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ABSTRACT

Detecting Tangled Logic Structures in VLSI Netlists. (August 2010)

Tanuj Jindal, B.Tech., Indian Institute of Technology-Roorkee, India

Chair of Advisory Committee: Dr. Jiang Hu

This thesis proposes a new problem of identifying large and tangled logic structures in a

synthesized netlist. Large groups of cells that are highly interconnected to each other can

often create potential routing hotspots that require special placement constraints. They can

also indicate problematic clumps of logic that either require resynthesis to reduce wiring

demand or specialized datapath placement. At a glance, this formulation appears similar

to conventional circuit clustering, but there are two important distinctions. First, we are

interested in finding large groups of cells that represent entire logic structures like adders

and decoders, as opposed to clusters with only a handful of cells. Second, we seek to pull

out only the structures of interest, instead of assigning every cell to a cluster to reduce

problem complexity. This work proposes new metrics for detecting structures based on

Rent’s rule that, unlike traditional cluster metrics, are able to fairly differentiate between

large and small groups of cells. Next, we demonstrate how these metrics can be applied to

identify structures in a netlist. Finally, our experiments demonstrate the ability to predict

and alleviate routing hotspots on a real industry design using our metrics and method.
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CHAPTER I

INTRODUCTION

During logic synthesis, high-level logic structures are translated into groups of logic gates.

This synthesized netlist is then handed off to a place-and-route physical design flow. During

this handoff, information about the origin of the logic that created the gates can be lost,

especially if one switches from one tool vendor to another. Most of the placement literature

and all academic placers (e.g., [1] [2]) also assume that logic information is absent and

operate purely at the gate level, instead of relying on hierarchical information.

During this handoff between synthesis and placement, logic may be synthesized in

such a way that it might require special care from the placement engine to obtain high qual-

ity results. Certain groups of logic will invariably have a higher degree of inter-connectivity

than other groups. Let GTL denote a group of tangled logic. The automatic detection of

GTLs has several potential applications:

• Routability. Since a GTL has high interconnectivity, placement engine will natu-

rally want to pull the cells tightly together which often will create a routing hotspot.

Figure 1 shows a routing congestion map of a placed industrial design, in which the

routing hotspots in the upper part of the design are caused by tangled logic struc-

tures that are placed too closely together. Later we show how simple process of cell

inflation in a GTL can mitigate such routing congestions.

• Floorplanning. Since a GTL will stay together during placement, the designer may

wish to form a soft block for the gates in the GTL. Then during placement, the soft

block can be translated into placement constraints (like attractions, forces, or move

bounds) to drive placement to a higher quality solution.

The journal model is IEEE Transactions on Automatic Control.
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• Logic re-synthesis. Synthesis will typically try to instantiate logic in the most com-

pact form possible, yet this is one of the reasons why logic structures can be so

tangled. Prior to placement, a GTL could be resynthesized or re-instantiated to uti-

lize more area, but less interconnect, thereby reducing potential hotspots. Applying

this technique to a small fraction of the design will not increase area dramatically.

Fig. 1. Example of routing hotspots.

The main problem this work addresses is how to find a GTL. Before one can find a

GTL, one should be able to somehow quantify how tangled a logic structure actually is.

Therefore, we propose two new metrics derived from Rent’s rule to measure the quality

of a GTL. The first metric allows one to explore the gamut of sizes between very small

and very large cell groups and select the ones which best optimize the metric. Our second

metric extends beyond Rent’s rule to account for internal connectivity.

The reason a new metric is required is that existing cluster metrics cannot properly
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compare groups of cells of different sizes. When searching for GTLs one might find struc-

tures within structures, especially as the logic is repeated. We must be able to distinguish

between them so that proper guidance can be given to the place-and-route tool. Our met-

rics and algorithm are able to decide whether we should choose several smaller GTLs or a

much larger GTL which encompasses all the smaller ones. Our new metrics are also scaled

so that the average score of a typical cluster is one, and the ones with smaller values (e.g.,

less than 0.1) correspond to strong GTLs. This not only permits one to compare groups of

different sizes, it also provides a uniform standard that can be utilized for different designs.

Next we show how one can use the metric to actually find set of GTLs. Our algorithm

starts from a random seed and grows a GTL by adding cells iteratively. We exploit paral-

lalism to perform several such searches simultaneously and prune out the GTL candiates

that are inferior and overlapping, resulting in an independent final set of identified GTLs.

We validate our metrics and algorithm on random graphs, ISPD placement bench-

marks, and a real industrial design. We demonstrate that our algorithm can identify GTL’s;

and, application of cell inflation technique within each GTL found leads to reduced con-

gestion in our industrial testcase.
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CHAPTER II

PREVIOUS WORK

A GTL and a cluster are both a subset of netlist gates, so it might seem that one can apply

traditional clustering metrics to GTLs. However, there are some clear differences between

the problem statement of detecting tangled logic structures and cell clustering:

1. Conventional clustering most often provides a reduction in problem size. These clus-

ters are typically small (e.g., two to ten cells) so that too much information is not

lost in the reduced problem instance. Clustering in this domain is generally local in

nature [3]; however, this work is interested in identifying much larger special logic

structures, of the order of hundreds to thousands of cells. This requires a more global

view that accounts for both external and internal connections.

2. Conventional clustering requires each cell to belong to a cluster, thereby covering the

entire netlist. In contrast, we seek specific subsets of cells for special handling prior

to placement. Thus, we wish to identify only a small fraction of cells as GTL’s and

let place-and-route handle the other cells as it wishes.

Let the input netlist be represented as a hypergraphG= (V,E)whereV is a set of cells

and E is a set of nets, where each e ∈ E is connected to a subset of V . A clustering is a set

of disjoint subsets of cells C1,C2, ...,Ck ⊂ V such that V =C1∪C2∪ ...∪Ck. Consider the

literature of clustering metrics:

1. Given a cluster C, the net cut is defined as the size of the set T (C) = |{e ∈ E|C∩

e 6= /0&(V −C)∩ e 6= /0}|. Clustering metrics can add the cuts in different ways,

but fundamentally cut is dependent on cluster size. It is more suited for top-down

partitioning or placement, where the sizes of the regions are bounded.
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2. Absorption [4] is a metric that counts the number of internal connections, and this

will grow with clsuter size. It is ill-suited for comparing two clusters as possible

GTLs since the larger cluster will invariably have larger absorption.

3. The Ratio Cut and Scaled Cost metrics [5] both treat the cost of a cluster as
T (C)
|C| .

Since T (C) grows much slower than cluster size, a larger cluster will almost always

have smaller cost, which makes this a poor way to compare clusters of different sizes.

4. Ng et al. [6] proposed using the Rent exponent for a cluster as a way of measuring

its quality, which means the cost of a cluster C is proportional to
lnT (C)
ln |C| . While this

is better than ratio cut, it still monotonically decreases with size asC grows.

5. Hagen et al. [7] introduced the concept of DS(Degree Separation) metric. Degree is

average number of nets incident on each node in the cluster and Separation is average

length of shortest path between any two nodes. They make use of random walk to

capture globally good circuit clustering. However, the metric fails to look at the

external connection of cluster. Moreover, the authors used the average value of this

metric to reflect the overall quality of clustering, not for a single cluster.

6. (K,L)-connectivity. In a graph, two nodes are (K,L)-connected if there are K edge-

disjoint paths of length no greater than L connecting them. A (K,L)-connected cluster

is a subgraph such that every pair of nodes inside are (K,L)-connected. In general, a

cluster is highly-connected if it is (K,L)-connected for a large K and a small L. Gar-

bers, et al., proposed a heuristic [8] to find (K,2)-connected clusters. This approach

has two problems when it is applied to find highly-connected logic structures. First,

a (K,L)-connected cluster may have large cut size [4]. Second, (K,L)-connectivity is

very difficult to estimate and consequently (K,L)-connectivity based algorithms tend

to be very slow.
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7. Edge separability [9]. For an edge between node vi and v j, its separability is the

min-cut between them. This metric tries to describe a more global view of connec-

tions. Like (K,L)-connectivity, the evaluation of edge separability is time consuming.

Moreover, edge separability only emphasizes internal connections of a cluster while

neglecting external connections.

8. Adhesion [10]. Adhesion is defined as the sum of min-cuts of all pairs of nodes in a

cluster. This metric requires expensive computation cost and is hardly practical for

designs with millions of cells.

In summary, none of the clustering literature compares clusters of different sizes with-

out biasing towards either smaller or bigger clusters. Our metrics are the first to do so.
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CHAPTER III

OUR APPROACH

3.1. Metrics for Tangled Logic Structures

Our metrics are motivated by the need to (i) compare clusters of different sizes and (ii)

measure the tangledness of the group of cells. We start with the ratio cut RC and Rent

metric Rent for each clusterC, as discussed previously:

RC(C) =
T (C)

|C|
Rent(C) ∝

lnT (C)

ln |C|
.

The problem with both metrics is that the numerator (related to cut) and the denomina-

tor (related to cluster size) do not scale together. However, from Rent’s rule, we know that

T (C) should grow proportionally to |C|p, where p is the Rent exponent. Thus, we define

the GTL-Score as:

GTL-S(C) =
T (C)

|C|p

In general, one would expect this metric to be constant for an average quality structure. We

do not care about tiny clusters with a handful of cells, nor partitions that consume a huge

chunk of the circuit.

Let A(G) be the total number of pins in graph G divided by |V |, i.e., A(G) is the

average pin count of the cell. According to Rent’s rule, then A(G) is the expected value of

GTL-S(C). Algorithmically, we want to have a rule of thumb about values of our metrics

that identifies a good GTL, and this should be comparable across different netlists. Thus,

we further refine our metric to the normalized GTL-Score:

nGTL-S(C) =
T (C)

AG · |C|p

This will cancel out the differences between circuits with many high fanin versus low fanin
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gates. With this scaling, the score of an “average quality group” should be one. However,

for a GTL, we would expect the value to be significantly smaller.

To illustrate how the metric behaves in practice, consider a cell agglomeration proce-

dure, which picks a random seed cell and then grows the group by iteratively adding highly

connected neighbors. We illustrate the procedure through a generated random graph with

250000 cells, in which 40000 cells were made more highly connected internally and less

connected externally than the rest of the graph, i.e., the graph had exactly one GTL of size

40000 cells.

Fig. 2. Example of nGTL-Score.

Figure 2 shows the nGTL-Score as a function of group size for two cell agglomera-

tions. The first was in a set of cells outside the GTL. For this curve, the group starts at

a value of 0.3 near group size 0 and then quickly rises and is asymptotically approaching

0.9. However, for the second group inside the GTL, the score rises all the way past 1.5
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before dropping precipitously, reaching a local minimum of about 0.1 once the entire GTL

was discovered. Adding more cells to the GTL that do not belong causes the score to rise

further. The intuition behind this is that, as soon as we include all cells of a GTL in the

group T (C) is much smaller that |C|p. And, once we start adding cells from outside the

T (C) rises to asymptotically follow |C|p as proposed by Rent’s rule.

So far, we have addressed the issue of comparing groups of different sizes, but the met-

ric does not consider internal connectivity other than what is implied through rent exponent.

For a logic structure to be tangled, it should have significantly more internal connectivity

versus external connectivity. Often in a design, MUX functions or logic look-up tables are

synthesized to a group of complex cells, such as NAND4, OAI, and AOI gates since they

generally give the most function per unit area. These gates generally have more pins (four

or five) than most of the typical cells, such as AND2/OR2 gates (with three pins). All the

connections required for these gates tend to tangle the logic and make the design harder to

route. We need to capture the notion of pin-density without disturbing the essence of the

normalized GTL metric. We propose to do so as follows:

GTL-SD(C) =
T (C)

AG · |C|p·AC/AG

where AC is the ratio of the number of pins contained in C divided by |C|, i.e., it is the

average pin count of cells in the group. The ratio AC/AG is close to one when the number

of pins inside C is typical relative to the rest of netlist. However, if C contains several

complex gates, then this ratio will be higher than one and will reflect stronger likelihood

of it being a GTL. Mutliplying this value by the Rent exponent biases the cost function to

prefer groups of cells with higher pin count and consequently, more tangled logic. This

will also provide a check for large cell groups and will identify them as GTL only if they

have high density.

Figure 3 shows the same curves as in Figure 2 but with our final GTL-SD score.
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Fig. 3. Example of density-aware GTL-Score.

Comparing the two figures shows that both metrics can reveal the known GTL with 40000

cells. However, the contrast of the local minimum of the GTL-SD score is more dramatic

than the original metric.

3.2. A Method to Find Groups of Tangled-Logic

Based on our new metrics, we propose a straightforward algorithm (tangled-logic finder)

to identify GTLs. This method consists of three phases:

• Phase I: linear ordering generation.

• Phase II: initial candidate GTL generation.

• Phase III: GTL refinement and pruning.
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Please note that Phase II and Phase III can be integrated with other linear ordering genera-

tion methods [11] as well.

3.2.1. Phase I: Linear Ordering Generation

The linear order generation initializes the group with a seed cell, which is randomly gen-

erated. Then, it iteratively adds one cell at a time to the group. The candidates for the cell

addition are the cells outside of the group, but with direct edge connections with the group.

Among these candidates, we choose the one with the strongest connection with the group.

We use a weighted number of nets to indicate the degree of connection. If a candidate cell

vi has a net e connected to the group and this net has λ(e) pins outside of the group, its

weight is 1
λ(e)+1

. Hence, a net has higher weight if it has greater portion of its pins inside

the group. The connection between vi and the group is defined by ∑e|vi∈e,e∩C 6= /0
1

λ(e)+1
. We

use min-cut as a secondary criterion for breaking ties.

In this context, we are simply trying to build groups of connected cells to generate a

potential linear ordering. Since the cells are being added iteratively, the cost function is

trying to maximize the connectivity.

When selecting among the candidate cells, emphasizing the connection

∑e|vi∈e,e∩C 6= /0
1

λ(e)+1
instead of min-cut alone is particularly important at the beginning of

cell agglomeration. If a candidate cell is outside the GTL, it usually has weak connections

with its neighbors. If we use min-cut as the primary criterion, it is quite likely that this cell

is included into the growing group. Likewise, if a candidate cell is inside the GTL, it usually

has strong connections with its neighbors and the min-cut criterion may easily exclude this

cell. The order in which the cells are added determines the linear ordering. The preference

of connection over net-cut leads to building denser groups with low external connectivity.

Thereby, leading to addition of cells belonging to true GTL first to the growing group.
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3.2.2. Phase II: Initial Candidate GTL Generation

A cell group can be extracted from a linear ordering according to the metrics described in

Section 3.1. A groupC of size k = |C| is composed by the first k cells in the linear ordering.

Then, the function nGTL-S(C) or GTL-SD(C) with respect to k is obtained like in Figure 2

and Figure 3. If there is a clear minimum in this function, the corresponding cell group is

selected as a candidate GTL ”B”. When computing the nGTL-Score, we need to decide

the value of Rent exponent p. This is obtained by averaging the Rent exponents for all

groups obtained in the linear ordering. The Rent exponent of a group C can be estimated

by
lnT (C)−lnAC

ln |C| where AC is the average number of pins per cell inC.

The procedure described so far is to identify a single GTL in the netlist. If the ini-

tial seed is outside of any existing GTLs, this procedure may fail like the flat curves in

Figure 2 and Figure 3. To solve this problem, multiple searches starting with different

seeds can be performed to generate a population of linear ordering and candidate GTLs

B = {B1,B2, ...,Bm} for m parallel runs. If the number of searches is large enough, most of

the GTLs can be captured.

3.2.3. Phase III: GTL Refinement and Pruning

A candidate GTL grown from a random seed might be slightly inaccurate. For instance,

if the seed is at the boundary of an actual GTL, some cells outside that GTL might be

included. In order to solve this problem, we enrich each initial candidate by additional

candidate solutions. For each candidate Bi obtained in Phase II, we generate another set

of candidates Bi,1,Bi,2, ...,Bi,l using seeds inside Bi and the same procedure as Phase I and

II. These additional candidates are usually close to but slightly different from Bi. Then,

union and intersection operations are performed on {Bi,Bi,1,Bi,2, ...,Bi,l} like in genetic

algorithm. Finally, the candidate B̂i with the best score of the proposed metrics is selected
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as the refined candidate corresponding to the initial candidate of Bi. This procedure is car-

ried out for all initial candidates in B to obtain a set of refined candidates {B̂1, B̂2, ..., B̂m}.

These refined candidates are compared with each other. If one has overlap with another

and inferior GTL-Score, it is pruned out. The disjoint candidates remained at the end is the

final set of GTLs discovered by our method.

The point to be noted here is that all the three phases mentioned above are computed

for all m initial seeds in parallel with no interdependence. The only serial part of algorithm

is the final comparison between m refined GTLs generated through parallel execution.
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CHAPTER IV

ALGORITHM

4.1. Algorithm Analysis

Below we present a comprehensive view of algorithm used and also complexity associated

with it.

4.1.1. Algorithm

Procedure: TangledLogicFinder(G,m,Z)

Input: A netlist G = (V,E)

Number of seeds m

Maximum linear order length Z < |V |

Output: A set of GTLs L

Phase I: linear ordering generation

I.1 Randomly generate seeds s1,s2, ...,sm ∈V

I.2 For i = 1 to m

I.3 Si← si, index = 1

I.4 ω(s) = index

I.5 While |Si| ≤ Z

I.6 For all cells neighboring to Si

I.7 Find v j with max ∑e∈E j
1/(|e|− |e∩Si|+1)

Break tie by favoring min cut

//E j is subset of T (Si) and incident to v j

I.8 index++
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I.9 Si← Si∪{v j}

I.10 ω(v j) = index

I.11 Ωi = {ω(v j),∀v j ∈ Si}

Phase II: initial candidate GTL generation

II.1 For i = 1 to m

II.2 Sort cells in Si in ascending order of ω

II.3 Ci,k← first k cells in Si,k = 1,2, ..,Z

II.4 Bi←Ci,k, s.t. Φ(Ci,k) is minimized

Phase III: GTL refinement and pruning

III.1 For i = 1 to m

III.2 Choose 3 random cells from Bi

III.3 Generate {Bi1,Bi2,Bi3} repeating Phase I and

Phase II for each of the 3 cells

III.4 F ←{Bi,Bi1,Bi2,Bi3}

III.5 T ←{Bi,Bi1,Bi2,Bi3}

III.6 For Zi ∈ T

III.7 For Z j ∈ {T −Zi}

III.8 F = F ∪{Zi∩Z j}

III.9 F = F ∪{Zi∪Z j}

III.10 F = F ∪{Zi−{Zi∩Z j}}

III.11 F = F ∪{Z j−{Zi∩Z j}}

III.12 T = {T −Zi}

III.13 B̂i← group with minimum Φ in F

III.14 C = C ∪ B̂i
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III.15 L = /0

III.16 Sort C in non-increasing order of Φ

III.17 For i = 1 to |C |−1

III.18 For j = i+1 to |C |

III.19 If Pi∩Pj 6= /0, break

III.20 If j > |C |

III.21 L = L ∪{Pi}

III.22 Return L

4.1.2. Complexity Analysis

Complexity analysis is provided for each Phase separately followed by combined analysis

of full implementation.

Finding node v j in Step I.7 of Phase I takes logarithmic time and is due to removal

of v j from maintained C++ map structure. Taking while loop of I.5 into account this leads

to O(Zln|V |) complexity. After finding v j we have to update the value associated with

the neighbors of v j since only their’s net cut and net weight will be affected. In this we

ignore nets of v j with (|e|− |e∩Si|)≥ 20 as connection weight value associated with cells

of these nets is not affected significantly. Let K be a factor to emphasize the fact that we

are scanning only a small portion of netlist. Taking the whole loop of I.5 into account

computations upper limit will be (ZK|E|ln|V |). Hence total complexity for Phase I is

O(|E|ln|V |) and the constant factor associated is also not large.

Phase II consists of finding the GTL from linear ordering of Phase I. This involves

finding the minimum and can be achieved in O(Z).

In Phase III (from III.1 to III.3) we first find 3 more groups using seeds inside the

GTL found at the end of Phase II. This process involves repeating Phase I and II and hence



17

total complexity for this part is O(|E|ln|V |+ Z). After this step we perform Union and

Intersection between 4 groups so obtained (from II.4 to III.13), each of size Z, having

complexity of O(Z).

Here the point to be noted is that all the above procedure can be done in parallel for

each initial seed and hence present total complexity of O(|E|ln|V |+Z) only.

In final pruning stage of Phase III unique GTLs are found among m B̂ GTL leading to

a complexity of O(m2).
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CHAPTER V

EXPERIMENTS

5.1. Experimental Results

The proposed metrics and methods are tested on various testcases: random graphs, ISPD

placement benchmarks [12] and a realistic industrial circuit. The experiments are per-

formed on a Linux server with 8 Intel Xeon processors of 3.2GHz frequency and 8G mem-

ory. The algorithm is implemented in C/C++ and parallelized using pthread in 8 parallel

threads. In the experiments, the size of each linear ordering is at most 100K cells.

5.1.1. Experiments on Random Graphs

Table 1. Experimental results on random graphs.
Graph Information Tangled-Logic Finder Solutions

Case |V | Synthesized GTLs #seeds # GTL found GTL sizes nGTL-S GTL-SD Miss Over

1 10K 500×1 100 1 501 0.1 0.085 0% 0.2%

2 100K 2K×1+15K×1 100 2 2010 0.025 0.022 0% 0.5%

15003 0.017 0.0156 0.03% 0.05%

3 100K 5K×1 100 1 5008 0.023 0.043 0% 0.16%

4 800K 40K×6 100 6 40040 0.0095 0.001 0% 0.1%

40092 0.0121 0.0209 0.04% 0.27%

40053 0.0124 0.0214 0.14% 0.28%

40044 0.0143 0.0015 0% 0.11%

40044 0.0143 0.0015 0% 0.11%

40006 0.0191 0.0021 0% 0.02%

The random graphs are generated based on [8] and its tangled logic structures are

known a priori. The experimental results on the random graphs are shown in Table 1 and

are generated using 100 seeds for each of the run. The second column lists the number

of nodes in each graph. The third column describes the synthesized GTLs in the graphs.

For example, case 2 has two GTLs: one with 2000 nodes and the other with 15000 nodes.

From the fifth column, one can see that our method can find all of the GTLs. In column 6,

7 and 8, the GTL sizes and the values of nGTL-Score (nGTL-S) and density-aware GTL-

Score (GTL-SD) are reported. Column 9 tells the percentage of nodes which are in the
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known GTL but are missed by our method. Our method has zero missing nodes for 7 of

the 10 GTLs. The maximum missing percentage is only 0.14%. Column 10 indicates the

percentage of nodes which are not in the GTL but are included by our solution. This rate

is also very low and no more than 0.5%. Since our method is to roughly point out the

GTLs which need special treatment, missing a few cells or including a few more cells has

negligible effect.

5.1.2. Experiments on ISPD Benchmarks

Since for ISPD placement benchmarks we have no knowledge about the existing GTLs in

advance, we verify our metrics and method by correlating the solution generated with cell

placement results. A placer normally places highly-connected cells close to each other,

therefore the cells in a GTL found by our method are expected to be crowded in a small

local region. Visualizations of cell placement and our tangled-logic finder solutions is

illustrated in Figure 4. The clots with colors different from the majority of cells are the

GTLs found by our method. Different color indicates different GTL.

We further compared our metrics with ratio cut [5]. The curves of these metrics versus

groups extracted from a linear ordering are shown in Figure 5. The top two curves corre-

spond to the nGTL-Score and the density-aware GTL-Score. The bottom curve is from

ratio cut
T (C)
|C| . The ratio cut curve is much flatter and its global minimum is at its right

end. This demonstrates that ratio cut overly favors large group size. Both of the top two

curves have global minimum almost at the same place, i.e., they identify the same GTL.

The one having the lowest minimum is from the density-aware GTL-Score and the other

one is from the nGTL-Score. The curve of nGTL-Score confirms our expectation that the

value of nGTL-Score should be mostly around 1.

The experimental results on the ISPD benchmarks are summarized in Table 2. It

shows the circuit size |V |, number of seeds we used, number of GTLs founded and detailed
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Fig. 4. GTL found by our method in Bigblue1.

information from 3 GTLs of each case. The rightmost column lists the total runtime of our

3-phase method in minutes. One can see that the GTLs can be estimated in 2-3 hours for

a million nodes design by using both our method and our metrics. The current run-time

obtained is in this range because we are issuing only 8 parallel threads at one time. But in

industry, for practical application, we can afford to issue over 100 parallel runs in single

step which can reduce the runtime dramatically by a factor of close to 2-5. Moreover, the

quoted run-time still has a clear advantage on placement and routing that together takes

close to 1 day.

5.1.3. Experiments on an Industrial Circuit

The proposed metrics and methods are also tested on an industrial circuit. Figure 6 displays

the tangled-logic finder solutions in cell placement. This is an industrial commercial ASIC
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Fig. 5. Functions of nGTL-Score (nGTL-S), density-aware GTL-Score (GTL-SD) and ratio

cut
T (C)
|C| versus groups extracted from a linear ordering of cells from Bigblue1.
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Table 2. Experimental results on ISPD 05/06 placement benchmarks.
Case |V | #seeds # GTL found Top 3 GTLs GTL size Cut GTL-S GTL-SD Runtime(m)

Bigblue1 278164 100 72 Structure 1 6187 369 0.14 0.031 81

Structure 2 1548 307 0.32 0.083

Structure 3 3539 800 0.46 0.14

Bigblue2 557786 100 93 Structure 1 13888 397 0.107 0.045 104

Structure 2 9602 560 0.196 0.111

Structure 3 10776 1091 0.352 0.195

Bigblue3 1096812 100 112 Structure 1 695 81 0.204 0.225 159

Structure 2 297 76 0.354 0.202

Structure 3 13005 2289 0.686 0.454

Adaptec1 211447 100 78 Structure 1 2628 124 0.128 0.083 77

Structure 2 2616 136 0.141 0.093

Structure 3 375 36 0.142 0.212

Adaptec2 255023 100 54 Structure 1 751 52 0.132 0.315 114

Structure 2 3387 263 0.236 0.058

Structure 3 618 123 0.358 0.435

Adaptec3 451650 100 109 Structure 1 896 31 0.065 0.058 142

Structure 2 420 25 0.089 0.17

Structure 3 960 67 0.134 0.126

design of 65nm technology. From the designers, we know that the blobs (shown as conges-

tion hotspots in Figure 1) were originally ROM blocks, and were late dissolved to ordinary

logic circuits to meet the timing closure. Therefore, these GTLs should have dense logic

connections according to the designers. Figure 6 indicates that our method successfully

finds these logic structures.

In fact, the GTLs captured by our method in Figure 6 match almost exactly with the

routing hotspots in upper part of Figure 1, which is from the same design. The characteris-

tics of the solutions are summarized in Table 3. The first column lists the size of each GTL

according to the circuit designers. The second column includes the size of the GTL found

by our method.

Table 3. GTLs found on the industrial circuit.
Size of GTL in design Size of GTL found Cut GTL-Score

31880 31835 36 0.025

31914 31869 36 0.025

31754 31803 36 0.026

32002 32048 36 0.026

10932 10952 28 0.028

To show the usage of GTLs, all the cells inside the GTLs found through tangled-logic
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Fig. 6. GTL of the industrial circuit.

Fig. 7. Routing congestion after cell inflation using GTLs information.
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finder algorithm are inflated by four times, and placement was re-performed to spread these

cells. Figure 7 shows the routing pictures for this new netlist. Note that since cells are

inflated, so the new placement looks different than Figure 1 and Figure 6. It was observed

that compared to original placement, the number of nets passing through 100% routing

congested tiles are reduced from over 179K to 36K (5X reduction), and the number of

nets passing through 90% congested tiles are reduced from 217K to 113K (2X reduction).

The average congestion metric 1 is reduced from 136% to 91%. It is clear that better

congestion can be achieved if placement employs cell inflation with GTLs identified with

our technique.

1Measured by taking the worst 20% congested nets and averaging the congestion number of
all routing tiles these nets pass through:
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CHAPTER VI

CONCLUSIONS

This paper introduces a new problem of finding tangled logic structures from synthesized

netlists. These structures can help with floorplanning and routablility if special handling is

given to cells in these structures. Our new metrics are the first ones to enable the compar-

ison of clusters of different sizes and are normalized so that one can develop standards for

tangled logic across a variety of netlists. We demonstrate a possible algorithm for discov-

ering these structures and show how simply inflating the corresponding cells leads to much

better routability after placement.

Future work seeks to expand the metrics to handle more specialized structures driven

by select lines, and to figure out new ways to use groups of tangled logic to drive better

physical design solutions.
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