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ABSTRACT 

 

Comparing Model-based and Design-based Structural Equation Modeling Approaches in 

Analyzing Complex Survey Data. (August 2010) 

Jiun-Yu Wu, B.S.; M.S., National Chiao Tung University, Taiwan 

                 Co-Chairs of Advisory Committee: Dr. Victor L. Willson 

                                                     Dr. Oi-man Kwok 

 

Conventional statistical methods assuming data sampled under simple random 

sampling are inadequate for use on complex survey data with a multilevel structure and 

non-independent observations. In structural equation modeling (SEM) framework, a 

researcher can either use the ad-hoc robust sandwich standard error estimators to correct 

the standard error estimates (Design-based approach) or perform multilevel analysis to 

model the multilevel data structure (Model-based approach) to analyze dependent data.  

In a cross-sectional setting, the first study aims to examine the differences between 

the design-based single-level confirmatory factor analysis (CFA) and the model-based 

multilevel CFA for model fit test statistics/fit indices, and estimates of the fixed and 

random effects with corresponding statistical inference when analyzing multilevel data. 
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Several design factors were considered, including: cluster number, cluster size, intra-class 

correlation, and the structure equality of the between-/within-level models. The 

performance of a maximum modeling strategy with the saturated higher-level and true 

lower-level model was also examined. Simulation study showed that the design-based 

approach provided adequate results only under equal between/within structures. However, 

in the unequal between/within structure scenarios, the design-based approach produced 

biased fixed and random effect estimates. Maximum modeling generated consistent and 

unbiased within-level model parameter estimates across three different scenarios.  

Multilevel latent growth curve modeling (MLGCM) is a versatile tool to analyze 

the repeated measure sampled from a multi-stage sampling. However, researchers often 

adopt latent growth curve models (LGCM) without considering the multilevel structure. 

This second study examined the influences of different model specifications on the model 

fit test statistics/fit indices, between/within-level regression coefficient and random effect 

estimates and mean structures. Simulation suggested that design-based MLGCM 

incorporating the higher-level covariates produces consistent parameter estimates and 

statistical inferences comparable to those from the model-based MLGCM and maintain 

adequate statistical power even with small cluster number.   
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1. INTRODUCTION 

 

This journal formatted dissertation consists of one literature review of structural 

equation modeling (SEM) techniques commonly used to deal with dependent data 

(Section II), and two inter-related simulation studies, one in a cross-sectional setting 

(Section III) and the other in a longitudinal setting (Section IV), focusing on issues 

associated with the effect of ignoring modeling higher-level variation of dependent data 

under the SEM framework. A brief introduction about the issues under concern is 

presented below.  

The technique of cluster sampling or multistage sampling is widely used in 

educational, behavioral and organizational research due to the efficiency in time and 

resources. Unlike simple random sampling (SRS) which randomly select a sample from a 

target population to assure that the selected observations are independent from each other, 

cluster sampling randomly samples naturally occurring groups/clusters of 

individuals/observations (Gall, Gall, & Borg, 2006; Stapleton, 2006). Data collected with  

 

 

____________ 

This dissertation follows the style of Psychological Methods. 
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the use of cluster sampling are prone to have correlated observations within clusters. For 

example, students from the same classroom are more likely to respond in a similar way 

because of the influence from the same environment. 

Conventional statistical methods which assume independent observations should 

not be used with data collected from cluster sampling due to the potential non-independent 

observations. The use of conventional statistical methods on non-independent data can 

result in biased estimation of the standard errors and incorrect statistical conclusions (Hox, 

2002; Kish, 1995). Multilevel models (Goldstein, 1987,1995), also named hierarchical 

linear models (Bryk & Raudenbush, 1992; Raudenbush & Bryk, 2002), random coefficient 

models (Jennrich & Schluchter, 1986) , random effects models (Laird & Ware, 1982), or 

covariance component models (Longford, 1993) are preferred strategies to model data of 

hierarchical structure (Cheung, 2007). 

In structural equation modeling (SEM), data are typically assumed to be collected 

through SRS so that they are independently and identically distributed (Stapleton, 2006; du 

Toit & du Toit, 2008). In social and educational research, however, it is not rare uncommon 

to have data with a hierarchical structure, especially when data are obtained through cluster 

sampling or multistage sampling, where there is dependency among observations such as 
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students nested within schools or individuals nested within households (Lee & Forthofer, 

2006; Skinner, Holt, & Wrigley, 1997).  “By ignoring the hierarchical structure of the 

data, incorrect parameter estimates, standard errors, and inappropriate fit statistics may be 

obtained” (Du Toit & Du Toit, 2008, p.456). 

Three analytic approaches are usually used for analyzing data collected through 

cluster sampling, namely, disaggregated analysis, aggregated analysis, and multilevel 

modeling (Hofmann, 1997). Disaggregated analysis ignores higher level structure of data 

(e.g. classroom level) and only models observations at the lower-level structure (e.g. 

student level). This approach has been criticized for violating the assumption of 

independency e under simple random sampling (Hofmann, 1997; Raudenbush & Bryk, 

2002). Neglecting the dependency among observations will generally result in 

underestimating the standard errors of the fixed effect and leading to inflated Type I error 

rate (De Leeuw & Kreft, 1995; Raudenbush & Bryk, 2002; and Snijders & Bosker, 1999). 

On the other hand, aggregated analysis, as its name suggests, only analyzes aggregated 

data from the lower/individual level. Studies have shown that regression analysis 

performed on aggregated data can result in biased parameter estimates and underestimated 

standard errors associated with the fixed effects (Croon & van Veldhoven, 2007; Ludtke et 
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al., 2008). Moreover, aggregated data cannot fully reflect the individual-level variation as 

well (Au & Cheung, 2004; Klein, Conn, Smith, & Sorra, 2001). It has been shown that 

none of these two approaches can adequately reveal the complete picture of the relations 

between different levels of variables in multilevel data (Holt, Scott, & Ewings, 1980; 

Raudenbush & Bryk, 2002). 

The third approach is to use multilevel modeling, which allows researchers to 

maintain the original data structure for analyses. There are two common approaches in 

multilevel modeling, namely, design-based and model-based approaches. The 

design-based approach takes the multilevel data/dependency into account by adjusting for 

the standard errors of the parameter estimates based on the sampling design, while the 

model-based approach analyzes the multilevel data by specifying a level-specific model 

for each level of the data. For example, for two-level clustered sampling data, the 

model-based approach analyzes terent) within-level and between-level models 

respectively whereas the design-based approach analyzes the data with only one overall 

model and adjusts the standard errors of the parameter estimates based on the sampling 

design. Nevertheless, the design-based approach is commonly used by substantive 

researchers (e.g. Agrawal & Lynskey, 2007; Davidov, Yang-Hansen, Gustafsson, Schmidt, 
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& Bamberg, 2006; Hox & Kleiboer, 2007; Mathews et al., 2009; Muthén & Asparouhov, 

2006) given that this approach only requires them to specify one single model, and 

researchers may mostly be interested in only examining the lower level (or within-level) 

model. 

For analyzing longitudinal data, Latent growth curve modeling (LGCM) is among 

the multilevel models and draws on many of the strengths under the structural equation 

modeling (SEM) framework (Curran & Hussong, 2002; Duncan, Duncan, Strycker, Li, & 

Alpert, 1999). LGCM is capable of analyzing repeated measurement data to provide 

flexible structural modeling of growth factors, future outcomes of growth, and covariates 

or constructs to explain the difference in the initial level and trajectories (Duncan & 

Duncan, 2004; Hancock & Lawrence, 2006; Stoolmiller, 2007). There are several 

advantages of the LGCM over traditional approaches for analyzing longitudinal data 

(Curran, 2003; Duncan, Duncan, & Strycker, 2006; Duncan et al., 1999). The emphasis on 

inter-individual and intra-individual difference, in particular, makes LGCM a popular 

multivariate statistical method in analyzing longitudinal data (Cheung, 2007). Specifically, 

researchers have used LGCMs to study changes over time in a longitudinal design; for 

example, to examine gender differences in the change of academic self-concept and 
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language achievement (De Fraine, Van Damme, & Onghena, 2007), to investigate 

adolescent twin’s conflict with their mothers over time (Kashy, Donnellan, Burt, & McGue, 

2008) and to study boys’ and girls’ talent perceptions and intrinsic values through 

adolescence (Watt, 2008).  

Multilevel latent growth curve model (MLGCM), on the other hand, extends the 

concept of LGCM to include cluster-specific higher-level data in the model. Most of the 

multilevel data structure originates from the use of multistage sampling or cluster sampling 

where the larger sampling units are sampled at the first stage followed by randomly 

sampling smaller units within the larger unit (Stapleton, 2006). Under such circumstances, 

smaller sampling units within a large sampling unit tend to have similar or dependent 

responses due to the influence of the same environment. Ignoring dependency in the 

grouped data can cause biased estimates and incorrect statistical inference in the analyses 

(D. Kaplan & Elliott, 1997). Dickinson and Basu (2005) suggested that statistical 

approaches be used to account for the hierarchical data structure when the data are nested 

in nature, or the correct interpretation of the result may be at risk.  

However, researchers may fail to run a model that conforms to the original complex 

data structure or takes all the data levels into account for the analysis. For instance, 
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researchers are interested in examining the general reading achievement trajectory over a 

large number of students who are from different schools. They may conduct a LGCM to 

examine the average growth pattern of the student reading achievement without 

considering the school-level effect and assuming that these students are independent of 

each other. Possible reasons for this negligence may include cutting down the complexity 

in data analysis (Meyers & Beretvas, 2006; Wampold & Serlin, 2000), failing to identify 

the primary sampling unit or the higher level identity information (IDs) (Moerbeek, 2004), 

and avoiding the nonconvergence issue in model estimation (Van Landeghem, De Fraine, 

& Van Damme, 2005).  
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2. LITERATURE REVIEW OF DESIGN-BASED AND MODEL-BASED 

MULTILEVEL TECHNIQUES IN STRUCTURAL EQUATION MODELING  

 

2.1 Structural Equation Modeling 

Structural equation modeling (SEM) (Bentler, 1980; Fassinger, 1987; Jöreskog, 

1970, 1978) is the most rapidly developing analytic technique over the last three decades 

and now becomes one of the most commonly used methodologies in various science 

fields (MacCallum & Austin, 2000). SEM combines two powerful methodologies, path 

analysis (i.e. structural model which explains the relationship between latent variables) 

and factor analysis (i.e. measurement model which refines the latent variable from 

observed variables and is free from measurement error). SEM has been considered as the 

most general case of the broader parametric General Linear Models (GLM), which takes 

the measurement error and latent structure into account (e.g. t test, OVA models, multiple 

regression, and descriptive discriminant analysis, canonical correlation analysis, etc.) 

(Curran, 2003; Fan, 1997; Graham, 2008; Jöreskog & Sörbom, 1993; Rigdon, 1998; 

Thompson, 2000). Taking measurement errors into account, SEM avoids the problem of 
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shrinkage of regression coefficient estimates and provide more accurate estimates of the 

structural relationship between observed variables (Heck & Thomas, 2008).  

Being the forerunner of SEM, Covariance Structure Analysis (CSA) is the 

statistical method of structural analysis with the observed (sample) variance-covariance 

matrix (Bock, 1960; Bock & Bargmann, 1966; Jöreskog, 1970; Schmidt, 1969). Jöreskog 

(1967, 1969, 1970, 1973, 1977) presented a series of general analytic frameworks of 

Covariance Structure Analysis for estimating parameters in latent variable model, also 

named linear structural relationship equation system, ( i.e. LISREL) (Jöreskog & Sörbom, 

1993). SEM is basically the same covariance-based methodology but with the additional 

capability to take the mean structure model into account. Based on theories, personal 

experiences, and literature reviews, this kind of covariance based methodology allows 

researchers to hypothesize their research question in a causality model with multiple 

indicators and multiple causes. A set of matrices needs to be specified to represent the 

model parameters of structural model. Then the causality model will be summarized in 

the model implied mean structure and variance-covariance matrix. By using the fitting 

estimation method (e.g. maximum likelihood estimation), the estimates of model 

parameter estimates will be calculated by minimizing the discrepancy function between 
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observed variance-covariance matrix and the model implied one. Finally, several 

commonly used model fit likelihood ratio test statistic (i.e. model fit chi-square test 

statistic) and fit indices will be provided to evaluate the quality of proposed causality 

model.  

SEM includes two fundamental blocks of models: measurement model and 

structure model as shown in Figure 1. 

 

Figure 1. Three latent variables SEM model   

The measurement model applies the confirmatory factor analysis (CFA) to adjust 

the measurement error of indicators and to form the latent variables (factors). The 

measurement model of exogenous indicators x and endogenous indicators y can be 

defined as  

δ X
1 1ξ η

η

εYXΛ YΛΓ

Γ B
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δΘ εΘξΦ

Ψ

ζ

Measurement Model

 YY = v Λ η+ε

Measurement Model

 XX = u Λ ξ +δ
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  Xx = u Λ ξ+δ  (2.1) 

  Yy = v Λ η+ε  (2.2) 

The measurement model applies the confirmatory factor analysis (CFA) to adjust 

the measurement error of indicators and to form the latent variables (factors). The 

measurement model of exogenous indicators x and endogenous indicators y can be 

defined as  

  Xx = u Λ ξ+δ  (2.3) 

  Yy = v Λ η+ε  (2.4) 

where x is 1Q
 vector of Q observed exogenous variables qx , ξ  is the 1R  vector of 

R exogenous latent variables r  with  ,MVN ξ0 Φ (i.e. multivariate normal distribution 

with mean zero and variance ξΦ ), XΛ is the Q R matrix of factor loadings between Q
 

exogenous indicators qx and R exogenous latent variables r , u is 1Q
 vector of Q

 

intercepts qu , and δ  is the 1Q
 vector with  MVN δ0,Θ (i.e. multivariate normal 

distribution with mean zero and variance δΘ ) of Q observed exogenous unique variables 

q ; y  is 1P vector of P observed endogenous variables py , η  is the 1S  vector of 

S  endogenous latent variables s  with  ,MVN ηα Φ (i.e. multivariate normal 

distribution with mean zero and variance ηΦ ), YΛ is the P S matrix of factor loadings 
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between P  endogenous indicators py and S  endogenous latent variables s , v  is 

1Q vector of Q intercepts qu , and ε  is the 1P vector with  MVN ε0,Θ of P

observed endogenous unique variables p . The structure model summarizes the 

relationship between exogenous and endogenous latent variables (i.e. ξ  and η), and can 

be written as  

 η = α +Βη+Γξ +ζ   

  I -Β η = α+Γξ +ζ   

    
1

η = I -Β α +Γξ +ζ  (2.5) 

where ξ  and η  are defined as the above vectors of latent variables, α  is the 1S vector 

of S  latent factor means (if the factors are not regressed on any predictors) or latent factor 

intercept (if the factors are regressed on predictors) s , Β is the S S matrix of 
2S

regression coefficients between endogenous latent factors, and Γ is the S R  matrix of 

SR regression coefficients among endogenous and exogenous latent variables, ζ is the 

1S vector with  MVN 0,Ψ of S observed residual s . Combined with Equation(2.5), 

Equation(2.2) can be reformatted as  

    
1

 Yy = v Λ I -Β α +Γξ +ζ + ε  (2.6) 
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Then, the mean and covariance structure of exogenous and endogenous indicators 

can be separately stated in the function of unknown model parameters. The mean structure 

can be described as  

    E E X Xμ x = u Λ ξ  (2.7) 

       
1

E E


 Y Yμ y = v Λ I -Β α +Γ ξ  (2.8) 

Define V as the column vector of vectorization of the observed variables, that is

 
'

1 2 1 2= , , ,..., , , ,...,p qy y y x x x   V y x . As for the covariance structure (i.e.

       cov 'E E Ex,y = xy' - x y ), based on the assumptions of a) the orthogonality 

between predictors and error and b) uncorrelated error terms between endogenous and 

exogenous variables, the variance-covariance matrix can be represented as follows  

       cov , ' cov , , , '
 

    
  

yy yx

xy xx

Σ Σ
V V y x y x Σ

Σ Σ
 (2.9) 

where    cov , var  '

xx x x δx x x Σ = Λ ΦΛ +Θ  (2.10) 

    cov , var  '

yy y y εy y y Σ = Λ ΦΛ +Θ  (2.11) 

     cov ,  yx xyy x Σ θ Σ θ   

                      
1

c o v '
   

 Y Xv Λ I -Β α+Γξ+ζ +ε u Λ ξ+δ (2.12) 

By setting   α u v 0 , the variance-covariance matrix of V can be simplified as 
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         
  

 
 

-1 -1 -1' ' '

YY Y Y YX Y X

'

YX XY XX X X δ

Σ = Λ I -Β ΓΦΓ +Ψ I -Β 'Λ Σ = Λ I -Β ΓΦΛ
Σ =

Σ = Σ Σ = Λ ΦΛ +Θ

 

2.1.1 Parameter estimation 

Estimation is a procedure to have the estimate of unknown parameter by optimizing 

the specific cost function which is composed of hypothesized model and observed data. 

Kendall and Stuart (1979) commented “It is impossible, when a parameter space is 

between 0 and 1, to construct an unbiased estimator that always takes on values between 0 

and 1.” Steiger (2000) also commented for point estimation “Seldom, in fact very seldom, 

will a statistic be exactly equal to the parameter it is estimating, if the parameter space is 

continuous.” Despite these doubts, estimation is essentially the most important part in most 

of statistical modeling analyses. There are several kinds of estimation methods available, 

including Maximum likelihood (ML) estimation, Unweighted Least Squares (ULS) 

estimation, Generalized Least Square (GLS) estimation, Weighted Least Squares (WLS) 

estimation, Weighted Least Squares Mean-Variance adjustment (WLSMV) estimation, 

Asymptotically Distributional Free (ADF) estimation and Maximum a Posterior (MAP) 

estimation. Among those estimation methods, Maximum likelihood estimation (MLE) is 

the most commonly used one in SEM analysis. MLE is a process to find the estimated 

values of unknown parameters by maximizing the likelihood function (i.e. minimizing the 
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fit function) between the model-implied variance-covariance matrix and observed 

variance-covariance matrix. When data fit with certain probabilistic assumptions (e.g. such 

as data normality and independency), MLE can not only provide us the MVUE (minimum 

variance and unbiased estimate) parameter estimate, but also provide model fit test statistic, 

which can be used to assess the quality of hypothesized model, and standard error estimate 

of parameter estimate, which can be used to access the quality of parameter estimate. 

However, when data exhibit abnormally away from the required probabilistic assumptions, 

the test statistic and standard error estimate will lose its ideal properties and result in 

erroneous statistical inference conclusion of model fit and parameter estimate. The 

problem of using traditional statistical method to deal with non-normal and dependent data 

will be discussed in the following section as well as the proposed remedies to resolve the 

problem.  

Holding with the assumptions of multivariate normality distribution of continuous 

observed variables,  residual terms, latent variables, and missing at random (MAR) 

pattern of incomplete data, The conditional probability of observed data y given 

variance-covariance matrix Σ  and mean vector μ  can be written as  

        
1/2/2 11

, 2 exp '
2

p
P 

  
    

 
y Σ μ Σ y μ Σ y μ  (2.13) 
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where the Σ is the determinant and 
1Σ is inverse matrix of Σ . The likelihood function 

 , ;L Σ μ y can be formulated by redefining the Equation(2.13) to be the function of 

parameters Σ  and μ , fixing the observed data y ; then, the log likelihood function can 

be defined by taking the natural logarithm of likelihood function, that is 

   , ; ln , ;l LΣ μ y Σ μ y . By multiplying -2, the fit function of model-implied 

variance-covariance matrix  Σ̂ θ with unknown parameter θ  and observed/sample 

variance-covariance S  can be written as  

 
          

     

'

1

ˆ ˆˆ ˆ

ˆ ˆ                         ln ln

MLF

tr P Q

  

     
 

S,Σ θ V μ θ Σ θ V μ θ

Σ θ SΣ θ S
 (2.14) 

where S is the unbiased sample variance-covariance matrix to its population counterpart 

Σ , θ  is the 1T  vector of unknown model parameters, V is the observed mean vector 

and  μ̂ θ  is the model-implied mean vector, and P Q  is the number of observed 

variables. By minimizing the Equation(2.14), the vector of estimated unknown parameters 

θ̂ can be the consistent and efficient estimates of unknown parameters θ , that is 

         
ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆarg min ln lnMLF tr P Q     
θ

θ S,Σ θ Σ θ SΣ θ S  (2.15) 

If the i.i.d. (independent and identical distribution) assumption of independence 

and multivariate normality of continuous data holds, the vector of parameter estimates θ̂  
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will be the unbiased and efficient estimate (i.e. minimum-variance unbiased estimate, 

MVUE) of θ .  

2.1.2 Model evaluation 

The quality of hypothesized model to the sampled data is evaluated with two 

major statistical measures: model-fit test statistics and model-fit fit indices. Most 

model-fit fit indices are defined through model-fit test statistics (Yuan, 2005).  

Model fit test statistic. When the data normality holds, the test statistics MLT
, which is 

the product of sample size N and MLF
in Equation(2.14), can be used to evaluate the 

model fit, i.e.  

     ˆˆ1ML MLT N F  Σ,Σ θ . (2.16) 

When data are normally distributed and model is correctly specified, MLT will be 

close to chi-square distribution 
2

df  with the degree of freedom equal 
 1

2

r r
df t


   

where r is the number of endogenous and exogenous variables (i.e. P Q ) and t is the 

number of freely estimated parameters. The hypothesis of whether the hypothesized 

model fits the sample data or not can then be tested with chi-square test of exact model fit  

 
 

 

0

1

ˆˆH :

ˆˆH : 

Σ = Σ θ

Σ Σ θ
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Null hypothesis will be rejected when MLT is larger than the critical value, that is, 

hypothesized model does not fit population model. The classical likelihood ratio test 

statistic, MLT  is a formal model fit evaluation. Several researchers assert this is the only 

believable global model-fit indicator, that is, if alternative hypothesis is preferred, the 

hypothesized model is not an adequate one to its population counterpart. However, MLT  

test statistic is easily influenced by sample size and data non-normality. Just like most 

statistical significance tests, researcher can always have significant results for the effect 

of any size with sufficiently large sample size. On the other hand, when data is 

multivariate normally distributed, the resulted model fit test statistic will behave like the 

chi-square distribution. Several studies concluded that MLT is asymptotically robust to 

certain data non-normality conditions (Amemiya & Anderson, 1990; Browne & Shapiro, 

1988; Hu, Bentler, & Kano, 1992; Kano, 1992; Mooijaart & Bentler, 1991; Satorra, 1992; 

Satorra & Bentler, 1990; Yuan & Bentler, 1998, 1999) . However, if the data violate the 

normality assumption, the conclusion of statistic inference based on chi-square 

distribution will still be erroneous in newer study (Yuan, 2005).  

Model fit index. There are two drawbacks of the interpretation of model fit 

likelihood test result. First, the result of model fit hypothesis test only tells us if the 
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hypothesized model exactly fits the population model or not, that is, if the model-implied 

variance-covariance matrix exactly replicates the observed variance-covariance matrix or 

not. Second, the model fit test statistic does not have a bounded value, which means you 

can have an infinite large value of model fit test statistic but you do not have any idea 

whether this value comes from the large sample size of your data, or comes from the 

model misspecification of your specified model. As a result, the rejection of null 

hypothesis does not tell us the degree of disparity between the population model and 

hypothesized model. People are interested in having more information about their 

hypothesized model to the sampled data instead of merely a simple right or wrong answer. 

Therefore, several model fit indices are developed for this need.  

One of the advantages of SEM "is the availability of statistics that assess the 

"goodnes of fit" of the hypothesized model" (Campbell-Sills & Brown, 2005, p.22). Model 

fit statistics commonly reported in SEM studies include CFI (Comparative Fit Index, 

Bentler, 1990), TLI (Tucker-Lewis Coefficient, Bollen, 1989), GFI (Goodness of Fit, 

Jöreskog & Sörbom, 1989), RMSEA (Root Means Square Error of Approximation, Steiger 

& Lind, 1980; Steiger, 1990), and SRMR (Standardized Root Mean Square Residual, 

Bentler, 1995). Among various model fit indices, CFI (relative fit indices) signified how 
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far the model-implied variance-covariance matrix is away from the null model where there 

is no covariance among the observations. In contrast, RMSEA and SRMR (absolute fit 

indices) examine how close the model implied variance-covariance matrix based on the 

hypothesized model is to the observed variance-covariance matrix based on the observed 

data. The formulas of CFI, RMSEA and SRMR can be represented as  

 
 

 

2

2 2

max ,0
1

max ,

Model Model

Null Null Model Model

df
CFI

df df



 

 
  

   

 (2.17) 

where 
2

Model is the chi-square value with degree of freedom Modeldf  of hypothesized 

model, 
2

Null is the chi-square value with degree of freedom Nulldf of baseline/null model 

(e.g. the independent model without any relationship between observed variables); 

 

2 1
max ,0ModelRMSEA

df N N

 
  

 
; (2.18) 

 

   

 

2

1 1

ˆ2

SRMR
( 1)

P Q i
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i j

s s s

P Q P Q




 

     
  

  


 (2.19) 

where N is the sample size, ijs is the observed covariance between variable i  with 

standard deviation iis and variable j  with standard deviation jjs , and ˆ
ij is the 

model-implied counterpart of ijs . Hu and Bentler (1999) presented a two-index 

presentation strategy, in which they suggested researchers at least present two different 
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kinds of model fit indices to help their readers to assess the quality of their hypothesized 

model (such as TLI and SRMR, RMSEA and SRMR, and CFI and SRMR). Hu and Bentler 

(1999) also proposed a guidance of the cut-off values for most of model fit indices. Based 

on their simulation study, the hypothesized model with CFI > 0.95 and/or RMSEA<0.08 

and/or SRMR<0.08 will be thought as the acceptable model to the observed data. 

McDonald & Ho (2002) summarized that CFI, RMSEA and SRMR are the most 

commonly reported indices in the substantialive research areas using SEM methodology; 

Jackson, Gillaspy and Purc-Stephenson (2009) reported that CFI and RMSEA are the most 

commonly-used ones in the confirmatory factor analysis (CFA). 

2.2 Data Dependency 

In social, educational, and organizational research, it is not rare to have data with a 

hierarchical or multilevel structure in nature (Heck & Thomas, 2008). In such areas, the 

technique of cluster sampling or multistage sampling is widely used due to the efficiency in 

time and resources. Unlike simple random sampling (SRS) which randomly select a 

sample from a target population to assure that the selected observations are independent 

from each other, these complex survey sampling strategies randomly sample naturally 

occurring groups/clusters of individuals/observations (Gall, Gall, & Borg, 2006; Stapleton, 
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2006). In longitudinal studies, researchers keep gathering data from certain participants at 

different time points (e.g. the repeated measures of a participant and panel data) also 

generate non-independent observations (Duncan, Duncan, & Strycker, 2006; Hardin & 

Hilbe, 2002). Conventional statistical methods which assume independent observations 

should not be used with data collected from complex survey sampling due to the potential 

non-independent observations. The use of conventional statistical methods on 

non-independent data can result in biased estimation of the standard errors and incorrect 

statistical conclusions (Hox, 2002; Kish, 1995).  

Three analytic approaches are usually used for analyzing data collected through 

cluster sampling, namely, disaggregated analysis, aggregated analysis, and multilevel 

modeling (Hofmann, 1997). Aggregation analysis or disaggregation analysis is a 

commonly used methodology when researchers analyze the dependent data. Both methods 

specify the analytic model in only a certain level, either in cluster-level (higher-level) or 

individual-level (lower-level). The aggregation analysis is conducted using only the 

cluster-level information, such as group/cluster mean aggregated from the lower/individual 

level, to construct the higher-level analysis. As a result, aggregation analysis will easily fall 

into the ecological fallacy (aka. Robinson effect) for the intentionally neglected 
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lower-level variability (Robinson, 1950). Aggregated data cannot fully reflect the 

individual-level variation as well (Au & Cheung, 2004; Klein et al., 2001). Moreover, 

studies have shown that regression analysis performed on aggregated data can result in 

biased parameter estimates and underestimated standard errors associated with the fixed 

effects (Croon & van Veldhoven, 2007; Lüdtke et al., 2008). On the other hand, in 

disaggregation analysis, only the lower-level model is constructed and the values of 

cluster-level variable are assigned downward to its individual-level counterpart, that is, all 

individuals in the same groups will have the same value in the assigned variable from their 

higher-level cluster. Consequently, the independence assumption of tradition regression 

analysis is violated (Hofmann, 1997; Raudenbush & Bryk, 2002) . Neglecting the 

dependency among observations will generally result in underestimating the standard 

errors of the fixed effect and lead to inflated Type I error rate (De Leeuw & Kreft, 1995; 

Luo & Oi-man Kwok, 2009; Moerbeek, 2004; Raudenbush & Bryk, 2002; Snijders & 

Bosker, 1999). It has been shown that none of these two approaches can adequately reveal 

the complete picture of the relations between different levels of variables in multilevel data 

(Holt et al., 1980; Raudenbush & Bryk, 2002). 
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Therefore, multilevel analysis is developed to analyze the complex survey data 

without the above mentioned disadvantages. In general, there are two perspectives in using 

multilevel modeling to deal with the multilevel data, the natural sampling scheme and the 

level-varying parameters (Heck & Thomas, 2008; Hox, 2002; Muthén, 1994). For the first 

perspective, to best fit the actual sampling scheme of multilevel data, the statistical analytic 

model should be able to capture the random variation of observations in different levels of 

sampling, such as modeling the participant-level and group-level variance components 

separately but not the total variance component. In this vein, the analytic model will be 

constructed according to the actual sampling scheme, such as cluster sampling or 

multistage sampling. For the second perspective, to acquire the parameter estimates at 

different level, analytic model should be able to simultaneously calculate the lower-level 

parameter estimates which can have varying values from different higher-level sampling 

units.  

I presented one example to solidify the concept of why using multilevel modeling 

is a more appropriate methodology in analyzing dependent data. In general, people in the 

same group might have similar behavioral pattern sharing but people in different groups 

might not. When the traditional statistical methods are used, which assume people have no 
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relationship with one others, the special group characteristics are totally ignored and the 

dissimilarity between the different groups of people is averaged out  because we neglect 

the homogeneity of participants in the same group and the heterogeneity between groups. 

If we conduct the level-specific analyses for different sampling units, such as one analysis 

for participants and the other for groups, we will still run into the same problem: the 

participant-level analysis ignores the group differences, and the group-level analysis 

neglects the individual idiosyncrasy. The best analytical way for the dependent data now is 

to simultaneously analyze the models of different levels in one integral multilevel model.   

In structural equation modeling (SEM), data are typically assumed to be collected 

through SRS so that they are independently and identically distributed (Stapleton, 2006; S. 

H. du Toit & M. du Toit, 2008). With this kind of complex survey data, the independent 

and identical distributed assumption is violated. Using the conventional SEM modeling 

without taking into the consideration of heterogeneous data will result in biased structural 

coefficients (Muthén & Satorra, 1989), bias estimation of the standard error of the fixed 

effect and erroneous statistical inference of the fixed effect (Hox, 2002; Kaplan & Elliott, 

1997b; Kish & Frankel, 1974), and incorrect likelihood ratio test statistics (Muthén & 

Satorra, 1995; Yuan, 2005). “By ignoring the hierarchical structure of the data, incorrect 
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parameter estimates, standard errors, and inappropriate fit statistics may be obtained” (du 

Toit & du Toit, 2008, p. 456). In order to have unbiased parameter estimates and consistent 

statistical inferences, knowing the hierarchical nature of nested data and specifying this 

dependency in analytic model is substantial in various research areas.  

In Statistics, there are three major approaches used to account for the extra 

correlation in the dependent data, that is scaling, design-based approach with robust 

variance estimators, and model-based with hierarchical modeling strategy (Hardin & 

Hilbe, 2002). With these three approaches, the violation of i.i.d. assumption of dependent 

data is taken into consideration.  

Scaling is the easiest method used to adjust standard errors due to perceived 

correlation effects. The traditional statistical approach which assumes data from SRS 

usually have underestimated standard error estimates. Then, the standard error estimates 

of the parameter estimates will be rescaled by dividing by the square root of either the 

deviance-dispersion or Pearson 
2 . This kind of scaling approach is a post hoc method 

to analyzing dependent data, so it takes no effect on parameter estimates. The major 

problem is that scaling only provides an overall adjustment of standard error but does not 

capture or adjust for identified clusters or correlation effects.  
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The design-based approach is using the robust standard error estimator (Huber, 

1967; White, 1980) along with the original statistical approach. Sandwich variance 

estimator, which is a general name of alternative variance estimators, is another overall 

adjustment to the deviated standard error of parameter estimate due to extra dependency. 

This kind of relative variance estimator has been proposed to address data 

nonindependence (i.e. data heteroskedasticity) more directly. This adjustment is still a 

post hoc process and only affects the standard errors but not the parameter estimates. 

Under the SEM framework, Muthén and Satorra (1995) proposed using single-level 

modeling with ML parameter estimation with robust standard error estimators, such as 

Huber-White robust standard error estimator. Besides the adjustment to the standard error, 

robust likelihood ratio statistic is also necessary for analyzing the complex survey data.  

The model-based approach to account for extra correlation is implementing the 

analytic models explicitly specified as the hierarchical structures of heterogeneous data. 

Multilevel modeling, also known as Hierarchical linear model, Mixed Effect Model, 

Multilevel Regression Model, have been widely investigated and utilized in numerous 

areas. Under the SEM framework, this kind of modeling strategy is named as Multilevel 

SEM (Goldstein & McDonald, 1988; McDonald & Goldstein, 1989; Muthén, 1989, 1990).  
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 The second and third approaches can be categorized into multilevel modeling 

strategies which allow researchers to maintain the original hierarchical data structure for 

analyses. In general, these two methods (design-based and model -based approaches) are 

commonly used in studies using SEM approaches. Researchers have devoted themselves 

in modeling the data heterogeneity in the SEM framework. (Aitkin & Longford, 1986; 

Asparouhov & Muthén, 2005; Boomsma, 1987; Goldstein, 1995; Goldstein, 1987; 

Goldstein & McDonald, 1988; Hox, 1993; Longford & Muthén, 1992; Mehta & Neale, 

2005; Muthén, Khoo, & Gustafsson, 1997; Muthén & Satorra, 1989; Muthén, 1989; 

Muthén & Asparouhov, 2009; Muthén & Satorra, 1995; Muthén, 1990, 1994; Muthén & 

Asparouhov, 2002; Satorra & Bentler, 2001; Yuan & Bentler, 1997; Yuan & Hayashi, 

2005; Yuan, 2005). For example, for two-level clustered sampling data, the model-based 

approach analyzes the data by specifying (different) within-level and between-level 

models respectively whereas the design-based approach analyzes the data with only one 

overall model and adjusts the standard errors of the parameter estimates based on the 

sampling design. In this review, we will primarily investigate these two approaches.   
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2.3 Design-based Approach: Robust Standard Error Estimator and Robust Test 

Statistics 

The design-based approach takes the multilevel data/dependency into account by 

adjusting for the standard errors of the parameter estimates and the test statistic of model 

fit hypothesis test based on the sampling design. The design-based approach is commonly 

used by substantive researchers (Agrawal & Lynskey, 2007; Davidov, Yang-Hansen, 

Gustafsson, Schmidt, & Bamberg, 2006; Hox & Kleiboer, 2007; Mathews et al., 2009; 

Muthén & Asparouhov, 2006) given that this approach only requires to specify one single 

model and that researchers may be mostly interested in only examining the within-level (or 

level-1) model. For robust standard error estimator, we will start from the normal theory 

sampling variance estimate (expected Hessian matrix) ˆ
EHV  and the robust 

sandwich-type sampling variance estimate ˆ
RobustV for Normal Theory Maximum 

Likelihood (NTML) parameter estimate θ̂ (Hardin & Hilbe, 2007; Huber, 1967; White, 

1980), then the robust sandwich-type sampling variance estimate RobustV for direct ML 

parameter estimate θ  (Yuan & Bentler, 2000), and finally the robust sandwich-type 

sampling variance estimate RobustV for pseudo ML parameter estimate θ (Asparouhov & 

Muthén, 2005). For robust model fit chi-square test statistic, we will first introduce the 
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Satorra-Bentler rescaled test statistic RT (Satorra & Bentler, 1988), then Yuan-Bentler 

(corrected) ADF test statistic CADFT (Yuan & Bentler, 2000), and finally the pseudo 

maximum likelihood test statistic 
*T  (Asparouhov & Muthén, 2005). 

2.3.1 Robust standard error estimator 

For statistical inferences, we are interested in knowing not only the location of 

population parameter estimates but also the accuracy of parameter estimates. The 

sampling variance, whose square rooted values is the so called standard error, is used as 

the measure of quality of parameter estimates. The smaller the sampling variance and 

standard error, the smaller the fluctuation of the parameter estimates from the repeatedly 

sampled samples. However, this does not mean that the smaller the standard error the 

closer the parameter estimate to its population location (even the experienced researcher 

will sometimes give the erroneous statement like this). If you want to draw this 

conclusion, the first thing you need to make sure is that the parameter estimate is the 

unbiased estimate of its true population value. Take the terminology of measurement 

theory for example, sampling variance is the measure of how reliable your parameter 

estimate is, and should not be inferred as the measure of validity. If the parameter 

estimate is not a valid indicator of the location of true population value at any degree (i.e. 
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there is a bias between parameter estimate and its true value), by knowing its smaller 

sampling variance, we can only conclude this parameter estimate is a reliable but not a 

valid measure of population true value. 

It has been known that NTML estimation, under the multivariate normality 

assumption, still produces unbiased parameter estimates (i.e. the location of parameter 

estimate is consistent to its population location) when the empirical data are actually not 

normally distributed (Longford, 1993; Muthén & Asparouhov, 2002). However, the 

quality of parameter estimate, that is, the standard error, is seriously influenced by the 

sampling design (Kish, 1995; Stapleton, 2008). We will have biased standard error 

estimate of the fixed effect and erroneous statistical inference of the fixed effect when we 

ignore the extra data dependency (Hox, 2002; D. Kaplan & Elliott, 1997; Kish & Frankel, 

1974). In linear regression framework, it has been shown that the standard error of the 

regression coefficient for variable from the neglected higher-level is underestimated (Luo 

& Oi-man Kwok, 2009; Moerbeek, 2004). Muthén and Asparouhov (2002) also mentioned 

this phenomenon when NTML estimation is used to analyze non-normal data in the 

framework of latent variable model.  
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In reality, we can hardly conduct numbers of repeated samplings/experiments to 

have the empirical estimate of sampling variance (square of standard error). So in ML 

estimation framework, a mathematical measure which can be used to be the estimate of 

sampling variance estimate was developed, i.e. the Hessian of the likelihood function of 

the one-time sampled data. Assuming  gP x θ is the conditional probability of observing 

the subset of overall survey samples , 1,2,...,g g G x , given the population parameter 

θ . By putting the sample subsets into matrix, that is, overall observed sample matrix

1 2, ,..., ,...,g G
   X x x x x , the likelihood of population parameter θ  given observed 

sample matrix X  can be denoted as  ;L X θ . Although conditional probability and 

likelihood are at two sides of a mathematic formula, they represent very different 

meanings in Statistics. Then, in estimation theory, the natural logarithm function of 

likelihood,    ; ln ;l LX θ X θ , is often used due to the simplicity of computation of the 

probability density function (pdf) with the exponential power terms from the parametric 

exponential distribution family (i.e. Bernoulli, Binomial, Poisson, and Gaussian, etc.) (e.g. 

 ln ln lnab a b  , and  ln lnba b a ). The score ( i.e. 

 
 

 ;1
ln ;

;

L
L

L




 

X θ
X θ

θ X θ θ
, the partial derivative of log likelihood w.r.t. θ ,) will 

be set to equal zero to have the maximum likelihood parameter estimate θ̂  of 
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population parameter θ . Score is also the sensitivity of log likelihood (i.e. gradient). 

After we have the parameter estimate, we will use the higher moment of log likelihood 

function to have the estimate of standard error of parameter estimate. So, by setting the 

regularity condition of score, (i.e.  ln ; 0E L
  

  
X θ θ

θ
), the variance of score (aka. 

the well-known Fisher information or Expected information) can be formulated as 
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 (2.20) 

In fact, it has been shown that parameter estimate θ̂  is an asymptotically 

normally distributed and consistent estimate to the population parameterθ (Yuan & 

Jennrich, 1998). Sir R. A. Fisher gave a formal definition of the information: the 

reciprocal of the square of standard error (i.e. sampling variance) of estimating a 

parameter, i.e.  

  
   

1 1

ˆ
I  

2

EH

θ
SE θ V θ

 (2.21) 

where  ˆ
EHV θ  is the expected Hessian matrix used to be the estimate of sampling 

variance of parameter estimate (Hardin & Hilbe, 2007). Given the likelihood function

 ;L X θ , it is a way of measuring the amount of information that an observed random 
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matrix X  carries about an unknown population parameter θ . It is named as 

information because it tells us how much information is in the score about θ (e.g. the 

larger the information, the smaller the sampling variance of unknown parameter). Same 

idea is also convoyed in Item Response Theory.           

The above mentioned information statistics is a consistent and efficient estimator 

of the standard error of parameter estimate θ̂  when data is normally distributed, that is, 

the Hessian matrix is a valid and minimum asymptotic covariance estimator of sampling 

variance when the normality assumption is met and the specification of the variance in 

Equation(2.20) is correct. However, for real data, the normality assumption is almost 

always violated. To solve this abnormality, the sandwich-type estimator (Hardin & Hilbe, 

2007; Huber, 1967; White, 1980) can produce consistent estimate of sampling variance 

with the formula for calculating the variance components including a score factor 

“sandwiched” between two copies of the Hessian matrix, that is, 

 ˆ ˆ ˆ ˆ
Robust EH OPG EHV = V V V  (2.22) 

where ˆ
OPGV  is the outer product of two gradient functions. Here we define gradient of 

log likelihood function as its first derivative but without the expectation, i.e. 

 ln ;L





X θ . So, Equation(2.22) can be written as  
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    ˆ ˆ ˆln ; ln ;L L
  

 
  

Robust EH EHV = V X θ X θ V
θ θ

 (2.23) 

    ln ; ln ;L L
  

 
  

-1 -1= I X θ X θ I
θ θ

 (2.24) 

 
       

1 1
2 2

2 2
ln ; ln ; ln ; ln ;E L L L E L

 

             
          

             

X θ θ X θ X θ X θ θ
θ θ θ θ

 (2.25) 

When data are normally distributed and their missingness pattern is based on at 

least missing at random (MAR), ˆ
OPGV  is a sufficient estimator to the normal theory 

information matrix (i.e. ˆ ˆ -1

OPG EHV = I = V ), and the Hessian matrix is again the consistent 

and efficient estimator to the sampling variance and the sandwich estimate of sampling 

variance is equal to the normal theory Hessian matrix (i.e. ˆ ˆ
Robust EHV = V ) (Hardin & 

Hilbe, 2007; Yuan & Bentler, 2000).  

Huber (1967) first presented this sandwich type variance estimator in some weak 

non-normality conditions; White (1980) independently gave this robust variance estimate 

in heteroskedasticity condition under linear model framework. In order to credit their 

works, this sandwich type robust standard error estimator is also called Huber-White 

robust standard error estimator (aka. survey variance estimator, design-based variance 

estimator, and empirical variance estimator) and has been widely used in survey statistics 

(Hardin & Hilbe, 2007; Kish, 1995). With the use of this robust estimator, an 

asymptotically consistent estimate of covariance matrix can be derived free from 
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distributional assumptions of observations (Hardin & Hilbe, 2007; Huber, 1967; White, 

1980). Readers can refer to Hardin and Hilbe (2002, 2007) for readable descriptions of 

varieties of sandwich-type variance estimators. Diggle, Liang, and Zeger (1994) stated 

that sandwich-type robust standard error estimator is best used when data come from 

“many experimental units” in their longitudinal research book; Muthén and Satorra (1995) 

also concluded that this kind of robust standard error estimator is useful in dealing with 

the extra dependency in complex survey data in their simulation study.  

Except for ML estimation, the direct ML estimation method (Yuan & Bentler, 

2000) (aks. Full information maximum likelihood estimation, FIML/FML (Arbuckle, 

1996; Enders & Bandalos, 2001)) is another feasible estimation method to calculate the 

unknown parameter estimateθ . The direct ML estimation is commonly used in dealing 

with the data non-normality issue of incomplete data in latent variable model and 

Structural equation modeling (Allison, 1987; Arbuckle, 1996; Finkbeiner, 1979; Enders, 

2008; Graham, 2003; Lee, 1986; Lee & Song, 2007; Muthén, Kaplan, & Hollis, 1987; 

Yuan & Bentler, 2000). Muthén and Satorra (1995) mentioned that the reason why the 

observed data is usually not normally distributed is because that the survey sample is just 

a small portion of target population, and the resulted observed variables are often skewed. 
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So, the techniques used in analyzing the nonnormal data should be essentially special 

cases of those in dealing with complex survey data. Accordingly, the robust standard 

error estimator from direct ML estimation method is used in SEM framework with 

dependent data to remedy the underestimated SE estimate from NTML estimation 

(Muthén & Satorra, 1995; Muthén & Muthén, 1998; Stapleton, 2006).  

In direct ML estimation, the summation of case-wise likelihood functions of the 

subsets (e.g. gx ) of overall data (e.g. 1 2, ,..., ,...,g G
   X x x x x ) will be maximized to 

have the vector of unknown parameter estimates θ . The individual case-wise log 

likelihood function  ;gl x θ of subset of observed data gx is defined as  

    ; ln ;g gl Lx θ x θ  

 
 

         
'1

ln 2 ln
2 2

g

g g g g g g

rank
    

V
Σ θ V μ θ Σ θ V μ θ  (2.26) 

where gV  is the vectorization of observed variables 
'

;g g g
   V y x ,  grank V  is the 

number (i.e. g gP Q ) and gV  is the mean vector of the observed variables (i.e. 

g gE    V V ), and the mean vector  gμ θ  and variance-covariance matrix  gΣ θ  are 

the subset of overall mean vector  μ θ  and variance-covariance matrix  Σ . Then, 

the direct log-likelihood function is the summation of the case-wise log-likelihood 

functions across entire sample, that is,  
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    
1

; ;
G

g

g

l l


x θ x θ  (2.27) 

Then by maximizing the Equation(2.27), the vector of estimated unknown 

parameters θ can be the consistent and efficient estimates of unknown parameters θ , 

that is 

  arg max ;l
θ

θ x θ  (2.28) 

If we have complete and continuous dataset holding the i.i.d. assumption of 

independence and multivariate normality, the direct ML estimate θ  will be identical to 

the traditional NTML estimate θ̂  from Equation(2.15). Then the similar robust standard 

error estimator as Equation(2.22) can be constructed by using the arithmetic mean 

(
1

1 N

i

iN 

 X x ) to replace the expectation (  E X ), and the robust standard error estimate 

(Arbuckle, 1996; Muthén & Asparouhov, 2002; Yuan & Bentler, 2000) of direct ML 

estimate can be formulated as  

 Robust 
-1 -1V A BA  (2.29) 

with  
2

2
1

1
;

G

g

g

l
G 


 


A x θ

θ
,    

1

1
; ;

G

g g

g

l l
G 

  
  

  
B x θ x θ

θ θ
.  

Asparouhov and Muthén (2005) discussed the same robust sandwich standard 

error estimator as Equation(2.29) using the Pseudo Maximum Likelihood (PML) 
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estimation (Skinner, 1989), which is essentially the same as direct maximum likelihood 

function but with sampling weight in it, that is 

    
1

; ;
G

g g

g

l w l


x θ x θ  (2.30) 

where 1/g gw p  and gp denotes the sampling probability of participant g who is 

sampled in the survey sample. The unknown parameter estimate θ  is calculated by 

maximizing the concave PML function, that is, set the first derivative of Equation(2.30) 

equal zero and solve this equation 

  arg max ;l
θ

θ x θ  (2.31) 

Then, the robust sandwich-type standard error estimate of θ  can be derived as 

Equation(2.29). This kind of robust sandwich standard estimate has been implemented in 

Type=Complex and Estimator=MLR routine in Mplus (Muthén & Muthén, 1998).   

2.3.2 Robust model fit test statistics 

Besides underestimated standard error estimate, ignoring modeling extra data 

dependency/non-noramlity will also result in incorrect model fit likelihood ratio test 

statistics (Muthén & Satorra, 1995; Satorra & Bentler, 2001; Yuan & Bentler, 1997; Yuan, 

2005). Although several simulation studies (see the above cited references) showed that 

MLT in Equation(2.16) is asymptotically robust to certain data non-normality conditions, 
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Yuan (2005) warned the researchers against “blindly” trusting that MLT  will “really” 

asymptotically close to 2

df distribution with non-normally distributed data before the 

formal definition and procedure of asymptotic robustness is settled down. Three 

commonly used rescaled chi-square test statistics for mean and covariance structure are 

discussed here: Satorra-Bentler rescaled normal theory test statistic (Satorra & Bentler, 

1988), Yuan-Bentler corrected ADF test statistic (Yuan & Bentler, 2000), and pseudo 

maximum likelihood test statistic (Asparouhov & Muthén, 2005).  

Satorra and Bentler (1988) presented a rescaled normal theory chi-square test 

statistic, named Satorra-Bentler rescaled test statistic, which is an adjusted normal theory 

chi-square test statistic which penalizes the normal theory chi-square for the amount of 

kurtosis in the data.  

 
1ˆ

R MLT T   (2.32) 

where ̂  is the common kurtosis estimate. Two kinds of opinions differ on the 

performance of RT : some simulation studies suggest RT  performs robustly on some data 

non-normality conditions (Chou, Bentler, & Satorra, 1991; Hu et al., 1992); others query 

these simulation studies about their unclearness of data generation and conclude RT does 

not approach chi-square distribution and may result in erroneous statistical inference 
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(Yuan & Bentler, 1999; Yuan, 2005). The Satorra-Bentler rescaled chi-square test 

statistic is implemented in various SEM softwares, such as AMOS (Arbuckle, 2003), 

LISREL (Jöreskog & Sörbom, 1996), EQS (Bentler, 1995), and Mplus (Estimator = 

MLM) (Muthén & Muthén, 1998).  

Browne (1984) proposed asymptotically distribution free (ADF) statistic ADFT : as 

long as the data have finite 4th moment (i.e. finite kurtosis measure), ADFT will 

asymptotically approaches 2

df . However, the mean and variance of the ADFT

distribution will be larger than those of 2

df distribution for practical sample sizes (i.e. the 

desired ADF property can be achieved only when sample size goes to infinity) (Hu et al., 

1992). So, we will have inflated type I error rate to reject the correctly specified models if 

we still use ADFT  test statistic with
2

df distribution to draw the statistical inference. In 

order to have a better performance statistics with smaller sample size, Yuan and Bentler 

(1997) proposed a corrected CADFT statistic. Yuan (2005) concluded that the average of 

CADFT from sufficient numbers of simulations will be closed to the degree of freedom of 

hypothesized model for most sample sizes across various distributions of observed 

variables. However, in small sample sizes data conditions, rejection rate of CADFT  with 
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correctly specified models is smaller than the nominal level (e.g. p-value =0.05), and 

there is still the non-convergence problem because of using ADF estimation method. 

By the same logic of above two robust model fit test statistic, Asparouhov and 

Muthén (2005) described an adjusted likelihood ratio test (LRT) statistic with pseudo 

likelihood shown in Equation(2.30). In general, the distribution of the LRT test statistic 

coming from maximizing the pseudo/weighted log-likelihood function will not approach 

2

df , and the distribution will be seriously influenced by the sampling design. So, 

Asparouhov and Muthén (2005) presented the adjusted LRT statistic taking the sampling 

design into account using the pseudo likelihood functions as  

  *

1 22T c L L    (2.33)  

with 1 2

1 1

1 1 2 2

d d
c

trace trace 




      A B A B
, and       

 

 

   

2

2
1

1

1
; ,  and

1
; ;

G

i g i

g i

G

i g i g i

g i i

l
G

l l
G






 



 
 

 





A x θ
θ

B x θ x θ
θ θ

 

where the subscript 1,2i   indicates two nested model 1M and 2M , iL  is the 

respective pseudo likelihood functions, and id  denotes the respective numbers of free 

parameters and 1 2d d is the degree of freedom for the hypothesized model fit test. 

According to their simulation study (Asparouhov & Muthén, 2005), 
*T  is approximately 
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close to 
1 2

2

d d  distribution. One benefit of this adjusted test statistic is the ability of 

dealing with the incomplete data due to the use of sampling weighted direct-ML-like 

estimation method (i.e. Pseudo ML estimation). However, we still do not have a clear 

picture of the performance of 
*T across various conditions. This adjusted chi-square test 

statistic has been implemented in Mplus (Estimator = MLR) (Muthén & Muthén, 1998), 

which is the advanced version of Estimator =MLM with the ability to dealing the 

incomplete dataset. 

2.4 Model-based Approach: Multilevel SEM 

There are various kinds for multilevel modeling methodology: Mixed Model 

(Henderson, 1975; Littell, Milliken, Stroup, & Wolfinger, 1996; Littell, Milliken, Stroup, 

Wolfinger, & Schabenberber, 2006), unified Random-effect model approach for repeated 

measures/panel data (Laird & Ware, 1982), random parameter model for dependent data 

(Aitkin & Longford, 1986), Variance component model (Anderson & Aitkin, 1985; 

Longford, 1987), Random coefficient model (Longford, 1993), Hierarchical Linear 

Model (Bryk & Raudenbush, 1992; Raudenbush & Bryk, 2002), Multilevel Regression 

Model (Hox, 2002), contextual modeling (Bovaird, 2007; Kreft & De Leeuw, 1998) and 
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Multilevel SEM model (Heck & Thomas, 2008; Hox, 2002; Kaplan, 2008; Mehta & Neale, 

2005; Muthén, 1994).  

In this decade, researchers in organizational, educational and psychological fields 

started to apply the model-based SEM techniques (Branum-Martin et al., 2006; Cheung & 

Au, 2005; Duncan, Alpert, & Duncan, 1998; Dyer, Hanges, & Hall, 2005; Everson & 

Millsap, 2004) given that the model-based approach allows us not only to analyze 

hierarchical data simultaneously by specifying both within- and between-level models, 

but also to consider the measurement errors in constructing the latent variables in different 

levels (Heck & Thomas, 2008; Hox, 2002; David W. Kaplan, 2008; Rabe-Hesketh & 

Skrondal, 2008; du Toit & du Toit, 2008). Several SEM softwares has provided the 

multilevel modeling routines for analyzing complex survey data, such as EQS 6, LISREL 

8.5 (Jöreskog & Sörbom, 1996) and Mplus (Muthén & Muthén, 1998).Those interested in 

the details of multilevel SEM (MSEM) methodology can refer to these nice review 

papers and book chapters (Bovaird, 2007; Curran, 2003; Heck & Thomas, 2008; Kaplan & 

Elliott, 1997b; Kaplan, 2008; Muthén, 1994; Rabe-Hesketh, Skrondal, & Zheng, 2007; du 

Toit & du Toit, 2008). 
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Take a multilevel data drawn from a two-level multistage sampling strategy as an 

example. Suppose that G  groups are randomly drawn from the target population at the 

first stage of sampling, and then gn  participants are sampled within each group g  at the 

second stage. We have total 
1

G

g

g

N n


  participants. For each participant, P response 

variables are gathered. We now have N 1 P -dimensional random vector igy for 

participant i  (level 1 unit) within group g (level 2 unit) with the P elements pigy , 

1,2,...,p P ,  

 1 2, ,...,ig ig ig Pigy y y   y  (2.34) 

Thus, for each g
th 

group the random matrix of observations can be arranged as:  

 

11 21 1
1

2 12 22 2

1 2  

g g P g
g

g g g P g
g

Ig

Ig Ig P Ig

y y y

y y y

y y y

      
   

      
   
   
       

y

y
y

y

 (2.35) 

Analogous to the variance decomposition used in ANOVA analysis, the 

observation igy in Equation (2.34) can be decomposed into its between-group component 

and within-group component, that is, 

 .. .ig B g W ig y y y , 1,2,...,i I  ; 1,2,...,g G  (2.36) 
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where ..B gy  is the between-group component with  ,MVN Bμ Σ  (i.e. multivariate 

normality distribution with grand mean μ  and variance-covariance matrix BΣ ) and 

.W igy  is the within-group component with  ,gMVN Wμ Σ (i.e. multivariate normality 

distribution with grand mean gμ  and variance-covariance matrix BΣ ). The correlation 

between between-group component in different groups is set to be uncorrelated, that is, the 

 .. .. ',B g B gCov y y 0 , 'g g  . In the same vein, the correlation between different 

participants within the same group or in different groups is also set to be zero (i.e. 

 . . ',W ig W i gCov y y 0 , 'i i  ;  . . ' ',W ig W i gCov y y 0 , 'i i   & 'g g  ). Furthermore, 

the cross-level correlation between B

gy  and  .W igy  is defined as uncorrelated, that is,  

  .. .  ,B g W igCov y y 0 , 1,2,...,i I  ; 1,2,...,g G  

Hence, the variance-covariance matrix of igy can be decomposed into the 

combination of between-group and within-group variations,  

  ig B WCov  y Σ Σ  (2.37) 

To take a step further to consider the latent variable model, the Equation (2.36) can 

be written as  

 
.. .

.. .. . .    

ig B g W ig

B B B g B g W W W ig W ig

 

     

y y y

μ Λ η ε μ Λ η ε
 (2.38) 
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The between-group component ..B gy  is the combination of intercept vector Bμ , 

product of factor loading matrix BΛ  and latent factor ..B gη ~  , BMVN 0 Ψ , and the 

unique vector ..B gε  ~  , BMVN 0 Θ . The within-group component .W igy  is the 

combination of intercept vector Wμ , product of factor loading matrix WΛ  and latent factor 

.W igη ~  , WMVN 0 Ψ , and the unique vector .W igε  ~  , WMVN 0 Θ  . Additional 

assumption of the relationships among random components is  

 .. .. . .B g B g W ig W ig  η ε η ε  (2.39) 

Different from Equation (2.2), Equation (2.38) specifies two sources of random 

variation for the observed variables, within group variation and between group variation, 

rather than just one random source. So, the variance-covariance matrix of igy in Equation 

(2.37) can be further rewritten as  

 

 

 

   
.. .. . .

.. .. . .

              

               

ig B W

B B B g B g W W W ig W ig

B B g B g W W ig W ig

Cov

Cov

Cov Cov

 

     

   

y Σ Σ

μ Λ η ε μ Λ η ε

Λ η ε Λ η ε

 

 
' '

B B B B W W W W   Λ Ψ Λ Θ Λ Ψ Λ Θ  (2.40) 

An important measure of heterogeneity of clusters of dependent data, the intra-class 

correlation (ICC) is defined as the ratio between cluster-level variance and the total 

variance of a variable (Cohen, Cohen, West, & Aiken, 2003; Muthén & Satorra, 1995; 
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Shrout & Fleiss, 1979). The indicator variance is a function of random effects and fixed 

effects, no matter in between- and within-level models. Take the multilevel CFA model for 

example. According to Equation(2.40), the indicator variance can be expressed as a 

combination of three components: factor loadings between indicators and latent factors, 

latent factor variances (explained portion of indicator variance), and residual variance of 

indicators (unexplained portion of indicator variance). Therefore, the ICC of CFA model 

can be controlled by adjusted portions of one of these three components in between- and 

within-levels, holding the other two components constant across two levels. For instance, 

ICC of multilevel CFA model can then be expressed as the ratio between the between-level 

latent factor variance and total latent factor variance, with factor loadings and residual 

variance being fixed (Muthén, 1991, 1994), that is, 

 B

B W

ICC 


Ψ

Ψ Ψ
 

Snijders and Bosker (1999) suggested that the ICC value should be more than 

0.05 to construct the multilevel analysis. Hox and Maas (2001) mentioned that in 

educational research, the ICCs are often less than 0.20, but in family research or in social 

network analysis with sociometric status, the ICCs sometimes will exceed 0.33.  
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2.4.1 Parameter estimation 

Beginning from the late 80s’, researchers started to devote themselves in 

developing the suitable multilevel SEM model with respective estimation strategy for the 

dependent data (Goldstein, 1987; Goldstein & McDonald, 1988; McDonald & Goldstein, 

1989; Mehta & Neale, 2005; Muthén & Satorra, 1989; Muthén, 1989; Muthén & Satorra, 

1995; Muthén, 1994). From Equation(2.36), we further decompose the total score into the 

between -group component and within-group component (Cronbach & Webb, 1975), that 

is 

 
 

.. .

    -

ig B g W ig

g ig g

 

 

y y y

y   y y
  (2.41) 

Then, with the assumption of Equation(2.39), the above between-/within-group 

scores are orthogonal and additive to each other (Hox & Maas, 2004; Muthén & Satorra, 

1995; Muthén, 1994). With the score decomposition in Equation(2.41), the independent 

assumption of different level latent factors shown in Equation(2.39) can be established 

because the lower-level group-centered scores are uncorrelated with the group means. We 

then construct the population covariance matrix and the between/within covariance 

components as 

       -ig g ig gCov Cov Cov  T B WΣ = y y   y y Σ +Σ  (2.42)  
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The corresponding between- and within-covariance components will be 

orthogonal and additive (Muthén, 1994; Searle, Casella, & McCulloch, 1992). 

Same score decomposition can be performed for the observed sample data, and 

the resulted variance-covariance matrix can be shown as  

 T B WS S +S  (2.43) 

where BS  and WS  are the consistent and unbiased estimators to their population 

counterparts, BΣ  and WΣ , respectively (Heck & Thomas, 2008; Hox, 2002; Hox & Maas, 

2004; Muthén, 1994).  

With this idea of variance-covariance matrix decomposition, Muthén (1989, 1990, 

1994) presented an a partial Maximum likelihood estimation method, also named MUML 

(Muthén’s ML). In MUML, two variance-covariance matrices of different levels are 

constructed as  

 T B,MUML PW,MUMLS S +S  (2.44) 

The above three variance-covariance matrices are defined as 

   
1 1

1
'

1

gNG

gi gi

g iN  

  

TS y y y y  

   
1 1

1
'

gNG

gi g gi g

g iN G  

  

PW,MUMLS y y y y   
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  
1

1
'

1

G

g g

gG 

  

B,MUMLS y y y y  

where the pooled within-level observed variance-covariance matrix PW,MUMLS is the 

consistent and unbiased estimator to WΣ , and the scaled between-level observed 

variance-covariance matrix ,B MUMLS is the consistent and unbiased estimator to cW BΣ Σ , 

where   
1 2 21

G

g

g

c N G N n
  

   
 

  is the averaged group size. In a balance-design case 

(i.e. all higher-level units have the same group size), MUML is the same as the original 

unbiased ML estimator. But in an unbalance-design case, MUML is the simplified version 

of ML estimation method and only uses a common group size, c , as the weighting scalar 

of the between-level variance component in the likelihood function, that is,    

       1
ˆ ˆ ˆ ˆ ˆ ˆln lnMUML MUMLF F G c tr c p



      W B W B B BΣ,Σ S,Σ Σ Σ Σ Σ S S

 

 

    ˆ ˆ+ ln lnN G tr p   -1

W W PW PWΣ Σ S S
.
            (2.45)      

So, MUML is also called as limited information or quasi-maximum likelihood 

estimation because it assumes that all groups have equal group size, even though they do 

not. One of the nice features of MUML is that researcher can use the multi-group analysis 

routine provided in traditional latent variable statistical software to conduct the multilevel 

analysis. Researchers just need to separate the original data into two groups: the 
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higher-level group with between-level variance-covariance matrix B,MUMLS  and group 

size G  (i.e. the original group number), and the lower-level group with within-level 

variance-covariance matrix PW,MUMLS  with sample size N G . The multilevel data can 

then be analyzed with the multi-group routine. The detailed steps of this process was 

provided in Heck and Thomas (2008), and Muthén (1991; 1994). Comparing to FIML, 

MUML is simpler in computing the parameter estimates. Muthén and Satorra (1995) 

concluded that MUML generally performs equally well as FIML in various conditions; 

however, a new simulation study showed FIML has more accurate parameter estimates 

than MUML does (Hox, Maas & Brinkhuis, 2008) .

 
Another feasible estimation for clustered data is the full information maximum 

likelihood estimation, FIML/FML (Arbuckle, 1996; Enders & Bandalos, 2001; Yuan & 

Hayashi, 2005). We have already known that FIML estimation was introduced to handle 

the incomplete dataset in the previous section. Mehta and Neale (2005) gave a clear 

description of why and how FIML can handle the missingness in incomplete data. The 

individual-specific likelihood function in Equation(2.26) can be interpreted as the 

group-specific likelihood function with gn  individuals inside, and each individual has 

p  measured variables. With this ability, FIML estimators are more robust for unbalanced 
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designs (du Toit & du Toit, 2008). For multilevel data with unequal group sizes, the 

group-specific likelihood function of each group can fully utilize all the information in the 

group, and the summation of group-specific likelihood functions provide us full 

information when we maximize it to have the parameter estimates. In detail, the 

model-implied variance-covariance matrix and/or mean structure can be constructed for 

each group. Then, the discrepancy function between model-implied variance-covariance 

matrix and raw data in each group will be formulated as shown in Eq(2.26). The direct 

log-likelihood function summarizes group-wise log-likelihood functions across the entire 

sample as in Eq(2.27). Finally, we maximize Eq(2.28) to have the vector of estimated  
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unknown parameters θ  to be the consistent and efficient estimates of unknown 

parameters.  

With the ability of dealing with missing data and unbalanced data, FIML is a 

flexible estimation in SEM, such as random slopes analysis (e.g. the dimension and the 

variability of different group-specific variance-covariance matrix can be individually 

specified) (Heck & Thomas, 2008; Mehta & Foorman, 2005). For longitudinal data 

analysis, FIML is also good for the unequal distant repeated measures in latent growth 

curve modeling with the ability in dealing with missing data (Duncan, Duncan, & Hops, 

1996; Mehta & Neale, 2005; Wu, West, & Taylor, 2009).   
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3. USING STRUCTURAL EQUATION MODELING TO ANALYZE COMPLEX 

SURVEY DATA: A COMPARISON BETWEEN DESIGN-BASED 

SINGLE-LEVEL AND MODEL-BASED MULTI-LEVEL APPROACHES 

 

Although the design-based approach is relatively simpler for model specification, it 

presumes that the within-level and between-level models are exactly the same which may 

not always be true. On the other hand, the advantage of using multilevel model is the 

flexibility of specifying different models for different levels. Indeed, Muthén and Satorra 

(1995) showed that these two approaches (design-based vs. model-based) performed 

equally well on analyzing complex survey data with exactly the same model structure 

across all data levels.  However, design factors such as the structure/equality of the 

within- and between-level models and evaluation criteria such as the coverage of the 

parameter estimates and the empirical power for detecting the parameter estimates were 

not considered in their simulation.  

In this study, we extended Muthen and Satorra’s (1995) findings by comparing the 

two multilevel modeling approaches (i.e., design-based versus model-based approaches) 

on for analyzing multilevel data with the consideration of a set of design factors including 

number of clusters, cluster size, intra-class correlation (ICC), and the structure/equality of 
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the between-level and within-level models. We adopted Mplus (V5.2; Muthén & Muthén, 

2007) for all the data generations and analyses. Mplus (V5.2) has the built-in routines (i.e., 

TYPE=COMPLEX and TYPE=TWOLEVEL) for analyzing multilevel data with the two 

approaches. The TYPE=COMPLEX routine is used for the design-based approach in 

which only one (single-level) model is needed for specification while the 

TYPE=TWOLEVEL routine is used for the model-based approach which allows 

researchers to specify different models for different levels of data. By default, both routines 

use maximum likelihood parameter estimator and robust sandwich standard error estimator 

in which the formula for calculating the variance components includes a score factor 

“sandwiched” between two copies of the Hessian matrix (Hardin & Hilbe, 2007). This 

estimation procedure is termed Maximum Likelihood Estimation with robust standard 

error correction (MLR) in Mplus, which is useful for non-normality and non-independence 

of observations, and the corresponding chi-square test statistic is asymptotically equivalent 

to the Yuan-Bentler T2* test statistic (Muthén & Muthén, 2007). The robust parameter 

estimator is also called as Huber-White robust standard error estimate, survey variance 

estimate, design-based variance estimate, and empirical variance estimate and has been 

widely used in survey statistics (Hardin & Hilbe, 2007). With the use of this robust 
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estimator, an asymptotically consistent estimate of covariance matrix can be derived free 

from distributional assumptions of observations (Huber, 1967; White, 1982; Hardin & 

Hilbe, 2007).  

There is another feasible but rarely mentioned modeling strategy for complex 

survey data named the “maximum model” (Hox, 2002). In the maximum model strategy, 

a saturated between-level model is specified; that is, all the unique elements in the 

between-level variance-covariance matrix are estimated with the consumption of all 

available degrees of freedom in the higher-level. Originally suggested as the baseline 

model before any further higher level model construction with theoretical evidence, the 

maximum model has been discussed by several researchers (e.g., Hox, 2002; Stapleton, 

2006; Yuan & Bentler, 2007). Nevertheless, the performance of this modeling strategy 

has not yet been systemically examined. The purpose of this study is to compare the 

potential differences of analyzing multilevel data with a design-based single-level 

confirmatory factor analytic (CFA) model and the two model-based multilevel CFA 

models (i.e., the two-level true model and the maximum model) on the overall model 

chi-square test and several commonly used fit indices, the parameter estimates, 95% 

coverage for both fixed-effect and random-effect and the respective statistical inferences. 
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Specifically, our major research question is to investigate what the effects of the number of 

clusters, cluster size, intra-class correlation (ICC), and model specification are on the 

overall model fit indices, the fixed-effect and random-effect estimates, the 95% coverage 

rate, and respective statistical inferences when: 

1) the between-level and within-level have the same model structure;  

2) the between-level and within-level have different model structures, including 

a) Complex within-level and simple between-level structure, and 

b) Simple within-level and complex between-level structure. 

The three settings are commonly found in empirical research. Caprara, Barbaranelli, 

Borgogni, and Steca (2003) tested the relation between efficacy beliefs and teachers’ job 

satisfaction in an equal between- and within-level SEM model. Example of a complex 

between- and simple within-level structure can be found in Beets and Foley (2008), where 

the relation between father involvement and neighborhood quality within kindergarteners’ 

physical activity was examined in a two-factor between-level model with structural 

relationship and a one-factor within-level model with covariates predicting the underlying 

factor, or in Frenzel, Goetz, Ludtke, and Pekrun (2009), where the relation between teacher 

and student enjoyment was investigated in a three-factor within-level structural model and 
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a four-factor between-level mediation model. A simple between-level and complex 

within-level scenario will be a reversed scenario of simple between-level and complex 

within-level structure.   

3.1 Method 

Three simulation scenarios were composed to answer the above research questions, 

that is, equal between and within structures for Scenario 1, complex within and simple 

between structures for Scenario 2, and simple within and complex between structures for 

Scenario 3. In each scenario, a two-level multilevel CFA (MCFA) model were constructed 

based on the MCFA model examined by Yuan and Bentler (2002) with some modifications 

referring to Hu and Bentler’s research (1998, 1999). Four factors were controlled when 

conducting simulation in each scenario: cluster number (CN=50, 150 & 300;Hox & Maas, 

2001; Muthén & Satorra, 1995), cluster size (CS=10, 50, and 200; Hox & Maas, 2001), 

intra-class correlation (low ICC=0.1 & high ICC = 0.5,; Hox & Maas, 2001), and model 

specification. The simulation parameters were chosen based on the following criterions: a) 

Simulation parameters were used in previous simulation studies, b) simulation parameters 

were set based on the real data conditions, such as CN=150 (e.g. Hox and Maas (2001) 

mentioned , in multilevel modeling, it can be difficult to obtain data from as many as 200 
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groups), and c) to maximize the difference between outcomes of the various simulation 

conditions and the effect of imbalance, the simulation parameters were chosen to be as 

different as possible, such as ICC=0.1 and 0.5 (e.g. Hox & Maas (2001) mentioned, in 

educational research, most ICC’s are below 0.20. So, ICC=0.1 was the low ICC condition 

and ICC =0.5 was a much higher value for the high ICC condition) Monte Carlo procedure 

of Mplus 5.2 (Muthén & Muthén, 2009) was used to produce 1000 replications for each 

combination of factors in each scenario, that is, a total of: 3 (scenarios) ×3 (cluster numbers) 

×3 (cluster sizes) ×2 (ICCs) × 1000 = 54,000 replications were generated. 

In model specification, one single-level MLR model using TYPE=COMPLEX, and 

two multi-level MLR models using TYPE=TWOLEVEL were constructed. The one-level 

model had correct specification for the within-level structure without modeling the 

between-level structure. The two two-level MLR models had correct specification for the 

within structure but one of the two-level models had correctly specified between-level 

structure while the other had a saturated between-level structure (i.e. the full rank scaled 

between-level covariance matrix was freely estimated). For simplicity to distinguish the 

two two-level models and the single-level model, from now on we named the two-level 

model with saturated between-level structure as “two-level maximum model,” the 
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two-level model with correct between-level structure as “two-level true model,” and the 

single-level model with specification only in the within-level structure as “one-level 

model”. All the generated datasets (i.e., the 54,000 replications) were analyzed by these 

three model specifications separately using Mplus 5.2 (Muthén & Muthén, 2007). Detailed 

information of each scenario was depicted below. 

3.1.1 Scenario 1: Equal between-level model / within-level model 

A set of complex survey data were generated based on an equal between- and 

within- structure CFA modeling as shown in Figure 2. The within- and between- levels 

were specified to have an equal factor structure with nine observed variables and three 

common factors. By following previously published simulation studies (e.g., Hox & Maas, 

2001; Muthen & Satorra, 1995), the correlations between the common factors were set to 

0.3 while most of the pattern coefficients (i.e. a more specific name for factor loadings,  
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Thompson, 2004) between factors and outcomes were assigned to be 0.8. Two 

cross-loaded factor loadings were specified to 0.4 in the within-level model (i.e. FW2V3 

and FW3V6), so were the cross-loaded factor loadings in the between-level model (i.e. 

FB2Y3, and FB3 Y6). The residual variances of all manifest variables were taken as 

values that would yield unit-variance measured variables under normality (Hu & Bentler, 

1998) and were specified to be equal to .36. The two-level maximum model and the 

two-level true model were constructed to model the simulated data using the 

TYPE=Twolevel routine. On the other hand, a competing one-level model was constructed 

with only the specification in the within-level model as shown in Figure 2(ii) to model the 

simulated data using the TYPE=Complex routine.   



63 

 

   119 

 

 

(i)Between-level model 

 

(ii)Within-level model 
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Figure 2. Simulated multilevel Confirmatory Factor Analysis model for 

Scenario 1: Equal Between-level/Within-level Structures. 
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3.1.2 Scenario 2: Simple between-level model / complex within-level model 

The difference of Scenario 1 from Scenario 2 was the complexity of the 

between-level model. In Scenario 2 (as shown in Figure 3), the between-level model was 

reduced to a one-factor confirmatory measurement model as shown in Figure 3. The 

parameterization of the within-level model in Scenario 2 was the same as that of the 

within-level model in Scenario 1. In the between-level model, the pattern coefficients 

between factor FB and the nine measured variables were fixed at 0.8 and the residual 

variances were set as 0.36. Likewise, the two-level true model and the two-level maximum 

model were employed to analyze the simulated data using the TYPE=Twolevel routine 

while the one-level model was used to model the simulated data using the Type=Complex 

routine.  
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(i)Between-level model 

 

(ii)Within-level model 

 

 

 

E1

11 

E2 E3

3 

E4 E5 E6 E7 E8 E9 

V2 V1 V4 V3 V6 V5 V8 V7 V9 

 FW1  FW2  FW3 

0.8 0.8 0.8 0.4 0.8 0.8 0.8 0.8 0.8 0.8 
0.4 

0.3 

0.3 0.3 

U1 U2 U3

3 

U4 U5 U6 U7 U8 U9 

Y2 Y1 Y4 Y3 Y6 Y5 Y8 Y7 Y9 

 FB1 

0.8 

Figure 3. Simulated multilevel Confirmatory Factor Analysis model for 

Scenario 2: Simple Between-level/Complex Within-level Structures. 
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3.1.3 Scenario 3: Complex between-level model / simple within-level model  

Scenario 3 (as shown in Figure 4) was a reversed model of Scenario 2. The 

parameterization of the between-level structure in Scenario 3 was the same as that of the 

between-level structure in Scenario 1. In the within-level structure, the pattern coefficients 

between factor FW1 and the nine measured variables were fixed at 0.8 and the residual 

variances were set as 0.36 for the manifest variables. Likewise, the two-level true model 

and the two-level maximum model were employed to analyze the simulated data using the 

TYPE=Twolevel routine while the one-level model was used to model the simulated data 

using Type=Complex. The results from the three models were compared and discussed. 
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(i) Between-level model 

 

(ii)Within-level model 
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Figure 4. Simulated multilevel Confirmatory Factor Analysis model for 

Scenario 3: Complex Between-level/ Simple Within-level Structures. 
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3.2 Results 

3.2.1 Scenario 1: Equal between-level model / within-level model 

The convergence rate of analyses equaled one in all sample size and ICC settings 

of all the three modeling strategies. 

Evaluation of Test Statistic and Model Fit Indices. Values of overall model 

chi-square test statistics shown as
2 , CFI, RMSEA, and SRMR for different combination 

of cluster number and cluster size by ICC were compared in Table 1. In both the low and 

high ICC settings, the one-level model 
2 values, which are asymptotically equivalent to 

the Yuan-Bentler T2* test statistic, were roughly half those for the two-level true model 

across different combinations and were close to the theoretical value. That is, the 
2 values 

reflected the difference in the degrees of freedom; the df for the one-level model and the 

two-level maximum model was 22, which was half the df for the two-level true model. 

When ICC =0.5, the two-level maximum model, which used up all the df in the 

between-level model, produced a more consistent test statistic which was closer to the df of 

within-level model than the one-level model (e.g. when [CN, CS, ICC]=[50, 10, 0.5], 

2

Maximum Model              
  23.4 and 

2

One-level MLR               
  26.5). 
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 As for the model fit indices, all modeling methods showed adequate model fit to 

the dependent data with equal between/within structure. All models had CFI greater than 

0.99 and RMSEA smaller than 0.019. Two-level true model and two-level maximum 

model, in particular, had the same CFI values which were very close to 1, indicating a 

perfect fit of the model to the dependent data. The CFI values of the one-level model were 

smaller than the CFI values of the other two-level models as ICC increased, which 

indicated more lack of fit of the one-level model to the data when between-level structure 

was not modeled. The one-level model also had higher RMSEA values than the two-level 

true model and the two-level maximum model across all combinations of cluster number 

and cluster size, especially at ICC=0.5. The highest RMSEA across all models was 0.019 

which occurred at the setting [CN, CS, ICC]=[50, 10, 0.1] of the two-level true model. The 

RMSEA for the two-level maximum model was the smallest or at least was equal to those 

of the other two models. SRMR-between and SRMR-within were reported for the 

two-level true model and two-level maximum model while the one-level model reported a 

single SRMR value. The SRMR-within for the two-level true model and the two-level 

maximum model was lower than the SRMR-within of their one-level counterpart.  
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Table 1. Test Statistic and Model Fit Indices for Scenario 1: Equal 

Between-level/Within-level Structures 

 

Note. Two-level= two-level true model (df =44); One-level = one-level model (df= 22); 

Maximum model = two-level maximum model (df= 22). In the model column, 50(10) 

represents cluster number=50 and cluster size=10; thus, sample size for this setting equals 

500. The same notation is used for the rest of settings. 
2 = overall model Chi-Square test 

statistics; CFI = Comparative Fit Index; RMSEA = Root-Mean-Square of Error 

Approximation; SRMR = Standardized Root Mean Square Residual. 

  

Model 
2  CFI RMSEA SRMR 

                                           ICC=0.1                      

50(10)    Between/within 

Two-level 59.980 0.998 0.019 0.086 0.017 

One-level 25.409 0.994 0.015 ---- 0.023 

Maximum model 25.443 0.998 0.015 0.006 0.017 

50(200)      

Two-level 48.749 1.000 0.003 0.068 0.004 

One-level 22.603 0.995 0.004 ---- 0.017 

Maximum model 22.675 1.000 0.002 0.000 0.004 

300(10)      

Two-level 45.633 1.000 0.004 0.033 0.007 

One-level 22.659 0.999 0.004 ---- 0.010 

Maximum model 22.272 1.000 0.004 0.002 0.007 

300(200)      

Two-level 44.418 1.000 0.001 0.027 0.001 

One-level 22.082 1.000 0.001 ---- 0.007 

Maximum model 22.216 1.000 0.001 0.000 0.001 

                                          ICC=0.5  

50(10)     

Two-level 50.279 0.998 0.015 0.068 0.020 

One-level 26.544 0.992 0.017 ---- 0.031 

Maximum model 23.380 0.998 0.012 0.002 0.020 

50(200)      

Two-level 48.574 1.000 0.003 0.061 0.004 

One-level 26.807 0.994 0.004 ---- 0.027 

Maximum model 22.693 1.000 0.002 0.000 0.004 

300(10)      

Two-level 45.005 1.000 0.004 0.027 0.008 

One-level 22.790 0.999 0.005 ---- 0.013 

Maximum model 22.248 1.000 0.004 0.001 0.008 

300(200)      

Two-level 44.291 1.000 0.001 0.024 0.002 

One-level 22.147 0.999 0.001 ---- 0.011 

Maximum model 22.226 1.000 0.001 0.000 0.002 
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Fixed effect estimates. The parameter estimates, 95% coverage rate, and 

percentage of significant coefficients of the fixed effects for the smallest and largest 

sample size settings were provided in Table 2. The results of the smallest and largest 

sample size settings were selected for report because they showed the trend of change in 

the criterion variables. Complete output of the results is available from the first author 

upon request. In general, the one-level model produced consistent and efficient estimates 

of factor loadings in Scenario 1. Specifically, as the sample size became larger, that is, a 

larger product of cluster number and cluster size, more consistent and efficient fixed 

effects estimates were observed. Pattern coefficient estimates were more efficient at small 

ICC settings. As for the two-level true model, the parameter estimates in the within-level 

model were more consistent and efficient than the parameter estimates in the 

between-level model because of the larger sample size in the within-level model. 

Moreover, in the high ICC setting, the between-level model produced more efficient fixed 

effect estimates than in low ICC setting. When two-level maximum model was used, the 

fixed effect estimates were more consistent and efficient, and the standard errors were 

smaller than those from the one-level model and were closer to those from the two-level 

true model. The column labeled “95% Cover” gave the proportion of replications for which 
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the 95% confidence interval contains the true population parameter value. As sample size 

increased, the 95% confidence interval coverage rate for the two-level maximum model 

was identical to those from the two-level true model.  

All settings produced statistically significant fixed effect estimates in the 

within-level model of the two-level true model, the two-level maximum model, and the 

one-level model with the value of 1.000 shown in the column labeled “% Sig Coeff.” 

However, in the between-level model of the two-level true model, due to the inconsistent 

and inefficient fixed effect estimates, the empirical percent of statistically significant 

parameter estimates deviated from 100. The worst result occurred at the low ICC and small 

sample size settings (e.g. for [CN, CS, ICC]=[50, 10, 0.1] of two-level true model, % of Sig. 

Coeff. was equal to 0.549 for Y5, 0.203 for Y6 and 0.126 for Y3). 
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Table 2. Fixed Effects Estimates of Scenario 1: Equal Between-level/Within-level 

Structures 

 

Note: Standard error (SE) of parameter estimates were shown in parentheses. 95% Cover = 

proportion of replications for which the 95% confidence interval contains the true population 

parameter value; % Sig Coeff = proportion of replications for which produced statistically 

significant estimates. The pattern coefficients loaded on the between-level factor FB2 of Y4, Y5 

and Y6 were fixed at 0.8, and Y3 was set at 0.4. The pattern coefficients loaded on within-level 

factor FW2 of V4, V5 and V6 were fixed at 0.8, and V3 was set at 0.4 in the within-level model.  

 

Fixed effect Two-level true model  One-level model  Two-level maximum Model 

            

 
Estimates 95% Cover % Sig. Coeff. Estimates 

95% 

Cover 

% Sig. 

Coeff. 
Estimates 

95% 

Cover 

% Sig. 

Coeff. 

ICC=0.1            

50(10)               

          

FB2/FW2 by between within between within between within  
 

  

    

           Y4/V4 
.800 

(.000) 

0.800 

(.000) 1.000 1.000 0.000 0.000 

 

 

0.800  

(.000) 1.000 0.000 

 

 

0.800  

(.000) 1.000 0.000 

           Y5/V5 0.862 

(2.07) 

0.799 

(.033) 0.953 0.940 0.549 1.000 

 

 

0.804  

(.066) 0.957 1.000 

 

 

0.799  

(.033) 0.944 1.000 

           Y6/V6 0.898 

(2.24) 

0.800 

(.035) 0.969 0.947 0.203 1.000 

 

 

0.804  

(.067) 0.936 1.000 

 

 

0.800  

(.034) 0.938 1.000 

           Y3/V3 0.385 

(2.17) 

0.401 

(.030) 0.984 0.954 0.126 1.000 

 

 

0.403  

(.053) 0.947 1.000 

 

 

0.401  

(.030) 0.935 1.000 

 

300(200) 
            

  

          

FB2/FW2 by between within between within between within 
  

  
  

  

           Y4/V4 0.800 

(.000) 

0.800 

(.000) 1.000 1.000 0.000 0.000 

 

 

0.800  

(.000)  1.000 0.000 

 

 

0.800  

(.000) 1.000 0.000 

           Y5/V5 

0.809 

(.101) 

0.800 

(.003) 0.955 0.946 1.000 1.000 

 

 

0.800  

(.021) 
0.948 1.000 

 

 

0.800  

(.003) 
0.946 1.000 

           Y6/V6 

0.813 

(.150) 

0.800 

(.003)  0.962 0.947 0.999 1.000 

 

 

0.800  

(.020) 
0.942 1.000 

 

 

0.800  

(.003)  
0.947 1.000 

           Y3/V3 
0.397 

(.175) 

0.400 

(.003) 0.961 0.946 0.657 1.000 

 

 

0.400  

(.014) 
0.952 1.000 

 

 

0.400  

(.003) 
0.946 1.000 

ICC=0.5 

50(10) 
           

  

          

FB2/FW2 by between within between within between within 
  

  
  

  

           Y4/V4 0.800 

(.000) 

0.800 

(.000) 1.000 1.000 0.000 0.000 

 

 

0.800  

(.000) 1.000 0.000 

 

 

0.800  

(.000) 1.000 0.000 

           Y5/V5 0.828 

(.185) 

0.799 

(.048)  0.935 0.941 0.995 1.000 

 

 

0.807  

(.082) 0.949 1.000 

 

 

0.800  

(.048)  0.944 1.000 

           Y6/V6 0.825 

(.208) 

0.801 

(.048) 0.937 0.946 0.994 1.000 

 

 

0.805  

(.088) 0.940 1.000 

 

 

0.802  

(.051) 0.930 1.000 

           Y3/V3 0.401 

(.178) 

0.400 

(.043) 0.941 0.944 0.739 1.000 

 

 

0.399  

(.075) 0.934 1.000 

 

 

0.400  

(.044) 0.930 1.000 

    

300(200) 
   

 

 
        

  

          

FB2/FW2 by between within between within between within 
  

  
  

  

           Y4/V4 0.800 

(.000) 

0.800 

(.000) 1.000 1.000 0.000 0.000 

 

 

0.800  

(.000) 1.000 0.000 

 

 

.800  

(.000) 1.000 0.000 

           Y5/V5 0.802 

(.060) 

0.802 

(.004) 0.946 0.949 1.000 1.000 

 

 

0.800  

(.030) 0.951 1.000 

 

 

0.800  

(.004) 0.949 1.000 

           Y6/V6 0.804 

(.064) 

0.799 

(.005) 0.939 0.952 1.000 1.000 

 

 

0.801  

(.032) 0.937 1.000 

 

 

0.800  

(.005) 0.952 1.000 

           Y3/V3 0.402 

(.055) 

0.399 

(.004) 0.945 0.942 1.000 1.000 

 

 

0.401  

(.027) 0.942 1.000 

 

 

0.400  

(.004) 0.942 1.000 
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Random effect estimates. The residual variance, factor variance, and covariance 

had the same pattern of simulation result across all sample size settings in the two 

multilevel models and the one-level model in Scenario 1. In addition, the variance pattern 

was similar regardless of high or low ICCs. For illustration purpose, Table 3 showed the 

result of factor covariance when cluster number=300 and cluster size=200 to demonstrate 

the overall random effect findings. The two-level true model and the two-level maximum 

model had consistent estimation of factor covariance to the population value. All the factor 

covariance estimates were around 0.300 at both between and within-level models, and 

became more consistent and efficient as sample size increased.  

However, the factor covariance estimates from the one-level model, where the 

nested structure was accounted for by using a single-level model assuming equal between 

and within structures with robust standard error correction, told a different story. The factor 

covariance estimate was around 0.600, which was twice as large as that in the two-level 

true model, across different combination of cluster number and cluster size in the one-level 

model. In other words, the one-level model analysis estimated the total factor covariance 

component without separating the between and within factor variance portions while two 

two-level models produced level-specific variance component estimates. When it comes to 
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the 95% confidence interval coverage rate, the two-level true model produced coverage 

rates close to 95%; whereas, the one-level model had poor coverage rate since the one-level 

model estimated the total factor covariance, and the confidence interval seldom captured 

the true factor covariance, which was divided into the between- and within-level 

components respectively. Moreover, the 95% coverage rate differed across different 

simulation settings in one-level model. The standard errors of random effect estimates in 

the high ICC setting were larger than those in the low ICC setting. Therefore, the 95% 

confidence intervals in ICC=0.5 were constructed with larger margin of error, which in 

turn erroneously gave a large nonzero coverage rate in the high ICC scenario, especially 

when sample size was small (e.g. in [CN, CS, ICC]=[50, 10, 0.5], 95% coverage rate of 

FW1,FW3̂ =0.702).  

For large sample sizes,, the percent of significant coefficients was close to 1.00 for 

the three models, indicating the covariance estimates were far away from zero. However, 

for the two-level true model in the small sample size setting, the between-level random 

effect estimates were inefficient with inflated standard error. The empirical rate of  
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significant coefficients was underestimated. Even in the high ICC setting, the standard 

error of random effect estimate was still large, which result in underestimated percent of 

statistically significant coefficients(e.g. when [CN, CS, ICC]=[50, 10 , 0.5], the % of Sig. 

Coeff. =0.247 for 12̂ , 0.268 for 13̂  and 0.287 for 23̂ ).  

The two-level maximum model produced more consistent random effect estimates 

which were close to the within-level population values in the two-level true model. 

Furthermore, the two-level maximum model had more efficient random effect estimates 

than the one-level model, and the standard errors of random effect estimates were close to 

those for the within-level model in the two-level true model especially in the small sample 

size and low ICC setting. 
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Table 3. Comparison of Factor Covariances for Large and Small Sample Size Setting in Scenario 1: Equal Between-level/Within-level 

Structures 

 

Note: Standard error of parameter estimates were shown in parentheses. 95% Cover = proportion of replications for which the 95% 

confidence interval contains the true population parameter value; % Sig Coeff = proportion of replications for which produced 

statistically significant estimates. The factor covariance was set at 0.3. 

Covariance Two-level true model  One-level model  
Two-level maximum 

Model 
 

             

 Estimates 95% Cover % Sig. Coeff. Estimates 
95% 

Cover 

% Sig. 

Coeff. 
Estimates 

95% 

Cover 

% Sig. 

Coeff. 

ICC=0.1             

50(10) Between Within Between Within Between Within       

F1 with F2 
0.304 

(.199) 

0.305 

(.099) 
0.947 0.945 0.477 0.867 

0.592 

(.138) 
0.447 0.998 

0.303 

(.096) 
0.931 0.889 

F1 with F3 
0.297  
(.174) 

0.306 
(.097) 

0.945 0.955 0.540 0.905 
0.596 
(.133) 

0.382 1.000 
0.305 
(.094) 

0.950 0.915 

F2 with F3 
0.298 

(.198) 

0.303 

(.098) 
0.942 0.945 0.474 0.886 

0.595 

(.137) 
0.406 0.998 

0.301 

(.095) 
0.935 0.891 

             

300(200) Between Within Between within between within       

F1 with F2 
0.302 

(.041) 

0.300 

(.008) 
0.926 0.947 1.000 1.000 

0.597 

(.035) 
0.000 1.000 

0.300 

(.008) 
0.947 1.000 

F1 with F3 
0.303 
(.041) 

0.300 
(.008) 

0.934 0.937 1.000 1.000 
0.600 
(.033) 

0.000 1.000 
0.300 
(.008) 

0.937 1.000 

F2 with F3 
0.299 
(.041) 

0.302 
(.008) 

0.930 0.934 1.000 1.000 
0.598 
(.034) 

0.000 1.000 
0.302 
(.008) 

0.934 1.000 

ICC =0.5             

50(10) Between Within Between Within Between Within       

F1 with F2 
0.287 

(.206) 

0.301 

(.061) 
0.936 0.932 0.247 1.000 

0.591 

(.206) 
0.748 .853 

0.301 

(.060) 
0.932 1.000 

F1 with F3 
0.293 
(.202) 

0.301 
(.059) 

0.943 0.956 0.268 1.000 
0.597 
(.199) 

0.702 .894 
0.300 
(.060) 

0.956 1.000 

F2 with F3 
0.306 

(.199) 

0.299 

(.060) 
0.942 0.937 0.287 1.000 

0.609 

(.204) 
0.696 .879 

0.299 

(.060) 
0.937 1.000 

             

300(200) Between within Between within between within       

F1 with F2 
0.300 

(.076) 

0.300 

(.005) 
0.934 0.947 0.986 1.000 

0.600 

(.076) 
0.014 1.000 

0.300 

(.005) 
0.956 1.000 

F1 with F3 
0.304 

(.074) 

0.300 

(.005) 
0.946 0.949 0.989 1.000 

0.604 

(.073) 
0.010 1.000 

0.300 

(.005) 
0.937 1.000 

F2 with F3 
0.297 

(.075) 

0.300 

(.005) 
0.939 0.955 0.985 1.000 

0.598 

(.075) 
0.016 1.000 

0.300 

(.005) 
0.935 1.000 
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3.2.2 Scenario 2: Simple between-level model / complex within-level model  

The convergence rate of analyses was equal to 1.0 in all sample size and ICC 

settings of the one-level model,, the two-level maximum model, and in all sample size and 

high ICC settings of the two-level true model, while when the cluster number decreased to 

50 and ICC equaled 0.1, the convergent rate started to decrease in the two-level true 

model (e.g. when CN=50, the convergence rate = 100% for CS=200, 99% for CS=50 and 

95% for CS=10). 

Evaluation of Test Statistic and Model Fit Indices. The model fit indices showed 

few differences among the one-level model,, the two-level true model, and maximum 

model. All model fit indices showed adequate model fit. Overall model chi-square test 

statistic shown as 
2 , CFI, RMSEA, and SRMR for the three model under different 

simulation settings are compared in Table 4. The
2 values had a different pattern from 

those for the first scenario. Due to the unequal between- and within- level structures, 
2

values in the one-level model deviated from their degrees of freedom (the theoretical  
2  

 

 

 

 



78 

 

   119 

value), which was 22 for the one-level model. However, the two-level maximum model 

(df=22) and two-level true model (df=49) still had
2 values close to their degree freedom 

across all settings. CFIs showed good fit of the one-level model and failed to give a clue to 

the different structures in the between-level and within-level model. The same result was 

found for RMSEAs. SRMR-between and SRMR-within were reported for the two-level 

models and a single SRMR for one-level model. The SRMRs exhibited good fit for the 

models. Only the SRMR-between under the setting of small sample size and low ICC 

exceeded the rule of thumb (e.g. SRMR-B=0.098 at [CN, CS, ICC]=[50, 10, 0.1]) for the 

two-level true model due to little variance in the between-level model with small sample 

size .  
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Table 4. Test Statistic and Model Fit Indices for Scenario 2: Simple 

Between-level/Complex Within-level Structures 

 

Note. Two-level= two-level true model (df =49); One-level = one-level model (df= 22); 

Maximum model = two-level maximum model (df= 22). In the model column, 50(10) 

represents cluster number=50 and cluster size=10; thus, sample size for this setting equals 

500. The same notation is used for the rest of settings. 
2 = overall model Chi-Square test 

statistics; CFI = Comparative Fit Indx; RMSEA = Root-Mean-Square of Error 

Approximation; SRMR = Standardized Root Mean Square Residual.  

 

Model 
2  CFI RMSEA SRMR 

                                                                 ICC=0.1 

50(10)    Between/within 

Two-level 58.716(12.855) 0.998(0.001) 0.017(0.012) 0.098(0.030) 0.010(0.002) 

One-level 30.666(10.728) 0.995(0.005) 0.024(0.017) ---- 0.015(0.003) 
Maximum Model 23.774(7.203) 0.999(0.002) 0.012(0.014) 0.006(0.001) 0.017(0.004) 

50(200)      

Two-level 54.109(10.826) 1.000(0.000) 0.003(0.003) 0.043(0.009) 0.002(0.000) 
One-level 34.639(10.146) 0.995(0.005) 0.007(0.004) ---- 0.011(0.002) 

Maximum Model 22.656 (6.869) 1.000(0.000) 0.002(0.003) 0.000(0.000) 0.0024(0.001) 

300(10)      
Two-level 51.136(10.788) 1.000(0.000) 0.004(0.004) 0.045(0.010) 0.004(0.001) 

One-level 25.156( 8.016) 0.999(0.001) 0.006(0.006) ---- 0.011(0.002) 

Maximum Model 22.243(6.967) 1.000(0.000) 0.004(0.005) 0.002(0.001) 0.007(0.001) 

300(200)      

Two-level 49.416(10.379) 1.000(0.000) 0.001(0.001) 0.017(0.003) 0.001(0.000) 

One-level 25.483( 8.394) 0.999(0.001) 0.001(0.001) ---- 0.009(0.001) 

Maximum Model 22.216(6.752) 1.000(0.000) 0.001(0.001) 0.000(0.000) 0.001(0.000) 

                                                                 ICC=0.5  
50(10)     

Two-level 55.549(11.482) 0.996(0.004) 0.014(0.012) 0.050(0.010) 0.020(0.004) 

One-level 28.069 (9.599) 0.993(0.008) 0.020(0.016) ---- 0.024(0.004) 
Maximum Model 23.250(6.864) 0.999(0.002) 0.011(0.013) 0.002(0.001) 0.020(0.004) 

50(200)      

Two-level 53.987(10.904) 1.000(0.000) 0.003(0.003) 0.041(0.008) 0.004(0.001) 

One-level 29.733(10.640) 0.995(0.006) 0.005(0.004) ---- 
0.020(0.004) 

Maximum Model 22.703(6.784) 1.000(0.000) 0.002(0.003) 0.000(0.000) 0.004(0.001) 

300(10) 
     

Two-level 50.571(10.500) 1.000(0.000) 0.004(0.004) 0.020(0.003) 0.008(0.002) 
One-level 33.763 (9.976) 0.998(0.002) 0.012(0.006) ---- 0.012(0.002) 

Maximum Model 22.248(6.907) 1.000(0.000) 0.004(0.005) 0.001(0.000) 0.008(0.002) 

300(200)      

Two-level 49.453(10.160) 1.000(0.000) 0.001(0.001) 0.016(0.002) 0.002(0.000) 

One-level 37.626(10.235) 0.998(0.001) 0.003(0.001) ---- 0.011(0.001) 

Maximum Model 22.226 (6.747) 1.000(0.000) 0.001(0.001) 0.000(0.000) 0.002(0.000) 
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Fixed Effect estimates. For conciseness, only the fixed effect estimates of FW2 by 

V3, V4, V5, and V6 in the within-level model were reported in Table 5 because they 

contained both single-loaded (i.e. V4 and V5) and cross-loaded (i.e. V3 and V6) observed 

indicators. The factor loading estimates of FB1 by Y3, Y4, Y5, and Y6 in two-level true 

model was also reported for illustration purpose. According to results in Table 5, the 

two-level true model produced good estimates of pattern coefficients for both the 

single-loaded and cross-loaded variables under the correctly-specified models. The 

one-level model in the large sample size setting, however, yielded good single-loaded 

loadings but inconsistent cross-loaded fixed effects. For example, regardless of high or low 

ICCs, the parameter estimates for the cross-loaded observed variables, Y3 and Y6, 

deviated negatively from the population values ( 3 2Y FW =0.4 and 6 2Y FW =0.8) to a 

noticeably degree (e.g. when [CN, CS, ICC] = [50, 10, 0.5] , 3 2
ˆ
Y FW =0.290 and 6 2

ˆ
Y FW

=0.679; when [CN, CS, ICC] = [50, 10, 0.1], 3 2
ˆ
Y FW =0.370 and 6 2

ˆ
Y FW =0.768). 
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The standard errors of the fixed effect estimates also exhibited distinct patterns. In 

the two-level true model, the standard errors of the pattern coefficients were larger in the 

between-level model than those in the within-level model. The standard errors (SEs) of 

parameter estimates were the largest in the between-level models for small sample size 

settings. When the dependent data was analyzed with the one-level model, the SEs of the 

loading estimates became smaller as ICCs decreased. Although there were larger SEs of 

fixed effects in the high ICC setting for one-level model, the 95% coverage rate of the 

cross-loaded fixed effects, Y3 and Y6, was still poor due to seriously attenuated factor 

loading estimates (e.g. when [CN, CS, ICC] = [300, 200, 0.5], 95% cov. rate = 0.023 for Y6 

and 0.013 for Y3 in the one-level model). To the contrary, the two-level maximum model 

gave consistent and efficient fixed effect estimates for both single-loaded and cross-loaded 

indicator which was unbiased to its corresponding population values. 
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Table 5. Fixed Effects Estimates of Scenario 2: Simple Between-level/Complex 

Within-level Structures 

 

Note: The pattern coefficients loaded on the between-level factor FB1 of Y4, Y5, Y6 and 

Y3were fixed at 0.8. The pattern coefficients loaded on within-level factor FW2 of V4, V5 

and V6 were fixed at 0.8, and V3 was set at 0.4 in the within-level model. 

  

 

Fixed 
effect 

Two-level true model  One-level model  
Two-level maximum 

Model 
 

 
Estimates 95% Cover % Sig. Coeff. Estimates 

95% 

Cover 

% Sig. 

Coeff. 
Estimates 

95% 

Cover 

% Sig. 

Coeff. 

ICC=0.1             

50(10)             

         

FB1/FW2 

by Between Within Between Within Between Within    

   

     Y4/V4 1.028 
(1.153) 

0.800 
(.000) 0.937 1.000 0.235 0.000 

0.800 
(.000)  1.000 0.000 

0.800 
(.000) 

1.000 0.000 

     Y5/V5 1.074 

(1.907) 

0.798 

(.034) 0.929 0.940 0.249 0.996 

0.799 

(.020) 0.959 1.000 

0.799 

(.033) 
0.944 1.000 

     Y6/V6 1.008 

(1.312) 

0.800 

(.036)  0.929 0.935 0.237 0.996 

0.768 

(.023) 0.686 1.000 

0.801 

(.034) 
0.938 1.000 

     Y3/V3 1.091 
(3.788) 

0.399 
(.030) 0.939 0.956 0.300 0.996 

0.370 
(.019) 0.668 1.000 

0.401 
(.030) 

0.935 1.000 

300(200)             

         

FB1/FW2 
by Between Within Between Within Between Within    

   

     Y4/V4 0.797 

(.053) 

0.800 

(.000) 0.954 1.000 1.000 0.000 

0.800 

(.000)  1.000 0.000 

0.800 

(.0000) 
1.000 0.000 

     Y5/V5 0.798 

(.054) 

0.800 

(.001) 0.949 0.948 1.000 1.000 

0.799 

(.018) 0.957 1.000 

0.800 

(.003) 
0.945 1.000 

     Y6/V6 0.799 
(.054) 

0.799 
(.001)  0.950 0.951 1.000 1.000 

0.769 
(.019) 0.629 1.000 

0.800 
(.003) 

0.950 1.000 

     Y3/V3 0.800 

(.052) 

0.400 

(.001) 0.945 0.957 1.000 1.000 

0.372 

(.014) 0.500 1.000 

0.400 

(.002) 
0.948 1.000 

ICC=0.5             

50(10)             

         

FB1/FW2 

by Between Within Between Within Between Within    

   

     Y4/V4 0.818 

(.152) 

0.800 

(.000) 0.948 1.000 1.000 0.000 

0.800 

(.000)  1.000 0.000 

0.800 
(.000) 

1.000 0.000 

     Y5/V5 0.819 

(.153) 

0.799 

(.048) 0.938 0.944 1.000 1.000 

0.804 

(.081) 0.943 1.000 

0.800 

(.047) 
0.937 1.000 

     Y6/V6 0.819 

(.153) 

0.802 

(.051)  0.937 0.928 1.000 1.000 

0.679 

(.090) 0.680 1.000 

0.803 

(.051) 
0.933 1.000 

     Y3/V3 0.818 

(.145) 

0.399 

(.044) 0.926 0.930 0.999 1.000 

0.290 

(.079) 0.688 0.948 

0.400 

(.044) 
0.928 1.000 

300(200)             

          

FB1/FW2 

by Between Within Between Within Between Within    

   

     Y4/V4 0.797 

(.051) 

0.800 

(.000) 0.943 1.000 1.000 0.000 

0.800 

(.000) 1.000 0.000 

0.800 

(.000) 
1.000 0.000 

     Y5/V5 0.798 

(.051) 

0.800 

(.004) 0.941 0.949 1.000 1.000 

0.801 

(.029) 0.945 1.000 

0.800 

(.004) 
0.949 1.000 

     Y6/V6 0.799 
(.051) 

0.799 
(.005) 0.939 0.952 1.000 1.000 

0.672 
(.029) 0.023 

     
1.000 

0.800 
(.005) 

0.952 1.000 

     Y3/V3 0.800 

(.051) 

0.399 

(.004) 0.944 0.942 1.000 1.000 

0.289 

(.025) 0.013 1.000 

0.400 

(.004) 
0.942 1.000 
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Random effect estimates. The result of random effect estimates for Scenario 2 had 

similarities as well as differences from Scenario 1. The result of random effects of [CN, 

CS]=[200, 300] was shown in Table 6. To start with the similarities, neglecting the higher 

level model specification caused the re-distribution of factor variance, that is, one-level 

model reported the total factor variance instead of separate between and within variance 

components, while the two-level maximum model produced almost identical results to the 

within-level random effect estimates in the two-level true model. As for residual variance, 

single-loaded indicator residual variances were close to the summation of residual variance 

estimates in between- and within-level regardless of ICCs. However, cross-loaded 

indicators, in the high ICC setting in particular, had larger estimate of residual variance 

which was no longer close to the summation of residual variances’ estimates of two-level 

indicators (e.g. when ICC =0.5, 3
ˆ
Y =0.795 in the one-level model while 3, bewteen

ˆ
Y =0.357 

and 3, within
ˆ
Y =0.360 in the two-level true model). The larger residual variance of 

cross-loaded indicators resulted from the inaccurate estimates of the pattern coefficients 

between cross-loaded indicators and their underlying factors as ICC increased. As for 

factor covariance, when the one-level model was used to analyze the simulated data true 

structure with one common factor between-level structure and three common factors 
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within-level structure, its factor covariance estimates were not close to the estimates of the 

within-level factor covariance in the other two two-level models, either.  

Furthermore, with regard to the efficiency of random effect estimation in the 

one-level model, the estimates of factor variance with more cross-loaded indictors was 

more efficient than other factors (e.g. when ICC=0.5, SE( 22̂ )=0.129, SE( 11̂ ) =0.132, 

and SE( 33̂ ) =0.131). The same pattern occurred when ICC was equal to 0.1. However, 

the factor covariance between distant factors was more efficiently estimated than the factor 

covariance between the factors with more cross-loaded indicators and the other factors (e.g. 

when ICC=0.1, SE( 13̂ )=0.028, SE( 12̂ ) =0.030, and SE( 23̂ ) =0.030). The same pattern 

occurred when ICC was equal to 0.5. In the two-level true model, the estimates of the 

residual variance of cross-loaded indicators were less efficient than the estimate of 

single-loaded ones. The same situation occurred in the one-level model as well. Due to 

biased random effect estimates, the one-level model had zero or very small 95% CI 

coverage rate (range 0% to 16%). Percent of significant coefficients was equal to 100% for 

all three models.  



 

 

    

8
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Table 6 Random Effect Estimates of Large Sample Size Setting in Scenario 2: Simple Between-level/Complex Within-level Structures

 

Note: Factor variance was set as 0.2 in between-level model and as 1.8 in within-level model in low ICC setting and was set as 1 in both 

levels in high ICC setting. The factor covariance was set at 0.3, and the residual variance was set at 0.36.

 

Random 

effects 
Two-level true model  One-level model  Two-level maximum Model 

 Estimates 95% Cover % Sig. Coeff. Estimates 
95% 

Cover 
% Sig. 
Coeff. 

Estimates 
95% 

Cover 
% Sig. 
Coeff. 

ICC=0.1 

Factor 

Variance 
Between within Between within between within    

   

FB1/FW1 0.207(.050) 1.799(.014) 0.940 0.948 1.000 1.000 2.005(.070) 0.164 1.000 1.799(.014) 0.948 1.000 

FW2  1.800(.014)  0.956  1.000 1.999(.065) 0.129 1.000 1.800(.014) 0.956 1.000 

FW3  1.800(.014)  0.941  1.000 1.999(.068) 0.163 1.000 1.800(.014) 0.941 1.000 

Factor 
Covariance 

Between Within Between within between within    
   

F1 with F2  0.300(.008)  0.946  1.000 0.481(.030) 0.000 1.000 0.300(.008) 0.947 1.000 

F1 with F3  0.299(.008)  0.941  1.000 0.477(.028) 0.000 1.000 0.299(.008) 0.937 1.000 

F2 with F3  0.300(.008)  0.970  1.000 0.490(.030) 0.000 1.000 0.300(.008) 0.934 1.000 

Residual 

Variance 
Between Within Between within between within    

   

Y3/V3 0.357(.033) 0.360(.003) 0.933 0.955 1.000 1.000 0.744(.048) 0.000 1.000 0.360(.003) 0.955 1.000 

Y4/V4 0.359(.033) 0.359(.003) 0.951 0.951 1.000 1.000 0.718(.044) 0.000 1.000 0.359(.003) 0.951 1.000 

Y5/V5 0.358(.033) 0.360(.003) 0.944 0.953 1.000 1.000 0.720(.044) 0.000 1.000 0.360(.003) 0.953 1.000 

Y6/V6 0.357(.033) 0.360(.003) 0.947 0.953 1.000 1.000 0.743(.046) 0.000 1.000 0.360(.003) 0.953 1.000 

ICC = 0.5 

Factor 

Variance 
Between within Between within between within    

   

FB1/FW1 1.009(.122) 0.999(.009) 0.943 0.938 1.000 1.000 2.021(.132) 0.000 1.000 0.999(.009) 0.937 1.000 

FW2  1.000(.009)  0.962  1.000 2.010(.129) 0.000 1.000 1.000(.009) 0.962 1.000 

FW3  1.000(.009)  0.943  1.000 2.003(.131) 0.000 1.000 1.000(.009) 0.943 1.000 

Factor 
Covariance 

Between Within Between within between within    
   

F1 with F2  0.300(.005)  0.956  1.000 1.277(.098) 0.000 1.000 0.300(.005) 0.956 1.000 

F1 with F3  0.299(.005)  0.937  1.000 1.268(.097) 0.000 1.000 0.299(.005) 0.937 1.000 

F2 with F3  0.300(.005)  0.935  1.000 1.289(.098) 0.000 1.000 0.300(.005) 0.935 1.000 

Residual 

Variance 
Between Within Between within between within    

   

Y3/V3 0.357(.033) 0.359(.003) 0.930 0.950 1.000 1.000 0.795(.042) 0.000 1.000 0.359(.003) 0.950 1.000 

Y4/V4 0.358(.033) 0.359(.003) 0.948 0.958 1.000 1.000 0.711(.039) 0.000 1.000 0.359(.003) 0.958 1.000 

Y5/V5 0.359(.033) 0.360(.003) 0.939 0.950 1.000 1.000 0.712(.040) 0.000 1.000 0.360(.003) 0.950 1.000 

Y6/V6 0.358(.033) 0.360(.003) 0.951 0.951 1.000 1.000 0.790(.041) 0.000 1.000 0.360(.003) 0.951 1.000 
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3.2.3 Scenario 3: Complex between-level model / simple within-level model 

The convergence rate was equal to one in all sample size and ICC settings of the 

one-level model and two-level maximum model and in all sample size settings for 

ICC=0.5 of the two-level true model. However, when cluster number decreased to 50 and 

ICC equaled 0.1, the convergence rate decreased in the two-level true model (e.g. at 

ICC=0.1 and CN=50, the convergence rate = 96% for CS=200, 97% for CS=50, and 89% 

for CS=10). 

Evaluation of Test Statistic and Model Fit Indices. Unlike the previous two 

scenarios, the model fit test statistic and indices showed noticeable differences between the 

one-level model, the two-level true model, and maximum model. Table 7 Overall model 

chi-square test statistic (shown as 
2 ), CFI, RMSEA, and SRMR for the three models 

under different simulation settings in Table 7. For the overall model chi-square test statistic, 

the test statistic value of the one-level model started to deviate from the degrees of freedom 

(df = 27) across ICC settings and the disparity became larger as the sample size increased. 

In high ICC settings, the larger test statistic values indicated the stricter penalty due to 

neglecting the modeling of potential between-level variations when the design-based 

approach or the one-level model was used to analyze dependent data of this kind. On the 
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other hand, the three model fit indices still indicated a fair model fit in low ICC settings. 

However, the three model fit indices showed incongruent patterns of lack of fit in the high 

ICC settings. CFIs consistently showed lack of fit of the one-level model across all sample 

size combinations in high ICC settings and gave a clue to unequal structures in the between 

and within model (e.g. CFI=0.76, 0.74, 0.78, and 0.77 respectively across different 

combinations of sample size at ICC=0.5 for the one-level). RMSEA gave some 

information of discrepancy in the between- and within- level models in the smaller cluster 

size settings but not in larger cluster size settings (e.g. RMSEA=0.10 at [CN, CS, 

ICC]=[300, 10, 0.5] and 0.11 at [CN, CS, ICC]=[50, 10, 0.5], but RMSEA= 0.03 at both 

[CN, CS, ICC]=[300, 200, 0.5] and [CN, CS, ICC]=[50, 200, 0.5]). All SRMRs exhibited 

good fit of the model to the data for all three models and failed to provide information 

regarding the unequal between/within structure. Only the SRMR-between slightly 

exceeded the rule of thumb under the setting of small sample size and low ICC (e.g. 

SRMR-B=0.09 at [CN, CS, ICC]=[50, 10, 0.1]) for the two-level true model due to little 

variance and small cluster size in the between-level model. 
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Table 7. Test Statistic and Model Fit Indices for Scenario 3: Complex Between-level/ 

Simple Within-level Structures. 

Model 
2  CFI RMSEA SRMR 

 ICC=0.1 

50(10)    Between/within 

Two-level 55.83 1.00 0.02 0.09 0.01 

One-level 44.47 0.99 0.03 ---- 0.02 

Maximum Model 28.62 1.00 0.01 0.00 0.01 

50(200)      

Two-level 53.98 1.00 0.00 0.07 0.00 

One-level 49.74 0.99 0.01 ---- 0.02 

Maximum Model 27.93 1.00 0.00 0.00 0.00 

300(10)      

Two-level 49.86 1.00 0.00 0.03 0.00 

One-level 95.88 0.99 0.03 ---- 0.01 

Maximum Model 27.02 1.00 0.00 0.00 0.00 

300(200)      

Two-level 50.01 1.00 0.00 0.03 0.00 

One-level 120.65 0.99 0.01 ---- 0.01 

Maximum Model 27.28 1.00 0.00 0.00 0.00 

 ICC=0.5 
50(10)     

Two-level 55.68 1.00 0.01 0.07 0.01 

One-level 187.07 0.76 0.11 ---- 0.08 

Maximum Model 28.61 1.00 0.01 0.00 0.01 

50(200)      

Two-level 54.21 1.00 0.00 0.06 0.00 

One-level 238.21 0.74 0.03 ---- 0.08 

Maximum Model 27.90 1.00 0.00 0.00 0.00 

300(10)      

Two-level 49.69 1.00 0.00 0.03 0.01 

One-level 816.44 0.78 0.10 ---- 0.07 

Maximum Model 27.03 1.00 0.00 0.00 0.01 

300(200)      

Two-level 49.91 1.00 0.00 0.02 0.00 

One-level 1021.83 0.77 0.03 ---- 0.07 

Maximum Model 27.27 1.00 0.00 0.00 0.00 

Note. Two-level= two-level true model (df =49); One-level = one-level model (df= 27); 

Maximum model = two-level maximum model (df= 27). In the model column, 50(10) 

represents cluster number=50 and cluster size=10; thus, sample size for this setting equals 

500. The same notation is used for the rest of settings.  
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Fixed effect estimates. Fixed effect estimate of pattern coefficients between 

indicators and the between-level factor (FB2) and within-level factor (FW1) were 

tabulated in Table 8. Similarly, Y3, Y4, Y5, and Y6 (the between-level manifest variables) 

and V3, V4, V5, and V6 (the within-level manifest variables) were reported to examine 

single-loaded as well as cross-loaded indicators. In the small sample size and low ICC 

settings, the two-level true model generated inconsistent and inefficient estimates of 

pattern coefficients for both the single-loaded and cross-loaded indicators, except Y4, the 

marker variable (e.g.        =1.085,        =1.015,        =0.372 at [CN, CS, ICC]=[50, 

10, 0.1]). In addition, due to neglecting the modeling of the between-level structure,  the 

one-level model generated biased fixed effect estimates for cross-loaded indicators (Y3 

and Y6) which were positively deviated from the population values with the relative bias 

ranging from 6.3% to 29% as ICC increased from 0.1 to 0.5. Moreover, the pattern  
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coefficient estimates of single-loaded indicators (Y4 and Y5) were also overestimated and 

positively away from the population values with the relative bias ranging from -0.3% to 8% 

as ICC increased. The standard errors of the fixed effect estimates also exhibited inflated 

patterns as ICC increased in the one-level model. With the larger standard error estimates 

in the high ICC setting, the 95% coverage rate of the cross-loaded fixed effects (Y3 and Y6) 

was still small due to positively biased point estimates (e.g. when [CN, CS, ICC] = [300, 

200, 0.5], 95% CI coverage rate of Y6 = 0.000 and Y3 = 0.022 for one-level model). As the 

promising modeling strategy shown in Scenario 2, the two-level maximum model 

generated unbiased estimate of the fixed effect and standard error for both single-loaded 

and cross-loaded indicators in the within-level model. 
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Table 8. Fixed Effects Estimates of Scenario 3: Complex Between-level/ Simple 

Within-level Structures 

 

Note: The pattern coefficients loaded on the between-level factor FB2 of Y4, Y5 and Y6 

were fixed at 0.8, and Y3 was set at 0.4. The pattern coefficients loaded on within-level 

factor FW1 of V4, V5, V6 and V3 were fixed at 0.8 in the within-level model. 

  

 

Fixed 

effect 
Two-level true model  One-level model  

Two-level maximum 

Model 
 

 

Estimates 95% Cover % Sig. Coeff. Estimates 
95% 

Cover 
% Sig. 
Coeff. 

Estimates 
95% 

Cover 

% 

Sig. 

Coeff. 

ICC=0.1             

50(10)             

FB2/FW1 
by Between Within Between Within Between Within       

     Y4/V4 0.800 

(0.000) 

0.800 

(0.032) 1.000 0.934 0.000 0.999 

0.799 

(0.048) 0.942 1.000 

0.801 

(0.030) 0.934 1.000 
     Y5/V5 1.085 

(1.635) 

0.801 

(0.031) 0.935 0.935 0.540 0.999 

0.800 

(0.048) 0.934 1.000 

0.801 

(0.030) 0.935 1.000 

     Y6/V6 1.015 
(1.580) 

0.801 
(0.031) 0.908 0.950 0.269 0.999 

0.853 
(0.050) 0.831 1.000 

0.801 
(0.030) 0.950 1.000 

     Y3/V3 0.372 

(1.466) 

0.801 

(0.032) 0.974 0.942 0.140 0.999 

0.855 

(0.053) 0.831 1.000 

0.801 

(0.030) 0.942 1.000 

300(200)             
         

FB2/FW1 

by Between Within Between Within Between Within       
     Y4/V4 0.800 

(0.000) 

0.800 

(0.003) 1.000 0.949 0.000 1.000 

0.798 

(0.014) 0.936 1.000 

0.800 

(0.003) 0.949 1.000 

     Y5/V5 0.806 
(0.100) 

0.800 
(0.003) 0.941 0.955 1.000 1.000 

0.797 
(0.014) 0.945 1.000 

0.800 
(0.003) 0.955 1.000 

     Y6/V6 0.812 

(0.146) 

0.800 

(0.003) 0.937 0.938 1.000 1.000 

0.850 

(0.014) 0.051 1.000 

0.800 

(0.003) 0.938 1.000 

     Y3/V3 0.394 

(0.169) 

0.800 

(0.003) 0.956 0.942 0.687 1.000 

0.853 

(0.016) 0.066 1.000 

0.800 

(0.003) 0.942 1.000 

ICC=0.5             

50(10)             

FB2/FW1
by Between Within Between Within Between Within       

     Y4/V4 0.800 

(0.000) 

0.801 

(0.041) 1.000 0.941 0.000 1.000 

0.864 

(0.143) 0.955 1.000 

0.801 

(0.041) 0.939 1.000 

     Y5/V5 0.825 
(0.182) 

0.801 
(0.041) 0.947 0.939 0.989 1.000 

0.865 
(0.144) 0.954 1.000 

0.801 
(0.041) 0.939 1.000 

     Y6/V6 0.841 

(0.210) 

0.802 

(0.041) 0.958 0.943 0.976 1.000 

1.032 

(0.167) 0.812 1.000 

0.802 

(0.041) 0.943 1.000 
     Y3/V3 0.413 

(0.177) 

0.801 

(0.041) 0.959 0.945 0.718 1.000 

0.977 

(0.101) 0.606 1.000 

0.801 

(0.041) 0.943 1.000 

300(200)             

          
FB2/FW1

by Between Within Between Within Between Within       

     Y4/V4 0.800 
(0.000) 

0.800 
(0.004) 1.000 0.952 0.000 1.000 

0.849 
(0.052) 0.893 1.000 

0.800 
(0.004) 0.952 1.000 

     Y5/V5 0.804 

(0.060) 

0.800 

(0.004) 0.945 0.949 1.000 1.000 

0.849 

(0.052) 0.884 1.000 

0.800 

(0.004) 0.949 1.000 

     Y6/V6 0.804 

(0.064) 

0.800 

(0.004) 0.947 0.935 1.000 1.000 

1.012 

(0.059) 0.022 1.000 

0.800 

(0.004) 0.935 1.000 

     Y3/V3 0.399 
(0.055) 

0.800 
(0.004) 0.945 0.938 1.000 1.000 

0.968 
(0.035) 0.000 1.000 

0.800 
(0.004) 0.938 1.000 
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Random effect estimates. Likewise, the result of random effect estimates of cluster 

size=300 and cluster number=200 was reported for Scenario 3 in Table 9. The 

redistribution of random effect was shown similar as the result in Scenarios 1 and 2. That is, 

because of neglecting the higher level modeling, the one-level model reported the total 

variance component instead of separate between and within variance components, while 

the two-level maximum model produced almost identical results, including the variance 

component estimates with standard errors and the corresponding statistical inferences as 

the within-level random effect estimates in the two-level true model. However, different 

from the result of one-level model in Scenarios 1 and 2, the total variance component 

estimate of latent factors and the cross-loaded and single-loaded indicators had biased 

parameter estimates, which negatively deviated from the summation of variance 

components estimates of the between- and within-level models for both ICC settings. 

When ICC increased from 0.1 to 0.5, the factor variance estimates of the one-level model 

were less efficient and more negatively biased from the population value of total variance  
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components of the two levels. The relative bias was 4% for ICC=0.1 and -31% for ICC=0.5 

(e.g. when [CN, CS, ICC]=[300, 200, 0.5], the 11̂ =1.379 with SE = 0.120; 11̂ =2.082 

with SE =0.058 in [CN, CS, ICC]=[300, 200, 0.1]). The reversed bias pattern occurred for 

the residual variance of indicators. When ICC increased from 0.1 to 0.5, the residual 

variance estimates of both cross-loaded and single-loaded indicators of the one-level 

model were less efficient but more positively biased from the population value of total 

variance components with the relative bias ranging from -15% to 32% (e.g. when [CN, CS, 

ICC]=[300, 200, 0.5], the 3, one-level model
ˆ
Y =1.058 with SE= 0.069, which was more biased 

and less efficient than the 3, one-level model
ˆ
Y =0.705 with SE = 0.031 in [CN, CS, ICC]=[300, 

200, 0.1]). All the 95% coverage rate of variance component estimates was close to zero 

for the biased point estimates.



 

 

    

9
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Table 9. Random Effect Estimates of Large Sample Size Setting in Scenario 3: Complex Between-level/Simple Within-level Structures 

 

Note: Standard error of parameter estimates were shown in parentheses. 95% Cover = proportion of replications for which the 95% 

confidence interval contains the true population parameter value; % Sig Coeff = proportion of replications for which produced 

statistically significant estimates. Factor variance was set as 0.2 in between-level model and as 1.8 in within-level model in low ICC 

setting and was set as 1 in both levels in high ICC setting. Residual variance was set at 0.36.

 

Random effects Two-level true model  One-level model  Two-level maximum Model  

 Estimates 95% Cover % Sig. Coeff. Estimates 
95% 

Cover 

% Sig. 

Coeff. 
Estimates 

95% 

Cover 

% Sig. 

Coeff. 

ICC=0.1 

Factor Variance Between within Between within between within       

FB1/FW1 0.200(0.048) 1.800(0.013) 0.945 0.943 0.997 1.000 2.082(0.058) 0.002 1.000 1.800(0.013) 0.943 1.000 

FB2 0.200(0.047)  0.939  0.999        

FB3 0.200(0.043)  0.943  1.000        

Residual 

Variance 
Between within Between within between within    

   

Y3/V3 0.357(0.036) 0.360(0.002) 0.939 0.950 1.000 1.000 0.705(0.031) 0.000 1.000 0.360(0.002) 0.950 1.000 

Y4/V4 0.359(0.032) 0.360(0.002) 0.940 0.953 1.000 1.000 0.675(0.029) 0.000 1.000 0.360(0.002) 0.953 1.000 

Y5/V5 0.359(0.032) 0.360(0.002) 0.937 0.952 1.000 1.000 0.674(0.029) 0.000 1.000 0.360(0.002) 0.952 1.000 

Y6/V6 0.359(0.034) 0.360(0.002) 0.955 0.938 1.000 1.000 0.715(0.032) 0.000 1.000 0.360(0.002) 0.938 1.000 

ICC = 0.5 

Factor Variance Between within Between within between within       

FB1/FW1 1.000(0.131) 1.000(0.009) 0.945 0.946 1.000 1.000 1.379(0.120) 0.086 1.000 1.000(0.009) 0.945 1.000 

FB2 0.999(0.129)  0.935  1.000        

FB3 0.992(0.128)  0.949  1.000        

Residual 
Variance 

Between Within Between within between within    
   

Y3/V3 0.354(0.048) 0.360(0.002) 0.933 0.947 1.000 1.000 1.058(0.069) 0.000 1.000 0.360(0.002) 0.947 0.000 

Y4/V4 0.357(0.044) 0.360(0.002) 0.940 0.954 1.000 1.000 1.007(0.063) 0.000 1.000 0.360(0.002) 0.954 0.000 

Y5/V5 0.357(0.044) 0.360(0.002) 0.951 0.951 1.000 1.000 1.009(0.063) 0.000 1.000 0.360(0.002) 0.951 0.000 

Y6/V6 0.355(0.046) 0.360(0.002) 0.941 0.937 1.000 1.000 0.939(0.056) 0.000 1.000 0.360(0.002) 0.937 0.000 
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3.3 Discussion 

One of the interesting findings from the simulation study is that the overall model 

chi-square test and other commonly used fit indices did not provide much helpful 

information consistently on the necessity of specifying a different higher level model, 

especially when the design-based single-level model was used for the analyzing data with 

truly unequal between-level and within-level model structures . In the simple 

between-/complex within-level structure scenario (i.e. Scenario 2), although the model fit 

test statistic values for the one-level model deviated from the expected values (df=22) 

slightly due to unequal between and within structures, the p-value of the overall model 

chi-square value was still larger than .05, which led to an incorrect conclusion for the 

equivalence of the between-level and within-level models. Similarly, all three fit indices, 

namely, RMSEA, SRMR, and CFI were not sensitive to the deviations of the within-level 

model from the between-level model based on the traditionally used cutoff criteria (i.e., 

RMSEA <.08, SRMR <.08, and CFI >.95 which indicate an adequately fitted model).  

 

 



96 

 

   119 

On the other hand, in the third Scenario (i.e., complex-between/simple-within 

structure), the overall model chi-square test indicated ill fit of the design-based one-level 

model to multilevel data with complex between-level structure and simple within-level 

structure. As for the model fit indices, only CFI showed poor model fit of the one-level 

model to the dependent data under the high ICC condition (i.e., ICC=0.5). Both RMSEA 

and SRMR in general failed to indicate the lack of fit of the one-level model to the 

multilevel data with different model structures at different levels. To sum up, overall model 

chi-square test statistic and CFI model fit index can only offer partial information 

regarding model misspecification when the design-based approach is used for analyzing 

the clustered data with simple within- and complex between-level structures.  

For the fixed effects estimates, simulation results differed for equal structure and 

unequal structure scenarios. In the equal-structure scenario, all factor loading estimates 

were close to the population values in the two-level true model, whether they were 

uniquely loaded on one factor or crossly loaded on two factors. The coverage rate of 95% 

confidence interval and the statistical inferences of the estimates for single-loaded and 

cross-loaded factor loadings in the one-level model (TYPE=COMPLEX routine) were 
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close to those of the two-level true model and the two-level maximum model 

(TYPE=TWOLEVEL routine).  

However, in unequal-structure scenario, different patterns of result occurred for 

single-loaded and cross-loaded factor loadings. In the simple between-/ complex 

within-level scenario, the estimates of single-loaded factor loadings were unbiased 

estimates to the population values of the within-level model, and the statistical inferences 

of single-loaded factor loading estimates in the one-level model were close to those of the 

within-level model in the two-level true model and to those in the two-level maximum 

model. However, when the one-level model was used for the non-independent data, the 

estimates of the crossed-loaded indicators were biased. The biased cross-loaded factor 

loading estimates were exacerbated with increase in ICC. Also, as ICC increased, the 

standard errors of the fixed effect estimates increased. Nevertheless, the parameter 

estimates of the cross-loaded observed variables still had relatively low 95% confidence 

interval coverage rate due to seriously biased pattern coefficient estimates when ICC was 

high. The situation became worse when the between-level structure was more complex 

than the within-level structure (i.e. the complex between-/ simple within-level scenario). 

The pattern coefficient estimates of both single-loaded and cross-loaded indicators 
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seriously deviated from the population values, and the biases became severer when ICC 

increased. Meanwhile, the resulted 95% confidence interval coverage rate was also close to 

zero for biased factor loading estimates when ICC increased. 

With regards to random effects, in general, the one-level model only estimated the 

overall variance components in the equal structure scenario. Moreover, the one-level 

model accounted for the overall factor covariance as well as the residual variance under the 

equal structure scenario. For the unequal structures with simple between model and 

complex within model, the design based one-level model could still produce good 

estimates of the summation of factor variances in the between- and within-level models. 

However, the estimate of factor covariance was no longer the combination of factor 

covariance from each level. Moreover, we observed poorer estimates of cross-loaded 

indicator residual variance. On the other hand, in the complex between-/simple 

within-level scenario, the one-level model generated more biased estimate of total factor 

variance and total indicators residual variances as ICC increased.  
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To understand the change of random effects, we needed to take the variation of the 

fixed effect estimates into account. In the equal structure scenario, the fixed effect 

estimates were asymptotically close to the population values which were set to be the same 

in the between- and within-level models. With the fixed effect estimates being correctly 

specified, variance components for the factor variance, factor covariance, and residual 

variance were re-distributed for the one-level model in which a single variance component 

was obtained as the sum of the between and within variance components. The estimates for 

random effects under the equal structure scenario were equivalent to the combination of 

respective variance components in the between- and within-level models.  

However, in the simple-between/complex-within scenario, the situation became 

more complicated. The quality of the pattern coefficients of the fixed effects differed; the 

single-loaded pattern coefficient estimates were consistent across all ICC conditions, but 

the cross-loaded estimates deteriorated especially as ICC increased. Because of the use of 

the marker variable strategy for model identification, the factor variances were defined 

with the same metric of the marker variable (e.g., V4 loaded on FW2 in Figure 2 and Table 

5), while factor covariance and residual variance were allowed to vary. In order to maintain 

the consistent amount of indicator variance and to compensate for the inaccurate 
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cross-loaded factor loadings, the random effect estimates needed to be adjusted as a result., 

Consequently, the factor covariance estimates were no longer close to the summed 

between and within factor covariances. Moreover, the unexplained portion of indicator 

variance was credited to the residual variance. That is why the cross-loaded indicators had 

higher residual variances than single-loaded indicators as shown in the bottom of Table 6. 

The situation deteriorated in the complex between-/simple within-level scenario. The 

one-level model produced inconsistent factor variance estimates due to the biased 

single-loaded pattern coefficient estimate. Especially as ICC increased, the total factor 

variance was underestimated because of the inflated estimate of the single-loaded pattern 

coefficient (e.g. when [CN, CS, ICC]=[300, 200, 0.5], 11̂ =1.379, which was negatively 

biased from the total factor variance set as 2).  

To the contrary, the use of the two-level maximum model recovered the distorted 

cross-loaded fixed effect estimates to the population values in the simple 

between-/complex within-level scenario, and restored both the distorted single- and  
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cross-loaded fixed effect estimates to the population values in the complex 

between-/simple within-level scenario as well. Thus, we obtained consistent random effect 

estimates close to the true variance components in the within-level of the true model. 

Another advantage of the two-level maximum model compared to the two-level true model 

is that it offers greater power for the lower-level estimates with dependent data of small 

sample size. Although the two-level true model specified the multilevel structure of the 

data correctly and yielded asymptotically identical lower-level estimate to the generated 

population values under most of the conditions, the two-level true model may still produce 

inconsistent parameter estimates with inflated standard error, erroneous statistical 

inference, and inflated type II error rate, especially under conditions with low ICC and 

small sample size.  
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4. THE EFFECT OF IGNORING DEPENDENCY IN COMPLEX SURVEY DATA 

FOR CONDITIONED MULTILEVEL LATENT GROWTH CURVE MODELING  

 

Multilevel latent growth curve model (MLGCM), on the other hand, extends the 

concept of LGCM to include cluster-specific higher-level data in the model. The potential 

impacts of ignoring the cluster effect/dependency in the longitudinal data by using LGCM 

rather than MLGCM have not yet been thoroughly investigated because LGCMs used 

more information in the observed variables than traditional methods (Hancock & 

Lawrence, 2006) such as its focus on variance, covariance, and mean structure across the 

time span (Rogosa & Willett, 1985). The major goals of this study were twofold: (1) to 

examine the effect of considering (model-based MLGCM and design-based MLGCM 

approaches) or ignoring (regular LGCM approach) the highest data-level on model fit test 

statistic value, fit indices, between/within regression weights, and between-/within-level 

factor covariances, residual variances and mean structures, and (2) to compare the effect of 

incorporating or not incorporating the higher-level covariate in the regular LGCM and 

design-based MLGCM on the parameter estimates and the statistical inferences. The 

concepts of LGCM and MLGCM were briefly reviewed, followed by the design and 
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analysis for the Monte Carlo study. Finally, we discussed implication of the findings with 

suggestions for applications.  

4.1 Latent Growth Curve Model (LGCM) 

Repeated measurements collected from a group of participants can be analyzed 

using a LGCM. In the LGCM, all the participants can have their own initial status 

(intercept) and growth curve (slope) on the outcome measure. The variability in the initial 

status and growth trajectories are modeled as latent variables. The LGCM helps answer 

questions about change over time by treating the latent variables as independent, dependent, 

control or mediating variables under SEM methodology (Llabre, Spitzer, Siegel, Saab, & 

Schneiderman, 2004). Therefore, under the SEM framework, LGCM are considered as a 

single-level model in that the random effects are modeled as latent variables (Bovaird, 

2007; Curran, 2003).  

4.2 Multilevel Latent Growth Curve Model (MLGCM) 

We discuss two MLGCM approaches in this paper, design-based MLGCM and 

model-based MLGCM. The design-based approach is the single-level LGCM with robust 

sandwich standard error estimator (J. W Hardin & J. Hilbe, 2007; Huber, 1967; White, 

1980) which takes the sampling scheme of dependent data into consideration when 
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computing the standard error of parameter estimates (Muthén & Satorra, 1995; Stapleton, 

2006). By considering the complex sampling scheme, the empirical standard error 

estimates can produce consistent statistical inferences. Unlike the design-based MLGCM 

which adjusts the standard error with the robust standard error estimator given the 

sampling scheme, the model-based MLGCM builds the multilevel model with 

level-specific parameter estimates based on the actual levels of sampling units in the 

complex sampling design (Heck & Thomas, 2008; Luke, 2007). Besides describing the 

form and pattern of change in a dependent variable over time, Model-based MLGCM can 

explore the interindividual and intraindividual predictors of this change in which 

individuals are grouped into clusters that may have structures (Heck & Thomas, 2008; 

Luke, 2007). An example of two-level repeated measurement data would be the growth of 

the individual students within the context of classrooms, where repeated measures within a 

student and the variation in growth parameters among students within a classroom are 

captured in the first level, and the variation among classrooms is presented in the second 

level. For example, the experience of teachers (i.e. a classroom-level predictor) may affect 

the behavioral engagement and academic achievement of students. Ignoring the 

dependency issue that students are nested in classrooms may result in biased estimation of 
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the standard error of the fixed effect estimates (or the regression coefficients), which in 

turn affects the statistical inference of the parameter estimates (Hox, 2002). 

Considering a multilevel dataset with T elements of repeated measures (level 1 

unit) ,  1,2,...,tigy t T , of each of I participants (level 2 unit) nested within G groups 

(level 3 unit).  For the i
th

 participant (level 2 unit) within g
th

 group, assuming igy  is a 

multivariate normally distributed random vector with T elements of repeated measures 

(level 1 unit) ,  1,2,...,tigy t T , that is,  
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where 1,2,...,i I  and 1,2,...,g G .  

Thus, for each g
th  

group (level 3 unit), the random matrix of observations can be 

arranged as:  
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Beside on Equation(2.38), the random vector igy can be decomposed into its 

between-group and within-group components, 

 
.. .

.. .. . .    

ig B g W ig

B B B g B g W W W ig W ig

 

     

y y y

μ Λ η ε μ Λ η ε
 (2.48) 

Here, the random vector of latent growth factors ..B gη and .W igη include the latent 

growth factors I (intercept factor), S (linear growth factor), 
2S (quadratic growth factor) 

and so on to the highest order growth factor 
H

BS , and the corresponding factor loadings 

matrix BΛ and WΛ  are set as follows 
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The MLGC model can also include different level covariates in the model to 

investigate the relationship between latent growth factors and covariates. This is so called 

conditional MLGC model. Suppose X  (the within-level covariate) and Y (the 
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between-level covariate) are used to examine the constructs of corresponding growth 

factors. Then, the ..B gη and .W igη in Equation (2.48) can be further expressed as follows: 

 2 2 2

0 1

0 1

2

.. 0 1

10

1

B B B

B B B

B B B

H H
BB B

I I IB

S S SB

B g B BY B S S S

H

B IS S

eI

eS

S Y e
Y

S e

 

 

 

 

   
   
   

                    
   
       

η β e  (2.49) 

 2 2 2

0 1

0 1

2

.. 0 1

10

1

W W W

W W W

W W W

H H
WW W

I I IW

S S SW

W g W WX W S S S

H

W IS S

eI

eS

S X e
X

S e

 

 

 

 

   
   
   

                    
   
       

η β e  (2.50) 

Here, the BYβ and WXβ  are the design matrices in respective levels with the 

elements of intercept 0.  and the regression weight 1. , and the Be ~  ,
B

MVN e0 and 

We ~  ,
W

MVN e0  are the random vector of the residual terms of growth factors in two 

levels. The cross-correlation of these two level residual terms is assumed to be 

uncorrelated. 
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 (2.51) 

And the variance-covariance matrix of igy of Equation (2.51) can be also 

rewritten as  
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           (2.52) 

The between- and within- level variances are assumed to be orthogonal with 

covariates from respective levels included in the model. The current study aimed to 

investigate the consequence of failing to model a higher-level structure and the impact of 

introducing higher-level covariates to the regular and model-based LGCMs with different 

estimation methods. A Monte Carlo simulation procedure was depicted in the following 

section.  

4.3 Method 

A Monte Carlo simulation procedure was conducted to investigate the effect of 

ignoring the dependent nature of the complex survey data. The simulation considered the 

following design factors: 3 Model specifications (MLGCM with low-/high-level 

covariates, LGCM with low-level covariate, and LGCM with low-/high-level covariates), 

2 Estimation methods (maximum likelihood estimation (ML), and maximum likelihood 

estimation with robust standard estimator (MLR)), 3 Cluster sizes (CS=5, 30, 50), and 4 

cluster numbers (CN=10, 30, 50, 100) to generate the dependent data. The number of 
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cluster size and cluster number was chosen based on Maas and Hox (2005) and Kreft 

(2006). MLGCM using ML or MLR estimation with the multivariate normally distributed 

indicators yielded identical results; thus, only result from MLGCM with MLR estimation 

or model-based MLGCM was reported. The combination of model specifications and 

estimation methods resulted in 5 different models. In addition to model-based MLGCM 

with low- and high-level covariates, the other four models were 1) conditioned regular 

LGCM with low-level covariate, 2) design-based MLGCM with low-level covariate, 3) 

conditioned regular LGCM with low- and high-level covariates, and 4) design-based 

MLGCM with low- and high-level covariates. More information about the five models 

was provided in the model specification section. We adopted the Monte Carlo procedure 

in Mplus V5.21 (Muthén & Muthén, 2009) for data generation. A total number of 5 

(model combinations)3 (CS)4 (CN) = 60 conditions was examined with 1000 

replications for each condition.  

4.3.1 Data generation 

In this study, we generated a set of complex survey data that was dependent in 

nature with a continuous outcome variable for a two-level four-wave growth curve model 

(i.e. a three-level model in the multilevel data analysis) as shown in Figure 5, where the 
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between-level structure had a cluster-level covariate W and the within-level structure had 

an individual-level covariate X respectively. We chose 4 waves as the number of repeated 

measures based on the review of the multiwave longitudinal studies published in 

Developmental Psychology in 2002 by Khoo and colleagues (Khoo, West, Wu, & Kwok, 

2006). The four repeated measures were denoted as Y1-Y4. The intercepts of the outcome 

variable at the four time points were fixed at zero. The ICC is defined as the ratio between 

cluster-level variance and the total variance of a variable (Cohen, Cohen, West, & Aiken, 

2003; Muthén & Satorra, 1995; Shrout & Fleiss, 1979). The ICC of the four-wave 

measures (e.g. Y1, Y2, Y3, Y4) in the Two-level model were 0.25, 0.27, 0.30, and 0.32, 

which were within the range of the commonly found ICCs in educational research (Hox, 

2002). The linear growth patterns were modeled in both within- and between-level, i.e. the 

factor loadings of the intercept factor were fixed at one and those of the slope factor were 

set as 0, 1, 2, and 3 as part of the growth model parameterization. We followed the 

notations for parameters used in Duncan, Duncan, and Strycker (2006). The intercepts 

were set as 1 for between- and within-level intercept factors (MIB and MIW), while the  
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intercepts of both between- and within-level slope factors (MSB and MSW) were set as 0.5. 

At the within level, the residual variances of the outcome variables were constrained to be 

equal over time and fixed at 0.5. The regression coefficients of intercept (FIW) and slope 

factors (FSW) on the within-level covariate X were set as 1 and 0.2. The residual variances 

of the within intercept factor (DIW) and of slope factor (DSW) and covariance (RISW) of the 

growth factors were set as 1, 0.5, and 0 respectively. At the between level, the residual 

variances of the outcome variables were set as zero. The regression coefficients of the 

growth factors on the between-level covariate “W” were set to be 0.5 for FIB on W and 0.2 

for FSB on W. Residual variance of the intercept factor (DIB) was set as 0.5 and that of the 

slope factor (DSB) was set as 0.2. The covariance between the growth factors (RISB) was 

set as 0. A similar conditioned MLGCM setting can be referred to in the Mplus manual 

(Muthén & Muthén, 1998-2007) .  
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Figure 5 A two-level latent growth curve model with continuous global covariates. 
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4.3.2 Model specification 

In this study, we calculated results for three model specifications using the same 

clustered data and compared their results with different estimation methods (i.e. ML or 

MLR). Three model specifications were 1) a true conditioned MLGCM with both the 

within-level covariate X and between-level covariate W, 2) a one-level LGCM with only 

within-level covariate X, and 3) a one-level LGCM with both the within-level covariate X 

and between-level covariate W. The three model specifications were illustrated in Figure 5 

to Figure 7. The first model specification, the conditioned two-level model, was a 

MLGCM using the model-based analytic approach. The default estimator for this 

model-based MLGCM analysis is maximum likelihood estimator with robust standard 

errors denoted as a MLR estimator in the routine of TYPE=TWOLEVEL in Mplus V5.21 

(Muthén & Muthén, 2009). The other two model specifications were run using LGCM with 

two distinct types of estimation methods, including 1) maximum likelihood estimator with 

robust standard error correction denoted as MLR estimator in the routine of 

TYPE=COMPLEX in Mplus in conjunction with the CLUSTER option (i.e. the 

design-based analytic approach) and 2) maximum likelihood estimator without robust 

standard error correction denoted as ML in the Mplus routine of TYPE=BASIC which is 
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the regular LGCM analytic approach. For ease of differentiation, we used the following 

naming scheme for the five combinations of model specification and model estimation:  

1. True Model: The first MLGCM specification with MLR estimator (i.e. the 

model-based MLGCM approach). 

2. 1-MLR-X: The LGCM with only within-level covariate X using MLR 

estimator (i.e. a design-based MLGCM approach with only low-level covariate 

X) 

3. 1-ML-X: The LGCM with only within-level covariate X using ML estimator 

(i.e., a regular LGCM approach with only low-level covariate X but without 

taking the dependent data information into account) 

4. 1-MLR-XW: The LGCM with both the within-level covariate X and 

between-level covariate W using MLR estimator (i.e. a design-based MLGCM 

approach with both high-/low-level covariate W and X) 

5. 1-ML-XW: The LGCM with both the within-level covariate X and 

between-level covariate W using ML estimator (i.e., a regular LGCM approach 

with both high-/low-level covariate W and X but without taking dependency 

into account).  
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Therefore, we had one model-based MLGCM (i.e. the True model, MLGCM), two 

design-based MLGCM and two regular LGCMs. The 1-ML-X and 1-MLR-X models only 

had model specification on the within level of the True model, i.e. the between level 

covariate was neglected. The 1-ML-XW and 1-MLR-XW models had the same 

specification as the True model in the within level and incorporated the between-level 

covariate, W. Except for the true model or model-based MLGCM, the other 4 models 

belong to macro-micro multilevel situations where the dependent variable at the lower 

level (micro-level) are predicted by variables measured at that lower level or the higher 

level (macro-level) (Croon & van Veldhoven, 2007) or global or integral variables 

(Blakely & Woodward, 2000). 
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Figure 6. A single-level growth curve model with the individual-level covariate only 

 

 

Figure 7. A single-level growth curve model with both the individual-level covariate and 

cluster-level covariate, (One-level XW model)  
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4.4 Result 

The results are organized so that comparison of the five models with three different 

model specifications and two different estimation methods are made with regard to 

differences in convergence rate, likelihood ratio test statistic values, model fit indices, 

between/within-level regression weights, and between/within-level factor covariance, 

residual and mean structure estimates. We also discuss the 95% coverage rate and 

empirical power or Type I error rate associated with the estimates of the regression 

coefficients, random effects, and the mean structures. The column labeled “sig” is the 

empirical power or Type I error rate according to the population value set for the parameter. 

If the population value is set as zero, “sig” represents Type I error rate; otherwise, “sig” is 

the empirical power to detect the population value.  

4.4.1 Convergence rate 

The convergence rate equaled 1.0 in all sample size settings of the four 1-level 

models and in most of the settings of the True model. In particular, the convergent rate 

decreased in the True model when cluster number decreased to 10 (e.g. for cluster 

number=10 and cluster size =5, the convergence rate is 0.930). 
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4.4.2 Likelihood ratio model fit test statistic and model fit indices 

The Likelihood ratio test statistic ( i.e. χ
2
 model fit test statistic) values and model 

fit indices showed an overall good fit of the model to the data, shown in Table 10. 

Compared to the True model, the χ
2
 test statistic values of 1-MLR-X, 1-ML-X, 

1-MLR-XW, and 1-ML-XW became smaller due to the decrease of degree of freedom. 

Almost all settings across the five models had CFI and TLI equal to 1 except for the 

setting at CN=10 and CS=5. All the CFI and TLI values were greater than the convention 

cutoff scores (CFI >.95, Hu & Bentler, 1999). RMSEA also revealed a good fit of the 

model to the data (RMSEA<.05, Hu & Bentler, 1999) except the setting at CN=10 and 

CS=5 for the True model (RMSEA=0.1) due to small cluster number at the between level 

and small sample size (n=50). SRMRW and SRMRB were reported for the True model. 

All SRMRW and SRMRB values were lower than the traditional cutoff score 

(SRMR<.05, Hu and Bentler, 1999). The two design-based MLGCM and two regular 

LGCMs reported a single SRMR value. All values also met the conventional rule of 

thumb.  
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Table 10. Model Test Statistic and Fit Indices for Two-level, and One-level MLR Models 

Note. CN=Cluster Number; CS=Cluster Size; Chi: Yuan-Bentler T2* test statistic (Muthén & Muthén, 2009); CFI: Comparative Fit 

Index; TLI: Tucker-Lewis Index; RMSEA: Root Mean Squared error of approximation; SRMRB= between-level standardized root 

mean squared residual; SRMRW= within-level standardized root mean squared residual; SRMR= standardized root mean squared 

residual. 

  

  True model  1-MLR-X  1-MLR-XW 

CN CS  Chi CFI TLI RMSEA SRMRW SRMRB  Chi CFI TLI RMSEA SRMR  Chi CFI TLI RMSEA SRMR 

100 50  17.10 1.00 1.00 0.00 0.00 0.00  10.04 1.00 1.00 0.00 0.00  12.12 1.00 1.00 0.00 0.00 

30  19.90 1.00 1.00 0.01 0.00 0.00  10.01 1.00 1.00 0.01 0.00  12.14 1.00 1.00 0.01 0.00 

5  20.43 1.00 1.00 0.01 0.01 0.01  10.34 1.00 1.00 0.01 0.01  12.50 1.00 1.00 0.01 0.01 

50 50  17.30 1.00 1.00 0.00 0.00 0.00  10.18 1.00 1.00 0.01 0.01  12.34 1.00 1.00 0.01 0.00 

30  20.80 1.00 1.00 0.01 0.00 0.01  10.09 1.00 1.00 0.01 0.01  12.33 1.00 1.00 0.01 0.01 

5  21.39 1.00 1.00 0.02 0.01 0.02  10.51 1.00 1.00 0.02 0.02  12.82 1.00 1.00 0.02 0.01 

30 50  19.15 1.00 1.00 0.01 0.00 0.01  10.20 1.00 1.00 0.01 0.01  12.51 1.00 1.00 0.01 0.01 

30  21.87 1.00 1.00 0.01 0.00 0.01  10.39 1.00 1.00 0.01 0.01  12.66 1.00 1.00 0.01 0.01 

5  22.78 1.00 1.00 0.03 0.01 0.02  10.64 1.00 1.00 0.02 0.02  13.05 1.00 1.00 0.02 0.02 

10 50  19.48 1.00 1.00 0.01 0.01 0.01  10.80 1.00 1.00 0.01 0.01  13.94 1.00 1.00 0.02 0.01 

30  28.13 1.00 1.00 0.03 0.01 0.01  10.87 1.00 1.00 0.02 0.01  13.77 1.00 1.00 0.02 0.01 

5  30.94 0.97 0.97 0.10 0.02 0.04  11.66 0.99 1.00 0.05 0.04  14.91 0.99 0.99 0.06 0.03 
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Table 10 continued. 

 

 

 

 

 

 

 

 

 

Note. CN=Cluster Number; CS=Cluster Size; Chi: Yuan-Bentler T2* test statistic (Muthén & Muthén, 2009); CFI: Comparative Fit 

Index; TLI: Tucker-Lewis Index; RMSEA: Root Mean Squared error of approximation; SRMRB= between-level standardized root 

mean squared residual; SRMRW= within-level standardized root mean squared residual; SRMR= standardized root mean squared 

residual; 

  1-ML-X  1-ML-XW 

CN CS  Chi CFI TLI RMSEA SRMR  Chi CFI TLI RMSEA SRMR 

100 

50  10.02 1.00 1.00 0.00 0.00  12.00 1.00 1.00 0.00 0.00 

30  9.95 1.00 1.00 0.00 0.00  11.98 1.00 1.00 0.00 0.00 

5  10.27 1.00 1.00 0.01 0.01  12.35 1.00 1.00 0.01 0.01 

50 

50  10.10 1.00 1.00 0.01 0.01  12.06 1.00 1.00 0.01 0.00 

30  10.01 1.00 1.00 0.01 0.01  12.04 1.00 1.00 0.01 0.01 

5  10.38 1.00 1.00 0.02 0.02  12.49 1.00 1.00 0.02 0.01 

30 

50  10.06 1.00 1.00 0.01 0.01  12.07 1.00 1.00 0.01 0.01 

30  10.21 1.00 1.00 0.01 0.01  12.16 1.00 1.00 0.01 0.01 

5  10.41 1.00 1.00 0.02 0.02  12.49 1.00 1.00 0.02 0.02 

10 

50  10.19 1.00 1.00 0.01 0.01  12.24 1.00 1.00 0.01 0.01 

30  10.23 1.00 1.00 0.02 0.01  12.17 1.00 1.00 0.02 0.01 

5  10.86 0.99 1.00 0.04 0.04  13.14 0.99 1.00 0.04 0.03 
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4.4.3 Regression weight estimates 

Regression coefficients for FIW and FSW on lower-level covariate X were reported 

for all the models, while regression coefficients for FIB and FSB on W or FIW and FSW on 

higher-level covariate W were reported for the True model, 1-ML-XW, and 

1-MLR-XWmodels only, because covariate W was not added in these two models. The 

estimates of the regression weights, their corresponding standard errors, 95% coverage 

rate, and empirical power are presented in Table 11. Generally speaking, the relative bias 

of the fixed effect estimates remained unbiased across the five models. The standard error, 

95% coverage rate, and empirical power were similar across the True model, 1-MLR-X, 

1-MLR-XW, and 1-ML-X models but the 1-ML-XW model showed a different pattern for 

FIW on W and FSW on W. After the cluster-level predictor was added in the 1-ML-XW  
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model the fixed effect estimates on W remained unbiased but the corresponding standard 

errors were underestimated, the 95% coverage rate shrunken, and the empirical power 

inflated at smaller cluster number settings.  

What is also worth our attention was the comparison of regression coefficients 

between FIB on higher-level covariate W and FSB on higher-level covariate W in the True 

model and those for FIW on higher-level covariate W and FSW on W in the 1-MLR XW 

model. Contrary to the 1-ML-XW model, when higher-level covariate W was 

incorporated in the within level to predict growth factors FIW and FSW in the 1-MLR-XW 

model, it produced consistent but less efficient regression coefficient estimates with 

congruent 95% coverage rate and empirical power as those in the True model. However, 

in the small cluster number setting (e.g. CN=10), the 95% CI coverage rate and empirical 

power diminished around 10% to 20% as a result of power issue.   
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Table 11.  Regression Coefficient Estimates between Covariates and Growth Factors. 

 

Note: Population value was set as follows: FIW on X =1, FSW on X =.20, FIB on W =0.5 FSB on 

W =0.2, FIW on W =0.5, and FSW on W =0.2. Est =Parameter estimate; SE= standard error of 

parameter estimate; 95% = the 95% confidence interval coverage rate; Sig = proportion of 

replication of parameter estimates which is statistically significantly different from zero at 

the .05 level. 

  

  FIW on X  FSW on X  FIB on W / FIW on W  FSB on W / FSW on W 

 CN CS  Est. SE  95% Sig.  Est. SE  95% Sig.  Est. SE  95% Sig.  Est. SE  95% Sig. 

T
ru

e 
m

o
d

el
 

100 50  1.00 0.02 0.94 1.00  0.20 0.01 0.95 1.00  0.50 0.07 0.93 1.00  0.20 0.05 0.92 0.98 

30  1.00 0.02 0.96 1.00  0.20 0.01 0.95 1.00  0.50 0.07 0.94 1.00  0.20 0.05 0.94 0.98 

5  1.00 0.06 0.94 1.00  0.20 0.04 0.94 1.00  0.50 0.09 0.94 1.00  0.20 0.06 0.92 0.93 

50 50  1.00 0.02 0.94 1.00  0.20 0.02 0.95 1.00  0.50 0.10 0.93 1.00  0.20 0.06 0.92 0.85 

30  1.00 0.03 0.95 1.00  0.20 0.02 0.94 1.00  0.51 0.10 0.93 1.00  0.20 0.06 0.93 0.86 

5  1.00 0.08 0.94 1.00  0.20 0.05 0.94 0.97  0.50 0.12 0.91 0.97  0.20 0.08 0.90 0.71 

30 50  1.00 0.03 0.94 1.00  0.20 0.02 0.93 1.00  0.49 0.13 0.90 0.95  0.20 0.08 0.90 0.69 

30  1.00 0.04 0.95 1.00  0.20 0.03 0.93 1.00  0.51 0.13 0.92 0.94  0.20 0.08 0.89 0.67 

5  1.00 0.10 0.93 1.00  0.20 0.07 0.94 0.85  0.50 0.15 0.91 0.85  0.19 0.10 0.90 0.52 

10 50  1.00 0.05 0.91 1.00  0.20 0.03 0.89 1.00  0.49 0.20 0.82 0.67  0.19 0.12 0.80 0.43 

30  1.00 0.06 0.90 1.00  0.20 0.04 0.91 0.99  0.51 0.21 0.80 0.67  0.20 0.13 0.82 0.44 

5  1.01 0.16 0.89 1.00  0.19 0.11 0.89 0.46  0.50 0.25 0.82 0.56  0.19 0.16 0.83 0.33 

1
-M

L
R

-X
 

100 50  1.00 0.02 0.95 1.00  0.20 0.01 0.96 1.00  . . . .  . . . . 

30  1.00 0.03 0.95 1.00  0.20 0.02 0.93 1.00  . . . .  . . . . 

5  1.00 0.06 0.95 1.00  0.20 0.04 0.95 1.00  . . . .  . . . . 

50 50  1.00 0.03 0.94 1.00  0.20 0.02 0.94 1.00  . . . .  . . . . 

30  1.00 0.04 0.94 1.00  0.20 0.02 0.93 1.00  . . . .  . . . . 

5  1.00 0.09 0.95 1.00  0.20 0.06 0.95 0.94  . . . .  . . . . 

30 50  1.00 0.04 0.94 1.00  0.20 0.02 0.94 1.00  . . . .  . . . . 

30  1.00 0.05 0.94 1.00  0.20 0.03 0.94 1.00  . . . .  . . . . 

5  1.00 0.12 0.94 1.00  0.20 0.07 0.95 0.79  . . . .  . . . . 

10 50  1.00 0.06 0.92 1.00  0.20 0.04 0.91 1.00  . . . .  . . . . 

30  1.00 0.08 0.91 1.00  0.20 0.05 0.92 0.97  . . . .  . . . . 

5  1.01 0.19 0.91 1.00  0.19 0.12 0.91 0.39  . . . .  . . . . 

1
-M

L
R

-X
W

 

100 50  1.00 0.02 0.95 1.00  0.20 0.01 0.96 1.00  0.50 0.07 0.93 1.00  0.20 0.05 0.92 0.98 

30  1.00 0.02 0.95 1.00  0.20 0.02 0.93 1.00  0.50 0.07 0.94 1.00  0.20 0.05 0.94 0.98 

5  1.00 0.06 0.96 1.00  0.20 0.04 0.95 1.00  0.50 0.09 0.94 1.00  0.20 0.06 0.92 0.93 

50 50  1.00 0.03 0.93 1.00  0.20 0.02 0.94 1.00  0.50 0.10 0.93 1.00  0.20 0.06 0.92 0.85 

30  1.00 0.03 0.94 1.00  0.20 0.02 0.94 1.00  0.51 0.10 0.93 1.00  0.20 0.06 0.93 0.86 

5  1.00 0.08 0.94 1.00  0.20 0.06 0.94 0.94  0.50 0.12 0.92 0.97  0.20 0.08 0.91 0.71 

30 50  1.00 0.03 0.95 1.00  0.20 0.02 0.94 1.00  0.49 0.13 0.91 0.94  0.20 0.08 0.91 0.68 

30  1.00 0.04 0.95 1.00  0.20 0.03 0.94 1.00  0.51 0.13 0.93 0.94  0.20 0.08 0.90 0.66 

5  1.00 0.11 0.93 1.00  0.20 0.07 0.94 0.80  0.50 0.16 0.91 0.84  0.19 0.10 0.90 0.52 

10 50  1.00 0.06 0.92 1.00  0.20 0.04 0.90 1.00  0.49 0.21 0.84 0.65  0.19 0.13 0.83 0.40 

30  1.00 0.07 0.92 1.00  0.20 0.05 0.92 0.97  0.51 0.22 0.82 0.63  0.20 0.13 0.84 0.41 

5  1.01 0.17 0.89 1.00  0.19 0.12 0.90 0.41  0.51 0.26 0.83 0.56  0.20 0.17 0.84 0.32 
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Table 11 continued. 

 

Note: Population value was set as follows: FIW on X =1, FSW on X =.20, FIB on W =0.5 FSB on 

W =0.2, FIW on W =0.5, and FSW on W =0.2. Est =Parameter estimate; SE= standard error of 

parameter estimate; 95% = the 95% confidence interval coverage rate; Sig = proportion of 

replication of parameter estimates which is statistically significantly different from zero at 

the .05 level. 

 

4.4.4 Random effect estimates 

The random effect estimates of growth factors are shown in Table 12. For the 

covariance between growth factors, the covariance estimates of the True model (mean 

RISw =0.0017), the 1-MLR-XW model (mean RISw =0.0008), and 1-ML-XW model (mean 

  FIW on X  FSW on X  FIB on W / FIW on W  FSB on W / FSW on W 

 CN CS  Est. SE 95% Sig.  Est. SE 95% Sig.  Est. SE 95% Sig.  Est. SE 95% Sig. 

1
-M

L
-X

 

100 50  1.00 0.02 0.95 1.00  0.20 0.01 0.96 1.00  . . . .  . . . . 

30  1.00 0.03 0.95 1.00  0.20 0.02 0.94 1.00  . . . .  . . . . 

5  1.00 0.06 0.96 1.00  0.20 0.04 0.95 1.00  . . . .  . . . . 

50 50  1.00 0.03 0.94 1.00  0.20 0.02 0.94 1.00  . . . .  . . . . 

30  1.00 0.04 0.95 1.00  0.20 0.02 0.94 1.00  . . . .  . . . . 

5  1.00 0.09 0.96 1.00  0.20 0.06 0.95 0.94  . . . .  . . . . 

30 50  1.00 0.04 0.96 1.00  0.20 0.02 0.95 1.00  . . . .  . . . . 

30  1.00 0.05 0.95 1.00  0.20 0.03 0.95 1.00  . . . .  . . . . 

5  1.00 0.12 0.96 1.00  0.20 0.07 0.96 0.78  . . . .  . . . . 

10 50  1.00 0.06 0.95 1.00  0.20 0.04 0.94 1.00  . . . .  . . . . 

30  1.00 0.08 0.95 1.00  0.20 0.05 0.95 0.96  . . . .  . . . . 

5  1.01 0.20 0.94 1.00  0.19 0.13 0.94 0.34  . . . .  . . . . 

1
-M

L
-X

W
 

100 50  1.00 0.02 0.95 1.00  0.20 0.01 0.96 1.00  0.50 0.02 0.40 1.00  0.20 0.01 0.42 1.00 

30  1.00 0.02 0.95 1.00  0.20 0.02 0.94 1.00  0.50 0.03 0.49 1.00  0.20 0.02 0.50 1.00 

5  1.00 0.06 0.96 1.00  0.20 0.04 0.95 1.00  0.50 0.06 0.82 1.00  0.20 0.04 0.82 0.98 

50 50  1.00 0.03 0.94 1.00  0.20 0.02 0.95 1.00  0.50 0.03 0.42 1.00  0.20 0.02 0.42 0.99 

30  1.00 0.03 0.96 1.00  0.20 0.02 0.94 1.00  0.51 0.04 0.48 1.00  0.20 0.02 0.53 0.99 

5  1.00 0.09 0.95 1.00  0.20 0.06 0.95 0.94  0.50 0.09 0.80 0.99  0.20 0.06 0.82 0.84 

30 50  1.00 0.03 0.96 1.00  0.20 0.02 0.95 1.00  0.49 0.04 0.39 1.00  0.20 0.02 0.41 0.96 

30  1.00 0.04 0.96 1.00  0.20 0.03 0.95 1.00  0.51 0.05 0.46 1.00  0.20 0.03 0.50 0.94 

5  1.00 0.11 0.94 1.00  0.20 0.07 0.95 0.79  0.50 0.11 0.79 0.94  0.19 0.08 0.81 0.67 

10 50  1.00 0.06 0.95 1.00  0.20 0.04 0.94 1.00  0.49 0.07 0.39 0.92  0.19 0.04 0.40 0.81 

30  1.00 0.08 0.95 1.00  0.20 0.05 0.95 0.97  0.51 0.09 0.48 0.91  0.20 0.06 0.51 0.76 

5  1.01 0.19 0.93 1.00  0.19 0.12 0.94 0.37  0.51 0.21 0.79 0.66  0.20 0.14 0.81 0.40 

 



125 

 

 

RISw =0.0008) were much closer to the population parameter, which was set as zero, than 

those from the 1-MLR-X model (mean RISw =0.0975) and 1-ML-X (mean RISw =0.0975).  

The True model and the 1-MLR-XW model had more consistent 95% confidence 

interval (95% CI) coverage rate than that of the 1-MLR-X model. Saying that the 95% CI 

was consistent implied that the empirical 95% CI coverage rate was close to the theoretical 

value, 0.95. The True model and the 1-MLR-XW Model also had more accurate 

percentage of significant coefficients, which is the empirical rate of parameter estimates 

being statistically significant or Type I error rate, the probability of rejecting the null 

hypothesis when the population value is set as zero (i.e. when null hypothesis is true.) 

(Muthén & Muthén, 1998-2007). The population value of covariance between FIW and 

FSW was set as zero. A more accurate percentage of significant coefficients under this 

setting implied a small empirical Type I error rate to detect a significant parameter estimate 

that was different from zero. The True model (mean Type I error rate =.0675) and the 

1-MLR-XW model (mean Type I error rate =.0683) had relatively small empirical Type I 

error rate in detecting a significant factor covariance estimate compared to the 1-MLR-X 

model (mean Type I error rate =.2608). Compared with the MLR models, the ML models 

had underestimated SEs for the covariance estimates, inconsistent (lowered) 95% coverage 
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rate, and inflated Type I error rate (mean Type I error rate =.5292 for the 1-ML-X model 

and .2117 for the 1-ML-XW model).  

The inconsistent and inefficient covariance estimates combined with the 

inconsistent 95% CI and inflated type I error rate or inflated empirical power in the 

1-MLR-X, 1-ML-X, and 1-ML-XW models provided erroneous statistical inference, 

especially in large sample size settings(e.g. for CN(CS)=100(50) in the 1-ML-X model, 95% 

CI coverage rate was 0.08, and rate of significant estimate was 0.92). After the cluster-level 

predictor was introduced in the 1-MLR-XW model, the covariance estimates were 

consistent with those produced by the True model. As a result, the 1-MLR-XW model 

provided more reliable statistical inferences by giving a more conservative percentage of 

significant coefficients when the dependent nature of the data was neglected, especially as 

sample size became large (e.g. for CN(CS)=100(50) in the 1-MLR-XW model, 95% CI 

coverage rate was 0.95, and rate of significant estimate was 0.05). Though the cluster-level 

predictor W was also included in the 1-ML-XW model, the ML estimator without robust 

standard error correction underestimated SEs for the covariance estimates, produced 

inconsistent (lowered) 95% coverage rate, and resulted in inflated Type I error rate (e.g. for 
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CN(CS)=100(50) in the 1-ML-XW model, 95% CI coverage rate was 0.68, and rate of 

significant estimate was 0.32). 

For the estimates of growth factor residual variances, the estimated residual 

variance in the 1-MLR-X and 1-ML-X models were larger than those in the 1-MLR-XW 

and 1-ML-XW models, where the relationship between W and growth factors were 

investigated (e.g. for 100(50), DIW and DSW was 1.74 and 0.74 in the 1-MLR-X and 

1-ML-X models while DIW and DSW was 1.49 and 0.70 in the 1-MLR-XW and 1-ML-XW 

models). The estimates of residual variance in the 1-MLR-XW and 1-ML-XW models can 

be simply viewed as the summation of the residual variance component estimates from the 

within- and between-levels in True model (e.g. for 100(50) in the True model, DIW and 

DSW were 1.00 and 0.50 in and DIB and DSB were 0.49 and 0.20 in between-level). 

Compared with the 1-MLR models, the 1-ML models underestimated SEs for the factor 

residual variances; however, due to the redistribution of variance components both the 

1-MLR and the 1-ML models had inconsistent 95% coverage rate and inflated empirical 

power.   
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Table 12. Covariance and Residual Variance estimates of Growth Factors. 

Note. Population value was set as: Covariance between growth factors (RISW) = 0; Residual variance of 

Intercept factor in within level (DIW) =1 and between level (DIB) = 0.5; Residual variance of Slope factor in 

within level (DSW) =0.5 and between level (DSB) = 0.2; Est =Parameter estimate; SE= standard error of 

parameter estimate; 95% = the 95% confidence interval coverage rate; Sig = proportion of replication of 

parameter estimates which is statistically significantly different from zero at the .05 level. 

  

  RISW  DIW  DSW  DIB  DSB 

  CN CS Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig 

T
ru

e 
m

o
d

el
 

100 50 0.00 0.01 0.96 0.04 1.00 0.03 0.94 1.00 0.50 0.01 0.95 1.00 0.49 0.07 0.93 1.00 0.20 0.03 0.92 1.00 

30 0.00 0.02 0.94 0.06 1.00 0.04 0.94 1.00 0.50 0.02 0.94 1.00 0.49 0.07 0.93 1.00 0.20 0.03 0.91 1.00 

5 0.00 0.05 0.94 0.06 1.00 0.10 0.94 1.00 0.50 0.04 0.95 1.00 0.49 0.11 0.92 1.00 0.19 0.04 0.90 1.00 

50 50 0.00 0.02 0.95 0.05 1.00 0.04 0.94 1.00 0.50 0.02 0.95 1.00 0.48 0.10 0.89 1.00 0.19 0.04 0.89 1.00 

30 0.00 0.02 0.94 0.06 1.00 0.05 0.93 1.00 0.50 0.02 0.94 1.00 0.47 0.10 0.89 1.00 0.19 0.04 0.87 1.00 

5 0.00 0.06 0.92 0.08 1.00 0.13 0.95 1.00 0.50 0.06 0.93 1.00 0.47 0.14 0.88 0.98 0.19 0.06 0.87 0.94 

30 50 0.00 0.02 0.93 0.07 1.00 0.05 0.92 1.00 0.50 0.02 0.94 1.00 0.47 0.12 0.83 1.00 0.19 0.05 0.85 1.00 

30 0.00 0.03 0.94 0.06 1.00 0.06 0.94 1.00 0.50 0.03 0.93 1.00 0.46 0.12 0.85 1.00 0.18 0.05 0.83 1.00 

5 0.01 0.08 0.93 0.07 0.98 0.17 0.91 1.00 0.50 0.07 0.92 1.00 0.46 0.18 0.85 0.80 0.18 0.07 0.84 0.71 

10 50 -0.00 0.04 0.91 0.09 1.00 0.08 0.88 1.00 0.50 0.04 0.89 1.00 0.39 0.15 0.65 0.84 0.16 0.06 0.65 0.83 

30 0.00 0.05 0.92 0.08 1.00 0.10 0.89 1.00 0.50 0.05 0.91 1.00 0.40 0.16 0.69 0.78 0.15 0.06 0.64 0.76 

5 0.01 0.13 0.91 0.09 0.93 0.26 0.84 0.98 0.47 0.12 0.86 1.00 0.38 0.27 0.75 0.22 0.15 0.12 0.79 0.21 

1
-M

L
R

-X
 

100 50 0.10 0.05 0.43 0.58 1.74 0.11 0.00 1.00 0.74 0.04 0.00 1.00         

30 0.10 0.05 0.44 0.56 1.74 0.11 0.00 1.00 0.74 0.04 0.00 1.00         

5 0.10 0.07 0.72 0.28 1.73 0.16 0.00 1.00 0.73 0.06 0.01 1.00         

50 50 0.10 0.06 0.69 0.31 1.74 0.15 0.00 1.00 0.74 0.05 0.00 1.00         

30 0.10 0.07 0.68 0.32 1.74 0.16 0.00 1.00 0.73 0.05 0.00 1.00         

5 0.10 0.10 0.82 0.18 1.73 0.22 0.05 1.00 0.73 0.08 0.18 1.00         

30 50 0.10 0.08 0.78 0.22 1.72 0.19 0.00 1.00 0.73 0.06 0.00 1.00         

30 0.10 0.09 0.81 0.19 1.73 0.20 0.01 1.00 0.73 0.07 0.02 1.00         

5 0.10 0.12 0.86 0.14 1.71 0.28 0.26 1.00 0.72 0.11 0.44 1.00         

10 50 0.09 0.12 0.89 0.11 1.65 0.28 0.29 1.00 0.71 0.09 0.40 1.00         

30 0.09 0.13 0.86 0.14 1.68 0.31 0.41 1.00 0.71 0.10 0.48 1.00         

5 0.09 0.19 0.90 0.10 1.60 0.43 0.78 0.99 0.69 0.16 0.84 1.00         

1
-M

L
R

-X
W

 

100 50 0.00 0.04 0.95 0.05 1.49 0.08 0.00 1.00 0.70 0.03 0.00 1.00         

30 0.00 0.04 0.96 0.05 1.49 0.08 0.00 1.00 0.70 0.03 0.00 1.00         

5 -0.00 0.06 0.94 0.07 1.48 0.13 0.02 1.00 0.69 0.06 0.04 1.00         

50 50 0.00 0.05 0.94 0.06 1.48 0.11 0.00 1.00 0.69 0.04 0.00 1.00         

30 0.00 0.05 0.95 0.05 1.47 0.11 0.00 1.00 0.69 0.05 0.00 1.00         

5 0.00 0.08 0.95 0.05 1.47 0.18 0.23 1.00 0.68 0.08 0.31 1.00         

30 50 0.00 0.06 0.93 0.07 1.46 0.13 0.01 1.00 0.68 0.05 0.01 1.00         

30 0.00 0.06 0.95 0.05 1.46 0.14 0.02 1.00 0.68 0.06 0.06 1.00         

5 0.01 0.11 0.93 0.07 1.44 0.23 0.53 1.00 0.67 0.10 0.59 1.00         

10 50 0.00 0.09 0.89 0.11 1.39 0.19 0.46 1.00 0.65 0.08 0.53 1.00         

30 0.00 0.10 0.90 0.10 1.39 0.21 0.55 1.00 0.65 0.08 0.59 1.00         

5 0.00 0.16 0.91 0.09 1.30 0.34 0.88 1.00 0.62 0.15 0.89 1.00         
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Table 12 Continued. 

 

Note. Population value was set as: Covariance between growth factors (RISW) = 0; Residual variance of 

Intercept factor in within level (DIW) =1 and between level (DIB) = 0.5; Residual variance of Slope factor in 

within level (DSW) =0.5 and between level (DSB) = 0.2; Est =Parameter estimate; SE= standard error of 

parameter estimate; 95% = the 95% confidence interval coverage rate; Sig = proportion of replication of 

parameter estimates which is statistically significantly different from zero at the .05 level.  

  RISW  DIW  DSW  DIB  DSB 

  CN CS Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig 

1
-M

L
-X

 

100 50 0.10 0.02 0.08 0.92 1.74 0.04 0.00 1.00 0.74 0.02 0.00 1.00         

30 0.10 0.02 0.13 0.87 1.74 0.05 0.00 1.00 0.74 0.02 0.00 1.00         

5 0.10 0.06 0.61 0.39 1.73 0.13 0.00 1.00 0.73 0.05 0.01 1.00         

50 50 0.10 0.03 0.22 0.78 1.74 0.06 0.00 1.00 0.74 0.02 0.00 1.00         

30 0.10 0.03 0.30 0.70 1.74 0.08 0.00 1.00 0.73 0.03 0.00 1.00         

5 0.10 0.08 0.74 0.26 1.73 0.19 0.03 1.00 0.73 0.07 0.13 1.00         

30 50 0.10 0.03 0.35 0.65 1.72 0.08 0.00 1.00 0.73 0.03 0.00 1.00         

30 0.10 0.04 0.42 0.58 1.73 0.10 0.00 1.00 0.73 0.04 0.01 1.00         

5 0.10 0.11 0.79 0.21 1.71 0.24 0.15 1.00 0.72 0.10 0.37 1.00         

10 50 0.09 0.06 0.52 0.48 1.65 0.13 0.06 1.00 0.71 0.05 0.12 1.00         

30 0.09 0.07 0.61 0.39 1.68 0.17 0.09 1.00 0.71 0.07 0.22 1.00         

5 0.09 0.18 0.88 0.12 1.60 0.39 0.72 1.00 0.69 0.16 0.85 1.00         

1
-M

L
-X

W
 

100 50 0.00 0.02 0.68 0.32 1.49 0.04 0.00 1.00 0.70 0.02 0.00 1.00         

30 0.00 0.02 0.76 0.24 1.49 0.05 0.00 1.00 0.70 0.02 0.00 1.00         

5 -0.00 0.05 0.91 0.09 1.48 0.12 0.01 1.00 0.69 0.05 0.03 1.00         

50 50 0.00 0.02 0.67 0.33 1.48 0.05 0.00 1.00 0.69 0.02 0.00 1.00         

30 0.00 0.03 0.77 0.23 1.47 0.07 0.00 1.00 0.69 0.03 0.00 1.00         

5 0.00 0.08 0.92 0.08 1.47 0.16 0.17 1.00 0.68 0.07 0.26 1.00         

30 50 0.00 0.03 0.67 0.34 1.46 0.07 0.00 1.00 0.68 0.03 0.00 1.00         

30 0.00 0.04 0.79 0.21 1.46 0.09 0.00 1.00 0.68 0.04 0.02 1.00         

5 0.01 0.10 0.91 0.09 1.44 0.21 0.46 1.00 0.67 0.09 0.53 1.00         

10 50 0.00 0.05 0.69 0.31 1.39 0.11 0.19 1.00 0.65 0.05 0.25 1.00         

30 0.00 0.07 0.77 0.23 1.39 0.14 0.32 1.00 0.65 0.06 0.39 1.00         

5 0.00 0.16 0.93 0.07 1.30 0.33 0.89 1.00 0.62 0.14 0.92 1.00         
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4.4.5 Mean structure estimates 

The result of mean structure for the models is shown in Table 13. The True model 

had consistent and efficient growth factors mean estimates. However, in the small cluster 

number setting (e.g. CN=10), the 95% CI coverage rate and empirical power diminished as 

a result of power issue. The same power issue occurred in the 1-MLR-X and 1-MLR-XW 

models. Compared with the True model, the 1-MLR-X model had slightly inflated 

standard errors on the mean structure estimates; as a result, it had less power than the True 

model in detecting the statistical significance of parameter estimates in the small cluster 

number settings (e.g. CN=10). By introducing the cluster-level covariate W, the 

1-MLR-XW model generated consistent and efficient parameter estimates, 95% CI 

coverage rate, and statistical power congruent to the results of the True model across all 

sample size settings. Despite the slightly inflated standard errors for the 1-MLR-X model, 

the 1-MLR-X and 1-MLR-XW models had negligible differences in the mean structure 

results. Compared with the True model and the two1-MLR models, the 1-ML models 

underestimated the SEs for the growth factor mean structures, produced inconsistent 95% 

coverage rate, and had inflated empirical power at small cluster number settings.   



 

 

 

1
3

1
 

Table 13. Mean Structure estimates of Growth Factors. 

 

Note.  Intercept of between-level Intercept factor (MIB) = Intercept of within-level Intercept factor (MIW) = 1; Intercept of between-level slope factor (MSB) = 

Intercept of within-level Slope factor (MSW)=0.5. Est =Parameter estimate; SE= standard error of parameter estimate; 95% = the 95% confidence interval coverage 

rate; Sig = proportion of replication of parameter estimates which is statistically significantly different from zero at alpha= .05 level. 

 

 

True model  1-MLR-X  1-MLR-XW 

MIB  MSB  MIW  MSW  MIW  MSW 

CN CS Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig 

100 50 1.00 0.07 0.95 1.00 0.50 0.05 0.95 1.00 1.00 0.09 0.95 1.00 0.50 0.05 0.95 1.00 1.00 0.07 0.95 1.00 0.50 0.05 0.95 1.00 

30 1.00 0.07 0.95 1.00 0.50 0.05 0.94 1.00 1.00 0.09 0.94 1.00 0.50 0.05 0.95 1.00 1.00 0.07 0.95 1.00 0.50 0.05 0.94 1.00 

5 1.00 0.09 0.95 1.00 0.50 0.06 0.95 1.00 1.00 0.10 0.96 1.00 0.50 0.06 0.96 1.00 1.00 0.09 0.95 1.00 0.50 0.06 0.95 1.00 

50 50 1.00 0.10 0.93 1.00 0.50 0.06 0.94 1.00 1.00 0.12 0.94 1.00 0.50 0.07 0.95 1.00 1.00 0.10 0.93 1.00 0.50 0.06 0.94 1.00 

30 1.00 0.10 0.95 1.00 0.50 0.07 0.94 1.00 1.00 0.13 0.95 1.00 0.50 0.07 0.94 1.00 1.00 0.10 0.95 1.00 0.50 0.07 0.94 1.00 

5 1.00 0.12 0.93 1.00 0.50 0.08 0.94 1.00 1.00 0.14 0.94 1.00 0.50 0.08 0.94 1.00 1.00 0.12 0.94 1.00 0.50 0.08 0.95 1.00 

30 50 1.00 0.13 0.93 1.00 0.50 0.08 0.93 1.00 1.01 0.16 0.94 1.00 0.50 0.09 0.94 1.00 1.00 0.13 0.93 1.00 0.50 0.08 0.93 1.00 

30 1.00 0.13 0.93 1.00 0.50 0.08 0.93 1.00 1.00 0.16 0.96 1.00 0.50 0.09 0.94 1.00 1.00 0.13 0.94 1.00 0.50 0.08 0.93 1.00 

5 1.00 0.16 0.92 1.00 0.50 0.10 0.93 1.00 1.01 0.18 0.94 1.00 0.50 0.11 0.93 0.99 1.00 0.16 0.93 1.00 0.50 0.10 0.93 1.00 

10 50 1.00 0.21 0.86 0.98 0.50 0.13 0.87 0.91 1.01 0.27 0.90 0.94 0.50 0.15 0.91 0.88 1.00 0.22 0.88 0.98 0.50 0.14 0.89 0.89 

30 1.00 0.21 0.88 0.99 0.50 0.13 0.87 0.91 1.01 0.28 0.92 0.94 0.50 0.16 0.92 0.85 1.00 0.23 0.89 0.98 0.50 0.14 0.89 0.90 

5 1.00 0.25 0.88 0.93 0.51 0.17 0.88 0.80 1.01 0.31 0.92 0.87 0.51 0.18 0.91 0.77 1.00 0.26 0.89 0.92 0.51 0.17 0.89 0.79 
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Table 13 continued. 

 

 

 

 

 

 

 

 

 

 

Note.  Intercept of between-level Intercept factor (MIB) = Intercept of within-level Intercept factor (MIW) = 1; Intercept of between-level slope factor (MSB) = 

Intercept of within-level Slope factor (MSW)=0.5. Est =Parameter estimate; SE= standard error of parameter estimate; 95% = the 95% confidence interval coverage 

rate; Sig = proportion of replication of parameter estimates which is statistically significantly different from zero at alpha= .05 level. 

 

 1-ML-X  1-ML-XW 

 MIW  MSW  MIW  MSW 

CN CS  Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig Est SE 95% Sig 

100 50  1.00 0.02 0.32 1.00 0.50 0.01 0.37 1.00 1.00 0.02 0.37 1.00 0.50 0.01 0.42 1.00 

30  1.00 0.03 0.45 1.00 0.50 0.02 0.46 1.00 1.00 0.02 0.49 1.00 0.50 0.02 0.49 1.00 

5  1.00 0.06 0.80 1.00 0.50 0.04 0.80 1.00 1.00 0.06 0.84 1.00 0.50 0.04 0.83 1.00 

50 50  1.00 0.03 0.35 1.00 0.50 0.02 0.37 1.00 1.00 0.03 0.40 1.00 0.50 0.02 0.40 1.00 

30  1.00 0.04 0.42 1.00 0.50 0.02 0.47 1.00 1.00 0.04 0.48 1.00 0.50 0.02 0.50 1.00 

5  1.00 0.09 0.79 1.00 0.50 0.06 0.82 1.00 1.00 0.09 0.81 1.00 0.50 0.06 0.82 1.00 

30 50  1.01 0.04 0.36 1.00 0.50 0.02 0.37 1.00 1.00 0.04 0.39 1.00 0.50 0.02 0.40 1.00 

30  1.00 0.05 0.45 1.00 0.50 0.03 0.47 1.00 1.00 0.05 0.48 1.00 0.50 0.03 0.49 1.00 

5  1.01 0.12 0.78 1.00 0.50 0.07 0.81 1.00 1.00 0.11 0.82 1.00 0.50 0.07 0.84 1.00 

10 50  1.01 0.06 0.35 1.00 0.50 0.04 0.36 1.00 1.00 0.06 0.39 1.00 0.50 0.04 0.36 1.00 

30  1.01 0.08 0.44 1.00 0.50 0.05 0.47 0.99 1.00 0.08 0.49 1.00 0.50 0.05 0.49 0.99 

5  1.01 0.20 0.77 0.97 0.51 0.13 0.79 0.91 1.00 0.19 0.79 0.97 0.51 0.13 0.80 0.91 
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4.5 Power Analysis 

Based on the simulation results, the True model and the 1-MLR-XW model 

performed equally well on the criterion variables and outperformed the other three models. 

In order to examine whether the Type I error rates are also under control for the test of fixed 

effects, additional Monte Carlo simulations were conducted to compute the empirical Type 

I error rates by setting the fixed effect estimates equal zero across all the sample size 

settings for the True model and the 1-MLR-XW model. The empirical Type I error rates 

were considered biased if the they fell out of Bradley’s (.5α, 1.5 α) liberal definition of 

robustness (1978). According to the simulation results in the True model, the mean Type I 

error rates at CN=100, 50, 30, and 10 were .041, .058, .057, and .104 for FIW on 

X, .053, .058, .048, and .081 for FSW on X, .053, .067, .078, .172, for FIB on W, 

and .065, .072, .093, and .173 for FSB on W. In the 1-MLR-XW model, the mean Type I 

error rates at CN=100, 50, 30, and 10 were .045, .070, .060, and .080 for FIW on 

X, .052, .070, .045, and .075 for FSW on X, .053, .067, .078, .162, for FIw on W, 

and .061, .072, .092, and .153 for FSw on W. We observed that at CN=10 the Type I error 

was greatly inflated for all the growth factors on X and on W in both True model and 

1-MLR models. On the other hand, the Type I error rate for FIW on X and FSW on X at 
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CN=100, 50, and 30 were within the liberal range of robustness. The Type I error rate for 

FIB on W and FSB on W or FIw on W and FSw on W at CN=100 and 50 were also within the 

liberal range of robustness but those at CN=30 and 10 were biased and fell out the range of 

robustness. Our findings are consistent with Muthén and Satorra (1995) and suggest that 

cluster numbers as small as 50 be sufficient to avoid distortion of result due to complex 

sampling and to adjust for deviation of data normality in the variables. 

4.6 Discussion 

 The test statistics and fit indices cannot reflect the information for a neglected 

higher-level structure under the study design. First, according to the test statistics, the 

smaller χ
2 

test statistic value gave us a false impression of better model fit when we 

neglected the higher level modeling in the dependent data set. In fact, the χ
2 

test statistic 

values decreased as the number of degrees of freedom decreased. So, the smaller χ
2
 test 

statistics resulted from the smaller number of degrees of freedom multiplied by the 

discrepancy function. For model fit indices, all models had CFI values that exceeded the 

conventional cutoff values; and thus, CFI had no discernment of model misspecification. 

By mathematical definition, SRMR allows us to know the mean of standardized 

differences between elements in the model-driven variance-covariance matrix and the 
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elements in observed variance-covariance matrix (P. M. Bentler, 1995). All the SRMR 

values, including SRMRW, SRMRB, and SRMR, were below the conventional cutoff 

scores (SRMR<0.05), suggesting SRMR provides no information of an ignored higher 

level, either. Likewise, RMSEA suggested a good fit of the model to the data except that 

the True model had the highest RMSEA value at CN=10 and CS=5 ( RMSEA = .10). Even 

though the True model was the correct model, a bad model fit was obtained for small 

sample size (n=50). Our result was congruent with Hox’s suggestion (1995) that sample 

size should be at least 50, preferably 100, for multilevel models.  

In terms of regression coefficients, the parameter estimates of the fixed effects 

remained unbiased across the five models. The greater the sample size, the more accurate 

and efficient the regression coefficients. Their corresponding standard error, 95% coverage 

rate, and empirical power were also congruent to each other, except that the 1-ML-model 

underestimated the SEs of the regression coefficients for growth factors on W, gave a 

shrunken 95% coverage rate and inflated empirical power at smaller cluster numbers, 

while the design-based approaches (i.e. 1-MLR models) produced consistent standard error 

estimates as what the model-based approach did (i.e. True model). In addition, by 

introducing the cluster-level covariate in the 1-MLR-XW model, we can obtain estimates 
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of regression coefficients for the within-level growth factors (i.e. FIW and FSW) on W, 

which are consistent with those for the between-level growth factors (i.e. FIB and FSB) on 

W with only slightly inflated SEs and almost negligible power loss.  

Results for the covariance of growth factors showed the greatest difference among 

the three model specifications. The covariance between growth factors indicates the degree 

to which the initial status predicts the rate of linear change over time (Kline, 2005). The 

covariance estimates of the True model, the 1-MLR-XW, and the 1-ML-XW models were 

close to the population value, zero, while those from the 1-MLR-X and 1-ML-X model 

were upwardly biased. Besides, the 1-ML models had underestimated SEs for the 

covariance estimates, inconsistent (lowered) 95% coverage rate, and inflated Type I error 

rate. The biased covariance estimates along with underestimated standard error in 

1-MLR-X and 1-ML-X model led to erroneous statistical inference in that high initial 

status predicts higher linear increase rate when in fact there was no relationship between 

initial status and linear increase. On the contrary, with the integration of the cluster-level 

predictor W to the model, the 1-MLR-XW model produced covariance estimates and the 

corresponding 95% CI coverage rate and empirical power consistent with those from the 

True model. In sum, incorporating predictors from an ignored level in the model along with 
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adjusted standard errors for the parameter estimates can yield consistent covariance 

estimates between growth factors and avoid incorrect statistical inferences.  

As for the residual variance of growth factors, the distribution of residual variance 

varied among models. The Two-level model produced residual estimates consistent with 

the population value, while the 1-MLR models and 1-ML models generated upwardly 

biased variance estimates. The biased variance estimates can be explained as the following. 

For data of multilevel structure (e.g. a two level structure), the total residual variance of 

growth factors should be the sum of the within-level and between-level residual variance of 

growth factors. Because we neglected modeling the data dependency using a model-based 

approach, the between level residual variance cannot be the estimated separately; as a 

result, the 1-ML and the 1-MLR models produce total variance component of residuals, 

including the variance components in both levels and the variance components which can 

be explained by higher-level covariates. On the contrary, the True model had separate 

residual variance estimates from the between- and within-level. For the 1-MLR-XW and 

1-ML-XW models, the relationship between covariate W and growth factors were linked; 

and thus, the two models estimated a total variance that was approximately the sum of the 

residual variance of the between- and within-levels in the True model. In the 1-MLR-X and 
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1-ML-X models, the relationship between covariate W and growth factors was not 

established so that the portion of variance unexplained by the covariate W was credited to 

the residual variance. That was why the 1-ML-X and 1-MLR-X models had residual 

variance estimates greater than the sum of residual variance of the between- and 

within-level in the True model. In addition, without standard error correction for the 

parameter estimates, the 1-ML models underestimated SEs for the factor residual 

variances.  

As for mean structure, compared with the True model and the two 1-MLR models, 

the 1-ML models underestimated the SEs for the growth factor mean structures, produced 

inconsistent 95% coverage rate, and had inflated empirical power at small cluster number 

settings. The 1-MLR-X and 1-MLR-XW models had negligible differences in the mean 

structure results. 
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5. CONCLUSIONS AND SUGGESTIONS 

 

The first study compared the similarities and differences of analyzing complex 

survey data with equal/unequal multilevel structures using a design-based single-level 

CFA model (the one-level model) and two model-based multilevel CFA models (the 

two-level true model and the two-level maximum model) on the overall model fit indices, 

the parameter estimates, 95% coverage for both fixed effects and random effects, and the 

statistical inferences on detecting the parameter estimates.  

Our simulation study showed that the one-level model (the design-based model) 

provided satisfactory results only under equal between/within structures. However, under 

the simple between-/ complex within-level structure, the one-level model yielded 

erroneous cross-loaded factor loadings estimates and biased random effect estimates. As 

the between-level structure became more complicated than the within-level structure (i.e. 

the Scenario 3: complex between-/simple within-level structure), the design-based 

approach produced biased single- and cross-loaded pattern coefficient estimates and poor 

random effect estimates.  
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Modeling the data structure as it is (i.e., using the two model-based multilevel 

models) turned out to be a better analytical strategy for analyzing multilevel data. However, 

the higher level model structure may not always be the focus or interest of a study in which 

no specific hypothesized model is set for the higher level. This may also be the reason why 

the design-based single level approach, as indicated previously, is a commonly used 

approach for analyzing multilevel data given the advantage of simplicity of this approach 

(i.e., only one model is needed for specification). Under such circumstance, constructing 

multilevel models can be difficult and daunting for researchers with limited higher-level 

information from the available data, theories, or prior research. The two-level maximum 

model, where the between-level model is a saturated model (i.e. estimating all the unique 

non-directional parameters in the between-level model), is a better and feasible alternative 

than the design-based one-level approach and even the model-based two-level model with 

the requirement for specifying different hypothesized models at different levels.  Thus, if 

the researcher’s focus is only on validating the pooled-within covariance structure of 

complex survey data ( in other words, only a within-level model is of interest and 

hypothesized), we recommend the use of the two-level maximum model instead of the 

one-level model with robust standard estimator (i.e. design-based approach) for multilevel 
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data because more consistent and efficient model parameter estimates can generally be 

obtained through the maximum model strategy.  

In educational, behavioral, and organizational research, it is common to have a 

hierarchical data structure, especially in the format of complex survey data and panel data. 

Information from the higher level is not readily available for some purposes. The first goal 

of the second study aimed to answer what the effects are if we ignore the highest data-level 

on the criterion variables. Based on the simulation result, the two 1-MLR models and the 

two 1-ML models yielded fixed effect parameter estimates consistent with those from the 

True model. However, in the regular LGCM with a higher level covariate (i.e. 1-ML-XW 

model), the standard error of the regression weight estimates for the growth factors on 

higher-level covariate were underestimated, the corresponding 95% coverage rate was 

shrunk, and the empirical power was inflated, especially at smaller cluster numbers. Our 

findings were consistent with previous research (Luo & Oi-man Kwok, 2009; Moerbeek, 

2004) that when a higher level structure is neglected the standard errors of the regression 

coefficient from the neglected level are underestimated. However, there is no practical 

solution to the problem. We suggested that placing cluster-level covariates into the 1-level 

model along with the use of design-based robust standard error estimator provide estimates 
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of regression weights and standard errors that were consistent with those from the true 

MLGCM.  

We also observed a major difference on the growth factors covariance estimates 

and residual variances. Therefore, to address our second goal of this paper, we found the 

regular LGCMs with or without the cluster-level predictor had underestimated SEs for the 

covariance estimates, inconsistent (lowered) 95% coverage rate, and inflated Type I error 

rate. For the design-based MLGCM models, including the cluster-level predictor or not 

had a great impact on the factors covariance estimates and residual variance estimate. The 

cluster-level predictor in the 1-MLR-XW model restored the covariance estimates 

distorted by the 1-MLR-X model and accounted for the unexplained variance in the factor 

residual variance. Researchers need to exert caution on the biased growth factor covariance 

and inflated residual variance estimates as well as their erroneous corresponding statistical 

inferences due to ignoring the dependent nature of data when the cluster-level covariate 

was not included and the standard error for parameter estimates were not adjusted.  

For the sample size issue, we found that when sample size is too small (e.g. n=50) 

the MLGCM failed to have a good RMSEA model fit index. The reason was that the 

maximum likelihood estimator was a large sample size estimation method and the 
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dependent data with insufficient sample size resulted in the biased parameter estimates, 

especially in the higher-level structures. Owing to this reason, the biased parameter 

estimates incurred inaccurate cluster-level model-implied variance-covariance matrix and 

distorted total model-implied variance-covariance matrix. The larger disparity between the 

observed and model-implied variance-covariance due to the smaller sample size resulted in 

the larger value of population discrepancy function per degree of freedom, and the thus 

worse RMSEA value. Moreover, small cluster number (e.g. CN=10) also resulted in 

reduced power on the growth factors’ mean estimates and the regression coefficient 

estimates between the cluster-level covariate (e.g. W) and growth factors in the True model 

and 1-MLR models. Additionally, a cluster number less than 50 also caused an inflated 

Type I error rate for the fixed effect estimates of higher-level covariate. Therefore, our 

study was consistent with Muthén and Satorra (1995) to suggest that researchers have a 

cluster number at least as large as 50, especially for 3 or 4 waves of repeated measurement 

to perform a MLGCM. 

As a concluding remark, we encourage researchers to include predictors from the 

ignored level if the global cluster-level covariates are available in the complex survey data 

and perform a design-based MLGCM. The guideline in choosing the global cluster-level 
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covariates should be based on that the covariates help explaining the growth factors with 

the support from the literature, theories, or researchers’ experiences. For exploratory 

research, the statistical significance of the regression coefficient of the higher-level 

covariate can be used to decide whether the covariates should be included in the model or 

not. Another overall model selection method, that is, the chi-square difference test between 

the full model (e.g. the 1-MLR-XW model with the regression coefficients of growth 

factors on W freely estimated) and restricted model (e.g. the 1-MLR-XW model with the 

regression coefficients between of growth factors on W set as zero) can be used to 

determine whether the cluster-level covariate can statistically and practically improve the 

integrity of the proposed model.  

In many studies, the higher-level covariate and the lower-level covariate may or 

may not correlate with each other. For example, averaged school-level SES is associated 

with individual-level SES but is not associated with the gender or ethnicity of the 

individual. One limitation of study two is that the correlation pattern between higher-level 

covariate W and the lower-level covariate X is not considered as a design factor in the 

simulation study. Future research can be conducted assuming higher-level and lower-level 

covariates with different correlation patterns.  



145 

 

 

REFERENCES 

 

Agrawal, A., & Lynskey, M. T. (2007). Does gender contribute to heterogeneity in 

criteria for cannabis abuse and dependence? Results from the national 

epidemiological survey on alcohol and related conditions. Drug and Alcohol 

Dependence, 88, 300-307. 

Aitkin, M., & Longford, N. (1986). Statistical modeling issues in school effectiveness 

studies. Journal of the Royal Statistical Society. Series A (General), 149(1), 1-43. 

Allison, P. D. (1987). Estimation of linear models with incomplete data. Sociological 

Methodology, 17, 71–103. 

Amemiya, Y., & Anderson, T. W. (1990). Asymptotic chi-square tests for a large class of 

factor analysis models. The Annals of Statistics, 18(3), 1453–1463. 

Anderson, D. A., & Aitkin, M. (1985). Variance component models with binary response: 

Interviewer variability. Journal of the Royal Statistical Society. Series B 

(Methodological), 47(2), 203-210. 

Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In 

G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation 

modeling: Issues and techniques (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum 

Associates.   

Arbuckle, J. L. (2003). Amos 5 user’s guide. Chicago, IL: SPSS. 

Asparouhov, T., & Muthén, B. (2005). Multivariate statistical modeling with survey data. 

In Proceedings of the Federal Committee on Statistical Methodology (FCSM) 

Research Conference.  

Au, K., & Cheung, M. W. (2004). Intra-cultural variation and job autonomy in 42 

countries. Organization Studies, 25(8), 1339. 

Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. 

Annual Review of Psychology, 31(1), 419–456. 

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological 

Bulletin, 107, 238-246. 

Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: 

Multivariate Software. 



146 

 

 

Blakely, T. A., & Woodward, A. J. (2000). Ecological effects in multi-level studies. 

Journal of Epidemiology Community Health, 54(5), 367-374.  

Bock, R. D. (1960). Components of variance analysis as a structural and discriminal 

analysis for psychological tests. British Journal of Statistical Psychology, 13, 

151–163. 

Bock, R. D., & Bargmann, R. E. (1966). Analysis of covariance structures. 

Psychometrika, 31(4), 507–534. 

Bollen, K. A. (1989). A new incremental fit index for general structural equation models. 

Sociological Methods & Research, 17, 303-316. 

Boomsma, A. (1987). The robustness of maximum likelihood estimation in structural 

equation models. In P. Cuttance & R. Ecob (Eds.), Structural modeling by 

example (pp. 160-188). New York: University of Cambridge.   

Bovaird, J. A. (2007). Multilevel structural equation models for contextual factors. In T. 

D. Little, J. A. Bovaird, & N. A. Card (Eds.), Modeling contextual effects in 

longitudinal studies (p. 149). Mahwah, NJ: Lawrence Erlbaum Associates. 

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical 

Psychology, 31, 141-152. 

Branum-Martin, L., Mehta, P. D., Fletcher, J. M., Carlson, C. D., Ortiz, A., Carlo, M., & 

Francis, D. J. (2006). Bilingual phonological awareness: Multilevel construct 

validation among Spanish-speaking kindergarteners in transitional bilingual 

education classrooms. Journal of Educational Psychology, 98, 170-181. 

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of 

covariance structures. British Journal of Mathematical and Statistical Psychology, 

37(1), 62–83. 

Browne, M. W., & Shapiro, A. (1988). Robustness of normal theory methods in the 

analysis of linear latent variate models. British Journal of Mathematical and 

Statistical Psychology, 41(2), 193–208. 

Bryk, A., & Raudenbush, S. (1992). Hierarchical linear models for social and behavioral 

research: Applications and data analysis methods. Newbury Park, CA: Sage. 

Cheung, M. W., & Au, K. (2005). Applications of multilevel structural equation 

modeling to cross-cultural research. Structural Equation Modeling, 12, 598–619. 

Cheung, M. W. (2007). Comparison of methods of handling missing time-invariant 

covariates in latent growth models under the assumption of missing completely at 

random. Organizational Research Methods, 10(4), 609-634. 



147 

 

 

Chou, C. P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust 

standard errors for non-normal data in covariance structure analysis: A Monte 

Carlo study. British Journal of Mathematical and Statistical Psychology, 44(2), 

347–357. 

Cohen, P., Cohen, J., West, S. G., & Aiken, L. S. (2003). Applied multiple 

regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Cronbach, L. J., & Webb, N. (1975). Between-class and within-class effects in a reported 

aptitude X treatment interaction: Reanalysis of a study by G. L. Anderson. 

Journal of Educational Psychology, 67, 717-724. 

Croon, M. A., & van Veldhoven, M. J. P. M. (2007). Predicting group-level outcome 

variables from variables measured at the individual level: A latent variable 

multilevel model. Psychological Methods, 12(1), 45–57. 

Curran, P. J. (2003). Have multilevel models been structural equation models all along? 

Multivariate Behavioral Research, 38(4), 529-569. 

Curran, P. J., & Hussong, A. M. (2002). Structural equation modeling of repeated 

measures data: latent curve analysis. In D. S. Moskowitz & S. L. Hershberger 

(Eds.), Modeling intraindividual variability with repeated measures data: 

Methods and applications (pp. 59-85). Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Davidov, E., Yang-Hansen, K., Gustafsson, J. E., Schmidt, P., & Bamberg, S. (2006). 

Does money matter? A theory-driven growth mixture model to explain 

travel-mode choice with experimental data. Methodology: European Journal of 

Research Methods for the Behavioral and Social Sciences, 2(3), 124–134. 

De Fraine, B., Van Damme, J., & Onghena, P. (2007). A longitudinal analysis of gender 

differences in academic self-concept and language achievement: A multivariate 

multilevel latent growth approach. Contemporary Educational Psychology, 32(1), 

132-150. 

De Leeuw, J., & Kreft, I. G. (1995). Questioning multilevel models. Journal of 

Educational and Behavioral Statistics, 20(2), 171. 

Dickinson, L. M., & Basu, A. (2005). Multilevel modeling and practice-based research. 

Annals of Family Medicine, 3(1), 52-60.  

Diggle, P. J., Liang, K. Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Oxford, 

UK: Clarendon Press. 

 



148 

 

 

Duncan, S. C., Duncan, T. E., & Hops, H. (1996). Analysis of longitudinal data within 

accelerated longitudinal designs. Psychological Methods. Vol. 1(3), 1(3), 236-248. 

Duncan, T. E., Alpert, A., & Duncan, S. C. (1998). Multilevel covariance structure 

analysis of sibling antisocial behavior. Structural Equation Modeling, 5, 211-228. 

Duncan, T. E., & Duncan, S. C. (2004). An introduction to latent growth curve modeling. 

Behavior Therapy, 35(2), 333–363. 

Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent 

variable growth curve modeling concepts, issues, and applications. Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (1999). An 

introduction to latent variable growth curve modeling concepts, issues, and 

applications. Quantitative methodology series. Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Dyer, N. G., Hanges, P. J., & Hall, R. J. (2005). Applying multilevel confirmatory factor 

analysis techniques to the study of leadership. The Leadership Quarterly, 16, 

149-167. 

Enders, C. K. (2008). A note on the use of missing auxiliary variables in full information 

maximum likelihood-based structural equation models. Structural Equation 

Modeling: A Multidisciplinary Journal, 15(3), 434-448. 

Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information 

maximum likelihood estimation for missing data in structural equation models. 

Structural Equation Modeling, 8(3), 430–457. 

Everson, H. T., & Millsap, R. E. (2004). Beyond individual differences: Exploring school 

effects on SAT scores. Educational Psychologist, 39, 157-172. 

Fan, X. (1997). Canonical correlation analysis and structural equation modeling: What do 

they have in common? Structural Equation Modeling, 4(1), 65-79. 

Fassinger, R. E. (1987). Use of structural equation modeling in counseling psychology 

research. Journal of Counseling Psychology, 34(4), 425–436. 

Finkbeiner, C. (1979). Estimation for the multiple factor model when data are missing. 

Psychometrika, 44(4), 409-420. 

Gall, M. D., Gall, J. P., & Borg, W. R. (2006). Educational research: An introduction 

(8th ed.). New York: Prentice Hall. 

Goldstein, H. (1987). Multilevel models in education & social research. Port Jervis, NY: 

Lubrecht & Cramer, Limited. 



149 

 

 

Goldstein, H. (1995). Multilevel statistical models (2nd ed.). New York: Wiley & Sons. 

Goldstein, H., & McDonald, R. P. (1988). A general model for the analysis of multilevel 

data. Psychometrika, 53(4), 455-467. 

Graham, J. M. (2008). The general linear model as structural equation modeling. Journal 

of Educational And Behavioral Statistics, 33(4), 485-506. 

Graham, J. W. (2003). Adding missing-data-relevant variables to fiml-based structural 

equation models. Structural Equation Modeling: A Multidisciplinary Journal, 

10(1), 80.  

Hancock, G. R., & Lawrence, F. R. (2006). Using latent growth models to evaluate 

longitudinal change. In G. R. Hancock & R. O. Mueller (Eds.), Structural 

equation modeling: A second course. Greenwood, CT: Information Age 

Publishing. 

Hardin, J. W., & Hilbe, J. M. (2002). Generalized estimating equations (1st ed.). Boca 

Raton, Florida: Chapman & Hall. 

Hardin, J. W., & Hilbe, J. M. (2007). Generalized linear models and extensions (2nd ed.). 

College Station, TX: Stata Press. 

Heck, R. H., & Thomas, S. L. (2008). An introduction to multilevel modeling techniques 

(2nd ed.). New York: Routledge. 

Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection 

model. Biometrics, 31(2), 423–447. 

Hofmann, D. A. (1997). An overview of the logic and rationale of hierarchical linear 

models. Journal of Management, 23(6), 723. 

Holt, D., Scott, A. J., & Ewings, P. D. (1980). Chi-squared tests with survey data. 

Journal of the Royal Statistical Society. Series A (General), 143(3), 303–320. 

Hox, J. J. (1993). Factor analysis of multilevel data: Gauging the Muthén model. In 

Advances in longitudinal and multivariate analysis in the behavioral sciences (pp. 

141-156). Nijmegen: ITS.  

Hox, J. J. (1995). Applied multilevel analysis (2nd ed.). Amsterdam, Netherlands: 

TT-Publikaties. 

Hox, J. J. (2002). Multilevel analysis techniques and applications. Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Hox, J. J., & Kleiboer, A. M. (2007). Retrospective questions or a diary method? A 

two-level multitrait-multimethod analysis. Structural Equation Modeling: A 



150 

 

 

Multidisciplinary Journal, 14(2), 311–325. 

Hox, J. J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation 

modeling with pseudobalanced groups and small samples. Structural Equation 

Modeling, 8, 157-174. 

Hox, J. J., & Maas, C. J. M. (2004). Multilevel structural equation models: The limited 

information approach and the multivariate multilevel approach. In K. V. Montfort, 

J. Oud, & A. Satorra (Eds.), Recent developments on structural equation models: 

Theory and applications. The Netherlands: Kluwer Academic Publishers.   

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure 

analysis: Conventional criteria versus new alternatives. Structural Equation 

Modeling, 6(1), 1-55. 

Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure 

analysis be trusted? Psychological Bulletin, 112(2), 351–362. 

Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard 

conditions. Proceedings of the Berkeley Symposium on Mathematical Statistics 

and Probability, 1, 221-233. 

Jackson, D. L., Gillaspy, J. A., & Purc-Stephenson, R. (2009). Reporting practices in 

confirmatory factor analysis: An overview and some recommendations. 

Psychological Methods, 14, 6-23. 

Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated-measures models with 

structured covariance matrices. Biometrics, 42(4), 805-820. 

Jöreskog, K. (1967). Some contributions to maximum likelihood factor analysis. 

Psychometrika, 32(4), 443-482.  

Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor 

analysis. Psychometrika, 34(2), 183-202.  

Jöreskog, K. G. (1970a). A general method for analysis of covariance structures. 

Biometrika, 57(2), 239-251. 

Jöreskog, K. G. (1970b). A general method for estimating a linear structural equation 

system (No. RB-70-54) (p. 43). Princeton, NJ: Educational Testing Service. 

Jöreskog, K. G. (1973). A general method for estimating a linear structural equation 

system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models 

in the social sciences (pp. 85-112). New York, NY: Seminar Press. 

Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification, 

estimation and testing. In Applications of statistics. Amsterdam, Netherland: 



151 

 

 

North-Holland. 

Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. 

Psychometrika, 43(4), 433-477. 

Jöreskog, K. G., & Sörbom, D. (1989). LISREL 7: A guide to the program and 

applications (2nd ed.). Chicago, IL: SPSS, Inc.  

Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8 user’s guide (1st ed.). Lincolnwood, IL: 

Scientific Software. 

Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User's reference guide (2nd ed.). 

Lincolnwood, IL: Scientific Software. 

Kano, Y. (1992). Robust statistics for test-of-independence and related structural models. 

Statistics & Probability Letters, 15(1), 21–26. 

Kaplan, D., & Elliott, P. R. (1997). A didactic example of multilevel structural equation 

modeling applicable to the study of organizations. Structural Equation Modeling, 

4(1), 1-24. 

Kaplan, D. W. (2008). Structural equation modeling: foundations and extensions. 

Thousand Oaks, CA: Sage Publications. 

Kashy, D. A., Donnellan, M. B., Burt, S. A., & McGue, M. (2008). Growth curve models 

for indistinguishable dyads using multilevel modeling and structural equation 

modeling: the case of adolescent twins' conflict with their mothers. 

Developmental Psychology, 44(2), 316-329. 

Kendall, M. G., & Stuart, A. (1979). The advanced theory of statistics. (Vol. 2). New 

York, NY: Macmillan. 

Khoo, S. T., West, S. G., Wu, W., & Kwok, O. (2006). Longitudinal methods. In M. Eid 

& E. Dienner (Eds.), Handbook of psychological measurement: A multimethod 

perspective (pp. 301-317). Washington, DC: APA. 

Kish, L. (1995). Survey sampling. Malden, MA: Wiley-Interscience. 

Kish, L., & Frankel, M. R. (1974). Inference from complex samples. Journal of the Royal 

Statistical Society. Series B (Methodological), 36(1), 1-37. 

Klein, K. J., Conn, A. B., Smith, D. B., & Sorra, J. S. (2001). Is everyone in agreement? 

An exploration of within-group agreement in employee perceptions of the work 

environment. Journal of Applied Psychology, 86(1), 3–16. 

Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). 

New York, NY: The Guilford Press. 



152 

 

 

Kreft, I. G. G. (2006). Are multilevel techniques necessary? An overview, including 

simulation studies. California State University, June, 25, 1996. 

Kreft, I. G., & De Leeuw, J. (1998). Introducing multilevel modeling. London: Sage. 

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. 

Biometrics, 38(4), 963-974. 

Lee, E. S., & Forthofer, R. N. (2006). Analyzing complex survey data. Newbury Park, CA: 

Sage. 

Lee, S. Y. (1986). Estimation for structural equation models with missing data. 

Psychometrika, 51(1), 93–99. 

Lee, S. Y., & Song, X. Y. (2007). A unified maximum likelihood approach for analyzing 

structural equation models with missing nonstandard data. Sociological Methods 

& Research, 35(3), 352. 

Littell, R. C., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (1996). SAS system for 

mixed models. Cary, NC: SAS Institute. 

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberber, O. 

(2006). SAS for mixed models, second edition (2nd ed.). SAS Publishing. 

Llabre, M. M., Spitzer, S., Siegel, S., Saab, P. G., & Schneiderman, N. (2004). Applying 

latent growth curve modeling to the investigation of individual differences in 

cardiovascular recovery from stress. Psychosomatic Medicine, 66(1), 29-41.  

Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in 

unbalanced mixed models with nested random effects. Biometrika, 74(4), 

817-827. 

Longford, N. T. (1993). Random coefficient models. Oxford, UK: Clarendon Press. 

Longford, N. T., & Muthén, B. O. (1992). Factor analysis for clustered observations. 

Psychometrika, 57, 581-597. 

Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. 

O. (2008). The multilevel latent covariate model: A new, more reliable approach 

to group-level effects in contextual studies. Psychological Methods, 13(3), 

203–229. 

Luke, D. A. (2007). Multilevel growth curve analysis for quantitative outcomes. In S. 

Menard (Ed.), Handbook of longitudinal research (pp. 545-564). Amsterdam, 

Netherlands: Elsevier. 

Luo, W., & Kwok, O. (2009). The impacts of ignoring a crossed factor in analyzing 



153 

 

 

cross-classified data. Multivariate Behavioral Research, 44(2), 182-212. 

doi:10.1080/00273170902794214 

Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. 

Methodology: European Journal of Research Methods for the Behavioral and 

Social Sciences, 1, 86–92. 

MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling 

in psychological research. Annual Review of Psychology, 51, 201-226. 

Mathews, C., Aaro, L. E., Flisher, A. J., Mukoma, W., Wubs, A. G., & Schaalma, H. 

(2009). Predictors of early first sexual intercourse among adolescents in Cape 

Town, South Africa. Health Education Research, 24(1), 1. 

McDonald, R. P., & Goldstein, H. (1989). Balanced versus unbalanced designs for linear 

structural relations in two-level data. British Journal Mathematical and Statistical 

Psychology, 42, 215-232. 

McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural 

equation analyses. Psychological Methods, 7, 64-82. 

Mehta, P. D., & Foorman, B. R. (2005). Literacy as a unidimensional multilevel construct: 

Validation, sources of influence, and implications in a longitudinal study in 

grades 1 to 4. Scientific Studies of Reading, 9, 85-116. 

Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural 

equations modeling. Psychological Methods, 10(3), 259-284. 

Meyers, J. L., & Beretvas, S. N. (2006). The impact of inappropriate modeling of 

cross-classified data structures. Multivariate Behavioral Research, 41(4), 

473–497. 

Moerbeek, M. (2004). The consequence of ignoring a level of nesting in multilevel 

analysis. Multivariate Behavioral Research, 39(1), 129-149. 

Mooijaart, A., & Bentler, P. M. (1991). Robustness of normal theory statistics in 

structural equation models. Statistica Neerlandica, 45(2), 159–171. 

Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. 

Psychometrika, 54, 557-585. 

Muthén, B. O. (1990). Mean and covariance structure analysis of hierarchical data. UCLA 

Statistics Series, 62.   

Muthén, B. O. (1991). Multilevel factor analysis of class and student achievement 

components. Journal of Educational Measurement, 28, 338-354. 



154 

 

 

Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods & 

Research, 22(3), 376-398. 

Muthén, B. O., & Asparouhov, T. (2002). Latent variable analysis with categorical 

outcomes: Multiple-group and growth modeling in Mplus. Los Angeles, CA: 

Muthén & Muthén.  

Muthén, B. O., & Asparouhov, T. (2002). Using Mplus monte carlo simulations in 

practice: A note on non-normal missing data in latent variable models (No. 2). 

Mplus Web Notes. CA: Muthén & Muthén. 

Muthén, B. O., & Asparouhov, T. (2006). Item response mixture modeling: Application 

to tobacco dependence criteria. Addictive Behaviors, 31(6), 1050–1066. 

Muthén, B. O., & Asparouhov, T. (2009). Beyond multilevel regression modeling: 

Multilevel analysis in a general latent variable framework. In Handbook of 

Advanced Multilevel Analysis. New York, NY: Routledge.  

Muthén, B. O., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with 

data that are not missing completely at random. Psychometrika, 52(3), 431–462. 

Muthén, B. O., Khoo, S. T., & Gustafsson, J. E. (1997). Multilevel latent variable 

modeling in multiple populations.  

Muthén, B. O., & Satorra, A. (1989). Multilevel aspects of varying parameters in 

structural models. Multilevel analysis of educational data, 87–99. 

Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation 

modeling. Sociological Methodology, 25, 267-316. 

Muthén, L. K., & Muthén, B. O. (2007). Mplus V5.21. Los Angeles, CA: Muthén & 

Muthén. 

Muthén, L. K., & Muthén, B. O. (2007). Mplus User’s Guide. Fifth Edition. Los Angeles, 

CA: Muthén & Muthén. 

Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling using 

Stata. College Station, TX: Stata Press. 

Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel structural equation 

modeling. In S. Lee (Ed.), Handbook of latent variable and related models (pp. 

209-227). Amsterdam, Netherlands: Elsevier. 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and 

data analysis methods. Thousand Oaks, CA: Sage. 

Rigdon, E. (1998). Structural equation modeling. In G. A. Marcoulides (Ed.), Modern 



155 

 

 

methods for business research (pp. 251–294). Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. 

American Sociological Review, 15(3), 351-357.   

Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates of change by modeling 

individual differences in growth. Psychometrika, 50(2), 203–228. 

Satorra, A. (1992). Asymptotic robust inferences in the analysis of mean and covariance 

structures. Sociological Methodology, 249–278. 

Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in 

covariance structure analysis. In Proceedings of the business and economic 

statistics section (pp. 308-313). 

Satorra, A., & Bentler, P. M. (1990). Model conditions for asymptotic robustness in the 

analysis of linear relations. Comput. Stat. data anal., 10(3), 235-249. 

Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for 

moment structure analysis. Psychometrika, 66(4), 507-514. 

Schmidt, W. (1969). Covariance structure analysis of the multivariate random effects 

model (Unpublished doctoral dissertation). University of Chicago. 

Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. Wiley 

Series in Probability and Statistics (1st ed.). New York, NY: Wiley-Interscience. 

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater 

reliability. Psychol Bull, 86(2), 420–428. 

Skinner, C. J. (1989). Domain means, regression and multi-variate analysis. In C. J. 

Skinner, D. Holt, & T. M. F. Smith (Eds.), Analysis of complex surveys (pp. 

165-190). New York, USA: Wiley. 

Skinner, C., Holt, D., & Wrigley, N. (1997). The analysis of complex survey data. 

Hoboken, NJ: John Wiley & Sons Inc.   

Snijders, T., & Bosker, R. (1999). Multilevel analysis: An introduction to basic and 

advanced multilevel modeling. Thousand Oaks, CA: SAGE Publications. 

Stapleton, L. M. (2006). Using multilevel structural equation modeling techniques with 

complex sample data. In G. R. Hancock & R. O. Mueller (Eds.), Structural 

equation modeling: A second course. Greenwich, CT: Information Age 

Publishing. 

Stapleton, L. M. (2008). Analysis of data from complex surveys. In E. D. de Leeuw, J. J. 



156 

 

 

Hox, & D. A. Dillman (Eds.), International handbook of survey methodology (pp. 

342-369). New York, NY: Lawrence Erlbaum Associates. 

Steiger, J. H. (1990). Structural model evaluation and modification: An interval 

estimation approach. Multivariate Behavioral Research, 25(2), 173-180. 

Steiger, J. H. (2000). Point estimation, hypothesis testing, and interval estimation using 

the RMSEA: Some comments and a reply to Hayduk and Glaser. Structural 

Equation Modeling, 7(2), 149–162. 

Steiger, J. H., & Lind, J. C. (1980). Statistically based tests for the number of factors. In 

annual spring meeting of the Psychometric Society. Iowa City, IA. 

Stoolmiller, M. (2007). Latent growth curve models. In S. Menard (Ed.), Handbook of 

longitudinal research (pp. 253-544). Amsterdam, Netherlands: Elsevier. 

Thompson, B. (2000). Canonical correlation analysis. In Reading and understanding 

more multivariate statistics. Washington, DC: American Psychological 

Association. 

du Toit, S. H., & du Toit, M. (2008). Multilevel structural equation modeling. In 

Handbook of multilevel analysis (pp. 435–78). 

Van Landeghem, G., De Fraine, B., & Van Damme, J. (2005). The consequence of 

ignoring a level of nesting in multilevel analysis: A comment. Multivariate 

Behavioral Research, 40(4), 423-434. 

Wampold, B. E., & Serlin, R. C. (2000). The consequence of ignoring a nested factor on 

measures of effect size in analysis of variance. Psychological Methods, 5(4), 

425–433. 

Watt, H. (2008). A latent growth curve modeling approach using an accelerated 

longitudinal design: the ontogeny of boys' and girls' talent perceptions and 

intrinsic values through adolescence. Educational Research and Evaluation, 14(4), 

287-304.  

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a 

direct test for heteroskedasticity. Econometrica, 48(4), 817-838. 

Wu, W., West, S. G., & Taylor, A. B. (2009). Evaluating model fit for growth curve 

models: Integration of fit indices from SEM and MLM frameworks. 

Psychological Methods, 14(3), 183–201. 

Yuan, K. H. (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 

40(1), 115-148. 

Yuan, K. H., & Bentler, P. M. (1997). Mean and covariance structure analysis: 



157 

 

 

Theoretical and practical improvements. Journal of the American Statistical 

Association, 767–774. 

Yuan, K. H., & Bentler, P. M. (1998). Normal theory based test statistics in structural 

equation modeling. British Journal of Mathematical and Statistical Psychology, 

51(2), 289–310. 

Yuan, K. H., & Bentler, P. M. (1999). On normal theory and associated test statistics in 

covariance structure analysis under two classes of nonnormal distributions. 

Statistica Sinica, 9, 831–854. 

Yuan, K. H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and 

covariance structure analysis with nonnormal missing data. Sociological 

Methodology, 30, 165-200. 

Yuan, K. H., & Hayashi, K. (2005). On Muthén's maximum likelihood for two-level 

covariance structure models. Psychometrika, 70, 147-167. 

Yuan, K. H., & Jennrich, R. I. (1998). Asymptotics of estimating equations under natural 

conditions. Journal of Multivariate Analysis, 65(2), 245–260. 

 

  



158 

 

 

VITA 

 

Name: Jiun-Yu Wu 

Address: Dept. of Educational Psychology 

 c/o Dr. Victor Willson 

 Texas A&M University 

 College Station, TX 77843-4225 

Email Address: jiunyu.rms@gmail.com 

Education: B.S., Communication Engineering, National Chiao Tung University, 

Taiwan, 2001 

 M.S., Communication Engineering, National Chiao Tung University, 

Taiwan, 2003  

 Ph.D., Educational Psychology, Texas A&M University, USA, 2010 

 


