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ABSTRACT 

 

High Temperature, Buried Permanent Magnet, Brushless DC Motor. (August 2010) 

Zhengxin Zhang, B.S., Shanghai Jiao Tong University 

Chair of Advisory Committee: Dr. Alan B. Palazzolo 

 

A high temperature magnetic bearing system using high temperature permanent 

magnets from Electron Energy Corporation (EEC) is under development. The system 

consists of two radial bearings, one thrust bearing, two radial catcher bearings and one 

motor. The purpose of this research is to develop one of the critical components of the 

system, namely, the High Temperature Permanent Magnet motor.  

A novel High Temperature Permanent Magnet (HTPM) Brushless DC(BLDC) 

motor capable of operating at 1000°F (538°C) is designed. HTPMs developed at Electron 

Energy Corporation are buried into the rotor. The high temperature motor is designed to 

produce 5.1kw of power at a top running speed of 20000 rpm. The numerical values of 

the motor voltage, power and torque output are predicted from calculations of the 

nonlinear finite element model of the motor. The motor stator is wound, potted, cured and 

high potential tested at 1000°F.  

A servo amplifier from Advanced Motion Control is used to drive the high 

temperature motor. High temperature displacement sensors are set up for sensing the 

rotor position to form a closed loop motion control. However, the noise problem of the 

high temperature sensors causes a failure of this approach. An open loop approach is then 

developed and this approach succeeds in spinning the rotor with the capability of self-
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starting. 

The status of the full system assembling is introduced. Some other components of 

the system are briefly presented.  
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1. INTRODUCTION 

 

1.1 Overview 

 

The Electron Energy Corporation (EEC) along with the National Aeronautics and 

Space Administration (NASA) is conducting research on magnetic bearings. The purpose 

of this research is to design and develop a high temperature (1000ºF) Magnetic Bearing 

System using High Temperature Permanent Magnets (HTPM), developed by the EEC. 

This high temperature magnetic bearing system would be used in high performance, high 

speed and high temperature applications like space vehicles, jet engines and deep-sea 

equipments. The bearing system has a target design to carry a load equal to 500 lb-f 

(2225N). The entire system will consist of two Radial Bearings, one Thrust Bearing, one 

Permanent Magnet Brushless DC Motor and two Catcher Bearings.  

The high temperature motor is designed to work in a high temperature (1000°F), 

and also is expected to produce power in the range of five to ten horsepower (3.75 kw to 

7.5 kw) and reach the top running speed up to 20000 rpm. The motor can achieve self-

starting with a standard three-phase control. High potential test is performed to justify the 

high temperature capabilities. A test stand is built to verify the motor drive and self-

starting capability.  

This high temperature motor utilizes EEC high temperature T550 magnets and 

VCEL high temperature electric coils which are capable of operating at 1000°F (538 °C). 

 
_____________ 
This thesis follows the style of Journal of Vibration and Acoustics. 
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EEC has unique capabilities in developing High Temperature Permanent Magnets 

(HTPMs) for motor/generator/magnetic bearing/solenoid applications. The recently 

developed and patented high temperature magnets (U.S. Patent number: 06,451,132) have 

a straight-line extrinsic demagnetization curve up to 562ºC, which makes possible the 

design of high temperature magnetic bearing system using PMs. Integration of these 

magnets will provide higher efficiency and reliability for the magnetic suspensions as 

well as reduce the required electronics. The typical demagnetization curves of EEC T550 

high temperature magnets are shown in Fig. 1-1. As temperature grows the magnetic 

strength decreases. 

 

 
Fig. 1-1 Typical Demagnetization Curves of EEC High Temperature Magnets  

 

 



 
3 

 
 
 

1.2 Objectives 

 

 Build a high temperature, buried permanent magnetic, brushless DC motor  

 Build a commutation circuit for driving the motor utilizing the high temperature 

displacement sensor to run the motor at low speed and justify the self-starting 

capability. 

 Help build the universal magnetic bearing test rig  

 

1.3 What Is the Novelty? 

 

A novel feature of this brushless DC motor is that it is designed to operate in a high 

temperature 1000°F (550°C) hostile environment and it utilizes a rotor in which high 

temperature permanent magnets are buried. Based on the author’s review of the literature, 

this is the first permanent magnet high temperature motor.   

 

1.4 Significance  

 

Most motors and actuators are not designed to survive high temperature 

environments. The elevation of temperature is a major reason that causes motor failure. 

For common motors, problem of high ambient temperature is the insulation deterioration. 

Elevated temperatures may cause insulation to become brittle. Also, many bearing 

failures of the motors are a result of the motors exceeding their temperature limits.  

One may ask if there is a need for high temperature motors. The answer is there are 
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many applications that require a motor bearing system that works in an extreme 

temperature environment. A regular motor does not have such ability to survive high 

temperature, such as jet engines or deep sea drilling equipment. The high temperature 

motor is necessary in such applications. Here is a list of possible applications of extreme 

temperature motors.  

• pumps and valves for liquid metal cooling systems 

• material lifting from oil and geothermal wells 

• gimbals for expendable launch vehicle engines and components of spacecraft that 

operate near extremely hot sources such as the Sun.  

• gas turbine starters/generators for aircraft engines 

• robotic exploration vehicle systems that operate in and around terrestrial 

volcanoes and deep ocean hydrothermal vents 

 

1.5 Literature Review 

 

As a part of the high temperature magnetic bearing system, the high temperature 

motor plays an important role. By modifying an eight-pole radial magnetic bearing, 

NASA Glenn Research Center and Texas A&M University developed and tested a 

switched-reluctance electric motor, which was capable to run as high as 8000 rpm at 

temperatures up to 1000°F (540°C) [1]. The unique features of this motor were its 

electromagnet coils. Honeybee Robotics developed and demonstrated a first-generation 

prototype of an extreme temperature, high-pressure (~90 bar) motor for possible future 

use on the surface of Venus. A small switched-reluctance type motor, which operated 
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without permanent magnets, was built and successfully tested at temperatures up to 

460°C [2]. High temperature superconducting motors have a great advantage in weight, 

power density, and efficiency in comparison to conventional motors [3]. 

However, all of the high temperature motors mentioned above do not include any 

permanent magnets. Recently, buried permanent magnet (BPM) motors, often referred to 

as interior permanent magnet (IPM) motors, have become more commonplace. In 

addition, a reluctance torque is generated which increases the motor efficiency. There are 

several advantages, including an air gap length that may be small compared with those in 

the other types of motors and the buried structure design will effectively protect the 

magnets. Also, using the permanent magnets can reduce the power loss on the coils.  
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2. HIGH TEMPERATURE MOTOR DESIGN 

 

2.1 Mechanical Design 

 

The EEC motor is designed to produce power in the range of 5 to 10 horsepower 

(3.75 kw to 7.5 kw).  The top running speed is 20000 rpm.  It is designed to be self-

starting with a standard three-phase controller. Peak current and voltage drawn by the 

motor are 10 Amps and 240 Volts. The motor is also designed for a high power to weight 

ratio with high temperature operating conditions. The motor is a brushless DC motor with 

six poles on the stator and four poles on the rotor. 

 

 
Fig. 2-1 Solidworks Model of High Temperature Permanent Magnet Motor 

 

A Solidworks model of the rotor is shown in Fig. 2-1. The permanent magnets are 

buried in the rotor which can not be seen from outside and the coils are also covered with 

Laminates Stack 
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ceramic potting which protects the coils. The laminates stack of the stator is indicated in 

the figure. More details of the motor stator and rotor designs are illustrated in the 

following sections. 

 

2.1.1 Rotor Design 

 

The rotor of the motor has T550 Magnets imbedded below the surface. The design 

of buried magnets minimizes the damages of the magnets caused by the initial levitation 

of the rotor and hard magnetic bearing landing. When the rotor reaches a high rpm, the 

embedded magnets are protected from the rotating stresses by the high strength rotor that 

encases them.  

 

 
Fig. 2-2 Exploded View of Rotor 

 

Fig. 2-2 gives a close look of how the magnets are buried. There are four T550 

magnets in the rotor which are magnetically oriented so that the flux flows 

HT Permanent Magnet 

Hiperco-50 
pole 

Inconel-718 

(Non-magnetic) 
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circumferentially through them. The north-south orientation of the embedded magnets 

alternates around the rotor. In other words, each magnet is oriented to repel the two 

magnets adjacent to it. As stated before, there are four poles on the rotor, two north poles 

and two south poles. To generate these four poles, the rotor is made of two materials, 

Hiperco-50 (cobalt-iron-vanadium alloy), which has high permeability and Inconel-718, 

which limits the magnet flux. In between the magnets, one may see the segments which 

are laminates stack of Hiperco-50. This arrangement generates four poles symmetrically 

distributed on the surface of the rotor (Fig. 2-3). Fig. 2-4 shows a picture of the rotor 

before assemble with the stator. 

 

 
Fig. 2-3 Arrangement of the Magnets 
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Fig. 2-4 The Rotor 

 

2.1.2 Stator Design 

 

The stator is a laminates stack of Hiperco-50 which is a high permeability cobalt-

iron-vanadium alloy. There are no permanent magnets in the stator while each of the six 

poles has a coil wound. It is connected in such a way that coils on stator poles, separated 

by 180°, are wired together in series. Thus, the six poles are divided into three electric 

coil pairs which are considered the three phases of the motor, each of which carries one 

phase of alternating electric current.  

The coils are wound by hand in the lab using high temperature wires. Unlike 

regular motors, the coils are not directly exposed to the air, otherwise the fiber coating on 

the high temperature wires will detach at 1000 °F, which leads to a coil break down at 

high voltage. The VCEL at Texas A&M University developed unique bobbin and potting 

techniques that can prevent such problems.  
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The laminated stator and the coil winding are shown in Fig. 2-5 and Fig. 2-6, 

respectively. In Fig. 2-6, before winding the coil, the high temperature potting material is 

used to cover all of the poles, insulating the wires and the stator. This procedure is the 

special bobbin technique for high temperature coil.  

 

 
Fig. 2-5 Laminated Stator and Poles 

 

 
Fig. 2-6 Coil Winding 

 

Once the coils are wound, the molding process is conducted to form the potting 
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cement on the stator (Fig. 2-7). A mixture of high temperature ceramic powder and water 

is used. Grooves are made to release the stress from thermal expansion. The stator is then 

placed into an oven for curing, during which most of the moisture will vaporize and the 

potting will be hardened. Fig. 2-8 shows the stator after curing at 300°F for 3 hours. 

 

 
Fig. 2-7 Motor Stator Potting 

 

 
Fig. 2-8 Motor Stator after Curing 
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2.1.3 Dimensions of the Motor 

 

Table 2-1 lists the dimensions of the designed motor and Fig. 2-9 shows the 

corresponding sketch of the dimensions. 

 

Table 2-1 Motor Dimensions 
Stator Laminate OD(R7) 4.02 inch 
Stator Laminate ID(R5) 3.70inch 
Stator Length 2.50 inch 
Rotor ID(R1) 1.50 inch 
Rotor OD(R4) 3.66 inch 
Air Gap Flux 0.45 Tesla 
Air Gap 0.02 inch 
Permanent Magnet ID(R2) 1.70 inch 
Permanent Magnet OD(R3) 3.46 inch 
Permanent Magnet Thickness 1.00 inch 
Winding Style Y 
Number Turns/Coil 36 

 
 

 

R4 

R1 

R3 

R2 

R5 

R6 

R7 

 
Fig. 2-9 Motor Dimension Sketch 
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2.2 Motor Magnetic Flux Path 

 

According to the design of the rotor and the stator, the flux lines are simulated. The 

flux lines in the motor generated by the permanent magnets are shown in Fig. 2-10. Flux 

lines exit the rotor at the top and bottom and return to the rotor through the sides. This is 

also simulated with nonlinear FEA at 1000 °F (Fig. 2-11) [4]. 

The magnetic field generated by electric coil pairs effectively rotates around the 

rotor because of the synchronized three-phase currents, and the field attracts the magnetic 

poles on the rotor. The rotor speed is synchronized with the alternating current frequency. 

Timing the current phases with respect to the rotor angular position is an important issue 

for driving the motor, because it allows the stator to continuously generate torques in the 

same direction. Normally, this timing is accomplished by rotor position sensors, but, for a 

high temperature motor, the regular rotor position sensor such as encoder and Hall Effect 

sensors will fail at such a severe environment. Thus, another approach must be found and 

is discussed in detail in later sections. 
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Fig. 2-10 Designed Magnetic Flux Path 

 
 

 
Fig. 2-11 Magnetic Flux Predicted by Nonlinear  

FEA Simulation at 1000°F (540 °C) [4] 
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2.3 Motor Circuit Model 

 

Predictions of the motor performance are accomplished with a closed loop electric 

circuit incorporating the motor. The circuit is broken down into three sub-circuits which 

are the equivalent generator as motor rotating, the coil pair inductor and the coil pair 

resistor (Fig. 2-12). These three circuits dissipate energy and the voltage will be dropped. 

The electronic drive serves as the source.  

 

 
Fig. 2-12 Motor Circuit Model 

 

The three sub-circuits are evaluated to determine their contributions on the 

voltage drop. 

 

• Motor generated voltage   

 

As the rotor turns, the amount of magnetic flux passing through the stator poles 

varies. The voltage induced by the changing of flux is the motor generated voltage which 
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must be compensated by the source. Measurement of this flux amount with the FEA 

model is made with the rotor at three different angles. A sinusoidal magnetic flux 

waveform through the pole is predicted as shown in Fig. 2-13. A sinusoidal variation of 

the flux is indicated by three separate angle calculations of the flux through the pole. 

 

 
Fig. 2-13 Three Angle Calculation 

 

The voltage induced in the coil around the pole by variation in flux is calculated 

from Equation (1) according to Equation (2). 

 m
dV N
dt
Φ

=  (1) 

 cos( )e e
d t
dt

ω ωΦ
= Φ  (2) 

where 

Φ :Peak flux determined by FEA model  

eω : Rotating speed in rad 

Flux Thru Pole as Magnets Turn

-0.0006
-0.0004
-0.0002

0
0.0002
0.0004
0.0006

0 100 200 300 400

Angle (degrees)

Fl
ux

 (W
b)

theory
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 N : Number of turns of the coil pair 

mV : Voltage drop due to the rotation of the motor 

 

• Voltage drop across coil inductance 

 

The inductance of the coil is another reason of the voltage drop. In this section, 

the voltage drop across coil inductance due to the current from the motor controller is 

discussed. The motor controller sends a controller AC current to turn the rotor. This 

current must go against the voltage produced by the rotating magnets predicted in 

Equation(1). This current also sees a voltage drop due to its own AC nature as it passes 

through the rotor coils which have their own inductance due to the flux they produce as 

the drive current passes through them. The inductance of the coils seen by this current 

can also be calculated accurately from flux predictions of the FEA model. Fig. 2-14 

shows the flux density passing through the coil and around the motor due to the current in 

the coil.  

 

 
Fig. 2-14 FEA Simulation for Flux Density due to Coil Current 
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The corresponding coil inductance is calculated from Equation (3).   

 c
c

NL
I
Φ

=  (3) 

Where,  

cΦ :The flux passing through the coil due to the current 

 I : The current in the coil.  

Since cΦ  is calculated accurately from the nonlinear FEA model, the value of the 

coil inductance is also determined accurately. One complication is that this inductance 

drops to practically zero with some rotor positions when the magnets block flux from the 

coil current. Thus, to get a conservative calculation of the voltage capability of the motor 

controller, the maximum value of the inductance is used in Equation (4). This equation 

gives the voltage drop seen by the controller current as it passes through the motor coil 

inductance. 

 ( )cosc c e eV L I tω ω=  (4) 

 

• Motor coil resistance 

 

The current produced by the motor controller also experiences a voltage drop 

across the coil resistance. At 20000 rpm, the voltage drop across the coil inductance is 

more than 10 times higher than that across the coil resistance. 
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2.3.1 Motor Controller Voltage 

 

In particular for this high temperature motor, the peak motor voltage produced 

according to Equation (1) is 170 V, the inductance voltage according to Equation (3) is 65 

V, and the resistance voltage is 2.2 V. The two coils on opposing poles which are 

connected as pairs in series are considered. 

The motor controller must be able to produce a steady controlled AC current by 

producing an AC voltage that exceeds the combined voltage drop across the coil 

resistance, inductance, and voltage produced by the rotor motion. For the high 

temperature motor presented here, this combined voltage must account for coils on poles, 

separated by 180°, being wired in series. This total combined voltage is predicted to be 

approximately 240 V when the peak current is 10 A.  

 

2.3.2 Motor Produced Power 

 

The power produced by the motor is the generator voltage calculated in Equation 

(1) times the current in the circuit which is produced by the drive. For the motor to be 

operating near peak efficiency, the voltage and current waveforms are timed to occur at 

the same moment. Since there are three phases, the peak motor power output can be 

calculated by  

 3m mP I V= × ×  (5) 

By plugging in the numeric values, the power is calculated.  
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10 A 170 V 3 phases  5.1 kw or 6.9 horsepower× × =  

 

2.3.3 Motor Produced Torque 

 

The motor torque may be calculated by dividing the power by the rotor spin speed,   

 m
m

PT
ω

=  (6) 

Since the voltage mV  goes up proportionally to the rpm according to Equations (1) 

and (2), the power goes up the same way according to Equation (5). Then, dividing the 

power by the spin speed to get the torque indicates that the torque is not dependent on the 

spin speed. Torque in the high temperature brushless DC motor depends on the current as 

stated above. 

A static torque measurement is conducted on the assembled motor rig in Section 4. 

 

2.4 Motor Assembly 

 

The stator and the rotor are assembled for further testing. It is supported on two 

journal bearings and the stator is fixed on a plate.  
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Fig. 2-15 Motor Assembly  
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3. MOTOR DRIVE 

 

3.1 Motor Operation 

 

Based on the mechanical design, the motor has a six-pole three-phase stator and a 

four-pole rotor. The coils on stator poles, separated by 180°, are wired together in series 

shown in Fig. 3-1. Three phases are wired in a star(Y) connection so that the six poles are 

divided into three phases. During the conduction period of the motor operation, the DC 

voltage is switched between phase terminals, and the commutation sequence is AB, AC, 

BC, BA, CA, CB, which are shown in Fig. 3-2. This operation is called full-wave 

operation. In each state, two phases are conducted, leaving the third phase floating. As the 

switching continues, the magnetic field generated by the coil effectively rotates around 

the rotor, attracting the magnetic poles on the rotor to spin synchronously.  
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Fig. 3-1 Coil Pair Connoted in Series 
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Fig. 3-2 Commutation Sequence 

 

To achieve full-wave operation, a bridge type switching circuit (also known as 

three-phase IGBT drive) is utilized. S1 to S6 can be switched on and off. Each of the 
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power devices has a diode to guarantee current continuity. There are six states during the 

motor operation depending on the switching sequences. The switching process is done by 

the following six steps. Fig. 3-3 shows the first two steps and the current flowing paths 

are highlighted. 

STEP1: At Electrical Angle (0° – 60°). S1, S5 are conducted.  

    Current direction: ＋→S1→A→B→S5→－ 

STEP2: At Electrical Angle (60° – 120°). S1, S6 are conducted.  

    Current direction: ＋→S1→A→C→S6→－ 

STEP3: At Electrical Angle (120° – 180°). S2, S6 are conducted. 

    Current direction: ＋→S2→B→C→S6→－ 

STEP4: At Electrical Angle (180° – 240°). S2, S4 are conducted. 

    Current direction: ＋→S2→B→A→S4→－ 

STEP5: At Electrical Angle (240° – 300°). S3, S4 are conducted. 

    Current direction: ＋→S3→C→A→S4→－ 

STEP6: At Electrical Angle (300° – 360°). S3, S5 are conducted. 

    Current direction: ＋→S3→C→B→S5→－ 

STEP7: Repeat STEP1. 



 
25 

 
 
 

 

+

-

S1 S2

S6S5S4

S3

B C

A

IGBT Drive Motor

 

(a)STEP1 

 

+

-

S1 S2

S6S5S4

S3

B C

A

IGBT Drive Motor

 

(b)STEP2 
Fig. 3-3 Switching Circuit 

 

A switching logic circuit is normally used to control the IGBT drive. In addition, a 

pulse width modulation (PWM) is considered to be the most efficient and cost-effective 

approach. Most servo amplifiers and microcontrollers that are commercially available for 

motion control contain a PWM module. Empirically, it is required that the PWM 
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frequency is more than 10 times larger than the maximum operating frequency of the 

motor. By changing the duty cycle of the PWM signal, the speed of the motor can be 

changed.  

 

3.2 Motor Commutation 

 

The advantage of a brushless DC motor is that it replaces the mechanical 

commutation mechanism(commutator) with electrical commutation feedback. The 

commutation feedback contains the rotor magnets positions. Depending on the positions 

of the rotor, different coils are conducted to generate magnetic field that applies torque on 

the rotor. There are several ways for rotor position sensing. Hall Effect sensors, encoders 

and resolvers are usually used. For the high temperature motor, Hall commutation is 

chosen.  

 

3.2.1 Principals of Hall Commutation 

 

The Hall Effect sensor is a magnetic field sensor. The working principal of the Hall 

Effect sensor is due to the nature of a constant current in a conductor. The placement of 

the conductor in a stationary magnetic field creates Lorentz force that applies on moving 

charges and generates a voltage difference. This voltage is amplified by a differential 

amplifier so that it will give a high or low voltage output based on the flux direction. 

Thus, the Hall Effect sensor may be used as a magnetic field detector. A sketch of the 

Hall Effect sensor is shown in Fig. 3-4. The commercial available Hall Effect sensor is 
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normally fabricated into an integrated chip, combining Hall elements and differential 

amplifiers. (Fig. 3-5) 

 

 
Fig. 3-4 Hall Effect Sensor Principals 

 

 
Fig. 3-5 Hall Effect Sensor Integrated Chip 
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Fig. 3-6 Hall Placement for a Two Pole Motor 

 

To illustrate the position sensing, a most simple rotor mode is used. This rotor only 

has two poles, a north pole and a south pole, and each of the poles takes up 180°. (Fig. 

3-6) HA, HB and HC represent the positions of the Hall Effect sensors. The Hall Effect 

sensors are typically built inside the stator and do not rotate with the rotor. The Hall 

Effect sensor has either high or low output and the motor has six states when operating, 

so at least three Hall Effect sensors need to be implemented for distinguishing six 

different states. There are two ways to place the Hall Effect sensors. One is a 120° phase 

and the other is 60° phase. The motor designed is intended to use the first method.  



 
29 

 
 
 

low

high

low

high

low

high

low

high

0 360240120

electrical 
degrees

HA

-HC

HC

HB

60 degree
phased

120 degree
phased

 
Fig. 3-7 Hall Outputs 

 

When the rotor spins, the three Hall Effect sensors will generate three square waves 

that have a 120° difference in phase with each other in an electrical cycle (Fig. 3-7). In 

this simple case the number of electrical cycles will be exactly the same as mechanical 

cycles. For a rotor with more than two poles there is a relationship between Hall Effect 

sensor cycle (electrical cycle), Hall Effect sensor Frequency, mechanical cycle(motor 

spin revolution), motor speed and poles.  

Hall Effect sensor cycle poles
2Mechcanical cycle

=  

Hall Effect sensor frequency[Hz]*60Motor Speed[RPM]=
poles 2  

Table 3-1 shows the corresponded 120° phased Hall Effect sensor output and the 

input to the motor stator coils.  As discussed in the previous section, the motor will be 

working in full-wave operation mode that for each state of the motor, a current is fed 

through two phases, leaving the third phase floating. The Hall Effect sensor states are 
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constrained in the first six states shown in the table and the bottom two states are invalid. 

If the Hall states jumped into these two states, there will be no input to the motor. This 

may happen under some conditions such as a Hall Effect sensor malfunction, noise 

problem, sensors position miscalculation, etc. It may cause motor to shut down since the 

motor has no input. Each of the first six states corresponds to a unique motor input. Based 

on the Hall Effect sensor outputs, the drive decides which switch to turn on, hence the 

specific phases will be fed with a current. As the Hall Effect sensor states repeat, the 

switch sequence (STEP1 to STEP7, refer to page 23) repeats for every electrical cycle.  

 

Table 3-1 Hall States and Motor Input 

HALL 1 HALL 2 HALL 3 A B C
1 0 0 H X L
1 1 0 X H L
0 1 0 L H X
0 1 1 L X H
0 0 1 X L H
1 0 1 H L X
1 1 1 X X X
0 0 0 X X X

120° MOTOR

1- HIGH LEVEL HALL SENSOR INPUT
0- LOW LEVEL HALL SENSOR INPUT
H- HIGH OR SWITCHING MOTOR OUTPUT
L- LOW MOTOR OUTPUT
X- MOTOR OUTPUT IS OFF (FLOATING)  

 

In one electrical cycle, the Hall Effect sensor outputs, Back EMF, Motor Phase 

inputs have a relation shown in Fig. 3-8. The back EMF is dependent on the shaping of 

the motor and the magnetic poles on the rotor. A proper design can achieve a trapezoidal 
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wave or a sinusoidal wave. No matter which wave shape the back EMF is, the way in 

which the servo amplifiers drive the motor stays the same, except that a slight difference 

of the torque output on the rotor may occur. 

 

  
Fig. 3-8 Hall Outputs, Back EMF and Phase Current in One Electric Cycle 
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3.2.2 High Temperature Motor Hall Commutation 

 

The principle of Hall commutation discussed in the previous section can be applied 

to the brushless DC motor, including the high temperature brushless DC motor designed 

previously.  

The high temperature motor designed has four poles on the rotor and six poles on 

the stator. It is also intended to run at full-wave operation. According to the number of the 

magnetic poles on the rotor, there are two electrical cycles per mechanical revolution. 

Thus, the Hall states have two cycles in one mechanical cycle.  

This typical design of poles allows to determine the positions of the Hall Effect 

sensor intuitively. The positions of the Hall Effect sensors are equally spaced around the 

rotor with an angle of 120° (Fig. 3-9). However, for other designs which have a different 

number of poles (ie. twelve poles on stator and eight poles on rotor ), it requires 

calculation to position the Hall Effect sensor correctly. There may be multiple choices for 

the positions of the Hall Effect sensors, but the three Hall outputs must match the desired 

wave shapes (Fig. 3-7).  
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Fig. 3-9 Hall Effect Sensor Positions 

 

The north poles and south poles are symmetrically distributed on the rotor. The 

following six figures (Fig. 3-10 through Fig. 3-15) describe the rotor position and its 

corresponding Hall states. For each of the figures, on the left side is the Hall outputs. The 

figure on the right side is the rotor position where the motor enters the state highlighted 

on the left side figure. The rotor rotates counterclockwise. For every 30° of rotation the 

Hall state changes. Meanwhile, the figure not only shows the rotor position, but also 

indicates the magnetic field that generated by the stator. As the rotor turns, the magnetic 

field alternates to apply a torque to accelerate the rotor. 
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Fig. 3-10 State One 

 

        
Fig. 3-11 State Two 

 

         
Fig. 3-12 State Three 
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Fig. 3-13 State Four 

 

         
Fig. 3-14 State Five 

 

         
Fig. 3-15 State Six 
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3.2.3 Hall Effect Sensor Limitations in High Temperature Applications 

 

Although the Hall state feedback is widely used in the brushless DC motors for 

rotor position sensing, temperature limits exclude the Hall Effect sensors from some 

applications. For the high temperature motor application, the Hall Effect sensors may not 

work properly when temperature is high. When temperature reaches the limit, the Hall 

sensors fail to work and, consequently, the switching logic will not know the position of 

the rotor. The motor will either be unstable or stop rotating.  

Since the working principal of the Hall Effect sensor in a brushless DC motor is 

understood, an approach is developed to overcome the limitation which simulates the 

Hall states by using the high displacement sensor and the mechanical features of the rotor. 

The following section will discuss in detail how the Hall states are rebuilt using high 

temperature displacement sensors. 

 

3.2.4 Generating Hall States by Using Displacement Sensor 

 

The balancing holes are used to build the Hall states. On the rotor, there are two 

sets of equally spaced holes which are designed for balancing. In order to simulate the 

change of the Hall state, 12 cap screws are installed on one set of the balancing holes. For 

the other set of holes, two screws are put on at 180° interval, because there are two 

electric cycles per mechanical cycle.  

Two high temperature displacement sensors are mounted on the side of the rotor, 

and detect the passage of the two sets of screws. The sensor output is calibrated such that 
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when facing the cap of the screw, the output is 0~1Volt; when facing the surface of the 

rotor, the output is 6 Volt. Hence, as the rotor spinning, two sets of periodical wave are 

generated. One is from the sensor detecting the set of 12 screws which has the frequency 

of 12 times the spin frequency. This signal is identified as “Clock”. Meanwhile, the other 

sensor detecting the set of two screws generates a similar wave shape except that the 

frequency is one sixth lower. This signal is identified as “Reset”. Fig. 3-16 shows the 

described set up of the displacement sensor and the screws around the rotor.  

 

 
Fig. 3-16 Two Sets of Screws and High Temperature Displacement Sensors 

 

The output from the displacement sensor is fed through a Schmitz trigger inverter, 

so that the two periodic waves are filtered into two clear square waves.  The effect of the 

voltage unevenness due to the vibration of the motor is not observed from the filtered 

square waves. Since the position of the screws relates to the position of the magnetic 
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poles on the rotor, the information of rotor position is transmitted by these two square 

waves. The next take is to translate such implicit information into the known three Hall 

outputs(Fig. 3-17). Fig. 3-18 shows the screws on the motor spin rig.  
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Fig. 3-17 Translating into Hall Output 

 

 
Fig. 3-18 Clock Screws and Reset Screws 
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3.2.5 Digital Circuit Design 

 

A digital circuit is designed to accomplish the task of translation. As mentioned 

before, the positions of the screws are fixed with the positions of the magnetic poles. The 

displacement sensors identify the positions of the screws, hence a proper signal 

transformation identifies the position of the magnetic poles.  

The relationship between rotor positions and the Hall states implies that a state 

change must occur every 30° of rotation. There are 12 screws around the rotor at the 

“Clock” that equally spaced with 30°, which is the same interval as the state change. 

Hence, if the sensor detects one passage of the screw, the Hall state changes to the next 

one. For a motor to operate at full-wave mode, six states are required for an electrical 

cycle. In a mechanical revolution, 12 changes of the states imply two electrical cycles. 

Once the sensor detects the passage of the screw on “Reset”, one electrical cycle ends and 

another starts. 

A sequential digital circuit is required to manipulate this digital signal. To make this 

design simple, a 4-bit binary counter with several logic gates are utilized. The signal from 

the displacement sensor detecting the 12-screw side is connected to the CLK port of the 

counter and the signal from the other displacement sensor is wired to the RST (LD) port 

of the counter. This is the source of the “Clock” and “Reset” names. 

Here are the design details of the logic circuit. First, the State Table (Table 3-2) is 

formed. The last six states of the counter are used to form three intended Hall outputs 

(HA, HB, HC). A Karnaugh map (K-Map) approach is used to simplify the boolean 

algebra expressions (Table 3-3, Table 3-4, Table 3-5).  
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Table 3-2 State Table 
QD QC QB QA HA HB HC 
1 0 1 0 1 0 1 
1 0 1 1 1 0 0 
1 1 0 0 1 1 0 
1 1 0 1 0 1 0 
1 1 1 0 0 1 1 
1 1 1 1 0 0 1 

 
 
 

Table 3-3 K-Map for HA 

QB QA 0 1
0 0 X 1
0 1 X 0
1 1 1 0
1 0 1 0

QC

 

 
 

Table 3-4 K-Map For HB 

QB QA 0 1
0 0 X 0
0 1 X 0
1 1 0 1
1 0 1 1

QC

 

 
 

Table 3-5 K-Map for HC 

QB QA 0 1
0 0 X 1
0 1 X 1
1 1 0 0
1 0 0 1

QC

 

 

From the K-Map simplification, the final expressions for the three Hall outputs are 
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found,  

C ABHA Q Q Q= +  

B ACHB Q Q Q= +  

( )CABHC Q Q Q= +  

A scheme of the digital circuit is sketched in Fig. 3-19. 
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Fig. 3-19 Scheme of the Digital Circuit 

 

As each screw passes the displacement sensor, the counter adds up one, leading the 

Hall state to shift to the next one. After six “Clock” pulses, a “Reset” pulse resets the Hall 

state to the first one. The reset prevents error from accumulating. Otherwise, during the 

operation, there might be a miscount or overcount due to noise or some other reason. If a 

miscount occurs, the position information created by the digital circuit is 30° lag from the 

actual position of the rotor. Because of the existence of “Reset”, this lag will last for at 

most a half revolution. The digital circuit resets when a “Reset” pulse comes, the position 

lag will not be brought to the next half revolution. 
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3.2.6 Digital Circuit Implementation 

 

The CMOS logic chips from 74HC series is chosen to implement the logical circuit. 

Table 3-6 lists the integrated chips required for this logic circuit. They are inexpensive, 

yet have fast response. The digital circuit is implemented on a bread board (Fig. 3-20) 

and the designed function is fully tested.  

 

Table 3-6 List of IC for Logic Circuit 

Quantity Description  Serial Number 

1 IC QUAD 2-INPUT AND GATE 14-DIP SN74HC08N 
1 IC HEX INVERTER 14-DIP SN74HC04N 
1 IC QUAD 2-INPUT OR GATE 14-DIP SN74HC32N 
1 IC 4-BIT BINARY COUNTER 16-DIP SN74HC163N 

 
 
 

 
Fig. 3-20 Implementation of Digital Circuit 
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Fig. 3-21 Digital Commutation Circuit in Feedback Loop 

 

Fig. 3-21 shows the complete motor drive circuit. The highlighted area is the digital 

circuit for commutation. More details of the complete drive circuit are discussed in the 

next section. 

 

3.2.7 Verification of the Digital Circuit 

 

Initially, a function generator is used to simulate the “Clock” and the “Reset” 

signals that are received from the high temperature probes. A square wave, the “Clock”, 

is generated by the function generator and another square wave whose frequency is one 

sixth of the Clock's is inputted as the "Reset". The circuit is validated. In the left corner of 

Fig. 3-22, the screen shot of the oscilloscope shows the “Clock” and one of the simulated 
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Hall outputs. 

With the implementation of circuit verified as correct, the circuit is tested by using 

the motor spin test rig. An auxiliary motor is used to drive the rotor with a pulley and belt 

mechanism (Fig. 3-23). Meanwhile, the high temperature sensors are mounted to detect 

the passages of screws (Fig. 3-24). The rotor is spinning at approximately 2500 rpm. The 

result shows that the three Hall states are successfully generated by using the outputs 

from the high temperature displacement sensors (Fig. 3-25). 

 

 
Fig. 3-22 Test of  Digital Circuit Using Function Generator 
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Fig. 3-23 Motor Driven by Auxiliary Motor 

 

 
Fig. 3-24 High Temperature Displacement Sensor Detecting Screws 
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HA

HB

Fig. 3-25 Two of the Hall Outputs (HA, HB) 

 

3.3 Motor Drive 

 

There are several ways to drive the permanent magnet brushless DC motor. Most of 

these methods use rotor position feedback to control the motor. One exception is to use a 

sensorless approach which detects the back EMF in an unexcited phase to determine the 

commutation point.  

In this section, various ways of motion control for a brushless DC motor are 

introduced, and the method for driving the high temperature motor is selected. 

 

3.3.1 Methods of Motion Control 

 

• Servo Amplifiers 
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Servo amplifiers are used in motion control to achieve precise control of position 

and velocity. The amplifier translates low energy reference signals to high energy signals. 

It usually has the capability to use multiple types of position information from Hall Effect 

sensors, encoders and tachometers. The IGBT drive, PWM module, switching logic, 

filters are built together. AMC(Advanced Motion Control) has a wide variety of servo 

amplifiers available. Fig. 3-26 shows the block diagram of the servo amplifier approach. 

 

Servo Amplifier
(PWM, IGBT drive,motor 

commutation)

BLDC 
Motor

Hall Sensor
Rotor Position Information

Motor input
Speed Reference

 
Fig. 3-26 Scheme of Servo Amplifier for Motion Control 

 

• Microcontrollers 

 

Microcontrollers are used for low cost applications. A single chip can handle all of 

the signal processing, logic switching, PWM signal generating and motor commutation to 

perform simple speed control.  

• Digital Signal Processor (DSP) 

 

A DSP provides high speed, high resolution motor control. It allows to implement 
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control algorithms for a sophisticated motion control. It can handle a multivariable 

system, use neural networks and fuzzy logic, implement filters, perform a diagnostic 

monitor, etc. Sensorless approach relies on the high speed calculation of DSPs. The block 

diagram is shown in Fig. 3-27. 

 

DSP
(PWM,ADC)

BLDC 
Motor

Power Drive Device
(IGBT drive) 

To Motor Phase A,B,CPWM

Reference

1.Back EMF for sensorless motor
2.Position Feedback from Hall sensor/encoder

 
Fig. 3-27 Scheme of DSP for Motion Control 

 

3.3.2 Motion Control Plan of High Temperature Motor 

 

Depending on the resources and the requirements of the motor, a servo amplifier is 

chosen for the motion control. Here, an AMC analog servo amplifier mode B30A40AC is 

selected. Fig. 3-28 shows the appearance of the B30A40AC servo amplifier and Fig. 3-29 

shows the circuit of the servo amplifier [5]. A more detailed discussion for the motion 

control of the high temperature motor is in the next section.  
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Fig. 3-28 AMC B30A40AC Servo Amplifier 
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Fig. 3-29 Block Diagram of the Servo Amplifier [5] 
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4. MEASUREMENT AND TEST 

 

In this section, several measurements are shown and the results of these 

measurements define the characteristics of the motor. Motor spinning is demonstrated at 

room temperature on the motor test rig.   

 

4.1 Motor Stator High Potential Test 

 

The reliability of the motor at high temperature depends on the coils of the motor. It 

is known that poor winding or unsuccessful potting may break down the coils when fed 

with high voltage at high temperature. The high potting test is used to check the break 

down voltage and the equivalent resistance between each individual coil and laminated 

stator at both room and high temperature. This is a necessary process to verify that the 

high temperature coils will not fail at the extreme environment. All high temperature 

components (high temperature magnetic bearing, high temperature thrust bearing) must 

survive the high potential test before they can be used for high temperature applications. 
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Fig. 4-1 Motor Stator in Oven for High Potential Test 

 

First, high potential test is conducted first at room temperature. By applying 500V 

AC or DC between the stator and one of the coils, the current is measured. The test is 

repeated for all six coils to complete the room temperature high potential test. For the 

high temperature high potential test, it is shown in Fig. 4-1 and Fig. 4-2 that the stator of 

the motor is put into an oven and heated to 1000°F. Again, 500V AC or DC is applied 

between the stator and each coil.  

Table 4-1 shows measurements of the current with 500V applied between the stator 

laminates stack and an individual coil. The results appear excellent even at 1000°F. The 

stator is proven to work since the actual maximum operating voltage will not exceed 

240V. 
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Fig. 4-2 Heat up to about 1000°F 

 

Table 4-1 Stator High Potential Test Result 

DC 500 100 5.000 500 10 50.000
AC 500 260 1.923 500 30 16.667
DC 500 100 5.000 500 10 50.000
AC 500 260 1.923 500 30 16.667
DC 500 100 5.000 500 10 50.000
AC 500 240 2.083 500 30 16.667
DC 500 140 3.571 500 10 50.000
AC 500 350 1.429 500 30 16.667
DC 500 160 3.125 500 10 50.000
AC 500 380 1.316 500 30 16.667
DC 500 160 3.125 500 10 50.000
AC 500 540 0.926 500 80 6.250

Equivalent 
Resistant 

(MΩ)

1

2

3

4

Input 
Type 

Equivalent 
Resistant 

(MΩ)

1000°F 75°F

5

6

Voltage
(V)

Current
(μA)

Pole Voltage
(V)

Current
(μA)

 

   

No sign of breakdown appears during the entire high potential test. It is found that 
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AC source tends to apply more current than DC source. A significant increase in current 

from the room temperature to 1000°F is noticed. This verifies that high potting must be 

performed at high temperature in order to check the integrity of the insulation at high 

temperature.  

Fig. 4-3 shows the stator after the high potential test. The extended part of the high 

temperature wire appears fluffy. This appearance is due to the fiber coating for insulating 

the wires becomes loose and separates from the wires at high temperature. Yet, inside the 

coils, there is no problem since the fiber is constrained. But, the loss of fiber coating at 

the non-coil part will leave the wire exposed. Long high temperature sleeves are used for 

protecting that part of the wires (Fig. 4-4).  

 

 
Fig. 4-3 Stator after High Potential Test 
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Fig. 4-4 Sleeves for Protecting the Wires 

 

4.2 Coil Inductance, Resistance and Capacitance Measurement 

 

The motor servo amplifier has a minimum inductance requirement for the coil of 

the motor. Because the amplifier uses PWM, low inductance allows the high switching 

noise to be inputted into the motor phase, which may lead to motor malfunction. The 

inductance, capacitance and resistance of one coil are measured at 120 and 1000 Hz. The 

measured results are shown in Table 4-2. Due to the similarity of the coils, only one is 

measured. 

The inductance of the motor phase is dependent on the rotor angle and frequency. 

The higher the frequency is for the motor, the lower the inductance is. The minimum 

requirement during operation for the AMC B30A40AC servo amplifier is 600μH. The 

measurement shows the coil inductance is too low to meet the requirement. Extra 
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inductance must be added for each phase. AMC provides a type of filter to smooth the 

PWM output by adding extra inductance. Three AMC FC15030 filters are connected in 

series with the servo drive output which result in an extra 150μH inductance for each 

phase. Fig. 4-5 shows that  there are three AMC filters connected. 

 

Table 4-2 Measurement of Inductance, Resistance and Capacitance  
Rotor 
Angle 

Inductance 
at 120Hz 

(μH) 

Resistance 
at 120Hz 
(Ohm) 

Capacitance 
at 120Hz 

(μF) 

Inductance 
at 1000Hz 

(μH) 

Resistance 
at 1000Hz 

(Ohm) 

Capacitance 
at 1000Hz 

(μF) 
0 504 0.85 2330 368 7.9 61 
15 520 0.88 2300 388 8.3 58 
30 504 0.88 2490 419 10.5 56 
45 516 0.87 2260 386 7.8 57.5 
60 466 0.73 2020 465 6 64 
75 431 0.66 1780 300 5.5 71.7 
90 478 0.73 1880 478 6.9 63 

105 516 0.8 1790 384 7.5 57 
120 504 0.79 2000 503 9.5 54 
135 522 0.8 1730 392 7.4 55 
150 487 0.76 1520 357 7 61 
165 432 0.67 1540 300 5.2 70 
180 478 0.75 1540 348 6.5 62 
195 527 0.81 1590 389 7.2 55.4 
210 525 0.81 1760 434 9.4 52 
225 541 0.83 1660 392 7.3 55 
240 501 0.77 1700 360 6.8 60 
255 432 0.68 1660 297 5.3 71.3 
270 501 0.77 1770 362 7 60.4 
285 537 0.83 1750 389 7.4 56 
300 522 0.81 1900 425 9.5 53 
315 528 0.81 1810 394 7.8 56 
330 478 0.74 1850 347 6.9 63 
345 431 0.67 1680 398 5.4 72 
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Fig. 4-5 FC13030 Filters 
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4.3 Static Torque Measurement 

 

In the previous motor design discussion, the result shows that the output torque of 

the high temperature motor depends on current only. Torque output from the motor is 

proportional to the current that is conducted in the motor phase. A measurement is 

performed to find torque versus phase current. At each motor operation state, current is 

conducting in two phases only, and the third phase floats. By feeding current from phase 

A to Phase B with a DC voltage and allowing phase C to float, the motor is set to a motor 

operation state (Fig. 4-6). Fig. 4-7 shows how the DC source is connected to the motor 

phases. The current direction is also marked for this motor state 

. 

B C

A
I

DC

 
Fig. 4-6 Scheme for Current Input  
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Fig. 4-7 Current Input for Torque Measurement 

 

The method to measure the torque is sketched in Fig. 4-8. A string is attached to the 

pulley which is fixed with the rotor. The other end of the string is tied to a force gauge 

that can measure the tension of the string. The force gauge is clamped on a vise, which 

can move slowly in the direction of the string. The frictional forces at the bearings and 

the roller are ignored. The rotor is assumed to be at equilibrium as the force gauge moves 

slowly enough. The force transmitted to the string is equal to the tangential force acting 

on the pulley. The force gauge measures the tangential force. Hence, the output torque 

from the motor is found by knowing the force and pulley radius.  

Since only two phases are excited, the static torque output varies with the position 

of the rotor. Maximum torque points exist. Because the four poles on the rotor are 

symmetric, the static force should repeat at every 180°. Thus, there are two maximum 

torque points separated by 180° in rotor position. Ideally, the values of the torque at these 

two maximum points are the same and they are proportional to the current. By moving 
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the force gauge slowly along the force direction, the maximum torque points are located 

as well as the maximum torque. 

 

Force Gauge

F

F

Move slowly

Pulley on the rotor

Roller

Torque

 
Fig. 4-8 Scheme of Torque Measurement  

 

Fig. 4-9 shows the pulley fixed on the rotor and the roller mounted on the table. 

The string used to transmit the force is attached to the pulley. Fig. 4-10 shows the force 

gauge clamped on a vise, which is clamped to the fixed table. The force gauge is 

constrained to one translational degree of freedom such that it may only move along the 

direction of the string. Moving the force gauge slowly as the rotor completes one 

revolution allows two maximum points to be found. 
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Fig. 4-9 String Attached to the Pulley 

 

 
Fig. 4-10 Force Gauge for Measuring the Torque 
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Fig. 4-11 Maximum Torque Versus Current  

 

The process is repeated with different current levels. The relationship between the 

maximum torque and current is shown in Fig. 4-11. The solid line represents the first 

maximum point while the dashed line represents the second maximum point, which 

should be 180° from the first point. It is shown that the maximum torque is 

approximately 14 pound inch (1.58 Newton meter) with a constant current of eight Amps. 

The figure verifies that two maximum torques in each revolution are very close to each 

other, which is implied by the symmetry of the rotor. The maximum torque is 

proportional to the current. The linearity of the torque-current curve is acceptable.  

The maximum torque may be used to predict the power output of the motor. The 

designed power output is 5.1kw with 10A current input with a motor spin speed at 20000 

rpm. The actual power output predicted by using the measured static torque is calculated 
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as 

1.58 20000 2 / 60 / 80% 4.2mP wT kω π= ⋅ ⋅ == ⋅  

The designed 5.1kw power output is predicted by the FEM model which is the ideal 

value. There are many factors that cause power loss. The measured torque output may not 

consider the effect of frictional forces and winding loss. Yet, the results show that the 

motor built approximates the intended design.  

 

4.4 Room Temperature Spin Test 

 

The ultimate goal of building the motor test rig is to make the motor spin and 

achieve self-starting capability. As mentioned, the motion control will be handled with 

the AMC analog servo amplifier. In the previous sections the principal of the Hall Effect 

sensor, and how it senses the position of the rotor, are discussed. Then, the way to use 

two high temperature displacement sensors to create equivalent three Hall outputs is 

illustrated. The simulated Hall feedback signals to the servo amplifier accomplish closed 

loop motion control. 

 

4.4.1 Closed Loop Operation 

 

Fig. 4-12 shows the closed loop circuit of motion control using the servo amplifier. 

Three filter cards are used to add extra inductance for three phases. In the closed loop 

motor drive circuit, rotor position is obtained by using the high temperature sensor 
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detecting the passages of the screws. The digital circuit translates such outputs into three 

Hall outputs, which are then fed back to the servo amplifier. Reference signal with the 

range of 0 to 10 V provides the command of the motor speed.  

 

 
Fig. 4-12 Closed Loop Circuit 

 

Fig. 4-13 shows the motor test rig including high temperature sensors, digital 

circuit, high temperature motor, servo amplifier auxiliary motor, etc. 
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Fig. 4-13 Closed Loop Test Rig  

 

4.4.2 Ground Loop Problem  

 

Problems are found when the servo amplifier is activated. The servo amplifier gives 

an error that the voltage levels of the Hall feedback are boosted. The levels are no longer 

in the logic signal range of 0-5 Vol ts. Inspection shows the problem originates from the 

ground loop. The servo amplifier and digital circuit are co-grounded. Because of this 

ground loop, the outputs of the digital circuit have the addition of a constant voltage 

High temperature 
sensors 

Digital circuit 

Servo 
Amplifier 

High temperature 
motor 

Auxiliary motor  
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which makes the system quit.  

A ground isolation amplifier is used to separate the ground of servo amplifier and 

that of the digital circuit (Fig. 4-14). The ground isolation amplifier has an amplification 

factor of one, so it will not change the voltage level of the Hall signal, but will terminate 

the ground loop. In magnetic bearing control loops, the ground isolation is commonly 

used.  

 

 
Fig. 4-14 Closed Loop with Ground Isolation 

 

At first, the ground loop is considered the only problem that causes the servo 

amplifier to not be able to receive the rotor position feedback. However, other problems 

are present. 
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4.4.3 Noise Problem 

 

Although the servo amplifier does not indicate any errors, the motor starts to move 

randomly once the drive is activated. It appears the closed loop circuit is suffering from a 

noise problem. The following test is performed to determine the major sources of the 

noise. 

To confirm the problem is not caused by the PWM high switching frequency from 

the servo amplifier, the servo amplifier outputs are disconnected from the motor phases. 

Then, the rotor is driven by the auxiliary motor at 2500 rpm (Fig. 4-15).  

 

 
Fig. 4-15 Motor Output Disconnected and Auxiliary Motor Used 

 

When the servo amplifier is off, the oscilloscope shows the HA and HB generated 
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by the digital circuit are the same as in Fig. 3-25. When the servo amplifier is activated, it 

does not make any difference. All of the Hall outputs stay the same with or without the 

servo amplifier operation. Fig. 4-16 shows two Hall outputs (HA, HB) observed at the 

oscilloscope. It is confirmed that the high switching frequency of PWM is NOT the 

source of noise that causes the problem.  

 

HA

HB

 
Fig. 4-16 Hall Outputs Successfully Generated 

 

The problem is caused by high temperature sensor. It is a surprise since the sensor 

could produce the expected Hall outputs using the auxiliary motor. But, the rotor is driven 

at approximately 2500 rpm and when  the speed is reduced, the problem of the sensor 

emerges. The following figures show how the sensor problem occurs. The servo amplifier, 

digital circuit and auxiliary motors are stopped, leaving the high temperature sensor as 

the only component. By manually adjusting the position of the rotor, the high temperature 

sensor behavior is examined. First, when the rotor is rotated to make sensor observe at 

the surface of the rotor, the expected output is 6V which is the logic "high" mode(Fig. 
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4-17). Second, the sensor is positioned at the cap of one screw, where the output should 

give a logic "low" mode (Fig. 4-18). Last, as the sensor observes the edge of the screw, 

the output of the sensor has an abnormal behavior. The sensor does not have a constant 

output as expected (Fig. 4-19). This result conflicts with prior experience that normal 

displacement sensors, such as a Bentley Proximity Probe, will have an intermediate 

output between "high" and "low". 

 

 
Fig. 4-17 Sensor, Detecting the Shaft Surface 

 

 
Fig. 4-18 Sensor, Detecting the Screw Head 
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Fig. 4-19 Sensor, Detecting the Edge  

 

This behavior leads to a serious problem. The sensor output is connected to the 

input of a digital circuit. There is a threshold of the input voltage above which is 

considered "logic high" and below which is considered "logic low". The logic circuit will 

change state each time the input across the threshold, so every time the edge of the screw 

passes the sensor, the logic state changes. One passage of the edge should have one state 

change only. Due to the abnormal sensor behavior, when the speed is low (ie. start up), 

there might be multiple passages across the threshold resulting from one passage of the 

edge. From the motor commutation view, the servo amplifier will consider the number of 

passages across the threshold the same as the number of screws passed. Hence, instead of 

one, multiple screws will be considered by the servo amplifier which makes the state of 

the motor several screws ahead from what is expected. The reason the motor motor fails 

to commutate correctly is mainly because of this alignment. The problem is severe at low 

speed since the possibility to get false counts increases. It might improve as the speed 

increases but it will never reach high speed operation unless it overcomes the problems at 
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low speed. 

This high temperature probe is the only high temperature sensor available. There is 

nothing that may be done about this behavior except replacing the sensor. Unfortunately, 

these sensors are expensive.  

 

4.4.4 Open Loop Operation 

 

Knowing the problem is caused by the high temperature sensor in the feedback 

loop, a new way to make the motor work without significant change is pursued. It is 

confirmed that these high temperature sensors may not be used for motor commutation. 

An open loop approach to eliminate the use of high temperature sensors is developed.  

 

 
Fig. 4-20  Open Loop Motor Drive Circuit 
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Fig. 4-20 shows the open loop scheme. The high temperature sensors are removed 

and a function generator is added to generate the "Clock" and "Reset" signals. The signals 

are translated into three Hall outputs by the digital circuit. Then the generated HA HB 

and HC are inputted to the servo amplifier. Thus, instead of feedback, these three outputs 

become the command signals. Since there is no rotor position feedback, the servo 

amplifier does not measure the speed of the motor, and the servo amplifier tries to drive 

the motor to follow the input from the function generator.  

A demonstration shows the motor can start at zero speed and be stable at low speed. 

With an input clock frequency of 27 Hz (135 rpm command for the motor), the motor is 

successfully started. The speed of the motor varies with the input frequency. The motor 

speed starts at approximately 135 rpm and increases to 240 rpm. There is a little slipping 

at the beginning, but the rotor quickly catches up and runs synchronously with the 

command signals.  

The recorded speed and the command are shown in Fig. 4-21. It is surprising to 

find no steady state error. The speed of the motor tracks the command in a precise manner. 

A closed up plot is provided in Fig. 4-22. The highest speed tested is approximately 500 

rpm. Since the rotor is unbalanced and the spin test rig is not strong enough for the higher 

speed test, the higher speed test may be performed once the entire assembly is finished 

and tested. 
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Fig. 4-21 Motor Spin Speed Response and Command 

 

 
Fig. 4-22 Closed up Plot of Fig. 4-21 
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5. MAGNETIC BEARING & MOTOR SYSTEM 

 

The ultimate goal of designing this high temperature motor is to install it as a 

component of a high temperature magnetic bearing system. The full test rig includes two 

high temperature radial bearings, two radial catcher bearings, a high temperature thrust 

bearing and a high temperature motor (Fig. 5-1). The final assembly is in progress. 

In this section, brief introduction of all the components of the system is provided. 

Then, the status of the full assembly and the heating system is discussed. 

 

 
Fig. 5-1 Magnetic Bearing System  
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5.1 High Temperature Magnetic Bearings 

 

There are three high temperature magnetic bearings, including two radial bearings 

and one thrust bearing. 

 

5.1.1 Radial Bearings 

 

 
Fig. 5-2 Radial Bearing 1 

 

 
Fig. 5-3 Radial Bearing 2 
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Both radial bearings are fully assembled prior to the construction of the high 

temperature motor. These bearings are subjected to the high potential tests. Fig. 5-2 and 

Fig. 5-3 illustrate these two bearings. More details of the radial bearings may be found in 

reference [6], [7], [8],[9].and [10] 

 

5.1.2 Thrust Bearing  

 

A thrust bearing is designed to be positioned at the bottom of the system to levitate 

the entire shaft. The thrust bearing housing is treated with the same process of winding, 

potting (Fig. 5-4), initial curing (Fig. 5-5) and high potential test at 1000°F (Fig. 5-6).  

 

 

Fig. 5-4 Thrust Bearing Potting 

 

Table 5-1 shows the high potential test results. No sign of breaking down at high 
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temperature implies that the coils of the thrust bearing are reliable at 1000°F. 

 

Table 5-1 High Potential Test Results of the Thrust Bearing 

 

 
 

 
Fig. 5-5 Housing in the Oven for Initial Cure and Hipot Test 

Voltage Current Voltage Current

DC 500 260 1.92 500 0 inf
AC 500 560 0.89 500 40 12.5
DC 500 220 2.27 500 0 inf
AC 500 540 0.93 500 40 12.5

1

2

(µA)(V) (V) (µA)

High Temperature Room Temperature
1000°F 74°F

Pole
Effective 

Resistant(MΩ)
Effective 

Resistant(MΩ)
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Fig. 5-6 Thrust Bearing Housing after Hipot Tests  

 

To place the rotor in the housing, the rotor and a cover plate are fixed on a rigid 

structure. Six all-thread rods are used as the guide for the housing's movement. By 

turning the nuts, the housing is slowly moved towards the rotor (Fig. 5-7). Six nuts adjust 

the moving direction of the housing, which is kept parallel to the rotor axis. The six all-

thread rods will be replaced with regular bolts upon the completion of the thrust bearing 

(Fig. 5-8).  

 



 
79 

 
 
 

 
Fig. 5-7  Rotor Inserting Procedure 

 

 
Fig. 5-8  Thrust Bearing Stator-Rotor Assembly Completed  

 

5.1.3  Radial Catcher Bearing 

 

Two radial catcher bearings are located next to the radial magnetic bearing.  If one 

or more of the poles fail at the magnetic bearings, the rotor will continue running on the 

catcher bearing to prevent a hard landing on the poles of the magnetic bearings.  
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5.2 Full Assembly  

 

The magnetic bearing will be assembled vertically in the following order from the 

bottom: thrust bearing, radial catcher bearing 1, radial bearing 1, high temperature motor, 

radian bearing 2 and radial catcher bearing 2. All of the components will be assembled in 

a cylinder housing and constrained by the location plates (Fig. 5-9).  

 
Fig. 5-9 Solidworks Model of Full Assembly 

 

The rig will be assembled on a floor mounted stand shown in Fig. 5-10. All of the 

Radial Bearings 

Motor 

Thrust Bearings 

Radial Catcher Bearings 
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sensors are to be mounted on the outer housing. Most of the components, including wires, 

thermocouples, sensors, etc, may be easily accessed through the window on the outer 

housing. The bearing system will operate at low temperature and low speed initially. 

Eventually, slow speed at moderate temperature condition tests will be conducted on the 

floor mounted stand. For high speed and high temperature test, the assembly will be 

transported to the spin pit shown in Fig. 5-11.  

 

  
Fig. 5-10  Floor Mounted Stand and Housing 
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Fig. 5-11 Assembly Lowered in the Spin Pit  
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5.3 Heating System 

 

For the heating system, the following components are used [11]: 

• Watlow Mineral Insulated (M.I) Band Heaters (Fig. 5-12)  

Quantity: 3(2 pieces split)  

Power: 240V/3900W per Half 

Maximum Temperatures: 1400°F 

• Watlow Ceramic Fiber Radiant Heaters (Figure on p. 83) 

Quantity: 4  

Power: 240V / 2500W per heater 

Maximum Temperature: 1800°F 

• Watlow CLS216  Multi-Loop Temperature Controller(Fig. 5-13) 

 

 
Fig. 5-12 Band Heaters Pair 
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Fig. 5-13 Heater Controller and Relays 

 

The band heaters are mounted outside of the cylinder housing at top, middle and 

bottom positions (Fig. 5-14). 

 

 
Fig. 5-14 Band Heaters Mounted on the Cylinder Housing 

 

Band heaters 

Heater controller 

Relays  
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The designed maximum heating power is approximately 33.4 kw, which can draw 

about 140A current. Three pairs of band heaters are sufficient to heat the system to 

1000°F. The assembly will be covered with insulation (Fig. 5-15), which is Zircar 

Alumina-Silica type ceramic (ECO-1200A). A heating test is performed and takes 

approximately 2.5 hours to heat the rig to 1000 °F only using the band heaters at 80% of 

the maximum heating output. 

 

 
Fig. 5-15 Zircar Insulation and Radiant Heaters  

 

  

Radiant heater 

Insulation 
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6. CONCLUSION  

 

6.1 Conclusion 

 

A high temperature buried permanent magnet brushless DC motor, a part of the 

high temperature magnetic bearing system, expected to operate at 1000°F, was designed 

and built. High temperature permanent magnets produced by EEC were buried in the 

rotor. The motor stator utilized new bobbin and potting techniques developed at VCEL to 

survive high temperature. High potential tests were performed at both room and high 

temperature. Results showed no sign of deterioration. 

The drive of the motor was built utilizing the AMC servo amplifier. A digital circuit 

was developed to provide rotor position for commutation in order to achieve closed loop 

motion control. Sensor problems were encountered, which caused the failure of closed 

loop method. After much effort to solve the sensor problems, an open loop method was 

found to drive the motor. The motor was demonstrated to run at low speed and room 

temperature with self-starting capability. The speed was also controllable using the open 

loop approach. 

In addition, the high temperature magnetic bearing system was examined. Critical 

components were finished and readily for assembly. The heating system and insulation 

were installed. The heaters were tested to reach 1000°F within three hours.  
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6.2 Future Work 

 

The future work should include the following: 

• Finish assembling.  

The full rig assembling is in progress. 

• High temperature spin test of the motor 

The motor must be tested for low speed spinning at high temperature once the rig is 

fully assembled. The test may be performed without magnetic bearing, with the rotor on 

the catcher bearings. 

• Sensorless control of high temperature motor. 

 Sensorless control eliminates the position sensors of the motor. When temperature 

reaches Hall Effect sensor limitation, sensorless control is the best solution. Normally for 

a brushless DC motor, sensorless control obtains the rotor position by detecting the back 

EMF. There are several approaches such as zero crossing approach, EMF integration 

approach, etc that may be considered. 

• Magnetic bearing controller setup.  

The controllers and amplifiers for the magnetic bearing are built, but the gains of 

the controllers must be set. 

• Full magnetic bearing system testing. 

The plans for the full system test are divided into two phases. The first one will be 

on the floor mounted stand with a low speed (2000 rpm) at both a low temperature (room 

temperature) and a moderate temperature (500°F). The second one is to place the system 
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in the spin pit for tests of high speed (>15000 rpm) and high temperature (1000°F).  
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