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ABSTRACT 

Experimental Study on Kinematics and Dynamics of Breaking Waves in Deep Water. 

 (August 2010) 

Ho Joon Lim, B.S.; M.S., Inha University 

Chair of Advisory Committee: Dr. Kuang-An Chang 

 

A new measurement technique called fiber optic reflectometer (FOR) was 

developed to investigate multiphase flows. The principle and setup of the FOR technique 

were introduced and applied to various experiments. Based on the coherently mixed 

signal between the Fresnel reflection off the fiber-liquid interface and the scattered 

signal off the object, such as a gas bubble, and a solid particle, this single probe 

technique is capable of simultaneously measuring the velocity of the object with a high 

accuracy and the phase of the fluid. In addition, bubble diameter, velocity, and void 

fraction were measured directly. 

By means of a simple modification of the FOR technique, solute concentration and 

refractive index change were measured with a greatly improved accuracy. This modified 

technique was used for measuring of a NaCl concentration in deionized water to validate 

a new normalization technique. 

In the second part of this thesis, a plunging breaking wave in deep water has been 

studied. Using the wave focusing method, a strong plunging breaker was generated with 

accuracy in the deep water condition in a two-dimensional wave tank. It was possible to 

describe the breaking process in detail using a high speed camera with a frame rate of 
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500 or 1000 fps.  

Four kinds of experimental techniques were employed or developed to investigate 

the plunging breaker. Bubble image velocimetry (BIV) and particle image velocimetry 

(PIV) were used to measure the velocity fields. The velocity fields of the highly aerated 

region were obtained from the BIV measurements. In addition, the modified PIV 

technique is capable of measuring the velocities in the entire flow field including the 

aerated region. Mean and turbulent properties were obtained by the ensemble average. 

The mean velocity, mean vorticity, and mean kinetic energy were examined over the 

entire flow field. In addition, the Reynolds stresses and turbulent kinetic energy were 

calculated with high temporal and spatial resolutions. Free surface elevation was 

obtained from wave gauge measurements. BIV and PIV images were also used to obtain 

the free surface elevation and the boundary of the aerated region for more accurate 

results.  

The FOR technique was used to obtain the void ratio at each splash-up region. 

Compressibility of the plunging breaker was considered. Mass flux, momentum flux, 

kinetic energy, and Reynolds stresses at each FOR station were recalculated using the 

void ratio obtained from the FOR measurements. All terms at the first splash-up region 

were highly overestimated more than 100% unless the void ratio was applied to the 

calculation of fluxes and energies. Compared with the fully developed first splash-up 

region, the overestimation at the second and third splash-up was less significant. 

However, most terms were overestimated by 20~30% when the void ratio was not 

considered. 
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CHAPTER I 

1 INTRODUCTION 

1.1 Background of Breaking Waves 

Wave breaking in the ocean is one of the most extreme events of water waves and 

the understanding of wave breaking processes with qualitative and quantitative insight is 

important in the study of various fields such as coastal and offshore structure design, 

multiphase flow due to air entrainment, turbulence, energy dissipation, scalar mixing, 

and sediment transport in the surf zone. Many ocean and coastal engineers have been 

interested in the huge wave loads of extreme waves and their interaction with ocean 

structures, such as the stability and damage sustained by these structures due to 

significant impacts and associated overtopping greenwater. On the other hand, the 

physics, kinematics, and dynamics of breaking waves have been of great interest to 

many researchers for several decades. As diverse technologies such as high capacity, fast 

computers and high speed cameras are developing rapidly, many meaningful results 

have been reported using experimental and/or numerical methods. However, both 

experimental and computational research on breaking waves are still very challenging 

since breaking waves are nonlinear with multiphase and turbulent flows within the 

highly aerated region. 

 

This dissertation follows the style and format of the Journal of Ocean Engineering. 
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Most studies have been completed using laboratory experiments and numerical 

models because it is extremely difficult to describe breaking waves analytically due to 

the nonlinear phenomenon. Real scale field measurements are also not appropriate to 

investigate the inside of the breaking process. 

There exist many excellent reviews on breaking waves in deep water (Bonmarin, 

1989; Banner and Peregrine, 1993) and in the surf zone (Peregrine, 1983; Basco, 1985; 

Battjes, 1988). Recently, Christensen et al. (2002) gave a review on recent advances in 

both numerical models and measurement techniques of breaking waves within the surf 

zone. 

Numerical models of the surf zone have been developed using various approaches 

such as depth-integrated models, Boussinesq-type models, Reynolds averaged Navier-

Stokes equations (RANS) solvers, and two- or three-dimensional large eddy simulators 

(LES) (e.g., Schaffer et al., 1993; Lin and Liu, 1998a, 1998b; Watanabe and Saeki, 

1999; Christenen and Deigaard, 2001; Watanabe et al., 2005; Christensen, 2006; Lynett, 

2006). However, limited success has been achieved due to the complexity of the 

splashing free surface in the turbulent bore region after wave impingement and the lack 

of experimental data to validate the calculations. 

For the experimental approach, velocity measurements for the entire flow field of 

the breaking process, including the aerated region are essential to evaluate the turbulence 

structure induced by breaking waves. However, like that of numerical methods, 

experimental measurements have suffered from the difficulties associated with the 

presence of the highly aerated region. Reliable quantitative measurement techniques 



3 

 

 

were not available until the late 1970’s. Most experiments on breaking waves have been 

based on qualitative data. Non-intrusive optical techniques for velocity measurements, 

such as laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), have 

recently become available in the last three decades to obtain quantitative data. Although 

measurements of the aerated region were still unavailable, these techniques have been 

applied to numerous laboratory experiments with limited success. The LDV technique is 

usually capable of measuring the velocity field under the trough level with a high 

temporal resolution (e.g., Nadaoka et al., 1989; Ting and Kirby, 1994, 1995, 1996; 

Longo, 2003; Stansby and Feng, 2005; Shin and Cox, 2006). Currently, the relatively 

new PIV technique is perhaps the most robust and state-of-the-art technique among all 

the addressed experimental methods for determining of flow velocity (Perlin et al., 1996; 

Skyner, 1996; Chang and Liu, 1998, 1999, 2000; Melville et al., 2002; Govender et al., 

2002a, 2002b, 2004; Cowen et al., 2003; Kimmoun and Branger, 2007; Drazen and 

Melville, 2009; Huang et al., 2009). This is due to its full field nature, and its recent 

advances in the improvement of the temporal and spatial resolutions. Valuable reviews 

on PIV can be found in Adrian et al. (1999), Raffel et al. (2001) and Adrian (2005). 

Among the recent advances in breaking wave measurements using PIV, Chang and 

Liu (1998) measured the maximum velocity, associated acceleration, and vorticity of an 

overturning jet of a breaking wave. As a wave breaks and entrains air bubbles, the 

technique is then restricted to the region outside the aerated area. Despite some 

successes in measuring the properties of a breaking wave, the flow field and generated 

turbulence outside the aerated region could not be measured (Chang and Liu, 1999, 
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2000; Melville et al., 2002; Huang et al., 2009). In general, most measurements were 

limited to weak spilling breakers as well as under the trough level (LDV), outside the 

aerated region (PIV), or away from the breaking point, which is a relatively less 

important region.  

Advances in understanding the flow structure inside the highly aerated region have 

rarely been reported. Few exceptions are perhaps the early work of Jansen (1986), the 

recent work of Govender (1999), Govender et al. (2002a, 2002b, 2004), Ryu et al. 

(2005), Stansby and Feng (2005) and Kimmoun and Branger (2007). Jansen measured 

particle trajectories within the aerated region of breaking waves using fluorescent tracers 

and ultraviolet light. Due to the nature of this method, the measurements suffered from 

poor spatial resolution. More comprehensive laboratory measurements for the surf zone 

were obtained by Govender et al., who used digital correlation image velocimetry 

(DCIV) technique with a strobed light sheet in order to illuminate the particles and the 

aerated region. This process is similar to PIV and is based on digital image acquisition 

and cross-correlation algorithms. Bubble structures in the images were used for 

correlation between consecutive images for velocity determination. Even though these 

measurements were promising, there were important velocity vectors missing near the 

wave crest where the maximum velocity occurs. 

A new technique called bubble image velocimetry (BIV) was introduced by Ryu et 

al. (2005). They combined PIV and the shadowgraphy method to obtain the velocity of 

bubbles. In their technique, bubbles are used as tracers, and correlation between bubbles 

is calculated for velocity determination. No lasers are needed in this technique while the 
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measurement plane is defined by carefully controlling the depth of field. They measured 

the velocity fields of breaking waves impinging on a structure and associated 

overtopping greenwater. This technique is perhaps the first systematic method for 

measuring bubble (air-water mixture) velocity within the highly aerated region. 

Although the BIV measurements provide air-water mixture velocity fields with a high 

temporal and spatial resolution, velocity fields of the water phase, which is the outside of 

the aerated region, cannot be obtained by BIV. Therefore, other techniques, such as PIV, 

that are capable of measuring water particle velocities should be employed for 

measuring two phase flows. 

Stansby and Feng (2005) used the LDV technique to measure weakly plunging 

breakers transforming into the bore region within the surf zone. Vorticity magnitude was 

compared with hydraulic jump value. They reported some similarities only during the 

initial stages of the breaking. They also obtained the terms in the depth-integrated RANS 

equation in order to evaluate the magnitudes of different effects. They found that the 

maximum horizontal velocity at the initial stage of the weakly plunging breakers were 

similar to that at the initial stage of gentle spilling breakers. 

Recently, Kimmoun and Branger (2007) measured the entire velocity fields of 

spilling waves in the surf zone using the PIV technique. They also estimated the 

turbulence dissipation rate by examining the turbulent kinetic energy budget and the 

Kolmogorov length scale. Their results have provided better understanding of breaking 

waves in the surf zone. 

Huang et al. (2009) measured turbulence and wave energy dissipation of spilling 
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breakers in the surf zone using PIV. Although the highly aerated region of the spilling 

breaker was not measured, they obtained turbulent kinetic energy, mean flow energy and 

total energy across the surf zone. The turbulence dissipation rate was also estimated 

using several different approaches. 

Indeed, LDV and PIV are the most common techniques employed to measure flow 

velocities of breaking waves. Both techniques, which are noninvasive techniques, have 

some advantages and disadvantages in addition to the limitations of the traditional 

techniques as mentioned above. For example, the traditional PIV technique is the most 

reliable technique to obtain the velocity map within a spatial domain with a very high 

spatial resolution, while data sampling rate is usually about 10 Hz due to the limitation 

from a pulsed laser and a camera framing rate. The PIV method is very useful to obtain 

flow properties including the gradient terms, such as vorticity, and most terms in the 

turbulent kinetic energy budget. However, due to the low temporal resolution, it is not 

suitable in obtaining flow properties including the time derivative or the time-averaged 

values at an arbitrary point or station such as local acceleration and fluxes of mass, 

momentum, or energy. On the other hand, the LDV technique provides a velocity time 

series at a point with a high temporal resolution. It is useful to obtain time series of flow 

properties and time mean values at a point. However, it is not suitable for flows whose 

velocity gradient is important. It is extremely difficult to obtain an instantaneous velocity 

field. Indeed, advantages of the PIV method are disadvantages of the LDV method and 

vice versa. 

Since breaking waves are multiphase flows including a highly aerated region, void 
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ratio measurement is required to investigate breaking waves, especially for plunging 

breakers. It is also essential to consider the compressibility during the breaking process 

in order to estimate wave energy dissipation. Compared with spilling waves, plunging 

waves have a much higher void ratio, especially at the first impingement and splash-up. 

Despite the importance of the void fraction as well as the velocity inside the aerated 

region, few quantitative measurements of void ratio exist. Intrusive probes have been 

commonly used to investigate various multiphase flows. In the measurement of general 

bubble flumes (air-water two phase flows), conductivity probes (e.g., Chanson, 1996; 

Chanson & Brattberg, 2000; Chanson, 2002) and fiber optic probes (e.g., Cartellier, 

1992; Rinne and Loth, 1996; Barrau et al., 1999; Murzyn et al., 2005; Rensen and Roig, 

2001; Kiambi et al., 2001; Chang et al., 2003; Juliá et al. 2005; Lim et al., 2008) have 

been successfully applied to diverse multiphase flows. In the case of void ratio 

measurements for breaking waves, intrusive techniques using acoustic, electric, and 

optical methods have also been applied to measure bubble size distributions and void 

ratio in field and laboratory experiments (e.g., Lamarre and Melville, 1991, 1992, 1994; 

Deane, 1997; Vagle and Farmer, 1998; Deane and Stokes, 2002; Cox and Shin, 2003; 

Hoque and Aoki, 2005; Blenkinsopp and Chaplin, 2007; Rojas and Loewen, 2007). It is 

widely accepted that intrusive probes are the most appropriate technique to measure the 

high concentration of air bubbles under breaking waves. Lamarre and Melville (1992) 

developed an impedance probe to measure the void ratio field in laboratory breaking 

waves. Deane (1997) reported the results of acoustic and optical measurements of 

breaking waves in the surf zone and obtained a total void ratio of 0.3 - 0.4. Cox and Shin 
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(2003) used an impedance void fraction meter to measure the void ratios in three 

different waves (spilling, plunging and spilling/plunging) in the surf zone, and maximum 

ensemble averaged void ratio were between 0.15 and 0.2. They presented the temporal 

variation of the void ratio above and below the still water level. The averaged void ratio 

in each case was self-similar, and was modeled with linear growth and exponential 

decay. Hoque and Aoki (2005) used a conductivity probe to obtain the void ratio under 

breaking waves in the surf zone. They reported that the void ratio distribution followed 

the analytical solution of the diffusion equation. The maximum void ratio at the still 

water level was 0.2 and 0.16 for plunging and spilling waves, respectively. Blenkinsopp 

and Chaplin (2007) also measured the void ratios of breaking waves in the laboratory 

using optical fiber probes. They used a submerged reef structure to generate different 

types of breaking waves (strong plunging, plunging and spilling/plunging). They found 

that integral properties of the void ratio fields have a remarkable similarity between 

characteristics in different breaker types. 

Although recent reports on the highly aerated region have provided a much better 

understanding of the breaking wave (Govender et al, 2002a, 2002b, 2004; Kimmoun and 

Branger, 2007), research on plunging waves in deep water has not been reported. In 

addition, simultaneous measurements of both velocity and void ratio in the aerated 

region have not been reported. In the present study, strong plunging waves are 

investigated with high temporal and spatial resolutions using various experimental 

techniques. It is believed that this study will provide better insight into the nature of the 

plunging breaker in deep water without any effects from the bottom boundary or the 
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previous turbulence due to the repetitive breaking in the surf zone.  

1.2 Objective and Scope of the Study 

The first objective of the study is to develop appropriate measurement techniques or 

systems for the multiphase flow measurement. After validation of the new technique by 

measuring the velocity and fraction ratio of each phase in the multiphase flows, it will be 

employed to investigate the kinematics and dynamics of plunging breakers in deep water, 

which is the second objective of the study. In advance, a qualitative study is performed 

using a high speed camera with a high frame rate after generating a strong plunging 

wave in deep water using wave focusing methods (Skyner et al, 1990; Skyner 1996). 

Velocity fields, void ratio, and wave elevation are measured using traditional and newly 

developed measurement techniques such as PIV, BIV, and FOR. Since the traditional 

PIV technique does not work in the highly aerated region due to the air entrainments 

after wave impinging, which is crucial in this study, the BIV technique is employed for 

the velocity measurement in the aerated region while the PIV technique is used to obtain 

velocity fields outside the aerated region to cover the entire flow field and compare these 

values with the results from previous works. However, the velocity field in the aerated 

region could be obtained in this experiment using a modified PIV technique. The images 

of the aerated region have bubble structures with various intensities like images from the 

BIV measurement. It is possible that the bubble images from the PIV measurements 

could be obtained by using a weak continuous laser light, which allows the reflection of 

the light from bubbles to attenuate. Bubble velocity in the aerated region is obtained 

from the modified PIV method, and is validated by comparing with Stokes wave and 



10 

 

 

results from the BIV method. Several wave gauges are used to obtain wave elevation. In 

addition, the boundary of the aerated region and the free surface, including the aerated 

region, are obtained from the BIV and PIV images. A void ratio in the highly aerated 

region can be easily obtained by using the FOR technique, which can measure velocity 

and fraction ratio of all phases simultaneously in a multiphase flow at a given point. 

1.3 Organization of the Dissertation 

This dissertation is composed of two main parts. The first part is related to the FOR 

technique and follows the organization method of combining papers. The second part 

covers an experimental study on the plunging breaker, which is the main subject of the 

dissertation. 

The modified FOR technique is introduced in Chapter II along with the 

measurements of solute concentration and refractive index change in the fluid. The FOR 

technique is introduced and validated through various measurements in multiphase flows 

in Chapter III. Chapter IV measures the bubble diameter, velocity, and void ratio using 

the FOR technique developed in Chapter III. 

In the second part, the experimental setups and conditions for four kinds of 

measurement techniques to investigate plunging breakers are presented in Chapter V. 

The qualitative description of the breaking process can be seen in Chapter VI. Chapter 

VII uses the BIV and PIV images to detect the free surface and the boundary of the 

aerated region. The wave gauge measurements are also presented in this chapter. 

Chapter VIII shows the results from the BIV measurements. Chapters IX and X use the 

modified PIV technique to obtain the mean and turbulent quantities of the flow. Void 
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ratio measurements are presented in Chapter XI using the FOR technique developed and 

applied in Chapters III and IV. Results considering compressibility of the plunging 

breaker are also presented in this chapter. Conclusion and future work are presented in 

Chapter XII.  

Appendixes A and B shows various results with additional figures obtained from 

the BIV and PIV measurements respectively. 

Chapter II has been published in Measurement Science and Technology (Chang et 

al., 2002). Chapter III has been published in Review of Scientific Instruments (Chang et 

al., 2003). Chapter IV has been published in Review of Scientific Instruments (Lim et al., 

2008). Part of Chapter XIII (8.2) has been published in Measurement Science and 

Technology (Ryu et al., 2005). Parts from Chapter V to Chapter XII are subject of a 

publication in preparation. 
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CHAPTER II 

2 CONCENTRATION MEASUREMENTS: A FIBRE OPTIC 

FRESNEL RATIO METER FOR MEASUREMENTS OF SOLUTE 

CONCENTRATION AND REFRACTIVE INDEX CHANGE IN 

FLUIDS* 

A new and simple normalization technique that greatly enhances the measurement 

resolution of conventional fibre-optic reflectometry based on Fresnel reflection from the 

tip of a fibre is used for demonstrating the feasibility of measuring solute concentrations 

and index changes in fluids to very high precision. The amplitude of pulses originating 

from reflection from the fibre-fluid interface is compared in real-time with the amplitude 

of reference pulses from a fibre-air interface such that errors caused by pulse amplitude 

fluctuations and slightly varying detector responses are corrected. Using solutions of 

sodium chloride and water, it is demonstrated that the technique is capable of measuring 

index changes of 2 × 10-5 corresponding to a NaCl concentration of 0.02%. 

2.1 Introduction 

The measurement of fluid concentration in real time has been of great interest to 

many engineering disciplines. In the study of fluid dynamics, not only is it important to  

 

*Reprinted with permission from “A fibre optic Fresnel ratio meter for measurements of 
solute concentration and refractive index change in fluids” by Chang, Lim, and Su 
(2002). Measurement Science and Technology. DOI 10.1088/0957-0233/13/12/32, 
Copyright [2002] IOP Publishing 
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obtain concentration field precisely, it is often essential to obtain the concentration as a 

function of time and space in a dynamic problem.  For example, the concentration 

measurement of a turbulent jet is important in the study of pollutant mixing and transport 

(Fischer et al., 1979). The problem is strongly temporally and spatially dependent and 

requires precise concentration data with high temporal and spatial resolutions. To 

preserve the flow characteristics a small probe is also necessary to minimize the 

disturbance caused by the introduction of the probe. This type of dynamic concentration 

measurement is often performed in a laboratory water flume under controlled 

environment and uses salt as the tracer. Whether pure NaCl–water mixture or real 

seawater is used is immaterial since both simulate the same dynamics of transport 

phenomena in an aqueous environment such as lake, river or ocean. However, with pure 

NaCl-water mixture or other passive tracer, fibre-optic techniques can be applied 

without contaminating the fibre tip while the relationship between refractive index and 

concentration is easy to establish and convert.  

High-performance liquid chromatography (HPLC) using interferometric and flow-

cell techniques (e.g., Woodruff and Yeung, 1982; Brandemburg, 1997; Wilson and Reed, 

1993) for chemical analysis have extremely high resolution, but their constructions and 

geometries are cumbersome and inappropriate for the envisioned application mentioned 

above. A number of optical techniques, implemented with bulk optics, that may be 

appropriate for measuring the spatial and temporal dependence of NaCl concentration in 

the water tank have been reported. They measure the refraction angle as a function of 

liquid index (Krishna et al., 2000), and intensity change caused by Fresnel reflection 
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between a glass plate and a liquid (Fan and Longtin, 2000). By allowing an air-gap 

between two optical fibres, liquid solutions can be placed between the two fibres. Solute 

concentrations can then be determined from the transmitted signal spectra through the 

two fibres when the fluid to be measured fills the gap (Lin and Brown, 1993a; Lin and 

Brown, 1993b). Seawater salinity (Lin and Brown, 1993a) and electrolytes concentration 

(Lin and Brown, 1993b) have been measured by this technique. 

Here, we introduce a new normalization technique that greatly enhances resolution 

when applied to conventional fibre optic reflectometry that is based on Fresnel reflection 

from the fibre tip. The overall technique provides accuracy, simplicity, near non-

invasiveness because of the small dimension of the optical fibre, high spatial resolution 

of less than 10 µm and almost unlimited temporal resolution. 

2.2 Principle and Experimental Setup 

The idea of this technique is to measure the reflected optical power due to Fresnel 

reflection from the fibre-fluid interface. A change in the reflected optical power 

measures the change in the refractive index of the fluid. However, to increase 

measurement resolution, the reflected power is normalized by a similar reflected power 

from a reference fibre-air interface, with both reflected signal derived from the same 

optical source, and detected by a common detector. The normalization procedure 

corrects for fluctuations that are common to the signal and reference arms. 

The idea mentioned above was implemented by the experimental setup shown in 

Fig. 2.1. A train of optical pulse, derived from a diode laser driven by a pulse generator, 

is launched into a standard telecommunications graded single-mode optical fibre (SMF-
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28 fibre). The optical pulse is divided into two paths by a 2 × 2 single-mode fused fibre 

coupler with a nominal 50%:50% splitting ratio. The end of the signal fibre is immersed 

in the test fluid while the end of the reference fibre rests free in air. Returned pulses due 

to Fresnel reflections from both fibre ends are detected by a dc-coupled detector. The 

pulses are subsequently amplified and processed by a computer. The experiment is 

conducted in the pulse mode so that the reflected power from the signal and reference 

fibres can be temporally separated. Thus, the signal path consists of only a few metres of 

fibre while the reference path is a spool of long fibre. The length of the long fibre used is 

arbitrary as long as the returned signal and reference pulses can be temporally separated. 

The long fiber length is not a problem because the optical waveguide effect of the fibre 

remains intact independent of the fiber length, unless the fiber is excessively bent during 

the course of the experiment causing radiation loss. 

 

Fluid Fiber
coupler

Detector

Diode Laser

Reflected signal

Computer

Pulse
generator

Fiber spool 

Polarization
controller

 
 

Fig. 2.1 The experimental setup for concentration measurements. The light source 

is a 1.3 �m wave length multi-longitudinal diode laser. 
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A pair of time-separated optical pulses reflected from the fibre-fluid and fibre-air 

interface is shown in Fig 2.2. It is important to note that both pulses are derived from a 

common optical pulse but delay in time by 2L/c, where L is the length difference 

between the two optical paths and c is the speed of light in the fibre. This assures that 

any pulse amplitude fluctuation will not limit the measurement precision.  
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Fig. 2.2 Two typical pairs of reflectance pulses from the fluid-fibre and air-fibre 

interfaces for 0 and 3 % salt concentration. 

 

The first pulse which represents the overlay of two reflected pulses from the fibre-

fluid interface with two different NaCl concentrations of 0 and 0.03 g cm-3 (3% salt) 

shows the amplitude dependence on solute concentration. The second pulse is the 

reference pulse. It is noted that, unlike the second pulse, the first pulse does not have a 

flat top. This is due to the additional contribution originating from backscattered 

Rayleigh light from the reference pulse traveling in the long fibre. However, the 
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Rayleigh backscattered light does not affect the differential index measurement because 

its magnitude is proportional to the laser power which is corrected by this normalization 

technique. The amplitude of each pulse is made almost equal by adjusting the splice loss 

while splicing the reference arm to the fibre coupler when the tip of the signal arm is 

immersed in pure water. This gives the reference value for the amplitude ratio. Any 

deviation from this ratio is indicative of an index change. However, any NaCl 

concentration can be taken as the reference ratio. 
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Fig. 2.3 Squares and circles show the drift of the signal and reference pulse 

amplitude normalized to the initial value. Triangles show the normalized amplitude 

ratio. 

 

The quantity of interest is the amplitude ratio R between the signal and the 

reference pulse. By taking the ratio, drifts in laser optical power, potential non-

polarization dependent temporal variations in the splitting ratio of the fibre coupler and, 
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to a good degree, the drift in the detector response can be normalized out. To 

demonstrate the merit of our ratio technique, we measured the amplitude and their ratio 

immediately after the system was switched on. Fig. 2.3 shows the plot of the amplitude 

of the individual signal and reference pulse and the amplitude ratio R as a function of 

time upon the turn-on of the system. It is noted that the ratio R stays relatively constant 

despite the drift in the individual amplitude. By taking the ratio, it is shown that our 

method is effective in correcting the drift. 

One issue is the somewhat polarization dependent loss of the fibre coupler as the 

fibre used are standard telecommunication fibre which are birefringent in nature. 

Therefore, the polarization state of the returned pulse cannot be maintained indefinitely 

in a routine environment, causing the relative polarization between the signal and 

reference pulse to vary in time. The polarization effect is the drawback of this technique. 

This effect, which causes the amplitude ratio R to drift slightly in time, can be simulated 

by adjusting the polarization controller shown in Fig. 2.1. The data shown in Fig. 2.3 

indicates a slightly varying amplitude ratio R due to the polarization effect. This effect, 

according to Eq. (2.1) given below, limits the index resolution to better than 2 ×10-5 in 

the present experiment. 

The formula used in this experiment for calculating the concentration dependent 

refractive index change is given below. Taking the derivative of the Fresnel reflection 

formula for normal incidence (Born and Wolf, 1965) with respect to the refractive index 

of the solution, one obtains the change in the amplitude ratio δR due to a change in the 

refractive index δn of the solution.  
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where nf  is the refractive index of the fibre and n(C) is the refractive index of the 

solution at a solute concentration of C.  Writing R(C) = R(0) + δR(0), and using Eq. 

(2.1) for δR(0), one obtains, 
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where n(0) is the refractive index of pure water and R(0) is the ratio at zero 

concentration. Eq. (2.2) is used for analyzing the data. 

2.3 Results 

Two separate sets of data were taken on different days. One set of data was taken 

for NaCl concentration ranging from 1 × 10-3 to 6 × 10-2 gcm-3. The other set was taken 

for concentration varying from 2 × 10-4 to 1 × 10-3 gcm-3. The data for the lower 

concentration set was taken within 5 min to minimize temperature and polarization 

effects, since the refractive index of water is a fairly strong function of temperature 

(Yunus, 1992). The higher concentration set was taken within 2.5h. Each set of data for 

R(C) was normalized by R(0) measured once at the beginning of each data set.  

Errors due to temperature effects are calculated from the formula, 
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obtained by taking the derivative of the Fresnel reflection formula (Born and Wolf, 

1965) with respect to temperature, where n are evaluated at concentration C. For low 
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concentration, as is the case here, we merely use the temperature coefficient of pure 

water and approximate 
dT

CdR
CR

)(
)(

1
 by 

dT
RCRd ))0(/)((

.  For pure water, n = 1.33, 

dn/dT = 9 × 10-5 °C-1, and for the fibre, nf = 1.45, dnf /dT = 1 × 10-5 °C-1. From the 

temperature coefficients, the calculated error in the ratio R(C)/R(0) is 1.4 × 10-3 per 

degree due mainly to the temperature coefficient of water. The corresponding error in 

determining the index change is about 8 × 10-5 per degree. However, within the 5 min 

measurement time the temperature is constant to about 0.1 °C, the resolution of the 

thermal couple used in the temperature measurement. Thus, the corresponding index 

resolution limited by temperature effects is about 8 × 10-6 for 0.1 °C stability.  
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Fig. 2.4 A plot of {1 - R(C)/R(0)} versus concentration C on a log scale. The open 

circles are low concentration data taken on a different day. 
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The measured data are plotted in Fig. 2.4 as {1 - R(C)/R(0)} versus C in log scale to 

better shown the data at very low concentration and its connectivity to the higher 

concentration data. We use Eq. (2.2) to calculate dn/dC from the measured data. Using a 

value of nf  = 1.45 for the fibre and n(0) = 1.33 for  water, we found that dn/dC =  

0.13 g-1 cm3 in good agreement with a value of 0.12 g-1 cm3 from Wilson and Reed 

(1993). From Fig. 2.4 it is observed that the resolution of the present technique is about 2 

× 10-4 g cm-3 of the NaCl concentration. This corresponds to an index resolution of 2 × 

10-5. This resolution is about a factor of five better than the best bulk-optic technique 

(Krishna et al., 2000; Fan and Longtin, 2000). 

2.4 Conclusion 

We have introduced a new normalization technique that greatly enhances resolution 

of concentration and refractive index measurements when applied to conventional fibre 

optic reflectometry based on Fresnel reflection from the fibre tip. The technique was 

used for demonstrating measurement of NaCl concentration in water. The technique 

gives a refractive index measurement resolution of about 2 × 10-5 and salt concentration 

resolution of about 2 × 10-4 gcm-3 limited by temperature and polarization effects. This 

ratio-meter should be appropriate for various measurements, in particular for 

measurements of the spatially and temporally dependent concentration field in an 

environment such as a water tank. 
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CHAPTER III 

3 VELOCITY AND FRACTION RATIO MEASUREMENTS: FIBER 

OPTIC REFLECTOMETER FOR VELOCITY AND FRACTION 

RATIO MEASUREMENTS IN MULTIPHASE FLOWS* 

A technique based on the coherent mixing of scattered signal with Fresnel 

reflection signal from the tip of an optical fiber is used to demonstrate the feasibility of 

measuring the velocity and fraction ratio of solid particles and gas bubbles or liquid 

droplets in a liquid or gas flow. If the liquid or gas flow is seeded with small neutrally 

buoyant particles, the technique is then capable of measuring the velocity as well as the 

fraction ratio of all three phases of the flow at a given point. The method is briefly 

described as follows. An optical signal derived from a diode laser driven by a constant 

current is launched into a single-mode optical fiber and transmitted, through a fiber 

coupler, to the signal fiber inserted into the test fluid. The diode laser used is a 

multilongitudinal mode device that has a low coherence length of about 200 �m. The 

coherently mixed signal propagates back to the signal fiber, through the fiber coupler, 

and detected by a detector. By analyzing the signal, the velocity and fraction ratio of 

each phase can be obtained. Using water seeded with small solid particles and air  

 
*Reprinted with permission from “Fiber optic reflectometer for velocity and fraction 
ratio measurements in multiphase flows” by Chang, Lim, and Su (2003). Review of 
Scientific Instruments, DOI 10.1063/1.1578152, Copyright [2003] American Institute of 
Physics 
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bubbles, it is demonstrated that the technique is capable of measuring the velocity in the 

direction parallel to the fiber. Since the only intrusion to the fluid is the tiny fiber probe 

(a dimension of 125 �m in diameter), the disturbance to most fluid flows is negligible, 

therefore, the technique is nearly non-intrusive. 

3.1 Introduction 

The measurements of velocity, particle density (or particle number), and fraction 

ratio of all phases in a multiphase flow have been of great interest to engineers and 

scientists in the fluid mechanics and related community. In many fluid dynamics 

problems, not only is it important to obtain the velocity field of the flow, it is often 

essential to obtain the velocity and fraction ratio of one or more phases such as solid 

particles and gas bubbles in a liquid flow, or liquid droplets and solid particles in a gas 

flow. For example, the understanding of velocity and void fraction under breaking waves 

is important in the study of scalar mixing, air entrainment, energy dissipation, and 

sediment transport in the surf zone and ocean. Nevertheless, reports on the velocity and 

fraction ratio measurements of two or three phases have been rare. This is mainly due to 

the inability of measuring velocity and fraction ratio of one or more phases in the 

multiphase flow using existing techniques. Although some bulky devices were able to 

obtain velocity or void fraction information in liquid–gas flows (but rarely both) for one 

phase in the field, issues in data precision and uncertainty were frequently raised due to 

the deployment of the bulky invasive devices while careful data interpretation was often 

needed. The problem becomes especially severe in the laboratory because of its 

relatively small scale. It is common that many of the physical phenomena not only are 
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strongly temporal and spatial dependent but also require precise velocity and phase 

information with high temporal and spatial resolutions. To preserve the flow 

characteristics, a small probe with good resolution and accuracy is necessary to 

minimize the disturbance caused by the introduction of the probe while providing useful 

information of the flow. 

Traditional nonintrusive optical methods for velocity determination, such as the 

particle image velocimetry (PIV) and the laser Doppler velocimetry (LDV) techniques, 

have had great difficulties when applied to the study of multiphase flows. Noise due to 

the scattering of light from air bubbles or attenuation of light in solid particles, especially 

when the concentration is high, often gives questionable or invalid data. This can be seen 

from the seven papers published in the multiphase flow section in the 1999 International 

PIV Workshop (Adrian et al., 1999), and the velocity measurements under breaking 

waves (e.g., Chang and Liu, 1999; Chang and Liu, 2000). Other traditional intrusive 

techniques such as acoustic Doppler velocimetry and thermal anemometers are capable 

of measuring the velocity of only one phase and may significantly disturb the flow 

resulting in frequent unreliable noisy data, especially on the laboratory scale. 

Intrusive probes using conductivity have been successfully applied for measuring 

the void fraction of gas–liquid flows (e.g., Chanson, 1996), and by using multiple probes 

with cross correlation of the signals, the velocity of the gas bubbles (but not the liquid). 

More recently, intrusive miniaturized probes using optical fibers have been employed in 

the measurement of local void fraction using refractive index change at the tip of the 

fibers. Similar to the conductivity probes, if multiple fibers with a small distance 
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between the fibers are used, the velocity can be obtained through cross correlation of the 

bubble signal. With the velocity information, the bubble chord length can subsequently 

be obtained. If the bubbles are small so their shape is either spherical or ellipsoidal 

(typically less than 9 mm in diameter), the mean bubble diameter and interfacial area can 

be calculated through the bubble size probability density function. Less disturbance is 

caused by the optical fiber due to its small dimensions [125 �m in diameter, compared 

with the conductivity probes of O(1 mm) or larger]. Reports in various applications 

using optical fiber probes in gas–liquid flows can be found in Rinne and Loth (1996), 

Barrau et al. (1999), Kiambi et al. (2001), and Rensen and Roig (2001), while reports on 

gas–solid flows can be found in Cavalier et al. (1989) and Herbert et al. (1994) Other 

techniques using acoustics for bubble sizing and velocity measurements (e.g., Vagle and 

Farmer, 1998) in general, require relatively large dimensions for the instrument and 

create greater disturbance. They may be suitable for in situ or large-scale laboratory 

experiments but are outside the scope of this study and will not be discussed here. 

It should be pointed out that some intrusive phase detection probes, based on 

refractive index or electrical conductivity changes, have been used in gas bubble velocity 

and void fraction measurements with certain degrees of success. However, hurdles 

remain in the interpretation of the data and in the measurements of the solid particles and 

liquid velocities (Chanson, 2002). Disturbance caused by methods employing larger 

dimension probes is also a big concern to the accuracy of the experimental data. At least 

for now, it seems that the miniaturized optic fiber probe is in a better position due to its 

small dimensions and relatively low cost. Overall, measurements of all three phases (gas, 
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solid, and liquid) in multiphase flows are still rare, no matter what techniques have been 

chosen. 

In this article, a technique based on signal mixing of scattered light from air bubbles 

or solid particles and reference light from Fresnel reflection off the fiber end face is 

employed. This technique, using multimode fiber, is first reported by Dyott (1978) for 

studying Brownian motion, and subsequently for LDV by Nishihara et al. (1984) using 

single-mode fiber. Similar techniques but with variable reference signal strength 

obtained from wavelength-dependent reflection off fiber Bragg grating have been 

reported by Byrne et al. (2001) Low-coherence techniques for Doppler velocimetry 

using either multimode laser diodes (Meggitt et al., 1990) or light-emitting diodes (Ning 

et al., 1992) have also been reported. 

The fiber technique provides simplicity, near noninvasiveness because of its small 

dimension of the optical fiber (typical diameter approximately 125 �m with protective 

buffer coating removed), high spatial resolution (typically less than 10 �m), and high 

temporal resolution (typically less than 50 �s). The technique is capable of measuring 

the velocities and fraction ratio of seeded particles and gas bubbles in a liquid flow, and 

the velocity and fraction ratio of liquid droplets and solid particles in a gas flow. To 

prove the technique, a constant head free liquid jet is used to validate the velocity 

measurement while a liquid column filled with bubbles is used to validate the void 

fraction measurement.  

3.2 Principle and Experimental Apparatus 

For the fraction ratio study, measured quantities are the reflected optical power due 
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to Fresnel reflections off the fiber-fluid interface at the fiber tip. For the velocity 

measurement, the measured quantity is the coherent beat-signal between the Fresnel 

reflection off the fiber-fluid interface and the scattered signal off the gas bubbles, solid 

particles, or liquid droplets. 
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Photo Detector

50%:50%
Fiber Coupler

Amplifier

Computer with
Data Acquisition Board

Termination

Optical Fiber Probe

 
Fig. 3.1 The experimental apparatus. 

 

The experimental setup is shown in Fig. 3.1. The source laser is a 1.3 �m 

wavelength multilongitudinal mode diode laser with short coherence length. This 

wavelength is used because components such as couplers and fibers are cost effective, 

readily available, and single mode at this wavelength, although 1.5 �m wavelength diode 

laser could also be used. Continuous-wave optical signal from the diode laser is 

launched into a standard telecommunications graded single-mode optical fiber (SMF-28 

fiber). The fiber core diameter is about 8 �m and the overall fiber diameter with the 
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protective coating removed is 125 �m. Although the robustness of the fiber tip is 

compromised because the buffer coating is removed at the tip, it does not hinder the 

experiment since the fiber tip is simply dipped in the fluid with no additional lensing 

components. The light diverges from the fiber end. For the void fraction measurement, 

signal counts occur only when an air bubble comes in contact with the fiber tip, while for 

the velocity measurement, it is the period of oscillation that is of interest. In both cases, 

the signal magnitude is immaterial as long as the signal is observable. Therefore, the 

diverging light is tolerable. In this light, it is noted that whether the source has a long or 

short coherence length is also immaterial. However, the size of the particles is not 

measurable by this technique but we can measure the number of particles. The optical 

waves are divided into two paths by a 2 × 2 single-mode fused fiber coupler with a 

nominal 50%:50% splitting ratio. The signal fiber end face is cleaved at normal angle 

while the end of the other fiber is slanted and rests free in air with essentially zero 

reflection from the fiber–air interface. The returned signal from the signal fiber is 

detected by a dc-coupled detector. The signal is subsequently acquired by a data 

acquisition board and processed by a computer. Assuming no energy losses, the formula 

for Fresnel reflectivity can be written as  
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  (3.1) 

where p is the detected power (signal), p0 is the laser power (p0 �1 mW), � is the 

splitting ratio of the fiber coupler (� = 0.5), n is the refractive index of the tested fluid, 

and nf  is the refractive index of the fiber (nf =1.44). In a water flow with air bubbles, 
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the refractive index n =1.0 for air and n = 1.33 for water. According to Eq. (3.1) and 

using parameters given herein, the power change when the fiber tip encountered an air 

bubble is about 7.6 �W, which is easily measurable (a few volts: see Fig. 3.3). For a 15 

�m size solid particle, the signal level is experimentally determined to be about 0.15 V 

(see Fig. 3.6). 

Although the determination of phases is obvious using Eq. (3.1), the determination 

of velocity is not. Most existing studies used multiple fibers and cross-correlation to 

obtain velocity information in the flow of gas bubbles in a liquid or solid particles in a 

liquid or gas. One exception is in Cartellier (1992), who employed a single fiber to 

measure the velocity of gas bubbles by examining the signal rising time (phase change 

from liquid to gas) and subsequently complicated signal processing. This is because the 

duration required for the optical signal to rise is a function of several interfacial 

parameters, including the bubble velocity and curvature. Although in Cartellier’s work 

(Cartellier, 1992), the result in the bubble size measurement is very good (error is about 

2%), the error in the bubble velocity measurement is quite big (about 20%). As stated in 

Cartellier’s paper (Cartellier, 1992), an interesting but not understood phenomenon 

occurred in all the measurements. Namely, a low amplitude peak just prior to the strong 

rise in the optical signal always appears. In this article, we show that, by sampling at 

high frequency, this initial low amplitude peak actually consists of a train of oscillatory 

waves. We assume that the waves are caused by the coherent beat between the Fresnel 

reflection off the fiber–liquid interface and the scattered signal off the gas bubble or the 

solid particle. We used this new information to determine the velocity of bubbles and 
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solid particles in a liquid flow. We also assume that a similar wave train occurs in the 

gas flow seeded with liquid droplets and solid particles. The oscillation wave train is 

indeed equivalent to the Doppler fringes in LDV. Note that only the velocity component 

parallel to the fiber axis is measured. Multiple fiber probes are needed if other velocity 

components are to be measured. 
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Fig. 3.2 Sketch of a particle in front of the fiber tip. 

 

Fig. 3.2 clarifies the following discussion. The multi-longitudinal mode diode laser 

used in this experiment has a coherence length of about 200 µm. Objects (e.g., solid 

particles in a liquid or gas flow, gas bubbles in a liquid flow, or liquid droplets in a gas 

flow) within such a distance in front of the flat-cut fiber tip scatter the light back to the 
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fiber and coherently beat with the optical signal reflected off the fiber-fluid interface. 

Outside the coherence length the oscillation amplitude is reduced. As the object moves, a 

time-dependent interference wave will be observed. The period of the oscillatory waves 

gives the velocity of the object in the direction normal to the fiber end face (or parallel to 

the fiber). According to the Fresnel formula, the electric field reflectivity is given by (n2-

n1)/(n2+n1) for light propagating in a medium with an index n1 into a medium with an 

index n2. If n1> n2, the field reflectivity is negative representing a π phase shift of the 

reflected field. If n1< n2, the phase shift is zero. Thus, the reflected field Ea at the fiber-

fluid interface and the scattered field Eb from the fluid-object interface can be expressed 

as 

ai
aa ebE φ=  , ( )bi

b bE b e φ ψ+=   (3.2) 

where ba and bb describe the amount of light coupled back into the fiber from the two 

interfaces, and φa or φb  is either zero or π. ψ describes the round-trip phase shift of the 

field propagating between the fiber-fluid interface and the fluid-object interface, and is 

given by 

4
wn d

πψ
λ

= ∆   (3.3) 

where λ is the laser wavelength, nw is the refractive index of the fluid, and ∆d is the 

wavelength of the oscillatory returned signal. The total returned power P due to Ea and 

Eb is P = Ea+Eb2. From Eq. (3.2), P can be expressed as, 

)cos(222 ψδ +++= baba bbbbP    (3.4) 

where the last term is the coherent-beating term which produces the oscillatory waves. δ 
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is zero if the two interfaces produce the same phase shift, and π if the phase shift is 

opposite. The period of the oscillation is derived by the condition ψ = 2π.  From Eq. 

(3.3), the distance ∆d that the object has to travel for one complete oscillation cycle is 

2 w

d
n
λ∆ =   (3.5) 

By measuring the period of the oscillation, T, the velocity of the object can be 

calculated from 

T
d

u
∆=    (3.6) 

where u is the velocity of the object in the direction parallel to the fiber. Note that Eq. 

(3.6) does not provide the information on whether the object is approaching or moving 

away from the fiber tip. This means that there exists a directional ambiguity.  Therefore 

this technique can only be used in unidirectional flows unless applying cross-correlation 

with signals taken from multiple fibers (e.g., Cavalier et al. 1989, Rinne and Loth 1996, 

Barrau et al. 1999, Rensen and Roig 2001, Kiambi et al. 2001) is used to resolve the 

flow direction. Moreover, Eq. (3.6) only provides velocity information in one direction 

(parallel to the fiber). Additional fiber probes may be needed if more than one velocity 

component is to be obtained. 

Although the fiber probe has a very small dimension, errors could still be 

significant unless cares are taken. Possible errors come mainly from two sources: the 

presence of the fiber tends to slow down the flow in the vicinity of the fiber, and small 

particles passing the fiber tip at an angle to the fiber orientation. Both errors will be 

demonstrated and minimized with a remedy strategy. Signal processing and results will 

be given in the next section. 
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Fig. 3.3 Low sampling rate (10 kHz) of a bubble signal: (a) raw signal and (b) detail 

of rising front. 
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A proof of concept experiment is first conducted using a flow with water and air 

bubbles. Fig. 3.3(a) shows a portion of the typical raw signal with a sampling rate of 10 

kHz, while Fig. 3.3(b) shows the detail of the signal at the rising front. A low amplitude 

signal in front of the rising front similar to that reported in Cartellier (1992) is clearly 

seen in Fig. 3.3(b).   
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Fig. 3.4 High sampling rate (10 MHz) of the rising front of a bubble signal. 

 

Fig. 3.4 shows the rising front of a similar case with the signal taken at a much 

higher sampling rate of 10 MHz. The oscillatory fluctuations are clearly evident. The 

feature of the low amplitude hump in Fig. 3.3(b) is indeed the envelope of the high-

frequency waves, as described in Eq. (3.4) and shown in Fig. 3.4. This phenomenon also 

appears when a solid particle is encountered (Fig. 3.6). This demonstrates the 

assumption that the waves are caused by the coherent beat between the Fresnel reflection 
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off the fiber-liquid interface and the scattered signal off the gas bubble or the solid 

particle may be correct. Therefore, the velocity in the direction parallel to the fiber axis 

of the object could be calculated using Eq. (3.6). Once the oscillating period T in Eq. 

(3.6) is obtained, velocity can be easily computed, provided the wavelength of the light 

source (�) and the refractive index of the fluid (nw) are known [so that �d can be 

obtained using Eq. (3.5). To find T the power spectral of the oscillating signal is first 

computed to locate the peak frequency. Curve fitting using a four-point cubic-spline 

method in the vicinity of the peak frequency is subsequently applied to interpolate the 

peak of the spectral for better accuracy. 

Two sets of experiments are conducted to validate the technique for velocity and 

fraction ratio measurements. The first set of experiment is to measure the solid particle 

velocity and the second set of experiment is to measure the bubble void fraction. 

3.3 Validation of Velocity Measurement 

A free water jet seeded with spherical polystyrene particles (mean diameter 15 µm) 

coming out from a constant head reservoir into air is used to validate the velocity 

measurement. The particles are neutrally buoyant and very small, indicating that the 

measured particle velocity is indeed the fluid velocity. The inner diameter of the jet 

orifice is 4.5 mm with its flow rate regulated by a valve. The jet mean velocity is 

calculated through weighting the outflow. The optical fiber sensor is located right at the 

jet exit and is set at four different angles (parallel, normal, 35° and 60°) to the jet 

direction (horizontal) to test the feasibility of the technique. Fig. 3.5 sketches the setup 

of the jet and the optical fiber. The jet velocity is varied from 0.63 m/s to 0.78 m/s (the 
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nozzle based jet Reynolds number is between 2,800 and 3,500). The experiments were 

run multiple times for each combination of jet velocity and fiber angle with data taken 

near the center of the jet. Using Eq. (3.6) the velocity component in the direction parallel 

to the optical fiber is calculated. 

 

Constant Head Tank

Optical Fiber

θ

 
 

Fig. 3.5 Sketch of the setup and velocity measurement of the free jet. 

 

Fig. 3.6(a) shows a typical signal of the particle-seeded flow sampled at 10 MHz. 

The experimental condition in Fig. 3.6 is that the jet velocity is 0.78 m/s while the fiber 

probe is parallel to the flow. The data, if expanded, indicate that the period of the waves 

becomes longer at the end of the signal, compared to that at the beginning of the signal, 

suggesting a decrease in velocity when the particle approaches the fiber. This is 

consistent with the fact that the velocity of the particle must decrease and inevitably 
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changes its direction slightly due to the presence of the fiber and the stagnation point at 

the fiber tip. This means that one could underestimate the particle (and thus the fluid) 

velocity when the particle is too close to the fiber. 
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Fig. 3.6 (a) Signal of a particle. (b) Corresponding velocity calculated using every 

20 �s of the signal. 
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Fig. 3.6(b) shows the measured velocity calculated from each 20 ms interval of the 

signal in Fig. 3.6(a), indicating the decrease of the particle velocity when it is close to 

the fiber tip. Therefore, the later part of the oscillatory signal is not as useful due to the 

interference of the fiber. Roughly speaking, using the first one-quarter of the signal 

proves to be reliable for the present tests. For other flow conditions, the same analysis 

can be performed to identify the useful portion of the signal. It is noted that the total time 

span in Figs. 3.6(a) and 3.6(b) is 240 �s. Within this time span, the total number of 

oscillations is 360 which corresponds to a span length of 175 �m, according to Eq. (3.5). 

Thus, Fig. 3.6(b) indicates that, for a distance of about 125 �m away from the fiber tip, 

the velocity is not affected by the presence of the fiber. Note that 125 �m is equal to the 

fiber diameter and within the coherent length of the laser employed. The length between 

125 �m and 175 �m from the fiber end face, which is 50 �m, multiplied by the beam 

diameter of about 30 �m (corresponding to a beam divergent angle of 11°) can be 

considered as the maximum measurement volume of the technique, as not all scattered 

light from within this volume couples back into the fiber. 

The measured velocity using the optical fiber technique is compared with the mean 

velocity measured by the weight of the water coming out of the nozzle. The comparison 

is shown in Fig. 3.7. Very good agreement is obtained. Note that the velocity in Fig. 3.7 

only represents the velocity component parallel to the fiber probe, not the jet speed. The 

consistently slightly higher velocity using the fiber technique could be due to the fact 

that the velocity at the center of the jet is slightly higher than the mean velocity. It 

should be pointed out that when θ = 90° (fiber orientation is normal to the flow), the 
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measured velocity is nonzero. This is an intrinsic nature of the technique - the distance 

between the particle surface and the fiber tip varies as the particle passing the fiber even 

if at the normal angle. The approximately 0.02 m/s (about 3% of the mean jet speed) 

measured velocity can be treated as an inherent error of the technique. The technique has 

a very high repeatability in velocity measurement - the standard deviation of the repeated 

measurements is between 0.01 m/s and 0.02 m/s which is relative small (less then 2%) 

compared with the measured mean velocity. From the comparison, it is evident that the 

proposed technique is capable of measuring velocity with a reasonable high accuracy.  
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Fig. 3.7 Comparison of particle velocity measurements. ΟΟΟΟ, θθθθ = 90 degree; *, θθθθ = 60 

degree; +, θθθθ = 35 degree; ∆∆∆∆, θθθθ = 0 degree, u = 0.63 m/s; ∇∇∇∇, θθθθ = 0 degree, u = 0.72 m/s; 

����, θθθθ = 0 degree, u = 0.78 m/s.  Note that the jet exit velocity u = 0.78 m/s in all the 

cases except in the θθθθ = 0 degree cases. 
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3.4 Validation of Fraction Ratio Measurement 

Due to the change in refractive index, the phase of the flow at the measurement 

point (the fiber tip) can be easily identified, allowing the measurement of the fraction 

ratio of each phase. To validate the technique, a bubbling water column is used.  Fig. 

3.8 sketches the setup of the experiment. A transparent long vertical pipe with an inner 

diameter of 4.15 cm and a height of 117 cm filled with water was used to observe the 

change of the free surface elevation with and without air bubbles. A bubble generator 

with a valve to control the bubble rate is used to generate air bubbles. The generated 

bubbles come out from a porous air stone located near the bottom of the pipe. The height 

h is the original water level, measured from the air stone, before the bubble generator is 

turned on, while the height hb is the increased water level after the bubble generator is 

turned on. The fiber optic probe is inserted vertically downward as depicted in Fig. 3.8. 

Three sets of void fraction tests with different combinations of h and hb are 

conducted: (h, hb) = (0.934, 0.143) m, (h, hb) = (0.980, 0.101) m, and (h, hb) = (1.029, 

0.055) m. The measurement duration is kept constant at 52 s with a fixed sampling rate 

of 20 kHz for each test. The fiber optic probe is located at 8 cm below the mean free 

surface (after the bubble generator is turned on) in all the cases. Note that the observed 

global void fraction is calculated using hb/(h+hb), which is different from the void 

fraction at the measurement point (hereafter called the local void fraction) of the optical 

fiber due to the compressibility of the air. The ideal gas law with the assumption of 

hydrostatic pressure is applied to backcalculate the local void fraction at the 

measurement point from the global void fraction for comparison with the measurements.   
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Fig. 3.8 Experimental setup for the void ratio measurement. 

 

Fig. 3.9 shows the global void fraction, the local void fraction converted from the 

observed global void fraction using ideal gas law, and the measured void fraction using 

optical fiber for the case of (h, hb) = (0.934, 0.143) m. Although the six data points taken 
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by the optical fiber are very consistent, their values are all lower by approximately 1% 

from the true local void fraction. This is due to the fact that the fiber end face needs a 

short period of time to dry out when it encounters an air bubble (water tends to collect at 

the fiber surface rather than at the end face due to surface tension). This duration is 

estimated to be 0.71 ms, calculated by shifting the optical fiber measurement up (about 

1%) to match the local void fraction with the known number of bubbles (mean is 760) 

and mean velocity of bubbles (0.170 m/s) measured using the present technique. In other 

word the measured void fraction using optical fiber needs to be corrected by adding the 

short duration for each bubble encounter.   
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Fig. 3.9 Correction of the void fraction measurements for the case of (h, hb) = (0.934, 

0.143) m. ��, observed global void ratio; � � , local void ratio at the measurement 

point using the ideal gas law from the global void ratio; •, measured void ratio using 

optical fiber without correction; � � � , mean measured void ratio without 

correction. 
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Fig. 3.10 Comparison of void fraction measurements. ΟΟΟΟ, (h, hb) = (0.934, 0.143) m; ����, 

(h, hb) = (0.980, 0.101) m; ∆∆∆∆, (h, hb) = (1.029, 0.055) m. 

 

With the correction, Fig. 3.10 shows the comparison of the local void fraction 

measurements from the three sets of experiments (a total of 17 tests). Very good 

agreement is obtained. The root-mean-square error in the void fraction measurement is 

0.19%. From the comparison, it is evident that the present technique is capable of 

measuring the void fraction with a high accuracy. Since the technique is also capable of 

measuring the bubble velocity, the distribution of the bubble chord length can also be 

obtained through the measured duration of each void (bubble encounter) with its 

corresponding velocity. The measured distribution of bubble chord length for the case of 

(h, hb) = (0.934,0.143) m is demonstrated in Fig. 3.11. The technique has indeed been 
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tested using a liquid flow seeded with air bubbles and solid particles. As expected, the 

technique is able to measure both the bubble and particle velocities. The resulting signal 

is basically the mix of those in Figs. 3.3(a) and 3.6(a). A preliminary experiment on 

liquid spray into the air was also attempted. The oscillation is not completely resolvable 

because the speed of the available data acquisition board is insufficient to resolve the 

high spray velocity. Since the real velocities of these tests are not available, they are not 

presented in the validation sections. 
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Fig. 3.11 Measured distribution of the bubble chord length for the case of (h, hb) = 

(0.934, 0.143) m. 
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3.5 Conclusion 

In conclusion, the technique for the measurements of the fluid velocity of a liquid–

solid flow and the void fraction of a liquid–gas flow is present and validated. Based on 

the coherent beat signal between the Fresnel reflection off the fiber–liquid interface and 

the scattered signal off the object (gas bubble or solid particle), the technique is capable 

of measuring the velocity of the object in the direction parallel to the fiber with a high 

accuracy. In addition, based on the change in refractive index from the fiber–fluid 

interface, the phase of the fluid at the measurement point can be easily distinguished, 

allowing the measurement of the fraction ratio of each phase, including the number of 

solid particles and the void fraction of gas. 
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CHAPTER IV 

4 BUBBLE SIZE MEASUREMENTS: BUBBLE VELOCITY, 

DIAMETER, AND VOID FRACTION MEASUREMENTS IN A 

MULTIPHASE FLOW USING FIBER OPTIC 

REFLECTOMETER* 

A fiber optic reflectometer (FOR) technique featuring a single fiber probe is 

investigated for its feasibility of measuring the bubble velocity, diameter, and void 

fraction in a multiphase flow. The method is based on the interference of the scattered 

signal from the bubble surface with the Fresnel reflection signal from the tip of the 

optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction 

is applied to compensate the underestimated measurement value. Velocity information is 

accurately obtained from the reflected signals before the fiber tip touches the bubble 

surface so that several factors affecting the traditional dual-tip probes such as blinding, 

crawling, and drifting effects due to the interaction between the probe and bubbles can 

be prevented. The coherent signals reflected from both the front and rear ends of a 

bubble can provide velocity information. Deceleration of rising bubbles and particles 

due to the presence of the fiber probe are observed when they are very close to the fiber 

 
*Reprinted with permission from “ Bubble velocity, diameter, and void fraction 
measurements in a multiphase flow using fiber optic reflecometer”  by Lim, Chang, Su 
and Chen (2008). Review of Scientific Instruments, DOI 10.1063/1.3053271, Copyright 
[2008] American Institute of Physics 
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tip. With the residence time obtained, the bubble chord length can be determined by 

analyzing the coherent signal for velocity determination before the deceleration starts.  

The bubble diameters are directly obtained from analyzing the signals of the bubbles that 

contain velocity information. The chord lengths of these bubbles measured by FOR 

represent the bubble diameters when the bubble shape is spherical, or represent the 

minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles 

obtained from the FOR measurements are compared with those obtained simultaneously 

using a high speed camera. 

4.1 Introduction 

Bubble characteristics such as the velocity, size, and void fraction in multiphase 

flows have been of great interest to many researchers for several decades. Most studies 

have been conducted using laboratory experiments with various optical techniques.  

Traditional nonintrusive techniques such as laser Doppler velocimetry and particle 

image velocimetry (PIV) have been successfully used to measure the liquid velocity in 

gas-liquid flows by tracking or correlating tiny seeding solid particles. However, 

measurements become questionable or invalid due to noise caused by the scattering of 

light from gas bubbles or attenuation of light by solid particles when applied to 

multiphase flows. Certain success has been achieved by using PIV and its derivatives 

with advanced approaches such as using multiple cameras and various image processing 

methods to obtain velocity of each phase (e.g., Lindken et al., 1999; Deen et al., 2002; 

Seol et al., 2007; Ryu et al., 2005; Br�der and Sommerfeld, 2007; Kashima et al., 2006).  

However, hurdles remain due to the presence of the dispersed phase especially with a 
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high concentration of bubbles, while in most cases only velocities of a single phase were 

measured. 

As for intrusive probes, conductivity probes (e.g., Chanson, 1996; Chanson & 

Brattberg, 2000; Chanson, 2002) and fiber optic probes have been successfully applied 

to multiphase flows. Various intrusive fiber optic probes with a single tip, double tips, or 

quadruple tips have commonly been used for the measurements of multiphase flows due 

to its simplicity, high temporal resolution, and high spatial resolution compared with 

some conductivity probes. Diverse applications using single or double fiber optic probes 

in liquid-gas flows can be found in Cartellier (1992), Rinne and Loth (1996), Barrau et 

al. (1999), Murzyn et al. (2005), Rensen and Roig (2001), Kiambi et al. (2001), and 

Rojas and Loewen (2007). In addition, applications in gas-solid flows can be found in 

Cavalier et al. (1989) and Hervert et al. (1994). A four-point fiber optic probe was also 

used to measure the bubble size and velocity by Guet et al. (2003) and Luther et al. 

(2004). In most fiber optic techniques, the local void fraction is obtained by a single 

fiber probe, the first probe in a dual tip probe, or the central tip in the four-point probe 

that uses the reflected power change due to the refractive index change at the fiber tip.  

Similar to the conductivity probes, dual fiber probes feature a small distance between the 

fiber tips that are employed to obtain the velocity information through cross correlating 

the bubble signals. It has also been reported that bubble velocities can be obtained using 

a single fiber probe by analyzing the latency length (e.g., Cartellier, 1992; Barrau et al., 

1999; Cartellier and Barrau, 1998; and Juliá et al., 2005). Moreover, bubble velocities 

can also be obtained by analyzing the coherently mixed signals from light scattered off 
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the bubble surface and Fresnel reflection from the tip of the single fiber in the fiber optic 

reflectometer (FOR) system, as introduced by Chang et al. (2003, 2004). The FOR 

technique is capable of measuring the velocities and fraction ratio of liquid (by 

measuring the tiny seeded particles) and gas bubbles in a gas-liquid flow. It is also 

capable of measuring the velocities and concentration of liquid droplets or solid particles 

in a gas-liquid or a gas-solid flow. The drawback is that a very high sampling rate is 

needed if a high velocity is to be measured (Chang et al., 2004). A similar measurement 

technique using the same principle as the FOR technique can be found in Wedin et al., 

(2003). They obtained velocities of micro-bubbles that behave similar to solid spheres 

seeded in water. The electrochemically generated micro bubbles have a diameter that is 

small enough to prevent them from being pierced through by the optical fiber probe. The 

present study mainly focusing on large bubbles may be considered as a complementary 

work of Wedin et al. (2003). 

Information of the bubble size and its distribution is important in the study of gas-

liquid flows. The bubble size, aspect ratio, and origin as well as bubble and liquid 

velocity fields have been obtained using various imaging techniques such as 

backlighting (e.g., Rye et al., 2005) and advanced PIV (e.g., Lindken et al., 1999; Deen 

et al., 2002; Seol et al., 2007) with appropriate post processing methods applied to the 

acquired images. Kawaguchi et al. (2002) used an interferometric laser imaging for 

droplet sizing (ILIDS) technique to measure the size of droplets and bubbles. The ILIDS 

technique measures the diameter of spherical transparent particles or spherical bubbles 

by examining the fringe pattern generated by the reflected laser light and the scattered 
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laser light from the objects. One or two laser light sheets and a charge coupled device 

(CCD) camera are required with predetermined angles for an accurate measurement.  

Unlike the ILIDS technique that uses the interference image in the non focal plane, 

Dehaeck et al. (2005) employed a glare point velocimetry and sizing (GPVS) technique 

which uses two glare points of reflected laser light and refracted laser light in the focal 

plane to obtain the size of spherical bubbles. The ILIDS and GPVS techniques provide 

accurate size measurements of droplets or bubbles. However, the experimental setup and 

analysis algorism are rather complicated, such as deciding the angles of laser light sheets 

and the camera, and the objects must be spherical. 

Although using imaging methods seems to be easier and more accurate in bubble 

size measurements in comparison to the use of optical fiber probes (such as those 

mentioned above), imaging methods are restricted to the multiphase flows with a 

relatively low void fraction. Also there must be no obstructions between the target 

bubbles and the cameras if imaging methods are to be used. Employment of intrusive 

optical fiber or conductivity probes is necessary to obtain bubble size, velocity, and void 

fraction in the flows with a high void fraction such as breaking waves (e.g., Ryu et al., 

2005; Rensen and Roig, 2001) and hydraulic jumps (e.g., Chanson and Brattberg, 2000; 

Murzyn et al., 2005), or having difficulty for optical access. Double optical fiber or 

double conductivity probes are frequently used to estimate the size of bubble (e.g., 

Chanson and Brattberg, 2000; Chanson, 2002; Cartellier, 1992; Rinne and Loth, 1996; 

Barrau et al, 1999; Murzyn et al., 2005; Rensen and Roig, 2001; Kiambi et al., 2001) 

because the velocity information, obtained from cross-correlating the signals, is 
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necessary in obtaining the chord length of each bubble (by multiplying the residence 

time of bubble). Since most dual-probe techniques, either conductivity or optical base, 

are not capable of measuring the bubble diameter directly, the mean bubble diameter or 

the bubble size distribution are indirectly estimated from the mean chord length or chord 

length distribution. The air-water interfacial area is then obtained from the estimated 

bubble diameter and local void fraction. Nevertheless, this approach works only if the 

bubble size distribution is either uniform or within a narrow band. Otherwise only the 

bubble chord length distribution is obtained rather than the bubble diameter. 

The objective of this study is to measure the diameter of bubbles directly in a 

bubbly flow using the FOR technique developed by Chang et al. (2003). It is found that 

an individual bubble size can be directly obtained using the FOR technique if the 

corresponding bubble contains velocity information. More detailed explanation is 

presented in Section 4.5. In order to validate the results obtained using the FOR 

technique, images taken using a high speed camera were used to measure the bubble 

velocity and diameter simultaneously with the FOR probe. 

4.2 Principle and Experimental Condition 

The FOR technique featuring a single fiber optic probe allows simultaneous 

measurements of bubble velocity, bubble diameter, void fraction as well as acceleration.  

Especially, the technique is capable of measuring velocities and fraction ratio of all 

phases in a multiphase flow at a given point. The apparatus of FOR is shown in Fig. 4.1.  

The technique can be briefly described as follow: A continuous-wave optical signal, 

derived from a multi-longitudinal mode diode laser (wavelength 1.3 µm, power level 1 
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mW) driven by a constant current (30 mA), is launched into a standard 

telecommunication graded single-mode optical fiber (SMF-28 fiber). The fiber core 

diameter is about 8 µm and the overall fiber diameter with the protective coating 

removed is 125 µm. The fiber refractive index is 1.44 at the 1.3 µm wavelength. The 

optical waves are divided into two paths by a 2 × 2 single-mode fused fiber coupler with 

a nominal 50%:50% splitting ratio. The signal fiber end-face is cleaved at normal angle 

while the end of the other fiber is slanted and rests free in air with essentially zero 

reflection from the fiber-air interface. The coupled reflected (by fiber end face) and 

returned (by scattering outside the fiber) signal is detected by a dc-coupled detector.  

The detected signal is subsequently acquired by a data acquisition board and processed 

by a computer.  

 

 
 

Fig. 4.1 Apparatus of the FOR system. 



53 

 

 

The amplitude of the received signal represents the reflected optical power due to 

Fresnel reflections off the fiber-fluid interface at the fiber tip. Assuming no energy 

losses, the power of the light reflected from the fiber-fluid interface using Fresnel 

reflectivity can be written as 

2

1 0 1 2
f

f

n n
P P

n n
α α

� �−
= � �� �+� �

  (4.1) 

where P1 is the detected power of the light reflected from the fiber-fluid interface, P0 the 

laser power, α1 and α2 the splitting ratio of the fiber coupler (α = α1 = α2 = 0.5 in the 

experiment), n the refractive index of the fluid, and nf the refractive index of the fiber (nf 

= 1.44 in the experiment). In a water flow with air bubbles and solid particles, the 

refractive index is n = 1.0 for air and n = 1.33 for water. The power change due to the 

fiber tip encountering an air bubble is very large and can be easily measured, while the 

power change due to the fiber tip encountering a solid particle can also be easily detected 

and is distinguishable from the encounters of air and water. 

Although the determination of phases is obvious based on Eq. (4.1), the 

determination of velocity is not. The diode laser used in the experiment has a coherence 

length of about 300 µm. An object (e.g., a solid particle in a liquid or gas flow, a gas 

bubble in a liquid flow, or a liquid droplet in a gas flow) within such a distance in front 

of the flat-cut fiber tip scatters the light back into the fiber. The light coherently beats 

with the optical signal reflected off the fiber-fluid interface. Outside the coherence 

length the oscillation amplitude is reduced rapidly. As the object moves, a time-

dependent interference wave train is observed. The period of the oscillatory waves gives 
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the continuous velocity information of the object in the direction normal to the fiber end 

face (i.e., parallel to the fiber axis). According to the Fresnel formula, the electric field 

reflectivity is proportional to (n2-n1)/(n2+n1) for light propagating in a medium with a 

refractive index n1 into a medium with an index n2. If n1 > n2 the field reflectivity is 

negative representing a π phase shift of the reflected field. If n1 < n2 the phase shift is 

zero. Thus, the reflected field Ea at the fiber-fluid interface and the scattered field Eb 

from the fluid-object interface can be expressed as 

ai
aa ebE φ=  ,  ( )bi

b bE b e φ ψ+=   (4.2) 

where ba and bb describe the amount of light coupled back into the fiber from the two 

interfaces, and φa or φb is either zero or π. ψ denotes the round-trip phase shift of the 

field propagating between the fiber-fluid interface and the fluid-object interface, and is 

given by 

4
wn d

πψ
λ

= ∆   (4.3) 

where λ is the laser wavelength, nw is the refractive index of the fluid, and ∆d is the 

corresponding distance that the object travels to create such a phase shift.  The total 

returned power P due to Ea and Eb is P = Ea+Eb2. From Eq. (4.2), P can be expressed 

as 

)cos(222 ψδ +++= baba bbbbP   (4.4) 

where the last term is the coherent-beating term which produces the oscillatory waves.  

δ is zero if the two interfaces produce the same phase shift, and π otherwise. The period 

of the oscillation is derived by the condition ψ = 2π. From Eq. (4.3), the distance ∆d that 
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the object needs to travel for completing one oscillation cycle is 

2 w

d
n
λ∆ =   (4.5) 

By measuring the period of the oscillation, T, the velocity of the object, u, can be 

calculated as 

T
d

u
∆=   (4.6) 

Since ∆d is 0.492 �m in the current setup when the fluid is water, a high sampling 

rate is required in order to detect the high frequency signal of the coherent-beating light.  

The minimum sampling rate required based on the Nyquist frequency is approximately 

4|u| MHz with u in m/s (Chang et al., 2004). 

For an air bubble in water, the velocity information can be obtained from the front 

signal before the fiber tip touches the bubble’ s frontal water-air interface. In this way the 

blinding, crawling, and drifting effects (Barrau et al, 1999; Julia et al., 2005) due to the 

interaction between the probe and the bubble can be avoided. In addition, the velocity of 

bubble may also be obtained from the rear interface signal before the fiber tip, when 

inside the bubble, reaches the rear air-water interface and returns back into the water.  

Note that in such a case ∆d calculated based on Eq. (4.5) equals 0.655 �m in the 

experiment because the bubble interior is filled with air. Note that the acceleration of 

bubbles can also be obtained since the velocity changes can be continuously monitored 

with a high temporal resolution (approximately 2 �s in the present study) based on the 

oscillatory signal within the coherence length of the laser. 

Fig. 4.2 shows the sketch of a bubble in front of a FOR fiber tip. The optical signal 

emerging from the fiber diverges at an angle of 10° and may be reflected back from the 
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Fig. 4.2 Sketch of a bubble in front of the fiber tip. 

 

bubble surface. Not all the reflected light from the bubble couples back into the fiber.  

The cross section of the reflected light at the fiber end face is denoted as s2 and the 

location on the surface of the bubble illuminated by the light beam is denoted as s1.  

The percentage of the reflected light that couples back into the fiber depends on the 

surface angle at s1 and the distance between the fiber tip and the surface of the bubble.  

The returned power can be described as 

2 0P Pβ=   (4.7) 

where P2 is the power reflected from the bubble and returned back into the fiber and β is 

the ratio of the returned power into the fiber core to the reflected power at the surface s2. 
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(a) 

 
 (b) 

 

Fig. 4.3 Percentage of returned power of light back into the fiber. (a) spherical 

bubble with a diameter of 4 mm (a = b = 2 mm) and (b) ellipsoidal bubble with a = 

2 mm and b = 1 mm. 
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The surface angle of the bubble at s1 is a function of r, a, b, andθ, thus β can be 

described as 

( , , , , )f d r a bβ θ=   (4.8) 

where d is the distance between the fiber tip and the bubble surface, r is the location of 

the center of the fiber in the x direction, a is one-half of the major axis of the bubble, b is 

one-half of the minor axis, and θ is the slant angle of the bubble. 

Fig. 4.3 shows an example of the percentage of returned power for different r and d 

when the shape of the bubble is a sphere with a diameter of 4 mm (i.e., a = b = 2 mm) 

[Fig. 4.3(a)], and an ellipsoid with a = 2 mm and b = 1 mm [Fig. 4.3(b)]. We assume that 

the spatial distribution of the light beam follows a Gaussian distribution. As expected, 

the smaller the values of r and d, the greater the power P2. The figure also indicates that 

only within a short distance of r and d enough light power is reflected back into the fiber 

from the bubble surface. The threshold value of β depends on the sensitivity of the photo 

detector used. The result implies that the velocity of bubble can be obtained only if the 

fiber is located near the center of the bubble during the encounter. Otherwise the optical 

signal provides only the residence time of the bubble but, owing to lack of the reflected 

signal from the bubble surface, not velocity information of the bubble. 

The total returned power, Pr, from the fiber-water interface and water-bubble 

interface that produces the coherent beating oscillatory waves can be expressed as 
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  (4.9) 

The power Pr can be converted to a voltage Vr by  
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r rV cP=   (4.10) 

where c is 4×104 V/mW for the detector-amplifier module used in this experiment. 

For the case of a solid particle seeded in water, the optical signal coming out from 

the fiber tip and scattering from the particle surface has very high probability of being 

reflected back into the fiber if the size of the particle is very small (i.e., comparable with 

the size of the fiber core). This is because the smaller the object, the wider the angle for 

light scattering from the object. This indeed is the typical way to measure the fluid 

velocity by indirectly measuring the tiny seeding particles moving with the fluid.  

Moreover, the light scattering from the particle surface is in general non-directional 

because of the relatively rough particle surface. Therefore, velocity information can be 

obtained from almost all solid particles the probe encountered, as experienced in Chang 

et al. (2003). On the contrary, the velocity information for bubbles can be obtained from 

only a fraction of bubbles among all the bubbles encountered because the bubble 

surfaces are mirror-like so the directional reflection depends on Eqs. (4.7) and (4.8).  

Accordingly, reflected light from a larger bubble can return back to the fiber only when 

the angle of surface at s1 is nearly normal to the fiber end surface. The ratio between the 

number of bubbles with velocity information and all the encountered bubbles can be 

estimated from 

i

o

A
A

γ =   (4.11) 

where Ao is the projected area of the object (i.e., bubble) and Ai is the projected area on 

the surface of the object where the reflected light can couple back into the fiber under  
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(a) 

 
 (b) 

Fig. 4.4 Ratio for the number of bubbles providing velocity information to all 

detected bubbles: (a) spherical bubbles with various diameters and (b) ellipsoidal 

bubbles with various eccentricities and b = 1 mm. 
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the condition of β > 0. Therefore, the bubble signal will provide velocity information 

only if the projected location of the fiber probe is within Ai. The ratio γ depends mainly 

on the bubble size and shape (eccentricity) if the coherently mixed signal is detectable 

(i.e., β > 0). Fig. 4.4(a) shows the ratio γ  versus d for various bubble diameters, D, 

when the bubble shape is spherical. As expected, the smaller the bubble, the higher the 

value of γ  because of the wider angle of light scattering. Fig. 4.4(b) shows γ  versus d 

for various bubble shapes (range of the eccentricity e = 0 ~ 0.94) when b is fixed at 1 

mm. Note that the eccentricity is defined as 2 2 /e a b a= − . The more ellipsoidal the 

bubble is, the higher the value of γ because of a flatter surface. 

Although using the FOR technique velocity information cannot be obtained from all 

the bubbles encountered, the diameter of certain bubbles can be directly obtained for 

those bubbles containing velocity information. We assume the spiral movement of a 

bubble is small during the short encounter by the FOR probe. If the fiber tip pierces near 

the center of the bubble, the contact will be nearly normal angle (i.e., a short r in Fig. 

4.2) and therefore light will reflect back to the fiber and enable the velocity 

determination. In such a case, the chord length obtained by the FOR probe is indeed the 

diameter or the minor axis of the bubble of spherical or ellipsoidal shape, respectively. 

In order to validate the FOR technique for bubble diameter measurements, the 

chord length of each bubble obtained from the FOR measurements was compared with 

the diameter obtained from the images captured by a high speed camera. The experiment 

was performed in a rectangular water tank filled with distilled water.   
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Fig. 4.5 Experimental setup with FOR probe and high speed camera. 

 

Fig. 4.5 shows the setup of the experiment. The tank is 25 mm long, 45 mm wide, 

and 600 mm high and made of transparent acrylic plates with a thickness of 5 mm. The 

equivalent diameter, de, which provides the same pressure loss as the rectangular tank 

used in the experiments is 36.3 mm. Using such a small cross section is to ensure that the 

air bubbles are evenly distributed after a certain distance from the bubble source. Air 

bubbles emanated from a porous air stone located near the bottom of the tank. A flow 

meter and valve were used to control the air flow rates. A high speed video camera 

located in front of the tank was used to take bubble images. Through a mirror mounted at 
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a 45°, the same camera was able to capture images of bubbles from both the front and 

the 90° side. The images provide the front view and side view so the sizes of bubbles 

and the locations in contact with the FOR probe can be revealed and recorded. The 

synchronous experiments were performed with bubbles having a 1.86 mm minor axis 

and a 2.91 mm major axis. The diameter variations range between 1.30 mm and 3.06 

mm in the minor axis and between 1.38 mm and 4.91 mm in the major axis. The 

equivalent diameter of bubbles, De, is 2.4 mm.  The Weber number, Bond number, 

Reynolds number, and Capillary number are 1.20, 0.28, 355, and 586, respectively.  

The equivalent radius of bubbles was used as the characteristic length in the above 

characteristic numbers. The ratio of the equivalent bubble diameter to the equivalent 

tank diameter, De/de, is 0.07 and is never lower than 0.03 in the present study. The 

bubble void ratio was found evenly distributed across the small tank. 

4.3 Validation of Void Fraction Measurement 

In the experimental setup in Fig. 4.5, the original water level, h, in the tank before 

turning on the bubble generator was maintained at 470 mm throughout the experiment.  

After bubble generation, the water depth increment is denoted as hb. For void fraction 

measurement, a total of six different air flow rates of 0.49, 0.62, 0.75, 0.94, 1.54, and 

1.97 l/min for bubble generation were used to obtain a void fraction corresponding to hb 

= 3.0, 6.0, 12.0, 16.0, 35.0, and 55.0 mm. The optical fiber probe was located at 390 mm 

from the bottom of the tank in all the test cases (i.e., 80 mm below the original water 

level before bubble generation). The measurement duration was kept constant at 100 s 

with a fixed sampling rate of 10 kHz. The observed global void fraction, defined as 
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hb/(h+hb), is different from the local void fraction at the measurement point of the FOR 

probe due to the compressibility of air. Ideal gas law with an assumption of hydrostatic 

pressure was applied to calculate the local void fraction at the measurement point from 

the observed global void fraction for comparison with the FOR measurements. The 

range of local void fraction tested is between 0% and 12%. 

 
 

Fig. 4.6 Comparison of void fraction: οοοο, local void fraction corrected using ideal gas 

law based on the global void fraction measurement; +, measured void fraction 

using FOR without correction; *, measured void fraction using FOR with 

correction. 

 

The FOR technique measures velocities using the reflected signal before the fiber 

tip touches the object (i.e., the surface of a bubble in the tests). Therefore, the crawling, 

blinding, and drifting effects induced by a piercing event do not affect the velocity 
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measurements. However, the piercing effect should be considered in the bubble 

residence time (and therefore chord length and void ratio) measurement since it requires 

the probe to penetrate through bubbles. Many researchers such as Juliá et al., (2005) 

have reported an underestimation of the residence time due to the partial blinding effect, 

large-scale deformation, and additional drifting effect in the outer region of bubbles.  

Similar results and correction due to the piercing effect were reported by Chang et al. 

(2003). In the study the residence time of air bubbles was found to be underestimated, 

when measured using the FOR system, and a short duration of 0.71 ms for each bubble 

encounter was added to correct the problem. 

Since the same FOR system was used in the present study, the same corrective time 

of 0.71 ms was added to the residence time for each bubble encounter. Fig. 4.6 shows 

the comparison among the local void fractions [back calculated using ideal gas law from 

the measured global void fraction of hb/(h+hb)], the measured void fraction using the 

FOR system without correction, and the measured void fraction corrected by adding the 

corrective time to each bubble encounter. Very good agreement was obtained between 

the void fractions, and the correction for the piecing effect is correct and necessary.  

The root-mean-square (r.m.s.) error in the void fraction measurement is 0.09%. It is 

evident that the FOR technique is capable of measuring the void fraction with a high 

accuracy. 

4.4 Bubble Velocity Measurement 

For the velocity measurement, the optical fiber probe was located at 390 mm above 

the tank bottom throughout the experiment (i.e., the same as in the void fraction 
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measurements). The air flow rate was maintained at 0.62 - 0.75 l/min. The measurement 

duration was kept constant at 4 s with a fixed sampling rate of 10 MHz. An imaging 

technique was used to validate the measurements of bubble velocity and bubble size 

taken using the FOR method. The imaging technique is similar to that in the bubble 

image velocimetry technique (Ryu et al., 2005) with the use of backlighting. The images 

were captured by a high speed camera mounted on a three-dimensional traverse. The 

camera framing rate was set at 500 Hz and the aperture was set at f/4.0. The field of 

view was 50 × 50 mm2, resulting in an image resolution of 0.0493 mm/pixel for 1024 × 

1024 pixels. The FOR system and the high speed camera were synchronized so data 

acquired from individual bubbles can be directly compared. 

A total of 130 sets of measurements corresponding to a total measurement time of 

520 s were performed using the FOR technique and the imaging method simultaneously.  

It results in a total of 1517 bubbles being detected by the FOR probe. The size of 

bubbles was found between 1.38 and 4.91 mm in the major axis. Note that the bubble 

size is much greater than the diameter of the fiber core of 8 �m and the diameter of the 

fiber of 125 �m. The average local void ratio is 1.64% and the bubble frequency is 2.92 

s-1. Although the void fraction of each bubble can be easily obtained, only a small 

percentage of bubbles provide velocity information. Note that in the FOR technique, the 

bubble velocity is obtained by analyzing the signal during the period when the distance 

between the fiber tip and the bubble is between 100 �m and 300 �m. 

The oscillatory waves providing velocity information can be obtained when the 

angle between the fiber tip and bubble surface is nearly normal (or with a small r as 
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plotted in Fig. 4.3). Although all the bubbles passing through the fiber tip were detected, 

the oscillatory signals were not produced from all the detected bubbles. Among the 

bubbles, only 31 provide good oscillatory front signals (right before the fiber tip in 

contact with the front surface of bubble) for velocity determination, while only 34 

provide good rear signals (right before the fiber tip in contact with the rear surface of the 

bubble and leaving the bubble). Based on the front signals, the number of bubbles 

containing velocity information is therefore only about 2% of the total number of 

bubbles. The ratio is similar to the ratio γ calculated based on Eq. (4.11) and plotted in 

Fig. 4.4. The value of γ  based on the probability of bubbles containing velocity 

information is between 0.017 and 0.026 within the range of the laser coherent length 

when the eccentricity of bubbles is 0.75. If tiny neutrally buoyant particles are seeded in 

the water for water velocity determination, nearly 100% of the detected signals (i.e., 

particle encounters) provides velocity information, as shown in Fig. 4.4(a), because the 

mean diameter of the particles is usually very small [O(10 �m)] in addition to the 

rougher surface of the particles. This was found true in the study of Chang et al. (2003). 

Fig. 4.7 shows sample FOR signals of bubbles and the corresponding video images.  

The left images are the front view images (with the camera looking at a 0° angle) and the 

right images are the side view ones (with the camera looking at a 90° angle through a 

mirror). Both images were analyzed to obtain the bubble size and its relative position to 

the FOR probe. Cartellier and co-workers (Cartellier, 1992; Barrau et al., 1999; 

Cartellier and Barrau, 1998) reported that a low amplitude peak prior to the strong rise of 
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(a) 

 

 
(b) 

 

 
 (c) 

 
Fig. 4.7 Sample bubble signal: (a) FOR signal taken at the front interface and 

corresponding image and velocity information. (b) FOR signal taken at the rear 

interface and corresponding image and velocity information. (c) FOR signal and 

image when the probe is in contact with the bubble edge. 
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the optical signal appears when the angle between the fiber and bubble surface is nearly 

normal. It was found by Chang et al. (2003)  that the low amplitude peak indeed 

consists of a train of oscillatory waves generated by the coherent mixing between the 

Fresnel reflection off the fiber-liquid interface and the scattered signal off the gas bubble 

[corresponding to Fig. 4.7(a)]. This phenomenon also appears when the probe 

encounters solid particles and liquid droplets. In addition, the oscillatory waves are also 

found right before the fiber tip exits bubbles with a nearly perpendicular angle 

[corresponding to Fig. 4.7(b)]. On the other hand, Fig. 4.7(c) shows the case when the 

probe tip penetrates the side of a bubble. The signal increases with low frequency 

fluctuations at the front water-air interface and then suddenly decreases at the rear air-

water interface. These increase and decrease in signal with relatively low frequency 

fluctuations can always be seen at the interfaces for such an encounter.  While the bell 

shape signal can be detected at a low sampling rate, a high sampling rate is needed to 

resolve the oscillation. 

Figs. 4.8-4.10 provide detailed description of the FOR signals taken at a high 

sampling rate of 10 MHz.  Fig. 4.8 shows the front signal between 1.7 and 2.7 ms in 

Fig. 4.7(a). A constant signal of 0.1 V is detected when the probe is in water and outside 

the coherent length of the laser. As the bubble approaches the probe, the coherently 

mixed signal appears in the interval between points A and C (i.e., the bubble is within 

the coherent length). Accordingly, the distance between the fiber tip and the bubble is 

about 100 - 300 �m, depending on the power of the return signals. The amplitude of the 

high frequency oscillatory waves continues to increase until the fiber tip reaches the 
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Fig. 4.8 Analysis of bubble front signal and velocity. 

 

water-air interface (point C). The signal then rises sharply with relatively low frequency 

oscillations when the fiber reaches the interface (point C) and lasts until the fiber 

penetrates the bubble (point D). Subsequently, signal fluctuations between points D and 

E right after the piercing event are observed, representing the drying off of the fiber tip 
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during the interval. After that, the signal maintains a constant high voltage indicating the 

fiber tip is dry and in air. Note that point C representing the instance when the bubble 

touches the fiber end has the minimum voltage. 

 

 
 

Fig. 4.9 Analysis of bubble rear signal and velocity. 
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Although the coherently mixed signal appears in the interval between points A and 

C in Fig. 4.8, only the coherent signal between points A and B is useful for obtaining the 

bubble velocity. The signal is analyzed by spectral analysis for velocity determination 

using Eq. (4.6). The power spectral of the signal over each short interval of 20 �s is first 

computed to find the peak frequency. Curve fitting with a 3-point or 4-point cubic-spline 

method is then applied to locate the peak of the spectral for a better accuracy. Fig. 4.8 

shows the variation of the bubble velocity within the coherent length before the bubble 

touches the fiber tip. The bubble velocity is almost constant in the interval between A 

and B. A deceleration of about 30g to 50g occurs beyond point B due to the interaction 

between the fiber tip and the bubble, with g being the gravitational acceleration. A 

similar deceleration was also observed in the velocity measurement of solid particles due 

to the presence of the fiber (Chang et al., 2003). 

When the fiber tip is inside the bubble, the coherent-beat signal is also observed 

before the fiber tip reaches the rear end of the air-water interface and back to the water if 

the fiber tip and the air-water interface are nearly perpendicular. Fig. 4.9 shows the rear 

signal between 10.4 and 12 ms in Fig. 4.7(b). A constant voltage signal of approximately 

1 V, representing the fiber tip is inside the air bubble, is detected outside the coherence 

length before point F. The coherently mixed signal with a high oscillatory frequency 

appears in the interval between points F and G. The amplitude of the coherent-beat 

signal increases continuously until the fiber tip reaches the rear air-water interface (point 

G) and then decreases dramatically with low frequency oscillations after the fiber 

reaches the interface. Finally, the fiber exits the bubble (point H) and the signal returns 
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to a constant voltage of 0.1 V, representing the fiber tip is in water. Unlike the front 

signal, there is no deceleration (as between points B and C in Fig. 4.8) when the probe is 

exiting the bubble. The period of oscillatory waves is obtained by applying spectral 

analysis over the interval from points F to G. Noted that ∆d is 0.655 �m in such case 

since the fluid is air (∆d = 0.492 �m if the fluid is water). 

 
 

Fig. 4.10 Analysis of small particle signal and velocity. 
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Fig. 4.10 shows a typical signal from a small particle with a mean diameter of 15 

�m seeded in water as presented in Chang et al. (2003). The coherently mixed signal is 

observed in the interval between points J and M when the particle is passing the fiber tip.  

Similar signals can be found for micro bubbles in Wedin et al. (2003) if the bubbles are 

small enough to prevent them from being pierced through by the fiber and thus behave 

similar to solid spheres. As the particle approaches the probe, the coherently mixed 

signal appears from point J. The amplitude of the high frequency oscillation continues to 

increase until the particle begins to change its path at point L due to the presence of the 

fiber tip. The deceleration of particle starts at point K due to the viscous effect of being 

close to the fiber tip (with a distance about the diameter of the fiber). Therefore, only the 

coherent signal between points J and K is useful for obtaining the particle velocity 

because it is not affected by the presence of the fiber. Subsequently, a deceleration (in 

the direction of the fiber axis) is also observed between points L and M after the particle 

starts to change its direction. 

The measured velocity of individual bubble using the FOR technique is compared 

with the velocity measured using the high speed camera. The bubble velocity obtained 

using the FOR technique is the velocity of the front water-air interface. Therefore, the 

bubble velocity from a high speed camera was calculated by tracking the trajectory of 

the upper water-air interface during a time interval of 10 ms right before the bubble 

touched the fiber tip to avoid uncertainties caused by the presence of the fiber. Since the 

spatial resolution is 1 pixel in an image over an average displacement of 50 pixels, the 

uncertainty for velocity measurements using the high speed camera is about 0.01 m/s.    
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(a) 

 
(b) 

 

Fig. 4.11 Comparison of bubble velocity measurements: (a) Velocities based on the 

front signal. (b) Velocities based on the rear signal. 
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Fig. 4.11(a) and Fig. 4.11(b) show the comparisons of velocities obtained from the 

front signal and rear signal, respectively, using the FOR technique and the high speed 

camera. The bubble velocity is in the range of 0.19 - 0.32 m/s. The r.m.s. error in the 

velocity measurements is 0.017 m/s for the front signal and 0.031 m/s for the rear signal.  

The error from the rear signal is slightly greater. The velocity obtained using the high 

speed camera is prior to the contact of bubbles and the fiber tip. Therefore a higher 

uncertainty may be caused by the existence of the fiber and the deformation as well as 

acceleration/deceleration of the bubbles. It is worth pointing out that if the velocity of 

bubbles is obtained using the signal before the fiber tip reaches the bubble front surface, 

such as that in Fig. 4.11(a), the effects due to the interaction between the probe and the 

bubbles such as blinding, crawling, and drifting can be avoided. 

4.5 Bubble Size Estimation 

In the FOR measurements, the diameter of individual bubble can be obtained from 

the bubbles containing velocity information by multiplying the velocity to the 

corresponding residence time. In the residence time measurement for bubble size 

estimation, care needs to be taken on choosing the starting point in the signal to present 

the encounter of the bubble front interface. The residence time of the bubble was 

calculated from point C in Fig. 4.8. Point C represents the instance when the bubble 

touches the fiber end. A minimum voltage would be recorded at this instance due to 

continuous increase in the oscillation amplitude as the bubble approaches the probe 

while the mean signal either remains constant or increases gradually. After the instance 

at point C, the mean signal shoots up rapidly because the bubble interface is no longer 
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approaching the probe but touched the probe so the reflected signal changes from low (in 

water) to high (in air). 

With an available velocity measured, it implies that the fiber tip enters and/or exits 

the bubble near the center of the bubble and the angle between the fiber axis and the 

bubble surface is close to normal. Although the bubble trajectories are neither straight 

nor constant, the spiral movement of bubbles is small during such a short interval.   

Accordingly, we assume that the spiral movement is insignificant during such a short 

piercing event; the chord length obtained indeed represents the diameter of the bubble 

when the bubble is spherical or the minor axis when the bubble is ellipsoidal. In reality 

the optical fiber probe does not always pass through the center of bubbles within the 

effective projecting area Ai in Eq. (4.11) to provide the bubble velocity and size 

information. However, whenever a bubble provides a high frequency oscillatory signal 

as shown in Fig. 4.8, it indicates the fiber end penetrates near the center of the bubble 

and the bubble path is nearly straight during the piercing event. 

In the present study, there are two criteria for finding bubble signals that determine 

the bubble velocity and the bubble diameter. First, the bubble piercing location should be 

close to the center of bubble. For example, the piercing location should be inside the area 

Ai in Eq. (4.11). This way the coherently mixed signal with high oscillation frequencies 

can be observed within the coherent length right before the piercing.  Second, the 

bubble path should be almost straight during the piercing event. As shown in Fig. 4.8, 

the interval between points A and B with a constant velocity should be long enough. The 

minimum time for the interval AB  was set as 100 µs in the present study and the 
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interval AB  must be longer than the interval BC . If satisfying the above two criteria, 

bubble velocities and diameters can be easily found through data analysis. The signal in 

Fig. 4.8 certainly satisfies the two criteria. The coherently mixed signal with high 

frequencies in the interval between points A and D ensures that the fiber probe was 

piercing through the bubble center. In addition, the long interval between points A and B 

( AB ≈ 260 µs > 100 µs) before deceleration ensures a straight bubble path in this duration.  

Note that the entire interval of the interfered signal before the bubble touches the fiber 

end is AC ≈ 340 µs. The velocity and the maximum chord length (i.e., the diameter) of 

the bubble are thus measured. Based on the principle, the technique can be applied to a 

broad bubbles size distribution. 

Fig. 4.12 shows the comparisons of the FOR measured chord length distributions 

between all detected bubbles (a total of 1517 bubbles) and bubbles containing velocity 

information (a total of 65 bubbles). Fig. 4.12(a) shows the chord length distribution of all 

detected bubbles. Since only a fraction of the bubbles containing velocities, the chord 

length is calculated based on the measured residence time multiplied by the mean bubble 

velocity of 0.245 m/s measured using the FOR system as shown in Fig. 4.11(a). The 

measured local void ratio is 1.64% and the mean bubble frequency is 2.92 s-1.  

Accordingly, the mean chord length, equal to the void fraction times the velocity and 

divided by the bubble frequency, is 1.37 mm. On the other hand, the chord length 

distribution of bubbles containing velocity information is shown in Fig. 4.12(b). The 

maximum chord length (bubble diameter) of each bubble (a total of 65 bubbles) shown 

in the figure is directly obtained by the FOR technique and represents the diameter of the 
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corresponding bubble. The mean diameter is 1.82 mm that is much greater than the 

average chord length of 1.37 mm. 

 
(a) 

 
(b) 

Fig. 4.12 Comparison of chord length distributions: (a) Chord length distribution of 

all bubbles. (b) Chord length distribution of bubbles containing velocity 

information. 
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(a) 

 
 (b) 

 

Fig. 4.13 Comparison of bubble diameters: (a) Diameters based on the front signal. 

(b) Diameters based on the rear signal. 
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Images obtained using the high speed camera are used to validate the bubble size 

measurement taken using the FOR technique. The bubble size is measured based on both 

the front image and the side image (from the side mirror in Fig. 4.5). The resolution of 

the images is 0.0493 mm/pixel. The major axis and minor axis of each bubble are 

obtained by averaging the results based on the front image and side image, even though 

the difference is very small. The size of bubbles varies in the range of 1.30 - 3.06 mm for 

the minor axis and 1.38 - 4.91 mm for the major axis. The mean minor axis is 1.86 mm 

and the mean major axis is 2.91 mm. The range of eccentricity of bubbles is between 0.0 

and 0.92 with a mean eccentricity of 0.77.  

Fig. 4.13(a) and Fig. 4.13(b) show the comparisons of bubble size between the high 

speed camera measurement and the FOR measurement obtained using the front signal 

and the rear signal, respectively. Based on the FOR measurement, the size of bubbles 

varies in the range of 1.00 - 3.60 mm with a mean diameter of 1.82 mm. The mean 

bubble diameter is 1.69 mm based on the front signal, and 1.93 mm based on the rear 

signal. The r.m.s. error in the bubble diameter measurement is 0.20 mm if using the front 

signal, and 0.31 mm if using the rear signal when compared with the high speed camera 

measurement. The error is consistent with that in the velocity measurements; using the 

front signal results in a better accuracy in comparison to using the rear signal. Fig. 

4.14(a) and Fig. 4.14(b) show the normalized bubble diameter measurement using FOR 

based on the front signal and rear signal, respectively. The diameter of each bubble 

obtained using the FOR measurement is normalized by the diameter of the 

corresponding bubble obtained using the high speed camera.  The mean chord length  
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(a) 

 
 (b) 

 

Fig. 4.14 Comparison of normalized bubble diameters: (a) Diameters obtained 

based on the front signal. (b) Diameters obtained based on the rear signal. 
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obtained using FOR is 97% of that obtained using the high speed camera. The r.m.s. 

error is 11.4% based on the front signal, and 15.7% based on the rear signal. Overall, the 

bubble diameter obtained using the FOR technique is in good agreement with that 

obtained using the imaging method. This indicates the bubble diameter measurement 

using FOR is reasonably accurate, especially using the front signal, even though the 

number of bubbles with diameter measurements (and therefore velocities measurements) 

is quite small for such bubble size. Multiple probes may be needed to increase the 

number of bubbles with valid velocity and size measurements. 

There exist many advantages for the FOR technique in bubble velocity and size 

measurements. Conventional intrusive techniques based on fiber optic or conductivity 

probes require a piercing event to obtain the bubble velocity. The FOR technique 

measures bubble velocity using signal taken before the fiber tip in contact with the 

bubble surface therefore the detrimental effect due to the bubble-fiber interaction can be 

minimized, if not eliminated. This way measurement errors caused by the intrusiveness 

of the probes can be significantly reduced. Similar to gas bubbles, velocities of solid 

particles and water droplets in various multiphase flows can also be obtained. On the 

contrary, a piercing event is required for velocity measurements using conventional 

multi-probe methods. Velocity measurements for solid particles and water droplets may 

not be feasible if conventional methods are used. In addition, the FOR technique may 

potentially be used for acceleration measurement by acquiring continuous velocity 

information of an object due to its high temporal resolution. An example can be found in 

Fig. 4.8. The measured acceleration is Lagrangian since the technique records the motion 
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of an individual object. 

The FOR technique may not provide any advantages in bubble size determination if 

the size of bubbles is close to uniform. However, the technique does provide a way to 

measure the size of bubbles if the bubble size is random or has a broad range of size 

distribution. Note that the FOR technique is not capable of measuring the slant angle, θ,  

of bubbles therefore the measured bubble diameter may post a large error if the slant 

angle is large and the shape of bubble is ellipsoidal. 

4.6 Conclusion 

In conclusion, the FOR technique is capable of measuring the bubble velocity, 

diameter, and void fraction in multiphase flows. The measured velocities have a high 

spatial and temporal resolution and are taken prior to the contact with bubbles. The 

velocity measurements are therefore considered as nearly nonintrusive. Even though not 

all the bubbles return coherently mixed signals that provide velocity information, for 

those that do provide velocity information their diameters can be obtained. The FOR 

technique would have a higher successful rate in velocity measurement if smaller 

bubbles were used. As shown in Fig. 4.4(a), the detection rate γ for velocity 

measurement increases dramatically as the size of bubbles or particles become smaller.  

The FOR probe that directly measures bubble diameters is one of very few techniques 

that are capable of measuring bubble diameter, velocity, and void fraction directly. The 

technique is especially useful for the bubbles having a wide range of sizes. 
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CHAPTER V 

5 BREAKING WAVES IN DEEP WATER: EXPERIMENTAL 

TECHNIQUES AND CONDITIONS 

5.1 Introduction 

This chapter will present and discuss the experimental techniques and conditions 

used to study wave breaking in deep water. From this chapter, an experimental study on 

wave breaking in deep water is the main topic of this dissertation and will be presented 

and discussed. The measurement and data analysis of breaking waves is challenging 

because of the characteristics of the flow which is nonlinear, turbulent and multiphase 

due to air entrainment. As shown in previous Chapters II - IV, the FOR system and 

technique were developed and applied to measure multiphase flows (Chang et al., 2002, 

2003, 2004; Lim et al., 2008). The FOR technique has been applied to breaking waves to 

measure water particle velocity, bubble velocity and void ratio simultaneously. However, 

the FOR technique might not be suitable to measure bubble velocity field of breaking 

waves. As mentioned in Chapter IV, the detection rate of bubbles which provide velocity 

information is too low in the FOR measurement. In addition, the technique is based on 

point measurements, such as laser Doppler velocimetry (LDV) which measures the time 

series of water particle velocity at a point. In spite of some demerits for the velocity 

measurement of breaking waves. The FOR technique is a very reliable technique to 

measure the void ratio in multiphase flows, especially when the void ratio is very high 
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such that images techniques can not be used. The FOR technique was used to obtain the 

void ratio of the breaking waves. The bubble image velocimetry (BIV) technique (Ryu et 

al., 2005) was employed to obtain the velocity field of highly aerated region of breaking 

waves. The BIV technique is capable of measuring air-water mixture velocity of the 

aerated region with very good agreement whereas the traditional PIV technique can not 

measure in this region. The drawback of the BIV technique is that it cannot measure 

water velocity outside of the aerated region. PIV was used to obtain velocity outside of 

the aerated region. However, it was possible to measure velocity fields for the entire 

flow including the highly aerated region by modifying the experimental conditions of the 

traditional PIV technique. Since the frame rate used in the BIV measurements was 500 

frames per second (fps) with a high speed camera, the identical high speed camera was 

used in the PIV measurements to increase temporal resolution of image data. In addition, 

a continuous laser was used to generate a continuous light sheet to obtain high temporal 

resolution of 500 fps unlike traditional PIV measurements.  

The generation of breaking waves in deep water with a constant water depth is 

presented in this chapter, in addition to the description of the experimental techniques 

and conditions. Combination and synchronization of various experimental techniques 

were required to investigate breaking waves in deep water, which is one of most 

complex flows because it is nonlinear, multiphase and turbulent. 

The experiments on wave breaking were performed in a two-dimensional glass-

walled wave tank, which is 35 m long, 0.91 m wide, and 1.2 m deep equipped with a 

flap-type wavemaker. A 1:5.5 sloping beach with a horsehair layer is located at the far 
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end of the tank to absorb the wave energy and reduce reflection. The water depth was 

maintained at 0.80 m throughout the experiments to generate breaking waves in deep 

water. After generating strong breakers with good repeatability, four kinds of 

experimental techniques were employed to measure various quantities.   

 

 
 

Fig. 5.1 Sketch of the location of each measurement: (a) BIV for plunging breakers 

(b) PIV, wave gauge, and FOR stations for plunging breakers (c) BIV for spilling 

breakers (d) PIV, wave gauge, and FOR stations for spilling breakers. 
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Detailed information of all the experiments used in this study is sketched in Fig. 5.1.  

The wave elevation was measured using six wave gauges which are double-wired 

resistant type. The bubble image velocimetry (BIV) technique was used to measure a 

velocity field of aerated region in the breaking waves. In addition, the modified particle 

image velocimetry (PIV) technique was used to investigate the entire flow field 

including the pre-breaking region and highly aerated region. Finally, the FOR technique 

mentioned in Chapters III and IV was used to measure a void ratio at three stations 

which are located at each splash-up region. As shown in Fig. 5.1, two coordinate 

systems were used for plunging and spilling breaking waves respectively. The breaking 

point in a plunging breaker is defined as the point at which a wave impinges on the front 

wave surface near the still water level.   

 

 
 

Fig. 5.2 Coordinate system for the plunging breaker. 

 

In the rectangular coordinate system shown in Fig. 5.2, x = 0 and t = 0 are at the 

breaking point of each wave and z = 0 at the stationary water level. Although the 
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measurement is two-dimensional, it is worthwhile to note the y direction, such that 

positive vorticity is clockwise and negative vorticity is counterclockwise. Note that the 

results for a spilling breaker will not be included in this dissertation. All the 

measurements used for a plunging breaker were applied to a spilling breaker with same 

manners as shown in Fig. 5.1. However, data analysis for the spilling breaker has not 

been finished due to huge data size more than 15 TB. The spilling breaker will be 

mentioned only in this chapter regarding the experimental setups. 

5.2 Generation of a Breaking Wave 

Both plunging and spilling waves were generated for constant water depth by a 

method similar to that described in Skyner et al. (1990). In this method, wave focusing 

technique was used to generate the desired plunging and spilling breaking waves in deep 

water. Fig. 5.3 shows an overturning moment of a plunging breaker generated in the 

two-dimensional wave tank. The wave train consists of 13 waves with various 

wavelengths and amplitudes that can be controlled to obtain the desired waves. As 

shown in Fig. 5.4, the shortest and smallest wave is in front and then waves became 

longer and bigger. A long wave propagates faster and it will catch up to the front shorter 

waves. Eventually, both plunging and spilling waves broke at a desired location with 

good repeatability. The wave steepness, H L , of plunging and spilling waves generated 

are 0.19 and 0.15 respectively (see Table 5.1) where H is the wave height and L is the 

wavelength of the primary wave. In shallow water measurements, waves will break 

continuously depending on the incident wave properties from deep water and the 

geometry of the shore. For example, individual waves break when 0.8H h>  where h is 
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the water depth. On the contrary, there is only one breaking event as sending the wave 

train with a wavemaker. It was require to wait about 15 minutes until water become calm 

between tests. Therefore, enough measurement time for turbulence properties can be 

limited. At least 20 tests were performed at the same condition for all the measurements 

(wave gauge, BIV, PIV and FOR). Repeatability of wave generation is very good in the 

focusing method. It can be considered as steady waves.  

 

 
 

Fig. 5.3 Generation of a plunging wave in a 2D wave tank. 
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Fig. 5.4 Input signal to generate a plunging breaker and wave elevation at x = -2.98 

m (WG1). 

 

Table 5.1 Breaking wave properties for a primary wave 
Breaking wave properties for a primary wave 

 Plunging Breaker Spilling Breaker 

Wave height, H 0.204 m 0.265 m 

Wave period, T 0.83 s 1.09 s 

Wave length, L 1.08 m 1.84 m 

Phase speed. C 1.3 m/s 1.68 m/s 
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5.3 Wave Gauge Setup and Conditions 

The wave elevation was measured using six wave gauges located at various 

location as shown in Fig. 5.1 and 5.5. Fig. 5.5 shows the first three windows that are 

closest from the wavemaker in the two-dimensional wave flume. The detail description 

about the locations can be seen in Table 5.2. The first wave gauge (WG1) is located near 

the wavemaker so the wave elevation shape is similar to the input wave signal. The 

second wave gauge (WG2) is located just before the wave deformation so its shape is 

symmetric. The third wave gauge (WG3) is located just before wave face becomes 

vertical. The wave gauges 4, 5 and 6 (WG4, WG5 and WG6) are located at the middle of 

each splash-up region as shown in Fig. 5.6. In addition, the void ratio measurements 

were performed at those three station for each splash-up region with the measurement 

results presented in Chapter VII. 

 

 
 

Fig. 5.5 Measurement locations of six wave gauges. 
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Table 5.2 Measurement locations of six wave gauges 
Measurement locations of six wave gauges 

 Location (m) Description 

Wave gauge 1 (WG1) 
x = -2.98 

(1.30 from WM) 
Elevation similar to the input wave 

Wave gauge 2 (WG2) 
x = -1.31 

(2.97 from WM) 
Just before skewed to the left 

(before deformation) 

Wave gauge 3 (WG3) 
x = -0.57 

(3.71 from WM) 
Just before wave face become vertical 

(at x = - 0.42 m) 

Wave gauge 4 (WG4) 
FOR station 1 (FOR1) 

x = 0.43 
(4.71 from WM) 

Middle of the fully developed 
 1st splash-up 

Wave gauge 5 (WG5) 
FOR station 2 (FOR2) 

x = 0.88 
(5.16 from WM) 

Middle of the fully developed 
2nd splash-up 

Wave gauge 6 (WG6) FOR 
station 3 (FOR3) 

x = 1.20 
(5.48 from WM) 

Middle of the fully developed 
3rd splash-up 

 

 

 
 

Fig. 5.6 Wave gauges 4, 5, and 6 (WG4, WG5, and WG6) corresponding to FOR 

station 1, 2, and 3 (FOR1, FOR2 and FOR3) respectively. 
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Since breaking waves are highly turbulent flows, 20 measurements for each station 

were carried out in order to obtain mean and r.m.s. elevations.  

5.4 Bubble Image Velocimetry (BIV) Setup and Conditions 

The BIV technique was used to obtain the velocity field in the aerated region after 

the wave impinges on its front surface. The images were captured by a high speed 

camera mounted with a Nikon 105 mm micro focal lens. The high speed camera has a 

resolution of 1024×1024 pixels and a 8 bit dynamic range. The camera’ s frame rate was 

set at 500 fps and the aperture was set at f/1.8 throughout the experiments. Regular 600 

W light bulbs with reflecting mounts were used to illuminate the flow. No lasers are 

needed in this measurement.  

The apparatus of BIV is shown in Fig. 5.7. The depth of field (DOF) for the 

captured images is 0.21 m with the camera located at 4.7 m in front of the center of the 

DOF, resulting in an uncertainty of 2.2% in the acquired images for later velocity 

determination. The principle and validation of the BIV technique are described in details 

by Ryu et al. (2005). 

The time interval between the recorded images is 2.0 ms that is equal to the time 

separation between the consecutive frames captured by the high speed camera. The 

images with a resolution of 0.65 mm/pixel were processed using commercial software 

from LaVision, Inc. The velocity fields were calculated using an adaptive multi-pass 

algorithm with an initial interrogation window size of 32×32 pixels and a final window 

size of 16×16 pixels with a 50 % overlap. Therefore, the final resolution of the velocity 

vector map is 8×8 pixels corresponding to 5.26×5.26 mm2. It should be pointed out that 
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temporal resolution is 10 ms. The experiments were repeated at least 20 times with the 

same test condition at each FOV. The mean and fluctuating velocities were calculated 

from the ensemble average of the 20 instantaneous velocity fields. 

 

 
 

Fig. 5.7 Apparatus for the BIV system. 

 

In the BIV measurements, 3 and 6 fields of view (FOV) were used to cover the 

entire aerated region of both plunging and spilling waves respectively as shown in Fig. 

5.1. The sizes of fields of view are fixed as 0.66×0.495 m2 in the BIV measurements. 

There was an overlap region of 84 mm between FOV1 and FOV2 and a gap of 270 mm 
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between FOV2 and FOV3 due to a steel column at the glass wall of the wave tank. The 

three fields of view cover the entire aerated region for both types of breaking waves with 

sufficient spatial and temporal resolutions.  

In addition to the velocity field in the aerated region, raw images taken in the BIV 

measurement are used to obtain the free surface information including the aerated region 

and the boundary of the aerated region since resistive wave gauges used in the study can 

measure only water portion of waves. The results of the free surface estimation and 

detection of the aerated region obtained from the BIV measurements are presented in 

Chapter VII with results from the wave gauge measurement. Mean and turbulence 

quantities obtained from the BIV measurement are presented in Chapter VIII. 

5.5 Particle Image Velocimetry (PIV) Setup and Conditions 

The PIV technique was originally employed to measure only the velocity field 

outside the aerated region and under the trough level up to z = - 0.51 m after obtaining 

air-water mixture velocity of the aerated region by using BIV. However, it was found 

that the air-water mixture velocity field inside the aerated region could be obtained by 

using a weak continuous laser and moving the light sheet location as close as 20 cm 

from the front wall of the wave flume. Unlike traditional PIV measurements generally 

using the pulsed laser to generate a light sheet, application of a continuous Argon-Ion 

laser for the light source was attempted to obtain high frequency images with the 

identical high speed camera used in the BIV measurements. This is required because the 

velocity magnitude is large and the velocity gradient is high, especially at the first 

splash-up process followed by the first impingement of an overturning water jet. The 
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camera frame rate was set at 500 fps, the same as the BIV measurements and the 

aperture was set at f/1.4 with a 50 mm focal lens throughout the experiments. The 

exposure time was set at 100 µs which is short enough to prevent images of the seeded 

particles from skidding. Two cylindrical concave lenses were used for the light sheet 

optics to generate the wide light sheet. The seeding particles had a mean diameter of 56 

µm and a specific weight of 1.02. The sketch and pictures of the setup for the PIV 

system are shown in Fig. 5.8 and Fig. 5.9. 

 
 

Fig. 5.8 Apparatus for the PIV system. 
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(a) continuous Argon-Ion laser (b) light sheet optics 

  
(c) rotating mirror at the bottom (d) wide light sheet generated 

  
(e) with different view angle (f) high speed camera and 3D traverse 

 

Fig. 5.9 Pictures for the PIV measurement. 
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Fourteen and 24 fields of view were used to cover the entire flow field of both types 

of breaking waves including the aerated region in the PIV measurements. Note that the 

bottom located at z = - 0.80 m and a rotating mirror was equipped on the bottom. The 

sizes of the fields of view are fixed as 0.37×0.37 m2 in these measurements. The location 

of each field of view can be seen in Fig. 5.1. 

The velocity fields were calculated using an adaptive multi-pass algorithm with an 

initial interrogation window size of 64×64 pixels and a final window size of 32×32 

pixels with a 50% overlap. Therefore, the resolution of the velocity vector is 16×16 

pixels corresponding to 5.78×5.78 mm2. Resolution of captured images is approximately 

0.36 mm/pixel. The experiments were repeated 20 times with the same test condition at 

each FOV. It should be pointed out that temporal resolution of the PIV measurement is 2 

ms. The mean and turbulence velocities were calculated from the ensemble average of 

the 20 instantaneous velocity fields in the same manner as BIV. Note that there are 

overlaps of 20 mm between adjacent fields of view. The fields of view using the mosaic 

concept cover the entire flow fields of both types of breaking waves with sufficient 

spatial and temporal resolutions.  

5.6 Fiber Optic Reflectometer (FOR) Setup and Conditions 

The Fiber optic reflectometer (FOR) technique was used to obtain the void ratio in 

the aerated region of both types of breaking waves. This technique based on the coherent 

mixing of scattered signal with Fresnel reflection signal from the tip of an optical fiber is 

capable of measuring the velocities and fraction ratio of all phases of the flow at a given 

point. Not only does FOR work in multiphase flows, it also provides simplicity and near 
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noninvasiveness because of its small dimension of the optical fiber (typical diameter 125 

µm), high spatial resolution (typically less than 10 µm), and high temporal resolution 

(typically less than 50 µs).  

 

 
 

Fig. 5.10 Apparatus of the FOR system. 

 

The apparatus of the FOR system is shown in Fig. 5.10 and is briefly described as 

follow: a continuous optical signal derived from a laser diode which is driven by a 

constant current is launched into a single-mode optical fiber and transmitted through a 

fiber coupler to the signal fiber inserted in the aerated region of the breaking waves. The 

coherently-mixed signal propagates back to the signal fiber through the fiber coupler 

which is then detected by a photoreceiver and acquired by a high-speed digitizer housed 

in a computer. By analyzing the signal, the velocity and fraction ratio of each phase can 
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be obtained. The principle, validation and application of the FOR technique are 

described in details in Chapters II, III and IV. Fig. 5.11 shows pictures for the void ratio 

measurements of the plunging breaker in the flume. 

 

  
(a) FOR system (b) optical sensor probe 

  
(c) towing carriage (d) probe with a towing carriage 

Fig. 5.11 Pictures for the FOR measurements. 
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(a) u or -u probe (b) w probe (c) -w probe 

Fig. 5.12 FOR measurement probes. 

 

 

 
 

Fig. 5.13 Dimension of the FOR probe. 
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The locations of three measurement stations are shown in Fig. 5.1 and described in 

Table 5.2. The three stations are located in the middle of each splash-up region where 

they are fully developed.  

Various probes depending on the measurement type of application are shown in Fig. 

5.12. The probe shown in Fig. 5.12(a) was used in the void ration measurement. Fig. 

5.13 shows the dimension of the FOR probe used in the void ratio measurements. 
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CHAPTER VI 

6 QUALITATIVE DESCRIPTION OF WAVE BREAKING PROCESS 

6.1 Introduction 

Detailed description of the breaking wave process is presented in this chapter while 

quantitative results are presented beginning in Chapter VII. In addition to the 

quantitative measurements of breaking waves, it is also helpful to understand the 

breaking process by detailed qualitative description. It was possible to describe the 

breaking process of a strong plunging breaker due to various imaging techniques with a 

high speed camera. Diverse sizes of field of views, 1.20×0.60 m2, 0.67×0.67 m2, 

0.37×0.37 m2, and 0.20×0.20 m2, were used to observe the breaking process. The camera 

frame rates used were 500 or 1000 fps. A large field of view was used for observation of 

the entire flow field while a small field of view is used to observe more detailed process 

such as wave impingements and splash-ups. Detailed description for each process of a 

plunging breaker can be shown in the next sections.  

6.2 Qualitative Description of Wave Breaking Process 

Although the origins of wave breaking in deep water and in the surf zone are 

different, the initial stage of wave breaking such as overturning of wave crests, first 

impingement and first splash-up of a plunging breaker are similar. 
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(a) t = 0.03 s (beginning of the 1st splash-up followed by the 1st impingement) 

 
(b) t = 0.11 s (a small local crest between the two clockwise rollers) 

 
(c) t = 0.19 s (the ascending crest and the growing 2nd roller) 

 
(d) t = 0.27 s (the fully developed 2nd roller & water spray impingement) 

 
(e) t = 0.35 s (the 1st backward impingement from the ascending crest) 

Fig. 6.1 Images of the wave breaking process in a plunging breaker. 
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(f) t = 0.43 s (the 2nd impingement by the water jet) 

 
(g) t = 0.51 s (the 2nd splash-up and the linearized free surface) 

 
(h) t = 0.59 s (the 2nd splash-up and the separation of the two rollers ) 

 
(i) t = 0.67 s (the water spray impingement from the 2nd splash-up roller) 

Fig. 6.1 (Continued). 
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(j) t = 0.75 s (the 3rd splash-up which cannot be clearly seen here) 

 
(k) t = 0.83 s (one wave period after the 1st impingement) 

 
(l) t = 0.91 s (floating large bubbles caused by the 1st impingement) 

 
(m) t = 0.99 s (the 1st impinging roller going down to z = - 0.32h)  

Fig. 6.1 (Continued). 
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(n) t = 1.19 s 

 
(o) t = 1.39 s  

 
(p) t = 1.79 s 

 
(q) t = 2.19 s (bubbles from the 1st roller disappear about t = 3 s which is about 3.6T) 

Fig. 6.1 (Continued). 
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In shallow water, decreasing water depth and bottom friction make waves larger 

with more steepness (e.g. shoaling waves) and increased velocity of the wave crest 

overturning into front surface of the waves. On the other hand, in deep water with a 

constant water depth, waves sometimes become very big due to focusing of waves with 

various frequencies generated by wind or currents. A strong plunging breaker 

investigated in this study has several stages in the breaking process which are 

distinguishable by observing the breaking process. In addition, by using some 

quantitative information such as velocity and vorticity of the entire flow field provides 

better understanding of the process. Fig. 6.1 shows the breaking process. The original 

pictures were taken using a high speed camera with a frame rate of 500 fps and covered 

the third window of the wave tank corresponding to eight fields of view (FOV 3 to FOV 

10) in the PIV measurement as shown in Fig. 5.1. A total of three impingements and 

three splash-ups of air-water mixture were observed as shown in Fig. 6.2. During this 

process, wave period and wavelength are decreased gradually. 

 

 
 
 

Fig. 6.2 Breaking process of a plunging breaker. 
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(a) wave deformation (b) overturning jet 

  
(c) the 1st impingement (d) beginning of the 1st splash-up 

  
(e) the 1st splash-up (f) the 1st splash-up continued 

Fig. 6.3 Front view of a plunging wave in a 2D wave tank. 
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(g) the mixture spray impingement (h) the fully developed 2nd roller 

  
(i) the mixture spray impinging continued (j) beginning of the 2nd splash-up 

  
(k) the 2nd splash-up (l) a wave scar by the 2nd impingement 

Fig. 6.3 (Continued). 
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Fig. 6.3 shows the front views of the breaking process of the plunging breaker 

generated in the two-dimensional wave tank in the department of Civil Engineering at 

Texas A&M University. The images were captured by a portable digital camera. More 

details on each process are discussed in the following sections. 

6.2.1 Deformation of Wave 

A wave becomes very steep but symmetric in shape as a front wave, which is 

smaller and shorter, is overcome by a bigger and longer wave. The primary wave starts 

to deform its own shape shortly so the shape of the wave is not symmetric any more but 

skewed to the left. Note that wave direction in the measurement is from the left to the 

right. The front face of the wave crest becomes vertical as the wave crest velocity which 

is faster than the wave phase speed is increased. It is possible that large upward 

momentum from near the trough level is transferred to the horizontal momentum of the 

crest. The wave has large energy before breaking its shape.  

Fig. 6.4 shows the deformation and overturning process of a plunging breaker. As 

shown in Fig. 6.4(b), the wave front face becomes vertical, which is defined as a 

breaking point by some researchers. Location and time for this instance are x = - 0.42 m 

and t = - 0.2 s as x = 0 and t = 0 at the first impingement point. The first impingement 

point is defined as the breaking point in the present study. Overturning of the crest can 

be seen in Fig. 6.4(c) and (d). The pictures are instantaneous PIV images in PIV FOV1 

which are taken at 500 fps with a high speed camera. 
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(a) t = - 0.25 s (b) t = - 0.20 s 

  
(c) t = - 0.15 s (d) t = - 0.10 s 

Fig. 6.4 Wave deformation and overturning. 

6.2.2 The First Impingement and the First Splash-up 

Overturning and impinging processes can be clearly seen in Fig. 6.5. The process 

from the overturning to the first impingement cannot be seen with one field of view due 

to a steel column whose width is about 0.15 m (every 1.54 m at the glass wall of the 
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wave tank in our laboratory as shown in Fig. 5.1 and Fig. 5.5). The location of the 

breaking point was moved to the right about 0.3 m with almost identical shape to 

observe the overturning and impinging processes continuously in a field of view.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6.5 Overturning and the first impingement. 
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It is possible to move the location of the breaking point by controlling the 

frequencies and amplitudes of the input waves. This wave shows a beautiful curl of a 

overturning jet. The air pocket inside the curl is entrained into the first roller. It should 

be pointed out that all the entrained air is penetrated under the free surface without any 

rebound during the process of the first impingement and splash-up, disappearing within 

four wave cycles. Fig. 6.5(e) and (f) show the first impinging moment and the beginning 

of the first splash-up respectively. The first roller and the first splash-up (the second 

roller) are generated due to the strong first impingement which has a large momentum 

because its phase is mainly water with a large velocity about 1.5C, where C is the wave 

phase speed. A new wave crest is generated by the first impingement as shown in Fig. 

6.6. This wave plays an important role for the second impingement that will be discussed 

in the next section. It is more interesting to observe the process after the first splash-up 

followed by the first impingement. Fig. 6.6(a) shows the beginning of the first splash-up. 

The impinging jet penetrates the front wave surface rather than rebounds of the 

impinging jet. When the overturning water jet hits a front water surface with large 

momentum, the front surface is broken and pushed up immediately with a small crest 

[Fig. 6.6(a)]. It is considered that the pushed-up water whose original momentum 

proceeds forward and upward is accelerated and explodes vertically due to mass 

conservation and momentum transferred from impinging jet. The size of small crest and 

the second roller are increased more and more because the impinging roller provides a 

forward and downward momentum continuously as shown in Fig. 6.6(b) and (c).  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6.6 The first splash-up followed by the first impingement. 
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Two large rollers having clockwise rotation are separated by the new ascending 

water crest. The air-water mixture in the rear side of the new crest (vertical water 

column) has a counterclockwise vorticity while the air-water mixture in the front side of 

the new crest has a clockwise vorticity. The free surface elevation at the first splash-up 

(the second roller) is slightly lower than that at the first impingement. As the upward 

momentum of the ascending water crest weakens (although it still has horizontal 

momentum), the new water crest becomes obliquely ascending toward the rear wave. 

This is because the first roller provides more momentum to the lower side of the new 

wave as shown in Fig. 6.6(d). The air-water mixture in the rear part of the new crest 

begins falling down due to the loss of its kinetic energy causing the first backward 

impingement onto the first impinging roller and overtopping on the rear wave which is 

an original primary wave. This backward impinging process can be seen in Fig. 6.6(e) 

and (f). A water jet is observed due to the high pressure between the impinging roller 

and the backward impinging part of the newly ascending crest as shown in Fig. 6.7. This 

occurs because the velocity of the impinging roller is higher than that of the upper part 

of the ascending water. It should be pointed out that the first roller having a forward and 

downward momentum provides the new local crest with horizontal momentum at this 

moment, so the obliquely ascending crest becomes symmetric and a new primary wave 

as shown in Fig. 6.6 (d), (e) and (f). The two large rollers are separated by the new 

primary wave. Additional description with sketches for the first process can be seen in 

Fig. 6.8. The new primary wave impinges (the second impingement) and causes the 

second splash-up. It will be discussed in the next section in detail.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 6.7 The first backward impingement and water jet. 
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Fig. 6.8 Cartoons for the first process. 

 

6.2.3 The Second Impingement and the Second Splash-up 

The process of the second splash-up followed by the second impingement is 

different from the process of the first splash-up discussed in the previous section. The 
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air-water mixture spray caused by the first impingement is continuously impinged on the 

front trough region during the process of the first splash-up. The first splash-up starts 

immediately at the first impingement due to the large momentum of water jet. On the 

contrary, the mixture spray impingement from the first splash-up roller does not cause 

the splash-up immediately. It is believed that the difference is a combination of two 

possible reasons. First, the second impingement does not have enough momentum to 

generate another splash-up because the mixture density is very low (very high void ratio) 

although the mixture velocity is high. Second, the mixture spray impinges on the trough 

region which does not have a upward and forward momentum. Note the vertical location 

of each impinging point is always above the still water level (z > 0). At the second 

impingement, the part of the mixture spray penetrates the wave surface slightly near the 

trough or rebounds very slightly as shown in Fig. 6.9(a) and Fig. 6.9(b). Due to this 

phenomenon, most mixture spray from the first splash-up is accumulated on that location 

without any splash-up process as shown in Fig. 6.9(c). At first the accumulated mixture 

was just a small size eddy. However, the volume of the accumulated mixture, turbulence 

intensity and vorticity are increased. At the end of the mixture spray impingement, the 

new primary wave which is formed in the first impingement plunges on the location of 

the accumulated mixture with large momentum (main phase of flow is water). The 

wavelength and wave period are decreased more and more. Additional sketches for the 

second process can be also seen in Fig. 6.10. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6.9 The second splash-up followed by the second impingement. 
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Fig. 6.10 Cartoons for the second process. 
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Fig. 6.9(c) shows the beginning of the second impingement by the water jet from 

the new primary wave. The second splash-up occurs immediately after the second 

impingement by water jet from the new primary wave as shown in Fig. 6.9(d). The 

accumulated mixture roller is divided into two parts due to the second impingement. The 

upper part of the mixture roller is splashed up (by the pushed up water below the mixture 

roller) with significantly increased velocity due to its low density while the lower part of 

the mixture remains similar to the first impinging roller. Fig. 6.9(d)-(f) show the second 

splash-up.  

6.2.4 The Third Impingement and the Third Splash-up 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6.11 The third impingement followed by the second splash-up. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6.12 The third splash-up followed by the third impingement. 

 

The formation and process of the third impingement and splash-up are very similar 

to those of the second impingement and splash-up. Major difference is their scale. The 

scales of the strength and time at the third impingement and splash-up are much smaller. 

The size of the eddy is smaller due to the energy cascade. Fig. 6.11(a) and Fig. 6.12(a) 
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and (b) show the mixture impingement on the trough region and Fig. 6.11(b) and Fig. 

6.12(c) and (d) show the third impingement causing the third splash-up. The third 

splash-up can be seen in Fig. 6.11(c) and Fig. 6.12(e)-(g). It was observed that the third 

process was a transition between a plunging and spilling wave. The small probe is an 

optical fiber sensor of the FOR system used to measure the void ratio at the third splash-

up region. 

6.2.5 Spilling Wave Phases 

The significant turbulent motion is decreased rapidly just after the third splash-up 

process. There is a tiny forth impinging and splash-up whose process is very similar to a 

weak spilling wave. Fig. 6.13 shows the propagation of small eddies which have a low 

void ratio with the location of field of view corresponding to the PIV FOV11-14 shown 

in Fig. 5.1. The mixture velocity is similar to the water particle velocity. The size of the 

small eddies becomes much smaller. The turbulent bore region remains until about 1.65 

s which is twice as long as the period of the primary wave in the pre-breaking region. 

Note that there are still bubbles and turbulence by the first impingement near the 

location of x = 0.5L and it remains until about four times the wave period. Although this 

region is less important, it is good to know the total time and length of the breaking 

process. The total time of the breaking process is about double the wave period of the 

primary wave. Also, the total distance of the breaking process is also double the 

wavelength of the primary wave. An approximate time and location of the breaking 

process is presented in the next section. 
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(a) t = 1.02 s 

 
(b) t = 1.12 s 

 
(c) t = 1.22 s 

 
(d) t = 1.32 s 

 
(e) t = 1.42 s 

 
(e) t = 1.52 s 

Fig. 6.13 Spilling wave (x > L). 
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6.3 Time and Location of the Breaking Process 

Information on time and location of the breaking process was estimated briefly as 

shown in Table 6.1 and Table 6.2. In some cases, time or location of the process cannot 

be defined exactly. However this information may provide a brief insight for 

understanding the breaking process. In addition, it will be useful for the analysis and 

understanding of the quantitative results. More detailed discussion about each process is 

presented with various quantitative results beginning in Chapter VII. 

 

Table 6.1 Time information for the breaking process 
Time information for the breaking process 

Time (s) -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.61.4 1.5

Vetical Wave Face & Overturning

1st Impingement

1st Splash-up

Backward Impingement & Greenwater

2nd Impingement (Mixture Spray)

2nd impingement(Water Jet)

2nd Splash-up

3rd Impingement (Mixture Spray)

3rd impingement(Water Jet)

3rd Splash-up

Spilling  
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Table 6.2 Location of the breaking process 
Location of the breaking process 

x (m)

Spilling

2nd Splash-up

3rd Impingement (Mixture Spray)

3rd impingement(Water Jet)

3rd Splash-up

1st Splash-up

Backward Impingement & Greenwater

2nd Impingement (Mixture Spray)

2nd impingement(Water Jet)

2.0 2.2

Vetical Wave Face & Overturning

1st Impingement

1.2 1.4 1.6 1.80.4 0.6 0.8 1.0-0.4 -0.2 0.0 0.2
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CHAPTER VII 

7 DETECTION OF THE FREE SURFACE AND AERATED REGION 

7.1 Introduction 

In addition to the qualitative description, measurements of the free surface elevation 

are essential. Moreover, a boundary of an aerated region should be detected because a 

void ratio and a density variation should be considered since breaking waves are two 

phase flows. The void ratio inside the aerated region is quite high and it cannot be 

neglected. Accurate measurements for the free surface and the boundary of the aerated 

region are required to obtain other quantitative results such as, mass flux, kinetic energy, 

and potential energy. The free surface measurements using a common wave gauge are 

relatively easy. It provides a time series at a measurement station. However, the results 

are only the water portion of the waves since a resistance wave gauge is used in the 

measurement. Breaking waves, especially plunging waves, have a large void ratio due to 

air entrainment during the process of the strong impinging and splash-up. The aerated 

region in a plunging breaker is much deeper than that of a spilling breaker while the 

distance in a plunging breaker is shorter than that of a spilling breaker. 

Although the wave elevation obtained from wave gauge measurements provides 

only the water portion of the wave, one advantage is that a time series of the depth-

averaged void ratio can be obtained at a measurement station if the real free surface 

elevation is obtained, as shown Eq. (7.1): 
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where daα  is the depth-averaged void ratio, wgη is the wave elevation from the wave 

gauge measurement, η  is the wave elevation including the aerated region, and h  is 

the water depth. To obtain the elevation η  and the boundary of the aerated region, raw 

images taken from the BIV measurements are used. Wave elevation results obtained 

from the wave gauge measurements and the imaging method are presented in the next 

section. 

7.2 Wave Elevation from Wave Gauge Measurement 

Fig. 7.1 shows wave elevation results measured at six different locations using 

wave gauges. A detailed location of each wave gauge position is given in Fig. 5.1 and 

Table 5.2. A total of 20 repeated measurements were carried out at each location to 

obtain mean and root-mean-square (r.m.s.) elevation since breaking waves are 

considered highly turbulent flows. All 20 measurements at each location are shown in 

Fig. 7.1. Also, overlapped 20 elevations for the primary wave are presented in Fig. 7.2. 

As shown in Fig. 5.1 and Table 5.2, wave gauges 1, 2, and 3 were located before the first 

impinging point, and their overlapped elevations verify repeatability. On the other hand, 

wave gauges 4, 5, and 6 were located beyond the first impinging point. Three wave 

gauges were located at the middle of the first splash-up, the second splash-up and the 

third splash-up, respectively. Therefore, fluctuating elevations can be observed in the 

results for those three wave gauges. 
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Fig. 7.1 Overlap of 20 wave gauge measurements. 
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Fig. 7.2 Overlap of 20 wave gauge measurements (primary wave). 
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Fig. 7.3 Mean and r.m.s. wave elevation. 
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Fig. 7.3 shows the mean and root-mean-square elevation, and the detailed values 

are provided in Table 7.1. The r.m.s. elevations before the first impingement are very 

low. Maximum r.m.s. values are between 2 and 3 mm where average values of the r.m.s. 

elevations at each location are less than 1 mm. At the location of the three main splash-

up regions, the r.m.s. values are still very low until a highly aerated roller reaches the 

wave gauges. There are small fluctuations after the primary wave has passed gauges 4, 5 

and 6, because of remaining turbulence from these rollers. Additional discussion of wave 

elevation obtained from BIV images is presented in the next section.  

 

Table 7.1 R.M.S. elevation of six wave gauges 
R.M.S. elevation of six wave gauges 

 Location (m) Maximum �rms Mean �rms 

Wave gauge 1 (WG1) 
x = -2.98 

(1.30 from WM) 
3.18 mm 0.71 mm 

Wave gauge 2 (WG2) 
x = -1.31 

(2.97 from WM) 
2.38 mm 0.65 mm 

Wave gauge 3 (WG3) 
x = -0.57 

(3.71 from WM) 
3.34 mm 0.67 mm 

Wave gauge 4 (WG4) 
FOR station 1 (FOR1) 

x = 0.43 
(4.71 from WM) 

30.77 mm 0.90 mm 

Wave gauge 5 (WG5) 
FOR station 2 (FOR2) 

x = 0.88 
(5.16 from WM) 

10.48 mm 0.96 mm 

Wave gauge 6 (WG6) FOR 
station 3 (FOR3) 

x = 1.20 
(5.48 from WM) 

9.29 mm 0.95 mm 
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7.3 Imaging Method for the Free Surface and Aerated Region 

Free surface information for the entire flow including the highly aerated region is 

required, as mentioned in Section 7.1. However, the resistance wave gauges used in the 

experiments are not able to measure the wave elevations including the aerated region. 

Since BIV and PIV are based on imaging techniques, these methods can be applied to 

obtain images that can be used to measure the wave elevation.  

 

 
 

(a) instantaneous PIV image (b) velocity map without masking 

Fig. 7.4 Example of mirror images in PIV images. 

 

A masking process is required in the BIV and PIV analysis to obtain an accurate 

velocity map. Careful attention is needed for the free surface and the boundary of the 

aerated region during the masking process. For example, as shown in Fig. 7.4(b), there 

are velocity vectors over free surface in the PIV measurements. Free surface image 

between a light sheet and a front wall of the wave tank appears due to the camera angle 
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as shown in Fig. 7.4(a). Since digital cross-correlation algorithms employed in PIV and 

BIV use gray scale intensities of particles or air-water mixtures, an undesirable region 

over the free surface also has velocity information as shown in Fig. 7.4(b), and this 

should be removed in the correct manner.  

 

  
(a) instantaneous image (b) mean image 

Fig. 7.5 Example of PIV images. 

 

The other region requiring attention is the boundary of the air-water mixture. As 

shown in Fig. 7.5(a), more particles gather around the boundary of the aerated region 

when each impinging roller moves under the free surface. As shown in Fig. 7.5(b), it is 

difficult to distinguish between the particles and the aerated region using an averaging 

image due to the similar intensities of the particles and the bubbles in the aerated 

boundary that has a low void ratio. It is necessary to determine the boundary of the 

aerated region especially if a void ratio is to be obtained using the intensity information 
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of the images. For example, the void ratio outside the aerated region should be zero. 

Otherwise, the void ratio near the boundary will be overestimated due to gathered 

particles. The detailed masking process is given in the next section. 

7.3.1 Detection of the Free Surface and Aerated Region Using BIV Images 

Fig. 7.6(a) shows an instantaneous image of a BIV measurement at t = 0.39 s. In 

this phase, the first splash-up process followed by the first impingement continues and 

the first backward impingement causing counterclockwise vorticity is observed. An 

averaging image of 20 instantaneous images is shown in Fig. 7.6(b). Note that the gray 

scale of the mean image was inverted because using this image is more convenient to 

obtain images for masking. As shown in Fig. 7.6(b), inverted images after averaging 

were used to obtain various mask images as well as void ratios. 

 

  
(a) instantaneous image (BIV) (b) inverted color and mean image (BIV) 

Fig. 7.6 Instantaneous and averaged BIV images. 

 

Fig. 7.7 shows the velocity and vorticity before applying the mask process. 

Undesirable values in both the velocity and vorticity measurements are observed in the 
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BIV measurements. Values outside the field of view, near the free surface, and above the 

aerated region should be removed to obtain precise quantities. In addition, the large 

negative vorticity over the free surface, especially over the aerated region, should be 

removed and it is good to validate the masking process. 

 

 
 

(a) velocity without masking (b) vorticity without masking 

Fig. 7.7 Velocity and vorticity without masking (BIV). 

 

In order to avoid overestimation near the free surface and errors near the boundary 

of the aerated region, it is crucial to obtain correct mask images. However, obtaining 

correct masking is challenging and time consuming, especially when there is an aerated 

region at a phase. In general, the intensity gradient variation near the free surface is 

useful to decide suitable threshold values and the free surface is easily determined from 

both BIV and PIV images. The challenging problem occurs at the aerated region. The 

free surface over the aerated region is obtained from the intensity gradient, and is usually 

overestimated due to the camera angle. Moreover, obtaining the boundary of the aerated 

region is more challenging than obtaining the free surface. Since no laser is required and 
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no particles are seeded in the BIV measurements, errors due to a laser light sheet and 

seeded particles are eliminated. In addition, overestimation of the free surface over the 

aerated region due to the camera angle is smaller in the BIV measurements because a 

105 mm focal lens was used in the BIV measurements while a 50 mm lens was used in 

PIV measurements, which allowed for a closer distance to the depth of field. Note that 

although error due to image resolution is larger in the BIV measurements it is still not 

significant. For this reason, images for various masking were obtained from the BIV 

images manually even though it is very time consuming. 

 

  
(a) free surface and the aerated region (b) inside the aerated region 

  
(c) outside the aerated region (d) under the free surface 

Fig. 7.8 Various BIV mask images. 
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Fig. 7.8 shows various mask images obtained from the BIV images. The image 

shown in Fig. 7.8(a) is manually obtained from the mean image shown in Fig. 7.6(b). 

The free surface and the boundary of the aerated region can be obtained from the image. 

The three images shown in Fig. 7.8(b)-(d) are obtained from Fig. 7.8(a) using Matlab 

and they are the mask images for inside of the aerated region, outside of the aerated 

region, and below the free surface, respectively. Only Fig. 7.8(b) is used to obtain the 

air-water velocity field inside the aerated region since BIV can measure the velocity of 

an air-water mixture only. The other two images shown in Fig. 7.8(c) and (d) are 

generated for the PIV analysis. 

 

 
 

(a) velocity after masking (b) vorticity after masking 

Fig. 7.9 Mean velocity and vorticity after applying a mask image (BIV). 

 

Fig. 7.9 shows velocity and vorticity after applying the mask image of Fig. 7.8(b) to 

the images shown in Fig. 7.7. A green circle represents the location of maximum 

velocity in the phase. It is seen that the large negative vorticity over the free surface 

shown in Fig. 7.7(b) is removed by masking. Note that the negative vorticity around x = 
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0.4 m represents the first backward impingement due to the first splash-up. Fig. 7.10 

shows the free surface and the boundary of the aerated region. Temporal resolution in 

the BIV and PIV measurements is 10 ms, although images were taken at 500 fps. 

Therefore, high resolution time series of wave elevation were obtained for the entire 

flows. 

 
Fig. 7.10 Free surface and boundary of aerated region from BIV image. 

 

7.3.2 Application to PIV Analysis 

Since obtaining mask images from the BIV images is relatively ease and accurate, 

the mask images from the BIV images were applied to the PIV images. It is essential to 

adjust for spatial and temporal synchronization. Although all the experiments were not 

performed at the same time, the triggering signals for all experimental techniques, such 

as wave gauges, BIV, PIV, and FOR, were synchronized with the triggering of the 
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wavemaker. Therefore, spatial and temporal information for all experiments were 

obtained and synchronized as shown in Fig. 7.11. The background image represents an 

example of the free surface and the aerated region at t = 1.17 s obtained from the BIV 

images. Various mask images for the PIV measurements matched to the image shown in 

Fig. 7.11 with a time difference of 10 ms. Since the PIV measurements cover a larger 

area than the BIV measurements, some areas such as PIV FOV01, left side of PIV 

FOV03, right side of PIV FOV09 and left side of PIV FOV11 do not contain BIV 

images, thus PIV images were used to mask for these specific areas. 

 

 
Fig. 7.11 Wave elevation and boundary of aerated region from BIV image. 

 

Fig. 7.12 shows an example of various PIV mask images obtained from the BIV 

image. Fig. 7.12(a) shows an averaging image of 20 instantaneous PIV images at PIV 

FOV05 at t = 0.41 s. Fig. 7.12(b)-(d) represent PIV mask images for inside of the aerated 

region, outside of the aerated region, and below the free surface respectively. 
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(a) mean PIV image (b) inside the aerated region 

  
(c) outside the aerated region (d) under the free surface 

Fig. 7.12 Various PIV masking images. 

 

Fig. 7.13(a) shows a velocity field before applying a mask image, and Fig. 7.13(b)-

(d) show a velocity map after applying various mask images inside the aerated region, 

outside the aerated region, and for the entire flow, respectively. Note that the velocity 

map obtained from the traditional PIV measurement is like Fig. 7.13(c). 
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(a) velocity without masking (b) velocity inside the aerated region 

  
(c) velocity outside the aerated region (d) velocity under the free surface 

Fig. 7.13 Velocity with various masks (PIV). 

 

Fig. 7.14 (a) shows a vorticity contour before applying a mask image, and Fig. 

7.14(b)-(d) show vorticity after applying various mask images inside the aerated region, 

outside the aerated region, and for the entire flow, respectively. 
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(a) vorticity without masking (b) vorticity inside the aerated region 

  
(c) vorticity outside the aerated region (d) vorticity under the free surface 

Fig. 7.14 Vorticity with various masks (PIV). 

 

The free surface and the boundary of the aerated region can be seen in Fig. 7.15. All 

information for the locations of the free surface and the boundary were saved in Bitmap 

and ASCII formats. Spatial resolution of the free surface information is the same as the 

image resolution, which is 0.3613 mm/pixel. Wave elevation data were collected every 

5.78 mm and were obtained with a time difference of 10 ms since the final spatial and 

temporal resolutions of the PIV data are 5.78 mm and 10 ms, respectively. 
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Fig. 7.15 Free surface and boundary of aerated region from PIV images. 

 

Fig. 7.16 shows the water level envelops and their normalized values by primary 

wave height. Note that the horizontal distance from the breaking point is normalized by 

wave length of the primary wave. When a primary wave passes through every station 

with dx = 5.78 mm and dt = 0.01 s, local maximum (red), minimum (blue), and mean 

(green) water levels are given in the figure, and local wave height was obtained by 

subtracting a local minimum water level from a maximum water level at every station. 

Important locations such as impinging points and fully developed splash-up regions, 

which are measurement stations for both wave gauges and FOR, are provided in Fig. 

7.16(a). Local maximum elevation is found at each fully developed splash-up region, 

and local minimum elevation is found at the location between each impingement and 

splash-up. 
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(a) 

 
(b) 

 

Fig. 7.16 Water level envelop from BIV and PIV images. 
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(a) WG4(FOR1) station (fully developed 1st splash-up) 

 
(b) WG5(FOR2) (fully developed 2nd splash-up) 

 
(c) WG6(FOR3) (fully developed 3rd splash-up) 

Fig. 7.17 Comparison of wave elevation from wave gauges and images. 



149 

 

 

There are three stations to measure wave elevation and void ratio after the first 

impingement as shown in Table 7.1 and Fig. 7.11. Wave elevation results obtained from 

the BIV images at each station are compared with those obtained from wave gauges as 

shown in Fig. 7.17. The difference between the two results is largest at the WG4 (FOR1) 

station, whose location corresponds to the fully developed first splash-up region [Fig. 

7.17(a)]. This is because the maximum void ratio is in the first splash-up region. The 

difference decreases gradually, and the difference at the WG6 (FOR3) station, whose 

location corresponds to the fully developed third splash-up region [Fig. 7.17(c)], is small 

but widely distributed. Detailed results of the void ratio measurement will be presented 

in Chapter XI. 
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CHAPTER VIII 

8 AERATED REGION IN A PLUNGING BREAKER: BIV 

MEASUREMENT 

8.1 Introduction 

Results obtained from the BIV measurements are presented in this chapter. Velocity 

fields of the highly aerated region in breaking waves are obtained using the BIV 

technique. Imaging techniques is one of the reliable techniques to obtain a velocity and 

fraction ratio of each phase in the measurement of multiphase flows, for example, water 

and air bubble in two-phase bubbly flows. However, there is great difficulty when phase 

decomposition is required in multiphase flows with high void ratio. In such cases, an 

intrusive sensing technique such as FOR should be employed. Although it is impossible 

to decompose the air and water phases using BIV, the BIV technique is capable of 

measuring air-water mixture velocity of the aerated region with high precision. 

Therefore, the BIV method is indeed suitable for bubbly flow measurements. In addition, 

BIV can be a supplementary technique where the PIV method does not work properly.  

Validation of the BIV technique was carried out by comparing results with the FOR 

technique. The validation part is provided in Section 8.2. A brief description of the BIV 

data analysis procedure is presented in Section 8.3. Section 8.4 shows the instantaneous 

velocity measurement by comparing with mean velocity fields. The flow structure only 

in the aerated region is discussed due to the limitation of the BIV technique. Velocity 
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measurements of the water phase in breaking wave are also essential to analyze the 

entire flow filed. Since the modified PIV technique used in this study is capable of 

measuring the entire flow fields including highly aerated regions as well as water 

particle velocity, results obtained from the BIV measurements are briefly introduced in 

this chapter for the comparison and validation of the results obtained from the PIV 

measurements. More detailed analysis with mean and turbulent quantities of the strong 

plunging breaker are presented in Chapters IX and X respectively.  

8.2 Validation of the BIV Method* 

The validation of BIV was performed in two ways: first to compare the velocity 

measured using the BIV technique with that measured using the fiber optic reflectometer 

(FOR) technique; second to check the effect of the blurry images out of the DOF in the 

BIV velocity measurement. A bubble plume in a water tank was used in the validation. 

A two-phase quasi-steady bubbly flow in a vertical narrow tank was measured 

using both the BIV technique and the FOR technique. The objective of this experiment is 

to validate the BIV method by comparing the results obtained from these two methods. 

The FOR technique is capable of measuring the velocity time history of both water 

(seeded with small particles) and air bubbles at a given point in a multi-phase flow. 

Details of FOR are given by Chang et al (2003).  

 
*Reprinted with permission from part of “ Use of bubble image velocimetry for 
measurement of plunging wave impinging on structure and associated greenwater”  by 
Ryu, Chang and Lim (2005). Measurement Science and Technology, DOI 10.1088/0957-
0233/16/10/009, Copyright [2005] IOP Publishing 
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The vertical narrow tank used in the validation has a length of 0.4 m, a width of 0.4 

m and a height of 0.8 m. Water was filled to a depth of 0.7 m in the tank. An air diffuser 

generating air bubbles was located at the bottom of the tank.  

 

 
 

Fig. 8.1 Comparison of velocities by BIV and FOR measurements: ‘o’, BIV 

instantaneous velocities; ‘×’, FOR instantaneous velocities; solid line, BIV mean 

velocity; dotted line, FOR mean velocity. 

 

A bubble plume was formed in the tank with a diameter approximately 0.11m at the 

measurement section. The BIV method was used to measure the velocity of the bubble 

plume with a FOV of 12.6 cm�12.6 cm. Subsequently, the FOR technique was 

employed to measure the velocity at xb = 0 and zb = 45 cm, located in the region of the 
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BIV FOV with xb = 0 and zb = 0 being the centre of the air diffuser. The void fraction 

was 4% with the average size of a bubble equal to 3 mm at the FOR measurement point, 

obtained by FOR.  

Fig. 8.1 shows the measured bubble velocities using both the BIV and FOR 

methods at the point where the FOR probe was located. The mean velocities were 

obtained using 20 and 10 instantaneous velocities in the BIV and the FOR measurements, 

respectively. The comparison of the mean velocities shows very good agreement with a 

relative error about 1% (approximately 4 mm s-1). The scattering of the instantaneous 

velocities may be due to the turbulent nature of the flow. 

In theory the blurred images contributed from bubbles outside the DOF are 

expected to have insignificant influence in the correlation for velocity determination 

because the intensity of the bubbles is much weaker (and spread wider) than that of the 

well-focused bubbles inside the DOF. Since typical BIV measurements are performed in 

highly aerated bubbly flows, the captured images are indeed the sharp images inside the 

DOF superimposed with blurry images outside the DOF. In order to investigate the 

blurry image effect on the BIV accuracy, the velocity obtained from clear bubble images 

was compared with that obtained from artificially superimposed blurry bubble images. 

One set focused at the centre of the bubble plume so the bubble images are sharp and 

clear, while another set focused 15 cm behind the centre of the plume therefore the 

bubble images are blurred and out of focus. Both sets of original images were processed 

with velocities obtained. 
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Fig. 8.2 Velocity distribution along the centreline of the bubble plume obtained 

from: clear images (o), blurry images (+), upside-down blurry images (×), 

superimposed clear and blurry images (�), superimposed clear and flipped blurry 

images (�). 

 

Clear and blurry images were then artificially added in two ways. Firstly, the blurry 

images were added to the clear images directly. Secondly, the blurry images were 

vertically flipped and then added to the clear images. Fig. 8.2 shows the instantaneous 

vertical velocity distribution obtained along the centerline of the bubble plume from the 

clear images, blurry images, vertically flipped blurry images, the superposition of the 

clear images and blurry images, and the superposition of the clear images and vertically 

flipped blurry images. The figure shows that both the velocities obtained from the clear–
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blurry superimposed images are very close to that from the clear images. Therefore, the 

blurry and out of focus bubble images have little effect on the accuracy of the BIV 

velocity measurement. 

8.3 BIV Data Analysis Procedure 

In addition to the BIV experimental set up and conditions presented in Chapter V, 

BIV data analysis procedure is briefly described in this section. Description is limited to 

the plunging breaker, since only results obtained from the plunging breaker 

measurements are presented in this thesis. As shown in Fig. 5.1, Three fields of view 

(FOV) were chosen to cover the entire plunging wave after the first impingement. As 

discussed in Section 8.1, BIV cannot measure velocity fields outside the aerated region. 

Therefore, the pre-breaking region before the first impingement was measured using the 

PIV methods that is presented in Chapters IX and X. 

The BIV image process is briefly described in Fig. 8.3. BIV images were taken for 

4 s with a frame rate of 500 fps. A total of 121620 images (2027 images/measurement × 

20 measurement/FOV × 3 FOVs) were obtained for the plunging breaker in the BIV 

measurements. Note that the number of images for a spilling breaker are 243240. By 

means of several preliminary tests, the time difference dt between two coupled images 

for velocity calculation with cross-correlation algorithms were carefully determined to 

reduce errors caused by inappropriate dt. Two or 4 ms were used depending on the flow 

velocity.  

An outline chart for the procedure of the BIV measurement and data analysis is 

shown in Fig. 8.4. Matlab software was used for most image process and data analysis 
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and a commercial software DaVis was used for the velocity calculation of each 

instantaneous measurements. Mask images obtained from the BIV images are also used 

for the PIV analysis as discussed in Chapter VII. 

 

 
 

Fig. 8.3 BIV image processing. 
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Fig. 8.4 BIV experiment and data analysis procedure. 
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8.4 Instantaneous Velocity Fields 

This section will also provide more information and validation of the instantaneous 

velocity measurement by comparing with the mean velocity fields at several phases. 

Fig. 8.5 shows the combined BIV fields of view (FOV). The number of points for 

each FOV is 128 × 96. The empty region between x = -0.6 and -0.1 m represents the pre-

breaking region where the wave begins overturning. The velocity field for the pre-

braking region was obtained using the PIV measurement since BIV can measure the 

aerated region only without any modification. Another empty space can be seen between 

x = 1.22 m and 1.49 m due to a steel column of the wave tank. However the PIV 

measurements covered a wider region and will be discussed in Chapter IX. 

 

 
Fig. 8.5 Example of combined FOVs. 

 

Fig. 8.6 shows examples of instantaneous and mean velocity fields at several phases 

obtained from BIV FOV1 and FOV2. Instantaneous velocity fields can be seen in figures 

in the left side with a cyan color while the right side figures with a red color represent 

mean velocity fields at the corresponding phases respectively. 
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(a) instantaneous at t = 0.05 s (FOV1) (b) mean at t = 0.05 s (FOV1) 

  
(c) instantaneous at t = 0.13 s (FOV1) (d) mean at t = 0.13 s (FOV1) 

  
(e) instantaneous at t = 0.21 s (FOV1) (f) mean at t = 0.21 s (FOV1) 

Fig. 8.6 Examples of instantaneous and mean velocity fields. 
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(g) instantaneous at t = 0.56 s (FOV2) (h) mean at t = 0.56 s (FOV2) 

  
(i) instantaneous at t = 0.76 s (FOV2) (j) mean at t = 0.76 s (FOV2) 

  
(k) instantaneous at t = 0.71 s (FOV1) (l) mean at t = 0.71 s (FOV1) 

Fig. 8.6 (Continued). 
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In Fig. 8.6, one of 20 instantaneous background images was overlapped with the 

other instantaneous velocity vectors for comparison while an averaged image of 20 

instantaneous images was overlapped with the mean velocity vectors. Empty velocity 

vectors in the instantaneous velocity fields are rarely found and the plunging breaker has 

great repeatability. 

8.5 Results from the BIV Measurements 

Although numerous data was obtained from the BIV measurements, detailed results 

will not be presented in the main part of this dissertation. The BIV measurement results 

can be seen in appendix A. The time difference between presented figures is 0.05 s. Note 

that time resolution of original data is 0.01s. Table 8.1 shows the list for the BIV 

measurement results presented in appendix A.  

BIV is indeed a reliable technique to measure velocity fields of the highly aerated 

region. However, it is essential to measure the velocity fields outside the aerated region 

to investigate the entire flow in the plunging breaker. Since the modified PIV technique 

used in this study is capable of measuring velocities of the entire flow field including the 

highly aerated region, most quantitative results are presented using the PIV analysis. 

Results from the PIV measurements can be seen in Chapters IX and X. 

BIV results were mainly used to validate PIV results for the aerated region. In 

addition, for better comparison, various mask images for the PIV analysis were obtained 

from the BIV images to reduced errors caused by seeding particles as discussed in 

Chapter VII. The images taken using the BIV technique are also very helpful to describe 

flow structure of the breaking wave as shown in Chapter VI. 
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Table 8.1 List of the BIV measurement results in Appendix A 
List of the BIV measurement results in Appendix A 

Figure Number Description 

Fig. A.1 Mean Velocity Map ( 2 2U W+ ) 

Fig. A.2 Normalized Horizontal Velocity ( U C ) 

Fig. A.3 Normalized Vertical Velocity ( W C ) 

Fig. A.4 Normalized Mean Vorticity ( H CΩ ) 

Fig. A.5 Normalized Mean Kinetic Energy ( 2K C ) 

Fig. A.6 Normalized Turbulent Kinetic Energy ( 2k C ) 

Fig. A.7 Normalized Horizontal Turbulence Intensity ( 2'u C ) 

Fig. A.8 Normalized Vertical Turbulence Intensity ( 2'w C ) 

Fig. A.9 Normalized Reynolds Stress ( 2u w C′ ′− ) 

Fig. A.10 Normalized Turbulent Kinetic Energy Transport by U ( 3kU C ) 

Fig. A.11 Normalized Turbulent Kinetic Energy Transport by W ( 3kW C ) 

Fig. A.12 Mean Void Ratio Before Calibration ( α ) 

Fig. A.13 Relative Velocity ( ,U C W− ) 

Fig. A.14 Normalized Horizontal Local Acceleration ( U
g

t
∂
∂

) 

Fig. A.15 Normalized Vertical Local Acceleration ( W
g

t
∂
∂

) 

Fig. A.16 Normalized Horizontal Convective Acceleration ( U U
U W g

x z
∂ ∂� �+� �∂ ∂� �

) 

Fig. A.17 Normalized Vertical Convective Acceleration ( W W
U W g

x z
∂ ∂� �+� �∂ ∂� �

) 

Fig. A.18 Normalized Horizontal Total Acceleration ( U U U
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

) 

Fig. A.19 Normalized Vertical Total Acceleration ( W W W
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

) 
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CHAPTER IX 

9 MEAN QUANTITIES IN A PLUNGING BREAKER USING PIV 

9.1 Introduction 

The particle image velocimetry (PIV) technique was employed to measure the 

entire flow field. By modifying the traditional PIV system, a velocity field of the entire 

flow field including the highly aerated region was obtained with very high temporal and 

spatial resolution. Recently, laser Doppler velocimetry (LDV) and PIV have been mostly 

employed to measure flow velocities. Both techniques have some advantages and 

disadvantages. For example, the traditional PIV technique is the most reliable technique 

to obtain velocity maps in the spatial domain with very high spatial resolution; however, 

because the data sampling rate is about 10 Hz due to the limitation from a pulsed laser 

and a camera frame rate, there is lower temporal resolution. 

The PIV method is very useful to obtain flow properties including the gradient 

terms such as vorticity and convective acceleration. However, due to the low temporal 

resolution it is not suitable to obtain flow properties including the time derivative or 

time-averaged values at an arbitrary point or station, such as local acceleration and 

fluxes of mass, momentum or energy. 

On the other hand, the LDV technique provides time series of velocity at a point 

with high temporal resolution but it is a point measurement. It is useful to obtain time 

series of flow properties and time mean values. However, it is not suitable for flows 
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whose velocity gradient is important. Indeed, advantages of the PIV method are 

disadvantages of the LDV method and vice versa. The appropriate technique should be 

chosen depending on flow characteristics. 

It is considered that the PIV technique is most reliable technique for the breaking 

wave measurements. However, there are two main concerns to be figured out in the PIV 

measurements. First, the traditional PIV has very low temporal resolution. Second, the 

technique cannot measure the inside of the aerated region although it is not a problem of 

PIV only. To investigate breaking waves experimentally, it is highly required to employ 

a proper measurement technique providing very high spatial and temporal resolution. In 

the present study, the spatial and temporal resolutions of the final data in the PIV 

measurements are 5.78 mm and 10 ms, respectively. Note that the resolutions in the BIV 

measurements are 5.26 mm and 10 ms. It was possible to use such very high resolutions 

due to use of a high speed camera and a continuous Argon-Ion laser to generate a light 

sheet without interruption. Originally, the PIV was employed to measure only the 

outside of the aerated region where BIV cannot measure as shown in Chapter VIII and 

Appendix A. During the preliminary test of the PIV measurement, it was found that the 

velocity field of the aerated region can be obtained using the modified PIV technique. 

This is because the power of the continuous laser is much less than the power of the 

pulsed laser used in the traditional technique such as a Nd:YAG laser. Various 

intensities due to air-water mixture in the aerated region were found. It is very similar to 

the images from the BIV measurements. In addition, weak laser power does not effect 

the quality of the velocity field for the outside of the aerated region. 
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Mean flow characteristics of the plunging breaking waves are presented in this 

chapter and turbulent characteristics will be discussed in Chapter X. Procedure of data 

analysis and validation of the PIV measurement are given in Section 9.2 and 9.3 

respectively. Spatial analysis and temporal analysis of velocity, vorticity and mean 

kinetic energy can be seen in Section 9.4, 9.5 and 9.6 respectively. 

9.2 PIV Data Analysis Procedure 

Since the detailed experimental setup and conditions can be seen in Chapter V, The 

PIV data analysis procedure is briefly described here. A total of 14 fields of view (FOV) 

were chosen to cover the entire plunging wave as shown in Fig. 5.1. To obtain mean and 

turbulent properties, 20 measurements were repeated with the same condition for every 

14 FOV. Fig. 9.1 shows the PIV image processing. Images were taken for 4 s with a 

frame rate of 500 fps. A total of 567560 images (2027 images/measurement × 20 

measurements/FOV × 14 FOVs) were obtained for the plunging breaker in the PIV 

measurements. Note that the number of images for a spilling breaker is 972960. By 

means of a preliminary test and BIV results, the time difference dt between two coupled 

images for velocity calculation with cross-correlation algorithms were carefully chosen 

to decrease errors caused by dt. 2 ms or 4 ms of dt were used depending on the flow 

velocity. Due to the large amount of image data, temporal resolution for data analysis 

was decided as 10 ms. Although the data sampling rate was reduced from 500 Hz to 100 

Hz, it is about 10 times better than the sampling rate of the traditional PIV measurements.  

Fig. 9.2 shows an outline chart for the procedure of the PIV experiment and data 

analysis. Only the essential process is shown in the figure. It was necessary for the huge 
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data set and their repetitive analysis. With the exception of DaVis which is a commercial 

software was used for the velocity calculation of instantaneous measurements, Matlab 

software was used for most of the image processing and data analysis. 
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Fig. 9.1 PIV image processing. 
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Fig. 9.2 PIV experiment and data analysis procedure. 
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9.3 Validation of PIV Measurements 

It is necessary to validate the velocity obtained from the PIV measurements. It is 

required to check all the experimental conditions although the PIV technique is a well-

known technique. Water particle velocities obtained from the PIV measurements before 

breaking were compared with those obtained from Stokes 5th order wave. It is impossible 

to validate velocities of the inside aerated region with theory. However, the velocities 

from the PIV measurements will be compared with results from BIV which is validated 

as shown in Chapter VIII. Since the wave focusing method was used unlike surf zone 

breaking waves and the location of the breaking point was very close to the wavemaker, 

it was difficult to find a regular wave to compare the wave theory. The only FOV before 

the first impinging point is FOV1, the closest FOV to the wavemaker. However, a 

primary wave has already deformed its shape, so it was determined to find the closest 

time when its properties are very similar to Stokes 5th order waves.  
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(a) velocity map of Stokes 5th wave  (b) wave elevation 

 

Fig. 9.3 Example of Stokes 5th wave and comparison of wave elevation. 
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(a) t = 0.81 s (b) t = 0.91 s 

  
(c) t = 0.96 s (d) t = 0.96 s 

Fig. 9.4 Comparison of PIV velocity with Stokes 5th (PIV FOV1). 

 

Fig. 9.3(a) shows an example of generated Stokes waves. By controlling wave 

properties of the generated Stokes wave, it was found that the instance shown in Fig. 

9.3(b) was the best condition for the comparison although there was a difference near the 

trough. Therefore, the velocities near the crest were compared as shown in Fig. 9.4. The 

location is the first FOV (FOV1) in the PIV measurements and the time is around 0.9 s 
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after the primary wave passed the FOV1. Mean absolute error is about 0.004 m/s in 

horizontal velocity and 0.002 m/s in vertical velocity, where the absolute error is defined 

as 
5th PIVStokes

U U− . Mean relative error is approximately 1.8% in horizontal velocity and 

5.9% in vertical velocity, where the absolute error is defined as 
5 5th thPIVStokes Stokes

U U U− .  

 

  
(a) velocity at t = 0.96 s (b) local acceleration at t = 0.96 s 

  
(c) convective acceleration at t = 0.96 s (d) total acceleration at t = 0.96 s 

Fig. 9.5 Example of acceleration measurement using PIV. 
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Fig. 9.5 shows examples of acceleration fields obtained from the PIV measurements. 

Local acceleration as well as convective acceleration can be obtained due to high 

temporal resolution. 

 

  
(a) instantaneous at t = - 0.14 s (FOV1) (b) mean at t = - 0.14 s (FOV1) 

  
(c) instantaneous at t = 0.09 s (FOV3) (d) mean at t = 0.09 s (FOV3) 

Fig. 9.6 Example of instantaneous (cyan) and mean (red) velocity fields. 
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(e) instantaneous at t = 0.25 s (FOV5) (f) mean at t = 0.25 s (FOV5) 

  
(g) instantaneous at t = 0.56 s (FOV7) (h) mean at t = 0.56 s (FOV7) 

Fig. 9.6 (Continued). 
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(i) instantaneous at t = 0.76 s (FOV9) (j) mean at t = 0.76 s (FOV9) 

  
(k) instantaneous at t = 0.75 s (FOV6) (l) mean at t = 0.75 s (FOV6) 

Fig. 9.6 (Continued). 

 

Fig. 9.6 shows examples of instantaneous and mean velocity fields at important 

moments, such as the first and second splash-ups. One of the instantaneous velocity 

fields can be seen on the left side with a cyan color and right side figures with a red color 

represent mean velocity fields at the corresponding phases. Fig. 9.6(a) and (b) show one 
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of the instantaneous velocity fields and a corresponding mean velocity field when the 

wave begins overturning. Fig. 9.6(c), (e) and (g) show the first impingement and splash-

up, the first splash-up and mixture spray impingement, and the second impingement and 

splash-up. Fig. 9.6(k) shows the first roller in FOV6 which is one of the lower FOVs. 

Note that an even number of FOV represents FOVs at upper rows including free surface 

and an odd number FOV represents FOVs at lower rows as shown in Fig. 7.11. 

Empty velocity vectors in the instantaneous velocity fields are rarely found even in 

the highly aerated region and the plunging breaker has great repeatability as shown in 

Fig. 9.6. Owing to good quality of the instantaneous velocity fields, it was not necessary 

to apply any kind of post processing to the instantaneous velocity fields shown in the 

figure. This is suggested to obtain more accurate quantities such as mean velocity and 

vorticity where their gradients are high. 

 

 
Fig. 9.7 Example of combining 14 PIV FOVs. 

 

Fig. 9.7 shows the combined PIV FOVs. The number of grids for each FOV is 64 × 

64 and the individual FOV is displayed with a different color. Two empty columns are 

caused by two steel columns of the wave tank. 
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Velocity data validation for the overlapped region of several FOVs is  also 

necessary to avoid errors coming from the boundary of the FOV. Figs. 9.8 and 9.9 show 

examples of velocity vectors at the overlapped region of four FOVs.  Except four corners, 

velocity vectors displayed show the overlapped vectors from two or four FOVs  (middle). 

Figs. 9.8 and 9.9 show the overlapped regions of FOV3 to FOV6 and  FOV5 to FOV8 

respectively. They have good agreement at the region as shown in figures.  

 

 
Fig. 9.8 Example of velocity fields at the overlap region (FOV3-6). 
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Fig. 9.9 Example of velocity fields at the overlap region (FOV5-8). 

9.4 Mean Velocity 

Mean and turbulent velocity fields were obtained by the ensemble average of 20 

instantaneous velocity fields shown in Eqs. (9.1) and (9.2).  

1

1
( , , ) ( , , )

N

i
i

U x z t u x z t
N =

= �   (9.1) 

where U and ui are the mean and instantaneous velocity and N is the total number of 

experiments. Therefore, fluctuating velocity for each instantaneous velocity can be 

obtained from 

( , , ) ( , , ) ( , , )i iu x z t u x z t U x z t′ = −   (9.2) 
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For convenience, the root mean square of iu′  is denoted by u′ shown in Eq. (9.3). 

2 2,i iu u w w′ ′ ′ ′= =   (9.3) 

9.4.1 Spatial Analysis of Mean Flow Velocity 

Spatial analysis results are presented in this section. The spatial analyses for mean 

flow were performed with high temporal resolution of 10 ms. The total number of FOVs 

is 14 as shown in Fig. 9.10. 14 red windows represent FOVs in the PIV measurements. 

Due to the large amount of data, results for important wave phases are discussed with 

some figures from an individual FOV for detailed discussion. For example, wave 

deformation and the first impingement are seen in PIV FOV1 and FOV3 respectively. 

The second and third impingements are seen in FOV7 and FOV9. Every fully developed 

splash-up processes are seen in FOV5, 7 and 9. Spilling waves after the third splash-up 

can be seen in FOV11 and FOV13. More results from combined FOVs with a mosaic 

method can be seen in Appendix B.  

 
 

Fig. 9.10 Location of fields of view (FOV) in the PIV measurements (red). 
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(a) t = - 0.25 s (FOV1) (b) t = - 0.20 s (FOV1) 

  
(c) t = - 0.15 s (FOV1) (d) t = - 0.10 s (FOV1) 

Fig. 9.11 Mean velocity in the pre-impinging region (FOV1). 

 

Mean velocity fields for the overturning moment are shown in Fig. 9.11. Note that a 

green circle in Fig. 9.11 represents the location of maximum speed. For a better view,  

every other velocity vectors are presented in both x and z directions. The wave face 
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becomes vertical at x = - 0.42 m and t = - 0.2 s. Maximum velocity occurs at the crest 

and its magnitude is about 1.4C. Note that C is the wave phase speed and its magnitude 

is 1.3 m/s. Large upward momentum with maximum upward velocity more than 0.5C is 

transported to large horizontal momentum and the horizontal velocity at the crest is 

linearly increased during the overturning process as shown in Fig. 9.12.  

 

 
 

Fig. 9.12 Maximum velocity at FOV1. 

 

Fig. 9.13 shows the beginning of the first splash-up process followed by the first 

impingement at FOV3. The velocity field at the overturning moment can be seen in Fig. 

9.13(a). At this moment, the maximum horizontal and downward velocities of the 

overturning jet are about 1.5C and 0.6C and the velocities of the jet are gradually 

increased to 1.68C and 0.71C until the first impinging moment [Fig. 9.13(b)]. Fig. 9.14 

shows maximum velocity variation in time at FOV3. Location of the maximum velocity 
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is moved from the impinging jet to the splash-up from t = 0.03 s. Maximum horizontal 

velocity in the entire breaking process occurs at the beginning of the first splash-up at t = 

0.05 s and its magnitude is about 2.14C [Fig. 9.13(d)]. 

 

  
(a) t = - 0.05 s (FOV3) (b) t = - 0.02 s (FOV3) 

  
(c) t = 0.01 s (FOV3) (d) t = 0.05 s (FOV3) 

Fig. 9.13 Velocity at the first impingement and beginning of the first splash-up 

(FOV3). 
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Fig. 9.13(d) shows the moment when the maximum velocity occurs through the 

entire breaking process. As discussed in Chapter VI, a new local crest of water wave is 

generated between two large rollers due to the impinging jet, which can be seen at x = 

0.08 m in Fig. 9.13(d). This small water crest is moving in front of the impinging first 

roller and its height is increased as the energy of the impinging jet is decreased gradually. 

As mentioned in Chapter VI, the impinging jet is rarely reflected to the splash-up. Most 

of the water structure of the jet penetrates into the front wave surface continuously with 

a clockwise rolling motion. Large downstream and downward momentum of the 

impinging jet begins to transfer to the ascending new water crest, which is causing the 

first splash-up and the second impingement later. 

 
Fig. 9.14 Maximum velocity at FOV3. 

 

It is difficult to observe the clockwise roller motion in normal velocity fields such 

as Fig. 9.13 due to large horizontal velocity of flow. Relative velocity fields are obtained 
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by means of subtracting the phase speed from the horizontal velocity. Two roller 

motions can be seen in Fig. 9.15. Horizontal velocity near the wave crest of the 

impinging jet is very close to the phase speed as shown in Fig. 9.15.  

 

  
(a) t = 0.07 s (FOV3) (b) t = 0.09 s (FOV3) 

Fig. 9.15 Relative velocity by moving frame with C (U-C) (FOV3). 

 

Fig. 9.16 shows velocity fields at the first splash-up process followed by the first 

impingement. There is a first backward impingement onto the first impinging roller due 

to the ascending crest as shown in Fig. 9.17 and the first backward impingement will be 

discussed later. One of most important processes in this moment and region is the newly 

ascending water crest caused by the impinging jet. The impinging first roller is 

continuously providing large momentum to the ascending crest. The ascending crest is 

accelerated with large kinetic energy in an upward direction. The surface of the 

ascending crest becomes turbulence and the upper part of the crest is splashed up with 
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the form of water spray. The size of the second roller in the first splash-up region is 

gradually increased although the velocity of the splash-up decreases gradually as shown 

in Fig. 9.18. Air-water mixture spray with maximum velocity caused by the first splash-

up impinges onto the front trough continuously. 

 

  
(a) t = 0.19 s (FOV5) (b) t = 0.22 s (FOV5) 

  
(c) t = 0.25 s (FOV5) (d) t = 0.28 s (FOV5) 

Fig. 9.16 Velocity at the first splash-up and first backward impingement (FOV5). 
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(e) t = 0.33 s (FOV5) (f) t = 0.38 s (FOV5) 

  
(g) t = 0.43 s (FOV5) (h) t = 0.48 s (FOV5) 

Fig. 9.16 (Continued). 

 

It is easier to observe the first backward impingement causing negative vorticity 

(counterclockwise) as well as two large eddies using Fig. 9.17. In addition, the ascending 

crest can be seen more clearly as shown in Fig. 9.17. The ascending water crest is 

growing more and more and its upper part is moving with similar speed to the wave 
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celerity in the downstream direction and more than 0.5C in the upward direction. As 

mentioned in Chapter VI, the upper part of the ascending crest loses its kinetic energy 

when the ascending crest reaches around z = 0.1 m. Therefore, the upper and left part of 

the crest begins the first backward impinging onto the first roller [Fig. 9.17(c) and (d)]. 

 

  
(a) t = 0.20 s (FOV5) (b) 0.22 s (FOV5) 

  
(c) 0.24 s (FOV5) (d) t = 0.26 s (FOV5) 

Fig. 9.17 Relative velocity at the two rollers and first backward impingement. 
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(e) t = 0.30 s (FOV5) (f) t = 0.37 s (FOV5) 

  
(g) t = 0.45 s (FOV5) (h) t = 0.56 s (FOV5) 

Fig. 9.17 (Continued). 

 

The first backward impingement which starts at around t = 0.25 s, continues onto 

the first roller and another turbulence is generated due to the mixing between the first 

roller (clockwise) and the first backward impingement (counterclockwise). While the 

upper and left part of the ascending crest impinges backward, the obliquely ascending 
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crest changes its shape to be symmetric and becomes a new primary wave, which is 

causing the second impingement.  

Fig. 9.18 shows maximum velocity variation in time at FOV5. Maximum upward 

velocity higher than 0.5C continued from the beginning of the first splash-up due to the 

ascending crest and the maximum downward velocity in the entire breaking process 

occurs due to the water spray impingement and its magnitude is about 0.78C. Note that 

the maximum downward velocity at the first impingement is approximately 0.71C. 

However, downward momentum at the first impingement is larger than that at the water 

spray impingement due to the high void ratio of the water spray. Fig. 9.19 represents 

vertical velocity contours. Note that 8 FOVs (FOV1 to FOV8) are combined. It will 

provide better understanding for the process of the first splash-up caused by the first 

impingement. In addition, the obliquely ascending crest and the first backward 

impingement can be seen from Fig. 9.19. 

 
Fig. 9.18 Maximum velocity at FOV5. 
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(a) t = 0 s (b) t = 0.02 s 

  
(c) t = 0.04 s (d) t = 0.06 s 

  
(e) t = 0.08 s (f) t = 0.10 s 

  
(g) t = 0.12 s (h) t = 0.14 s 

  
(i) t = 0.16 s (j) t = 0.18 s 

Fig. 9.19 Vertical velocity contours at the first impingement and splash-up (unit: 

m/s). 
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(k) t = 0.20 s (l) t = 0.22 s 

  
(m) t = 0.24 s (n) t = 0.26 s 

  
(o) t = 0.28 s (p) t = 0.30 s 

  
(q) t = 0.32 s (r) t = 0.34 s 

  
(s) t = 0.36 s (t) t = 0.38 s 

Fig. 9.19 (Continued). 
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The second impingement and splash-up processes are also very interesting. Fig. 

9.20 shows velocity fields for the second impingement and splash-up at FOV7. In 

addition, vertical velocity contours can be seen in Fig. 9.23. Air-water mixture spray 

caused by the first splash-up impinges onto the front trough without any splash-up 

process as shown in Fig. 9.20(a) and (b).  

 

  
(a) t = 0.37 s (FOV7) (b) t = 0.41 s (FOV7) 

  
(c) t = 0.44 s (FOV7) (d) t = 0.47 s (FOV7) 

Fig. 9.20 Velocity at the second impingement and splash-up (FOV7). 
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(e) t = 0.50 s (FOV7) (f) t = 0.53 s (FOV7) 

  
(g) t = 0.56 s (FOV7) (h) t = 0.59 s (FOV7) 

Fig. 9.20 (Continued). 

 

Only a small part of the mixture spray rebounds slightly or penetrates the wave 

surface near the trough. Most mixture spray caused by the first splash-up is accumulated 

on the trough region around x = 0.7 to 0.8 m without significant horizontal momentum of 

the impinging mixture spray. Therefore, the accumulated mixture volume is increased 
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and turbulence is increased due to the mixing between the impinging spray and 

clockwise roller motion of the accumulated mixture. Finally, the new primary wave 

formed from the ascending crest, which is caused by the first splash-up, impinges onto 

the accumulated mixture with large momentum [Fig. 9.20(c)-(e)]. 

 

  
(a) t = 0.37 s (FOV7) (b) t = 0.41 s (FOV7) 

  
(c) t = 0.44 s (FOV7) (d) t = 0.47 s (FOV7) 

Fig. 9.21 Relative velocity at the second impingement and splash-up (FOV7). 
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(e) t = 0.50 s (FOV7) (f) t = 0.53 s (FOV7) 

  
(g) t = 0.56 s (FOV7) (h) t = 0.59 s (FOV7) 

Fig. 9.21 (Continued). 

 

Fig. 9.20(e)-(h) shows the process of the second splash-up. By the second 

impingement of the new primary wave, the clockwise roller motion of the accumulated 

mixture is accelerated. The upper portion of the accumulated mixture is splashed up with 

acceleration while the bottom of the mixture penetrates downward with the impinging 
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water. Indeed, the largest second roller caused by the first splash-up is gathered around x 

= 0.7-0.8 m and then it is divided into two parts by the second impingement.  

Fig. 9.21 shows relative velocity fields with moving frame at FOV7. As shown in 

Fig. 9.20 and Fig. 9.21, maximum velocity occurs at the region of the water spray jet or 

impinging jet rather than the accumulated mixture until the second splash-up. A small 

water crest at x = 0.9 m shown in Fig. 9.19(g) and Fig. 9.20(g) becomes another new 

primary wave and it will cause the third impingement later. The previous primary wave 

causing the second impingement divides two rollers and the nonlinear free surface due to 

the second impingement is linearized around t = 0.83 s after one period wave cycle (Fig. 

9.22). Note that the nonlinear free surface due to the first impingement is linearized at t 

= 0.51 s. Each backward impingement contributes to the linearization of the free surface 

by filling up scars that were formed due to each impinging process.  

 

  
(a) t = 0.69 s (FOV7) (b) t = 0.83 s (FOV7) 

Fig. 9.22 Roller separation and linearized free surface (FOV7). 
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(a) t = 0.36 s (b) t = 0.38s s 

  
(c) t = 0.40 s (d) t = 0.42 s 

  
(e) t = 0.44 s (f) t = 0.46 s 

  
(g) t = 0.48 s (h) t = 0.50 s 

  
(i) t = 0.52 s (j) t = 0.54 s 

Fig. 9.23 Vertical velocity contours at the second impingement and splash-up (unit: 

m/s). 
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Time and location differences between the second and third impingements are 

much shorter than that between the first and second impingement as shown in Table 6.1 

and Table 6.2. It is believed that it is caused by decreased wavelength and wave period 

in the generation process of the new primary wave at each impingement. 

 

  
(a) t = 0.68 s (FOV9) (b) t = 0.72 s (FOV9) 

  
(c) t = 0.76 s (FOV9) (d) t = 0.80 s (FOV9) 

Fig. 9.24 Velocity at the third impingement and splash-up. 
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(a) t = 0.56 s (b) t = 0.58 s 

  
(c) t = 0.60 s (d) t = 0.62 s 

  
(e) t = 0.64 s (f) t = 0.66 s 

  
(g) t = 0.68 s (h) t = 0.70 s 

  
(i) t = 0.72 s (j) t = 0.74 s 

Fig. 9.25 Vertical velocity contours at the third impingement and splash-up. 
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Fig. 9.24 shows the third impingement and splash-up. Fig. 9.25 shows the 

continued second splash-up and the third splash-up followed by the third impingement. 

Compared with the second water spray impingements caused by the first splash-up, the 

third impingement followed by water spray impinging has small downward momentum. 

Therefore, the scale of the third impingement is very small and the process is very 

similar to the breaking process of spilling breakers. The maximum velocity is still 

slightly higher than the wave phase speed as shown in Fig. 9.26.  

 
Fig. 9.26 Maximum velocity at FOV9. 

 

Fig. 9.27 shows the first roller generated by the first impingement. For a better view, 

the size of the vector is increased and every other five vectors in the x direction are 

displayed. This roller penetrated into deep water about 0.32h, where h is the water depth. 

After the first impingement and the first backward impingement, the first roller loses 

kinetic energy rapidly. Then the nonlinear free surface caused by the first impingement 
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is linearized by the backward impingement at t = 0.51 s [Fig. 6.1(g)]. In this process, the 

mixing of the first roller and the backward impingement produces turbulent kinetic 

energy and then the turbulence diffusion process occurs. Detailed discussion about 

turbulence is presented in Chapter X.  

 

  
(a) t = 0.75 s (FOV6) (b) t = 0.87 s (FOV6) 

  
(c) t = 0.99 s (FOV6) (d) t = 1.11 s (FOV6) 

Fig. 9.27 The first roller at the bottom FOV (FOV6). 
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(a) t = 1.06 s (FOV10) (b) t = 1.16 s (FOV10) 

  
(c) t = 1.26 s (FOV10) (d) t = 1.36 s (FOV10) 

Fig. 9.28 The second roller at the bottom FOV (FOV10). 

 

In addition, there is interference between mean flow and buoyancy of large bubbles, 

which is one of source for turbulence. Larger air bubbles, which are entrained in the 

process of the first impingement and the first backward impingement, begin floating then 

burst on the free surface from t = 0.51 to t = 1.00 s [Fig. 6.1(g)-(m)]. On the other hand, 
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small size bubbles, which do not have enough buoyancy, begin following the mean flow 

motion gradually losing their turbulent kinetic energy. Depending on the location and 

size of bubbles, they are slowly floating on the free surface following the mean flow 

motion. Finally, all the bubbles float and disappear around t = 3 s which is 3.6T.  

 

  
(a) t = 0.99 s (FOV11) (b) t = 1.06 s (FOV11) 

  
(c) t = 1.13 s (FOV11) (d) t = 1.20 s (FOV11) 

Fig. 9.29 Velocity at the spilling wave region (FOV11). 
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(a) t = 1.32 s (FOV13) (b) t = 1.43 s (FOV12) 

  
(c) t = 1.52 s (FOV13) (d) t = 1.62 s (FOV13) 

Fig. 9.30 Velocity at the spilling wave region (FOV13). 

 

Fig. 9.28 shows that the second roller penetrates into deep water up to about 0.22h. 

Its size and momentum are smaller than those of the first roller because part of the 

second roller is splashed up in the process of the second impingement. The distance 

between the two rollers is about 0.45L, where L is the wavelength of the primary wave. 
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Fig. 9.29 and Fig. 9.30 show velocity fields for spilling waves after the third splash-

up at FOV11 and FOV13 respectively. Note that the FOV13 is the last FOV in the upper 

row. The maximum velocity is rapidly decreased after the third splash-up. For example, 

the maximum velocity at the crest is decreased from 0.8C to 0.6C at FOV11 and 0.6C to 

0.4C at FOV13. Due to the significant decrease of the velocity after the third splash-up, 

mean travel velocity of the breaking wave is very close to the wave phase speed. The 

breaking wave travels about 2.13 m in 1.62 s as shown in Fig. 9.30(d). Therefore, mean 

travel speed of the plunging breaker is about 1.31 m/s which is very close to the phase 

speed of the initial primary wave, which is 1.3 m/s. 

 

 
 

Fig. 9.31 Normalized maximum velocity. 
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Fig. 9.31 shows the maximum velocity variation in time at the combined FOVs 

(FOV3-FOV10) which includes all important breaking processes in one window 

between two steel columns of the wave tank. Maximum horizontal velocity variation is 

almost accord with maximum velocity except during the first impingement and the 

second impingement followed by water spray impinging. Local maximum velocities 

occur at each splash-up process. Maximum horizontal velocity occurs at t = 0.05 s 

(0.06T) at the beginning the first splash-up and the magnitude is about 2.14C. Maximum 

upward velocity is about 0.55C near the newly ascending crest during the first splash-up 

and maximum downward velocity in the entire flow is about 0.78C at t = 0.3 s (0.36T) 

during the water spray impinging process caused by the first splash-up. The local 

maximum occurs at the first impingement at t = 0 and the magnitude is about 0.71C. 

Maximum velocity is decreased gradually and becomes smaller than the wave phase 

speed after one wave period.  

 

 
 

Fig. 9.32 Location of maximum velocity and horizontal velocity. 
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Fig. 9.32 and Fig. 9.33 show the location of the maximum velocity in the horizontal 

and vertical direction respectively. The time difference between markers is 0.01 s. 

Location of maximum horizontal velocity does not change much around x = 0.6L due to 

accumulated mixture spray without significant horizontal motion. However, it is 

accelerated due to the second impingement of the water jet. The location of horizontal 

velocity follows the order of each process. That is, the first impinging jet, the first 

splash-up, water spray impinging, the second impinging jet, the second splash-up and so 

on.  

The location of upward maximum velocity is under the overturning jet, providing 

upward momentum continuously before the first impingement. After the first 

impingement, the maximum location follows the newly generated ascending crest, the 

second splash-up and the new crest causing the third impinging. In case of downward 

maximum velocity, the location follows the first impinging jet, water spray from the first 

splash-up, the second impinging jet, the first roller penetrating into deep water, the 

second roller penetrating into water and then the third impingement. 

 

 
 

Fig. 9.33 Location of maximum vertical velocity. 
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Three lines shown in Fig. 9.32 and Fig. 9.33 represent envelopes of crest, mean 

water level and trough respectively. There are a total of 475 stations in the x direction 

with dx = 5.78 mm. Trough envelope, which is the minimum wave elevation, always 

occurs at the rear of the wave from the beginning of the breaking process. In the initial 

stage of the plunging breaker, The elevation of the front and rear troughs of the breaking 

wave becomes very close and trough in front of the primary wave is gradually increased 

from around x = - 0.4L where the wave face becomes vertical. As shown in Fig. 9.34, the 

elevation difference between two troughs is increased and the elevation of the front 

tough becomes close to still water level. Moreover, it is higher than mean water level 

from x = 1.5L. 

 

 
Fig. 9.34 Increase of the front trough level. 
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9.4.2 Temporal Analysis of Mean Velocity 

In the previous section, spatial analyses of the strong plunging breaker were 

presented with detail descriptions of each impinging and splash-up process. Temporal 

analysis is also essential to investigate transport of mass, momentum and energy. 

Breaking waves have remarkable variation in both time and space, especially in the 

plunging breaker as shown in previous section. In the present study, one of great 

advantages is to obtain time-averaged values with more accuracy owing to the high 

temporal resolution in addition to the high spatial resolution. 

 

  
(a) x = - 0.247m (b) x = 0.25 m  

  
(c) x = 0.435 m (d) x = 0.602 m 

Fig. 9.35 Velocity time series at a station (red vectors: inside the aerated region and 

blue vectors: outside the aerated region). 
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(e) x = 0.758 m (f) x = 0.886 m 

  
(g) x = 1.082 m (h) x = 1.938 m 

  
(i) x = 0.556 m (j) x = 1.053 m 

Fig. 9.35 (Continued). 

 

Fig. 9.35 shows the time series of velocity passing through a vertical station. Some 

examples of the results for several important vertical stations mentioned in previous 
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sections are presented among the total of 475 stations for the entire flow regime. Fig. 

9.35(a) shows velocity time series at x = - 0.247 m where the crest is overturning after 

the wave face becomes vertical. Fig. 9.35(b) and (c) represent velocity variation at the 

beginning of the first splash-up and at the fully developed first splash-up. Note that 

velocity vectors in the aerated region are plotted in a red color and water particle 

velocities are plotted with a blue color. Fig. 9.35(d)-(f) represent velocity time series at 

the locations of the second impingement, the beginning of the second splash-up and the 

fully developed second splash-up. Fig. 9.35(g) and (h) show the velocities at the location 

of the beginning of the third splash-up and the spilling wave far away from the breaking 

point. Fig. 9.35(i) and (j) show examples of results for the first and second rollers 

penetrating to deep water, which were obtained from the lower FOVs (FOV6 and 10).  

The velocity time series for all 475 stations provides insight into the breaking 

process with results from the spatial analysis. For example, there are small valleys of 

elevation between upward velocities due to the splash-up and downward velocities due 

to the impingement around the location of the beginning of each splash-up as shown in 

Fig. 9.35(b), (e) and (g) [t = 0.2 s in Fig. 9.35(b), t = 0.55 s Fig. 9.35(e) and t = 0.75 s in 

Fig. 9.35(g)]. The magnitude of the velocity for the first impinging and splash-up 

process is significant. In addition, the magnitude for the second splash-up is also 

remarkable. This is because the fluid of the second splash-up is an air-water mixture. 

Therefore, momentum at the second splash-up is overestimated although velocity is very 

high. On the other hand, compared with the first and second processes, it is difficult to 

observe the valley between the third impingement and the third splash-up. Horizontal 
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momentum is dominant in the third splash-up process as discussed in the previous 

section. Since impinging waves have lost their potential energy continuously during the  

impinging process, The elevation of waves passing the locations has local minimum 

values. This will be discussed in detail later. Another example is the location of the 

second impingement. The difference between the first and the second impingement is 

where the impinging water jet touches. The first overturning water jet impinges onto the 

front water surface over still water level and the front water is pushed up. On the other 

hand, the second impinging water is followed by the water spray impinging and 

impinges onto the lower part of accumulated air-water mixture. Thus, velocity direction 

near the location of the second impingement is downward and there is also a valley 

between the water spray impingement and the water impingement around t = 0.4 s as 

shown in Fig. 9.35(d).  

The time interval to calculate time-averaged values between two troughs which are 

front and rear troughs of the progressing breaker and the time interval between two 

troughs is defined as a local wave period at a station. It was found that wave period 

changed in location. It is decreased gradually as the breaker travels with local maxima 

and minima as shown in Fig. 9.36. Fig. 9.36 shows the local wave periods at all 475 

stations with dx = 5.78 mm. The local periods are normalized by the period of the initial 

primary wave just before the wave face becomes vertical. The wave period at the 

location where the breaking process is almost finished is about 0.7T. Therefore, it is 

necessary to obtain time information of two troughs for all vertical stations to obtain 

more accurate time-averaged values.  
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Fig. 9.36 Decrease of a local wave period. 

 

Eqs. (9.4) and (9.5) show the calculation of wave-averaged and period-averaged 

quantities using the time series results shown in Fig. 9.35. Only wetted region is 

considered in the calculation of wave-averaged values while period-averaged values are 

obtained from the summation of quantities divided by the corresponding local wave 

period. Therefore, averaged values under the trough level are identical from both 

calculations. 
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where, ttr(x) is the local time when the front trough reaches the station and T(x) is the 

local wave period. ( , , ) 1x z tδ =  in water under the free surface and ( , , ) 0x z tδ =  in air 

above the free surface. The time resolution dt is 0.01 s. 
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(a1) U at x = - 0.247m (a2) W at x = - 0.247 m  

  
(b1) U at x = 0.250 m (b2) W at x = 0.250 m  

  
(c1) U at x = 0.435 m (c2) W at x = 0.435 m 

Fig. 9.37 Time-averaged, maximum, and minimum velocity (unit: m/s). 
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(d1) U at x = 0.602 m (d2) W at x = 0.602 m 

  
(e1) U at x = 0.758 m (e2) W at x = 0.758 m 

  
(f1) U at x = 1.938 m (f2) W at x = 1.938 m 

Fig. 9.37 (Continued). 
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Fig. 9.37 shows vertical profiles of the wave-averaged and period-averaged 

velocities. In addition, vertical profiles of the maximum and minimum velocities at some 

stations mentioned in Fig. 9.35. Figures on the left side that are labeled as 1 (e.g., (a1)), 

represent vertical profiles of horizontal velocities while figures on the right side that are 

labeled as 2 (e.g., (a2)), represent vertical profiles of vertical velocities at the same 

location. Fig. 9.38 and Fig. 9.39 show the comparison of results with different locations 

which are x < L for horizontal and vertical velocities respectively. 

 

  
(a) period-averaged U (Upa) (b) wave-averaged U (Uwa) 

  
(c) maximum U (Umax) (d) minimum U (Umin) 

Fig. 9.38 Time-averaged horizontal velocity at x < L (unit: m/s). 
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(a) period-averaged W (Wpa) (b) wave-averaged W (Wwa) 

  
(c) maximum W (Wmax) (d) minimum W (Wmin) 

Fig. 9.39 Time-averaged vertical velocity at x < L (unit: m/s). 

 

Fig. 9.40 and Fig. 9.41 show the comparison of results with different locations 

which are x > L (spilling wave region) for horizontal and vertical velocities respectively. 

The results shown in Fig. 9.37 to Fig. 9.41 were obtained by combining upper and lower 

FOVs. Velocities for the overlapped region between two FOVs were obtained by 

averaging. 

Variation of the time-averaged horizontal velocity profiles is not significant after 

the first impingement as shown in Fig. 9.38(a) and (b). Note that the velocity profile 
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presented with green squares is before the first impinging point. Some discrepancy under 

the trough level is due to the two rollers penetrating into deep water and is dependent on 

the location of the station. For example, the first roller caused by the first impingement 

passes through x = 0.597 m as shown in Fig. 9.38(a), that makes more positive transport 

between z = - 0.3 m and z = - 0.1 m. In the case of the spilling region where x > L, the 

second roller caused by the second impingement passes through x = 1.076 m as shown in 

Fig. 9.40(a). 

 

  
(a) period-averaged U (Upa) (b) wave-averaged U (Uwa) 

  
(c) maximum U (Umax) (d) minimum U (Umin) 

Fig. 9.40 Time-averaged horizontal velocity at x > L (unit: m/s). 
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(a) period-averaged W (Wpa) (b) wave-averaged W (Wwa) 

  
(c) maximum W (Wmax) (d) minimum W (Wmin) 

Fig. 9.41 Time-averaged vertical velocity at x > L (unit: m/s). 

 

It can be clearly seen that variation of the vertical velocity profiles at x < L, where 

the first and second impingements occur, is very large [Fig. 9.39(a) and (b)] while 

variation of the vertical velocity profile at x > L, which is the spilling wave region from 

the third impingement, is much smaller [Fig. 9.41(a) and (b)].  

One of the interesting profiles of the period-averaged vertical velocity occurs at the 

location between the developed first splash-up and the second impingement. An example 

can be seen from Wpa at x = 0.597m (blue) in Fig. 9.39(a). Two large negative averaged 
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profiles represent water spray impingement caused by the first splash-up and downward 

momentum of the wave rear face (z > 0), and penetrating first roller into deep water (z < 

0) respectively. Therefore, downward momentum is dominant at this location except 

near the still water level. This is due to the newly ascending crest caused by the first 

impingement. The new ascending crest provides large upward momentum causing the 

first splash-up continuously as the crest is growing. Large downward momentum from 

the water spray impingement and the first roller penetration is compensated by the large 

upward momentum from the ascending crest around z = 0. As the impinging water jet 

pushes up front surface water, the large downward momentum of the first impinging jet 

is continuously transferred to the upward momentum of the ascending water crest and 

the ascending crest causes the first splash-up. 

Since the PIV measurements were performed to cover the entire breaking wave, 

time series and time-averaged values can be obtained for all 475 stations and are shown 

in Fig. 9.35 to Fig. 9.41. Fig. 9.42(a) and (b) show the wave-averaged horizontal velocity 

and the period-averaged horizontal velocity at each point with dx = dz = 5.78 mm. Fig. 

9.42(c) and (d) represent the maximum and minimum horizontal velocity at each point. 

The number of points is 55100 (475 × 116) and the time resolution in the calculation for 

the time averaging is 10 ms. Fig. 9.43(a) and (b) show the wave-averaged and period-

averaged vertical velocity at each point. Fig. 9.43(c) and (d) represent the maximum and 

minimum vertical velocity at each point. The x and z components were normalized by 

constant water depth (h = 0.8 m) and wavelength of the primary wave (L = 1.08 m). All 

velocities presented were normalized by the wave phase speed (C = 1.3 m/s). 
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(a) wave-averaged U (Uwa /C) 

 
(b) period-averaged U (Upa /C) 

 
(c) maximum U (Umax /C) 

 
(d) minimum U (Umin /C) 

Fig. 9.42 Normalized time-averaged, maximum, and minimum horizontal velocity. 
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(a) wave-averaged W (Wwa /C) 

 
(b) period-averaged W (Wpa /C) 

 
(c) maximum W (Wmax /C) 

 
(d) minimum W (Wmin /C) 

Fig. 9.43 Normalized time-averaged, maximum, and minimum vertical velocity. 
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As shown in Fig. 9.42(a), it is clearly seen that the wave-averaged horizontal 

velocity has the maximum near crest level and the maximum in the entire flow occurs at 

around x = 0.25 m, where the full-scale first splash-up begins. In addition, the wave and 

period-averaged vertical velocities have their maximum at this location as shown in Fig. 

9.43(a) and (b). The wave-averaged horizontal velocity is gradually decreased during the 

first splash-up process and is increased again because the upward momentum of the 

second splash-up is transported to horizontal momentum.  

Period-averaged horizontal velocity has maximum values at x = 0.2 m to 0.45 m, as 

shown in Fig. 9.42(b), because the first roller caused by the overturning jet and the 

newly ascending crest causing the first splash-up passes through that location with large 

horizontal momentum. The horizontal momentum is transported in sequence of each 

impingement and splash-up process. As shown in Fig. 9.42(c), maximum horizontal 

velocity in the entire flow occurs around x = 0.2L at t = 0.06T corresponding to the 

beginning of the first splash up. Also the maximum upward velocity occurs at this 

location as shown in Fig. 9.43(c). It is interesting that the maximum upward velocity in 

the pre-impinging region (PIV FOV1), about z = - 0.1m to 0.1 m, is very high and is 

very close to the upward vertical velocity at the fist splash-up as shown in Fig. 9.43(c). 

Despite similar magnitude of the maximum upward velocity with the first splash-up 

shown in Fig. 9.43(c), the time-averaged value in the pre-impinging region is much 

lower than that in the first splash-up region. This is due to compensation by downward 

velocity in a wave cycle while upward motion is dominant in the first splash-up region 

as shown in Fig. 9.43. If flow density is considered, upward momentum will reach the 
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maximum at the pre-impinging region and at the ascending crest. This large upward 

momentum causes wave deformation and the overturning jet by transferring momentum 

to the wave crest of the primary wave. 

 
Fig. 9.44 Example of full depth extension of horizontal velocity. 

 

 
Fig. 9.45 Example of full depth extension of vertical velocity. 
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To obtain fluxes such as mass flux and momentum flux, it is necessary to expand 

the time-averaged values down to the bottom of the wave tank. However, the lowest 

measurement point in the PIV measurements is z = - 0.51m. With the assumption that 

both horizontal and vertical velocities are zero at the bottom, Velocity profiles between z 

= - 0.51 m and - 0.8 m were obtained using linear interpolation. Fig. 9.44 and Fig. 9.45 

show examples of the full depth extension of velocity profiles at x = 0.435 m. 

 

 
(a) full depth wave-averaged U (Uwa /C) 

 
(b) full depth period-averaged U (Upa /C) 

Fig. 9.46 Full depth extension of time-averaged horizontal velocity (U/C). 
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(a) full depth wave-averaged W (Wwa /C) 

 
(b) full depth period-averaged W (Wpa /C) 

Fig. 9.47 Full depth extension of time-averaged vertical velocity (W/C). 

 

Fig. 9.46 and Fig. 9.47 show the time-averaged velocities applying the full depth 

extension for every station. In addition, the empty profiles shown in Fig. 9.42 and Fig. 

9.43, which were due to two steel columns were filled by means of the linear 

interpolation for each row horizontally. 

Fig. 9.48 shows normalized maximum velocity at each station. It is similar to the 

maximum velocity variation in time obtained from spatial analysis as shown in Fig. 9.31. 
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This is because most maximum velocity occurs at the front toe of the plunging breaker. 

However, there is discrepancy during the beginning of the splash-up process followed by 

the impingement, especially at the second process. When the splash-up begins, the 

maximum velocity occurs at the impinging jet rather than the splash-up. For example, 

during the second process, maximum velocity occurs at the region of the second water 

jet impingement followed by the water spray impingement as shown in Fig. 9.32. Fig. 

9.48 and Fig. 9.31 will provide the location and time information of the maximum 

horizontal and vertical velocities.  

Small decrement of the maximum horizontal velocity is found between each 

impingement and splash-up. In the case of the first process, the time and distance of the 

decrement is very small. However, in the second process, the decrement is remarkable at 

the location between x = 0.55L and 0.75L. This is because the accumulated roller caused 

by the water spray impingement moves slowly with roller motion above the trough. The 

maximum horizontal velocity of the accumulated roller is close to the wave phase speed 

and is suddenly increased due to the full-scale second splash-up.  

The local maximum downward velocity occurs at each impinging location and the 

downward momentum is transferred to the horizontal and upward momentum of the 

front waves. The local maximum upward velocity occurs at the location of the wave face 

becoming vertical, the first splash-up and the second splash-up. From the location after 

one wavelength, both horizontal and vertical maximum velocities are linearly decreased 

without significant fluctuations.  
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Fig. 9.48 Normalized maximum velocity at each station. 

 

 
Fig. 9.49 Depth-averaged time mean velocity. 

 

Fig. 9.49 shows depth-averaged time mean velocities normalized by the wave phase 

speed. The depth-averaged time mean horizontal velocity Uda  at every station was 
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obtained by means of averaging the period-averaged horizontal velocity (Upa). The 

depth-averaged time mean velocity can be obtained from Eq. (9.6). 

( )

( )

( , )
( )

x

pah
da x

h

U x z dz
U x

dz

η

η
−

−

= 	

	
  (9.6) 

where,  
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( , ) ( , , ) ( , , )tr tr

tr tr

t x T x t x T x

pa t x t x
U x z x z t U x z t dt dtδ

+ +
= 	 	  (9.7) 

Without considering a void ratio of the plunging breaker, volume flux (VF) and 

mass flux (MF) at each station can be obtained from Upa or Uda . 

( ) ( )
( ) ( , ) ( )

x x

pa dah h
VF x U x z dz U x dz

η η

− −
= =	 	  (9.8) 

( )
( ) ( , ) ( )

x

w pa wh
MF x U x z dz VF x

η
ρ ρ

−
= =	  (9.9) 

where, wρ  is the water density. 

 

 
Fig. 9.50 Volume flux without considering void ratio. 
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Fig. 9.50 shows volume fluxes per unit width at all 475 stations and mean volume 

flux for the entire flow. The volume flux (VF) was obtained from Eq. (9.8) and was 

calculated without considering the void ratio effect. Red and green markers show the 

positive flux and the negative flux at each station respectively. Net flux at each station is 

plotted with blue circles. Red and green dashed lines represent positive and negative 

mean flux for all stations and their values are 0.0260 m2/s and -0.0187 m2/s respectively. 

The blue dashed line represents mean net flux of the entire station and the magnitude is 

0.0074 m2/s. 

As shown in Fig. 9.50, huge positive fluxes are observed between x = 0 and x = L 

where the void ratio cannot be negligible. It is believed that the positive flux is 

overestimated because the void ratio is not considered in the results. In addition, net flux 

is also positive before the first impinging point where the void ratio is zero. That means 

mass flux is not zero but positive regardless of the void ratio when wave deformation 

begins in the pre-impinging region. Although it is overestimated in the region where the 

void ratio is not zero, net flux starts decreasing linearly from around x = 0.5L and 

becomes close to zero at x = L. From the spilling wave region (x > L), net flux changes 

to negative and the magnitude of the negative flux is increased more and more as shown 

in Fig. 9.50. 

All other quantities, such as mean and turbulent kinetic energy, Reynolds stress, 

and momentum flux should be corrected by applying the void ratio. With more detailed 

discussion about the void ratio measurements, results applying the compressibility of the 

plunging breaker will be presented in Chapter XI. 



229 

 

 

9.5 Mean Vorticity 

Compared with the LDV measurements, one of great advantages in the PIV 

measurements is that the vorticity in a control volume can be easily obtained with high 

spatial resolution. Since the generated plunging wave and the PIV measurement 

performed in this study are two-dimensional, three-dimensional vorticity, such as vortex 

stretching, can not be obtained. However, compared with a spilling wave, large 

horizontal eddies are more dominant in a plunging breaker and obliquely descending 

three-dimensional eddies which are important in spilling waves are not significant in 

plunging waves.  

Mean vorticity was calculated from Eq. (9.10) 

U W
z x

∂ ∂Ω = −
∂ ∂

  (9.10) 

As shown in Fig. 5.2, clockwise rotation is to be positive according to the 

coordinate system used in the present study. 

9.5.1 Spatial Analysis of Mean Vorticity 

Results on the spatial analysis of mean vorticity fields are provided in this section. 

Fig. 9.51 shows the vorticity field variation measured at FOV3 during the first 

impingement and the beginning of the first splash-up. From the first impingement, high 

vorticity is generated in the region of the first splash-up due to large shear flow between 

the splash-up and water body. In addition, there is large clockwise (positive) vortex in 

the first impinging roller. Maximum positive vorticity occurs around t = 0.05 s as shown 

in Fig. 9.52. Note that the maximum horizontal velocity occurs at the same time. 
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However, the location of the generated vortices is near the bottom boundary of the 

aerated region. A small negative (counterclockwise) vortex is observed in the front face 

of the impinging roller. It is considered that downward velocity of the impinging roller 

close to the splash-up region is smaller than that of the crest region due to the newly 

ascending water crest between two rollers. In addition, the ascending water crest causes 

a negative vortex later. 

 

  
(a) t = 0.03 s (FOV3) (b) t = 0.05 s (FOV3) 

  
(c) t = 0.07 s (FOV3) (d) t = 0.09 s (FOV3) 

Fig. 9.51 Vorticity at the beginning of the first splash-up (FOV3) (unit: s-1). 
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Fig. 9.52 Maximum vorticity at the beginning of the first splash-up (FOV3). 

 

Fig. 9.53 shows the negative vorticity due to the new ascending crest. Note that 

black lines represent the free surface and the boundary of the aerated region. Velocity 

vectors in the aerated region are plotted in a red color. Although the first backward 

impingement begins at around t = 0.25 s when the ascending crest loses kinetic energy at 

the upper part, the negative vortex occurs due to reverse shear flow between the first 

roller and the ascending crest. The location of the negative vortex is always higher than 

the positive vortex. At the initial stages, the location of the negative vortex is slightly 

higher than that of the positive vortex in the first roller. The positive vortex is 

transported in a downward and downstream direction with speed higher than the wave 

phase speed, while the negative vortex is transported in an upward direction due to the 

ascending water crest and in a downstream direction with speed less than the first roller. 

Therefore, the location of the negative vortex becomes above the positive vortex as 
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shown in Fig. 9.53 and Fig. 9.54. The first backward impingement starts around t = 0.25 

s and the maximum negative vorticity occurs at this moment. An interesting result is 

found between t = 0.19 and 0.24 s before the first impingement. During that time (about 

0.05s), the negative vorticity becomes weaker. It is considered that kinetic energy of the 

upper and left part of the fully-grown ascending crest is converted into potential energy 

at that moment. It will be discussed in detail later. 

 

  
(a) t = 0.11 s (FOV3) (b) t = 0.13 s (FOV3) 

  
(c) t = 0.15 s (FOV3) (d) t = 0.17 s (FOV3) 

Fig. 9.53 Negative vorticity due to the new ascending crest (FOV3) (unit: s-1). 
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(a) t = 0.24 s (FOV5) (b) t = 0.26 s (FOV5) 

  
(c) t = 0.36 s (FOV5) (d) t = 0.45 s 

Fig. 9.54 Vorticity at the first splash-up and the backward impingement (FOV5) 

(unit: s-1). 

On the other hand, the positive vortex in the second roller caused by the first 

splash-up can be seen in Fig. 9.54(a) and (b) and the location of the maximum vorticity 

is above of the bottom boundary of the aerated region, which is the front face of the new 

primary wave. 

Fig. 9.55 shows vorticity at the combined FOVs and vorticity transport due to the 

first splash-up roller and the backward impingement can be seen. Also vorticity at the 

accumulated mixture due to water spray can be seen. 
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(a) t = 0.23 s (b) t = 0.25 s 

  
(c) t = 0.27 s (d) t = 0.29 s 

  
(e) t = 0.31 s (f) t = 0.33 s 

  
(g) t = 0.35 s (h) t = 0.37 s 

  
(i) t = 0.39 s (j) t = 0.41 s 

Fig. 9.55 Vorticity at the first splash-up and first backward impingement (unit: s-1). 
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(a) t = 0.43 s (b) t = 0.45 s 

  
(c) t = 0.47 s (d) t = 0.49 s 

  
(e) t = 0.51 s (f) t = 0.53 s 

  
(g) t = 0.55 s (h) t = 0.57 s 

  
(i) t = 0.59 s (j) t = 0.61 s 

Fig. 9.56 Vorticity at the second impingement and splash-up (unit: s-1). 
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(a) t = 0.63 s (b) t = 0.65 s 

  
(c) t = 0.67 s (d) t = 0.69 s 

  
(e) t = 0.71 s (f) t = 0.73 s 

  
(g) t = 0.75 s (h) t = 0.77 s 

  
(i) t = 0.79 s (j) t = 0.81 s 

Fig. 9.57 Vorticity at the third impingement and splash-up (unit: s-1). 
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The negative vortex due to the ascending crest and the first backward impingement 

can be seen in Fig. 9.55. The scar on the wave surface between two rollers caused by the 

first impingement is filled up by the backward impingement, and the free surface is 

linearized at t = 0.51 s. This process can be seen in Fig. 9.55 and Fig. 9.56(a)-(e). The 

positive vortex at the toe of the first splash-up is weaker and weaker due to the growing 

air-water mixture as shown in Fig. 9.55(d)-(j). Although the motion of the accumulated 

mixture is clockwise, the speed is very slow and its size is increased due to more 

accumulation from the water spray. In this process, small size water droplets rebound 

slightly and large size droplets penetrate into water. However both are not significant as 

discussed in the previous section. Most water spray is accumulated without large 

horizontal momentum. The positive vorticity of the right side of the accumulated 

mixture roller is due to the small rebound of water spray. 

Vorticity at the second impingement and splash-up can be seen in Fig. 9.56. The 

negative vortex between the second impingement and splash-up is also generated due to 

the second splash-up of the large volume of the accumulated roller. Fig. 9.57 shows 

vorticity at the third impingement and splash-up process. Although it is difficult to 

observe the third impingement from the figure, the third splash-up followed by the third 

impingement can be seen in Fig. 9.57(c)-(e). Small negative vorticity can be found 

between two areas of positive vorticity. Another scar caused by the second impingement 

is filled up by the second backward impingement and the free surface of the rear wave is 

linearized at t = 0.83 s, which is the period of the initial primary wave; this process can 

be observed in Fig. 9.57. Although the third scar caused by the third impingement can 
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not be seen in Fig. 9.57, the free surface is linearized around t = 0.97 s. 

Fig. 9.58 shows the maximum positive and negative vorticity variation in time at 

FOV3 to FOV10 including all three processes of the impingement and splash-up. 

Vorticity is normalized by the wave height and phase speed of the primary wave. The 

maximum positive vorticity in the entire flow occurs around t = 0.06 s at the bottom of 

the aerated region for the beginning of the first splash-up. It is decreased gradually and 

then begins increasing when the second splash-up is developed.  

 
Fig. 9.58 Maximum vorticity normalized by C and H. 

 

In the case of negative vorticity, the maximum counterclockwise vorticity has two 

similar local maxima around t = 0.2T and t = 0.28T. As discussed before, there is sudden 

decrease of the negative vorticity between two moments. That time represents the 

moment of the first backward impingement. The newly ascending crest reaches the peak 

with large upward momentum around t = 0.2 s. The top potion of the ascending crest is 
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losing kinetic energy and is converting to potential energy. Finally, it falls down onto the 

first impinging roller. The negative vorticity is decreased for a while when the ascending 

crest stays at the peak elevation for about 0.05 s. 

 

 
Fig. 9.59 Location of maximum vorticity. 

 

Fig. 9.59 shows the location where the maximum vorticity occurs. The time 

difference between two markers is 0.01 s. The location of negative vorticity is always 

higher than the location of positive vorticity as shown in the previous results. The 

location of the maximum positive vorticity is usually near the toe of each splash-up and 

water spray in front surface. The maximum positive vorticity in the entire flow occurs 

around mean water level. During the first splash-up, the location is slightly lower than 

mean water level while the location after the second splash-up is slightly higher than 

mean water level. This is clearly expected because the front trough elevation is increased 

from -0.1 m at x = -0.5L to zero at x = 1.5L as shown in Fig. 9.34.  

It can be clearly seen that two positive and negative vortices meet each other due to 

the backward impingement. The first one can be seen around x = 0.5L and the second 

one can seen around x = 0.85L.  
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9.5.2 Temporal Analysis of Mean Vorticity 

Temporal analysis for the vorticity measurement is presented in this section and is 

conducted in a similar manner as Section 9.4.2, which presented temporal analysis of 

mean velocity fields.  

Fig. 9.60 shows the time series of vorticity passing through a vertical station. Some 

examples of the results for several stations are presented before showing the results for 

all 475 stations. This is a good way to understand flow structures. If negative values of 

the flow characteristic are important such as Reynolds stress and vorticity, the negative 

quantities can be offset by positive quantities. 

 

  
(a) x = 0.203 m (FOV3) (b) x = 0.383 m (FOV5) 

  
(c) x = 0.701 m (FOV7) (d) x = 1.204 m (FOV9) 

Fig. 9.60 Vorticity time series at a station (unit: s-1). 
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The negative vorticity due to the ascending crest can be seen between two positive 

rollers in Fig. 9.60(a). The negative vorticity shown in Fig. 9.60(b) is caused by the first 

backward impingement. The second impingement and splash-up can be seen in Fig. 

9.60(c) and Fig. 9.60(d) represents the fully developed third splash-up passing through 

the station.  

Wave-averaged and period-averaged vorticities were calculated from Eqs. (9.4) and 

(9.5) respectively after combining upper and lower FOVs. Fig. 9.61 and Fig. 9.62 show 

vertical profiles of time-averaged vorticity and maximum vorticity at the same four 

stations shown in Fig. 9.60. 

  
(a) x = 0.203 m (FOV3) (b) x = 0.383 m (FOV5) 

  
(c) x = 0.701 m (FOV7) (d) x = 1.204 m (FOV9) 

Fig. 9.61 Time-averaged, maximum, and minimum vorticity (unit: s-1). 
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(a) period-averaged � (�pa) (b) wave-averaged � (�wa) 

  
(c) maximum � (�max) (d) minimum � (�min) 

Fig. 9.62 Comparison of the time-averaged, maximum, and minimum vorticity 

(unit: s-1). 

 

As mentioned in Section 9.4.2, the time series and time-averaged vorticity shown in 

Fig. 9.60 to Fig. 9.62 were obtained for all 475 stations covering the entire flow field. 

Fig. 9.63(a) and (b) show the wave-averaged and period-averaged vorticities 

respectively. The maximum and minimum vorticities can be seen in Fig. 9.63(c) and (d) 

respectively. The maximum positive and negative vorticities shown in Fig. 9.63(c) and 

(d) are helpful to see vorticity offset by time averaging.  
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(a) wave-averaged � (�waH/C) 

 
(b) period-averaged � (�paH/C) 

 
(c) maximum � (�maxH/C) 

 
(d) minimum � (�minH/C) 

Fig. 9.63 Normalized time-averaged, maximum and minimum vorticity (�H/C). 
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Two positive vortices are generated due to the first impingement as shown in Fig. 

9.51(a). One is generated in the first impinging roller and the other is at the toe of the 

second roller. The transport of two vorticities can be seen between x = 0 to 0.5L. 

Actually, vorticity in the second roller is transported to the next process continuously 

while vorticity in the first roller penetrates into deep water and disappears. The path of 

the two vortices is very similar to each other at the initial stage. However, the vorticity in 

the first horizontal roller is transported downward slowly and the first roller penetrates 

into deep water while the vorticity in the left part of the second horizontal roller is 

transported upward due to the ascending new water crest (Fig. 9.54). The positive 

vorticity above the mean water level in the second roller is offset by the negative 

vorticity of the ascending crest and the first backward impingement. The effective 

horizontal range of the first negative vorticity is between 0.2L and 0.5L as shown in Fig. 

9.63(d) and the negative vorticity has more strength above the mean water level. Positive 

vorticity above the mean water level near x = 0.45L is not from the new roller but the 

second roller. Positive transport between x = 0.45L and x = 0.9L is due to the second 

impingement and the second splash-up. Similar phenomenon also happens between the 

second and third process around x = 0.6 - 0.8L as shown in Fig. 9.63. Fig. 9.64 shows the 

time-averaged and maximum vorticity strength, where mean vorticity strength is defined 

as 2Ω .  

In summary, positive vorticity is actually transported continuously with the 

repetitive process of each impingement and splash-up. However, positive vorticity of the 

right side of the new ascending crest is always offset by the negative vorticity of the left 
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side of the new crest because their vertical location is very close. It is also helpful to see 

Fig. 9.59 which represents the location of the maximum and minimum vorticity. From 

the third impingement (x > L), vorticity is transported above the mean water level as the 

size of the eddies decreases. It is very similar to the spilling wave. 

 

 
(a) wave-averaged ( 2 /H CΩ ⋅ ) 

 
(b) period-averaged ( 2 /H CΩ ⋅ ) 

 
(c) maximum ( 2 /H CΩ ⋅ ) 

Fig. 9.64 Time-averaged, maximum and minimum vorticity strength ( 2 /H CΩ ⋅ ). 
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Fig. 9.65 Example of full depth extension of vorticity (x = 0.435 m). 

 

 
 

Fig. 9.66 Example of full depth extension of vorticity (x = 0.597 m). 
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Fig. 9.65 and Fig. 9.66 show examples of the full depth extension to obtain a depth-

averaged value.  

Normalized maximum positive and negative vorticities at every vertical station can 

be seen in Fig. 9.67. The maximum vorticity is normalized by the maximum wave height 

and the phase speed. The horizontal locations of the maximum positive and negative 

vorticities are very close to each other. However, the time of the maximum vorticity is 

different as shown in Fig. 9.58. Positive maximum vorticity occurs around t = 0.06T at 

the first splash-up region and negative maximum vorticity occurs at 0.2T on the left side 

of the ascending crest during the first backward impinging process. Sudden decrement, 

as found in the maximum velocity at a station (Fig. 9.48), around x = 0.8L is due to small 

roller motion of the accumulated mixture before the second splash-up. 

 

 
Fig. 9.67 Normalized maximum vorticity at each station. 
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Fig. 9.68 Depth-averaged time mean vorticity. 

 

Fig. 9.68 shows depth-averaged time mean vorticity normalized by the maximum 

wave height and the wave phase speed. The location of the maximum vorticity is around 

x = 0.5L similar to the location of the maximum horizontal velocity (Uda ) as shown in 

Fig. 9.49. 
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9.6 Mean Kinetic Energy 

Mean kinetic energy was obtained from the mean horizontal and vertical velocity as 

shown in Eq. (9.11). 

( )2 21
2

K U W= +   (9.11) 

9.6.1 Spatial Analysis of Mean Kinetic Energy 

Spatial analysis results are presented in this section. Fig. 9.69 shows mean kinetic 

energy contours at the overturning moment at FOV1.  

  
(a) t = -0.29 s (FOV1) (b) t = -0.26 s (FOV1) 

  
(c) t = -0.23 s (FOV1) (d) t = -0.20 s (FOV1) 

Fig. 9.69 Mean kinetic energy at the overturning jet (unit: m2/s2). 
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(e) t = -0.17 s (FOV1) (f) t = -0.14 s (FOV1) 

  
(g) t = -0.11 s (FOV1) (h) t = -0.08 s (FOV1) 

Fig. 9.69 (Continued). 

 

The time difference between figures is 0.03 s. Shown in Fig. 9.69(g), maximum 

mean kinetic energy occurs at the tip of the overturning jet before the first impingement 

and the magnitude is about C2 at t = - 0.11 s. 

In Fig. 9.70 to Fig. 9.72, mean kinetic energy variation in time at the combined 

FOV can be seen with a time difference of 0.02 s. Fig. 9.70 shows contours at the first 

splash-up followed by the first impingement. Fig. 9.71 and Fig. 9.72 show the second 

and third processes respectively. 
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(a) t = - 0.02 s (b) t = 0 s 

  
(c) t = 0.02 s (d) t = 0.04 s 

  
(e) t = 0.06 s (f) t = 0.08 s 

  
(g) t = 0.10 s (h) t = 0.12 s 

  
(i) t = 0.14 s (j) = 0.16 s 

Fig. 9.70 Mean kinetic energy at the first splash-up followed by the first 

impingement and water spray (unit: m2/s2). 
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(k) t = 0.18 s (l) t = 0.20 s 

  
(m) t = 0.22 s (n) t = 0.24 s 

  
(o) t = 0.26 s (p) t = 0.28 s 

  
(q) t = 0.30 s (r) t = 0.32 s 

  
(s) t = 0.34 s (t) = 0.36 s 

Fig. 9.70 (Continued). 
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(a) t = 0.38 s (b) t = 0.40 s 

  
(c) t = 0.42 s (d) t = 0.44 s 

  
(e) t = 0.46 s (f) t = 0.48 s 

  
(g) t = 0.50 s (h) t = 0.52 s 

  
(i) t = 0.54 s (j) = 0.56 s 

Fig. 9.71 Mean kinetic energy at the second impingement and splash-up (unit: 

m2/s2). 
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(a) t = 0.58 s (b) t = 0.60 s 

  
(c) t = 0.62 s (d) t = 0.64 s 

  
(e) t = 0.66 s (f) t = 0.68 s 

  
(g) t = 0.70 s (h) t = 0.72 s 

  
(i) t = 0.74 s (j) = 0.76 s 

Fig. 9.72 Mean kinetic energy at the third impingement and splash-up followed by 

the second splash-up (unit: m2/s2). 
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(k) t = 0.78 s (l) t = 0.80 s 

  
(m) t = 0.82 s (n) t = 0.84 s 

  
(o) t = 0.86 s (p) t = 0.88 s 

Fig. 9.72 (Continued). 

 

It is clearly seen that mean kinetic energy is transported and dissipated in the entire 

flow including the aerated region. In Fig. 9.70, kinetic energy in the impinging jet is 

transported to the first splash-up. Maximum mean kinetic energy during the first 

impingement is about 1.64C2 and occurs at t = 0.01 s [Fig. 9.70(b) and (c)]. Maximum 

kinetic energy during the first splash-up is about 2.31C2 and occurs at the beginning of 

the first splash-up at t = 0.05 s [Fig. 9.70(d) and (e)]; it is also the maximum in the entire 

flow. The ascending crest between the two rollers and the first impingement process can 

be seen in Fig. 9.70(k)-(t), It is clearly seen that the left part of the ascending water crest 
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is losing its kinetic energy [Fig. 9.70(m)-(q)]. Potential energy converted from kinetic 

energy begins converting to kinetic energy again as the ascending crest falls down onto 

the first roller, which is the first backward impingement [Fig. 9.70(q)-(t)]. During the 

first impingement process, the first roller, which is the source of the energy, is 

continuously providing energy to the second roller. The second roller is losing kinetic 

energy after the splash-up roller is fully developed [Fig. 9.70(m)-(t)]. The kinetic energy 

from the water spray is also decreased due to the growing air-water mixture roller as 

shown in Fig. 9.70(q)-(t) and Fig. 9.71(a)-(c). The maximum of the decreased kinetic 

energy reaches C2 around t = 0.37 s [Fig. 9.70(t)].  

Fig. 9.71 shows kinetic energy at the second impingement and the second splash-up. 

Small kinetic energy at the accumulated mixture can be seen in Fig. 9.71(a)-(c). After the 

water spray impingement onto the mixture [Fig. 9.70(r)-(t) and Fig. 9.71(a)-(c)], the new 

ascending crest impinges onto the mixture which is the second impingement [Fig. 

9.71(d)-(f)]. Kinetic energy at the second splash-up process can be seen in Fig. 9.71(f)-

(j) and Fig. 9.72(a)-(c). Kinetic energy is increased within a short period of time during 

the second splash-up and then is decreased again. It is observed that the starting time of 

the second splash-up is slightly earlier than the time when the nonlinear free surface due 

to the first impingement is linearlized by the first backward impingement. 

Fig. 9.72 shows the kinetic energy during the third splash-up followed by the third 

impingement. Compared with the water spray impingement caused by the first splash-up, 

water spray due to the second splash-up has small downward momentum. In addition, 

the elevation of the front trough is increased and is close to still water level. Therefore, 
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the scale of the third process is very small and occurs shortly after the second process. 

Kinetic energy is slightly increased and then decreased during the process. 

Fig. 9.73 shows the maximum kinetic energy variation in time at the control volume 

of the combined FOVs (FOV3-FOV10). The maximum kinetic energy was normalized 

by C2. In addition, horizontal and vertical maximum kinetic energies are presented in the 

figure. Although the maximum kinetic energy in the vertical component is very small, 

vertical energy contributes to the period-averaged kinetic energy especially at the pre-

breaking region. It will be discussed in next section with temporal analysis results. 

 

 
Fig. 9.73 Normalized maximum kinetic energy. 

 

The location variation in time where the maximum mean kinetic occurs can be seen 

in Fig. 9.32. The location is definitely the same as the location of the maximum velocity. 

This was already discussed in Section 9.4.2. 
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9.6.2 Temporal Analysis of Mean Kinetic Energy 

Temporal analysis of mean kinetic energy is presented in this section. Wave-

averaged and period-averaged mean kinetic energies were obtained from Eqs. (9.4) and 

(9.5).  

Fig. 9.74 shows vertical profiles of period-averaged, wave-averaged, maximum, 

and minimum mean kinetic energy at different locations. Mean kinetic energy profiles 

before the first impingement can be seen in Fig. 9.74(a). It is the maximum near the 

location shown in Fig. 9.74(b). Fig. 9.74(c), (e) and (f) show the profiles at each splash-

up region where the splash-up is fully developed. Those three locations are close to the 

location of the FOR measurement stations. Fig. 9.74 provides information at a station 

while Fig. 9.75 provides a better comparison of each result at different location. Fig. 

9.75(a) and (b) show vertical profiles of period-averaged and wave-averaged kinetic 

energy and Fig. 9.75(c) and (d) show vertical profiles of maximum and minimum mean 

kinetic energy.  

As shown in Fig. 9.75(c), period-averaged kinetic energy above the trough level in 

the pre-impinging region is much smaller than the kinetic energy in the first splash-up 

region (x = 0.227 m and 0.429 m). However, period-averaged kinetic energy below the 

trough level in the pre-impinging region is much larger than the kinetic energy at any 

other location after the first impingement as shown in Fig. 9.75(a). Note that the station 

at x = - 0.571 m (green triangle) is the only station located before the first impingement. 

On the other hand, period-averaged kinetic energy above the trough level (x = 0.227 m 

and 0.429 m) is much larger in the first splash-up region than any other location.  
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(a) x = - 0.571 m (b) x = 0.227 m 

  
(c) x = 0.429 m (d) x = 0.597 m 

  
(e) x = 0.880 m (f) x = 1.204 m 

Fig. 9.74 Time-averaged and maximum mean kinetic energy (unit: m2/s2). 
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(a) period-averaged K (b) wave-averaged K 

  
(c) maximum K (d) minimum K 

Fig. 9.75 Comparison of time-averaged and maximum mean kinetic energy (unit: 

m2/s2). 

 

The magnitude must be overestimated in the aerated region because the mixture 

density was not considered in this section. It is expected that the region of the first 

splash-up has the highest void ratio in the entire breaking process. This kind of 

overestimation occurs at the second and third splash-up process; although the 

overestimation is decreased as void ratio is decreased. 
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(a) wave-averaged K (Kwa /C2) 

 
(b) period-averaged K (Kpa /C2) 

 
(c) maximum K (Kmax /C2) 

 
(d) minimum K (Kmin /C2) 

Fig. 9.76 Normalized time-averaged and maximum mean kinetic energy (K/C2). 
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Fig. 9.76 shows mean kinetic energy for the entire station and is normalized by C2. 

Fig. 9.76(a) and (b) show the normalized wave-averaged and period-averaged mean 

kinetic energies. Fig. 9.76(c) and (d) show the normalized maximum and minimum 

kinetic energies at a point in the entire flow. Although vertical motion of the plunging 

breaker is much bigger than that of the spilling breaker, horizontal motion is dominant in 

the plunging breaker. Therefore, the contour for the period-averaged kinetic energy as 

shown in Fig. 9.76(b) is very similar to the contour for the period-averaged horizontal 

velocity [Fig. 9.42(b)] especially at the crest of the region after the impingement. 

However, there is a significant difference between period-averaged values of mean 

kinetic energy and horizontal velocity at the region where vertical motion is significant, 

such as the pre-breaking region which represents the region before the first impinging 

point. As shown in Fig. 9.76(b), mean kinetic energy is widely distributed throughout the 

water depth between x = -0.55L and 0.2L. The mean kinetic energy profile at the pre-

breaking region can be also seen in Fig. 9.74(a) and Fig. 9.75(a). This is caused by huge 

upward and downward momentum during the wave cycle at the pre-breaking region, as 

discussed in Section 9.4.2. 

Normalized maximum mean kinetic energy at each station is given in Fig. 9.77. 

Normalized maximum turbulent kinetic energy is also plotted for the comparison but it 

will be discussed in the next chapter. Maximum kinetic energy is increased close to the 

first impinging point (x = 0) and there is sudden decrement around the impinging point. 

It is increased where the first splash-up is developed and is decreased again gradually 

until x = 0.5L. It is found that remarkable decrement exists between x = 0.5L and 0.7L. 
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This is due to the accumulated roller caused by water spray impingement. The roller 

moves slowly without significant kinetic energy and the volume of the accumulated 

roller is increased. The kinetic energy begins increasing due to the second splash-up 

followed by the second impingement. A local maximum occurs about x = 0.9L due to the 

fully developed second splash-up. Another local maximum occurs around x = 1.2L due 

to the third splash-up. 

 

 
Fig. 9.77 Normalized maximum kinetic energy at each station. 

 

A local maximum of the mean kinetic energy occurs at every splash-up process. 

However, there is a small delay in time and location because the splash-up process 

requires some time to be developed by continuously receiving energy. For example, the 

first splash-up is caused by the impinging water jet and it starts immediately at x = 0 and 
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t = 0; however, the location and time of the maximum kinetic energy for the splash-up 

are x = 0.22L and t = 0.05 s. It is also interesting that the maximum mean kinetic energy 

is decreased around the location and time of each impingement during the impinging 

process. Fig. 9.73 and Fig. 9.77 show the maximum mean kinetic energy variation as 

function of time and location.  

 

 
Fig. 9.78 Depth-averaged time mean kinetic energy normalized by C2. 

 

Another interesting result can be seen in Fig. 9.78 which shows the depth-averaged 

values of the period-averaged mean kinetic energy at all 475 stations. Result for 

turbulent kinetic energy is also plotted only for comparison. The primary wave in the 

pre-impinging region has large kinetic energy as well as large potential energy. Kinetic 

energy begins decreasing slightly just after the location where the wave face of the 
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primary wave becomes vertical. Note that the wave face becomes vertical at x = - 0.4L 

and x = 0 at the first impinging point. The kinetic energy is slightly decreased until x = - 

0.25L and then begins increasing. The location of the maximum is about 0.4L. Another 

sudden decrement exists between x = 0.4L and 0.7L. There is small increment due to the 

second and third splash-up between x = 0.7L and L and then the kinetic energy is linearly 

decreased until the end of the plunging waves. 

Large kinetic energy in the region exists between x = - 0.25L and 0.6L, although 

kinetic energy in the region must be overestimated because the density is not considered. 

It is due to two large rollers. One is the first roller caused by the first impingement and 

the other is the second roller representing the first splash-up. Both rollers are passing 

through the location with large momentum. Note that the kinetic energy considering the 

void ratio is presented in Chapter XI. Kinetic energy as well as potential energy of the 

impinging water may be converted to large kinetic energy of the splash-up during the 

first impingement and splash-up process. In addition, the first roller is continuously 

transported with its kinetic energy. 

More discussion will be presented in detail with turbulent kinetic energy in Section 

10.4.2 and with consideration of compressibility in Section 11.4. 
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CHAPTER X 

10TURBULENCE IN A PLUNGING BREAKER 

10.1 Introduction 

This chapter is another part from the PIV measurements. Results from the mean 

flow analysis such as mean velocity, mean vorticity and mean kinetic energy are 

presented in Chapter IX. The PIV measurement technique is described in Chapter V and 

Section 9.1. The PIV data analysis procedure using turbulent velocities and validation of 

the PIV measurements are presented in Section 9.2 and 9.3. The location of the 14 fields 

of view (FOV) in the PIV measurements can be seen in Fig. 5.1 and Fig. 9.10. 

Analysis of the turbulence properties in the plunging breaker are presented in this 

chapter. Spatial and temporal analysis of the turbulence intensity, Reynolds stresses and 

turbulent kinetic energy are discussed in Sections 10.2, 10.3 and 10.4 respectively, in a 

similar manner shown in Chapter IX.  

10.2 Turbulence Intensity 

Mean and turbulent velocity fields were obtained using the ensemble average of 20 

instantaneous measurements. Equations used in the calculation are given in Section 9.4 

[Eqs. (9.1) – (9.3)]. For convenience, the root mean square value of ( , , )iu x z t′  and 

( , , )iw x z t′  will be denoted by u′ (horizontal turbulence intensity) and w′ (vertical 

turbulence intensity) as shown in Eq. (10.1). In the present study, turbulence intensity is 
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defined as 

2 2 2 2 2 2, ,i i x i z iI u w u w I u u I w w′ ′ ′ ′ ′ ′ ′ ′= + = + = = = =  (10.1) 

where,  denotes the ensemble averaging. The squares of the horizontal and vertical 

normal Reynolds stresses are defined as the horizontal and vertical turbulent intensities 

as shown in Eq. (10.1). Results from the spatial and temporal analysis are presented in 

Section 10.2.1 and 10.2.2. 

10.2.1 Spatial Analysis of Turbulence Intensity 

Spatial analysis of the turbulence intensity is presented in this section. The 

horizontal and vertical turbulence intensity will be discussed. In addition, the turbulence 

intensity defined in Eq. (10.1) will also be presented.  

The turbulent kinetic energy k is defined in Eq. (10.2) 

( )2 2 21.33 1.33
2 2i ik u w I′ ′= + =   (10.2) 

where I is the turbulence intensity. Therefore, more discussion on the horizontal and 

vertical turbulence intensities will be presented. 

Fig. 10.1 shows the turbulence intensities at the beginning of the first splash-up 

followed by the first impingement. Horizontal and vertical turbulence intensities at t = 

0.05 s and 0.08 s are shown in Fig. 10.1(a) and (b) and turbulence intensity (I) can be 

seen in Fig. 10.1(c). Note that numbers 1 and 2 in parentheses represent horizontal and 

vertical intensities respectively and the letters represents different phases or time. In the 

beginning of the first impingement, the turbulence is generated near the impinging 

region. Note that the black lines represent the boundary of the aerated region. 
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(a1) t = 0.05 s (u�) (b1) t = 0.08 s (u�) 

  
(a2) t = 0.05 s (w�) (b2) t = 0.08 s (w�) 

  
(a3) t = 0.05 s (I) (b3) t = 0.08 s (I) 

Fig. 10.1 Turbulence intensity at the beginning of the first splash-up (unit: m/s). 
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When the overturning water jet impinges onto the front wave surface with large 

momentum, the front water is pushed up and then the front water losing surface tension 

is split up in the form of water spray. As presented in Chapter IX, maximum velocity 

occurs at t = 0.05 s. The turbulence intensity also has a maximum value at the same time 

in both the horizontal and vertical components. The generated turbulence is continuously 

maintained at a similar level until the second impingement although the maximum 

velocity is gradually decreased after t = 0.05s. As shown in Fig. 10.1, the horizontal 

turbulent stress is generated in the shear region between the newly ascending crest and 

the first splash-up. This horizontal turbulence is transported downstream like vorticity. 

The turbulent normal stress in the vertical direction is generated near the impinging point 

due to the shear between the impinging jet and the ascending crest that has a large 

upward momentum. The maximum vertical turbulence occurs at this region and is 

maintained until the backward impingement starts. The turbulence intensity (I) in the 

two rollers is given in Fig. 10.1(a3) and (b3), since the dominant locations of the initially 

generated turbulence in the horizontal and vertical directions are slightly different. 

Fig. 10.2 shows the horizontal and vertical turbulence velocities from the beginning 

of the first splash-up. Figures in the left side denoted as a number 1 in parentheses 

represent the horizontal turbulence intensities while figures in the right side denoted as a 

number 2 in parentheses represent the vertical turbulence intensities. Figures in a row 

denoted by the same letter in parentheses represent the horizontal and vertical intensities 

at the same time. Turbulence intensity (I) considering both directions are defined in Eq. 

(10.1) and shown in Fig. 10.3. 
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(a1) t = 0.10 s (u�) (a2) t = 0.10 s (w�) 

  
(b1) t = 0.14 s (u�) (b2) t = 0.14 s (w�) 

  
(c1) t = 0.18 s (u�) (c2) t = 0.18 s (w�) 

  
(d1) t = 0.23 s (u�) (d2) t = 0.23 s (w�) 

  
(e1) t = 0.27 s (u�) (e2) t = 0.27 s (w�) 

Fig. 10.2 Horizontal and vertical turbulence intensities (unit: m/s). 
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(f1) t = 0.29 s (u�) (f2) t = 0.29 s (w�) 

  
(g1) t = 0.31 s (u�) (g2) t = 0.31 s (w�) 

  
(h1) t = 0.35 s (u�) (h2) t = 0.35 s (w�) 

  
(i1) t = 0.39 s (u�) (i2) t = 0.39 s (w�) 

  
(j1) t = 0.42 s (u�) (j2) t = 0.42 s (w�) 

Fig. 10.2 (Continued). 
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(k1) t = 0.44 s (u�) (k2) t = 0.44 s (w�) 

  
(l1) t = 0.47 s (u�) (l2) t = 0.47 s (w�) 

  
(m1) t = 0.50 s (u�) (m2) t = 0.50 s (w�) 

  
(n1) t = 0.54 s (u�) (n2) t = 0.54 s (w�) 

  
(o1) t = 0.58 s (u�) (o2) t = 0.58 s (w�) 

Fig. 10.2 (Continued). 
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(p1) t = 0.61 s (u�) (p2) t = 0.61 s (w�) 

  
(q1) t = 0.64 s (u�) (q2) t = 0.64 s (w�) 

  
(r1) t = 0.69 s (u�) (r2) t = 0.69 s (w�) 

  
(s1) t = 0.75 s (u�) (s2) t = 0.75 s (w�) 

  
(t1) t = 0.82 s (u�) (t2) t = 0.82 s (w�) 

Fig. 10.2 (Continued). 
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(u1) t = 0.86 s (u�) (u2) t = 0.86 s (w�) 

  
(v1) t = 0.90 s (u�) (v2) t = 0.90 s (w�) 

  
(w1) t = 0.93 s (u�) (w2) t = 0.93 s (w�) 

  
(x1) t = 0.98 s (u�) (x2) t = 0.98 s (w�) 

  
(y1) t = 1.00 s (u�) (y2) t = 1.00 s (w�) 

Fig. 10.2 (Continued). 
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(a) t = 0.10 s (I) (b) t = 0.14 s (I) 

  
(c) t = 0.18 s (I) (d) t = 0.23 s (I) 

  
(e) t = 0.27 s (I) (f) t = 0.29 s (I) 

  
(g) t = 0.31 s (I) (h) t = 0.35 s (I) 

  
(i) t = 0.39 s (I) (j) t = 0.42 s (I) 

Fig. 10.3 Turbulence Intensity (I) (unit: m/s). 
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(k) t = 0.44 s (I) (l) t = 0.47 s (I) 

  
(m) t = 0.50 s (I) (n) t = 0.54 s (I) 

  
(o) t = 0.58 s (I) (p) t = 0.61 s (I) 

  
(q) t = 0.64 s (I) (r) t = 0.69 s (I) 

  
(s) t = 0.75 s (I) (t) t = 0.82 s (I) 

Fig. 10.3 (Continued). 
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As shown in Fig. 10.1 and Fig. 10.2, horizontal turbulence occurs near the bottom 

boundary of the aerated region because shear flow is generated due to high velocity in 

the splash-up region between the water spray and the ascending crest. Note that the 

white dashed lines represent the boundary of the aerated region. The dominant location 

of the horizontal intensity is very similar to that of the positive clockwise vorticity as 

shown in Fig. 9.54 and Fig. 9.55 since vorticity is one of the sources for turbulence. On 

the other hand, the vertical stress occurs near the ascending crest. There is a shear flow 

in the left side of the ascending crest with negative vorticity due to the impinging jet and 

the rising crest. Therefore, the maximum vertical intensity occurs in the same region 

where the negative vorticity occurs [Fig. 10.2(a)-(c)]. The dominant location of the 

turbulence in the vertical direction is higher than the horizontal turbulence at the initial 

stage. Indeed, horizontal and vertical turbulence intensities are very similar to the 

positive and negative vorticities respectively. 

As the first splash-up is developed by continuously transferred momentum from the 

first impinging roller, the horizontal intensity in the first roller is gradually decreased 

until the first backward impingement and the maximum intensity occurs at the toe of the 

water spray caused by the first splash-up. In this process, the vertical intensity is spread 

to the first roller and the second roller. Vertical intensity in the first roller is increased 

due to the first backward impingement and the vertical intensity in the toe of the first 

splash-up is also increased.  

As shown in Fig. 10.2(d2) and (e2), a similar decrease of the vertical intensity is 

found just before the first backward impingement as discussed in the vorticity 
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measurements. The negative vorticity due to the counterclockwise vortex at the left side 

of the ascending crest is suddenly decreased when the ascending crest stays at the peak 

elevation before falling down onto the first impinging roller. 

During the first splash-up process, the toe of the second roller (the first splash-up 

roller) has maximum intensities. The location is near the bottom boundary of the second 

roller, which is above the front face of the new crest [Fig. 10.2(a)-(f)]. Then, the 

turbulence is spread upward due to the accumulated roller caused by the water spray 

impinging onto the front trough region [Fig. 10.2(f)-(j)]. The size of the accumulated 

roller is increased due to the continuous impingement from the water spray and the roller 

moves slowly following the bottom water wave with clockwise rotation.  

After the water spray impingement, there is the second impingement by the new 

primary wave. The new water wave impinges onto the accumulated mixture roller. In 

this process, high turbulence is produced near the mixture (especially at the upper and 

left side of the mixture). The mixture roller is totally originated from the second roller 

(the first splash-up roller). Due to the second impingement, the bottom part of the 

mixture roller travels with the second jet penetrating into the water like the first roller 

while the upper part is pushed up by the impingement and causes the second splash-up 

which is continuously generating turbulence. Vertical turbulence intensity is increased 

during the processes of the water spray impingement and the second water impingement. 

Both the horizontal and vertical intensities begin decreasing at the second splash-up.  

During the third impingement, the horizontal intensity is increased again while the 

vertical intensity is still decreasing gradually after the second splash-up. It is because 
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there is no significant vertical fluctuation from the third process. 

Fig. 10.4 shows the location of each maximum intensity. The time difference 

between markers is 0.02 s. The location of the turbulence intensity (I) is very close to the 

location of the maximum horizontal intensity. The location of the maximum vertical 

intensity is above the location of the horizontal intensity. The maximum horizontal 

intensity occurs near the bottom boundary of the aerated region while the maximum 

vertical intensity occurs near the ascending crest until the first splash-up is fully 

developed. From the time when the first splash-up is fully developed, both horizontal 

and vertical intensities occurs at the toe of the second roller (first splash-up roller) and 

the maximum locations have moved to the accumulated mixture roller. After the second 

splash-up, the location of the horizontal intensity follows the toe of the turbulent bore 

region. There is continuous shear between the roller in the bore region and the water 

body. Significant vertical fluctuation is not found from the third impingement. Therefore, 

the location of the maximum vertical intensity does not follow the bore crest. The 

location fluctuates between two rollers under the trough level and the bore crest. 

 

 
 

Fig. 10.4 Location of the maximum turbulence intensity. 
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Fig. 10.5 Normalized maximum turbulence intensity (normalized by C). 

 

 
Fig. 10.6 Normalized maximum turbulence intensity (normalized by maximum 

speed, Vmax). 
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Fig. 10.5 and Fig. 10.6 show the maximum intensity variation in time and was 

normalized by the wave phase speed (C = 1.3 m/s) and the maximum speed (Vmax(t)) at 

each corresponding time as shown in Fig. 9.31. Both horizontal and vertical intensities 

have the maxima around t = 0.05 s at the beginning of the first splash-up. The maximum 

magnitudes in both direction are approximately 0.69C (0.39Vmax) and 0.49C (0.26Vmax) 

respectively. The maximum horizontal intensity is gradually decreased from that time 

while the maximum vertical intensity is suddenly decreased because the vertical shear 

between the downward impinging roller and the upward ascending crest is decreased as 

the ascending crest rises to the peak elevation around t = 0.2 s. Then, the vertical 

intensity begins increasing again due to the accumulated mixture caused by the water 

spray impingement. The vertical intensity has a local maximum at the second 

impingement and the magnitude is approximately 0.45C (0.35Vmax). The absolute 

vertical intensity at the second impingement is slightly smaller than that at the first 

impingement (Fig. 10.5). However, the vertical intensity at the second impingement is 

higher than that at the first impingement when compared to the maximum speed at the 

corresponding time (Fig. 10.6).  

Fig. 10.7 and Fig. 10.8 show the comparison of the time difference for the 

maximum mean velocity and turbulent velocity in each direction, respectively. In the 

case of the horizontal mean and turbulent velocities, there is no significant variation in 

time and the trends are very similar to each other (Fig. 10.7). It was also expected that 

the maximum vertical turbulence intensity variation in time has a similar pattern with the 

maximum downward mean velocity because the maximum vertical turbulence occurs at 
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the first and second impingement. In the case of vertical mean and turbulent velocities, 

trends are very similar to each other but there is a small time delay between the mean 

and turbulent flows (Fig. 10.8). The maximum downward velocity occurs at the 

impinging moment. However, the maximum vertical intensity occurs at a later time. For 

example, the maximum downward mean and turbulent velocities at the first 

impingement occur at t = 0 s and t = 0.05 s as shown in Fig. 10.8. Moreover, the time 

delay at the second impingement is longer because the maximum downward velocity at 

the second impingement occurs at the water spray impingement but the second splash-up 

is caused by the water impingement from the new crest. 

After the second splash-up, the maximum vertical intensity is linearly decreased 

while the horizontal intensity has a local maximum during the third process as shown in 

Fig. 10.5 to Fig. 10.8. 

 

 
Fig. 10.7 Comparison of maximum U (Umax) and u� ( u�max). 
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Fig. 10.8 Comparison of maximum W (Wmax) and w� (w�max). 

 

10.2.2 Temporal Analysis of Turbulence Intensity 

Temporal analysis for the turbulent velocity measurement is presented in this 

section in a similar manner as temporal analysis of the mean flow presented in Chapter 

IX. 

Fig. 10.9 shows the time series of the horizontal and vertical turbulence intensities 

at several stations. As shown in Fig. 10.2, figures in the left side denoted as a number 1 

in parentheses represent the horizontal turbulence intensities while figures in the right 

side denoted as a number 2 in parentheses represent the vertical turbulence intensities. 

Figures in a same row denoted as the same letter in parentheses represent the horizontal 

and vertical intensities at the same station, respectively. Fig. 10.10 shows the turbulence 

intensity (I) at the same stations shown in Fig. 10.9. 
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(a1) x = 0.198 m (u�) (a2) x = 0.198 m (w�) 

  
(b1) x = 0.435 m (u�) (b2) x = 0.435 m (w�) 

  
(c1) x = 0.649 m (u�) (c2) x = 0.649 m (w�) 

Fig. 10.9 Time series of horizontal and vertical intensities at a station (unit: m/s). 
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(d1) x = 0.880 m (u�) (d2) x = 0.880 m (w�) 

  
(e1) x = 0.967 m (u�) (e2) x = 0.967 m (w�) 

  
(f1) x = 1.204 m (u�) (f2) x = 1.204 m (w�) 

Fig. 10.9 (Continued). 
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(a) x = 0.198 m (I) (b) x = 0.435 m (I) 

  
(c) x = 0.649 m (I) (d) x = 0.880 m (I) 

  
(e) x = 0.967 m (I) (f) x = 1.204 m (I) 

Fig. 10.10 Time series of turbulence intensity (I) at a station (unit: m/s). 
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The location of the station shown in Fig. 10.9(a) and Fig. 10.10(a) is near the 

beginning of the first splash-up. It can be seen that the horizontal turbulence is generated 

near the bottom boundary of the aerated region in two rollers, which is near the mean 

water level while the vertical turbulence occurs near the ascending crest, which is 

slightly above the mean water level. Fig. 10.11 shows the wave- and period-averaged 

intensities in horizontal and vertical directions. Comparison of the maximum and 

minimum intensities at each station can be seen in Fig. 10.12. Time-averaged, maximum 

and minimum turbulence intensities (I) can be seen in Fig. 10.13. A station shown in Fig. 

10.9(b) and Fig. 10.10(b) is located near the region of the fully developed first splash-up. 

The first roller passes below the still water level of the station after the fully developed 

second roller passing. Two stations in Fig. 10.10(d) and (f) are located near the region of 

the fully developed second and third splash-up respectively. Each impinging roller 

passes through the location where each fully developed splash-up passes. For example, 

when the second splash-up is fully developed, the maximum crest of the second splash-

up passes through the station (x = 0.880 m) and then the impinging roller causing the 

second splash-up passes through the below of the station. The two other stations shown 

in Fig. 10.10(c) and (e) are located where the impinging rollers stays in deep water as 

their motions follow water particle motion after losing their large horizontal momentum. 

A detailed location of impinging roller under the trough level can be seen in Fig. 10.2. 

Note that white dashed lines in Fig. 10.2 represent the boundary of the aerated region. 

As shown in Fig. 10.11(a) and Fig. 10.12(a), the period-averaged intensities at x = 

0.198 m is much lower than those at x = 0.435 m and 0.649 m due to the low turbulence 
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in the water under the rear face of the impinging roller although the maximum intensities 

are close to each other. At the three stations (x = 0.435 m, 0.649 m and 0.88 m), the 

period-averaged intensities has similar levels to one another in both the horizontal and 

vertical directions. It can be clearly seen that the turbulence intensity is reduced at the 

third splash-up region (x = 1.204 m) especially for the vertical intensity as shown in Fig. 

10.11(a) and Fig. 10.13(b) compared with the first splash-up (x = 0.435 m) and the 

second splash-up (x = 0.880 m). 

 

  
(a1) period-averaged u� (u�pa) (a2) period-averaged w� (w�pa) 

  
(b1) wave-averaged u� (u�wa) (b2) wave-averaged w� (w�wa) 

Fig. 10.11 Comparison of time-averaged horizontal and vertical intensities (unit: 

m/s). 
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(a1) maximum u� (u�max) (a1) maximum w� (w�max) 

  
(b1) minimum u� (u�min) (b2) minimum w� (w�min) 

Fig. 10.12 Comparison of maximum and minimum horizontal and vertical 

intensities (unit: m/s). 

 

Fig. 10.14 shows the time-averaged, maximum and minimum horizontal intensities 

(u�) normalized by the wave phase speed. As mentioned in Chapter IX, the PIV 

measurements were performed to cover the entire breaking waves. Therefore, time series 

and time-averaged values at every point shown from Fig. 10.9 to Fig. 10.13 can be 

obtained for all 475 stations. Spatial resolution of the contours is 5.78 mm in both 

direction. Temporal resolution in calculation of time-averaged quantities is 0.01 s.  

Fig. 10.15 shows the time-averaged, maximum and minimum vertical intensities 
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(w�) normalized by C and the time-averaged, maximum and minimum turbulence 

intensities (I) normalized by C can be seen in Fig. 10.16. 

  
(a) period-averaged I (Ipa) (b) wave-averaged I (Iwa) 

  
 

(c) maximum I (Imax) (d) minimum I (Imin) 

Fig. 10.13 Time-averaged, maximum and minimum turbulence intensity (I) (unit: 

m/s). 

 

As shown in Fig. 10.14, the period-averaged horizontal intensity is very high at the 

region between x = 0.2L and x = 0.8L. The region covers the fully developed first splash-

up to the second splash-up. However, the maximum intensities between x = 0.6L and 

0.8L are not high when compared with intensities in the region between x = 0 and 0.6L. 
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This is because the most phases of the wave passing though the region during the one 

wave period have high intensities although there is not a significantly high level of the 

intensity. This is explained that the second splash-up of the accumulated roller passes the 

region and then the second impinging roller passes later. It can be seen from the vertical 

intensity in Fig. 10.15. Therefore, turbulence intensity (I) has a similar pattern as shown 

in Fig. 10.16. It can also be presented in Fig. 10.13(a). The period-averaged intensity at x 

= 0.88 m (x = 0.81L) is one of the stations in the region that is very close to the period-

averaged intensities at x = 0.435 m and x = 0.649 m where the turbulence is very high in 

the entire flow. However, maximum intensity at x = 0.88 m is much lower and the 

minimum intensity is close when compared with the maximum and minimum intensities 

at x = 0.435 m and x = 0.649 m. On the contrary, the period-averaged intensity between x 

= 0 and 0.2L is not high although the maximum intensity is very high as shown in Fig. 

10.14(b) and (c). This is due to the low turbulence in water under the rear face of the 

impinging roller as mentioned before. It is also seen in Fig. 10.13(c) and (d). 

The region that turbulence flow with very high intensity passes in a wave cycle is 

near x = 0.5L (0.4L to 0.6L) as shown in Fig. 10.14(b), Fig. 10.15(b) and Fig. 10.16(b). 

High intensity is widely distributed in the vertical direction up to 0.3h. At first, water 

spray from the fully developed first splash-up impinges onto the region continuously and 

the first impinging roller followed by the ascending crest passes between the mean water 

level and the trough level. There is also the first backward impingement onto the first 

roller and the roller stays at the region following the orbital motion of the water wave. 

These processes create high intensity at the region continuously. 
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(a) wave-averaged u� (u�wa/C) 

 
(b) period-averaged u� (u�pa /C) 

 
(c) maximum u� (u�max /C) 

 
(d) minimum u� (u�min /C) 

Fig. 10.14 Normalized time-averaged, maximum and minimum u� (u�/C). 
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(a) wave-averaged w� (w�wa/C) 

 
(b) period-averaged w� (w�pa /C) 

 
(c) maximum w� (w�max /C) 

 
(d) minimum w� (w�min /C) 

Fig. 10.15 Normalized time-averaged, maximum and minimum w� (w�/C). 
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(a) wave-averaged I (Iwa/C) 

 
(b) period-averaged I (Ipa /C) 

 
(c) maximum I (Imax /C) 

 
(d) minimum I (Imin /C) 

Fig. 10.16 Normalized time-averaged, maximum and minimum intensity (I/C). 
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One of the most interesting regions is between x = 0.55L and 0.7L. As discussed in 

Chapter IX, the second impingement occurs at this region. The crest at this region has a 

high intensity although the region below the trough at this location has a low period-

averaged intensity. High intensity near the crest is caused by the second impingement 

followed by the water spray impinging. As water spray impinges onto the front trough, 

the size of the accumulated roller is increased. Turbulent water spray impinges 

continuously onto the growing accumulated roller. During this process, both horizontal 

and vertical turbulence intensities are very high especially at the left and top side of the 

accumulated roller. Followed by the water spray impingement, the new water wave from 

the ascending crest impinges onto the accumulated roller. Shear stress occurs and is 

caused by the impinging roller and the splash-up of the accumulated roller. Although the 

momentum of the second impingement is smaller than that of the first impingement, the 

accumulated roller is pushed up vertically due to its low density. The underneath of the 

this location, the turbulence intensity under the trough level is very low compared with 

high intensities around x = 0.5L (first impinging roller) and x = 0.9L (Second impinging 

roller). This is because the first impinging roller cannot reach this location and the 

impinging roller after the second impingement near crest passes horizontally near the 

mean water level due to large horizontal momentum. Therefore, below each impinging 

point does not have the high turbulence intensity as shown in Fig. 10.16. Note that three 

impinging locations for each process are approximately x = 0, 0.6L and 1.05L 

respectively. 
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Fig. 10.17 Example of full depth extension of u� (x = 0.539 m). 

 

 
 

Fig. 10.18 Example of full depth extension of w� (x = 0.539 m). 
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To obtain the depth-integrated or depth-averaged quantities, it is necessary to 

extend measurement quantities up to the bottom (x = - 0.8 m). Fig. 10.17 and Fig. 10.18 

show examples of the extended results for horizontal and vertical intensities at x = 0.539 

m which is one of the highest turbulence region. Intensity profiles between z = - 0.51 m 

and – 0.8 m were obtained using linear interpolation with the same measurement grid 

size. Both intensities are close to zero at z = - 0.4 m although the intensities are most 

widely distributed at the location.  

Fig. 10.19 shows the maximum intensities at each station with the magnitude 

normalized by the wave phase speed. Both intensities have local maximum intensities at  

the locations of the first (x = 0) and second (x = 0.6L) impinging locations while only the 

horizontal intensity has a local maximum at the third impingement (x = 1.05L) as 

discussed in previous section. 

 

 
Fig. 10.19 Normalized maximum intensities at each station (normalized by C). 
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Fig. 10.20 shows the depth-averaged time mean intensity which is obtained from 

Eq. (9.6). Unlike the maximum intensities at each station, the horizontal intensity is less 

dominant in the depth-averaged values between x = 0 and x = 0.45L. The ratio of the  

depth-averaged vertical intensity to the horizontal intensity is about 85-97% between x = 

0 and 0.5L, while the ratio is about 70~85% between x = 0.5 and x = 2L 

 

 
Fig. 10.20 Depth-averaged time mean intensity (normalized by C). 
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10.3 Reynolds Stress 

The Reynolds shear stress is defined as i iu w′ ′−  where  denotes the ensemble 

averaging and it will be omitted with the subscript for simplicity. Spatial and temporal 

analysis results are presented in Sections 10.3.1 and 10.3.2 respectively. 

10.3.1 Spatial Analysis of Reynolds Stress 

The Reynolds stresses are positive in the entire flow field except at the beginning of 

the first and the second splash-up. Fig. 10.21 shows the Reynolds stress during the 

beginning of the first splash-up followed by the first impingement. At the beginning of 

the first splash-up, positive shear stress can be seen at the first impinging roller and 

small water spray impingement at the first splash-up. The maximum shear stress occurs 

at the impinging roller near the impinging point until the first splash-up and the positive 

stress occurs near the region of water spray impinging from the first splash-up. However, 

it is a small scale before fully developed.  

The negative stress occurs at the splash-up as shown in Fig. 10.21 and Fig. 10.22. 

The negative stress due to upward momentum flux weakens when the first splash-up is 

fully developed. The size of the second roller caused by the first splash-up is gradually 

increased as elevation of the newly ascending water crest becomes higher. The 

ascending crest reaches a peak with a large upward momentum around t = 0.2 s. The top 

portion of the ascending crest loses its kinetic energy. Therefore, the left part falls down 

onto the first roller, which is the first backward impingement, and the large upward 

momentum contributing to the second roller weakens.  
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(a) t = 0.05 s (b) t = 0.06 s 

  
(c) t = 0.07 s (d) t = 0.08 s 

  
(e) t = 0.09 s (f) t = 0.10 s 

Fig. 10.21 Reynolds stress at the beginning of the first splash-up (unit: m2/s2). 
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(a) t = 0.10 s (-u�w�) (b) t = 0.14 s (-u�w�) 

  
(c) t = 0.18 s (-u�w�) (d) t = 0.23 s (-u�w�) 

  
(e) t = 0.27 s (-u�w�) (f) t = 0.29 s (-u�w�) 

  
(g) t = 0.31 s (-u�w�) (h) t = 0.35 s (-u�w�) 

  
(i) t = 0.39 s (-u�w�) (j) t = 0.42 s (-u�w�) 

Fig. 10.22 Reynolds stress from the first splash-up (unit: m2/s2). 
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(k) t = 0.44 s (-u�w�) (l) t = 0.47 s (-u�w�) 

  
(m) t = 0.49 s (-u�w�) (n) t = 0.53 s (-u�w�) 

  
(o) t = 0.57 s (-u�w�) (p) t = 0.61 s (-u�w�) 

  
(q) t = 0.64 s (-u�w�) (r) t = 0.69 s (-u�w�) 

  
(s) t = 0.75 s (-u�w�) (t) t = 0.82 s (-u�w�) 

Fig. 10.22 (Continued). 
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As shown Fig. 10.22(c)-(f), as the momentum of the first roller is gradually 

decreased, high positive stress occurs at the water spray impinging location due to the 

downward turbulence momentum of the water spray impingement from the fully 

developed first splash-up. Due to the continuous water spray impingement onto the front 

trough, the accumulated mixture roller occurs near x = 0.6 m and its size is gradually 

increased without significant horizontal momentum. The water spray impinges onto the 

accumulated roller continuously. Therefore, the positive Reynolds stress occurs at the 

water spray impinging region for a long time. This can be seen in Fig. 10.22(e)-(n). The 

maximum stress can be seen between x = 0.6 and 0.8 m for about 0.2 s. The location of 

the maximum stress becomes higher due to the increased size of the accumulated roller. 

There is a second impingement by the new ascending crest at the end of the water spray 

impingement [Fig. 10.22(j) and (k)]. A negative stress can also be seen at the second 

splash-up process as shown in Fig. 10.22(l) and (m). As shown in Fig. 10.22(l)-(t), after 

the second splash-up, the Reynolds stress is suddenly decreased.  

Fig. 10.23 shows the maximum positive and negative Reynolds stress and the 

magnitude normalized by C2. Three local maxima are found for the positive Reynolds 

stresses. The first maximum occurs at the first impingement during the beginning of the 

first splash-up process, and the second maximum occurs at the water spray impingement 

from the fully developed first splash-up around t = 0.3T. The positive Reynolds stress 

has the maximum value during this process for the entire flow. The third local positive 

maximum occurs at the second impinging onto the accumulated roller around t = 0.47T. 

The negative maximum stress occurs at the splash-up water just before the first splash-
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up is fully developed. 

 

 
Fig. 10.23 Normalized maximum Reynolds stress (normalized by C2). 

 

 
Fig. 10.24 Normalized maximum Reynolds stress (normalized by Vmax

2). 
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Fig. 10.24 shows the maximum positive and negative Reynolds stress which was 

normalized by the square of the maximum speed at each phase. When compared with 

results from Fig. 10.23, the maximum positive Reynolds stress occurs at the second 

impingement at about t = 0.47T. This is because the maximum speed at the second 

impingement is much lower than that at the first impingement and the first splash-up. 

Local maximum negative stress can be seen around t = 0.52T, representing the second 

splash-up followed by the second impingement. 

10.3.2 Temporal Analysis of Reynolds Stress 

Temporal analysis for the Reynolds stress is presented in this section. Fig. 10.25 

shows the time series of the Reynolds stress at a station. The locations of the six stations 

are identical as presented in Section 10.2.2. Fig. 10.26 shows the time-averaged and 

maximum Reynolds stresses at a station, which is presented in Fig. 10.25. Fig. 10.27 

shows the comparison of the time-averaged and maximum stresses at several stations. 

The location of the station in Fig. 10.25(a) and Fig. 10.26(a) is near the beginning of the 

first splash-up. Weak positive stress can be seen at the weak water spray impinging 

before the first splash-up is fully developed. High positive stress is generated in the first 

roller. Negative stress is generated in the splash-up region as shown in Fig. 10.27(d). 

Positive stress is increased due to large horizontal and downward momentum of the 

water spray from the developed second roller. On the other hand, the stress in the first 

impinging roller is decreased when waves passes through the station located at x = 0.435 

m and the negative stress is very weak as shown in Fig. 10.25(b) and Fig. 10.26(b) .  
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(a) x = 0.198 m (-u�w�) (b) x = 0.435 m (-u�w�) 

  
(c) x = 0.649 m (-u�w�) (d) x = 0.880 m (-u�w�) 

  
(e) x = 0.967 m (-u�w�) (f) x = 1.204 m (-u�w�) 

Fig. 10.25 Time series of Reynolds stress at a station (unit: m2/s2). 

 



307 

 

 

  
(a) x = 0.198 m  (b) x = 0.435 m 

  
(c) x = 0.649 m (d) x = 0.880 m 

  
(e) x = 0.967 m (f) x = 1.204 m 

Fig. 10.26 Time-averaged, maximum, and minimum -u�w� at a station (unit: m2/s2). 
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(a) period-averaged -u�w� (b) wave-averaged -u�w� 

  
(c) maximum -u�w� (d) minimum -u�w� 

Fig. 10.27 Comparison of time-averaged, maximum, and minimum -u�w� at a 

station (unit: m2/s2). 

As shown in Fig. 10.25(c), Fig. 10.26(c) and Fig. 10.27, large positive stress passes 

through the station located at x = 0.649 m. The second impingement followed by a 

continuous water spray impingement occurs near the station. Although the maximum 

positive stress is similar to the maximum at x = 0.435 m, the period-averaged stress is 

much higher than the other region as shown in Fig. 10.27. The Reynolds stress is 

suddenly decreased just after the beginning of the second splash-up. The station at x = 

0.88 m where the fully developed second splash-up passes has a low Reynolds stress as 
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shown in Fig. 10.27(a). In addition, a much smaller stress is generated at x = 1.204 m 

where the fully developed third splash-up passes. 

Fig. 10.28 shows the normalized time-averaged and maximum Reynolds stresses at 

each point in the entire flow field. The Reynolds stresses were normalized by C2. It is 

clearly seen from the wave-averaged Reynolds stress that the negative stress occurs due 

to the first splash-up and the positive stress is dominant through a wave cycle between x 

= 0.5L and 0.6L due to the water spray impingement and the second impingement. In 

addition, the period-averaged Reynolds stress has a maximum value near this region. 

As shown in Fig. 10.28, most shear stresses are generated above the trough level, 

with much lower stresses under the trough level. Compared with other regions, much 

higher positive stresses are generated between x = 0.5L and 0.6L due to the continuous 

impingement of water spray. As discussed in 10.3.1, when the primary wave passes 

through this location, high Reynolds stress are generated above the mean water level 

through a local wave period [Fig. 10.22(e)-(n)].  

Fig. 10.29 shows an example of the full depth extension of the period-averaged 

Reynolds stress for a station. It is required to obtain depth-integrated or depth-averaged 

Reynolds stress as shown in Fig. 10.31. Like other measurement quantities, the Reynolds 

stresses are almost zero between z = - 0.4 m and - 0.8m (bottom). Therefore, the 

Reynolds stresses from z = - 0.51 m to - 0.8 m were obtained using linear interpolation. 

The maximum Reynolds stresses at each station can be seen in Fig. 10.30. The 

positive and negative maximum stresses occur around x = 0.5L and x = -0.25L. Note that 

the stresses were normalized by C2. 
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(a) wave-averaged -u�w� (-u�w�/C2) 

 
(b) period-averaged -u�w� (-u�w�/C2) 

 
(c) maximum -u�w� (-u�w�/C2) 

 
(d) minimum -u�w� (-u�w�/C2) 

Fig. 10.28 Normalized time-averaged and maximum Reynolds stress (-u�w�/C2). 
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Fig. 10.29 Example of full depth extension of Reynolds stress (unit: m2/s2). 

 

 
Fig. 10.30 Normalized maximum positive negative Reynolds stress (-u�w�/C2). 
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Fig. 10.31 Depth-averaged Reynolds stress and turbulent kinetic energy 

(normalized by C2). 

 

The depth-averaged time mean Reynolds stress (red circles) has the maximum near 

x = 0.55L and the depth-averaged time mean kinetic energy (blue asterisks) is also 

presented for comparison.  

10.4 Turbulent Kinetic Energy 

As discussed in Section 10.2, fluctuating horizontal velocity mainly occurs at the 

bottom boundary of the aerated region where shear stresses occur between high speed 

roller and water under the trough region of water wave. High fluctuating velocity in the 

vertical direction occurs at between two rollers (one is the impinging roller and the other 

is the splash-up roller) due to the vertical shear. Turbulent kinetic energy is determined 

by the intensities of the turbulent velocities in both direction as shown in Eq. (10.2).  
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10.4.1 Spatial Analysis of Turbulent Kinetic Energy 

Turbulent kinetic energy at the beginning of the splash-up followed by the first 

impingement can be shown in Fig. 10.32. Significant turbulent kinetic energy is 

generated near the ascending crest. The front water is pushed up and the newly 

ascending water crest, which will cause the second impingement later, is generated when 

the overturning water jet impinges onto the front water. The surface of the ascending 

crest is splashed up with the form of the water spray and causes the turbulence. 

  
(a) t = 0.04 s (k) (b) t = 0.05 s (k) 

  
(c) t = 0.06 s (k) (d) t = 0.07 s (k) 

Fig. 10.32 Turbulent kinetic energy at the beginning of the first splash-up (unit: 

m2/s2). 
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Another dominant location where turbulent kinetic energy is generated is between 

the impinging jet and the left side of the ascending crest. Vertical fluctuation is more 

dominant in this region. Fig. 10.33 shows the turbulent kinetic energy variation in time. 

As shown in Fig. 10.32 and Fig. 10.33, most turbulence is generated near the bottom 

boundary of the aerated region. The turbulent energy has received energy from the 

continuously generated shear flows between the aerated region and the water surface 

below the aerated region. The dominant location where the turbulent kinetic energy is 

generated by horizontal and vertical fluctuation is slightly different from each other as 

shown in Fig. 10.2. As the second roller which is the first splash-up roller is gradually 

developed by obtaining energy from the impinging roller, significant turbulent kinetic 

energy is generated at the impinging water spray region while turbulence energy is 

gradually dissipated in the first impinging roller. The dominant locations of the 

generated turbulence in both directions are close to each other. This can be seen in Fig. 

10.32 and Fig. 10.33(a)-(e). Turbulent kinetic energy is generated near the toe of the 

second roller. Note that white dashed lines represent the boundary of the aerated region. 

Fig. 10.33(f)-(j) shows the turbulent kinetic energy at the process of the increment of the 

accumulated roller by the continuous water spray impingement. The dominant location 

of the turbulent kinetic energy is moved upward due to the presence of the accumulated 

roller. The turbulent kinetic energy is continuously generated between the impinging 

spray and the accumulated roller whose size and internal energy is slowly increased. 

During this process, mean kinetic energy is continuously decreased as shown in Fig. 

9.70 and Fig. 9.71 
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(a) t = 0.10 s (k) (b) t = 0.14 s (k) 

  
(c) t = 0.18 s (k) (d) t = 0.23 s (k) 

  
(e) t = 0.27 s (k) (f) t = 0.29 s (k) 

  
(g) t = 0.31 s (k) (h) t = 0.35 s (k) 

  
(i) t = 0.39 s (k) (j) t = 0.42 s (k) 

Fig. 10.33 Turbulent kinetic energy from the first splash-up (unit: m2/s2). 
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(k) t = 0.44 s (k) (l) t = 0.47 s (k) 

  
(m) t = 0.50 s (k) (n) t = 0.54 s (k) 

  
(o) t = 0.57 s (k) (p) t = 0.61 s (k) 

  
(q) t = 0.64 s (k) (r) t = 0.69 s (k) 

  
(s) t = 0.75 s (k) (t) t = 0.82 s (k) 

Fig. 10.33 (Continued). 
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Fig. 10.33(j) and (k) show the turbulent kinetic energy at the moment of the second 

impingement by the new primary wave crest. The accumulated roller can be seen 

between x = 0.7 and x = 0.8 m and the roller itself does not have large kinetic energy. Fig. 

10.33(l) and (m) show the turbulent kinetic energy at the beginning of the second splash-

up. The left and top part of the accumulated roller is splashed up because the newly 

ascending crest is pushed up by the impinging jet and then it pushes up the above 

accumulated roller. This can be seen in Fig. 6.1(f)-(h). However, turbulent kinetic energy 

is not significant and is decreased when compared with that of the impinging process. 

From the beginning of the second splash-up, turbulent kinetic energy is gradually 

decreased except for a very small peak during the third impingement. Fig. 10.33(p)-(t) 

shows the turbulent kinetic energy at the third impingement and splash-up process. 

Fig. 10.34 shows the normalized maximum turbulent kinetic energy variation in 

time and the magnitude normalized by C2. This is presented with the maximum mean 

kinetic energy for better comparison. In addition, Fig. 10.35 shows the corresponding 

location when the kinetic energy has a maximum for each phase and the location for the 

maximum mean kinetic energy. The maximum turbulent kinetic energy is maintained 

with a small decrease until the second impingement, while the maximum mean kinetic 

energy is significantly decreased. Moreover, the decrease is continued during the second 

splash-up process around t = 0.55T, while the mean kinetic energy has a local maximum 

at the process. A more detailed variation can be seen in Fig. 10.5 that presents the 

maximum turbulence intensity in Section 10.2.1. The only difference is the magnitude 

scale since turbulent kinetic energy was defined as 21.33

2
k I=  in this study as shown in 
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Eq. (10.2).  

 

 
 

Fig. 10.34 Normalized maximum turbulent kinetic energy (with K). 

 

 
 

Fig. 10.35 Location of maximum kinetic energy. 

 

As shown in Fig. 10.35, the location for the maximum turbulent kinetic energy is 

slightly lower than those for the mean kinetic energy. Note that the time difference 
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between makers is 0.01 s. The maximum mean kinetic energy always occurs above the 

mean water level. Most locations for the mean kinetic energy are near the crest. 

However, the maximum mean kinetic energy occurs near the mean water level during 

the first splash-up process. This is because the location of the maximum occurs near the 

toe of the second roller where the water spray impinges onto the trough region of the 

front wave. For the same reason, the maximum turbulent kinetic energy occurs between 

the mean water level and the trough level during the first splash-up. Since turbulent 

kinetic energy is significantly decreased after the second impingement, the location of 

turbulent kinetic energy is fluctuating between the impinged first roller and progressing 

roller.  

The maximum values of the correlation between kinetic energy and mean flow that 

represents the transport of turbulent kinetic energy by mean flow can be seen in Fig. 

10.36 and Fig. 10.37 with the magnitudes normalized by C3. Each figure represents 

kinetic energy transport by the horizontal and vertical mean flow, respectively. Since the 

positive horizontal momentum is dominant, the trend of the maximum kU is close to that 

of the maximum horizontal velocity as shown in Fig. 9.31 but with fluctuating value due 

to turbulent kinetic energy. The minimum kU is very close to zero. In addition, the 

maximum and minimum kW have a similar trend with the maximum and minimum 

vertical mean velocity as shown in Fig. 9.31.  

Fig. 10.38 and Fig. 10.39 show the location of the maximum and minimum of kU 

and kW. The time difference between two markers is 0.01 s. In the case of the maximum 

locations, the location for the maximum kU is closer to the maximum k location at x < 
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0.6L and is closer to the maximum U at x > 0.6L. On the other hand, the locations for the 

maximum and minimum kW are closer to the maximum and minimum W in the entire 

region. More discussion will be presented in 10.4.2, which provides results from 

temporal analysis of turbulent kinetic energy. 

 
Fig. 10.36 Normalized maximum and minimum kU (kU/C3). 

 

 
Fig. 10.37 Normalized maximum and minimum kW (kW/C3). 
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Fig. 10.38 Location of maximum kU. 

 

 
Fig. 10.39 Location of maximum kW. 

 

10.4.2 Temporal Analysis of Turbulent Kinetic Energy 

Temporal analysis for turbulent kinetic energy is presented in this section. Fig. 

10.40 shows the time series of the turbulent kinetic energy at six stations. These six 

stations were chosen among 475 stations. The location of the stations are described in 

previous Sections 10.2.2 and 10.3.2. 

Fig. 10.41 shows the time-averaged, maximum, and minimum turbulent kinetic 

energy at six stations and Fig. 10.42 shows the comparisons of each value. 
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(a) x = 0.198 m (k) (b) x = 0.435 m (k) 

  
(c) x = 0.649 m (k) (d) x = 0.880 m (k) 

  
(e) x = 0.967 m (k) (f) x = 1.204 m (k) 

Fig. 10.40 Time series of k at a station (unit: m2/s2). 
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(a) x = 0.198 m  (b) x = 0.435 m 

  
(c) x = 0.649 m (d) x = 0.880 m 

  
(e) x = 0.967 m (f) x = 1.204 m 

Fig. 10.41 Time-averaged, maximum, and minimum k (unit: m2/s2). 
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(a) period-averaged k (kpa) (b) wave-averaged k (kwa) 

  
(c) maximum k (kmax) (d) minimum k (kmin) 

Fig. 10.42 Comparison of time-averaged, maximum, and minimum k (unit: m2/s2). 

 

As shown in Fig. 10.40(a) and Fig. 10.42(a), compared with the high maximum 

turbulent kinetic energy, the period-averaged value at the beginning of the first splash-up 

(x = 0.198 m) is much smaller than those at other stations located near the fully 

developed first splash-up (x = 0.435 m) and near the second impinging (x = 0.649 m). It 

can be seen in Fig. 10.42(d) that the minimum value at x = 0.198 m is much smaller than 

those from other stations due to the rear part of the impinging wave had a small turbulent 

kinetic energy. The turbulent kinetic energy has a maximum at the station located in x = 
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0.435 m. However, both the wave- and period-averaged turbulent kinetic energies have a 

maximum at x = 0.649 m. As discussed in Section 10.4.1, the turbulent kinetic energy 

suddenly decreases after the second impingement. As shown in Fig. 10.42, the maximum 

magnitude of the period-averaged values at the second splash-up (x = 0.88 m) is similar 

to that at the beginning of the first splash-up (x = 0.198 m) and the averaged turbulent 

kinetic energy at the third splash-up (x = 1.204 m) has a much smaller value. In Fig. 

10.41, the wave-averaged (red) and period-averaged (blue) quantities must be identical 

below the trough level by the definition shown in Eqs. (9.4) and (9.5). Therefore, it is 

good to see how much turbulent kinetic energy is transported under the trough level. 

Fig. 10.43 shows turbulent kinetic energy for all 475 stations with the magnitudes 

normalized by C3. Fig. 10.43(a) and (b) show the wave-averaged and period-averaged 

turbulent kinetic energies while Fig. 10.43(c) and (d) show the maximum and minimum 

turbulent kinetic energies at each point. The number of points in each contour is 55100 

(475 × 116) and the time resolution for the time averaging value is 0.01 s.  

Both wave-averaged and period-averaged turbulent kinetic energies have the 

maximum near x = 0.6L, above the mean water level. As mentioned in Section 10.2.2, 

the period-averaged turbulent kinetic energy is high along the mean water level, 

approximately between x = 0.2L and 0.8L, while the maximum averaged turbulent 

kinetic energy occurs between x = 0 and 0.6L. At the region between x = 0 and 0.2L, the 

second roller for the first splash-up passes through the region before the second roller is 

fully developed and the first impinging roller passes. Although both rollers have high 

turbulent kinetic energy, it is compensated by low turbulent kinetic energy in the rear 
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water wave. It can be seen in Fig. 10.2 that the aerated first roller covers only the front 

wave from the crest while no aerated region in the rear wave. On the other hand, 

maximum turbulent kinetic energies between x = 0.6L and 0.8L are low compared with 

those between x = 0 and 0.6L. This is because the turbulent roller passes through the 

region in a wave period such as the second splash-up roller, the second impinging roller 

and the right side of the first impinging roller. A wide distribution of turbulent kinetic 

energy throughout the vertical station can be found near x = 0.5L and 0.9L due to the 

first and second impinging rollers. 

Fig. 10.44 shows the maximum turbulent kinetic energy at each station. In addition, 

the maximum mean kinetic energy was added in the figure for better comparison 

between mean and turbulent kinetic energies. Both maximum kinetic energies were 

normalized by C2. The maximum turbulent kinetic energy generated from the first 

impingement is maintained with similar magnitude until about x = 0.6L where the 

second impingement occurs and then the magnitude begins decreasing gradually until x 

= 0.9L. There is a local peak near x = 1.05L where the third impingement occurs. On the 

other hand, the maximum mean kinetic energy suddenly decreases from x = 0.52L and a 

local peak is also found in the region of the third process.  

To obtain the depth-averaged or depth-integrated time mean values, linear 

interpolation was used to obtain the turbulent kinetic energy from the lowest 

measurement point (z = - 0.51 m) to the bottom (z = - 0.8 m) with the assumption that 

the turbulent kinetic energy is zero at the bottom. The assumption is reasonable because 

the turbulent kinetic energy is almost zero from z = - 0.3h as shown in Fig. 10.43. 
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(a) wave-averaged k (kwa/C2) 

 
(b) period-averaged k (kpa/C2) 

 
(c) maximum k (kmax/C2) 

 
(d) minimum k (kmin/C2) 

Fig. 10.43 Normalized time-averaged, maximum, and minimum k (k/C2). 
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Fig. 10.44 Normalized maximum kinetic energy (normalized by C2). 

 

 
Fig. 10.45 Depth-averaged time mean kinetic energy (normalized by C2). 
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Fig. 10.45 shows the depth-averaged and time mean kinetic energies, which were 

obtained using Eq. (9.6). The mean and turbulent kinetic energies suddenly increases 

from the first impingement. Both kinetic energies begin decreasing around x = 0.5L 

(about 0.4L for the mean kinetic energy and 0.6L for the turbulent kinetic energy). A 

local maximum for turbulent kinetic energy is found around x = 0.8L as seen in Fig. 

10.43(b). The turbulent kinetic energy between x = 0.5L and 0.8L is approximately 30% 

of the mean kinetic energy as shown in Fig. 10.46. Fig. 10.46 shows the ratio of the 

depth-averaged and period-averaged turbulent kinetic energy to the mean kinetic energy.  

The magnitude of the aerated region from the impingement of the overturning jet 

must be overestimated due to excluding the void ratio (mixture density in the aerated 

region). This is especially important at the first splash-up roller (the second roller) whose 

void ratio is most significant in the entire breaking process. For example, without 

considering the void ratio, the mean kinetic energy at the fully developed first splash-up 

(x = 0.42L) is about twice as high as the mean kinetic energy before the first 

impingement as shown in Fig. 10.45. 

The total kinetic energy was obtained by means of adding the mean kinetic energy 

to the turbulent kinetic energy, and is given in Fig. 10.47. The total kinetic energy at x = 

0.5L (near the first splash-up roller) is about 2.5 times higher than the total kinetic 

energy before the first impingement. Again, the magnitude of the kinetic energy in the 

aerated region, especially at the first splash-up, must be overestimated. It should 

decrease if the void ratio is applied to each point. More results and discussion including 

the void ratio are presented in Chapter XI. 
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Fig. 10.46 Ratio of turbulent and mean kinetic energy ( k Kda da ). 

 

 
Fig. 10.47 Depth-averaged total kinetic energy ( K kda da+ ). 
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Fig. 10.48 and Fig. 10.49 show the transport of turbulent kinetic energies by mean 

horizontal and vertical velocities where both wave-averaged and period-averaged 

magnitudes were normalized by C3. As shown in Fig. 10.48, turbulent kinetic energy is 

transported near the mean water level by downstream mean flow during the first 

impingement and splash-up processes. After the first splash-up is fully developed, 

turbulent kinetic energy is transported between the crest and the mean water level due to 

the high horizontal momentum during the water spray impingement, the second 

impingement, and the second splash-up. There is a maximum transport of the turbulent 

kinetic energy around x = 0.6L due to the continuous water spray impingement and the 

second impingement onto the accumulated roller.  

 

 
(a) wave-averaged kU (kU/C3) 

 
(b) period-averaged kU (kU/C3) 

Fig. 10.48 Normalized time-averaged kU/C3. 
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(a) wave-averaged kW (kW/C3) 

 
(b) period-averaged kW (kW/C3) 

Fig. 10.49 Normalized time-averaged kW/C3. 

 

As shown in Fig. 10.49, turbulent kinetic energy is mainly transported downward 

by a downward mean flow. Downward transport due to the first impinging roller is 

found under the mean water level between x = 0.2L and 0.55L. The maximum downward 

transport occurs around x = 0.55L (above the mean water level) due to the continuous 

water spray and the second impingement. Indeed, in this region, high turbulent kinetic 

energy is transported downwards and in the downstream direction through the breaking 

process. This is the reason why the period-averaged Reynolds stress also has a high 

positive value in this region. Upward transport is also found although the magnitude is 

much smaller than the downward transport. Upward transport is found near the first and 

second splash-up region. In addition, it is found below the first roller because there 
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exists a large upward momentum below the impinging roller and the newly ascending 

crest although the turbulent kinetic energy in this region is small. It can be seen in Fig. 

9.19 and Fig. 9.43. 
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CHAPTER XI 

11VOID RATIO AND COMPRESSIBILITY IN A PLUNGING 

BREAKER 

11.1 Introduction 

Since breaking waves are multiphase flows due to the highly aerated region, void 

ratio measurements are required to investigate breaking waves specifically for a strong 

breaker. Compared with a spilling wave, a plunging breaker has a much higher void ratio 

due to a repetitive processes of a splash-up followed by an impingement, especially at 

the first process.  

Velocities obtained from the BIV and PIV measurements represent the velocities of 

the air-water mixture as discussed in Chapters VIII and IX. Most values such as kinetic 

energy, Reynolds stress, and mass flux are overestimated if the void ratio in the highly 

aerated region is not considered. Therefore, the mixture density considering the void 

ratio at each point should be applied to calculate most terms. It is found that there is a 

significant discrepancy when the void ratio is applied to the mean and turbulent 

properties. The effect of compressibility cannot be neglected since most values obtained 

will be substantially overestimated. 

In this chapter, results of void ratio measurements using the FOR technique are 

presented in Section 11.2 and void ratio measurements using the BIV and PIV images 

are discussed in Section 11.3. Based on the results from the FOR measurements, updated 
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results considering compressibility are presented in the Section 11.4. 

11.2 Void Ratio Measurements Using FOR 

The FOR technique was used to obtain the void ratio of the highly aerated region in 

a plunging breaker. The experimental set up and conditions for the FOR measurements 

are presented in Section 5.6. Additionally, the principle and application of the FOR 

system are presented in Chapters III and IV. 

There are three measurement stations as shown in Fig. 5.1 and Table 5.2. Each 

station was located in the region where each splash-up became fully developed. Fig. 11.1 

shows three FOR measurement stations, which correspond to the locations of wave 

gauge stations 4, 5, and 6, respectively. Red dots shown in Fig. 11.1(a) represent 

measurement points, and the distance between points is 10 mm. Depending on the 

vertical range of the aerated region, the total number of measurement points was 

determined at each station. The total number of measurement points at each station is 19, 

12 and 7, respectively. Twenty measurements were repeated at a point to obtain the 

mean void ratio. The vertical range at each station is z = - 0.06 m to 0.12 m, - 0.04 m to 

0.07 m, and 0 to 0.06 m, respectively. The measurements at the location below the 

lowest point for each station were performed to verify that the void ratio was nearly zero 

at that position. It can be seen from the measurement points that the roller size and the 

depth of the aerated region decrease.  
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(a) FOR station 1 (FOR1) 

 
(b) FOR station 2 (FOR2) 

 
(c) FOR station 3 (FOR3) 

Fig. 11.1 Three FOR stations. 
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Fig. 11.2 20 instantaneous FOR signals at z = 0 m. 
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Fig. 11.2 shows examples of 20 instantaneous void ratio signals at z = 0 at station 1. 

A sampling rate of 100 kHz was used to obtain the void ratio at each point. Data was 

acquired for 8 s to check the repeatability of the plunging breaker although the longest 

period of the plunging breaker is less than 0.9 s. The repeatability was always checked in 

real time to reduce measurement errors in the turbulent properties. For example, the 

required time duration is approximately between t = 0 and 0.1 s at station 1 for the first 

splash-up (FOR1). The voltage signal variation for other time durations should be nearly 

identical if the plunging breaker has high repeatability.  

In the signals obtained from the FOR measurements, high voltage signals represent 

air (above the free surface or air bubbles) while low voltage signals represent water 

(under the free surface). In addition, rising and falling signals represent water-air and air-

water interfaces of a bubble, respectively. The general description of a FOR signal for a 

particle or an air bubble can be found in Fig. 4.8 to Fig. 4.10. 

An example of a FOR signal in the plunging breaker measurements is presented in 

Fig. 11.3. The voltage signal was obtained at z = 0.07 m at FOR station 1. The most 

important phases such as the first splash-up roller, the first backward impingement, the 

first impinging roller, and the newly ascending water crest, have passed through at that 

point. Therefore, it is necessary to explain the signal shape by identifying the structure of 

the first splash-up followed by the first impingement in the plunging breaker. 

Flat signals around 0.08 V represent that the fiber sensor tip is in the water at the 

corresponding time (around 0.3s and 0.4s), and signals around 1.0 V represent air 

(between 0 s and 0.21 s). However, high voltages representing air do not always 
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maintain 1.0 V depending on the flow situation because the fiber tip does not dry 

immediately. The signal fluctuates within a higher voltage range during the drying time 

(around t = 0.25 s and 0.35 s). The voltage difference between water and air is highly 

distinguishable even though the air signal fluctuates due to the fast variation of the flow 

phases. The rising and falling signals, representing the interface of two phases, result 

from air bubbles. As a result, the threshold value to decompose two phases approaches 

the voltage representing pure water in order to avoid underestimation of the void ratio 

(Lim et al, 2008). 0.11 V was used for the threshold voltage, which is slightly above the 

maximum noise level of the water signal. 

In Fig. 11.3, the voltage amplitude is about 1.0 V before the first splash-up roller 

(the second roller) touches the end of the fiber probe tip. The impinging water spray 

touches the fiber tip around 0.212 s, and then the air pocket inside the fully developed 

splash-up passes through the fiber between 0.228 s and 0.277 s. The newly ascending 

water crest passes between t = 0.277 s and 0.309 s, and the amplitude is representative of 

water at 0.08 V. The signal for the mixture at the left side of the ascending crest is 

between 0.309 s and 0.326 s with a high void ratio corresponding to the continuous 

backward impingement. Another long air signal is found between 0.309 s and 0.379 s, 

which corresponds the air between the ascending crest and the first roller. Finally, the 

crest part of the original primary wave including the first impinging roller passes 

between 0.379 s and 0.42 s. Air bubble signals from the first roller are found in the first 

half while the second half represents the water crest of the original primary wave. After 

the wave passes through the tip, an air signal from above the free surface can be seen at t 
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= 0.42 s.  

As discussed in Chapter IV, bubble chord length or diameter can be obtained by 

multiplying velocity and bubble time duration. Since velocity fields for the entire flow 

were obtained by PIV measurements, the bubble chord length can be obtained although 

the size obtained from this method does not represent the diameter of the bubbles. Note 

that the chord length only represents bubble diameter if the bubble velocity was obtained 

from FOR measurements.  

 

 
 

Fig. 11.3 Instantaneous signal at z = 0.07 m and signal description (FOR station 1). 
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Fig. 11.4 Horizontal velocity time series at points (FOR station 1). 

 

The exact size or volume of an air pocket in the first impingement or in the first 

splash-up can be estimated if the vertical measurement points at the station cover the 

size of the air pocket tube. For example, the signal duration for the air pocket in the 

splash-up roller is about 0.05 s (0.277 – 0.228 s) and the mean velocity is around 1.75 

m/s as shown in Fig. 11.4. The horizontal size of the air pocket can be estimated as 

approximately 87.5 mm at z = 0.07 m at the first FOR station. Size and volume of the air 

pocket can be estimated with high accuracy since temporal resolution of the FOR 

technique is extremely high. In addition, the air pocket in the overturning jet in the first 

impingement can also be estimated. Although this estimation is out of scope of the 

present study it is a worthwhile research because all of the portions of the air pocket in 

the first roller penetrates into water without rebound. This means the void ratio in the 



342 

 

 

first roller is nearly the same as the void ratio in the impinging roller under water. 

However, a small decrease in the void ratio is present in the first roller due to large 

bubbles floating onto the free surface and a small increase is also present due to the 

backward impingement of the newly ascending crest.  

 

 
 

Fig. 11.5 Instantaneous signal at z = 0 m and signal description (FOR station 2). 

 

Fig. 11.5 shows another example of a FOR signal at z = 0. Water spray from the 

first splash-up impinges near the still water level continuously around t = 0.2 s. The 

fluctuating signal represents the continuous spray impingement onto the interface 
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between the water and the aerated region. Air pockets are not found at the still water 

level. The newly ascending crest passes through the point. Next, the middle of the first 

roller including air bubbles passes through from 0.33 s and 0.44 s. Finally, the original 

primary wave passes about 0.57 s. 

 
 

Fig. 11.6 Instantaneous signal at z = - 0.06 m and signal description (FOR station 3). 

 

Fig. 11.6 shows a FOR signal at z = -0.06 m, which is close to the wave tough. 

Since the front trough is increased gradually during the breaking process as shown in Fig. 

9.34, only the rear tough can be detected at this point. It is necessary to obtain the time 

information for the front trough to calculate the period-averaged void ratio. Free surface 

elevation obtained from the PIV images and the wave gauge measurements was used to 
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calculate the period-averaged void ratio. When the first splash-up roller passes FOR 

station 1, there are no bubbles under the second roller and air bubbles are rarely found at 

the spread first roller. 

To obtain instantaneous void ratios for 20 measurements at each point, voltage 

amplitude representing water was set to zero while the amplitude of air was set to 1. Air 

above the free surface was set to the NaN (Not-A-Number) value in Matlab. Since 

sampling rate is 100 kHz, the averaged void ratio was obtained using every 1000 

samples whose value were set to 0 (water) or 1 (air) previously. Therefore, the final 

temporal resolution of 100 Hz is identical with the final output data sampling rate in the 

BIV and PIV measurements. The vertical spatial resolution is 10 mm. Note that the 

spatial resolutions of the final vectors in the BIV and PIV measurements are 5.26 and 

5.78 mm, respectively. After obtaining the instantaneous void ratio for every 0.01 s at 

each station, the phase-averaged mean and turbulent void ratios were calculated. 

 
Fig. 11.7 Time series contour of void ratio at station 1 (FOR1). 
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The mean void ratio contour at FOR station 1 can be seen in Fig. 11.7. As expected, 

the first splash-up roller has a very high void ratio while the low void ratio at the 

ascending water crest can be observed around t = 0.3 s. The void ratio corresponding to 

the first impinging roller can be seen between 0.3 s and 0.45 s. 

 

 
Fig. 11.8 Wave-averaged and period-averaged void ratios at station 1 (FOR1). 

 

Wave-averaged and period-averaged void ratios were obtained using Eqs. (9.4) and 

(9.5), and these void ratios can be seen in Fig. 11.8. Wave-averaged and  period-

averaged void ratios are approximately 57% and 19% around z = 0.06 m, respectively. A 

time series of the depth-averaged void ratio can be seen in Fig. 11.9. The depth-averaged 

void ratio was calculated to the location z = - 0.18 m since there were no bubble below 

that location at the station 1. The maximum depth-averaged void ratio occurs at 0.21 s, 

representing the first splash-up roller, and is decreased due to the ascending water crest 
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around t = 0.3 s. A local maximum is found after the new water crest due to the mixture 

between the two rollers and the first impinging roller. As discussed in Chapter VII, a 

time series of the depth-averaged void ratio can be obtained using the difference between 

the free surface information obtained from the wave gauges and the image methods. The 

comparison of the results and more discussion are presented in Section 11.3. 

 
Fig. 11.9 Depth-averaged void ratio at station 1 (FOR1). 

 

A time series contour of mean void ratio at FOR station 2 is shown in Fig. 11.10. 

The location of the second station corresponds to the second splash-up region. Fig. 11.11 

shows the wave-averaged and period-averaged void ratios. The maximum wave-

averaged void ratio is about 49% close to that of the first splash-up, and the maximum 

period-averaged void ratio is about 13% at z = 0.05 m. This is because the wetted 

duration near the crest of the second splash-up is shorter than that of the first splash-up. 
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Fig. 11.10 Time series contour of void ratio at station 2 (FOR2). 

 

 
Fig. 11.11 Wave-averaged and period-averaged void ratios at station 2 (FOR2). 
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Fig. 11.12 Depth-averaged void ratio at station 3 (FOR3). 

 

Fig. 11.12 shows the time series of the depth-averaged void ratio obtained by 

averaging the void ratios vertically up to z = -0.22 m. The maximum depth-averaged 

void ratio occurs at t = 0.54 s near the toe of the second splash-up, and a local maximum 

is found at t = 0.66 s due to the second impinging roller. A similar decrease observed in 

the first splash-up is found between the two rollers due to the new water crest caused by 

the second impingement although its scale is much smaller.  

Fig. 11.13 shows the void ratio time series at the third station, which  corresponds 

to the third splash-up region. Fig. 11.14 shows the wave-averaged and period-averaged 

void ratios and Fig. 11.15 shows the time series depth-averaged void ratio. The void 

ratio is significantly decreased compared with the first and second splash-up. The depth-

averaged void ratio decrease due to the new water crest is not found at the third splash-

up, since the breaking process at the third splash-up is similar to a spilling breaker.  
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Fig. 11.13 Time series contour of void ratio at station 3 (FOR3). 

 

 
Fig. 11.14 Wave-averaged and period-averaged void ratios at station 3 (FOR3). 
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Fig. 11.15 Depth-averaged void ratio at station 3 (FOR3). 

 

It is considered that the third process is a transition between a plunging and a 

spilling breaker. The depth-averaged void ratio decreases exponentially, similar to that 

of the void ratio in spilling waves (Cox and Shin, 2003). 

The void ratio at station 1 covers the first impinging roller and the first splash-up. 

The void ratios from the two rollers are independent because the first splash-up is not 

from the impinging jet as discussed in Chapter VI. The void ratio at station 2 covers the 

second impinging roller and the second splash-up. Two rollers are produced from the 

first splash-up roller (second roller). The second roller becomes the accumulated roller, 

and then the accumulated roller is divided into the second impinging roller and the 

second splash-up roller by the second impingement of the newly ascending crest. This 

implies that the void ratio at the second splash-up should be very close to the void ratio 

at station 2. Therefore, the void ratio of the first impinging roller (overturning) can be 
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estimated by subtracting the void ratio at station 2 from the void ratio at station 1. In 

addition, the void ratio at station 3 should be close to the void ratio at the second splash-

up roller. In the same manner, the void ratio of the second impinging roller can be 

estimated by subtracting the void ratio at station 3 from the void ratio at station 2. 

As shown in Fig. 11.3, it is possible to describe the FOR signal in combination with 

the high speed camera and quantitative results from the BIV and PIV measurements. 

11.3 Void Ratio Measurement Using Digital Images 

Since both BIV and PIV techniques are based on the imaging techniques, the void 

ratio can be estimated using the image intensities of the aerated region. The high speed 

camera used in the BIV and PIV measurements has a dynamic range of 8-bits. Therefore, 

each image has 256 gray scales from 0 to 255 (black: 0 and white: 255). In the PIV 

images, water is black and air bubbles have higher intensities depending on their 

concentration. A higher concentration of bubbles (high void ratio) has a higher intensity 

(brighter). With this simple concept, the image intensity at each pixel was divided by 

255 since the void ratios in water and air are 0 and 1 respectively. These image intensity 

data are the raw data and should be corrected or calibrated because the intensity of the 

laser light sheet is different at each location. For example, pixel intensity in the lower 

image is higher than in the upper image and is higher in the middle of the images than 

the left and right side. 

In this section, preliminary results of the void ratios obtained from the BIV and PIV 

images before calibration or post processing are presented for comparison with the void 

ratios obtained from FOR measurements. It is crucial to understand the imaging 
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techniques required to obtain the void ratio, and more detailed research is required in the 

future. 

11.3.1 Void Ratio Obtained From PIV Images 

 

  
(a) instantaneous image  (b) mean image 

  
(c) r.m.s. image (d) velocity 

Fig. 11.16 PIV image processing for void ratio at t = 0.60 s (FOV7). 
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Fig. 11.16(a) shows an instantaneous PIV image at t = 0.6 s during the second 

splash-up. Fig. 11.16(b) and (c) show the mean and r.m.s. images that were obtained 

from 20 instantaneous images. The mean and turbulent void ratios obtained from the 

PIV images can be seen in Fig. 11.17, respectively. As shown in Fig. 11.17, the void 

ratio of the impinging roller may be overestimated due to the high intensity caused by 

the laser light sheet. It is possible that the void ratio at a low concentration of bubbles are 

always overestimated when the imaging methods are employed. This is due not only to 

the laser light sheet but also the nature of imaging method. As shown in Fig. 11.16(d), 

bright images do not affect velocity fields because the mixture images in the aerated 

region have various intensities. 

 

  
(a) void ratio (	) (b) fluctuating void ratio (	�) 

Fig. 11.17 PIV void ratio at t = 0.60 s (FOV7). 

 

Fig. 11.18 shows the void ratio time series obtained from the PIV measurements at 

station 1, while the results from the FOR measurement can be seen in Fig. 11.7. The 

comparison of time-averaged void ratios between FOR and PIV technique can be seen in 
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Fig. 11.19. The PIV void ratio near the crest (the splash-up roller) is lower than the FOR 

void ratio while the void ratio for the impinging roller using PIV is much higher than the 

FOR void ratio. Although void ratios from PIV must be calibrated, it appears that the 

PIV void ratio overestimates for the low void ratio regions and underestimates for the 

high void ratio regions. 

 
Fig. 11.18 Time series of void ratio at FOR station 1 (PIV). 

 

  
(a) wave-averaged 	 (b) period-averaged 	 

Fig. 11.19 Comparison of time-averaged void ratios at FOR station 1. 
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As discussed in Chapter VII, a time series of the depth-averaged void ratio can be 

obtained using the difference between the free surface information obtained from the 

wave gauges and the image methods as shown in Fig. 11.20. The depth-averaged void 

ratio was calculated up to the location z = - 0.18 m since there are no bubbles below that 

location at station 1. The comparison of three depth-averaged void ratios obtained from 

each measurement technique can be seen in Fig. 11.21. Results from the wave gauges 

and FOR measurements are similar while the PIV results are substantially different 

especially at the rear wave. Again, the PIV void ratio underestimates for the high void 

ratio region of the splash-up roller and overestimates for the low void ratio region of the 

impinging roller unless a calibration or correction is applied. 

 

 
Fig. 11.20 Comparison of wave elevations at FOR station 1. 
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Fig. 11.21 Comparison of depth-averaged void ratios at FOR station 1. 

 

Similar results are found at stations 2 and 3. The void ratios obtained at stations 2 

and 3 from the PIV measurements are given in Fig. 11.22. The corresponding void ratios 

from FOR can be seen in Fig. 11.10 and Fig. 11.13. 

 

  
(a) void ratio (	) at station 2 (PIV) (b) void ratio (	) at station 3 (PIV) 

Fig. 11.22 Time series of void ratios at FOR stations 2 and 3 (PIV). 
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(a1) wave-averaged 	 (station 2) (b1) wave-averaged 	 (station 3) 

  
(a2) period-averaged 	 (station 2) (b2) period-averaged 	 (station 3) 

  
(a3) depth-averaged 	 (station 2) (b3) depth-averaged 	 (station 3) 

Fig. 11.23 Comparison of void ratios at FOR stations 2 and 3. 
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Fig. 11.23 shows a comparison of the void ratios at stations 2 and 3. Note that 

numbers 1, 2 and 3 in parentheses represent wave-averaged, period-averaged and depth-

averaged void ratio, respectively and a and b in parentheses represent stations 2 and 3. 

11.3.2 Void Ratio Obtained From BIV Images 

 

  
(a) instantaneous image (b) inverted image 

  
(c) mean images (d) r.m.s. image 

Fig. 11.24 BIV images for void ratio at t = 0.22 s. 

 

The void ratio can be estimated from BIV images using a similar method to that 

discussed in Section 11.3.1. Intensities of an instantaneous raw image, as shown in Fig. 
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11.24(a), were inverted to force the water intensity to be zero [Fig. 11.24(b)]. Fig. 

11.24(c) and (d) show the mean and r.m.s. images.  

 

 
 

Fig. 11.25 BIV velocity field. 

 

Velocity fields are reasonably obtained from the BIV technique as shown in Fig. 

11.25. However, the void ratio for the air pocket in the first splash-up roller was 

underestimated. Mean and r.m.s. void ratios can be seen in Fig. 11.26. In the FOR 

measurements, the maximum void ratio occurs at the air pocket in the splash-up roller as 

discussed in Section 11.3.1. This is because the water and the air over the free surface 

(not air bubbles in water) have the same intensity, which is the nature of the BIV 

imaging technique. Since the plunging breaker has high repeatability, the air pocket 

shown in the instantaneous images can also be seen in the mean images. 
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Special care and attention is required when obtaining the void ratio from various  

imaging techniques. The FOR results can be useful in determining the weight function 

required for the correction of the void ratios obtained from the images. If the correction 

is reasonable, meaningful results considering the density variation for the entire flow 

field can be obtained using the imaging methods.  

 

  
(a) mean void ratio (	) (b) fluctuating void ratio (	�) 

Fig. 11.26 Mean and turbulent void ratios from BIV. 

 

11.4 Results Considering Compressibility 

The mass flux, momentum flux, mean and turbulent kinetic energy, and Reynolds 

stress at each FOR station are presented. Compressibility in the plunging breaker was 

considered, and based on the void ratio obtained from the FOR measurements. 

In air-water two phase flows, mixture momentum per unit volume can be given by 

the following (Brennen, 2005): 

m m a a w wU U Uρ ρ ρ= +   (11.1) 
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where, the subscript a, w, and m represent air, water, and air-water mixture respectively. 

It is difficult to decompose each phase in a highly aerated flow using the imaging 

technique such as BIV and PIV. Since the velocity fields of the aerated region of the 

plunging breaker obtained from the BIV and PIV measurements represent the velocities 

of the air-water mixture (Um), the mixture density at each point is required. The mixture 

density can be obtained from Eq. (11.2). 

(1 )m a a w w a wρ ρ α ρ α ρ α ρ α= + = + −  (11.2) 

where, 	 is a local void ratio at a point and aα α= . Compared with the right side term, 

(1 )wρ α− , aρ α  can be neglected. Therefore, the mixture density at each point can be 

rewritten as: 

( )( , , ) 1 ( , , )m wx z t x z tρ ρ α= −   (11.3) 

The volume flux (VF�), mass flux (MF�), and momentum flux (IF�) applying the 

mixture density mρ  can be obtained from Eqs. (11.4), (11.5), and (11.6) respectively. 

( )( ) ( ) ( )

( )
( ) 1 ( , , ) ( , , )tr

tr

x t x T x

h t x
VF x x z t U x z t dtdz

η

α α
+

−
= −	 	  (11.4) 

( ) ( ) ( )

( )
( ) ( , , ) ( , , ) ( )tr

tr

x t x T x

m wh t x
MF x x z t U x z t dtdz VF x

η

α αρ ρ
+

−
= = ⋅	 	  (11.5) 

( ) ( ) ( ) 2

( )
( ) ( , , ) ( , , )tr

tr

x t x T x

mh t x
IF x x z t U x z t dtdz

η

α ρ
+

−
= 	 	  (11.6) 

where, ttr(x) is the local time when the front trough reaches the station and T(x) is the 

local wave period. 

The mixture density shown in Eq. (11.3) must be applied to all other quantities such 

as kinetic energy and Reynolds stress to obtain the depth-averaged or time-averaged 

values. For example, with consideration of the mixture density, the wave-averaged and 
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period-averaged values of the mean kinetic energy (K) are calculated using Eqs. (11.7) 

and (11.8) respectively. 
( ) ( )

( )
( ) ( )

( )

( , , ) ( , , ) ( , , )
( , )

( , , )

tr

tr

tr

tr

t x T x
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x z t x z t K x z t dt
K x z

x z t dt
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+=
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 (11.8) 

where, ( , , )x z tδ = 1 in water under the free surface and ( , , )x z tδ = 0 in air above the 

free surface. The subscript wa and pa represent the wave-averaged and period-averaged 

values respectively. Note that K in the integral is the mean kinetic energy per unit mass 

rather than unit volume. 

The depth-integrated and depth-averaged values of the mean kinetic energy (K) are 

also calculated using Eqs. (11.9) and (11.10) respectively. 

( , )
( , ) ( , , ) ( , , )

x t

di mh
K x t x z t K x z t dz

η
ρ

−
= 	  (11.9) 

( , )

( , )

( , , ) ( , , )
( , )

x t

mh
da x t

h

x z t K x z t dz
K x t

dz

η

η

ρ
−

−

= 	

	
 (11.10) 

where, the subscript di and da represent the depth-integrated and the depth-averaged.  

Fig. 11.27 shows the horizontal velocity contour at each station. Numbers 1-3 in 

parentheses represent the FOR stations and a and b in parentheses represent horizontal 

velocity without and with consideration of the void ratio. As shown in Fig. 11.27(a1), 

the maximum horizontal velocity (U) occurs at the impinging water spray. However, the 

maximum is located at the ascending crest and the impinging roller rather than the 

splash-up roller when considering the void ratio [(1-	)U in Fig. 11.27(b1)]. This means 
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the positive mass flux and momentum flux at the splash-up will be highly overestimated 

if the void ratio is not considered. Similar phenomena at the second and third splash-up 

can be seen in Fig. 11.27. Indeed, the maximum magnitude of the horizontal momentum 

occurs at the ascending crest and the impinging roller in the region where each splash-up 

is fully developed. The transferring of high momentum from the impinging roller to the 

ascending crest subsequently causes the next impingement. 

Fig. 11.28 shows the mean kinetic energy considering the void ratio at each station. 

As expected from Fig. 11.27, the mean kinetic energy is significant at the ascending 

crest and the impinging roller rather than at the splash-up roller when considering the 

void ratio. Fig. 11.29 also shows the comparison of the turbulent kinetic energy at each 

station. The turbulent kinetic energy without considering the void ratio has the maximum 

at the bottom boundary of the splash-up roller. The turbulent kinetic energy considering 

the void ratio is dominant at the impinging roller as well as the impinging spray. 

However, at the third splash-up, which is the transition process between the plunging 

and the spilling phases, the maximum turbulent kinetic energy still occurs near the 

splash-up roller. The void ratio at the third station is more widely distributed under the 

crest. 
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(a1) U (station 1) (b1) (1-	)U (station 1) 

  
(a2) U (station 2) (b2) (1-	)U (station 2) 

  
(a3) U (station 3) (b3) (1-	)U (station 3) 

Fig. 11.27 Horizontal velocity considering void ratio (unit: m/s). 
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(a1) K (station 1) (b1) (1-	)K (station 1) 

  
(a2) K (station 2) (b2) (1-	)K (station 2) 

  
(a3) K (station 3) (b3) (1-	)K (station 3) 

Fig. 11.28 Mean kinetic energy considering void ratio (unit: m2/s2). 
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(a1) k (station 1) (b1) (1-	)k (station 1) 

  
(a2) k (station 2) (b2) k (station 2) 

  
(a3) k (station 3) (b3) k (station 3) 

Fig. 11.29 Turbulent kinetic energy considering void ratio (unit: m2/s2). 
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In Fig. 11.30, the volume flux at each station considering the void ratio is compared 

with the volume flux excluding the void ratio. Note that the numbers 1-3 in parentheses 

represent the FOR measurement stations and a and b in parentheses represent the time 

series of the depth integrated horizontal velocities and the vertical profiles of the period-

averaged horizontal velocities, respectively. Blue asterisks represent the depth-integrated 

(left panels) and period-averaged (right panels) horizontal velocities, respectively, while 

red circles represent the corresponding values when considering the void ratio. The 

dashed lines in the left panels represent the volume fluxes obtained by period averaging 

the depth integrated values while the dashed lines in the right panels represent the 

volume fluxes obtained by depth-integrating the period-averaged values. Fig. 11.31 to 

Fig. 11.33 are plotted in an identical manner. 

Fig. 11.31 shows the comparison of the mass fluxes at each station. The mass flux 

was obtained by multiplying the water density (� = 1000 kg/m3) by the volume flux 

shown in Fig. 11.30. There are large differences between the mass fluxes with and 

without the void ratio. For example, when considering the void ratio, net mass fluxes at 

the first and second splash-up are decreased by about 70% and 50%, respectively. 

The comparison of the mean kinetic energy at each station can be seen in Fig. 11.32. 

In addition to the mass flux, large overestimation of the mean kinetic energy due to the 

high void ratio in the first splash-up roller can be seen in Fig. 11.32(a1). When 

considering the void ratio, the mean kinetic energy at the first splash-up is decreased 

about 55% while decreases at stations 2 and 3 are about 19.3% and 13.9% respectively. 
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(a1) depth-integrated (1-	)U (station 1) (b1) period-averaged (1-	)U (station 1) 

  
(a2) depth-integrated (1-	)U (station 2) (b2) period-averaged (1-	)U (station 2) 

  
(a3) depth-integrated (1-	)U (station 3) (b3) period-averaged (1-	)U (station 3) 

Fig. 11.30 Volume flux considering void ratio. 
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(a1) depth-integrated �w(1-	)U (station 1) (b1) period-averaged �w (1-	)U (station 1) 

  
(a2) depth-integrated �w (1-	)U (station 2) (b2) period-averaged �w (1-	)U (station 2) 

  
(a3) depth-integrated �w (1-	)U (station 3) (b3) period-averaged �w (1-	)U (station 3) 

Fig. 11.31 Mass flux considering void ratio. 
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(a1) depth-integrated (1-	)K (station 1) (b1) period-averaged (1-	)K (station 1) 

  
(a2) depth-integrated (1-	)K (station 2) (b2) period-averaged (1-	)K (station 2) 

  
(a3) depth-integrated (1-	)K (station 3) (b3) period-averaged (1-	)K (station 3) 

Fig. 11.32 Mean kinetic energy variation in time and elevation with void ratio. 
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(a1) depth-integrated (1-	)k (station 1) (b1) period-averaged (1-	)k (station 1) 

  
(a2) depth-integrated (1-	)k (station 1) (b2) period-averaged (1-	)k (station 1) 

  
(a3) depth-integrated (1-	)k (station 1) (b3) period-averaged (1-	)k (station 1) 

Fig. 11.33 Turbulent kinetic energy variation in time and elevation with void ratio. 
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Fig. 11.33 shows the comparison of the turbulent kinetic energy at each station. 

When considering the void ratio, the turbulent kinetic energy at each station is decreased 

by about 30.8%, 11.1% and 23.9%, respectively. 

Fig. 11.34 shows the mass flux comparison. Blue circles represent the mass fluxes 

at all 475 stations without considering the void ratio, and a blue dashed line represents 

the mean mass flux of all the stations. The four red asterisks represent the mass fluxes 

taking into account the void ratios. The three vertical dashed lines represent the three 

FOR stations. One station is chosen before the wave face becomes vertical, and the void 

ratio is zero at this station (x = - 0.41L). Compared with the mass flux at x = - 0.41L 

before breaking, the mass fluxes at the three FOR stations are reduced about 4.4%, 

38.2% and 115%, respectively. It is expected that the initial net positive flux is slightly 

decreased through the first and second process. The net mass flux becomes negative at 

about x = L and decreased linearly during the spilling wave phase (x > L). 

The comparison of the momentum fluxes can be shown in Fig. 11.35. The 

momentum fluxes are decreased by about 59.8%, 22.4% and 21.7% at the three FOR 

stations, respectively, when considering the void ratio. Compared with the momentum 

fluxes at x = -0.41L, the momentum flux is increased about 51.3% at the first station 

while the fluxes at the second and third stations are reduced about 10.7% and 45.3% 

respectively. 
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Fig. 11.34 Comparison of mass flux. 

 

 
Fig. 11.35 Comparison of momentum flux. 
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Fig. 11.36 shows the comparison of the mean kinetic energy. The depth-averaged 

and period-averaged mean kinetic energies were normalized by C2. Note that all the 

values represented in Fig. 11.36 to Fig. 11.41 are the depth-averaged and period-

averaged values normalized by C2. Compared with the mean kinetic energy at x = - 

0.41L, the mean kinetic energies at the three FOR stations are dissipated about 6%, 42% 

and 55.4% respectively. There is a large decrease during the second impingement 

process between FOR stations 1 and 2 as discussed in Chapter IX. On the other hand, 

turbulent kinetic energy is generated and increased significantly during the first 

impingement and splash-up process as shown in Fig. 11.37. It is dissipated very slightly 

during the second process and then decreases significantly after the second process. 

 

 
Fig. 11.36 Comparison of mean kinetic energy. 
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Fig. 11.37 Comparison of turbulent kinetic energy. 

 

 
Fig. 11.38 Comparison of total kinetic energy. 
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Fig. 11.39 Comparison of mean and turbulent kinetic energy. 

 

As shown in Fig. 11.37, the turbulent kinetic energy is 4.14 × 10-5 close to zero at x 

= - 0.41L. However, it increases significantly during the first process and the magnitude 

is 3.56 × 10-3 at the first splash-up (x = 0.4L). The turbulent kinetic energies at the 

second and third station are dissipated about 19.5% and 82.6% respectively, when 

compared with the turbulent kinetic energy at the first station. 

Fig. 11.38 shows the normalized total kinetic energy. The total kinetic energies are 

decreased about 51.5%, 17.4% and 14.8% at the three FOR stations respectively, when 

considering the void ratio. Compared with the total kinetic energy at x = -0.41L, the total 

kinetic energy is increased about 17.8% due to the significant increase in the turbulent 

kinetic energy during the first process although the mean kinetic energy is decreased. 

The total kinetic energy at the second and third stations are dissipated by about 23% and 
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49.4% respectively, when compared with the total kinetic energy at x = -0.41L. It is 

estimated that about 85% of the total kinetic energy is dissipated at x = 2L. In addition, 

the mean kinetic energy is also dissipated by approximately 85% at x = 2L (Fig. 11.36). 

 

Table 11.1 Ratio of turbulent and mean kinetic energy 
Ratio of turbulent and mean kinetic energy 

 
x = - 0.41L 

(pre-impingement) 

x = 0.4L 

(1st splash-up) 

x = 0.82L 

(2nd splash-up) 

x = 1.11L 

(3rd splash-up) 

kda
Kda

 0.28 % 16.74 % 30.59 % 10.23 % 

( )
( )

(1 )

(1 )

k da
K da

α
α

−
−

 0.28 % 25.74 % 33.70 % 9.44 % 

 

 

 
Fig. 11.40 Ratio of turbulent and mean kinetic energy. 
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The mean and turbulent kinetic energies can be seen in Fig. 11.39. The ratio of the 

turbulent kinetic energy to the mean kinetic energy was calculated as shown in Table 

11.1 and Fig. 11.40. The ratios ( k Kda da ) at the four stations are approximately 0.28%, 

16.74%, 30.59% and 10.23% when the void ratio is not considered. On the other hand, 

the ratios ( ( ) ( )(1 ) (1 )k Kda daα α− − ) become 0.28%, 25.74%, 33.70%, and 9.44% when the 

void ratio is applied to the kinetic energies. 

 

 
Fig. 11.41 Comparison of Reynolds stress. 

 

Fig. 11.41 shows the comparison between Reynolds stresses. The Reynolds stress is 

significantly increased during the first impingement and splash-up. Compared with the 

Reynolds stress at the first splash-up, the Reynolds stresses at the second and third 

splash-up are decreased about 37.5% and 86.1% respectively. 
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As shown in the presented results, compressibility of the plunging breaker should 

not be ignored. All terms at the first splash-up are highly overestimated more than 100% 

unless the void ratio is applied to the calculation of fluxes and energies. For example, the 

mass flux per unit width at the first splash-up are 11.7 kg/ms with the void ratio and 40.6 

kg/ms without the void ratio, respectively. Compared with the fully developed first 

splash-up region, the overestimation at the second and third splash-up is less significant. 

However, most terms at the second and third splash-up regions are overestimated about 

20-30% when the void ratio is not considered. It is evident that the void ratio 

measurement is essential to investigate breaking waves, especially for plunging waves.  

 

 

 

 

 

 

 



380 

 

 

CHAPTER XII 

12CONCLUSION AND FUTURE WORK 

12.1 Conclusion 

Section 12.1.1 summarizes the results obtained from the FOR technique, which are 

mainly presented in Chapters II, III and IV, in the first part of this dissertation. Section 

12.1.2 summarizes the results from the breaking wave measurements without applying 

the void ratio. The updated results considering compressibility of the plunging breaker 

are summarized in Section 12.1.3, based on the void ratio data obtained from the FOR 

measurements. 

12.1.1 FOR Technique and Application 

The FOR technique was developed to measure multiphase flows. Various 

experimental studies have been performed to validate the technique. Based on the 

coherent beat signal between the Fresnel reflection off the fiber-liquid interface and the 

scattered signal off the object such as a gas bubble or a solid particle, the technique is 

capable of measuring the velocity of the object with a high accuracy and the phases of 

the fluid simultaneously at the measurement point with a single fiber sensor. Therefore, 

the fraction ratio of each phase, including the number of solid particles and the void ratio 

of gas, can be easily estimated.  

The bubble diameter as well as the velocity and void ratio can be measured using 

the FOR technique. It was verified that the low amplitude hump in front of the rising 
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bubble signal shown in the low sampling rate measurements was the envelope of the 

high frequency waves, which provides velocity information of the bubbles. Compared 

with the velocity measurement for the solid particles which have a very high detection 

rate for velocity information, not all bubbles return coherently mixed signals that provide 

velocity information. However, the diameters of the bubbles can be obtained for those 

that provide velocity information. The detection rate 
 for the velocity measurement 

increases significantly as bubble size becomes smaller. The FOR technique with a single 

fiber probe is one of very few techniques that directly measure bubble diameter, velocity, 

and void fraction. Therefore, the technique is especially useful for bubbly flows that 

incorporate various size bubbles. 

There exist many advantages for the FOR technique in bubble velocity and size 

measurements. Unlike conventional intrusive techniques based on fiber optic or 

conductivity probes that require a piercing event to obtain the bubble velocity, the FOR 

technique measure bubble velocity before the fiber tip comes in contact with the bubble 

surface. Therefore, the detrimental effect can be minimized if not eliminated whereby. 

Errors caused by the intrusiveness of the probes can be significantly reduced. Due to this 

characteristic, velocities of solid particles and water droplets can also be obtained, which 

is not feasible if conventional methods are used. 

By simple modification of the FOR technique, solute concentration and refractive 

index change were measured with a greatly enhanced accuracy. The technique was used 

for measuring NaCl concentration in deionized water in order to validate the new 

normalization technique. In the concentration measurement, the technique provided a 
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refractive index resolution of 2 × 10-5 and a NaCl concentration resolution of 

approximately 2 × 10-4 gcm-3. The technique is appropriate for various measurements, 

especially for measuring a spatially and temporally dependent concentration field in an 

environment, such as a water tank. 

The developed FOR system was also used to validate the BIV technique and to 

obtain the void ratio of the plunging breaker. 

12.1.2 Breaking Waves 

Four kinds of experimental techniques were employed or developed to investigate 

strong plunging waves in deep water. The plunging breaker was generated in a deep 

water condition in a two-dimensional wave tank. The wave focusing method was 

employed to generate the strong plunging breaker at a desired location with high 

repeatability. BIV and PIV imaging techniques were used to measure the velocity and 

free surface elevation of the entire flow field including the highly aerated region. The 

void ratio was obtained from the FOR measurements. Wave elevation was obtained 

using resistance wave gauges. This section summarizes the experimental results of the 

plunging breaker in deep water, which are presented in Chapters V to XI. 

In addition to quantitative measurements, it was possible to qualitatively describe 

the breaking process of the strong plunging breaker in detail by using a high speed 

camera with a high frame rate of 500 or 1000 fps with various sizes of field of view. The 

wave face becomes vertical at x = - 0.4L and t = - 0.24T. Note that the breaking point in 

the present study was defined as the first impinging point, and the location and time at 

the first impinging point were set to x = 0 and t = 0. The front water is pushed up due to 
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the first impingement, and the pushed-up water rapidly ascends with large vertical 

momentum and causes the first splash-up. In this process, counterclockwise vorticity is 

also observed between the first impinging roller and the newly ascending water. As the 

new water crest reaches the peak elevation, the left and top portion of the crest impinge 

onto the first roller, which is the first backward impingement. Due to the first backward 

impingement, the first valley between the first and second roller is filled, and the free 

surface is linearized around t = 0.61T. This newly ascending water becomes the new 

primary wave and impinges onto the accumulated mixture which is the second 

impingement. The pushed up water caused by each impingement becomes the new 

primary wave crest and subsequently causes the next impingement.  

The second impingement occurs around t = 0.54T and x = 0.65L. The air-water 

mixture spray from the first splash-up roller impinges onto the front trough region 

continuously. The impinged spray is accumulated near the front trough and increases its 

size with slow roller motion. Originating from the newly ascending crest, the new 

primary water crest impinges onto the accumulated mixture roller. Then, the upper part 

of the mixture roller is splashed up (the second splash-up) due to the newly pushed up 

water below the mixture. The second valley caused by the second impingement is filled, 

and the free surface is linearized around t = T by the second backward impingement. 

The third splash-up followed by the third impingement is also caused by the new 

primary wave generated from the second impingement. The third impingement occurs 

around t = 0.9T and x = L. The large vertical motions found in the first and second 

processes are not observed. An explanation is that the third process is the transition 
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region between the strong plunging region and the spilling wave region. The third valley 

caused by the third impingement is filled, and the free surface is linearized around t = 

1.17T. A spilling wave region was observed after the third process.  

The turbulent bore region of the primary wave crest eventually disappears around  

t = 2T and x = 2L. On the other hand, the first impinging roller goes into deep water until  

0.32h and remains in deep water until about 3.6T. The distance between the first and 

second impinging point is about 0.65L. However, the distance between the two rollers is 

decreased at about 0.40-0.45L in deep water after impinging because the horizontal 

momentum of the first roller is much larger than that of the second roller. 

In the initial stage of the plunging breaker, the elevations of the front and rear 

troughs are very close (about z = - 0.1h). The rear trough level is gradually increased and 

becomes about z = - 0.065h at x = 2L, while the front trough level is more rapidly 

increased and reaches the still water level (z = 0) at x = 1.5L. In addition, the wave 

period is gradually decreased during the breaking process and the local wave period 

becomes approximately 0.7T at x = 2L. 

The BIV technique employed to measure the air-water mixture velocities in the 

highly aerated region. In addition, the modified PIV technique was used to investigate 

the entire flow field of the plunging breaker including the highly aerated region. The 

velocities in the aerated region can be measured by means of modifying the traditional 

PIV technique. Instead of using a high power pulsed laser, a continuous laser light sheet 

was used to illuminate the air-water mixture and the seeded particles. Images were taken 

by the high speed camera with a 500 fps to allow for a high temporal resolution. The 
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spatial resolutions of the present BIV and PIV data are 5.26 and 5.78 mm, respectively. 

Note that the wave height of the primary wave is 0.204 m. The temporal resolution of 

the presented data is 0.01 s in both measurements. 

Mean velocities were obtained using the ensemble average of 20 instantaneous 

velocity fields. In the PIV measurements, the maximum horizontal velocity is about 

1.25C when the wave face becomes vertical at t = - 0.24T, and its magnitude is linearly 

increased until the first impingement. The maximum horizontal and downward vertical 

velocity at the first impingement occurs at 1.68C and 0.71C, respectively. The maximum 

upward velocity for the entire process occurs at the first splash-up. However, it is also 

very high in the pre-impinging region between z = - 0.1h and 0.1h, and its magnitude is 

close to that in the first splash-up. If density is considered, maximum upward momentum 

will occur at the pre-impinging region. The maximum horizontal velocity for the entire 

breaking process is 2.14C and occurs at the beginning of the first splash-up at t = 0.06T 

after the location of the maximum speed moves from the impinging jet to the splash-up 

at t = 0.036T. After this moment, the maximum horizontal velocity is gradually 

decreased and becomes smaller than the wave phase speed at t = T while the maximum 

downward velocity is gradually increased during the first splash-up. The maximum 

downward velocity in the entire flow is about 0.78C at t = 0.36T in the water spray 

impinging process. Note that the maximum downward velocity at the first impingement 

is about 0.71C. The maximum downward velocity is rapidly decreased immediately 

following the second impingement and is about 0.25C at the third impingement. It 

becomes about 0.2C in the spilling region.  
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Since PIV measurements were completed to cover the entire breaking wave, time-

averaged values of the mean and turbulent properties were obtained from raw time series 

at every point all 475 station with dx = dz = 5.8 mm and dt = 0.01 s. In addition, the 

maximum and minimum values at every point were also obtained. Volume flux per unit 

width was calculated for every station. The averaged positive and negative flux for the 

entire stations are 0.0261 m2/s and -0.0187 m2/s respectively. Mean net flux is 0.0074 

m2/s. Even in the pre-impinging region, net flux is about 0.01m2/s and there is a large 

positive flux between x = 0 and x = L where the void ratio cannot be neglected. It should 

decrease if the mixture density is considered. Although it is overestimated in the aerated 

region, the net flux starts decreasing linearly from around x = 0.6L and becomes close to 

zero at x = L. In addition, in the spilling wave region (x > L), the net flux changes to 

negative and becomes about - 0.03 m2/s at x = 2L. 

Due to the repetitive impingement and splash-up process in the strong breaker, 

large horizontal eddies can be observed and their vorticities were calculated. The 

location of the high positive (clockwise) vorticity is near the bottom boundary of the 

each roller, specifically at the toe of each splash-up roller due to the shear flow between 

the roller and the water wave below the roller. Negative (counterclockwise) vorticity was 

found between the impinging roller and the ascending crest during the impinging and 

splash-up process. The positive vorticity is transported near the mean water level 

through the flow field. During the first splash-up, the location is slightly lower than the 

mean water level while the location after the second impingement is slightly higher than 

the mean water level. This is because of the increasing front trough level. The location of 
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the maximum negative vorticity is usually above the maximum positive vorticity. Each 

negative vortex weakens and disappears after each backward impingement. The 

maximum positive vorticity occurs at t = 0.06T in the second roller and the maximum 

negative vorticity is found at t = 0.2T at the left side of the ascending crest 

The maximum mean kinetic energy at x = - 0.5L is about 0.6C2 and is rapidly 

increased during the overturning process. The maximum mean kinetic energy reaches 

1.64C2 at the first impingement. The maximum for the entire flow field is found at the 

beginning of the first splash-up and is about 2.31C2. The maximum energy decreases 

linearly with time while there is sudden decrease from x = 0.55L in the spatial domain. 

The depth-averaged time mean value of the mean kinetic energy was obtained. The 

primary wave in the pre-impinging region has a large kinetic energy as well as a large 

potential energy. The mean kinetic energy decreases linearly except in the region 

corresponding to the first impingement, the first splash-up, and the second impingement 

(x = - 0.2L to 0.7L). Although the kinetic energy in the region is overestimated if the 

mixture density is not considered, both the kinetic and potential energy of the impinging 

water must be converted to the kinetic energy of the splash-up. 

Fluctuating velocities were obtained using the ensemble average of 20 

instantaneous velocities. In addition, the ensemble averaged Reynolds stresses were 

obtained from the instantaneous turbulent velocities in both the horizontal and vertical 

directions. The horizontal turbulent normal stress is generated near the bottom boundary 

of each roller while the vertical normal stress is generated between the impinging roller 

and the ascending water crest. Since vorticity is one of the greatest sources for 
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turbulence generation, the generated location and transport of the horizontal and vertical 

normal stresses is very similar to those of the positive and negative vorticities. u u′ ′  

and w w′ ′  have maximum magnitudes of 0.69C (0.39Vmax) and 0.49C (0.26Vmax) at the 

beginning of the first splash-up (t = 0.06T), respectively. w w′ ′  has a local maximum 

at the second impingement with a magnitude of 0.45C (0.36Vmax). Only u u′ ′  has a 

local maximum in the third process due to the small vertical momentum fluctuation from 

the third process. The absolute vertical turbulence intensity at the second impingement is 

smaller than that at the first impingement while it is higher at the second impingement 

when normalized by the maximum speed at the corresponding time. The maximum 

u u′ ′  was maintained between 0.3-0.4Vmax while the maximum w w′ ′  was around 0.2-

0.25Vmax except for the second impingement (0.36Vmax). Unlike the maximum normal 

stresses at each station, the depth-averaged time mean u u′ ′  is less dominant between 

x = 0 and 0.45L. Both depth-averaged time mean values have a maximum around x = 

0.5L due to the water spray impingement and the first impinging roller in deep water. 

The local maximum occurs during each process. 

In addition to the Reynolds normal stresses, the ensemble averaged Reynolds shear 

stress was also obtained. The positive shear stress is more dominant than the negative 

shear stress in the entire flow except for the region corresponding to the beginning of the 

first and second splash-up processes. The negative stress due to the upward momentum 

flux at the beginning of the first splash-up becomes weak as the first splash-up becomes 

fully developed. The maximum positive shear stress in the entire flow occurs at the 

water spray impinging location due to a large downward momentum flux. Three local 
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maxima of the positive stress are found at the first impingement (0.03T), the water spray 

impingement (0.29T) and the second impingement (0.47T) while the maximum of the 

negative stress occurs at t = 0.17T. However, the maximum shear stress normalized by 

Vmax has a maximum at the second impingement onto the accumulated roller. Although 

there are time differences between the two maxima (0.29T and 0.47T), the location is 

very close to each other (around 0.5L), which corresponds to the accumulated roller. In 

addition, the depth-averaged time mean Reynolds stresses are positive at all stations. The 

maximum occurs around x = 0.5 - 0.6L and is approximately 1.6× 10-3C2. 

Turbulent kinetic energy is generated near the ascending crest at the beginning of 

the first splash-up. Significant turbulent kinetic energy is generated at the water spray 

impinging region while turbulence energy is gradually dissipated in the first impinging 

roller. The maximum turbulent kinetic energy is steady around 0.3C2 until the water 

spray impingement. Then, the maximum turbulent kinetic energy is rapidly decreased 

during the second impingement and splash-up process while the mean kinetic energy has 

a local peak at this time. There is a local maximum at the water spray impingement 

location resulting from the second splash-up. The locations for the turbulent kinetic 

energy are slightly lower than those for the mean kinetic energy. The depth-averaged 

time mean value of the turbulent kinetic energy is gradually increased until x = 0.5L and 

its magnitude is about 6.4 × 10-3C2. It begins decreasing from x = 0.6L while the mean 

kinetic energy begins decreasing from x = 0.4L. The turbulent kinetic energy between x 

= 0.5L and 0.8L is approximately 25 - 30% of the mean kinetic energy. It is found that 

the turbulent kinetic energy is continuously transported above the mean water level by 
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the mean horizontal flow during the first process. The maximum kinetic energy transport 

by U occurs around x = 0.6L due to the continuous water spray impingement and the 

second impingement onto the accumulated roller. Downward transport due to the first 

impinging roller is found below the mean water level between x = 0.25L and 0.5L. The 

maximum downward transport occurs around x = 0.55L due to the continuous water 

spray impingement and the second impingement. Upward transport is also found near 

the first and second splash-up region. Around x = 0.5L to 0.65L, the turbulent kinetic 

energy is continuously transported downward and downstream during the breaking 

process. Therefore, the Reynolds shear stress also has a large positive value in this 

region. 

Using the FOR system, void ratio was measured at the three stations located in each 

splash-up region. In addition to the void ratio measurement, it was possible to describe 

the breaking process using the FOR signal since a high sampling rate of 100 kHz was 

used. It was found that depth-averaged void ratio at the first and second splash-up has 

two local maximum values. One represents the splash-up roller and the other represents 

the following impinging roller. It was also found that there is a local minimum void ratio 

between the two rollers. It represents the ascending water crest caused by each 

impingement, which is the most distinguishable characteristic of the plunging breaker 

from the spilling breaker. The maximum wave-averaged and period-averaged void ratios 

at x = 0.4L (the middle of the fully developed first splash-up) are about 0.58 and 0.19 at z 

= 0.06 m, respectively. At the second station, these void ratios are about 0.49 and 0.13, 

respectively. The void ratio is significantly decreased at the third station. The maximum 
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wave-averaged and period-averaged void ratios are about 0.34 and 0.07 at z = 0.05 m, 

respectively. The void ratio obtained from the images was significantly overestimated 

below the still water level for the impinging roller. It is considered that this is due not 

only to the laser light sheet but also the nature of the imaging method, which 

overestimates the void ratio for a region with a low bubble concentration. Special care 

and correct validation are required when the void ratio is obtained from various imaging 

techniques. 

12.1.3 Breaking Waves Considering Compressibility 

Compressibility of the plunging breaker is considered. Mass flux, momentum flux, 

mean and turbulent kinetic energy, and Reynolds stresses at each FOR station were 

recalculated, based on the void ratio obtained from the FOR measurements. It was found 

that net mass fluxes at the first and second splash-up are decreased by about 70% and 

50%, respectively, and momentum fluxes at the first and second splash-up are also 

decreased by about 60% and 22% when considering the void ratio. The mean and 

turbulent kinetic energies are significant at the ascending water crest and the impinging 

roller rather than the splash-up roller when applying the void ratio. All terms such as 

fluxes and kinetic energies at the first splash-up are highly overestimated (more than 

100%) unless the void ratio is applied to the calculation of fluxes and energies. 

Compared with the fully developed first splash-up region, the overestimation at the 

second and third splash-up is less significant. However, most terms are overestimated by 

about 20~30% when the void ratio is not considered. 

Compared with the mean kinetic energy of the pre-impinging region, the mean 
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kinetic energies at the three splash-up regions are dissipated about 6%, 42% and 55.4%. 

There is a large decrease during the second impingement process. In addition, the mean 

kinetic energy is dissipated by approximately 85% at x = 2L. The turbulent kinetic 

energy is 4.14 × 10-5C2 close to zero at x = - 0.41L. However, it increases significantly 

during the first process and the magnitude is 3.56 × 10-3C2 at the first splash-up (x = 

0.4L). The turbulent kinetic energies at the second and third station are dissipated by 

about 19.5% and 82.6% respectively, when compared with the turbulent kinetic energy 

at the first splash-up. The ratios of the turbulent kinetic energy and the mean kinetic 

energy at each splash-up are about 25.7%, 33.7%, and 9.4% when considering the void 

ratio. Compared with the total kinetic energy at the pre-breaking region, the total kinetic 

energy is increased by about 17.8% due to the significant increase of the turbulent 

kinetic energy during the first process although the mean kinetic energy is decreased. 

The total kinetic energy at the second and third stations are dissipated by about 23% and 

49.4% respectively. It is estimated that about 85% of the total kinetic energy is 

dissipated at x = 2L. It is evident that the void ratio measurement is essential to 

investigate breaking waves, especially for plunging waves.  

12.2 Future Work and Suggestions 

Local acceleration as well as convective acceleration were able to be obtained due 

to the high spatial and temporal resolution. Acceleration data obtained from the BIV and 

PIV measurements can be seen in Appendixes A and B, respectively. However, this data 

should be validated although it is difficult to find results from other researchers. The 

inertia force of the plunging breaker will be estimated using the void ratio data from the 
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FOR measurements. 

The turbulent kinetic energy transport equation will be examined. One of the 

important advantages in the present study is that the local rate of change of k, k t∂ ∂ , 

can be easily obtained due to the high temporal resolution as compared with traditional 

PIV measurements. It is essential to examine the transport equation for the turbulent 

kinetic energy budget to describe more physics of the turbulent flow structure in the 

plunging breaker. Using the energy dissipation rate due to viscous stresses, Kolmogorov 

microscale, which is the smallest turbulence scale, can be estimated. 

Since plunging breakers have a much more remarkable interaction between air and 

water than spilling breakers, it cannot be considered as incompressible flow. However, 

no research has yet been reported. The air-water mixture density varies in both time and 

space. Most values are likely overestimated and require correction with the void ratio 

measurement. Compressibility of the plunging breaker was carried out using the void 

ratio results obtained from FOR measurements. However, the number of measurement 

stations is limited to investigate the plunging breaker because the horizontal variation of 

a plunging breaker is also significant due to the repetitive impinging and splash-up 

process. As discussed in Chapter XI, the mixture density variation in time and space for 

the entire flow field can be estimated if the void ratios obtained from the imaging 

techniques are corrected with reasonable methods. The void ratio obtained from FOR 

measurements can be useful for the correction. 

If it is possible to obtain the void ratio for the entire flow field using image 

techniques, another data set considering the mixture density can be obtained. Therefore, 
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it will be possible to compare the results without considering density effects for the 

entire flow filed. In addition, breaking wave force can be obtained using the acceleration 

data of the entire flow. 

BIV and PIV measurements were performed to investigate spilling waves in deep 

water processing identical conditions as the plunging breaker measurements. In addition, 

void ratios were measured using the FOR technique. Therefore, it will beneficial to 

compare the plunging breaker results presented in this dissertation to the spilling breaker 

results after data analysis.  

Since original images from the BIV and PIV measurements were taken at a frame 

rate of 500 fps, the temporal resolution of the final data can be improved up to 2 ms. 

This is necessary to obtain more accurate time-averaged or time derivative terms such as 

the local acceleration or the local rate of change of k. 
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APPENDIX A 

ADDITIONAL FIGURES FROM BIV ANALYSIS 

Additional figures obtained from the BIV measurements are provided in this 

Appendix. The time difference between figures is 0.05 s and description for each figure 

is summarized in Table A.1. 
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Table A.1  
Description of figures (BIV) 

Figure Number Description 

Fig. A.1 Mean Velocity Map ( 2 2U W+ ) 

Fig. A.2 Normalized Horizontal Velocity ( U C ) 

Fig. A.3 Normalized Vertical Velocity ( W C ) 

Fig. A.4 Normalized Mean Vorticity ( H CΩ ) 

Fig. A.5 Normalized Mean Kinetic Energy ( 2K C ) 

Fig. A.6 Normalized Turbulent Kinetic Energy ( 2k C ) 

Fig. A.7 Normalized Horizontal Turbulence Intensity ( 2'u C ) 

Fig. A.8 Normalized Vertical Turbulence Intensity ( 2'w C ) 

Fig. A.9 Normalized Reynolds Stress ( 2u w C′ ′− ) 

Fig. A.10 Normalized Turbulent Kinetic Energy Transport by U ( 3kU C ) 

Fig. A.11 Normalized Turbulent Kinetic Energy Transport by W ( 3kW C ) 

Fig. A.12 Mean Void Ratio Before Calibration ( α ) 

Fig. A.13 Relative Velocity ( ,U C W− ) 

Fig. A.14 Normalized Horizontal Local Acceleration ( U
g

t
∂
∂

) 

Fig. A.15 Normalized Vertical Local Acceleration ( W
g

t
∂
∂

) 

Fig. A.16 Normalized Horizontal Convective Acceleration ( U U
U W g

x z
∂ ∂� �+� �∂ ∂� �

) 

Fig. A.17 Normalized Vertical Convective Acceleration ( W W
U W g

x z
∂ ∂� �+� �∂ ∂� �

) 

Fig. A.18 Normalized Horizontal Total Acceleration ( U U U
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

) 

Fig. A.19 Normalized Vertical Total Acceleration ( W W W
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

) 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.1 Velocity. 
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(e) t = 0.21 s 

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.1 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.1 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.1 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.1 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.2 Normalized horizontal velocity, U/C. 
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(e) t = 0.21 s 

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.2 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.2 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.2 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) = 0.96 s 

Fig. A.2 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.3 Normalized vertical velocity, W/C. 



419 

 

 

 
(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.3 (Continued). 



420 

 

 

 
(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.3 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.3 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) = 0.96 s 

Fig. A.3 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.4 Normalized Vorticity, H CΩ . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.4 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.4 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.5 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) = 0.96 s 

Fig. A.5 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.5 Normalized mean kinetic energy, 2K C . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.5 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.5 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.5 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) = 0.96 s 

Fig. A.5 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.6 Normalized turbulent kinetic energy, 2k C . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.6 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.6 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.6 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) = 0.96 s 

Fig. A.6 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.7 Normalized horizontal turbulence intensity, 2'u C . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.7 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.7 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.7 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) = 0.96 s 

Fig. A.7 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.8 Normalized vertical turbulence intensity, 2'w C . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.8 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.8 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.8 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) = 0.96 s 

Fig. A.8 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.9 Normalized Reynolds stress, 2u w C′ ′− . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.9 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.9 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.9 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.9 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.10 3kU C . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.10 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.10 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.10 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.10 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.11 3kW C . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.11 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.11 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.11 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.11 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.12 Void ratio, �. 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.12 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.12 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.12 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.12 (Continued). 
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(u) t = 1.01 s 

 
(v) t = 1.21 s 

 
(w) t = 1.41 s 

 
(x) t = 1.61 s 

Fig. A.12 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.13 Relative Velocity, ( )2 2U C W− + . 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.13 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.13 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.13 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.13 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.14 Normalized horizontal local acceleration, U
g

t
∂
∂

. 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.14 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.14 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.14 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.14 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.15 Normalized vertical local acceleration, W
g

t
∂
∂

. 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.15 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.15 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.15 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.15 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.16 Normalized horizontal convective acceleration, U U
U W g

x z
∂ ∂� �+� �∂ ∂� �

. 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.16 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.16 (Continued). 



487 

 

 

 
(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.16 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.16 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.17 Normalized vertical convective acceleration, W W
U W g

x z
∂ ∂� �+� �∂ ∂� �

. 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.17 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.17 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.17 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.17 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.18 Normalized horizontal total acceleration, U U U
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

. 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.18 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.18 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.18 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.18 (Continued). 
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(a) t = 0.01 s 

 
(b) t = 0.06 s 

 
(c) t = 0.11 s 

 
(d) t = 0.16 s 

Fig. A.19 Normalized vertical total acceleration, W W W
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

. 
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(e) t = 0.21 s  

 
(f) t = 0.26 s 

 
(g) t = 0.31 s 

 
(h) t = 0.36 s 

Fig. A.19 (Continued). 
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(i) t = 0.41 s 

 
(j) t = 0.46 s 

 
(k) t = 0.51 s 

 
(l) t = 0.56 s 

Fig. A.19 (Continued). 
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(m) t = 0.61 s 

 
(n) t = 0.66 s 

 
(o) t = 0.71 s 

 
(p) t = 0.76 s 

Fig. A.19 (Continued). 
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(q) t = 0.81 s 

 
(r) t = 0.86 s 

 
(s) t = 0.91 s 

 
(t) t = 0.96 s 

Fig. A.19 (Continued). 
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APPENDIX B 

ADDITIONAL FIGURES FROM PIV ANALYSIS 

Additional figures obtained from the PIV measurements are provided in this 

Appendix. The time difference between figures is 0.05 s and description for each figure 

is summarized in Table B.1. 
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Table B.1  
Description of figures (PIV) 

Figure Number Description 

Fig. B.1 Mean Velocity Map ( 2 2U W+ ) 

Fig. B.2 Normalized Horizontal Velocity ( U C ) 

Fig. B.3 Normalized Vertical Velocity ( W C ) 

Fig. B.4 Normalized Mean Vorticity ( H CΩ ) 

Fig. B.5 Normalized Mean Kinetic Energy ( 2K C ) 

Fig. B.6 Normalized Turbulent Kinetic Energy ( 2k C ) 

Fig. B.7 Normalized Horizontal Turbulence Intensity ( 2'u C ) 

Fig. B.8 Normalized Vertical Turbulence Intensity ( 2'w C ) 

Fig. B.9 Normalized Reynolds Stress ( 2u w C′ ′− ) 

Fig. B.10 Normalized Turbulent Kinetic Energy Transport by U ( 3kU C ) 

Fig. B.11 Normalized Turbulent Kinetic Energy Transport by W ( 3kW C ) 

Fig. B.12 Normalized Horizontal Convective Acceleration ( U U
U W g

x z
∂ ∂� �+� �∂ ∂� �

) 

Fig. B.13 Normalized Vertical Convective Acceleration ( W W
U W g

x z
∂ ∂� �+� �∂ ∂� �

) 

Fig. B.14 Normalized Horizontal Local Acceleration ( U
g

t
∂
∂

) 

Fig. B.15 Normalized Vertical Local Acceleration ( W
g

t
∂
∂

) 

Fig. B.16 Normalized Horizontal Total Acceleration ( U U U
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

) 

Fig. B.17 Normalized Vertical Total Acceleration ( W W W
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

) 

Fig. B.18 Relative Velocity ( ,U C W− ) 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.1 Velocity. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.1 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.1 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.1 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.1 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.1 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.2 Normalized horizontal velocity, U/C. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.2 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.2 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.2 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.2 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.2 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.3 Normalized vertical velocity, W/C. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.3 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.3 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.3 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.3 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.3 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.4 Normalized mean vorticity, H CΩ . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.4 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.4 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.4 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.4 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.4 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.5 Normalized mean kinetic energy, 2K C . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.5 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.5 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.5 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.5 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.5 (Continued). 

 

 

 

 

 

 

 

 

 

 

 



536 

 

 

 
(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.6 Normalized turbulent kinetic energy, 2k C . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.6 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.6 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.6 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.6 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.6 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.7 Normalized horizontal turbulent intensity, 2'u C . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.7 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.7 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.7 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.7 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.7 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.8 Normalized vertical turbulence intensity, 2'w C . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.8 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.8 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.8 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.8 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.8 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.9 Normalized Reynolds stress, 2u w C′ ′− . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.9 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.9 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.9 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.9 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.9 (Continued). 

 

 

 

 

 

 

 

 

 

 

 



560 

 

 

 
(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.10 Normalized turbulent kinetic energy transport by U, 3kU C . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.10 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.10 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.10 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.10 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.10 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.11 Normalized turbulent kinetic energy transport by W, 3kW C . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.11 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.11 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.11 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.11 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.11 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.12 Normalized horizontal convective acceleration, U U
U W g

x z
∂ ∂� �+� �∂ ∂� �

. 



573 

 

 

 
(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.12 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.12 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.12 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.12 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.12 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.13 Normalized vertical convective acceleration, W W
U W g

x z
∂ ∂� �+� �∂ ∂� �

. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.13 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.13 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.13 (Continued). 



582 

 

 

 
(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.13 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.13 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.14 Normalized horizontal local acceleration, U
g

t
∂
∂

. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.14 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.14 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.14 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.14 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.14 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.15 Normalized vertical local acceleration, W
g

t
∂
∂

. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.15 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.15 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.15 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.15 (Continued). 



595 

 

 

 
(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.15 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.16 Normalized horizontal total acceleration, U U U
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.16 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.16 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.16 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.16 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.16 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.17 Normalized vertical total acceleration, W W W
U W g

t x z
∂ ∂ ∂� �+ +� �∂ ∂ ∂� �

. 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.17 (Continued). 



604 

 

 

 
(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.17 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.17 (Continued). 



606 

 

 

 
(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.17 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.17 (Continued). 
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(a) t = -0.04 s 

 
(b) t = 0.01 s 

 
(c) t = 0.06 s 

 
(d) t = 0.11 s 

Fig. B.18 Relative velocity, ,U C W− . 
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(e) t = 0.16 s 

 
(f) t = 0.21 s 

 
(g) t = 0.26 s 

 
(h) t = 0.31 s 

Fig. B.18 (Continued). 
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(i) t = 0.36 s 

 
(j) t = 0.41 s 

 
(k) t = 0.46 s 

 
(l) t = 0.51 s 

Fig. B.18 (Continued). 
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(m) t = 0.56 s 

 
(n) t = 0.61 s 

 
(o) t = 0.66 s 

 
(p) t = 0.71 s 

Fig. B.18 (Continued). 
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(q) t = 0.76 s 

 
(r) t = 0.81 s 

 
(s) t = 0.86 s 

 
(t) t = 0.91 s 

Fig. B.18 (Continued). 
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(u) t = 0.96 s 

 
(v) t = 1.01 s 

Fig. B.18 (Continued). 
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