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ABSTRACT 

 

Simulation of Contamination Through the Post-Harvest 

Environment Using Surrogate Organisms. (August 2010) 

Mariana Villarreal Silva, B.S., National Autonomous University of Mexico 

Co-Chairs of Advisory Committee:  Dr. Margaret D. Hardin 
                  Dr. Alejandro Castillo  

 

 The beef industry has made tremendous strides in reducing pathogen 

contamination on carcasses. Multiple antimicrobial interventions have been validated for 

their use during harvesting. Information in regards to cross-contamination with 

pathogens in the post-harvest environment is limited. Surrogate microorganisms for 

enteric pathogens are commonly used to validate antimicrobial interventions and might 

allow for the simulation of cross-contamination through the post-harvest environment.  

The purpose of this study was to determine how the post-harvest environment 

impacts the direct and indirect transmission of pathogens. This was achieved by using 

fluorescent protein-marked surrogate strains of Escherichia coli O157:H7 and 

Salmonella spp. from inoculated carcasses to the adjacent ones and to the equipment and 

facility in three different abattoirs.  

Thirteen hide-on carcasses were inoculated using a gelatin-based slurry 

containing three nonpathogenic fluorescent protein-marked strains of E. coli biotype I. In 

order to determine direct and indirect cross-contamination, inoculated and adjacent 

carcasses were sampled (300 cm2) during the harvesting process at different stages: after 
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hide opening (AHO), prior to evisceration (PE), after evisceration (AE), after splitting 

(AS), and after final intervention (AFI). Environmental samples consisting of the floor, 

walls, and air were tested as well as personal equipment including gloves, boots, and 

aprons. Equipment including hand knives, air knives, meat hooks, hide puller and split 

saw were also sampled.  

Results showed evidence of cross-contamination between inoculated carcasses 

and the adjacent non-inoculated ones for all abattoirs. Although this occurred in all 

abattoirs, surrogate counts on carcasses were below detectable levels (<1.4 log 

CFU/cm2) after antimicrobial interventions. Surrogates were found in low levels for all 

environmental samples. However surrogate counts from equipment such as knives, split 

saws, meat hooks, and hide puller were more frequently detected (15%) than those found 

on the floor, air and walls samples (10%). In the case of aprons, boots, and gloves, the 

prevalence of countable surrogate samples was 7%. 
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INTRODUCTION
1
 

 

 Escherichia coli O157:H7 and Salmonella spp. are among the major foodborne 

pathogens reported in various countries. Salmonella spp. has been found in cattle feed, 

water, dust, and feces, and some studies have documented the presence of E. coli 

O157:H7 in feces at the feedlot. Several studies have demonstrated that hides are one of 

the main carriers of pathogens such as E. coli O157:H7 and Salmonella spp. which can 

be transferred on and between carcasses during the beef harvesting procedures. This 

transmission of pathogens is considered a direct way of contamination from the hide 

onto the carcass. The plant environment may also serve as an indirect source of 

contamination; from the hide to surfaces, were these pathogens can survive and being 

further transferred onto the carcass. The beef industry has made tremendous strides in 

reducing the presence of these pathogens in the post-harvest environment using multiple 

physical and chemical antimicrobial interventions developed and validated for its use 

during the beef slaughter process.  

Surrogates are nonpathogenic microorganisms with similar growth, survival, and 

resistance properties to pathogens. Surrogates are used for a variety of purposes in food 

systems including the validation of the effectiveness of different antimicrobial control 

measures. As part of a research project between Texas A&M University (College 

Station, TX) and Iowa State University ( Ames, IA), marker organisms were previously 

isolated from beef hides and identified as nonpathogenic E. coli biotype I strains. These 

                                                 
1This thesis follows the style of Journal of Food Protection. 
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surrogates are beneficial for in-plant studies either in validating carcass interventions or 

studying the potential of pathogens to colonize plant niches. In a previous study, these 

bacteria were transformed in the Food Microbiology Laboratory at Texas A&M 

University (College Station, TX) to produce yellow, red or green fluorescent proteins as 

well as resistance to ampicillin (AMP) (100 μg/liter) which is beneficial for selective 

purposes during laboratory testing. These marker organisms demonstrated identical 

thermal and acid resistance to E. coli O157:H7 and Salmonella spp.  

In the present study, three of these novel marker organisms were utilized to trace 

potential cross-contamination of enteric pathogens from contaminated hides to carcasses 

and to the plant environment (walls, floors, general equipment, and personal equipment) 

and from contaminated hide-on carcasses to non-inoculated carcasses in close proximity 

during the post-harvest processes. The purposes of this study were to determine how the 

post-harvest environment impacts direct and indirect transmission of pathogens using 

fluorescent surrogates of E. coli O157:H7 and Salmonella spp., to determine if cross-

contamination occurs from the inoculated hide to its carcass, to the adjacent non-

inoculated carcass as well as to the environment. Determination of the differences in the 

level of contamination related to the abattoir, equipment, and processing step in order to 

identify areas and conditions that increase the risk of direct and indirect pathogen 

contamination through the post-harvest environment was also evaluated. 
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REVIEW OF LITERATURE 

 

Characteristics of Salmonella spp. 

All serovars of Salmonella are regarded as human pathogens, though they differ 

in the severity of the disease (2). Among the Gram negative rods that cause foodborne 

illness gastroenteritis, the most important is the genus Salmonella. The first reference 

made to this organism later named Salmonella was in reference to the description of 

typhoid fever, by Bretonneau in 1829 (12). The Salmonella genus name was not 

assigned until 1900 by Lignières who gave this to honor D.E. Salmon, one of the first 

scientists that described Salmonella spp. as the causing agent of hog cholera in pigs (2). 

They are widely distributed in nature, with humans and animals being their first 

reservoirs (38). 

The genus belongs to the Enterobacteriaceae family. The Salmonella cells are 

small, rod-shaped, non-sporing, facultatively anaerobic, cytochrome oxidase negative, 

catalase positive, indole negative, Voges-Proskauer negative, methyl red positive, and 

can utilize citrate as a sole carbon source. Although non-motile strains have been 

identified, Salmonella are generally motile with peritrichous flagella. (10, 38). 

Salmonella are unable to use sucrose and lactose but ferment glucose with production of 

both acid and gas. Salmonella require pH for growth between 6.6 and 8.2 but can survive 

in pH as low as 4.05 (38). They are mesophilic organisms with optimum temperature to 

grow of 37oC but growth has been reported above 5oC up to 40oC (2). The minimum 

water activity (aw) required to grow is approximately 0.93 but cells survive well in dried 



4 
 

 

4 

food, the survival rate increasing as the aw is reduced (2). They can survive to foods with 

salt levels up to 9% and are easily destroyed by milk pasteurization temperatures. Even 

so, Salmonella can survive to high temperatures for prolonged times if the media 

provides certain protection, as in high-fat products like chocolate sauce and peanut butter 

(2, 62).  

Classification 

The genus Salmonella are divided into two different species, Salmonella enterica 

and Salmonella bongori based on DNA/DNA hybridization. S. bongori has been 

considered unimportant as a cause of human infection and accounts for less than 1% of 

Salmonella serovars (2). The species S. enterica is divided into six subspecies, enterica, 

salamae, arizonae, diarizonae, houtenae, and indica (57). Serovars belonging to S. 

enterica susp. enterica are designated by a name, related to the region where the serovar 

was first isolated.  The subspecies are divided into various serovars or serotypes using 

the Kauffman-White serotyping scheme which has proven to be the most useful 

technique for differentiating within the genus. This scheme describes organisms on the 

basis of their somatic (O) and flagelar (H) antigens, and by capsular (Vi) antigens. In 

1940 the scheme contained 100 serovars and actually this number has risen to more than 

2,500 serovars (2, 38, 57). Although, there is a high number of serovars identified; only 

a few have been related to human and animal disease. 

Virulence factors 

For epidemiological purposes, Salmonella serovars can be classified in three 

groups. The species that affects humans is S. enterica which can cause the illness 
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salmonellosis and includes organisms such as S. typhi, S. Paratyphi A, S. Paratyphi C as 

agents of typhoid and paratyphoid fevers which are the most severe of Salmonella-

caused disease (38). The second group is composed of host-adapted serovars including 

S. Gallinarum (poultry), S. Dublin (cattle), S. Abortus-equi (horses), S. Abortus-ovi 

(sheep) and S. Cholerasuis (swine). The third group is formed by serovars without 

particular host preference and these are pathogenic for humans and animals. This group 

includes most foodborne serovars such as Typhimurium, Enteritidis, Newport, 

Heidelberg, Muenchen, and Montevideo (18, 38). 

Salmonella causes disease in both animal and humans. The genes encoding for 

resistance are mainly located in plasmids. Some serotypes of medical importance such as 

mentioned before are known to have plasmids that encode for virulence factors that 

contribute to the pathogenicity of Salmonella such as fimbriae, serum resistance, and 

other factors (19). Isolates from these serovars more commonly express resistance to 

multiple antibiotics, third generation cephalosporins and aminoglycosides (18, 19). 

Furthermore, many Salmonella contain some genes that encode for pathogenic abilities 

such as adhesion, invasion and infection (19, 36). Stressful environments located within 

the host such as low pH in the stomach and low oxygen concentration in the intestinal 

tract may cause the expression of these particular genes that help Salmonella to invade 

the intestinal epithelium and infect the host (31). The serovars Typhi and Paratyphi A, B 

and C do not have an animal reservoir; the remaining serovars are considered zoonotic 

and are commonly known as non-typhoidal Salmonella (31). 
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Salmonellosis 

Salmonellosis is the name given to the infection caused by Salmonella. This 

disease is the second leading cause of foodborne illness in U.S. and one of three main 

causes of deaths originated from foodborne illness (49). The disease has been reported in 

humans and almost all animals throughout the world. Over 1.4 million cases of 

salmonellosis occur per year in the U.S. associated with non-typhoidal Salmonella, 

resulting in 168,000 visits to physicians, 15,000 hospitalizations and 580 deaths 

annually. Other industrialized countries have similar rates whereas under-developed 

countries might have an even higher incidence of salmonellosis in humans although very 

few countries report data of the incidence of this disease (49).  

Salmonella is typically acquired through consumption of contaminated food or 

water. After passage through the stomach, bacteria colonize the intestine, interacting 

with and translocating across the intestinal epithelium via three routes: active invasion of 

enterocytes; invasion into specialized epithelial cells called M cells, which sample 

antigens from intestinal lumen; and through dendritic cells that intercalate epithelial cells 

by extending protrusions into the gut lumen (33). The infection dose under controlled 

conditions is approximately 105 CFU, but consumption of  50 to 100 cells in food 

products may cause disease (38).  Interaction of Salmonella with the epithelium and the 

underlying resident immune resident cells, and the production of  both enterotoxin and 

cytotoxin, leads to the production of inflammatory cytokines and chemokines, which 

subsequently recruit and activate other immune cells such as neutrophils, macrophages, 

dendritic cells and T and B cells (33).  



7 
 

 

7 

The clinical manifestation of the disease may differ widely. Salmonellosis leads 

to symptoms as self-limited gastroenteritis, severe gastroenteritis, fever, bacteremia, 

abortion, meningitis, respiratory disease, cardiac disease, osteomyelitis and severe 

septicemia (7, 8, 30, 37, 77). The infection causing moderate to severe gastroenteritis is 

characterized by nausea, vomiting and watery diarrhea. Abdominal cramps, persistent 

and spiking fever may also appear. The incubation period ranges from 5 h to 7 days, but 

clinical signs usually begin 12 h to 36 h after ingestion of contaminated products (31). 

The illness usually lasts 4 to 7 days and is self-limiting in healthy individuals. Elderly, 

infants and immunecompromised people are more likely to have severe illness (17). 

Symptoms may disappear but the recovered patient may shed the microorganism in feces 

for long periods. Non-typhoid salmonellosis can later give rise to chronic disease, 

including localized infections in specific tissues or organs and reactive arthritis, as well 

as neurological and neuromuscular illness (31). Although salmonellosis might have only 

mild and self-limiting presentation, dehydration and death may occur (31). The average 

mortality rate is 4.1% varying from 5.8% during the 1st year of life, to 2% between the 

first and the 50th year, and 15% in people over 50 years. Among the different 

Salmonella serovars, S. Cholerasuis has been reported to produce the highest mortality 

rate of 21% due to a higher frequency of septicemia cases (38).  

Epidemiology 

Salmonella is the most frequently described cause of foodborne illnesses in the 

world(1). The principal mode of infection is the consumption of contaminated food 

items. The food vehicles found in different outbreaks include eggs and other poultry 
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products, milk and dairy products, orange juice, tomatoes, alfalfa sprouts, cantaloupes, 

chocolate, peanuts and peanut butter, spices, and raw to undercooked ground beef (38).  

Ground beef patties have been implicated in outbreaks in U.S., Canada and Europe. 

According to the Centers for Disease Control and Prevention (CDC) in the U. S. for the 

period of 2001-2005 Salmonella was the most reported cause of foodborne illnesses of 

bacterial origin with 127 outbreaks and more than 3,250 confirmed illness cases. The 

most common serovars associated with these outbreaks were S. Enteritidis, S. 

Typhimurium, S. Newport and S. Heldelberg (16). 

The primary habitat of Salmonella is the intestinal tract of animals such as birds, 

reptiles, wildlife and farm animals, humans and occasionally insects. The organism may 

also be found in polluted water (38). In cattle, Salmonella have been isolated from feces, 

hides, carcasses, feedlot, and environment related to herds with very variable prevalence 

reported worldwide. Some studies have reported Salmonella prevalence of 2 to 50% and 

from 0% to 90% in hide cattle in herds (1, 31, 73, 75). Infected cows can remain 

asymptomatic carriers of these microorganisms for life. Bacteria may be shed from cattle 

carriers in feces and milk after stress related to poor hygiene, insufficient diet, 

transportation and lactation. Shedding in dairy herds lasting 50 to 391 days has been 

documented. Cows shed the bacteria more frequently than calves (21). These healthy 

cattle can serve as reservoir of Salmonella and a source of contamination of the carcass 

(1). One of the principal ways of contamination of carcasses is via fecal or intestinal 

contact as in beef carcasses. Another route of contamination is when bacteria are directly 
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introduced to the food product, for example in eggs. These can become contaminated by 

transovarial transmission or during the egg washing procedures (31, 38). 

Characteristics of E. coli 

In 1885, E. coli was first isolated by the bacteriologist Theodor Escherich from 

human feces. Although most strains of E. coli have been described as harmless 

commensal organism, they can be an opportunistic pathogens in immunecompromised 

patients (2). The organism is an inhabitant of the human digestive tract and can also be 

found in other warm blooded animals. E. coli has been used as an indicator of fecal 

contamination in food and water due to its common occurrence in feces and its survival 

in water (2, 38). The genus Escherichia is part of the family Enterobacteriaceae and 

includes six species: E. hermanii, E. fergusonii, E. vulneris, E. blattae, E. albertii, and E. 

coli (2). 

E. coli is a non-sporing, Gram-negative, facultative anaerobic, mesophilic 

microorganism. The bacterial cell has a rod shape and flagella, if present, are in a 

peritrichious arrangement (2, 38). This organism is catalase positive, cytochrome 

oxidase negative, does not liquefy gelatin, indole positive (with exception of biotype II 

which reacts negative), Voges-Proskauer negative, and methyl red positive. Strains are 

unable to utilize citrate as their sole carbon source (2, 41). Most strains ferment glucose 

with production of acid and gas, and lactose is fermented with production of both acid 

and gas by most strains. E. coli grows at temperatures ranging from 7-10oC and up to 

50oC. The optimum temperature for growth is 37oC. These bacteria do not have a 

marked heat resistance, with a D-value at 60o C of 0.1 min, but can survive refrigeration 
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and freezing temperatures for prolonged periods (2). The optimal pH for growth is 7.0 

but has been shown to grow at pH as low as 4.4 if all other conditions are in optimal 

ranges. Under optimum conditions the minimum aw for growth is 0.95. (2). 

Serology of E. coli 

Kauffman (41) established the basis for the serological studies of the 

lipopolysaccharide somatic-O antigen, capsular-K antigen and flagellar-H antigenic 

reaction of the coli group (41). In his review, the relationship of the K antigen with the 

strain and, the O antigen classification group and its necrotizing hemolytic and toxicity 

virulence factors were described. Kauffman continued to describe some strains of the 

coli group that may play a particular role in diseases as appendicitis, peritonitis and 

pyelitis (41). The classification of the coli group was difficult to identify due to the H 

antigen was not always apparent as well as the isolation of highly motile cultures was 

infrequent. Consequently only 22 H antigens were considered (41).  

This classification system is currently in use. First, serogroups are defined by O 

antigens and then subdivided into serotypes on the basis of H antigens. Strains of each 

category of pathogenic E. coli tend to fall within certain O:H serotypes. This method 

plays an important role in the detection of pathogens and for epidemiological studies (2). 

In 1988, 171 O serogroups and 56 H types were recognized (44). 

Pathogenic E. coli 

Some E. coli help to maintain gastrointestinal functions, this are known as 

generic E. coli, or biotype I E. coli, while other strains are major causes of different 

syndromes of diarrheal disease and are called pathogenic E. coli (44). Some of these 
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pathogenic E. coli share some virulence characteristics such as plasmids encoding for 

critical virulence factors, the particular interaction with the intestinal mucosa, the 

production of enterotoxins or cytotoxins, and a clear tendency to fall in similar O:H 

classification (44).  

There are six recognized virulence groups for E. coli: enteropathogenic (EPEC), 

enterotoxigenic (ETEC), enteroinvasive (EIEC), enteroaggregative (EAggEC), diffuse-

adherent (DAEC) and enterohemorrhagic (EAEC) (44). The EPEC group is recognized 

as the main cause of infantile diarrhea. These strains do not develop the heat-labile and 

heat-stable enterotoxins found in ETEC. Theydo not exhibit the invasiveness of EIEC. 

They do produce a toxin almost identical to Toxin 1 from Shigella dyseteriae which 

causes diarrhea by destruction of microvilli without further invasion (44). Common 

symptoms of EPEC infection include fever, malaise, vomiting and diarrhea with an 

elevated amount of mucus but without blood (44). In some strains within the group of 

EPEC, two patterns of adhesion have been identified. The fist pattern corresponds to 

EAggEC which forms aggregates similar to “stacked bricks” when they adhere to HEp-2 

cells. This adherence and ability to form aggregates is related to the production of 

fimbriae and an outer protein by means of the expression of a 60-MDa plasmid (23, 50). 

EAggEC do not cause lesions as EPEC and are negative to DNA probes for EPEC, EIEC 

and ETEC. The second pattern of adherence in HEp-2 cultured cells is known as diffuse-

adherent, which leads to the differentiation of these strains from other EPEC. Compared 

to other diarrhea-causing E. coli, DAEC and EAggEC have been only recently 

described. The epidemiology, risk factors, and pathogenesis are still in early stages of 
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investigation (65). Strains belonging to the ETEC group are the major cause of infant 

diarrhea in less developed countries, and are a common cause of traveler’s diarrhea (43). 

The syndrome of ETEC infection includes watery diarrhea, nausea, abdominal cramps 

and a low-grade fever. The mechanism of infection includes fimbrial colonization and 

expression of LT toxin, ST toxin or both (3, 43). The EIEC group is formed by strains 

capable of causing invasive dysenteric diarrhea. This strains are different in serotype to 

ETEC and EPEC, and are more similar to the Shigella virulence plasmid (43). Some 

authors have suggested that all Shigella groups and EIEC strains descend from a 

common E. coli antecessor due to the similarities found for their virulence plasmid and 

the clinical manifestation of shigellosis and EIEC (28, 66) . As with Shigella, EIEC 

invade epithelial cells with a preference for colonic mucosa (43). EIEC infection 

frequently causes watery to bloody diarrhea and vomiting (66). The EHEC group is very 

similar to EPEC due to the fact they posses common genes, the type of attachment, and 

epithelial effacement lesions. Differences between EPEC and EHEC are evident in that 

EHEC strains only invade the large intestine and produces large amounts of Shiga-like 

toxins. E. coli O157:H7 is the principal member for this group. 

Characteristics of E. coli O157:H7 

E. coli O157:H7 first gained public recognition as an important human foodborne 

pathogen in the U.S. in 1982 following two outbreaks of hemorrhagic colitis in Oregon 

and Michigan associated to the consumption of  undercooked beef hamburger patties 

from a fast food restaurant chain (60).  
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Virulence factors 

Studies within the time of the first outbreak described E. coli O157:H7 as being 

different from EIEC strains and clinical manifestations were different from EPEC. Fever 

was not present as in EIEC infection and profuse bloody diarrhea resembling 

gastrointestinal bleeding has not being found in EIEC or EPEC infection symptoms (60). 

Further studies described the expression of toxins similar to Shigella dysenteriae (Shiga-

toxin). These toxins were different from any previously described E. coli toxins and are 

named Stx1 and Stx2 (38). After this, the EHEC group was recognized, placing E. coli 

O157:H7 as the most important strain of the group (44). E. coli O157:H7 toxins are toxic 

to Vero (African green monkey kidney) tissue cultured cells and lethal to mice. Other 

verotoxin-producing E. coli (VTEC) strains have been related with hemorrhagic colitis 

and hemolytic uremic syndrome (HUS); however, E. coli O157:H7 is currently 

recognized as the most common cause of VTEC-associated human illness  (25). 

Virulence genes of the pathogenic island on the chromosome of EHEC include the eae 

gene that encodes the intimin protein that is essential for attachment/effacement (A/E). 

The pathogenicity of EHEC is related to the Stx toxins, endotoxins, and host-derivated 

cytokines such as the tumor necrosis factor alpha (TNF-a) and interleukin-1 β. Toxins 

Stx1 and Stx2 inhibit protein synthesis in endothelial cells. The host receptor for these 

toxins is globotriasylceramide (Gb3). Human renal tissue contains large amounts of Gb3 

and thus it is highly sensitive to the Stx toxins producing HUS symptoms such as 

hemolytic anemia, thrombocytopenia and acute renal failure (38, 56). 
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Epidemiology 

The occurrence of E. coli O157 within the food supply generates particular 

concern for both the public and the beef industry. The annual cost of illness in the U.S. 

due to O157 Shiga toxin producing E. coli (STEC) in 2003 was estimated at 

$405,000,000 including $370,000,000 for premature deaths, $30,000,000 for medical 

care and $5,000,000 in loss of productivity (32).  

E. coli O157:H7 infection can have different clinical manifestations. These 

differences are related to the patient, the dose of the pathogen and the infecting strain. 

The highest risk groups for infection are children under 5 years, elderly, and 

immunocompromised individuals (34). E. coli O157:H7 infections are transmitted via 

three primary routes: directly from animals (farm animals, domestic pets, deer, sheep, 

dogs, wild birds), by person-to-person route such as day care centers and nursing homes, 

and from contaminated foods and water (38). Because more foodborne outbreaks of 

EHEC syndromes have been linked to beef more than any other single food source, 

cattle have typically been considered the primary reservoir for E. coli O157:H7 in U.S. 

and it has been found in other ruminants in several countries (25). Ground meat has been 

the principal vehicle of several outbreaks in humans (56). Raw milk also has been 

related to outbreaks and HUS syndrome in humans and E. coli O157:H7 has been 

isolated from healthy dairy cattle (74). Overall, weaned calves have a higher prevalence 

of EHEC strains in their feces than either calves or adult cattle, and this is due the 

immature rumen biota of weaned calves (38).  
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According to Elder et al. (26) E. coli O157:H7 is transferred to beef via fecal 

contamination of carcasses during slaughter processing. E. coli O157:H7 is found in 

cattle gastrointestinal tract and excreted in feces and been isolated from 0.2 to 3% of 

fecal samples collected from healthy calves or cattle in the U.S., Canada, United 

Kingdom, Germany, and Spain (38). Shedding of the bacterium varies by season, type of 

management production system, geography, diet, sex, age. Prevalence may also be 

related to the screening and isolation method used and its sensitivity (5). 

Cattle hides play an important role as source of E. coli O157:H7 and other 

STEC’s. The relationship between the incidence of this pathogen on hides and the 

contamination of derived carcasses has been demonstrated (26, 54). In Turkey, Akkaya 

et al. (4) found E. coli O157 in the environment, equipment and abattoir workers with 

frequencies of 0.31, 1.0, 1.42% respectively, in five commercial abattoirs.  Bosilevac et 

al. (11) sampled 1995 hides and 1995 carcasses in 7 U. S. abattoirs finding prevalences 

of enumerable levels of E. coli O157:H7 and Salmonella of 12 and 36% in hides of 

stunned animals, and of 2 and 8% for carcasses on pre-evisceration process.  Elder et al. 

(26) investigated cattle lots in Midwestern U.S. processing plants and found 72% of lots 

with at least one fecal sample positive for E. coli O157 and 38% of the same lots with at 

least one hide sample positive for this pathogen.  

The pre-harvest environment 

The manipulation of the cattle, during its life and until the harvesting process 

may define the final characteristics of the food products. Controlling zoonotic organisms 

in animal reservoirs have a substantial effect in the food safety system. The control and 
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care of healthy livestock will be reflected in the quality of product obtained after the 

slaughter (20). The problems related to the infection with pathogens of cattle arise when 

environmental conditions expose them to the source of contamination. Circumstances 

such as the continuous contact with soil and contaminated water in addition to deficient 

husbandry practices increases the possibility of acquiring pathogens which survives in 

soil such as Salmonella and E. coli 157:H7 (6, 20). The exposure of humans to cattle, 

livestock facilities or through the consumption of beef products have been identified as 

risk factors for this disease. Although carcass interventions in the slaughter plant have 

been demonstrated to be highly effective, the presence of E. coli O157:H7 and 

Salmonella related to meat products is still linked to foodborne illness and recalls each 

year (40). For these reasons, the pre-harvest management practices have to focus on 

pathogen contamination with the purpose of reducing the occurrence of pathogens and to 

diminish the possibilities of in-plant contamination since a greater carriage of pathogens 

in live animals increases the risk of contamination during slaughter (45).  

Some management practices on farms have been studied, with varied results. 

Many researchers have reported that the initial sources of exposure to E. coli O157:H7 in 

cattle might possibly occur in the feedlot environment (22) . A reduction in E. coli 

O157:H7 has been recognized with a rapid dietary change from a grain a forage diet 

given to the cattle. However, this diet change must be added just prior to slaughter which 

leads to stress and therefore weight losses with the consequent negative economic effects 

for the producer (15).  
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In some instances, animals can be tested to detect shedding of the pathogen 

shedding in order to prevent carrier cattle being introduced to the slaughter plant. 

However, this sampling practice is not viable since it would need to sample all cattle to 

detect only a few of those that are shedding the pathogen. This becomes the sample 

collection large, expensive and highly time-consuming (29, 45). The reduction of the 

fecal contamination occurrence has demonstrated to reduce possible pathogen 

contamination but the chance of controlling cattle hides to become contaminated with 

feces is unfeasible (63). Small and Buncic (63) have related the fecal contamination 

degree of holding pens and longer transportation periods to a higher fecal contamination 

of hides and with the increased presence of E. coli O157:H7. Muddy pen and crowded 

cattle lots may increase the possibility of contaminated cattle and carcasses related to 

these, but this is still being studied (45, 64). Despite this, cattle standing in cleaner pens 

could not be consistently related with lower risk rate of pathogen contamination in 

carcasses (29). Although cross-contamination of cattle may occur due to contact between 

cattle before slaughter, this contact between animals cannot be effectively controlled 

because common practices of transportation of cattle and loading of cattle allows 

animal-to-animal contact in normal conditions (29).   

Another practice applied to reduce E. coli O157:H7 is the use of probiotics such 

as Lactobacillus as a diet supplement. Younts-Dahl et al. (76) demonstrated the 

affectiveness of this practice. In this study Lactobacillus acidophilus reduced 57% less 

likely the occurrence of E. coli 157:H7 in cattle shedding than control.  
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Another pre-harvest practice based on the biological theory of competitive 

exclusion has been applied in order to reduce pathogens in cattle. This proposal 

describes that similar bacteria compete for the same niche inside the host. This 

competition of similar strains has been studied using artificially infected calves with 

pathogenic E. coli.  Tkalcic et al. (67) demonstrated that generic E. coli can be used as a 

niche competitor for E. coli O157:H7 in cattle gastrointestinal tract with the reduction in 

E. coli O157:H7 shedding in treated cattle (67). Vaccination is another tool that is still in 

investigation. Additional research is still needed however, the use of a vaccine has 

demonstrated the reduction of E. coli O157:H7 in cattle in experimentally infected 

animals (48). The use of sodium chlorate to reduce E. coli O157:H7 is another way to 

reduce pathogens. When administered in feed and drinking water, it reduced populations 

of E. coli O157:H7 in the feces and in the intestinal content of cattle. This may help in 

reducing E. coli O157:H7 as well as other anaerobic facultative pathogens as Salmonella 

(42, 45). 

Regardless of problems associated with approval and implementation of pre-

harvest interventions, some practices such as the supplementation with probiotics in 

feeds are currently in use (45). However, the simple application of one or more of these 

practices cannot completely eradicate the problem. The widespread distribution of 

pathogens such as E. coli O157:H7 and Salmonella in the environment, the apparent re-

infection of cattle, and wildlife animals serving as a reservoir makes this elimination of 

these pathogens unrealistic (42). 
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The post-harvest environment 

The prevalence of pathogens such as E. coli O157:H7 and Salmonella found on 

beef carcasses and the unpredictable results from pre-harvest practices to eliminate these 

pathogens highlight the importance to develop strategies for hazards management. The 

implementation of sanitary processing procedures helps to prevent cross-contamination 

within the abattoir environment (24).  The maintenance of Good Manufacturing 

Practices (GMP’s) during all receiving, processing, packaging, and transporting is one of 

the most important factors associated with consumer protection (20).  One strategy 

implemented in cattle abattoirs is the reduction of visible contamination on the hides of 

cattle entering the slaughter facility with water washes. However, a visible clean hide 

might not necessary be pathogen free and could still result in a potential hazard for the 

cross-contamination on carcasses (59).   

Sources of contamination in the post-harvest environment 

The risk analysis and the application of systems that controls hazards as the 

Hazard Analysis and Critical Control Point (HACCP) system have demonstrated their 

effectiveness as well-conducted controls inside the abattoirs to reduce the risk of 

contamination with pathogens (20). The application of practices as GMP’s and HACCP, 

an assessment of the possible sources of contamination is necessary to evaluate the 

correct application of safety measures and to conduct procedures that improve the 

effectiveness of these practices. As mentioned before, extensive studies have 

demonstrated that one of the main sources of contamination is the hide. Pathogenic 

bacteria can be transferred onto the meat during carcass dressing and processing at the 
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slaughter plant.  Feces contaminating the hide are the principal transport vehicle. Elder et 

al. (26) reported a positive correlation between fecal and hide prevalence of E. coli 

O157:H7 and the subsequent contamination of carcasses with the bacteria following 

slaughter and processing. It is also likely that contamination spreads from animal to 

animal during transport and lairage, either directly through animal contact before 

slaughter or indirectly through contact with contaminated floors and other surfaces. 

During the slaughter process, carcass can become contaminated via carcass-to-carcass 

contact especially in the flank and rump areas, which are the most likely to be 

contaminated areas (26, 63). 

Contamination of carcasses during hide removal has been found to be the most 

important source of contamination for workers and equipment leading to cross-

contamination (4, 26, 47). Carcass contamination is likely to occur during the dehiding 

process for several reasons such as cuts made through the animal skin from outside dirty 

areas to inside cleaner areas, alternate use of hands for handling the hide and the carcass 

surface, and ineffective roll back procedure of the hide during hide removal. The 

slaughter and dressing processes can lead to contamination even under the best sanitary 

conditions (47, 54).   

Interventions to reduce occurrence of pathogens during the post-harvest 

environment are the most useful tools developed to control pathogen hazards and to 

reduce microbial loads in the carcasses at the slaughter plant. These interventions 

include the use of combined treatments to reduce the risk of pathogen presence in the 

meat. It may include but is not limited to the use of trimming, water washes, steam 
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pasteurization and steam vacuum, use of antimicrobial substances such as chlorinated 

compound and organic acids (24, 27, 35, 68, 71). 

Best practices in the post-harvest environment 

The use of best practices and current technology lead to improve beef safety. The 

U.S. Department of Agriculture (USDA) has implemented several guidelines related to 

the reduction of visible contamination of carcasses which includes sanitation standard 

operating procedures (SSOP) and the implementation of a HACCP system, and must 

meet microbiological performance criteria for E. coli and Salmonella as a mean to verify 

the effectiveness of these sanitary procedures (9). Microbial decontamination 

technologies include animal cleaning, chemical dehairing at slaughter, spot-cleaning of 

carcasses by knife trimming, the use of steam or hot water vacuuming, carcass spraying, 

washing, or rinsing before evisceration and before chilling with water, chemicals, and 

steam (9). These technologies are most effective when combined, and this practice is 

known as hurdle technology (9, 38). In order to increase the effectiveness of these 

decontamination technologies, the plant environments including the facility, employees 

and equipment need to be taken into consideration. Facility design, processing flow, and 

overall operation must contribute to the production of a safe product. Equipment should 

be properly sanitized and well-maintained and employees must be continuously trained, 

especially those employees that are in close contact to the carcasses, and those who has 

to operate equipment for the decontamination interventions (52).  
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Surrogate microorganisms 

Surrogates are organisms, mainly bacteria often used specifically to evaluate the 

effects and responses to selected processing treatments (13). Surrogates play an 

important role as biological indicators that can mimic the behavior of one or more 

pathogens and can help to identify process deviations which occur inside the plant since 

pathogens cannot be intentionally introduced to any food processing facility (72). For 

example, surrogates can be utilized in challenge or in process-validation studies in 

situations where the use of the target pathogens can compromise the safety of workers 

and the environment inside the processing plant or laboratory (61, 70). Surrogates are 

more often used to evaluate food safety and sanitation processes than food quality (38). 

The ideal surrogate 

According to the U.S. Food and Drug Administration (FDA), the ideal surrogate 

must be the pathogen itself with its pathogenic abilities removed by genetic engineering 

modifications. This is not feasible due to the biological reversion to virulence conditions 

of the pathogen and because it presence can lead to false positives during routine testing 

(70).  A better approach to the ideal surrogate includes the following characteristics: 

nonpathogenic, with thermal or chemical inactivation equal numerically and kinetically 

to target pathogen, durability in foods equal to target organism such as pH stability, 

refrigeration stability and atmosphere tolerance. The surrogate must be easily 

identifiable, isolated and enumerable under rapid and inexpensive detection systems, 

easy differentiable from natural occurring bacteria and very stable so results can be 

repeatable (38, 70). 
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The practical use of surrogates 

Surrogates have been used in low-acid canned foods to validate the destruction of 

Clostridium botulinum spores. The use C. sporogenes and Bacillus stearothermophilus 

apores as surrogates of C. botulinum helped in the evaluation of the effectiveness of 

treatments to obtain a safe, commercially sterile product in the canning industry (70). In 

the pasteurization of food, surrogates are also used to obtain quantitative information of 

proper treatment, which may be a good substitute for the enzymatic inactivation 

measures or chemical reactions research that are in use today. Surrogate organisms 

utilized in pasteurization validation and some other antimicrobial processes such as 

irradiation include Streptococcus thermophilus, Lactobacilli bulgaricus, L. lacti, and 

Pediococcus spp. In the case of Listeria monocytogenes, the surrogate used is Listeria 

inoccua (13, 61, 70). 

The more practical indicator of fecal contamination found is E. coli biotype I, 

also known as generic E. coli because is commonly found in the gastrointestinal tract of 

food animals. They may serve as surrogates due to their nonpathogenic characteristics in 

order to evaluate certain decontamination processes (13).  

The identification of appropriate surrogates for beef carcasses starts with the 

isolation and identification of possible surrogates from similar environments. Marshall et 

al. (46) isolated 113 Gram-negative organisms from cattle hides. Based on thermal 

resistance and growth curves, five possible indicators were compared with five isolates 

of E. coli O157:H7. The isolates were challenged to seven different antimicrobial 

treatments and the results showed that these indicators in a combined cocktail served to 
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evaluate and validate antimicrobial intervention for beef carcasses. These isolates have 

been used in further studies. Niebuhr et al. (51) used these E. coli biotype I isolates to 

compare the responses of these surrogates to a mixed culture of Salmonella in order to 

determine if these can be used to validate interventions to reduce Salmonella in meat. 

Four of the five surrogates used had a lower population reduction (higher survival) than 

the Salmonella mixed culture when exposed at the same antimicrobial interventions (51). 

As mentioned before, a very important characteristic for possible surrogates of 

pathogens is the capability of being easily recognized and enumerated. Rang et al. (58)  

isolated gastrointestinal bacteria and genetically constructed them to express the gene 

that encodes for the green fluorescent protein (GFP) from the jellyfish Aequorea victoria 

but results of this study showed low expression of this protein and lower or impaired 

growth (58). In other study, GFP-positive strains of E. coli O157:H7 shown similar 

growth rates to E. coli O157:H7. GFP-positive Salmonella strains also showed similar 

growth kinetics to the GFP-negative Salmonella control (53). Cabrera-Diaz et al. (14) 

evaluated the possibility of genetically modifying surrogates of E. coli O157:H7 and 

Salmonella to improve their phenotypic characteristics of being easily distinguishable 

and easily enumerable surrogates. The growth curves and the bacterial reductions 

resulting from antimicrobial treatments of these modified surrogates were compared 

with E. coli O157:H7 and Salmonella strains with successful results (14). This study 

concluded that these surrogates are useful tools to validate hot water and lactic acid 

interventions. The possibility of their use as indicators of cross-contamination in the post 

harvest environment is evaluated in the present study. 
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MATERIALS AND METHODS 

 

Bacterial cultures 

Three nonpathogenic protein-marked E. coli biotype I strains (RFP-1, GFP-3 and 

YFP-66) previously transformed to express yellow, green or red fluorescent proteins and 

AMP were selected based on previous collaborative studies (14, 46). The strains were 

obtained from the Food Microbiology Culture Collection (Texas A&M University, 

College Station, TX) and maintained at -80oC in cryocare vials (Key Scientific Products, 

Round Rock, TX). One bead of each strain was transferred to tryptic soy broth (TSB, 

Difco, Sparks, MD) and incubated for 24 h at 37oC. One loopful of each 24 h culture 

was transferred to tryptic soy agar (TSA, Difco) supplemented with AMP (100 μg/liter) 

(Sigma-Aldrich Inc., St Louis, MO) and isopropyl β-D-1 thyogalactoside (IPTG, 

Novagen EBM Biosciences, Inc., Madison WI). After incubation for 18-24 h at 37oC, 

the strong and stable fluorescent colony was picked and transferred again to 

TSA+AMP+IPGT. After incubating 18-24 h at 37oC, again the strong and stable 

fluorescent colony was transferred to TSA slants as working stock cultures for 

propagation. Slants were incubated at 37oC for 18-24 hr and kept at 25oC to be used 

within 30 days.  

Preparation of the gelatin matrix 

A gelatin slurry made was used for inoculation of carcasses inside commercial 

abattoirs without introducing actual feces. This slurry was prepared by mixing equal 

volumes of each 18 h culture in a gelatin-based matrix previously prepared. This gelatin 
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matrix was prepared by dissolving 112 g of food-grade unflavored gelatin powder (Kraft 

Food North America, Tarrytown, NY) in 1 liter of 0.1% sterile peptone water (PW, 

Difco) at room temperature (25-27oC). The pre-hydrated gelatin was added to 6.8 liters 

of boiling sterile PW and stirred for 5 min. 

The hot gelatin slurry was poured into a polyethylene tank (2-gallon Ortho 

Heavy Duty Sprayer, The Fountain Group, Inc., New York Mills, NY) and left overnight 

at room temperature. A bacterial cocktail was prepared by inoculating one loopful of 

each fluorescent protein-marked E. coli strain in TSB and incubating for 18 h at 37oC. 

Immediately before the inoculation, the surrogate cocktail was mixed and aseptically 

added to the sprayer containing the gelatin slurry. The tank was capped and agitated by 

hand to distribute and homogenized the inoculum over the gelatin slurry. The average 

concentration of surrogates was approximately 7.0 log CFU/ml of gelatin slurry.  

After the first trial, the yellow-fluorescent protein strain (YFP-66) was found to 

show low to null fluorescence under UV light, and therefore the remaining trials were 

conducted with the green and red fluorescent strains only (Fig. 1). 

Abattoirs and experimental design 

The project was conducted in 3 USDA inspected beef commercial abattoirs. The 

average number of head processed were 25, 98, and 140 for abattoir 1, 2, and 3 

respectively. At each abattoir, 13 hide-on carcasses were inoculated leaving one or more 

non inoculated carcasses between each inoculated one.  
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FIGURE 1. Typical colonies of fluorescent protein-marked E. coli biotype I green (GFP-

3), red (RFP-1), and yellow (YFP-66 strains grown on tryptic soy agar supplemented 

with ampicillin (100 μg/liter) and observed under UV light (365nm), showing low or null 

fluorescence in YFP-66 colonies (a) and the evident fluorescence in RFP-1 and GFP-3 

colonies (b and c). 
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The slurry containing the fluorescent protein-marked E. coli cocktail was sprayed 

to cover as much as possible at the median line (brisket and plates) after stunning prior 

to sticking. The hide of each animal was sprayed for 16-18 s at an approximate rate of 1 

liter per 16-18 s which resulted in approximately a 9.0 log CFU per carcass. The flow of 

the slurry exiting the sprayer was calibrated before the first carcass inoculation for each 

abattoir. Two samples of 1ml of gelatin slurry were taken to verify level and 

homogeneous distribution of the surrogates. 

Each inoculated carcass was followed through the normal harvest process and 

sampled in different stations including after hide opening (AHO), prior evisceration 

(PE), after evisceration (AE), after splitting (AS), and after final intervention (AFI). The 

carcass immediately following each of the inoculated carcasses was also tested at the 

same points to determine cross-contamination between inoculated and non-inoculated 

carcasses. 

Each carcass sample consisted of a 300 cm2 surface sample collected following 

the USDA-FSIS procedure (69). Briefly, one sterile premoistened sponge (3MTM, Saint 

Paul, MN) was used to swab the carcass at each one of the steps in the process. To avoid 

swabbing the same area more than one time, the following areas were assigned to be 

sampled for all abattoir: right brisket at AHO, right plate at PE, right flank at AE, left 

brisket at AS, and left plate at AFI station. The swabbing procedure included removing 

the premoistened sponge from the bag while squeezing out excess of diluents using a 

sterile glove. The area to sample was swabbed 10 times in vertical direction and 10 times 

in horizontal direction using each side of the sponge for each direction (vertical or 
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horizontal) with strength as to remove dried blood. The sponge was returned to the 

sterile bag and closed. In total, 26 carcasses were sampled at five processing stations at 

each abattoir.  

Additionally, environmental samples were collected after the last carcass sample 

was collected. Sanitary procedures were allowed to employees as regularly, then, hooks, 

knives and saws were cleaned as done during the normal process time. At each 

establishment, 3 samples each were collected from floors, walls, boots, aprons and 

gloves, 2 each of knives, meat hooks, air knives, split saw and hide puller, and 5 of plant 

air. All floor, walls, equipment and utensils were collected by swabbing an area of 300-

cm2 with a pre-moistened sterile sponge using the same procedure of 10 vertical and 10 

horizontal passes. Glove samples consisted of a sponge sample of one entire glove 

passing the sponge through the entire surface. Hand knives and meat hooks were 

sampled by swabbing their entire surface of the blade and hook only with 10 or more 

passes.  

The air samples were collected at different stations (hide removal, evisceration, 

carcass splitting, carcass trimming and carcass final intervention) using a Mattson-

Garvin air sampler (M-G Model 220, Barramundi Corporation, Homosassa Springs, FL) 

with 150 mm x 15 mm disposable culture plate containing TSA. The plate with TSA was 

aseptically placed in position with the lid removed, the sampler was turned on for 5 min. 

and the plate was removed and the lid was returned. 

All sponges and TSA-plate samples were packed in an insulated cooler (Igloo 

Products Corp, Katy, TX) with refrigerant packs (UTEK 30oF, Polyfoam Packers Co. 
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Wheeling, IL) and transported to the Food Microbiology Laboratory at Texas A&M 

University, College Station, TX. After arrival, samples were kept at 4oC and processed 

within 24 h. 

Microbiological testing 

In the laboratory, TSA from air samples was aseptically removed and placed in 

sterile bags, 50 ml of sterile PW were added and bags were pummeled in a stomacher lab 

blender (A.J. Seward, London, UK) for 1 min. Sponges were hand-massaged for 1 min. 

Appropriate decimal dilutions were spread plated onto TSA and poured plated in violet 

red bile agar (VRB, Difco). Both were previously supplemented with AMP (100 

μg/liter). All plates were incubated at 37oC for 24 h. Fluorescent strains appearing on 

TSA+AMP plates were counted under UV light (365nm) (UVP Chromato Vue Cabinet 

and UV handheld lamp, Upland, FL). Plate counts grown in TSA+AMP were reported as 

log CFU/per surface sampled of ampicillin resistant fluorescent surrogates. Counts in 

VRB+AMP were reported as log CFU/surface sampled of ampicillin resistant coliforms. 

Statistical analysis 

Plates counts were converted to log CFU and units were expressed either 

log/surface or log/300 cm2 for sponge samples and log CFU/57 m3 for air samples. 

Differences between inoculated carcass and adjacent carcass, between abattoirs and 

between stages within the same abattoir were calculated using the Least Square Mean 

function in JMP 8.0 (39). Percent samples with detectable counts for environmental, and 

personal and general equipment samples were compared using the test of comparison 

between two binomial proportions (55). 
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RESULTS AND DISCUSSION 

 

Previous studies have referred to the difficulties of pathogen-specific testing for 

in-plant verification of pathogens because occurrence of pathogens such as E. coli 

O157:H7 and Salmonella is very low and the introduction of these to abattoirs is 

prohibited due to its public health significance (46). Although laboratory research can be 

used as reference point for process validation with several reliable results, this is not a 

substitute for actual in-plant process validation (51). Furthermore, beef slaughter plant 

conditions cannot be reproduced in the laboratory. In recent studies, fluorescent 

surrogates of E. coli O157:H7 have been validated and can be used to reproduce possible 

pathogen contamination from hides to carcasses (14, 46). The use of an innocuous 

vehicle such as the matrix prepared with food-grade gelatin and PW allowed the 

simulation of fecal matter containing pathogens and the inoculation of hides to study of 

the potential for direct and indirect contamination at commercial abattoirs.  

During the experiment at abattoir 1, the yellow-fluorescent protein strain (YFP-

66) was found to be very difficult to distinguish under UV light (365nm) due to its low 

to null fluorescence (Fig.1). In addition, indigenous bacteria that were resistant to AMP 

produced colonies that were morphologically indistinguishable from the YFP-66 strain 

colonies. For these reasons, it was determined to eliminate this strain from the study and 

therefore all other experiments were conducted using RFP-1 and GFP-3 only. The 

achievement of the objectives of this study was not hindered in any way by eliminating 
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the yellow strain. The gelatin slurry preparation was adjusted accordingly to compensate 

for the use of 2 bacterial suspensions during inoculum preparation. 

Carcass samples 

Counts of fluorescent organisms from inoculated carcasses and adjacent 

carcasses (non-inoculated) at the 3 sampled abattoirs are shown in Table 1. It was clear 

that the inoculated microorganisms were transferred from the hide to the carcass and that 

these organisms remained on the carcass at least before the final carcass intervention 

(AFI stage). Surrogates were found in both inoculated and adjacent non-inocualted 

carcasses. The average counts for the three abattoirs from inoculated hides at the AHO, 

PE and AE stations were 3.1, 1.9 and 1.8 log CFU/300 cm2 respectevely. For non-

inoculated carcasses, these averages were of 2.2, 1.6 and 1.4 log CFU/300 cm2 for the 

same stations. In the AS station, surrogates were only found on the carcasses coming 

from the inoculated hides, with an average of 1.7 log CFU/300 cm2. At AFI station 

neither inoculated nor non-inoculated carcasses had detectable counts (Table 1). 

Surrogate counts from abattoir 1, 2 and 3 were different (P < 0.05). Abattoir 3 

which reached the highest counts compared to 1 and 2 at AHO, AE and AS for both 

inoculated and non-inoculated carcasses with values of 4.3, 3.3, and 2.6 log CFU/300 

cm2 and of 3.5, 2.1, and 1.7 log CFU/300 cm2 respectively. Abattoir 2 also had higher 

counts for both, inoculated and non-inoculated, than abattoir 1. For abattoir 2 the counts 

of inoculated and non-inoculated carcasses at AHO station were 3.3 and 2.1 log 

CFU/300 cm2 and PE station of 1.9 and 1.7 log CFU/300cm2 (Table 1) while abattoir 1 

had 1.6 and <1.4 log CFU/300 cm2 for AHO, and 1.4 and <1.4 log CFU/300 cm2 at PE 
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station. Abattoir 1 was the smallest of the establishments (25 head per h) with a plant 

layout following a straight line. In contrast, abattoirs 2 and 3 were considerably larger 

(98 and 140 head per h, respectively). Results of this study suggested that larger 

abattoirs may have a greater risk of cross-contamination and this may be due to a greater 

number of employees handling the carcass during the hide removal process, and a more 

difficult operation since more animals are processed at the same time and more 

equipment is utilized. Consequently, larger plants may need greater attention for the 

correct implementation of competitive sanitary procedures.  

None of the carcasses yielded detectable counts after the carcass intervention step 

in any abattoir (Table 1). This highlights the importance of these interventions in 

reducing pathogens on beef carcasses. The chain speed at abattoir 3 may have facilitated 

cross-contamination between carcasses due to an increase in line speed which allowed 

contact between carcasses due to the swinging movements of carcasses hanging in the 

moving line.  

Data in Table 2 show the counts obtained when VRB+AMP was used as 

counting medium. VRB is one of the medium preferred to enumerate coliforms in food 

samples. The addition of ampicillin allowed the visualization of ampicillin resistant 

coliforms. Counts from VRB+AMP seemed to be similar to those obtained with 

TSA+AMP validating the use of TSA+AMP for enumeration of fluorescent surrogates 

since VRB does not allows the visualization of the distinctive fluorescence of the 

surrogates used.  
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TABLE 1. Counts (log CFU/300 cm

2
) of fluorescent protein-marked E. coli biotype I 

RFP-1 and GFP-3 strains on carcass surfaces in three different abattoirs at different 

stations
a
 grown on tryptic soy agar supplemented with ampicillin (100 μg/liter) 

  Stationsa 

Treatment 
n = 13 Abattoirs 

AHO PE AE AS AFI 

Inoculated 

1     1.6c,z     1.4cd,y < 1.4cd,y < 1.4d,y < 1.4d,x 

2     3.3c,y     1.9d,x < 1.4e,y     1.4de,y < 1.4e,x 

3     4.3c,x     2.3e,x    3.3d,x     2.6e,x <1.4f,x 

Averageb     3.1l     1.9l    1.8l     1.7l < 1.4l 

Non-
Inoculated 

1 < 1.4c,z < 1.4c,y < 1.4c,y < 1.4c,y < 1.4c,x 

2    2.1c,y    1.7c,x < 1.4d,y < 1.4d,y < 1.4d,x 

3    3.5c,x    1.9d,x    2.1d,x    1.7de,x < 1.4e,x 

Averageb    2.2m    1.6m    1.4m < 1.4m < 1.4l 
aAHO: After hide opening, PE: Prior evisceration, AE: After evisceration, AS: After 
splitting, AFI: After final intervention. 
bAverages were calculated using a value of 1.1 log CFU/300 cm2 when values were 
below 1.4 log CFU/300 cm2. 
cdefValues with different letters within a row differ statistically (P < 0.05). 
lmValues with different letters between averages within a column differ statistically (P < 

0.05). 
xyzValues with different letters within a column, within a treatment (inoculated or non- 
inoculated) differ statistically (P < 0.05). 
Abattoir 1= 25head/h, Abattoir 2= 98head/h, Abattoir 3= 140 head/h 
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TABLE 2. Counts (log CFU/300 cm

2
) of ampicillin resistant coliforms on carcass 

surfaces in three abattoirs at different stations
a
 grown on violet red bile agar 

supplemented with ampicillin (100 μg/liter) 

 

 

Treatment 
n = 13 Abattoir 

Station 
AHO PE AE AS AFI 

Inoculated 

1     2.2c,z    1.9cd,x    1.5de,y < 1.4e,y < 1.4e,x 

2     2.6c,y    1.6d,xy < 1.4e,y < 1.4e,y < 1.4e,x 

3     4.0c,x    2.0e,x    2.9d,x    1.8e,x < 1.4f,x 
Averageb     2.7l    1.7l    1.8l < 1.4l < 1.4l 

Non-Inoculated 

1 < 1.4d,z < 1.4cd,y < 1.4c,y < 1.4cd,x < 1.4d,x 

2    1.7c,y    1.6c,x < 1.4d,y < 1.4d,x < 1.4d,x 

3    3.5c,x    1.5e,xy    2.0d,x < 1.4ef,x < 1.4f,x 
Averageb    2.1m    1.4l    1.4l < 1.4m < 1.4l 

aAHO: After hide opening, PE: Prior evisceration, AE: After evisceration, AS: After 
splitting, AFI: After final intervention. 
bAverages were calculated using a value of 1.1 log CFU/300 cm2 when values were 
below 1.4 log CFU/300 cm2. 
cdefValues with different letters within a row differ statistically (P < 0.05). 
lmValues with different letters between averages, within a column, differ statistically (P 

< 0.05). 
xyzValues with differ letters within a column, within a treatment, differ statistically (P < 

0.05).  
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Since the characteristics of the colonies on VRB did not permit the visualization 

of fluorescence, some colonies with typical coliform characteristics may not have been 

the surrogate strains (Fig. 2). However, regression analysis showed a significant 

correlation between counts on both media (P < 0.05) (data not shown). The use of 

TSA+AMP is recommended in further studies which allowed visualization of the 

ampicillin resistant surrogates. 

When the surrogates counts obtained from carcasses were hides where inoculated 

and non-inoculated hides were compared abattoir 3 showed significantly (P < 0.05) 

higher counts than abattoir 1 for both inoculated and non inoculated carcasses at all 

stages except AFI (P > 0.05). In AHO, PE, AE, and AS station the counts for inoculated 

carcasses for abattoir 1 were 2.2, 1.9, 1.5, and <1.4 log CFU/300 cm2 while abattoir 3 

counts were 4.0, 2.0, 2.9, and 1.8 log CFU/300 cm2 for the same stations  (Table 1). 

When counts of ampicillin resistant coliforms for all 3 abattoirs were combined, 

carcasses coming from animals with inoculated hide were significantly higher (P < 0.05) 

than those coming from non-inoculated hides at AHO, PE and AE. At the AFI station, 

counts were consistently at levels below the detection limit (<1.4 log CFU/300 cm2) 

(Table 2). 

Beef products may become contaminated by microorganisms during harvesting 

depending upon the hygiene conditions of the slaughter process and its environment. 

Among the factors that can explain the differences between abattoirs are the facility’s 

structures, techniques of hygiene application, sanitation practices and sizes of harvested 

animals.  
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FIGURE 2. Typical colonies of ampicillin resistant coliforms grown on violet red bile 

agar supplemented with ampicillin (100 μg/liter). 
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 Hides are considered the major source of fecal pathogens in carcasses. Elder et 

al. (26) have reported low correlation between the prevalence of pathogens on hides and 

on carcasses. Nonetheless, other studies have demonstrated that E. coli O157:H7 can be 

transferred to the carcass during hide removal operations and carcass contamination with 

E. coli O157:H7 may result from a source other that the rumen and the rectum (47). This 

study demonstrated that fluorescent biotype I E. coli surrogates are transferred from 

contaminated hides to the carcass. Microbial transfer to non-inoculated carcasses may 

have occurred by transfer from contaminated hides to non-contaminated hides, or by 

cross-contamination between carcasses after hide removal, from the hide, employees or 

equipment. This reflects the importance of sanitary dressing techniques in order to avoid 

cross-contamination between carcasses. As shown in Tables 1 and 2, when more 

fluorescent microorganisms were found during hide removal (AHO stage, abattoir 3) 

these had a greater count along the process. On the other hand, when there were low 

counts of surrogate organisms as observed in abattoir 1, the counts remained low or even 

below detectable levels along the process. Therefore, it is essential to consider hide 

removal as one of the points with the highest chances for cross-contamination from hides 

to carcasses and from carcass to carcass. 

Environmental samples 

The results of environmental samples were very low and many were below 

detectable counts or showed counts very close to the detection limit of the counting 

method. For this reason, the prevalence of fluorescent surrogates was reported as 

percentage of detectable counts (≥ 1.4 log CFU/surface sampled) (Tables 3 and 4). The 
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presence of fluorescent strains was detected in several equipment and environment 

samples. Overall, surrogate presence was detected in 10% of aprons and in 11% of boots 

sampled. For environments samples, 13% of wall and 25% of floor samples had 

detectable surrogate counts. The samples with the highest proportion of detected 

surrogates were the hide puller samples (80%). In the case of VRB counts, the 

proportion of samples with detected ampicillin resistant coliforms were 50% for aprons, 

66% for boots, 50% of split saw and 100% for hide puller samples. The prevalence of 

samples with detectable counts of ampicillin resistant coliforms for floor, walls, and air 

samples were 62, 13, and 7% respectively (Table 4).  

When a high count was observed, this was usually from samples collected from 

the hide puller, which is the piece of equipment that is in direct contact with the hide and 

also, it is the only piece of equipment or utensils that is not constantly sanitized between 

uses. Although the presence of fluorescent surrogates on environmental samples was 

rather sporadic, it still indicates that pathogens can be potentially transferred from a 

contaminated animal to the processing environment and may account for an indirect 

mechanism for carcass contamination. 

When least square means were compared for counts of fluorescent surrogates on 

TSA+AMP or VRB+AMP, no statistical differences were seen between abattoirs, 

treatments and counts (Table 5). However, this lack of differences may be due to the low 

frequency of samples with countable numbers. In other words, the number of samples 

with counts above the detection limit was not enough to determine differences between 

abattoirs. 
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TABLE 3. Proportion of environmental samples with detectable counts (>1.4 log CFU/surface sampled) of fluorescent protein-

marked E. coli biotype I RFP-1 and GFP-3strains grown on tryptic soy agar supplemented with ampicillin (100μm/liter) 

 Abattoir 1  Abattoir 2  Abattoir 3  Overall 
Samplea No. samples  No. samples  No. samples  No. samples 

 
n Detectableb %c  n Detectableb %c  n Detectableb %c  n Detectableb %c 

Personal 
equipment                

Aprons 3 0 0  4 1 25  3 0 0  10 1 10 
Boots 3 0 0  3 0 0  3 1 33  9 1 11 

Gloves 3 0 0  3 0 0  3 0 0  9 0 0 
Total 9 0 0  10 1 10  9 1 11  28 2 7 

Equipment                
Knife 2 0 0  2 0 0  2 0 0  6 0 0 

Air Knife 2 0 0  2 0 0  2 0 0  6 0 0 
Hide Puller 2 1 50  1 1 100  2 2 100  5 4 80 
Meat Hook 2 0 0  1 0 0  2 0 0  5 0 0 
Split Saw 1 0 0  1 0 0  2 0 0  4 0 0 

Total 9 1 11  7 1 14  10 2 20  26 4 15 
Environment                

Floor 3 0 0  2 0 0  3 2 67  8 2 25 
Wall 3 0 0  2 0 0  3 1 33  8 1 13 
Air 5 0 0  5 0 0  5 0 0  15 0 0 

Total 11 0 0  9 0 0  11 3 27  31 3 10 
Grand Total 29 1 3  26 2 8  30 6 20     

aDetection limit was 1.4 log CFU/300 cm2 for aprons, boots, equipment (except knives), floor and    walls, 1.4 log CFU per 
one glove (gloves), per knife blade (knives) and per one hook (meat hooks), and 1.4 log CFU/57 m3 of air. 
bGrowth of at least 1 fluorescent colony. 
cPercentage of samples with detectable fluorescent surrogates counts (>1.4 log CFU/surface sampled). 
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TABLE 4. Proportion of environmental samples with detectable counts (> 1.4 log CFU/surface sampled) of total coliforms 

grown on violet red bile agar supplemented with ampicillin (100 μg/liter) 

 Abattoir 1  Abattoir 2  Abattoir 3  Overall 
Samplea No. samples  No. samples  No. samples  No. samples 

 
n Detectableb %c  N Detectableb %c  n Detectableb %c  n Detectableb %c 

Personal equipment                
Aprons 3 0 0  4 1 25  3 1 33  10 2 50 
Boots 3 1 33  3 2 67  3 3 100  9 6 66 

Gloves 3 0 0  3 0 0  3 0 0  9 0 0 
Total 9 1 11  10 3 30  9 4 44  28 2 7 

Equipment                
Knife 2 0 0  2 0 0  2 0 0  6 0 0 

Air Knife 2 0 0  2 0 0  2 0 0  6 0 0 
Hide Puller 2 2 100  1 1 100  2 2 100  5 5 100 
Meat Hook 2 0 0  1 0 0  2 0 0  5 0 0 
Split Saw 1 0 0  1 1 100  2 1 50  4 2 50 

Total 9 2 22  7 2 28  10 3 30  26 7 27 

Environment                
Floor 3 2 67  2 1 50  3 2 67  8 5 65 
Wall 3 0 0  2 0 0  3 1 33  8 1 15 
Air 5 1 20  5 0 0  5 0 0  15 1 67 

Total 11 3 27  9 1 11  11 3 27  31 7 26 
Grand total 29 6 21  26 6 23  30 10 33     
aDetection limit was 1.4 log CFU/300 cm2 for aprons, boots, equipment (except knives), floor and walls, 1.4 log CFU per one 
glove (gloves), per knife blade (knives) and per one hook (meat hooks), and 1.4 log CFU/57 m3 for air.   
bGrowth of at least 1 typical coliform colony. 
cPercentage of samples with detectable coliforms counts (>1.4 log CFU/surface sampled). 
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To enable comparison of samples with low counts, the percentages of samples 

that produced at least 1 colony on the countable plate were calculated and compared 

between abattoirs. For the environment samples collected from abattoir 3, 20% yielded 

detectable counts. This value was significantly higher (P < 0.05) than the 3 and 8% 

observed for abattoirs 1 and 2, respectively (Fig. 3).  

Environmental samples are related to contact with and between surfaces, areas from the 

same carcasses, from carcass to carcass, from personal equipment to air, walls and floor 

and other possible mechanisms for microbial transmission. Akkaya et al. (4) reported the 

presence of E. coli O157, E. coli O157:H7, Salmonella and L. monocytogenes on floors, 

walls, meat hooks, knives, hands, transport wagons and other environments at 5 different 

abattoirs in Turkey (4). Although environmental samples in the current study showed the 

presence of the fluorescent surrogates, this was not found in gloves maybe due to the use 

of disposable gloves and its continuous changes from employees in all abattoirs. Due to 

the low counts observed for environmental, personal equipment and general equipment 

samples, the role of these sites as possible sources of carcass contamination could not be 

determined in this study. 

Further research about mechanisms for microbial transfer within the harvesting 

processing plant is needed. However, the data collected during this study show that 

personal equipment and various surfaces in the facility can play a role as a mechanism 

for contamination of carcasses with bacterial pathogens such as E.coli O157:H7. High 

counts at the AHO stage, as found in abattoir 3, may represent an indicative of poor 

hygiene during hide opening, which leads to carcass contamination.
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TABLE 5. Counts (log CFU/surface sampled) of fluorescent protein-marked E. coli RFP-

1 and GFP-3 in tryptic soy agar supplemented with ampicillin (100 μg/liter) 

(TSA+AMP) and total coliforms on violet red bile agar supplemented with ampicillin 

(100 μg/liter) (VRB+AMP) of environmental samples in three different abattoirs 

  Abattoir 1  Abattoir 2  Abattoir 3  Averagesg 
Category  TSA VRB  TSA VRB  TSA VRB  TSA VRB 

Personal 
Equipment 

 < 1.4a < 1.4a  < 1.4a 1.9a     1.5a < 1.4a  < 1.4e < 1.4x 

General 
Equipment 

 
< 1.4a    1.7a 

 
   1.5a 2.0a 

 
< 1.4a    1.4a 

 
< 1.4e    1.7x 

Environment  < 1.4a    1.5a  < 1.4a 1.4a  < 1.4a    1.5a  < 1.4e    1.5x 

Averagesg  < 1.4p    1.4j  < 1.4p 1.8j  < 1.4p < 1.4j    
aValues with same letter within a column at each abattoir do not differ statistically (P > 
0.05) 
eAverages with the same letter within a row within in TSA medium do not differ 
statistically (P > 0.05)  
gAverages were calculated using a value of 1.1 log CFU when values were <1.4 log 
CFU/surface sampled.                
jAverages with the same letter within a column within the same medium (VRB) do not 
differ statistically (P > 0.05).  
pAverages with the same letter within a column within the same medium (TSA) do not 
differ statistically (P > 0.05)  
xAverages with the same letter within a row within in VRB medium do not differ 
statistically (P > 0.05). 
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FIGURE 3. Proportion of environmental samples with detectable counts ( >1.4 log 

CFU/surface sampled) of fluorescent protein-marked E. coli biotype I RFP-1 and GPF-3 

strains grown in tryptic soy agar supplemented with ampicillin (100 μg/liter) in three 

different abattoirs. 
a,b Columns with different letter differ statistically (P < 0.05)   
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In contrast, when the counts are low, as found in abattoir 1, the fluorescent 

surrogates were not found on adjacent carcasses or at further steps sampled during the 

harvest process. The relationship between the number of workers, and the size and 

distribution of the abattoir facility with the risk of cross-contamination may require 

further investigation. Larger processors are supposed to have more rigorous systems and 

superior financial resources to control pathogens. Some researchers favor small 

processors because small plants are supposed to have more time for careful hide removal 

as well as more time for inspection scrutiny due to the slower line speed (11). This may 

explain the results of this study where abattoir 1 had the slower head per h (25 head) rate 

and the lowest environmental detectable counts for fluorescent surrogates (35) and total 

coliforms (21%). Besides, these results highlight the importance of following proper 

procedures for sanitary dressing of beef carcasses in preventing carcass contamination. 
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CONCLUSIONS  

 

Results from this study showed that the simulation of carcass contamination in 

the postharvest environment is possible due to the utilization of nonpathogenic 

fluorescent surrogates of E. coli O157:H7 and Salmonella spp. Additionally, the use 

innocuous vehicle such as a gelatin slurry may be used to simulate fecal matter 

throughout the inoculation of this slurry with surrogate organisms will allow processors 

to trace cross-contamination thought beef abattoirs. Further studies may explain the 

differences found in surrogate counts by abattoirs and its relationship to the number of 

carcasses processed per hours and the number of in-line employees per plant. 

Antimicrobial interventions for reducing pathogens on carcasses seemed to be very 

effective since surrogates were not detected after the antimicrobial treatment. Each 

establishment must evaluate their sanitary dressing procedures to assure the efficacy of 

these interventions by improving every procedure that can control cross-contamination. 
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