exhibit a short 

boundary dominated flow followed by an infinite acting flow. 

Therefore, a simulation run was made for a gas well with typical Barnett Shale 

data using the triple-porosity simulation model. 400’ of outer reservoir has been added 

that has matrix permeably similar to that in the SRV. The outer reservoir added to the 

simulation model is shown schematically in Fig. 6.6.  

 

Outer Reservoir

Outer Reservoir

 
Fig. 6.6 – A sketch of the outer reservoir considered in the simulation model. 

 

The simulation results are shown in Fig. 6.7. From the rate comparison, the outer 

reservoir contribution is becoming significant after four years of production. If the 

reservoir matrix permeability if very small, this effect will be delayed. However, if there 
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are natural fractures present in this section enhancing its permeability, the effect will be 

more pronounced and will be significant earlier in well life. 

Although triple-porosity model is used to analyze the SRV performance, it does 

not account for the outer reservoir contribution. Nonetheless, this behavior has not been 

observed in any field case yet. 
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Fig. 6.7 – Comparison of a gas well rate showing the effect of outer reservoir. The 

outer reservoir effect is significant after four years of production for this set of 

data. Only free gas is considered for this case. 
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6.6  Chapter Summary 

Triple-porosity Model 1 was applied to shale gas wells. Gas adsorption was 

incorporated in the model. The model successfully matched well production rate using 

the non-linear regression with and without gas adsorption. When adsorbed gas is 

included, it resulted in a smaller reservoir size but the OGIP is increased noticeably. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1  Conclusions 

The major conclusions from this work can be summarized as follows: 

1. New triple-porosity (dual-fracture) solutions have been developed for 

fractured linear reservoirs. 

2. Six flow regions can be identified for fully transient triple-porosity model 

(Model 1) 

3. The new model has been verified by reducing it to simpler models such as 

dual and single (homogeneous) porosity models and by comparing it to 

reservoir simulation. 

4. The newly derived fracture functions are applicable to radial flow. 

5. The derived solutions are also applicable to gas flow using gas potential and 

normalized time. 

6. Least absolute value regression method proves to be robust in matching 

noisy data and can be used effectively with triple-porosity model to match 

field data. 

7. Triple-porosity fully transient model (Model 1) is applicable to fractured 

shale gas horizontal wells when gas adsorption is incorporated. The model 

can be used to match field data, characterize well drainage area, determine 

reservoir size and OGIP and forecast future production. 
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7.2  Recommendations 

The followings can be recommended to add to the usefulness of this work: 

1. The triple-porosity model was derived for sequential flow. Thus, other flow 

combinations such as simultaneous flow may worth investigation. 

2. Including skin factor in the regression variables. 

3. Development of analysis equation for each flow region and use that for 

analyzing well performance. More properties will be estimated from each 

region than using regression to match the whole well history. 

4. Using derivative analysis to identify each flow region accurately. 

5. Using superposition with respect to time to model variable rate and variable 

bottom-hole pressure cases. 
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NOMENCLATURE 

 

Acw cross-sectional area to flow defined as 2hxe, ft
2
 

Acm  total matrix surface area draining into fracture system, ft
2
 

Bgi  formation volume factor at initial reservoir pressure, rcf/scf 

ct  total compressibility, psi
-1

 

E objective function 

g
r

 objective function gradient 

h  reservoir thickness, ft 

H Hessian matrix 

kF macro-fractures bulk permeability, md 

kf  micro-fracture bulk permeability, md 

kF,in macro-fracture intrinsic permeability, md 

kf,in micro-fracture intrinsic permeability, md 

km  matrix permeability, md 

LF  macro-fractures spacing, ft 

Lf  micro-fractures spacing, ft 

m(p)  pseudopressure (gas), psi
2
/cp 

pD  dimensionless pressure (transient triple porosity model)  

pi  initial reservoir pressure, psi 

pwf  wellbore flowing pressure, psi 

qD  dimensionless rate (transient triple porosity model) 
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qDL  dimensionless rate based on Acw
0.5 

and kF (rectangular geometry, triple 

porosity) 

qg gas rate, Mscf/day 

rw wellbore radius, ft 

Sgi initial gas saturation, fraction 

Swi initial water saturation, fraction 

T  absolute temperature, 
o
R 

t  time, days 

tDAcw  dimensionless time based on Acw and kF  (rectangular geometry, triple-

porosity) 

tesr time to end of straight line on the square root of time plot, days 

Vb  total system bulk volume, ft
3 

V bulk volume fraction, dimensionless 

xe  drainage area length (rectangular geometry), ft 

yDe  dimensionless reservoir half-width (rectangular geometry) 

ye drainage area half-width (rectangular geometry), equivalent to fracture 

half-length, ft 

 

Greek symbols 

α Warren & Root shape factor 

α
r

 vector of unknown regression parameters  

λ dimensionless interporosity parameter 
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µ viscosity, cp 

ω dimensionless storativity ratio 

φ porosity 

 

Subscripts 

i  initial 

F macro-fracture (hydraulic fracture) 

f  micro-fracture (natural fracture) 

m  matrix 

t =F+f+m  total system (macro-fracture +micro-fracture + matrix) 

 

Superscripts 

x  Laplace transform of variable x 

x
k
 k

th
 iteration of variable x 

T
x
r

 transpose of vector x
r
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APPENDIX A 

LINEAR FLOW SOLUTIONS FOR FRACTURED LINEAR RESERVOIRS 

 

Laplace transformation with respect to dimensionless time, tDAc, is used to derive 

the rate solutions in fractured reservoirs. This transformation enables us to reduce the 

second-order partial differential flow equation to a second-order ordinary differential 

equation in Laplace domain. The solution is then easy to obtain in Laplace domain 

which can be inverted to time domain using Stehfest algorithm (Stehfest 1970). 

Upon transformation, the differential equation in Laplace domain that describes 

the main flow in linear reservoir system shown in Fig. A-1 is given by 

( ) 0
2

2

=−
∂

∂
DLF

D

DLF psfs
y

p
    .............................................................................. (A-1) 

This form of equation makes it easy to solve for different fractured reservoirs 

with varying degree of complexity by having different fracture function, ( )sf . For the 

simplest case, i.e., homogeneous reservoir, ( ) 1=sf . s in Eq. A-1 is the Laplace 

transform parameter. 

Linear flow solutions for fractured linear reservoirs assuming dual-porosity 

system was first developed by El-Banbi (1998).  
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h

xe

ye  
Fig. A-1 – A sketch of a horizontal well in a rectangular reservoir. Linear flow is 

the main flow regime. 

 

 

A-1  Constant Rate Solution 

For a closed linear reservoir, Eq. A-1 is subject to the following initial and 

boundary conditions: 

Initial condition:       ( ) 00, =DDLF yp  

Inner boundary:         
sy

p

DyD

DLF π2

0

−
=

∂

∂

=

                           (Constant Rate) 

Outer boundary:       
cw

e

A

y
DeD

D

DLF yy
y

p
===

∂

∂
@0      (No Flow Boundary) 

 

The general solution for Eq. A-1 is given by 

( )( ) ( )( )DDDLF ysfsBysfsAp sinhcosh +=     .......................................... (A-2) 

 

 

 

 



 73

The constants A and B are determined as: 

1. At 0=Dy : 

( ) ( )( ) ( ) ( )( )DD

D

DLF ysfssfsBysfssfsA
y

p
coshsinh +=

∂

∂
    ............. (A-3) 

( )sfsB
s

=−
π2

    ........................................................................................ (A-4) 

Thus, 

( )sfss
B

π2
−=     .......................................................................................... (A-5) 

2. At DeD yy = : 

( ) ( )( ) ( )( )DD

D

DLF ysfs
s

ysfssfsA
y

p
cosh

2
sinh

π
−=

∂

∂
    ....................... (A-6) 

( ) ( )( ) ( )( ) 0cosh
2

sinh =− DeDeF ysfs
s

ysfssfsA
π

    ............................ (A-7) 

Thus, 

( )
( )( )
( )( )De

De

ysfs

ysfs

sfss
A

sinh

cosh2π
=     .................................................................. (A-8) 

Therefore, Eq. A-2 now becomes 

( )
( )( )
( )( ) ( )( )

( )
( )( )DDF

De

De

DLF ysfs
sfss

ysfs
ysfs

ysfs

sfss
p sinh

2
cosh

sinh

cosh2 ππ
−=    

 ......................................................................................................................... (A-9) 

Applying Eq. A-9 at the well ( yD = 0), the constant rate solution becomes 

( )
( )( )
( )( )De

De

wDL
ysfs

ysfs

sfss
p

sinh

cosh2π
=     ........................................................... (A-10) 
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Upon Algebraic manipulations of Eq. A-10 (El-Banbi 1998; Bello 2009) 

( )
( )( )
( )( )









−−

−+
=

De

De

wDL
ysfs

ysfs

sfss
p

2exp1

2exp12π
    ................................................. (A-11) 

A-2  Constant Pressure Solution 

In Laplace domain, the constant rate and constant pressure solutions at the 

wellbore are related by Eq. A-12 (Van Everdingen and Hurst 1949) 

2

1

s
qp DLwDL =×     .......................................................................................... (A-12) 

Therefore, the solution for constant pressure case (El-Banbi 1998) is 

( )
( )( )
( )( )









−−

−+
=

De

De

DL ysfs

ysfs

sfs

s

q 2exp1

2exp121 π
    .................................................... (A-13) 

In subsequent appendixes, different fracture functions, ( )sf , are derived. The above 

solutions are then used to get the final solution. 

A-3  Accounting for Wellbore Storage and Skin 

Once the fracture function, ( )sf , is derived for the case without skin and 

wellbore storage effects, El-Banbi’s solutions that account for these effects can be used. 

These solutions are already programmed in the Stehfest VBA program. Refer to El-

Banbi Dissertation (El-Banbi 1998) for complete list of solutions. 
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APPENDIX B 

DERIVATION OF LINEAR TRIPLE-POROSITY ANALYTICAL SOLUTION 

FOR FULLY TRANSIENT FLUID TRANSFER – MODEL 1 

 

A simple sketch of the triple-porosity (dual-fracture) system is shown in Fig. B-

1. The assumption is that the flow is sequential. That is, it is from matrix to micro-

fractures to the macro-fractures and then to the well.  

 

2

fL

ex

ey

Micro-

fractures

Macro-fractures

Horizontal 

Well

2

FL

 
Fig. B-1 – A sketch of triple-porosity system under sequential feed assumption. 

Arrows show flow directions. 
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B-1  Matrix Equation 

Since the flow transfer from matrix to fractures is under transient condition, the 

matrix equation is given by: 

( )
t

p
Vc

z

pk m

mt
mm

∂

∂
=

∂

∂
ϕ

µ 2

2

    ............................................................................... (B-1) 

Or 

[ ]
t

p

k

cV

z

p m

m

mtm

∂

∂
=

∂

∂ µϕ
2

2

    ................................................................................. (B-2) 

Note: z here is a direction parallel to y-axis. It is not the vertical direction. 

B-2  Micro-fracture Equation 

( )
t

p
Vcq

x

pk f

ftmsource

ff

∂

∂
=+

∂

∂
ϕ

µ
,2

2

    ................................................................ (B-3) 

msourceq ,  is a source term of flow from matrix to the micro-fracture under transient flow 

and can be written as 

2
2

,

1

fL
f

z

mm

Lmsource
z

pk
q

=∂

∂
−=

µ
 ............................................................................ (B-4) 

Thus, the final form of micro-fractures equation is 

( )
2

2

2

2
1

fL
f

z

mm

L

f

ft

ff

z

pk

t

p
Vc

x

pk

=∂

∂
+

∂

∂
=

∂

∂

µ
ϕ

µ
    .................................................. (B-5) 

[ ]

2
2

2

2
1

fL
f

z

m

f

m

L

f

f

ftf

z

p

k

k

t

p

k

cV

x

p

=∂

∂
+

∂

∂
=

∂

∂ µϕ
    .................................................... (B-6) 
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B-3  Macro-fracture Equation 

The macro-fractures receives flow from the micro-fractures and the flow can be 

modeled using the equation 

( )
t

p
Vcq

y

pk F

Ftfsource
FF

∂

∂
=+

∂

∂
ϕ

µ
,2

2

    ................................................................ (B-7) 

fsourceq ,  is the source term of flow from micro-fractures to the macro-fracture under 

transient flow and can be written as 

2
2

,

1

FL
F

x

ff

Lfsource
x

pk
q

=
∂

∂
−=

µ
 ............................................................................. (B-8) 

Thus, the final form of micro-fractures equation is 

( )
2

2
2

2 1

FL
F

x

ff

L

F

Ft
FF

x

pk

t

p
Vc

y

pk

=
∂

∂
+

∂

∂
=

∂

∂

µ
ϕ

µ
    .................................................. (B-9) 

[ ]

2
2

2

2
1

FL
F

x

f

F

f

L

F

F

FtF

x

p

k

k

t

p

k

cV

y

p

=
∂

∂
+

∂

∂
=

∂

∂ µϕ
    .................................................. (B-10) 

B-4  System of Equations with Initial and Boundary Conditions 

Matrix:                      
[ ]

t

p

k

cV

z

p m

m

mtm

∂

∂
=

∂

∂ µϕ
2

2

    ........................................................... (B-2) 

Micro-fractures:        
[ ]

2
2

2

2
1

fL
f

z

m

f

m

L

f

f

ftf

z

p

k

k

t

p

k

cV

x

p

=∂

∂
+

∂

∂
=

∂

∂ µϕ
    ............................. (B-6) 

Macro-fractures:       
[ ]

2
2

2

2
1

FL
F

x

f

F

f

L

F

F

FtF

x

p

k

k

t

p

k

cV

y

p

=
∂

∂
+

∂

∂
=

∂

∂ µϕ
    ............................ (B-10) 
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Initial and boundary conditions are: 

Matrix: 

Initial condition:       ( ) im pzp =0,     

Inner boundary:       0@0 ==
∂

∂
z

z

pm  

Outer boundary:       
2

@
f

fm

L
zpp ==  

Micro-fractures: 

Initial condition:       ( )
if pxp =0,     

Inner boundary:       0@0 ==
∂

∂
x

x

p f
 

Outer boundary:       
2

@ F
Ff

L
xpp ==  

Macro-fractures: 

Initial condition:       ( ) iF pyp =0,     

Inner boundary:         
0=

∂

∂
−=

y

FcwF

y

pAk
q

µ
 

Outer boundary:       e
F yy
y

p
==

∂

∂
@0  

 

B-5  System Dimensionless Equations with Initial and Boundary Conditions 

Matrix:                      
DAc

DLm

fmAc

m

D

DLm

t

p

z

p

∂

∂
=

∂

∂

,

2

2 3

λ

ω
    ......................................................... (B-11) 

Micro-fractures:        

1,

,

,

2

2 3

=
∂

∂
+

∂

∂
=

∂

∂

DzD

DLm

FfAc

fmAc

DAc

DLf

FfAc

f

D

DLf

z

p

t

p

x

p

λ

λ

λ

ω
 ................................ (B-12) 

Macro-fractures:       

1

,

2

2

3
=

∂

∂
+

∂

∂
=

∂

∂

DxD

DLfFfAc

DAc

DLF
F

D

DLF

x

p

t

p

y

p λ
ω     ................................ (B-13) 
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Dimensionless initial and boundary conditions are: 

Matrix: 

Initial condition:       ( ) 00, =DDLm zp  

Inner boundary:       0@0 ==
∂

∂
D

D

DLm z
z

p
 

Outer boundary:       1@ == DDLfDLm zpp  

Micro-fractures: 

Initial condition:       ( ) 00, =DDLf xp  

Inner boundary:       0@0 ==
∂

∂
D

D

DLf
x

x

p
 

Outer boundary:       1@ == DDLFDLf xpp  

Macro-fractures: 

Initial condition:       ( ) 00, =DDLF yp  

Inner boundary:         π2

0

−=
∂

∂

=DyD

DLF

y

p
 

Outer boundary:       
cw

e

A

y

DeD

D

DLF yy
y

p
===

∂

∂
@0  

 

B-6  Laplace Transformation 

In order to solve the above system of differential equations, they have to be transformed 

into Laplace domain for easier solving as detailed below. 

Matrix equation: 













∂

∂
=









∂

∂

DAc

DLm

fmAc

m

D

DLm

t

p

z

p

,

2

2 3

λ

ω
LL    .................................................................. (B-14) 

( )[ ]0,
3

,

2

2

DDLmDLm

fmAc

m

D

DLm zpps
z

p
−=

∂

∂

λ

ω
   ......................................................... (B-15) 



 80

The initial and boundary conditions in Laplace domain are: 

Initial condition:       ( ) 00, =DDLm zp  

Inner boundary:       0@0 ==
∂

∂
D

D

DLm z
z

p
 

Outer boundary:       1@ == DDLfDLm zpp  

Using the initial condition, Eq. B-15 becomes 

[ ]0
3

,

2

2

−=
∂

∂
DLm

fmAc

m

D

DLm ps
z

p

λ

ω
   ........................................................................ (B-16) 

0
3

,

2

2

=−
∂

∂
DLm

fmAc

m

D

DLm ps
z

p

λ

ω
   .......................................................................... (B-17) 

The general solution for Eq. B-17 is given by 














+













= D

fmAc

m
D

fmAc

m
DLm z

s
Bz

s
Ap

,,

3
sinh

3
cosh

λ

ω

λ

ω
   ...................................... (B-18) 

The constants A and B are determined as: 

1. 0=Dz : 

B = 0    ........................................................................................................... (B-19) 

2. 1=Dz : 














=

fmAc

m

DLf

s

p
A

,

3
cosh

λ

ω
    ................................................................................... (B-20) 
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Therefore, the final solution for Eq. B-17 is 




























= D

fmAc

m

fmAc

m

DLf

DLm z
s

s

p
p

,

,

3
cosh

3
cosh

λ

ω

λ

ω
    ................................................. (B-21) 

 

Micro-fractures equation: 













∂

∂
+

∂

∂
=













∂

∂

=1,

,

,

2

2 3

DzD

DLm

FfAc

fmAc

DAc

DLf

FfAc

f

D

DLf

z

p

t

p

x

p

λ

λ

λ

ω
LL  ........................................ (B-22) 

( )[ ]
1,

,

,

2

2

0,
3

=
∂

∂
+−=

∂

∂

DzD

DLm

FfAc

fmAc

DDLfDLf

FfAc

f

D

DLf

z

p
xpps

x

p

λ

λ

λ

ω
 ............................... (B-23) 

The initial and boundary conditions in Laplace domain are: 

Initial condition:       ( ) 00, =DDLf xp  

Inner boundary:       0@0 ==
∂

∂
D

D

DLf
x

x

p
 

Outer boundary:       1@ == DDLFDLf xpp  

Using the initial condition, Eq. B-23 becomes 

1,

,

,

2

2 3

=
∂

∂
+=

∂

∂

DzD

DLm

FfAc

fmAc

DLf

FfAc

f

D

DLf

z

p
ps

x

p

λ

λ

λ

ω
 ..................................................... (B-24) 

Now, differentiating Eq. B-21, we have 














=

∂

∂

= fmAc

m

fmAc

m
DLf

zD

DLm ss
p

z

p

D
,,1

3
tanh

3

λ

ω

λ

ω
    ................................................... (B-25) 
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Substituting Eq. B-25 in B-24 




























+=

∂

∂

fmAc

m

fmAc

m

FfAc

fmAc

FfAc

f

DLf

D

DLf ss

s
ps

x

p

,,,

,

,

2

2
3

tanh
33

λ

ω

λ

ω

λ

λ

λ

ω
 ........................... (B-26) 

Or in short form 

( ) 0
2

2

=−
∂

∂
DLff

D

DLf
psfs

x

p
    ............................................................................ (B-27) 

where ( )sf f  is  

( )













+=

fmAc

m

fmAc

m

FfAc

fmAc

FfAc

f

f

ss

s
sf

,,,

,

,

3
tanh

33

λ

ω

λ

ω

λ

λ

λ

ω
   .......................................... (B-28) 

The general solution for Eq. B-28 is given by 

( )( ) ( )( )DfDfDLf xsfsBxsfsAp sinhcosh +=     ....................................... (B-29) 

The constants A and B are determined as: 

1. 0=Dx : 

B = 0    ........................................................................................................... (B-30) 

2. 1=Dx : 

( )( )sfs

p
A

f

DLF

cosh
=     .................................................................................... (B-31) 

Therefore, the final solution for Eq. B-28 is 

( )( ) ( )( )
Df

f

DLF
DLf xsfs

sfs

p
p cosh

cosh
=     ................................................... (B-32) 
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Macro-fractures equation: 













∂

∂
+

∂

∂
=









∂

∂

=1

,

2

2

3
DxD

DLfFfAc

DAc

DLF
F

D

DLF

x

p

t

p

y

p λ
ωLL  ............................................ (B-33) 

( )[ ]
1

,

2

2

3
0,

=
∂

∂
+−=

∂

∂

Dx
D

DLfFfAc

DDLFDLFF

D

DLF

x

p
ypps

y

p λ
ω  ................................... (B-34) 

The initial and boundary conditions in Laplace domain are: 

Initial condition:       ( ) 00, =DDLF yp  

Inner boundary:         
sy

p

DyD

DLF π2

0

−=
∂

∂

=

 

Outer boundary:       
cw

e

A

y

DeD

D

DLF yy
y

p
===

∂

∂
@0  

Using the initial condition, Eq. B-34 becomes 

1

,

2

2

3
=

∂

∂
+=

∂

∂

Dx
D

DLfFfAc

DLFF

D

DLF

x

p
ps

y

p λ
ω  ......................................................... (B-35) 

Now differentiating Eq. B-32, 

( ) ( )( )sfssfsp
x

p
ffDLF

x
D

DLf

D

tanh

1

=
∂

∂

=

    ................................................. (B-36) 
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Now Eq.B-35 becomes 

( ) ( )( ) 0tanh
3

,

2

2

=







+−

∂

∂
sfssfs

s
ps

y

p
ff

FfAc

FDLF

D

DLF
λ

ω  ........................... (B-37) 

Or in short form 

( ) 0
2

2

=−
∂

∂
DLF

D

DLF psfs
y

p
 .............................................................................. (B-38) 

where ( )sf  is definition for the fracture function for Model 1 

( ) ( ) ( )( )

( )













+=

+=

fmAc

m

fmAc

m

FfAc

fmAc

FfAc

f

f

ff

FfAc

F

ss

s
sf

sfssfs
s

sf

,,,

,

,

,

3
tanh

33

tanh
3

λ

ω

λ

ω

λ

λ

λ

ω

λ
ω

   .......................................... (B-37) 

Using this fracture function in Eqs. A-11 or 13 will give the triple-porosity fully 

transient response for constant rate or constant pressure cases, respectively. 
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APPENDIX C 

DERIVATION OF LINEAR TRIPLE-POROSITY ANALYTICAL SOLUTION 

FOR MODEL 2 

 

This solution is similar to the previous one with one exception. The matrix – 

micro-fractures transfer is under pseudo-steady state condition. The same initial and 

boundary conditions presented in Appendix B are applicable to this model. 

C-1  System of Differential Equations 

Matrix:                      ( ) [ ]
t

p

k

cV
pp

L

m

m

mt

fm

f ∂

∂
−=−

µϕ
2

12
    ............................................. (C-1) 

Micro-fractures:        
[ ] [ ]

t

p

k

cV

t

p

k

cV

x

p
m

f

mtf

f

ftf

∂

∂
+

∂

∂
=

∂

∂ µϕµϕ
2

2

    .................................. (C-2) 

Macro-fractures:       
[ ]

2
2

2

2 1

FL
F

x

f

F

f

L

F

F

FtF

x

p

k

k

t

p

k

cV

y

p

=
∂

∂
+

∂

∂
=

∂

∂ µϕ
    ............................... (C-3) 

C-2  System of Equations in Dimensionless Form 

Matrix:                      ( )
DLmDLf

m

fmAc

DAc

DLm pp
t

p
−=

∂

∂

ω

λ ,
 ..................................................... (C-4) 

Micro-fractures:        
DAc

DLm

FfAc

m

DAc

DLf

FfAc

f

D

DLf

t

p

t

p

x

p

∂

∂
+

∂

∂
=

∂

∂

,,

2

2
33

λ

ω

λ

ω
 ........................................ (C-5) 

Macro-fractures:       

1

,

2

2

3
=

∂

∂
+

∂

∂
=

∂

∂

DxD

DLfFfAc

DAc

DLF
F

D

DLF

x

p

t

p

y

p λ
ω     .................................. (C-6) 
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C-3  Laplace Transformation 

Matrix equation: 

( )








−=








∂

∂
DLmDLf

m

fmAc

DAc

DLm pp
t

p

ω

λ ,
LL    ........................................................... (C-7) 

( ) ( )
DLmDLf

m

fmAc

DDLmDLm ppzpps −=−
ω

λ ,
0,    .................................................... (C-8) 

Using the initial condition, Eq. C-8 becomes 

( )DLmDLf

m

fmAc

DLm ppps −=
ω

λ ,
    ........................................................................ (C-9) 

Thus, 

[ ] DLf

fmAcm

fmAc

DLm p
s

p
,

,

λω

λ

+
=     ......................................................................... (C-10) 

 

Micro-fractures equation: 













∂

∂
+

∂

∂
=













∂

∂

DAc

DLm

FfAc

m

DAc

DLf

FfAc

f

D

DLf

t

p

t

p

x

p

,,

2

2
33

λ

ω

λ

ω
LL  .............................................. (C-11) 

( )[ ] ( )[ ]0,
3

0,
3

,,

2

2

DDLmDLm

FfAc

m
DDLfDLf

FfAc

f

D

DLf
zppsxpps

x

p
−+−=

∂

∂

λ

ω

λ

ω
 ............... (C-12) 

Using the initial condition, Eq. C-12 becomes 

DLm

FfAc

m
DLf

FfAc

f

D

DLf
p

s
p

s

x

p

,,

2

2
33

λ

ω

λ

ω
+=

∂

∂
 ............................................................... (C-13) 
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Now, substituting Eq. C-10 into Eq. C-13, we have 













+
+=

∂

∂

FfAcfmAcFfAcm

fmAcm

FfAc

f

DLf

D

DLf

s
ps

x

p

,,,

,

,

2

2 33

λλλω

λω

λ

ω
 ........................................ (C-14) 

Or in short form 

( ) 0
2

2

=−
∂

∂
DLff

D

DLf
psfs

x

p
    ............................................................................ (C-15) 

Where ( )sf f  is  

( )
FfAcfmAcFfAcm

fmAcm

FfAc

f

f
s

sf
,,,

,

,

33

λλλω

λω

λ

ω

+
+=     ..................................................... (C-16) 

The general solution for Eq. C-15 is given by 

( )( ) ( )( )DfDfDLf xsfsBxsfsAp sinhcosh +=     ....................................... (C-17) 

The constants A and B are determined as: 

1. 0=Dx : 

B = 0    ........................................................................................................... (C-18) 

2. 1=Dx : 

( )( )sfs

p
A

f

DLF

cosh
=     .................................................................................... (C-19) 

Therefore, the final solution for Eq. C-15 is 

( )( ) ( )( )
Df

f

DLF
DLf xsfs

sfs

p
p cosh

cosh
=     ................................................... (C-20) 
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Macro-fractures equation: 













∂

∂
+

∂

∂
=









∂

∂

=1

,

2

2

3
DxD

DLfFfAc

DAc

DLF
F

D

DLF

x

p

t

p

y

p λ
ωLL  ............................................ (C-21) 

( )[ ]
1

,

2

2

3
0,

=
∂

∂
+−=

∂

∂

Dx
D

DLfFfAc

DDLFDLFF

D

DLF

x

p
ypps

y

p λ
ω  ................................... (C-22) 

Using the initial condition, Eq. C-22 becomes 

1

,

2

2

3
=

∂

∂
+=

∂

∂

Dx
D

DLfFfAc

DLFF

D

DLF

x

p
ps

y

p λ
ω  ......................................................... (C-23) 

Now differentiating Eq. C-20, 

( ) ( )( )sfssfsp
x

p
ffDLF

x
D

DLf

D

tanh

1

=
∂

∂

=

    ................................................. (C-24) 

Now Eq. C-23 becomes 

( ) ( )( ) 0tanh
3

,

2

2

=







+−

∂

∂
sfssfs

s
ps

y

p
ff

FfAc

FDLF

D

DLF
λ

ω  ........................... (C-25) 

Or in short form 

( ) 0
2

2

=−
∂

∂
DLF

D

DLF psfs
y

p
 .............................................................................. (C-26) 

where ( )sf  is  

( ) ( ) ( )( )

( )
FfAcfmAcFfAcm

fmAcm

FfAc

f

f

ff

FfAc

F

s
sf

sfssfs
s

sf

,,,

,

,

,

33

tanh
3

λλλω

λω

λ

ω

λ
ω

+
+=

+=

    ................................................ (C-53) 
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APPENDIX D 

DERIVATION OF LINEAR TRIPLE-POROSITY ANALYTICAL SOLUTION 

FOR MODEL 3 

 

In this section, the triple-porosity solution is derived for the system with transient 

interporosity flow between matrix and micro-fractures and pseudo-steady state flow 

between the two fractures systems. 

D-1  System of Differential Equations 

Matrix:                      
[ ]

t

p

k

cV

z

p m

m

mtm

∂

∂
=

∂

∂ µϕ
2

2

    ........................................................... (D-1) 

Micro-fractures:        ( )
[ ]

2
2

2

112

fL
f

z

m

f

m

L

f

f

ft

Ff

F z

p

k

k

t

p

k

cV
pp

L =∂

∂
+

∂

∂
=−−

µϕ
    ................ (D-2) 

Macro-fractures:       
[ ] [ ]

2
2

2

2
1

fL
f

z

m

F

m

L

f

F

ftF

F

FtF

z

p

k

k

t

p

k

cV

t

p

k

cV

y

p

=∂

∂
+

∂

∂
+

∂

∂
=

∂

∂ µϕµϕ
    .... (D-3) 

D-2  System of Differential Equations in Dimensionless Form 

Matrix:                      
DAc

DLm

fmAc

m

D

DLm

t

p

z

p

∂

∂
=

∂

∂

,

2

2 3

λ

ω
    ........................................................... (D-4) 

Micro-fractures:        ( )
1,

,

, 3

1

=
∂

∂
+

∂

∂
=−

DzD

DLm

FfAc

fmAc

DAc

DLf

FfAc

f

DLfDLF
z

p

t

p
pp

λ

λ

λ

ω
 ...................... (D-5) 

Macro-fractures:       

1

,

2

2

3
=

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂

DzD

DLmfmAc

DAc

DLf

f

DAc

DLF
F

D

DLF

z

p

t

p

t

p

y

p λ
ωω     ................. (D-6) 
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D-3  Laplace Transformation 

Matrix equation: 













∂

∂
=









∂

∂

DAc

DLm

fmAc

m

D

DLm

t

p

z

p

,

2

2 3

λ

ω
LL    .................................................................... (D-7) 

( )[ ]0,
3

,

2

2

DDLmDLm

fmAc

m

D

DLm zpps
z

p
−=

∂

∂

λ

ω
   ........................................................... (D-8) 

Using the initial condition, Eq. D-8 becomes 

0
3

,

2

2

=−
∂

∂
DLm

fmAc

m

D

DLm ps
z

p

λ

ω
   ............................................................................ (D-9) 

The general solution for Eq. D-9 is given by 














+













= D

fmAc

m
D

fmAc

m
DLm z

s
Bz

s
Ap

,,

3
sinh

3
cosh

λ

ω

λ

ω
   ...................................... (D-10) 

The constants A and B are determined as: 

1. 0=Dz : 

B = 0    ........................................................................................................... (D-11) 

2. 1=Dz : 














=

fmAc

m

DLf

s

p
A

,

3
cosh

λ

ω
    ................................................................................... (D-12) 

Therefore, the final solution for Eq. D-9 is 




























= D

fmAc

m

fmAc

m

DLf

DLm z
s

s

p
p

,

,

3
cosh

3
cosh

λ

ω

λ

ω
    ............................................................. (D-13) 
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Micro-fractures equation: 

{ }












∂

∂
+

∂

∂
=−

=1,

,

, 3

1

DzD

DLm

FfAc

fmAc

DAc

DLf

FfAc

f

DLfDLF
z

p

t

p
pp

λ

λ

λ

ω
LL  ................................ (D-14) 

( )[ ]
1,

,

, 3

1
0,

=
∂

∂
+−=−

DzD

DLm

FfAc

fmAc

DDLfDLf

FfAc

f

DLfDLF
z

p
xppspp

λ

λ

λ

ω
 ..................... (D-15) 

Using the initial condition, Eq. D-15 becomes 

1,

,

, 3

1

=
∂

∂
+=−

DzD

DLm

FfAc

fmAc

DLf

FfAc

f

DLfDLF
z

p
pspp

λ

λ

λ

ω
 ........................................... (D-16) 

Now, differentiating Eq. D-13, we have 














=

∂

∂

= fmAc

m

fmAc

m
DLf

zD

DLm ss
p

z

p

D
,,1

3
tanh

3

λ

ω

λ

ω
    ................................................... (D-17) 

Substituting Eq. D-17 in D-16 














+=−

fmAc

m

fmAc

m
DLf

FfAc

fmAc

DLf

FfAc

f

DLfDLF

ss
ppspp

,,,

,

,

3
tanh

3

3

1

λ

ω

λ

ω

λ

λ

λ

ω
 ................ (D-18) 


































++

=

fmAc

m

fmAc

m
fmAcfFfAc

FfAc

DLFDLf

ss
s

pp

,,

,,

,

3
tanh

3
33

3

λ

ω

λ

ω
λωλ

λ
 ....................... (D-19) 
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Macro-fractures equation: 













∂

∂
+

∂

∂
+

∂

∂
=









∂

∂

=1

,

2

2

3
DzD

DLmfmAc

DAc

DLf

f

DAc

DLF
F

D

DLF

z

p

t

p

t

p

y

p λ
ωωLL  .......................... (D-20) 

( )[ ] ( )[ ]
1

,

2

2

3
0,0,

=
∂

∂
+−+−=

∂

∂

DzD

DLmfmAc

DDLfDLffDDLFDLFF

D

DLF

z

p
xppsypps

y

p λ
ωω  ...... 

 ....................................................................................................................... (D-21) 

Using the initial condition, Eq. D-21 becomes 

1

,

2

2

3
=

∂

∂
++=

∂

∂

DzD

DLmfmAc

DLffDLFF

D

DLF

z

p
psps

y

p λ
ωω  ........................................ (D-22) 

After substituting Eq. D-17 and D-19 in D-22 and after algebraic manipulation, we have 


































++














+

+=
∂

∂

fmAc

m

fmAc

m
fmAcfFfAc

fmAc

m

fmAc

mfmAcFfAc

FfAcf

FDLF

D

DLF

ss
s

ss

s
ps

y

p

,,

,,

,,

,,

,

2

2

3
tanh

3
33

3
tanh

3
3

λ

ω

λ

ω
λωλ

λ

ω

λ

ωλλ
λω

ω  ..... (D-23) 

Or in short form 

( ) 0
2

2

=−
∂

∂
DLF

D

DLF psfs
y

p
 .............................................................................. (D-24) 

where ( )sf  is  

( )














++














+

+=

fmAc

m

fmAc

m
fmAcfFfAc

fmAc

m

fmAc

mfmAcFfAc

FfAcf

F

ss
s

ss

s
sf

,,

,,

,,

,,

,

3
tanh

3
33

3
tanh

3
3

λ

ω

λ

ω
λωλ

λ

ω

λ

ωλλ
λω

ω  ........................ (D-25) 
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APPENDIX E 

DERIVATION OF LINEAR TRIPLE-POROSITY ANALYTICAL SOLUTION 

FOR FULLY PSEUDOSTEADY STATE FLUID TRANSFER– MODEL 4 

 

In this section, the triple-porosity solution is derived for a system with 

pseudosteady state interporosity flow between matrix and micro-fractures the two 

fractures systems. 

E-1  System of Differential Equations 

Matrix:                      ( ) [ ]
t

p

k

cV
pp

L

m

m

mt

fm

f ∂

∂
−=−

µϕ
2

12
    .............................................. (E-1) 

Micro-fractures:        ( ) [ ] [ ]
t

p

k

cV

t

p

k

cV
pp

L

f

f

ftm

f

mt

Ff

f ∂

∂
+

∂

∂
=−−

µϕµϕ
2

12
   ..................... (E-2) 

Macro-fractures:       
[ ] [ ] [ ]

t

p

k

cV

t

p

k

cV

t

p

k

cV

y

p F

F

Ftf

F

ftm

F

mtF

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂ µϕµϕµϕ
2

2

    ......... (E-3) 

E-2  System of Differential Equations in Dimensionless Form 

Matrix:                   ( )
DLmDLf

m

fmAc

DAc

DLm pp
t

p
−=

∂

∂

ω

λ ,
 ........................................................ (E-4) 

Micro-fractures:    ( )
DAc

DLm

f

m
DLfDLF

f

FfAc

DAc

DLf

t

p
pp

t

p

∂

∂
−−=

∂

∂

ω

ω

ω

λ ,
 ...................................... (E-5) 

Macro-fractures:   
DAc

DLF
F

DAc

DLf

f

DAc

DLm
m

D

DLF

t

p

t

p

t

p

y

p

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂
ωωω

2

2

    ............................... (E-6) 
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E-3  Laplace Transformation 

Matrix equation: 

( )








−=








∂

∂
DLmDLf

m

fmAc

DAc

DLm pp
t

p

ω

λ ,
LL    ........................................................... (E-7) 

( ) ( )DLmDLf

m

fmAc

DDLmDLm ppzpps −=−
ω

λ ,
0,    .................................................... (E-8) 

Using the initial condition, Eq. E-8 becomes 

( )DLmDLf

m

fmAc

DLm ppps −=
ω

λ ,
    ........................................................................ (E-9) 

Thus, 

[ ] DLf

fmAcm

fmAc

DLm p
s

p
,

,

λω

λ

+
=     ......................................................................... (E-10) 

Micro-fractures equation: 

( )












∂

∂
−−=









∂

∂

DAc

DLm

f

m
DLfDLF

f

FfAc

DAc

DLf

t

p
pp

t

p

ω

ω

ω

λ ,
LL  ......................................... (E-11) 

( ) ( ) ( )[ ]0,0,
,

DDLmDLm

f

m
DLfDLF

f

FfAc

DDLfDLf zppsppxpps −−−=−
ω

ω

ω

λ
   ......... (E-12) 

Using the initial condition, Eq. E-12 becomes 

( ) DLm

f

m
DLfDLF

f

FfAc

DLf psppps
ω

ω

ω

λ
−−=

,
 ...................................................... (E-13) 
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Substituting Eq. E-10 in E-13 and after algebraic manipulation, we have 

( ) [ ] DLf

fmAcm

fmAc

f

m
DLfDLF

f

FfAc

DLf p
s

sppps
,

,,

λω

λ

ω

ω

ω

λ

+
−−=  ................................. (E-14) 

( )
( )( ) DLF

fmAcmfmAcmfFfAc

fmAcmFfAc

DLf p
sss

s
p 














+++

+
=

,,,

,,

λωλωωλ

λωλ
 ................................. (E-15) 

Macro-fractures equation: 









∂

∂
+

∂

∂
+

∂

∂
=









∂

∂

DAc

DLF
F

DAc

DLf

f

DAc

DLm
m

D

DLF

t

p

t

p

t

p

y

p
ωωωLL

2

2

 .................................... (E-16) 

( )[ ] ( )[ ] ( )[ ]0,0,0,
2

2

DDLFDLFFDDLfDLffDDLmDLmm

D

DLF yppsxppszpps
y

p
−+−+−=

∂

∂
ωωω

 ....................................................................................................................... (E-17) 

Using the initial condition, Eq. E-17 becomes 

[ ] [ ] [ ]DLFFDLffDLmm

D

DLF pspsps
y

p
ωωω ++=

∂

∂
2

2

 ............................................... (E-18) 

Now substituting Eq. E-10 and E-15 in E-18, 

( )[ ]
( )

( )( ) DLFFDLF

fmAcmfmAcmfFfAc

fmAcmFfAcf

DLf

fmAcFf

fmAc

m

D

DLF

psps
sss

s

ps
sy

p

ω
λωλωωλ

λωλω

λωω

λ
ω

+
+++

+
+

+−−
=

∂

∂

,,,

,,

,

,

2

2

1
 ......... (E-19) 

( )
( )( ) 












+++

++
+=

∂

∂

fmAcmfmAcmfFfAc

fmAcmFfAcfFfAcfmAcm

FDLF

D

DLF

sss

s
ps

y

p

,,,

,,,,

2

2

λωλωωλ

λωλωλλω
ω    .............. (E-20) 

( )[ ]
( )( ) 












+++

++
+=

∂

∂

fmAcmfmAcmfFfAc

fmAcmffmAcmFfAc

FDLF

D

DLF

sss

s
ps

y

p

,,,

,,,

2

2

λωλωωλ

λωωλωλ
ω    .............. (E-21) 

 



 96

Or in short form 
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APPENDIX F 

EFFECTS OF TRIPLE-POROSITY PARAMETERS ON MODEL 1 RESPONSE 

 

This appendix presents a series of figures showing the effect of triple-porosity 

parameters on Model 1 response for constant pressure case. These parameters are ωF, ωf, 

λAc,fm, λAc,Ff and yeD. 
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Fig. F-1 – Model 1 constant pressure solution: base case. 
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Fig. F-2 – Effect of ωF on Model 1 constant pressure solution. 
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Fig. F-3 – Effect of ωf on Model 1 constant pressure solution. 
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Fig. F-4 – Effect of λAc,Ff on Model 1 constant pressure solution. 
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Fig. F-5 – Effect of λAc,fm on Model 1 constant pressure solution. 
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Fig. F-6 – Effect of yeD on Model 1 constant pressure solution. 
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APPENDIX G 

SUMMARY OF SOLUTIONS 

 

This appendix provides a summary of the triple-porosity solutions derived in this 

work in addition to definitions of dimensionless variables.  

G-1  Dimensionless Variables Definitions 

 

 

Table G-1 – Dimensionless variables for triple-porosity radial reservoirs 
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Table G-2 – Dimensionless variables for triple-porosity linear reservoirs 

Fluid Constant Rate Constant Pressure 
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G-2  Radial and Linear Flow Solutions at the Well 

 

 

Table G-3 – Radial flow solutions for closed reservoir 
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Table G-4 – Linear flow solutions for closed reservoir 

Constant Rate 
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For complete list of solutions, refer to El-Banbi Dissertation (El-Banbi 1998). 

G-3  Fracture Functions for Triple-porosity System 

 

 

Table G-5 – Fracture functions derived for triple-porosity model 
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