
  

 

WAVE INTERACTIONS WITH ARRAYS OF BOTTOM-MOUNTED CIRCULAR 

CYLINDERS:  

INVESTIGATION OF OPTICAL AND ACOUSTICAL ANALOGIES 

 

 

A Thesis 

by 

ALDRIC BAQUET  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

August 2010 

 

 

Major Subject: Ocean Engineering 

 

 



  

 

WAVE INTERACTIONS WITH ARRAYS OF BOTTOM-MOUNTED CIRCULAR 

CYLINDERS:  

INVESTIGATION OF OPTICAL AND ACOUSTICAL ANALOGIES 

 

A Thesis 

by 

ALDRIC BAQUET  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Richard Mercier 
Committee Members, Jun Zhang 
 Achim Stoessel 
Head of Department, John Niedzwecki 

 

August 2010 

 

Major Subject: Ocean Engineering 



 iii 

ABSTRACT 

 

Wave Interactions with Arrays of Bottom-mounted Circular Cylinders: Investigation of 

Optical and Acoustical Analogies. (August 2010) 

Aldric Baquet, B.S., Ecole Spéciale des Travaux Publics 

Chair of Advisory Committee: Dr. Richard Mercier 

 

 Wave scattering by arrays of cylinders has received special attention by many 

authors and analytical solutions have been derived. The investigation of optical and 

acoustical analogies to the problem of interaction of water waves with rigid and flexible 

cylinder arrays is the main focus of this thesis. In acoustics, a sound may be attenuated 

while it propagates through a layer of bubbly liquid. In fact, if the natural frequency of 

the bubbles is in the range of the wave periods, the attenuation becomes more evident. 

The ultimate objective of the research described herein is to determine if this 

phenomenon may also be found in the interaction between water waves and arrays of 

flexible cylinders.  

 In a first approach, arrays of rigid cylinders are studied in shallow water. The 

array is treated as an effective medium, which allows for the definition of reflection and 

transmission coefficients for the array, and theories from Hu and Chan (2005) associated 

with the Fabry-Pérot interferometer are compared against direct computations of wave 

scattering using the commercial code WAMIT. Reflection and transmission coefficients 

from WAMIT are evaluated by applying a Maximum Likelihood Method. The results 
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from WAMIT were found to be in good agreement with those obtained from the 

effective medium theory. Due to observed inconsistencies for short wave periods and 

small incident angles, the effective width of the medium is defined and corrected.  

 For the case of a flexible cylinder, generalized modes corresponding to 

deformations of the cylinder's surface are formulated and added to WAMIT's subroutine. 

Equations of motion are derived from the theory of vibration for thin shells and mass and 

stiffness matrices are defined. The objective is to maximize wave attenuation from the 

array of flexible cylinders. Therefore, the natural periods of the "breathing" mode for 

these cylinders is set in the range of the studied wave periods. Then, material properties, 

as well as mass and stiffness matrices, are chosen to achieve this effect. 
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1.  INTRODUCTION 

 

1.1 Motivation and objectives 

 

 Interactions of water waves with cylinder arrays, consisting of both floating or 

bottom-mounted cylinders, have received particular attention due to the wide range of 

application. By trapping and reflecting wave energy, arrays of cylinders can be used for 

coastal protection. For certain geometries, cylinder arrays can focus wave energy to a 

particular point in the wave field. This can be useful to improve the performance of a 

wave energy device. 

 Many previous studies have been done regarding scattering by individual 

cylinders and cylinder arrays. The scope of this thesis is to investigate analogous 

theories from optics and acoustics to study interactions between waves and cylinder 

arrays.  

 Hu and Chan (2005) have investigated analogies with optics. Defining the array 

of cylinders as an effective medium, they found an analytical formulation for both 

reflection and transmission coefficients for the semi-infinite arrays of cylinders.  In this 

research, WAMIT, a radiation/diffraction panel program developed to analyze the 

interaction between surface waves and offshore structures, is used to study the 

interactions between waves and arrays of cylinders. Results from WAMIT and Hu and  

 
__________ 
This thesis follows the style of Ocean Engineering. 
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Chan (2005) are then compared to each other to show similarity between them and 

validate WAMIT's output. 

 However, the formulation of Hu and Chan (2005) seems to be incomplete in 

describing the behavior of infinitely long, finite width cylinder arrays, as inferred from 

the Fabry-Pérot interferometer, which is an optical device. Through extensive analysis 

using WAMIT, it is shown that Fabry-Pérot interferometer theory can explain the 

interaction of long waves with finite width cylinder arrays as long as the effective array 

width is properly determined.  

 Moreover, in acoustics, it is well-known that, for certain frequencies, sound is 

attenuated while it propagates through a layer of bubbly liquid. Can an analogous 

phenomenon exist for the case of a long wave propagating through an array of vibrating 

cylinders? Junger and Cole (1980) and Commander and Prosperetti (1989) investigated 

the propagation and the attenuation of sound through a cloud of bubbles in a liquid. They 

also defined reflection and transmission coefficients for the bubbly layer. One of the 

objectives of this research is to use WAMIT to calculate reflection and transmission 

coefficients and to investigate whether acoustical analogies are evident for wave 

interactions with an array of flexible cylinders. 
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1.2 Literature review 

 

 A lot of work has been devoted to wave scattering by cylinders and cylinder 

arrays. The first order scattering velocity potential for a single cylinder is well known. 

The analytical solution was formulated by MacCamy and Fuchs (1954). The second and 

higher order solutions received more attention and semi-analytical solutions have been 

described by Kim and Yue (1989) and Eatock Taylor and Huang (1997). However the 

present thesis only focuses on the first order diffraction potential. 

 Additionally, wave scattering by arrays of both bottom-mounted and floating 

circular cylinders have received particular attention. In fact offshore structures such as 

tension-legs platform, floating airport or floating bridges may be modeled by arrays of 

floating or bottom-mounted cylinders. For example Evans and Porter (1997), Mclver 

(2002) and Walker and Eatock Taylor (2005) investigated wave trapping in an array of 

bottom-mounted cylinders. Siddorn and Eatock Taylor (2008) studied radiation and 

diffraction of linear waves by arrays of truncated, floating cylinders which were free to 

oscillate individually. Solutions for the radiated and diffracted waves, the exciting 

forces, the added mass and the damping for each cylinder of the array have been 

analytically formulated. 

 From the point of view of investigations of optical analogies, Hu an Chan (2005) 

have formulated an effective water medium approach which is applied to an array of 

bottom-mounted cylinders. As explained in the previous section, they defined reflection 
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and transmission coefficients for the array. The theory behind the effective water 

medium approach is described in section 2.   

 The motivation and the main objective of this study is to analyze wave 

interactions with arrays of flexible cylinders. In order to investigate analogies with wave 

attenuation phenomena, which occur in the acoustic problem when an acoustic wave 

crosses a bubble swarm, the studied cylinder should present similar deformation 

behavior as bubbles. Hence, the case of a cylinder which can have radial "breathing" 

deformation modes is studied. The theory of shell vibration may be used to describe the 

equations of motion. Leissa (1973) regrouped all the main theories associated with 

vibration of thin shells. One of them, the Donnell and Mushtari theory, is used in this 

research and is described in section 3. The equations of motion from Donnell and 

Mushtari are derived from the basic theory of surfaces and the strain-displacement 

equations using Love's first approximation based on four assumptions. The equations of 

motion may be written as a system of three equations depending on a vector of 

displacement and a Donnell-Mushtari operator, which can be modified if eighth order 

shell theories such as Love-Timoshenko, Goldenveizer-Novozhilov and Houghton-Johns 

are considered. The displacements can be decomposed in different modes in the vertical, 

tangential and radial directions.  

 The Donnell and Mushtari equations have been used by Sorokin and Ershova 

(2006) to describe the free vibration of elastic cylindrical shells with and without internal 

fluid. The paper studied the transmission of vibroacoustic energy in pipelines. It is 
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shown by both theory and experimental studies that the highest vibroacoustic energy 

may be attributed to the breathing mode, which is the lowest order mode. 

 Newman  (1994) discussed the wave effects on deformable bodies. If the motions 

of floating bodies are usually described by six rigid body modes, additional modes called 

generalized modes can be added to study structural deflections. Newman developed a 

method to study separately the radiation potentials associated with the different modes. 

He also defined mass and stiffness matrices as well as added-mass and damping 

coefficients. He gave two examples of application for this method. The first one 

concerns the bending of a slender barge and the second one describes a bending vertical 

column where Jacobi polynomials are used to characterize the bending modes. These 

modes have been incorporated into the WAMIT subroutine called NEWMODES. The 

method used by Newman to define mass and stiffness matrices is explained in section 3. 

 The investigation of the analogy between an acoustical problem and the 

interaction between waves and an array of elastic cylinders is based on two papers. The 

first one is from Commander and Prosperetti (1989) which presents a model for the 

propagation of pressure waves in a bubbly liquid. This model had been formulated by 

Van Wijngaarden (1968). It used an effective medium approach allowing the definition 

of transmission coefficients from the bubbly layer as well as an attenuation coefficient 

for the transmitted wave. The model also considers bubbles dynamics. In fact, the radial 

motion of a bubble was formulated by Keller (1953). 

 The other paper related to the analogy with an acoustical problem is from Junger 

and Cole (1980). They studied sound propagation in a bubble swarm. The analyzed 
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system is a point-excited plate radiating through a layer consisting of air bubbles in an 

ambient liquid. They theoretically determined a complex wavenumber for a distribution 

of bubble sizes, which characterizes the propagation of the sound. A resonance 

frequency associated with each bubble size is identified, as well as an antiresonance 

frequency which occurs at a higher frequency. At the antiresonance frequency the bubble 

swarm medium is effectively incompressible and acoustic wave propagation becomes 

impossible. In addition, the Insertion Loss (IL) of a bubble swarm is discussed and it is 

found to be more effective at and above the bubble resonance. The Insertion Loss is a 

measure of the attenuation. In acoustics it is usually expressed in dB and is defined as 

          
  

  
     where    is the pressure radiated by the bubble swarm and     is 

the pressure transmitted into the bubble swarm. This definition of the Insertion Loss will 

be applied in the case studied in this research, where the bubble swarm will be replaced 

by an array of elastic cylinders and the acoustic wave by a water wave. 
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1.3 WAMIT's inputs 

 

 WAMIT is a radiation/diffraction panel program developed to analyze the 

interaction between surface waves and large displacement bodies. 

 Two subprograms are run by WAMIT. The first one is the subprogram POTEN. 

Input files to this program include wave periods, water depth, wave heading angles and 

the geometry of the body which is defined in the Geometric Data File (GDF). The 

second one is the subprogram FORCE. The input files to FORCE include the body 

dynamic parameters (mass, external damping, external stiffness) and are specified in the 

Force Control File (FRC). POTEN solves the radiation and diffraction velocity 

potentials. FORCE is a post-processor for determining hydrodynamic coefficients, field 

pressures, free surface elevations, RAOs, etc. 

 

1.3.1 Geometry of the body 

 Two options may be used to define the geometry of the body : the low-order 

method and the high-order method. When the low-order method is used, the body is 

discretized by a set of flat panel and the Cartesian coordinates of each panel of the body 

have to be defined. 

 For this study the high-order method has been used. The body surface is defined 

by patches where the Cartesian coordinates of the points on each patch  are defined by 

mapping functions. The advantage of this method is that for one patch, the surface is 

smooth with continuous coordinates and slope. 
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 Moreover, planes of symmetry can be used to limit the computational time. In 

this research a circular cylinder is studied with vertical planes X = 0 and Y = 0 as planes 

of symmetry.  

 Low-order and high-order method also relates to how the velocity potential is 

represented. In fact, in high-order method, the velocity potential is represented by b-

splines in a continuous manner. With the same number of unknowns, the high-order 

method provides a more accurate representation of the spatial variation of the velocity 

potential. 

 The geometry of the body is analytically defined in the GEOMXACT file in 

WAMIT and in the present case, the subroutine CIRCCYL has been used and it only 

requires draft and radius of the cylinder as inputs.  

 

1.3.2 Single and multiple bodies 

 For the case of diffraction by an array of rigid circular cylinders, the entire array 

has been considered as a single body with X = 0 and Y = 0 planes of symmetry. 

 For an array of independently radiating elastic cylinders, each cylinder has to be 

considered as one body. Then a multiple body analysis is applied. 

 

1.3.3 Generalized body modes 

 To analyze the wave interaction with a deformable structure, generalized body 

modes corresponding to the deformations have to be incorporated into WAMIT. 

WAMIT's NEWMODES subroutine can then be modified to add these new modes.  
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1.3.4 Processing of WAMIT results 

 MATLAB has been used to process WAMIT's results. Codes have been written 

to plot surface elevations for the different cases that have been run with WAMIT and to 

determine reflection and transmission coefficients for the arrays. The method applied to 

determine these coefficients is described in section 2. 

 

1.4 Outline of thesis 

 

 This thesis consists of four sections. The present one describes the motivation for 

the research, reviews the relevant literature and summarizes the software WAMIT which 

has been used to analyze the interactions between water waves and arrays of cylinders. 

 The second part of this thesis recapitulates the theory of scattering by a single 

rigid bottom-mounted cylinder, formulated by MacCamy and Fuchs (1954), and 

compares these results with those obtained using WAMIT in order to verify the 

consistency of WAMIT's results using the high-order method. Then, the effective water 

medium approach is formulated according to previous work by Hu and Chan (2005). 

Using the effective medium approach, the interaction between a wave train and an array 

of vertical cylinders can be described using laws or properties from optics such as Snell's 

law and Fabry-Pérot interferometry. Results from WAMIT will be presented, discussed 

and related to the effective water medium approach. The last part of this section will 

study the particular case of a bi-convex array of cylinders which has wave energy 

focusing properties. 
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 The objective of the third section is to study the case of an elastic bottom-

mounted cylinder. The theory of vibrating shells used to determine the equations of 

motion of the elastic cylinder will be described. The generalized modes that have to be 

incorporated into WAMIT's subroutine will be presented and WAMIT's results for a 

single elastic cylinder will be discussed.  

 The fourth and last section consists of a summary and conclusions of the 

research. It will also present some suggestions for possible future work related to this 

research. 
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2.  ARRAYS OF BOTTOM-MOUNTED RIGID CYLINDERS 

 

 The first part of this thesis recapitulates the first order diffraction potential and 

surface elevation  from MacCamy and Fuchs (1954) theory for a bottom-mounted rigid 

cylinder. Then the case of a regular array of these cylinders will be studied.  

 The effective medium approach according to Hu and Chan (2005) is described in 

the following section and the same cases as Hu and Chan (2005) have been run with 

WAMIT. WAMIT's results show certain phenomena which are evoked but not fully 

described by Hu and Chan (2005). These include the Fabry-Pérot interferometer effects. 

From the theory associated with the Fabry-Pérot Interferometer, which is an optical 

device, it is possible to derive an analytical formulation for the reflectance and the 

transmittance of an array of cylinders taking into account the multiple reflection 

occurring in the array. 

 These results are compared with WAMIT's output, and some inconsistencies will 

lead to the definition of an effective width for the array. The maximum likelihood 

method used to calculate reflectance and transmittance from WAMIT's output will be 

also presented in this section. 

 The last section is devoted to a bi-convex array of cylinders which presents wave 

energy focusing properties. WAMIT's results for this particular array are compared 

against basic optical theory for a converging lens, and the contribution of effective width 

will be also described. 

 



 12 

2.1 Single bottom-mounted rigid cylinder 

 

 The objective of this section is to compare the MacCamy and Fuchs (1954) 

theory, which formulates the linear diffraction potential for a bottom-mounted cylinder, 

to the results obtained from WAMIT. In fact, it is the first step to validate the high-order 

method used to define the geometry of the body in WAMIT. 

 A description of the MacCamy and Fuchs formulation for the diffraction 

potential and wave elevation for a bottom-mounted circular cylinder is provided below. 

It is convenient to use cylindrical coordinates (r,θ,z) because the geometry of the system 

consists of a bottom-mounted rigid circular cylinder. The system is illustrated in Fig. 2.1. 

 

Fig. 2.1.  Bottom-mounted, circular, vertical cylinder in cylindrical coordinates 
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 The diffraction velocity potential  
 

 can be decomposed as a combination of an 

incident velocity potential and a scattering velocity potential: 

 
 

  
 
   

 
 (2.1)  

where  
 
 is the incident potential and  

 
 is the scattered potential. 

The diffraction potential  
 

 satisfies Laplace's equation in the fluid domain 

   
 

  
   

 

   
 

 

 

  
 

  
 

 

  

   
 

   
 

   
 

   
                         (2.2)  

and the following boundary conditions: 

   

  
                                                   (2.3)  

  

  
 

  
 

  
                                         (2.4)  

  
 

  
                                            (2.5)  

   

  
 

   

  
 

   

  
                         (2.6)  

Far away from the cylinder,  
 
 should satisfy the Sommerfeld radiation condition: 

   
   

   
  

 

  
    

 
    (2.7)  

where   is the wave elevation and   the wavenumber. 

In cylindrical coordinates     can be rewritten as:  

                                               

                   

 

   

 
(2.8)  
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where    is the first kind Bessel function of order n and    is a coefficient having the 

following expression: 

     
                                            
                                          

    (2.9)  

The solution for the first-order incident potential in cylindrical coordinates is given by: 

 
 
    

  

 
 
            

        
                   

 

   

        (2.10)  

where   is the amplitude of the incident wave,   is the gravitational acceleration and   

is the angular frequency of the incident wave. 

The solution for the first-order scattered wave potential is given by: 

 
 
   

  

 
 
            

        
      

  
     

  
     

              

 

   

       (2.11)  

where    is the Bessel function of the third kind (Hankel function).   

Therefore, the first-order diffracted wave is: 

    
  

 

            

        
    

  
     

  
     

                      

 

   

      (2.12)  

and the first order surface elevation is: 

                  
  

     

  
     

               

 

   

       (2.13)  

 The analytical solution for the free surface elevation was coded in MATLAB and 

used to generate results for comparison with WAMIT. Fig. 2.2 represents the diffracted 

wave elevation corresponding to unit amplitude incident waves. Bessel's function 
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defined in MATLAB have been used. The geometrical parameters used to plot Fig. 2.2 

are recapitulated in Table 2.1. 

 

Table 2.1.  Parameters used in WAMIT for the single bottom-mounted cylinder 
 

Parameter Value 

Radius of cylinder, R 17.5 ft 
Draft of cylinder, d 40 ft 
Water depth, h 40 ft 
Wave period, T 7.99 sec 
Amplitude of incident wave, A 1 
Gravitational acceleration, g 32.2 ft/s2 
Scatter parameter, kR 0.440 

 
  

 Fig. 2.3 illustrates the wave elevation corresponding to the diffraction potential 

obtained from WAMIT. Fig. 2.4 compares the wave elevation computed by MacCamy-

Fuchs and WAMIT along the two perpendicular transects through the cylinder, and it 

can been seen that the results are practically indistinguishable. The excellent agreement 

demonstrated in Fig. 2.3 and Fig. 2.4 validates our implementation of the high-order 

method in WAMIT. 
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Fig. 2.2.  Wave elevation for a bottom-mounted, rigid, circular cylinder from MacCamy 

and Fuchs theory. 

 

 

Fig. 2.3.  Wave elevation for a bottom-mounted, rigid, circular cylinder from WAMIT 

surface elevation outputs. 
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Fig. 2.4.  Comparison between MacCamy and Fuchs theory and WAMIT surface 

elevation in x-direction and y-direction. Both figures show good agreement 

between theory and WAMIT results. 
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2.2 Effective water medium approach 

 

 In order to investigate the optical analogies to the interaction between long waves 

and an array of cylinders, an effective water medium approach developed by Hu and 

Chan (2005) is used. A regular spaced array of cylinders is considered as an effective 

medium. Depth, gravitational acceleration and wavenumber inside this effective medium 

are different from those outside the medium. Moreover, the size of the medium (defined 

by the parameter  ) is chosen so that scattering waves outside the medium may be 

neglected. 

  The formulation of the effective parameters inside the medium such as depth, 

wavenumber and gravitational acceleration are found by reasoning on a single cylinder. 

An area (zone B) around each cylinder is defined as illustrated in Fig. 2.5. In  zone B the 

wavenumber    is different from the wavenumber    in zone A. More precisely, zone B 

has a surface equal to   . It can be defined either as a square of surface   -by-   or as a 

circle of radius Re which has a surface of    around each cylinder of radius R. 

Moreover, the effective medium in Zone B has a water depth    and a gravitational 

acceleration    while Zone A has a water depth   and a gravitational acceleration  .  

 If not only one cylinder is considered but an array of cylinders, the distance 

between these cylinders is set to be equal to  . Therefore, the whole array may be 

considered as an effective medium in which the wave propagates with an effective 

wavenumber   , an effective water depth    and an effective gravitational acceleration 

  .  
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A filling ratio    of the medium can be formulated as: 

   
                  

                
 

   

  
 (2.14)  

If an array of N cylinders is now considered, the same definition for the filling ratio may 

be applied: 

   
    

   
 

   

  
 

This definition of the filling ratio is the main parameter which characterizes the array of 

cylinders and it will be used in the formulation of reflection and transmission 

coefficients by the array. 

  

Fig. 2.5.  Effective water medium (zone B) around a circular cylinder of radius R, 

bottom-mounted in water (zone A).   and    are the amplitudes of respectively 

the incident and scattering waves in zone A and    and    are the amplitudes of 

respectively the incident and scattering waves in zone B 
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 The following paragraphs describe how the effective parameters, such as the 

effective depth, the effective gravitational acceleration and the effective wavenumber, 

are obtained considering only one single cylinder surrounded by the effective medium. 

Then, these effective parameters may be generalized to the whole array of cylinders if 

the distance between the cylinders correspond to the dimension   of the effective 

medium surrounding one cylinder. 

 Considering a harmonic long water wave of frequency  , the displacement of the 

surface   follows the two dimensional Helmholtz equation: 

           (2.15)  

where   is the wavenumber derived from the dispersion relation 

              (2.16)  

Considering shallow water (     ), the dispersion relation becomes  

        (2.17)  

At the surface of the cylinder, the following boundary condition implies no flow through 

the cylinder: 

  

    
   (2.18)  

where     is the normal vector to the surface of the cylinder. 

Substituting equation (2.17) into equation (2.15), the Helmholtz equation becomes 

     
  

 
    (2.19)  

The solution of equation (2.19) in terms of surface elevation can be written as a linear 

combination of first kind Bessel functions and Hankel functions. 
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In zone A, outside the effective medium, the wave elevation    can be written as 

                       

 

   

     (2.20)  

And in zone B, in the effective medium, the wave elevation    has the form: 

                         

 

   

     (2.21)  

The Bessel function    corresponds to the incident wave with corresponding amplitudes 

   in zone A and     in zone B, while the Hankel function     corresponds to the 

scattering wave with associated amplitudes    in zone A and    in zone B. 

Continuity  in surface elevation between zone A and zone B leads to the relation 

              (2.22)  

which can be rewritten as 

                                          (2.23)  

The boundary condition on the surface of the cylinder gives: 

      

  
   (2.24)  

which may be written as 

      
             

         (2.25)  

and the continuity in flow between zone A and zone B leads to: 

 
       

  
   

       

  
 (2.26)  

which can be expressed as 

       
            

                 
              

         (2.27)  
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The effective medium is defined so that scattering waves do not exist outside the 

medium in zone A. If the total array of cylinders is considered as an effective medium, 

the result is that the waves become macrocosmically planar in the array of cylinders (see 

figure on page 37) and that allows the definition of a refracted wave inside the array. 

Therefore, in equations (2.23), (2.25) and (2.27), the scattering coefficient    is set to 0. 

The combination of equations (2.23), (2.25) and (2.27) leads to: 

              
       

         
        

       

        
          

                       
      

   

(2.28)  

When   <<1, Bessel and Hankel functions may be simplified and the following 

relations are verified: 

  
            

                                                                                    (2.29)  

    
     

  

     
  

                                                                                          (2.30)  

Besides, in shallow water, the wavenumbers may be expressed as: 

   
 

     

 (2.31)  

   
 

     

 (2.32)  

and for     and     equations (2.29) and (2.30) can be written as: 

   
 

    
  (2.33)  
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 (2.34)  

Combining equations (2.33) and (2.34), the wavenumber    inside the medium can be 

expressed as: 

           (2.35)  

and the refractive index    can be defined as: 

         (2.36)  

This refractive index is generalized to the whole array and is used to determine the 

refractive angle  , shown in Fig. 2.6 for the semi-infinite array, using Snell's law: 

            (2.37)  

 

 

Fig. 2.6.  Representation of the semi- infinite array of cylinders as an effective medium. 

The refractive angle   is determined using Snell's law. 
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The continuity equation between waves inside and outside the medium gives  

              (2.38)  

where    is the reflection coefficient and    is the transmission coefficient. 

The conservation of energy may be expressed as: 

  
    

    (2.39)  

Combining equations (2.38) and (2.39) leads to the following expressions for    and    : 

   

     
    
     

    

     
    
     

    
 (2.40)  

   
     

     
    
     

    
 

(2.41)  

These are analytical expressions for reflection and transmission coefficients. Reflectance 

and transmittance can then be found by taking the square root of    and   .  

The angle    leading to a non-reflection is called the Brewster angle and 

         
    

 
  (2.42)  

However, these formulations of    and     only correspond to a semi-infinite array. In the 

finite width array case, multiple reflections and transmissions inside the array have to be 

considered. This is why reflection and transmission coefficients formulated in equation 

(2.40) and (2.41) have to be combined with the theory associated with the Fabry-Pérot 

interferometer. The next section describes the theory for the Fabry-Pérot interferometer. 
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2.3 Fabry-Pérot interferometer 

 

 The Fabry-Pérot interferometer is an optical device used to measure the 

wavelength of light. It consists of two transparent plates with reflecting surfaces. The 

density of the medium between these two surfaces is different from the density of the 

medium outside the plates. 

 The theory associated  to the Fabry-Pérot Interferometer is used in our case to 

predict reflectance and transmittance for the array of cylinders. The following paragraph 

presents the theory associated with the Fabry-Pérot Interferometer which is illustrated in 

Fig. 2.7. 

 

Fig. 2.7.  Fabry-Pérot interferometer constituted of reflecting surfaces. Multiple 

reflection and transmission occur inside the medium. 
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 In this section   and   are respectively the complex-valued transmitted and 

reflected wave amplitude coefficients associated with the interferometer and   and   are 

respectively the transmitted and reflected intensities (transmittance and reflectance) 

associated with the interferometer.   and   may be expressed as: 

     (2.43)  

     (2.44)  

      (2.45)  

 A  beam of unit amplitude is incident from infinity to the first plate (plate 1). A 

part of it is reflected by plate 1 and the other part is transmitted to the inner medium. The 

transmitted beam in the inner medium has now an amplitude  . When it meets the second 

plate (plate 2), one part is transmitted to the outside and another is reflected by plate 2 

back to the inner medium. The transmitted one has an amplitude     but a phase lag for 

the path in the inner medium has to be added :        . Hence, the first transmitted wave 

is  

                     (2.46)  

The second transmitted wave may be similarly derived, but it is necessary to add  a 

phase lag         to account for the lag between    and    , and because the beam has 

crossed the medium three times, the corresponding phase lag becomes         (lengths    

and    are represented in Fig. 2.7). Thus    is represented by the following expression: 

                                         (2.47)  

Therefore, using Snell's law, the total phase difference between the two beams is: 
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                      (2.48)  

More generally, the nth transmitted  beam has an amplitude: 

           (2.49)  

Then, the total transmitted amplitude is: 

      

 

   

         
 

 

   

 (2.50)  

Because        ,    can be rewritten as: 

   
 

      
 (2.51)  

The transmitted intensity is defined as: 

       
  

      

           
 (2.52)  

and the reflected intensity as: 

          
      

           
  (2.53)  

 The last expression (  ) is used for the comparison with WAMIT's results. One 

can observe that this expression depends on the width of the medium which will have to 

be defined. Moreover, for certain values of   and consequently for certain values of  , 

equation (2.53) is equal to zero which leads to a non-reflection from the array. These 

values for the incident angles are different from the Brewster angle discussed in section 

2.2. 

 The next section explains how the reflection and transmission coefficients from 

WAMIT's surface elevation outputs have been determined. 
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2.4 Method to determine reflection coefficients from WAMIT 

 

2.4.1 Decomposition of the wave elevation domain 

 WAMIT returns the wave elevation for the input grid of free surface field points. 

The grid specified in the FORCE input file has a spacing of 5 ft. As shown in Fig. 2.8., 

the array is 10000 ft long in WAMIT, long enough to avoid sides effects. In fact for 

higher headings (e.g. 80 deg), the transmitted wave is more affected by the end effects. 

The studied part is 1500 ft long and 3000 ft wide. The cylinder array is constituted of 9 

layers and the distance between the cylinders is 50 ft.  

 

Fig. 2.8.  Array of cylinders. The blue zone is the studied domain. 

 

            In order to study wave elevation, the field the separated into three domains as 

illustrated in Fig. 2.9. 
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Fig. 2.9.  Decomposition of the studied domain into three zones. Zone A contains incident 

and reflected waves, zone B is the array of cylinder containing a refracted wave 

and Zone C contains a transmitted wave. 

 
 

The first zone is the incident domain (zone A) which contains an incident wave and 

a reflected wave from the reflection with the array.   

The incident wave elevation is defined as 

                                        (2.54)  

The reflected wave elevation is defined as 

 
   

                        θ       θ         (2.55)  

The total wave elevation is therefore 

 
 
       

   
       

   
      (2.56)  
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The second zone is the array of cylinders (zone B) and the effective water medium 

which contains two waves. 

A transmitted wave from the incident domain to the array 

 
   

                                           (2.57)  

A reflected wave from the second edge of the array 

 
   

                                           (2.58)  

Thus, the total wave elevation is 

 
 
       

   
       

   
      (2.59)  

Due to refraction, the transmitted and reflected waves inside the array propagate with 

angle   . 

The third zone is the transmitted domain (zone C) that only contains the 

transmitted wave from the array. 

 
   

                        θ       θ         (2.60)  

And the total wave elevation is  

 
 
       

   
      (2.61)  

 

2.4.2 The Maximum Likelihood Method 

  The Maximum Likelihood Method (MLM), which is a statistical method, has 

been used to determine reflection and transmission coefficients for the three parts of the 

field. The MLM is computationally efficient and robust because it requires a few 

numbers of outcomes and it avoids accumulation of numerical errors. 
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The measured or calculated data can be decomposed as: 

             (2.62)  

where       represents the linear harmonic response,    is the error,         are the 

time steps and           where K is the number of unknowns. The unknown 

parameters are included in   . 

In matrix notation, 

               (2.63)  

Then     is obtained as 

                        (2.64)  

In the present study,    corresponds to the wave elevation data set from WAMIT and 

      is the theoretical linear wave elevation where the unknowns are the reflected and 

transmitted coefficients and the phase lags induced by the reflection and transmission 

process. 

The MLM is applied for each part of the domain defined in Fig. 2.9. 

 

Zone A : 

Only two unknowns exist in zone A: the amplitude of the reflected wave in part A,      

and its phase     . 

In that particular case,  the surface wave elevation can be written as: 

          
 
               

          (2.65)  

where 
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         θ        θ (2.66)  

 
 
          θ        θ (2.67)  

Rewriting (2.65) to collect the unknowns on one side : 

  
            

 
              

          (2.68)  

  
              

                          
             (2.69)  

Writing equation (2.69) in terms of matrices, 

 
 
 
 
  
 

  
 

 
  
  
 
 
 

  

 
 
 
 
         

   

       
 
   

 

       
 
   

   

       
 
   

       
 
   

 

       
 
    

 
 
 
 

  
  

  
  (2.70)  

with 

                 (2.71)  

                  (2.72)  

then the results for      and       are: 

         
    

  (2.73)  

            
   

  
  (2.74)  

Zone B : 

In zone B there are six unknowns :     ,     ,     ,     ,    and   where     ,      are 

respectively the amplitudes of the transmitted and reflected waves in zone B and     , 

     are the phase of the transmitted and reflected waves.     ,     ,     ,      can be 

evaluated using the Maximum Likehood Method. 
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A trial-and-error procedure is used to find the    and   pair that has the minimum Mean 

Square Error (MSE) (see Fig. 2.10). 

The MLM can be set up similarly to part 1: 

                                     
          (2.75)  

Using the same decomposition for the cosine as in equation (2.69), and rewriting in term 

of matrices: 

 
 
 
 
  
 

  
 

 
  
  
 
 
 

  

 
 
 
 
            

           

 
           

   

           

           

 
           

  

         
   

         
   

 

         
   

   

         
   

         
   

 

         
    

 
 
 
 

  

  

  

  

  

  (2.76)  

with 

                 (2.77)  

                 (2.78)  

                 (2.79)  

                  (2.80)  

then  

         
    

  (2.81)  

         
    

  (2.82)  

            
   

  
  (2.83)  

            
   

  
  (2.84)  
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Transmission and reflection coefficients for zone C are calculated similarly to those for 

zone 1 since only one wave exists in that domain. 

 

Fig. 2.10.  Method to calculate reflection and transmission coefficients in zone B. 
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MLM Method
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values of                      

φj, kej                             
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2.5 Diffraction by an array of bottom-mounted, rigid  cylinders 

 

 The high-order method is used to define the geometry of the system. The body 

surface is defined by patches where the Cartesian coordinates of the points on each patch  

are defined by mapping functions. Arrays of uniformly spaced rigid cylinders are 

considered as one single body with two planes of symmetries in the X and Y-directions.  

 The completed case is a nine-layer regular array with a filling ratio equal to 0.387 

for twenty different incident angles (0 to 85 degrees) and for a wave period of T = 7.99 

sec. The parameters for this array are presented in Table 2.2. This is the same case 

studied by Hu and Chan, at least in terms of non-dimensional parameters. 

 The length of the array has been chosen long enough (10,000 ft) so that end 

effects do not dramatically affect the results for surface elevation in the central region. 

The length of the studied field is 1500 ft (see Fig. 2.8).  
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Table 2.2.  Inputs used in WAMIT for the regular array of cylinders. 
 

Parameter  Value 

Radius of cylinder, R 17.5 ft 
Draft of cylinder, d 40 ft 
Water depth, h 40 ft 
Wave period, T 7.99 sec 
Wavenumber, k 0.02513ft-1 
Amplitude of incident wave, A 1 
Gravitational acceleration, g 32.2 ft/s2 
Filling ratio, fs 0.385 
Spacing between cylinders, a 40 ft 
Length of the array 10,000 ft 
Width of the array 450 ft 
Number of cylinders, N 1800 
Number of cylinders in X-dir., Nx 9 
Number of cylinder in Y-dir., Ny 200 

 
 

2.5.1 Surface elevations  

 Surface elevations have been plotted from WAMIT's output using MATLAB. In 

Fig. 2.11 incident waves come from the left-hand side. Therefore, the left-hand side of 

the array contains the incident and reflected waves and the right-hand side the 

transmitted waves. 

 One may observe, in Fig. 2.11, that for certain angles the reflected wave from the 

array is quasi-inexistent (e.g.          and         ). The theory developed by Hu 

and Chan (2005) can only predict one non-reflection angle, the Brewster angle, because, 

as mentioned before, that theory only stands for a semi-infinite array of cylinders. This is 
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why the theory associated with the Fabry-Pérot interferometer has been presented in 

section 2.3. 

 

 

Fig. 2.11.  Surface elevations for the incident angles (a) 0 deg, (b) 20 deg, (c) 25 deg, (d) 40 

deg, (e) 55 deg and (f) 65 deg. The incident wave comes from the right-hand 

side. 
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2.5.2 Validation of the definition of the refractive index  

 WAMIT has been run for eight different filling ratios and for five different 

incident angles (0, 20, 40, 60 and 80 deg). For each case, the refractive index has been 

calculated from WAMIT's surface elevation output by two different ways and for the 

five incident angles. The first way is to determine the refractive angle inside the array 

and use Snell's law to calculate the refractive index. The second way is to determine the 

wavenumber inside the array and use the relation         to find the refractive index. 

 Refractive indexes calculated with these two methods are very close to the ones 

determined using expression (2.35) from Hu and Chan, thus validating the theoretical 

formulation of the refractive index. 

 

Fig. 2.12.  Refractive index ne as a function of the filling ratio fs of the array from both 

theoretical formulation and WAMIT's results. 
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2.5.3 Refraction coefficients and effective width 

 Once the definition of the refractive index is verified with WAMIT, the next step 

is to determine the reflection coefficients for the array using WAMIT output. The 

surface elevation output from WAMIT are studied and the Maximum Likelihood 

Method described in section 2.4 is applied to determine the reflection and transmission 

coefficients. The nine-layer array has been run for twenty different angles (from 0 to 85 

degrees) and for six different wave periods (5 sec, 7.99 sec, 8.5 sec, 9.5 sec, 11 sec and 

14 sec) with their corresponding wavelengths (124 ft, 250 ft, 270 ft, 310 ft, 368 ft and 

481 ft). 

 The first case has a wave period of T = 5 sec. Results in Fig. 2.13 show that 

WAMIT's reflection coefficients do not agree with those from the Fabry-Pérot theory 

described in section 2.3. This could have been predicted: since the wavenumber is equal 

to   = 0.0508 ft-1, the shallow water condition      is not satisfied (    ).   

 The second run (Fig. 2.14) is the case studied by Hu and Chan which is for a 

period of T = 7.99 sec. For this case, WAMIT results seem to match the Fabry-Pérot 

interferometer theory. However, for small incident angles (0 to 30 degrees), some 

inconsistencies were observed in the results and the curve of WAMIT's reflection results 

did not perfectly match the theoretical one. This may be the result of the definition of the 

effective width of the array which implicitly appears in the reflection coefficient formula 

(2.53).  A width w = 450 ft which corresponds to the width of the medium as defined by 

Hu and Chan was initially chosen. In order to correct the Fabry-Pérot curve for small 

incident angles we increased the effective width of the array to 480 ft at 0 degrees. Then 
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the effective width is assumed to linearly decrease to 450 ft at around 30 degrees. The 

figure on page 44 represents the effective width of the array as a function of the  incident 

angle.  

 To verify that empirical definition of the effective width of the array, other cases 

were run for higher periods (8.5, 9.5, 11 and 14 sec). For wave periods of 8.5 sec (Fig. 

2.15) and 9.5 sec (Fig. 2.16)  the effective width has respectively been corrected to 460 

ft and 455 ft at 0 deg. For wave periods of 11 sec (Fig. 2.17) and 14 sec (Fig. 2.18), the 

effective width does not need to be corrected. Curves obtain for the effective width as 

depicted in Fig. 2.19 seem to indicate consistency in the empirical definition of the 

effective width of the array.  

 Moreover, results from both WAMIT and Fabry-Pérot interferometer lead to 

non-reflection for certain incident angles. Two effects may explain that phenomenon. 

The first is the Brewster angle which is due to the non-reflection at one edge of the 

array. The formulation of the Brewster angle    given by equation (2.42) leads to 

          for the studied array. As expected, Fig. 2.13 through Fig. 2.18 all show 

zero reflection at 72 degrees. The other effect is the Fabry-Pérot effect and zero-

reflections are the results of equation (2.49). Note that Fig. 2.14 is the same case as Hu 

and Chan. They observed only one Fabry-Pérot non-reflection angle while two Fabry-

Pérot non-reflection angles may be seen in our case and are predicted by the theory.  
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Fig. 2.13.  Reflectance from the array of cylinders for an incident wave period T = 5 sec as 

a function of the incident angle. 

 
 

 

Fig. 2.14.  Reflectance from the array of cylinders for an incident wave period T = 7.99sec 

as a function of the incident angle. 
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Fig. 2.15.  Reflectance from the array of cylinders for an incident wave period T = 8.5 sec 

as a function of the incident angle. 

 
 

 

Fig. 2.16.  Reflectance from the array of cylinders for an incident wave period T = 9.5 sec 

as a function of the incident angle. 
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Fig. 2.17.  Reflectance from the array of cylinders for an incident wave period T=11 sec as 

a function of the incident angle. 

 
 

 

Fig. 2.18.  Reflectance from the array of cylinders for an incident wave period T = 14 sec 

as a function of the incident angle. 
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Fig. 2.19.  Effective width of the array of cylinders as a function of the incident angle for 

four different incident wave periods of 7.99 sec, 8.5 sec, 9.5 sec and 11 sec. 
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2.6  Bi-convex cylinder arrays 

 

 Hu and Chan (2005) demonstrated the focusing effect of a bi-convex array of 

cylinders. This problem is further studied herein in light of the optical analogy. An array 

of regularly spaced cylinders have been defined to obtain a certain radius of curvature as 

shown in Fig. 2.20. Planes of symmetry in the X and Y directions have been considered. 

The first array (case 1) consists in 728 cylinders, it has a radius of curvature of R = 2800 

ft and a filling ratio    = 0.385 corresponding  to a refractive index    = 1.17. 

Surface elevations (Fig. 2.21, Fig. 2.23 and Fig. 2.25) and wave intensities (Fig. 2.22, 

Fig. 2.24 and Fig. 2.26) have been plotted with MATLAB. 

 

Fig. 2.20.  Bi-convex array of 728 cylinders. Coordinates of each cylinder have been 

inputted in WAMIT. 

 
 

 



 46 

 

Fig. 2.21.  Wave elevation for a bi-convex array of cylinders, for an incident wave period 

T = 7.99 sec and a filling ratio fs = 0.385. 

 
 

 

Fig. 2.22.  Wave intensity for a bi-convex array of cylinders, for an incident wave period  

T = 7.99 sec and a filling ratio fs = 0.385. 
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Fig. 2.23.  Wave elevation for a bi-convex array of cylinders, for an incident wave period 

T = 11 sec and a filling ratio fs = 0.385. 

 
 

 

Fig. 2.24.  Wave intensity for a bi-convex array of cylinders, for an incident wave period  

T = 11 sec  and a filling ratio fs = 0.385. 
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Fig. 2.25.  Wave elevation for a bi-convex array of cylinders, for an incident wave period 

T = 7.99 sec and a filling ratio fs = 0.581. 

 
 

 

 

Fig. 2.26.  Wave intensity for a bi-convex array of cylinders, for an incident wave period  

T = 7.99 sec and a filling ratio fs = 0.581. 
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 Fig. 2.22, Fig. 2.24 and Fig. 2.26 show an area where the wave energy is focused. 

In order to relate this phenomenon to optical properties, the intensity has been plotted 

along the X-direction (see Fig. 2.27 and Fig. 2.28). One can observe that a point with 

maximum intensity exists for the three studied cases.  

 The first and second cases (case 1 and 2) have the same filling ratio    = 0.385 

but they have two different wave periods T1 = 7.99 sec and T2 = 11 sec. Fig. 2.27 shows 

that the maximum intensity is located almost at the same point for both cases. Thus, in a 

first approach, it may be concluded that the location of the maximum wave intensity 

does not depend on the wave period. However, Fig. 2.27 also indicates that the 

maximum wave intensity is higher for short wave periods (e.g. case 1, T1 = 7.99 sec) 

and decreases for longer wave periods (e.g. case 2, T2 = 11 sec). It is also noted in Fig. 

2.28, which represents the wave intensity in the Y-direction at the maximum intensity in 

the X-direction, that the maximum intensity is more narrow for shorter wave periods. 
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Fig. 2.27.  Wave intensity along the X-direction for a bi-convex array of cylinders, for 

incident wave periods of 7.99 sec and 11 sec and  filling ratios of 0.385 and 

0.581. 

 
 

 

Fig. 2.28.  Wave intensity along the Y-direction for a bi-convex array of cylinders, for 

incident wave periods of 7.99 sec and 11 sec and  filling ratios of 0.385 and 

0.581. 
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 The third case (case 3) has a filling ratio    = 0.581 and a wave period T = 7.99 

sec. The maximum wave intensity for this case is observed to be at a location closer to 

the array than it was for case 1. The filling ratio represents the density of the array.  

 If optical analogies are considered, an optical converging lens can be studied. In 

optics, the point where the light is focused is called the focal point and it depends on the 

density and the curvature of the focusing lens. The following formula of the focal point 

can be found in the basic optical literature: 

 

 
       

 

  
 

 

  
    

   

 

 

     
  (2.85)  

where   is the focal distance,   is the index of refraction of the lens,   is the width of the 

lens,    is the radius of curvature of the first edge of the lens and    is the radius of 

curvature of the second edge of the lens as shown in Fig. 2.29. 

In the studied case, both edges have the same radius of curvature, thus       . 

 

Fig. 2.29.  Converging lens.  
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 Equation (2.85) indicates that the focal distance basically depends on the radius 

of curvature, the width of the lens and the index of refraction of the lens. In Fig. 2.30, 

theoretical curves for the focal distance are plotted as functions of the curvature and the 

index of refraction. The two plotted points correspond to the maximum of wave intensity 

for case 1 and case 3. The maximum of intensity is then related to the focal distance. 

 

Fig. 2.30.  Focal distance as a function of the refractive index ne and the radius of 

curvature R. Focal distances for both case 1 and case 3 are represented 

respectively by a square and a diamond. 

 
  

 Case 1 and 3 corresponds to a radius of curvature R = 2800 ft. However, one can 

observe in Fig. 2.30 that the effective radius of curvature of the array is between 1900 ft 

and 2200 ft. 

 In section 2.5.3, the effective width has been discussed for a rectangular array of 

rigid cylinders. It was observed that for small incident angles (below 30 degrees), the 

width of the array has to be corrected and the resulting effective width is larger than the 
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real width. If the same principle is applied in the present case, it can be shown that the 

effective radius of curvature of the bi-convex array is smaller than the real radius of 

curvature. In fact, as shown in Fig. 2.31, the incident wave has an incident angle close to 

0 degree at the center of the array which leads to a larger width of the array and thus to a 

smaller radius of curvature. The incident angle increases for incident waves at both 

edges of the array.  

 

Fig. 2.31.  Effective curvature of a bi-convex array of cylinders. 

 
  

 It was also seen that the effective width has to be increased for small wave 

periods in the rigid array case. In the lens case, the location of the focal point does not 

depend on the wave period. Thus, other unknown phenomena are needed to explain the 

difference between the focal length predicted by optical theory and WAMIT results. 

 

 

 



 54 

3.  ARRAYS OF ELASTIC CYLINDERS 

 

 The study of wave diffraction by regular arrays of rigid cylinders was used to 

verify the set up of the WAMIT model for a subsequent study of wave attenuation by 

arrays of elastic cylinders. As explained in the introduction, the motivation is to study 

similar behaviors that occur in the acoustical problem presented by Junger and Cole 

(1980). In fact, Junger and Cole studied sound propagation in a bubble swarm and found 

that sound attenuation is more effective when the sound frequency is in the range of the 

natural pulsating frequencies of the bubbles.  

 In this section, bubbles are replaced by flexible/elastic cylinders which can have 

circumferential deformations. These deformations are decomposed in a set of modes. the 

first one is a "breathing" mode and has a similar behavior as a pulsating bubble. The 

theory for the equations of motion, the natural frequency of the cylinders and the mass 

and stiffness matrices, which will be implemented in WAMIT, are first presented in this 

section. WAMIT results are then discussed for the case of a single cylinder.    
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3.1 Theoretical background 

 

3.1.1 Displacements 

 The system considered is a closed circular cylindrical shell of length L clamped 

at the bottom and at the top. Therefore, radial displacements are impossible at the top 

and bottom. A thin shell is a body bounded by two curved surfaces. The distance 

between these two surfaces is small compared to the other dimensions of the shell 

(radius and length). 

  Because of the geometry of the body, cylindrical coordinates are used to 

describe the evolution of the system. The cylinder is no longer rigid but elastic and the 

surface of the body has displacements of the form: 

                     (3.1)  

                     (3.2)  

                     (3.3)  

where   ,    and    are respectively the displacements in vertical, tangential and radial 

directions as shown in Fig. 3.1 and          are the corresponding amplitudes for these 

displacements. 

 Hence, the total displacements  ,   and    of the body may be expanded into a 

Fourier series in  : 

                    

 

   

 (3.4)  
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 (3.5)  

                    

 

   

 (3.6)  

 

 

Fig. 3.1.  Cylindrical coordinates and displacements. 

 
 

           To satisfy the boundary condition (v = w = 0 at z = 0 and z = L) the parameter    

may be set as:  

  
 

 
 (3.7)  

The presence of        in the equations (3.2) and (3.3) implies no displacement at the 

bottom and top of the cylinder and a maximum displacement at mid-depth which 
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corresponds to a cylinder clamped at both top and bottom. Radial displacements are 

represented in Fig. 3.2. The effect of setting   
 

 
 is visible in Fig. 3.3 where the first 

four displacements are represented in 3D.  

 

Fig. 3.2.  First six circumferential displacement modes at z = L/2. 
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Fig. 3.3.  First four circumferential displacement modes in 3D. 

 
 

 A clamped cylinder at both bottom and top is physically realistic, Fig. 3.4 gives 

an example for the structure of such a cylinder. It is constituted of two rigid circular 

frames linked by a rigid vertical rod. This assembly serves as a backbone for the elastic 

vertical shell that is wrapped around and clamped to the top and the bottom frames. 
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Fig. 3.4.  Example of a structure for a bottom-mounted cylinder which is clamped at the 

bottom and at the top. 

 
 

 The displacement mode corresponding to   = 0 is called the "breathing" mode 

and its natural frequency will receive particular attention, especially in choosing the 

material properties of the cylindrical shell. 
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3.1.2 Diffraction and radiation potentials 

 As for the single rigid cylinder, the incident wave can be expressed as: 

 
 
    

  

 
 
            

        
                    

 

   

       (3.8)  

and the solution for the first-order scattered wave is given by MacCamy and Fuchs: 

 
 
   

  

 
 
            

        
      

  
     

  
     

               

 

   

       (3.9)  

In fact, for the deformable cylinder, the scattering potential is the same as the one for the 

non-deformable body as specified by Newman (1994). 

 Dean and Dalrymple (1991) presented an analytical solution for the radiation 

potential of a cylindrical wavemaker which has radial displacements. This solution has 

been modified in order to account for the zero-displacement at the top and at the bottom 

of the cylinder. The resulting expression is then used to formulate the radiation potential 

of the cylindrical shell.       

 The total radiation potential due to the body's motions can be written as a linear 

combination of the radiation potential due to each mode of displacement:  

 
 
        

 

   

 (3.10)  

where    is the amplitude of the displacement corresponding to the n-th mode 

    

    
    
    

  (3.11)  

and  
   

 is the radiation potential due to the n-th mode with:  
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  (3.12)  

 
    

     
                                   

           

 

   

                          
(3.13)  

The first term corresponds to the propagating mode while the second term corresponds 

to the evanescent modes. 

        The wavenumbers   and    are calculated using the following dispersion relations: 

                (3.14)  

                (3.15)  

Equation (3.14) is the dispersion relationship for progressive waves and    is real. The 

second relationship (3.15) gives the wavenumbers for standing waves which have 

amplitudes that decrease exponentially with distance from the cylinder.  

Coefficients    and    are determined by the lateral boundary conditions at the 

cylinder: 

   
                       

 

  

     
         

 

                 
 

  

 (3.16)  

   
                      

 

  

     
         

 

                
 

  

 (3.17)  

A kinematic boundary condition has been applied to the moving surface of the cylinder 

to obtain equation (3.13) and its associated coefficients    and   . It accounts for the 



 62 

radial displacement of the surface and the fact that the cylinder is clamped at the top and 

bottom. The linear kinematic condition is: 

 
     

  
 

       

 
         (3.18)  

In this research, equation (3.13) is used to validate the solution given by WAMIT for the 

radial potential due to the first order "breathing" displacement. 

 Finally, the total velocity potential   can be expressed by:  

   
 
  

 
 (3.19)  

 

3.1.3 Equations of motion 

 The theory of the vibration of thin shells from Leissa (1973) is used to describe 

the motion of the elastic cylinder. The equations of motion are derived using the theory 

of surfaces. In fact the deformation of the shell is determined by the displacement of the 

surface. In the present case,  the equations of Donnell and Mushtari have been used. 

They come from the standard derivation using Love's first approximation. For this 

approximation the following assumptions must be considered (Leissa 1973): 

- The thickness of the shell is small compared to other dimensions of the body. 

- Strains and displacement are small enough to neglect second order in the strain 

displacement relations. 

- The transverse normal stress is small compared with the other normal stress 

components and may be neglected. 

- Normals to the underformed middle surface remain straight and normal to the 

deformed middle surface and suffer no extension. 
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  According to the Donnell-Mushtari theory for vibrations of thin cylindrical 

shells, the equations of motion can be written as: 

            (3.20)  

with  

      
  
  

  

  (3.21)  

where      is the displacement vector and   ,    and    are respectively the 

displacements in the vertical, tangential and radial directions.     is a 3-by-3 matrix: 

     

         

         

         

  (3.22)  

with 

    
  

   
 

     

 

  

   
   

        

 

  

   
 (3.23)  

         
     

 

  

    
 (3.24)  

     
 

  
  (3.25)  

     
     

 

  

   
 

  

   
   

        

 

  

   
 (3.26)  

        
 

  
 (3.27)  

            
        

 

  

   
 (3.28)  

In these equations,   is the Poisson's coefficient,   the Young's modulus,   the density 

of the material and   
  

    
  . 
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Substituting   ,    and    by relations (3.1), (3.2) and (3.3), the equations of motion 

become  

     

  

  

  
      (3.29)  

with 

      

   
    

    
 

   
    

    
 

   
    

    
 

  (3.30)  

and 

   
      

   

 
   

           

 
 (3.31)  

   
     

  
   

 
   (3.32)  

   
      

     (3.33)  

   
   

   

 
      

           

 
 (3.34)  

   
      

     (3.35)  

   
              

           

 
 (3.36)  
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3.1.4 Mass and stiffness matrices  

 The mass and stiffness matrices for the cylindrical shell can be defined following 

Newman's procedure (1994).  

In fact the operator      in equation (3.30) can be rewritten as 

     
       

 
              (3.37)  

where 

      

         

         

         

  (3.38)  

and 

        
   
   
   

  (3.39)  

with  

    
 

       
     

   

 
    (3.40)  

        
 

       
 
   

 
    (3.41)  

         
 

       
     (3.42)  

    
 

       
  

   

 
       (3.43)  

         
 

       
     (3.44)  

    
 

       
              (3.45)  
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Hence, the equation (3.29) becomes 

                    (3.46)  

where   is the first order pressure force. 

Besides, the displacement can be decomposed in a set of modes    (n = 0,...,N): 

                 

 

 (3.47)  

where  

         

              

              

              

  (3.48)  

Substituting (3.47) into (3.46) and using the method of weighted residuals (equation 

(3.46) is multiplied by            and integrated over depth and contour): 

              
                             

  

 

 

   

            
             

  

 

 

  

 

(3.49)  

which can be rewritten as  

               

 

            
             

  

 

 

  

 (3.50)  

with 

               
                    

  

 

 

  

 (3.51)  
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 (3.52)  

where     is the mass matrix and     is the stiffness matrix. 

 

3.1.5 Added-mass, damping and wave-exciting forces 

 Added-mass     and damping coefficients    , generalized wave-exiting force   , 

and hydrostatic coefficients     are evaluated by WAMIT. Their analytical formulations 

are given by Newman (1994). 

 The first order-pressure force   can be decomposed on the set of modes and the 

resulting form is: 

         
 

  

                
 

  

 (3.53)  

where   is the fluid pressure from the Bernoulli equation.  

 The right-hand side of equation (3.53) includes the contribution of diffraction 

and radiation potentials to the first-order pressure force  . If the terms corresponding to 

the radiation potential are moved to the left side of equation (3.50), the following 

conventional equations of motion are obtained: 

                               

 

     (3.54)  
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3.1.6 Natural frequency 

 The natural frequency of the elastic cylinder may be evaluated by calculating the 

determinant of       

Denoting 

   
           

 
 (3.55)  

the determinant of      leads therefore to 

      
     

       (3.56)  

where 

     
 

 
                       (3.57)  

    
 

 
                          

 
     

     
           

(3.58)  

   
 

 
                          (3.59)  

The equation (3.56) has three roots. According to Leissa (1973), the larger one 

corresponds to radiation displacements. 

 Then material properties are chosen so that the natural period of the shell is in the 

range of the studied wave frequencies.  
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3.2 Single elastic cylinder: WAMIT's results 

 

3.2.1 Circumferential modes in WAMIT 

 As explained in the introduction, deformation modes have been incorporated in 

WAMIT's subroutine NEWMODES. These modes were defined in cylindrical 

coordinates in section 3.1 but the geometry of the body has to be specified in Cartesian 

coordinates in WAMIT. Thus, modes in section 3.1 have been projected on the Cartesian 

coordinates. Furthermore, for this problem the fluid pressures induced by the tangential 

modes may be neglected compared to those induced by the radial modes.  

Circumferential modes are now defined by: 

                 
 

 
           

 

      
  

 

      
 (3.60)  

                 
 

 
           

 

      
  

 

      
 (3.61)  

                 
 

 
           

 

      
   (3.62)  

Nonetheless, these definitions involve the trigonometric function "acos" which is not 

defined everywhere in the domain. Thus a decomposition of         has been realized 

using Tchebytchev decomposition: 

          
 

    
 

 
 
 
 

   

                            (3.63)  

Following are some examples for the first three circumferential modes added into 

WAMIT: 
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(3.64)  

          
 

 
  

 

          
  

 

          
  

          
 

 
  

 

          
  

 

          
  

          
 

 
  

 

          
  

(3.65)  

 

          
 

 
    

  

     
    

 

          
  

          
 

 
    

  

     
    

 

          
  

          
 

 
    

  

     
    

(3.66)  

 

3.2.2 Choice of material properties and natural frequency 

 Material properties were chosen to set the breathing mode natural frequency of 

the cylinder in the range of the studied wave frequencies. Table 3.1 presents material 

properties and geometric characteristics of the cylinder. These properties correspond to a 

manufactured rubber. Then mass and stiffness matrices have been calculated with 
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equations (3.51) and (3.52). The resulting mass and stiffness coefficients are presented in 

Table 3.2 

 

Table 3.1.  Material properties of the cylinder. 

 
Parameter Value 

Radius of cylinder, R 17.5 ft 
Draft of cylinder, d 200 ft 
Water depth, h 200 ft 
Thickness of cylinder 1 ft 
Poisson's coefficient, ν 0.4 
Young's modulus, E 7 MPa 
Density, ρ 1500 kg/m3 

 
 

Table 3.2.  Mass and stiffness coefficients. 

 
n Mass coefficients (kg) Stiffness coefficients (N/m) 

0 1.40E+06 7.52E+05 
1 1.05E+06 1.90E+06 
2 1.05E+06 7.22E+06 
3 1.05E+06 1.06E+07 
4 1.05E+06 1.40E+07 
5 1.05E+06 1.75E+07 
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3.2.3 Diffraction and radiation surface elevations 

 Free surface elevations associated with solution of the diffraction and radiation 

potentials have been plotted from WAMIT output. Fig. 3.5 is the diffracted wave field 

and the result is similar to the one obtained with a rigid cylinder. Fig. 3.6 represents 

radiated wave field for the first six generalized modes. The figure indicates that the 

contribution of the radiated wave field to the total surface elevation becomes negligible 

for n greater than 3, especially for distances far from the cylinder. 

 

 

Fig. 3.5.  Diffraction surface elevation from WAMIT. 
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Fig. 3.6.  Radiation surface elevations for the first six generalized modes. 

 
  

 The radiated wave field from WAMIT for the first "breathing" generalized mode 

is compared in Fig. 3.7 against the theoretical radiation solution formulated by Dean and 

Dalrymple. The third frame (c) in Fig. 3.7 indicates that the reduction in wave elevation 
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with radial distance is slightly larger for the WAMIT solution than it is for Dean and 

Dalrymple's wavemaker theory. The figure also shows that some inconsistencies exist 

close to the cylinder. It is possible that the formulations of the boundary conditions for a 

clamped-clamped shell were not correctly included in the wavemaker theory and that the 

evanescent part in the theoretical formulation (3.31) was not correctly computed.  

 

Fig. 3.7.  Comparison between Dean and Dalrymple wavemaker  (a) and WAMIT results 

for surface elevation (b) in the radial direction (c). 

 
  

 In addition, the Response Amplitude Operator (RAO) for the elastic cylinder is 

given by WAMIT and is plotted in Fig. 3.8. For the first generalized mode (n = 0), one 
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can observe the natural frequency of the breathing mode around 9.5 sec which is 

consistent with the choice of material properties discussed in the previous section. 

 Added-mass and damping coefficients and exciting forces calculated by both 

Haskind relations and direct integration of hydrodynamic pressure have also been 

evaluated by WAMIT and the results are shown respectively in Fig. 3.9, Fig. 3.10, Fig. 

3.11 and Fig. 3.12. 

 

 

Fig. 3.8.  RAO for the first four circumferential modes. 

 
  

 Fig. 3.8 also indicates that for higher order generalized modes, the natural period 

associated to the corresponding mode becomes smaller. For example, for the third mode 

(n = 2), the corresponding natural period is 3 sec. 
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Fig. 3.9.  Added-mass coefficients for the first four generalized modes. 

 
 

 

Fig. 3.10.  Damping coefficients for the first four generalized modes. 
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Fig. 3.11.  Exciting forces from Haskind relations for the first four generalized modes. 

 

 

Fig. 3.12.  Exciting forces from direct integration of hydrodynamic pressure for the first 

four generalized modes. 
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 The exciting forces from the Haskind relations in Fig. 3.11 and the exciting 

forces from the direct integration of the hydrodynamic pressure in Fig. 3.12 present good 

agreement. The exciting forces from the Haskind relations are calculated using the 

radiation potentials while the exciting forces from the direct integration of the 

hydrodynamic pressure are evaluated using the diffraction potential. Therefore, the good 

agreement between both results validates our implementation of the generalized modes 

into WAMIT as well as the radiation solution returned by WAMIT. It also shows the 

accuracy for the evaluation of the velocity potentials using the high-order method in 

WAMIT. However, in Fig, 3.11 and Fig. 3.12, the fourth frames indicate some 

inconsistencies which may be resolved by increasing the resolution in azimuthal 

direction.    
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3.3 Arrays of elastic cylinders: WAMIT's results 

 

 All the preceding steps have been realized in order to study an array of elastic 

cylinders with WAMIT. In fact, an effective medium approach for an array of rigid 

cylinders have been validated by WAMIT results and circumferential deformation 

modes have been incorporated in WAMIT. The material properties of the cylinders 

inside the array may be chosen so that the natural frequency of their "breathing" mode is 

in the range of the studied wave periods. Therefore the interaction between long water 

waves and arrays of elastic cylinders may present analogous behavior as the one 

observed in the acoustical problem when an acoustical wave crosses a bubbly swarm.  

 An array of these elastic cylinders have been inputted in WAMIT. Unfortunately, 

our run in WAMIT did not give good results for that array, even if just the first 

"breathing mode" was considered. Fig. 3.13 gives an example of a random array that 

could be run with WAMIT. The filling ratio may be smaller than the array of rigid 

cylinders. In fact, the "breathing" behavior of the cylinders should accentuate wave 

attenuation effects. 
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Fig. 3.13.  Random array of elastic cylinders.   
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4.  SUMMARY AND CONCLUSIONS 

 

 In this study, long wave interactions with arrays of bottom-mounted rigid and 

elastic vertical circular cylinders have been analyzed. The main objective was to 

investigate optical and acoustical analogies. The motivation behind this study was to 

look for wave attenuation phenomenon similar to those existing in acoustics. In fact, for 

certain frequencies, an acoustic wave can be attenuated while it propagates through a 

layer of a bubbly liquid. Wave attenuation is measured by its Insertion Loss (IL) which 

is frequently used in acoustics and telecommunications.   

 The first step was to study regular arrays of rigid cylinders in order to validate 

WAMIT results before studying an array of elastic cylinders. These arrays had been 

studied by Hu and Chan (2005) from an optical viewpoint. The effective water medium 

approach formulated by Hu and Chan for a semi-infinite array was used in this study and 

was further developed to account for the multiple reflections inside the finite-width 

array. Hence, the theory associated to an optical device, the Fabry-Pérot interferometer, 

was considered.  

 The other objective of this study was to use WAMIT to analyze this long 

wave/array interaction and develop a method to find reflection and transmission 

coefficients for the array. In the case of the flexible cylinders, generalized modes were 

incorporated to WAMIT subroutine to account for the deformation of the surface of the 

cylinder.  

 The following summaries and conclusions can be made from this study: 



 82 

(a) The high-order method was used to define the geometry of the body in WAMIT. The 

body surface is defined by patches where the Cartesian coordinates of the points on each 

patch  are defined by mapping functions. The advantage of this method is that for one 

patch, the surface is smooth with continuous coordinates and slope. The calculated 

velocity potential is also more accurate. In order to validate this method, the case of a 

single cylinder was hence studied to compare WAMIT surface elevation results to the 

ones predicted by MacCamy and Fuchs theory. 

 

(b)  The Maximum Likelihood Method used to determine reflection and transmission 

coefficients for the array was successful. These coefficients, evaluated from WAMIT 

surface elevation output presented good agreement with those determined by the 

combination of Hu and Chan's theory and the Fabry-Pérot interferometer.  

 

(c) The specific theory associated to the effective water medium approach is applied 

herein in shallow water but it might be extended to deep water.  

 

(d) For small wave periods (i.e. 7 to 10 sec), and for small wave incident angles (i.e. 0 to 

30 deg), the results from WAMIT presented some inconsistencies compared to those 

obtained from theoretical calculations. The effective width of the array was hence 

discussed and an empirical formulation was stated. The effective width has to be 

increased for small incident angles. The empirical model linearly decreases the effective 

width in the heading range from 0 deg to 30 deg where it reaches the width of the 
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effective medium as shown in Fig. 2.18. For longer wave periods, the correction 

becomes less and less necessary. In fact for a wave period of 10 sec, the effective width 

of the array is the same as the width of the effective medium. However, this definition of 

the effective width should be further studied by running other cases with WAMIT. 

 

(e) The case of a bi-convex array of cylinders was studied with WAMIT. As expected, it 

presents wave energy focusing properties. These results were compared with the optical 

theories for a converging lens. A focal length is defined and it depends on the index of 

the medium and the radius of curvature of the lens. Cases run with WAMIT indicated 

good agreements with the optical analogy. Nevertheless, the effective width of the array 

needs to be further studied for a complete definition of the radius of curvature. 

 

(f) For the flexible cylinder case, generalized modes were added to WAMIT's 

NEWMODE subroutine. These modes are circumferential modes and they model the 

radial deformations of the cylinder. Because of the geometry of the system, the modes 

are defined in cylindrical coordinates in the literature. However, they have been 

transposed in Cartesian coordinates to adapt to WAMIT.  

 

(g) From equations of motion from the theory of thin cylindrical shells, a standard set of 

equations of motion was derived and it allowed the definition of mass and stiffness 

matrices for the deformable shell. 
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(h) Natural frequencies associated to each mode were calculated and mass and stiffness 

matrices were chosen to obtain the natural period of the first "breathing mode" in the 

range of the studied wave periods. The Response Amplitude Operator (RAO) was 

plotted from WAMIT's output and indicates that the natural frequency of the "breathing" 

mode is actually where it was predicted from the choice of material for the cylinder 

(rubber). 

 

(i) It seems that, for each generalized mode, the minimum added-mass coefficient occurs 

at the natural period of the mode. Nevertheless, this phenomenon has not been further 

studied in this thesis. 

 

(j) Cases of arrays of elastic cylinders were run with WAMIT. Unfortunately, for the 

same reasons as for the random array case, the runs did not complete. 

 

(k) The expected result for the array of flexible cylinders is an increase of the attenuation 

coefficient (or Insertion Loss) if the incident wave has a period in the range of the 

natural period of the "breathing" mode of the cylinders. The analogy with acoustical 

phenomenon could then be discussed. For instance, it would have been interesting to 

look for evidence of wave trapping and infer how much energy is transferred to 

evanescent modes. 
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 Finally, recommendations can be made for future related research. By increasing 

the number of cases with WAMIT for the bi-convex array, the location of the focused 

energy point depending on the radius of curvature and refractive index could be further 

studied. Moreover, running random arrays of elastic cylinders with WAMIT should be 

more effective with a more powerful computer.  

 Experimental cases for arrays of both rigid and elastic cylinders would be 

interesting to conduct. 
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