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ABSTRACT

Non-mimetic Simulation Games:

Teaching Team Coordination from a Grounding in Practice. (August 2010)

Phoebe Olivia Toups Dugas, B.A., Southwestern University

Chair of Advisory Committee: Dr. Andruid Kerne

Fire emergency responders work in teams where they must communicate and

coordinate to save lives and property, yet contemporary emergency response training

expends few resources teaching team coordination. The present research investi-

gates fire emergency response team coordination practice to develop a zero-fidelity

simulation game to teach team coordination skills. It begins with an ethnographic

investigation of fire emergency response work practice, develops the concept of non-

mimetic simulation with games, iterates game designs, then evaluates game designs

with non-fire emergency responders and fire emergency response students.

The present research defines a new type of simulation, non-mimetic simulation:

an operational environment in which participants exercise skills without a re-creation

of the concrete environment. In traditional simulation, the goal is to re-create the

world as faithfully as possible, as this has clear value for teaching skills. Non-mimetic

simulations capture abstract, human-centered aspects of a work environment from a

grounding in practice. They provide an alternative, economical, focused environment

in which to exercise skills. Constructed as games, they can provide intrinsic and

extrinsic motivation to practice and learn.

The present work iterates a series of game designs in which players transform and

share information with each other while under stress, engaging in processes of team

coordination found in fire emergency response work practice. We demonstrate how the
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game successfully teaches participants how to become more effective at coordinating

and communicating through user studies with non-fire emergency responders and

fire emergency response students. Principles for the design of team coordination

education, non-mimetic simulation, and cooperative game play are developed.
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To everyone who understands that games don’t need to be “serious” to be meaningful.
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CHAPTER I

INTRODUCTION

You get a good crew that works together all the time and they can do
things just by gestures, body movement, and all that. You can commu-
nicate with each other without saying a word. . . not much has to be said,
everybody knows what’s going on.

anonymous firefighter / instructor, Firefighter Training Academy
Emergency Services Training Institute, Brayton Fire Training Facility

formative ethnographic interviews
November 11, 2005

[In Te
2C], . . . it’s the learning of communication. . . . Learning how to play

with others and communicate with others and doing that on the game
kinda automatically carries over to how you’re going to interact and do
things. . . . And it’s blanketed, it’s not just with the game or with the fire
service; once you learn how to communicate with a team, it just comes
natural to start communicating like that.

anonymous Firefighter Training Academy student / study participant
Emergency Services Training Institute, Brayton Fire Training Facility

summative user study interviews
March 27, 2009

Fire emergency responders1 (FERs) work under hard time constraints on action in

dangerous situations to save lives and property. The complex nature of most emer-

gency incidents means that firefighters work in multiple crews that must be coordi-

nated to effectively search for victims and put out fires. Team coordination is an

essential component of fire emergency response work, but it is not learned through

education. Instead, the skills are learned on the job.

This dissertation follows the style of the Association for Computing Machinery
Transactions on Computer-Human Interaction.

1We choose to use the term “fire emergency responder” (FER) throughout this
dissertation, instead of “firefighter”, because firefighter is a specific job. FER encom-
passes firefighters and other jobs in the emergency response domain, such as medics,
engineers, and incident commanders. Details on FER work practice are described in
Chapter III.
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Training simulators mimic reality to provide a safe venue in which to train.

They allow learners to practice procedures, familiarize themselves with equipment,

and communicate with other workers on a team. Games are a form of simulation that

are engaging and fun. Simulation games offer the potential to revolutionize education,

attracting learners and keeping them engaged with the material.

The present research began as a way to fill a void in fire emergency response

education. By investigating practice at one of the world’s largest firefighter training

facilities, we have come to understand the nature of fire emergency response work

practice. We investigated the way FERs communicate and coordinate, and abstracted

the skills used by FERs.

In learning about team coordination in the domain of FER work practice, we

discovered no need to mimic fire and smoke to capture the aspects of human-human

interaction. The present research investigates non-mimetic simulation games to teach

team coordination skills. It develops the Teaching Team Coordination Game, Te
2C,

from a basis in fire emergency response work practice. In Te
2C, FERs practice gather-

ing, filtering, transforming, and sharing information with one another in an alterna-

tive, fun context. The principal hypothesis is that by playing non-mimetic simulation

games, developed from work practice, fire emergency responders learn to more effec-

tively coordinate as a team. To this end, we iteratively develop the Te
2C game, testing

with a variety of users. We then take the game back to the source, the Firefighter

Training Academy, where FER students engage and improve their team coordination

skills.
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A. Hypotheses and Overview

The principal hypothesis—by playing non-mimetic simulation games (Te
2C), developed

from work practice, FERs learn to more effectively coordinate as a team—is developed

through a number of hypotheses. In crafting a non-mimetic simulation game for

FERs, we first test with non-FERs, as FERs’ time is especially valuable and hard

to schedule. For this first stage of the work, we relax the principal hypothesis: by

playing non-mimetic simulation games, developed from work practice, players2 learn

to more effectively coordinate as a team. This hypothesis is supported by four others:

H-1-1 Through game play, participants will improve their ability to accomplish co-

operative tasks.

H-1-2 Through game play, participants will improve their ability to coordinate.

H-1-3 Communication and activity in Te
2C will resemble communication and activity

of FERs.

H-1-4 The introduction of a scoring system will motivate play.

Once the relaxed principal hypothesis is established, the full principal hypothesis

is supported by six others:

H-2-1 Through game play, participants will improve their ability to accomplish co-

operative tasks.

H-2-2 Player roles, differentiated by information distribution and available action,

will impact team communication.

2instead of FERs
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H-2-3 Play condition, either co-located or distributed, will impact ability to accom-

plish cooperative tasks, reflecting a need to mix communication modalities.

H-2-4 Through game play, participants will improve their ability to implicitly coor-

dinate.

H-2-5 Game play will be reflected in team coordination ability in burn training

exercises.

H-2-6 Communication and activity in Te
2C will resemble communication and activity

in fire emergency response work practice.

1. Understanding Teams and Team Coordination

The present research begins with building an understanding of teams and team coor-

dination (Chapters II–III). We start from a background in cognition: mental models,

affordances and constraints, and move to distributed and team cognition (Chapter II).

Using cognition as a foundation, we explore fire emergency response work practice

(Chapter III). Work practice blends background from prior researchers in emergency

response and disaster recovery with our own ethnographic field work at Brayton Fire

Training Field to provide a rich, detailed understanding of how team coordination is

learned and practiced by FERs. This understanding is used to develop a set of design

principles for teaching team coordination.

2. Foundations and Development of Te
2C

The next portion of this dissertation is the basis for and description of the Te
2C game

(Chapters IV–VI). Based on our understanding of team coordination, we develop

the concept of non-mimetic simulation for teaching (Chapter IV). The concept of

non-mimetic simulation came about because the implications for design from the
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ethnography indicated no need to mimic fire and smoke. Based on understanding

from ethnographic fieldwork, and lessons learned from user studies with Te
2C, we

describe design principles for developing non-mimetic simulations.

We hypothesize that non-mimetic simulations built as games will be effective,

as games engage participants both intrinsically and extrinsically. Chapter V covers

game design background, starting with interaction design and semiotics. We develop

the theory of affordances-as-signs, in which the affordance, consisting of a perceptible

instantiation that maps to an action for an individual, becomes a sign in a system of

signification: a perceptible signifier indicates action signified. The affordance-as-sign

can then be applied to understand and develop games. What follows is an explanation

of game design background, describing rules, play, and game mechanics. We develop

our own game design framework describing how elements of a game interact with

each other and the player. With an understanding of game mechanics, it is possible

to describe our theory of using affordances-as-signs to represent game mechanics. The

theory is developed from a number of case studies of existing commercial games. We

develop design principles for engaging cooperative play, from data collected through

a number of studies with Te
2C. We close this chapter by exploring the background

of mixed reality, in which computation is used to complement reality to create an

engaging experience. While the Te
2C game described here is not a mixed reality itself,

it was developed with the intent of creating one later, and so lessons learned from

existing mixed realities are incorporated into its design.

Using all foundations so far, we describe the Te
2C game (Chapter VI). The bulk

of the chapter is devoted to the “final” version of Te
2C, version 2.0. This polished

version is used in the user study that concludes this phase of the present research. The

chapter outlines the operational elements, functional semantics, and representations

in Te
2C. It describes alternative roles that players take on, creating an operational
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distributed cognition environment where teamwork is essential. The chapter closes

by looking at the design iterations that led to version 2.0 of Te
2C, describing the initial

prototypes and moving through version 1.0.

3. Evaluating Te
2C

The concluding chapters (VII–X) discuss the evaluation methodology and findings

with Te
2C. Chapter VII describes the experiment setup, Coordinated Log + Audio

Playback System (CLAPS), data sources, and analysis methods. The following two

chapters describe user studies. Chapter VIII tests the relaxed principal hypothesis

and hypotheses [H-1-1]–[H-1-4] with version 1.0 and non-FERs. Chapter IX tests

the principal hypothesis and [H-2-1]–[H-2-6] using the iterated version 2.0 with FER

students.

B. The Ecosystems Approach: Non-Linear, Iterative, Integrative

Research

Ecosystems are characterized by meshes of interrelationships [Kerne 2005]; no single

hierarchy exists. The present research crosses a number of disciplines and methods.

It is nonlinear, iterative, and integrative. The process of the research unfolded over

years; data feed back into the design process as new systems develop. In the present

document, chapters are organized into as logical an order as possible, minimizing

the need for forward references. Our original research is integrated with background.

Some conclusions, such as design implications, appear before the data that motivates

them. Because the work is iterative, these principles are incorporated into a series

of Te
2C system designs. A number of strange loops [Hofstadter 1979], where lower

elements of a hierarchy impact the upper layers, exist due to the necessary linearity
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of presentation in this medium.

A concept map, Figure 1, is provided to make clear the relationships between the

many and varied components of this research. A subset of this map is re-visited each

chapter, to show where the linearly presented chapter fits into the non-linear whole

through a magnified callout. Our hope is that this makes the story easier to follow.

C. Note about Pronouns

While this dissertation represents original work, I have a number of collaborators.

Essential to this work were Andruid Kerne, William A. Hamilton, Cary Roccaforte,

Nabeel Shahzad, and Alan Blevins, among others. Because my work was influenced by

their insights, ideas, and collaborations, I use plural first-person pronouns throughout.

In places where third person gendered pronouns are necessary, I make every effort to

include both genders.
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Fig. 1.: A map showing the relationships between concepts throughout the present
research. The work is non-linear, but must be presented linearly. Many concepts
influence their predecessors, creating strange loops [Hofstadter 1979]. This map will
be revisited at each chapter.
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CHAPTER II

BACKGROUND: COGNITION
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Fig. 2.: Component of the concept map (Figure 1) for background on cognition.

This chapter describes relevant background in the field of cognition (Figure 2); in

later chapters, this background information will be incorporated into design princi-

ples for learning systems, simulations, game mechanics, and interfaces. The present

research seeks to educate emergency responders; emergency response is a distributed

cognition environment, wherein different team members have access to different pieces

of information in different forms. These pieces must be selectively fit together, using

the communication technologies, affordances, and constraints available in the envi-

ronment, giving rise to team cognition. In this chapter, we start from the concept of

mental model, which identifies the ways in which individuals simulate complex pro-

cesses and phenomena from the real world in their heads. From mental models, we

describe affordances and constraints, which identify the ways that environments com-

municate their actionable properties to an animal within them. We then incorporate

background in distributed cognition and team cognition.

A. Mental Models

Mental models are the way in which individuals maintain and manipulate a represen-

tation of the functioning of an object or process in their heads [Gentner and Stevens
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affordance
object's form possible action

Fig. 3.: Neo-Gibsonian model of affordance. An affordance maps between an action
to be taken by an animal and the form of an object, environment, substance, other
animal, etc.

1983; Jonassen and Henning 1996]. The model is an internal form of simulation, based

on past experiences. It enables high-level problem solving and an understanding of

the dynamics of the physical world and can be used to predict future outcomes.

According to Lakoff and Johnson, mental models are embodied [1999]. They

are directly connected to the human ability to manipulate and perceive the world.

Animals understand elements of their environments in terms of what they can do:

how an object or environment is manipulable, given the body. Thus, mental models

exclude activities that are impossible for the individual to perform. My mental model

of a chasm does not include its being “jumpable”, but a bird’s might include it being

“fly-over-able”. Mental models are runnable: they can be manipulated using body

experience to simulate and predict.

B. Affordance and Constraint

Gibson’s affordance is a mapping between an animal and an environment, substance,

object, other animal, etc., such that the later supports an action for the former

[1986]. Flat, rigid, open surfaces afford support to most animals: they can be laid,

stood, walked, or run upon. The substance of the surface may afford digging for

some animals (for example, a dirt floor and a mole), but most likely does not afford

sinking for any (if it were quicksand, it would not afford support). For animals with

legs, open surfaces afford walking and running. Figure 3 diagrams our neo-Gibsonian
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model of affordance. It incorporates a mapping between an object’s form and the

possible action, given the actor’s abilities.

Affordances exist, regardless of whether or not they are perceptible. According

to Gaver [1991] and Norman [1999; 2002], perceived affordances suggest action to the

user through their design. Interactive objects are designed to match capabilities of

the user, suggesting ranges of interaction possibility. Failure of the designer to make

an affordance perceptible may obfuscate it, making the affordance difficult to identify

and use.

Norman [2002] also identifies the concept of constraint. Constraints in a design

limit scopes of use through physical characteristics or cultural conventions. A con-

straint in a design prevents its accidental or purposeful misuse. An example of a

constraint is a hinge that prevents a door from opening in the wrong direction.

The perception and successful identification and use of an affordance relies on an

animal being in the environment and intuitively knowing the abilities of its body [Gib-

son 1986]. Most humans easily discover the affordance of a well-designed doorknob:

it is the right size for grasping, at the right level for a hand to reach it. Upon grasping

it, it supports rotation, pulling, and pushing. Past experience and observation play a

role. Embodied understanding of the world through mental models supports animals

in discovering new affordances.

C. Distributed Cognition Theory

Distributed cognition theory takes a holistic view of a working environment, describing

cognitive processes spread through individuals, artifacts, and time, while interacting

with one another [Hollan et al. 2000; Hutchins 1995a; Hutchins 1995b]. This theory

provides a framework for analyzing information processing within teams and modeling
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the way in which information flows among participants and artifacts over time.

Information relevant to a task is stored in multiple forms: mental models, em-

bedded in the environment, written in books, or to be derived using formulae. Those

working in the distributed cognition environment transform the pieces: they move

them from an original form into other, workable forms, then apply them to the situa-

tion at hand. Workable forms may be communicated in a variety of media, enabling

information transfer between individuals engaged in a cooperative task.

We use distributed cognition theory has the basis for understanding fire emer-

gency response work practice. FERs constantly translate and communicate informa-

tion. They filter and distribute to provide the right team members with the right in-

formation to make decisions and take action. Embodied sensory understanding, such

as heat from a wall is noted, transformed into a description incorporating knowledge

of the structure, perhaps communicated over radio, where it might be recorded by an

incident commander on a map. In FER work, we see distributed cognition in action.

D. Team Cognition Theory

Team cognition theory considers a team as a fundamental cognitive unit [Salas and

Fiore 2004].

A team is a group of individuals working together toward a shared and
valued goal, which will disband after the goal has been completed [Salas
et al. 1992].

Team cognition theory posits implicit coordination as an efficient mode of work for

teams. A number of training elements and theories contribute to a successful shift by

a team from explicit to implicit coordination.
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1. Implicit Coordination

In the explicit coordination mode, team members need to communicate a signifi-

cant amount to synchronize action and communicate information. In many team

environments, such as firefighting, wide-area communication bandwidth is limited:

radios share a single channel and are half-duplex1. Further, those being commu-

nicated with must expend time and cognitive effort to hear and understand the

speaker. Thus, the cognitive, time, and bandwidth costs of communicating within

a team are known as communication overhead [MacMillan et al. 2004; Serfaty et al.

1993]. High-performance teams reduce communication overhead by communicating

efficiently [Entin and Serfaty 1999]. They speak less and are able to act more; this

is known as implicit coordination: the ability of team members to synchronize action

and understanding with little communication.

The emergence of implicit coordination relies on shared mental models and situ-

ation awareness. When a mental model is shared between team members, it enables

them to work together smoothly. Individuals can predict one another’s actions and

react accordingly, with lessened communication [Cannon-Bowers et al. 1993; Mathieu

et al. 2000]. Cross-training, where team members learn not only their jobs, but the

jobs of others on the team, is a means for fostering shared mental models [Cannon-

Bowers and Salas 1998; Cannon-Bowers et al. 1998; Marks et al. 2002; Schaafstal

et al. 2001]. FERs practice cross-training; they all know how to perform every basic

job at an incident.

Situation awareness is a theory, developed in the context of aviation, that de-

scribes the level at which individuals are conscious of their environment, the status of

1A duplex communication device can send and receive data; a full-duplex device
can send and receive simultaneously, a half-duplex device must switch between a send
mode or a receive mode.
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their team, and the events occurring around them, as well as their ability to predict

future outcomes [Endsley 2000]. A component of situation awareness within a team

may involve observing the activities of others and how they align with and differ from

the norm [Heath and Luff 2000].

E. Conclusion

Cross-training in fire emergency response is essential, as it supports implicit coordi-

nation, enabling efficiency. As long as each team member is situationally aware, they

can maintain a shared mental model of the fireground. By combining this mental

model and their awareness with their understanding of their fellow team members’

roles, they can predict the outcomes of other team members’ actions, reducing com-

munication overhead.

The present research seeks to teach team coordination to participants. Improving

participants’ implicit coordination capabilities is one measure of success. Our user

studies are designed to cross-train players in alternative roles, encouraging mental

model formation.

In the coming chapters, we will synthesize the background on cognition with a

deep understanding of emergency response work practice to understand team coordi-

nation. From the synthesis, we will develop principles for teaching team coordination.

The principles identify the essential human- and information-centric components of

team coordination, such as the way information is distributed among team members.

The principles suggest the method of non-mimetic simulation that abstracts out the

concrete aspects of the working environment in favor of the abstract components that

are important in team coordination.
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Fig. 4.: Component of the concept map (Figure 1) for fire emergency response work
practice, including overlap with non-mimetic simulation.

Fire emergency responders (FERs) work with hard time constraints on action with

life-or-death consequences. While fire emergency response involves intense team co-

ordination, formal instruction places little emphasis on learning how to coordinate

as a team. Team coordination skills are expected to be learned on the job. Fire

emergency response work is an ideal target domain for the present research.

In this chapter, we describe ethnographic fieldwork undertaken to understand

communication and coordination in fire emergency response work practice, including

a description of the studied site, Brayton Fire Training Field. Field observation of

work practice is primary data, which is combined with the work of other researchers

in the related domains of emergency response and disaster recovery to build an in-

tegrated description of communication and coordination in the distributed cognition

environment (Figure 4). From this understanding of communication and coordina-
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tion, we develop design principles for teaching team coordination, which are synthe-

sized with other principles around simulation and game design in later chapters for

the design of the Te
2C game. This chapter concludes with the translation of the design

principles into the concept of non-mimetic simulation, which is described in greater

detail in the next chapter.

Fire emergency response work practice, as presented in this chapter, is based on

ethnographic investigation at the Texas Engineering Extension Service (TEEX) Emer-

gency Services Training Institute (ESTI) Brayton Fire Training Field. The present

work focuses primarily on firefighting in the United States in urban settings; other

countries and settings, such as industrial, airport, rural, and wildland firefighting,

may differ substantially.

A. Methods: Ethnographic Fieldwork at Brayton Fire Training Field

The present research involves an exploration of fire emergency response work practice.

Ethnographic fieldwork began in late 2005 at the TEEX ESTI Brayton Fire Training

Field, as summarized in Table I. The TEEX ESTI Brayton Fire Training Field is the

largest firefighter training facility in the nation; in 2009, the Training Field provided

education to over 195,000 responders, both domestic and international [Texas Engi-

neering Extension Service 2009]. As a successful emergency services training school,

it is an ideal site [Marshall and Rossman 1999] to learn about general fire emergency

response work practice.

We used semi-structured interviews with six expert emergency responders on-site

at Brayton (Table II) to understand the way FERs communicate and coordinate in

practice (November 2005). The interviews began with a set of structured questions

centered around team coordination and communication (see Appendix C for specific
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Table I.: Summary of ethnographic investigations of fire emergency response work
practice.

date fieldwork undertaken

2005 Nov.–2010 May consultation with FTA Program Coordinator

2005 Nov. tour Brayton Firefighter Training Field

2005 Nov. interviews with expert responders / instructors

2006 Mar. exterior burn training observation (recruit class 118)

2006 Nov. exterior burn training observation (RC 120)

2008 Jan. participation observation of class on NIMS (RC 124)

2008 Sept.–Oct. participatory design with FTA Program Coordinator

2009 Mar. interior student burn training participant observation
(RC 128)

interview questions), but interesting responses prompted probing questions into how

FER work is undertaken. All interviews were audio recorded and later transcribed.

Where participants are a primary source, they are referenced by a code (Table II).

Later, student burn training exercises were observed, both from the exterior

(March 2006) and interior (March 2009), allowing me to see how firefighting teams

operated in a realistic environment. Exterior burn training observations were video

recorded with radio communication on the audio track; the audio was later tran-

scribed. Where video recordings are a primary source of information, they are refer-

enced by <V-#>, where # represents the observation (1, 2, or 3).

Participant observation of coursework on the National Incident Management

System (NIMS) [U.S. Department of Homeland Security 2004] (January 2008) pro-

vided insight into the formal hierarchy and communication practices of FERs. We

constantly communicated with the Firefighter Training Academy’s (FTA) Program
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Table II.: Interviewees at ESTI Brayton Field in November 2005. Summarizes job
experience of interviewees, with reference codes.

years* jobs

<I-1> 6 firefighter

<I-2> 14 firefighter, engineer / driver, aircraft rescue instructor

<I-3> 18 firefighter, firefighting instructor

<I-4> 20 firefighter

<I-5> 30 firefighter

<I-6> 31 firefighter

* Number of years of accumulated experience at the time of interview.

Coordinator, Cary Roccaforte; he provided feedback on our interpretations of FER

practice. We included him in participatory design sessions, where identified ways the

game could be improved to engage players in nuanced aspects of response practice

(November 2005–May 2010).

1. Life at the Firefighter Training Academy

Although Brayton Field hosts numerous training exercises for local, international, and

corporate fire departments, it is primarily home to the Firefighter Training Academy

(FTA). The FTA course of study is intense, teaching practical training in firefighting

with firefighter gear and apparatus (firefighting vehicles). Learning takes place in

the classroom and in the field. After students successfully complete the FTA, they

take an exam and become certified firefighters. They may then go on to join fire

departments and industrial crews.

Each FTA class consists of about 40 students who attend the school for 12 weeks.

On arrival, students are divided into four-person crews to match the team structure
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used in emergency response. Each week, the leader of each crew changes. The

leader is responsible for the other three members and reports to the FTA Program

Coordinator, as their commanding officer.

2. Burn Training Exercises

Most of the FTA consists of classroom exercises, where students attend lectures, read

books, and take tests. In the final few weeks of class, focus shifts from book learning

to hands-on training. Students, working in their crews, take on the role of actual

firefighters, using real equipment to fight real fires in a controlled simulation called

burn training (“burns”). Elaborate, fireproof prop buildings, vehicles, and industrial

structures are set on fire, using flammable liquid and/or hay bales (Figure 5). The

students drive firefighting apparatus from the school’s engine bay in full turnout gear.

They set up command structures, organize teams, and fight the fire using hydrants and

engines. In the first week of burns, instructors fill in the role of incident commander

(IC), observing and directing (more detail later in this section); students perform the

role later.

Burn training exercises provide valuable practical experience to the students. It is

also the primary means by which they begin learning to communicate and coordinate.

Burn training is not focused on team coordination, however, as the essentials of safety

and fighting fire are emphasized.

B. Data: Coordinated Teams in Fire Emergency Response

FERs work within a hierarchy of specific roles. While their organizational structure

superficially resembles that of military or other regimented organizations, FERs are
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Fig. 5.: FTA students practice night burns on an industrial prop. Taken with per-
mission TEEX ESTI.

highly autonomous and work interdependently around the fireground1. The chain

of command is frequently inverted, as FERs engage in necessary situated actions

[Suchman 1987] that may not always implement the plans of superiors, but advance

the objectives of the team. Individuals rely on embodied skills to rescue victims and

fight fires [Toups Dugas and Kerne 2007; U.S. Department of Homeland Security

2004; Wieder et al. 1993]. FERs respond to emergency incidents2 in companies of

a minimum of four individuals. Each company is associated with an apparatus, a

special vehicle designed for fire emergency response (such as a fire engine (Figure 6)

or ladder truck). At a minimum, each company consists of one company officer, who

is in charge of directing the team and aiding when necessary; two firefighters, who

1fireground : The immediate area surrounding the fire at an emergency incident.
2incident : “An occurrence or event, natural or human-caused, that requires an

emergency response to protect life or property.” [U.S. Department of Homeland Se-
curity 2004]
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Fig. 6.: A fire apparatus: fire engine used for transporting rescuers, water, and
equipment. The vehicle is equipped with a water pump and water distribution
system to run multiple hoses. Taken with permission TEEX ESTI.

search for victims, render aid, fight fire, etc.; and an engineer / driver who manages

equipment and the apparatus. Multiple companies deploy to any incident, where

they will work at the fireground from distributed locations [Jiang et al., “Ubiquitous

computing for firefighters,” 2004; Landgren 2006; Toups Dugas and Kerne 2007; U.S.

Department of Homeland Security 2004; Wieder et al. 1993]. Figure 7 diagrams the

team hierarchy, showing how the incident commander directs the company officers of

the responding companies.

1. Roles

Roles at an emergency incident include administering medical aid, fighting fire, search

and rescue, and ventilation. Each emergency responder is cross-trained [Cannon-

Bowers et al. 1998; Marks et al. 2002; Volpe et al. 1996] in each role; consequently,
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fireground

company company company

incident commander

engineer / driver

company officer

firefighter firefighter

apparatus

company

Fig. 7.: Team hierarchy in fire emergency response. Each company consists of a
firefighter, engineer / driver, and company officer, which are associated with an ap-
paratus. Each company with apparatus is involved at the fireground. The incident
commander directs multiple companies from outside the fireground.

each FER can fulfill a variety of roles. Activity at the fireground is fluid, each FER’s

role may change to match the changing needs of the incident [<I-5>]. Initial role

is determined by the team’s apparatus. Fire engines (Figure 6), vehicles with water

tanks, pumps, hoses, and/or water cannons, carry FERs who will fight the fire. Ladder

trucks or rescue trucks (which transport FERs and a variety of equipment) often carry

rescue crews, who will search for victims and pull them to safety. Ambulances are

staffed by medics.

a. Incident Commander (IC)

Incident commander (IC) is a transitory role that exists only during an emergency

incident. The role of IC is assigned to the highest ranking officer at the incident; it
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might transfer once, from the first-arriving company officer to the highest ranking

officer dispatched to the incident, when he or she arrives3.

The IC observes and directs from a distance, using a global, contextualized per-

spective [<I-1>; <I-3>; <I-4>; <I-5>]. The other FERs at the incident act as the

IC’s “eyes and ears.” The IC coordinates with outside agencies to gather information

and direct support.

Chief fire officer (“fire chief”) is the highest rank within a firefighting organi-

zation. The fire chief typically has a separate vehicle, equipped with an array of

information artifacts and communication equipment [Jiang et al., “Ubiquitous com-

puting for firefighters,” 2004]. For information artifacts, pre-planned attack strategies,

blueprints, area maps, accountability forms, a laptop computer, and miscellaneous

forms are common [<I-1>; Cary Roccaforte, personal communication; NIMS obser-

vation]. Information artifacts are used to record information about the incident and

to track the location and status of subordinate FERs. When taking on the role of

IC, these information artifacts are an essential benefit to coordination, supporting

situation awareness.

2. Communication and Coordination

FERs work from multiple distributed perspectives, from which they must maintain

situation awareness [Toups Dugas and Kerne 2007]. FERs at these perspectives need

to collect, filter, and share information with one another. We learned that FERs

prefer to speak to each other face-to-face, as this is a rich communication modality,

through which information can be quickly shared. Because workers are distributed,

however, face-to-face communication is frequently impossible. To contact remote

3If the new highest ranking officer determines that the current IC is in control of
the situation, they may opt out of taking over the role.
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team members, FERs make use of a single channel4, half-duplex radio.

a. Radio

Half-duplex radios enable multi-way communication, but only a single party can

use the channel at a time. FERs need to use turn-taking to avoid “walking on”

each other (crosstalking) when communicating. Crosstalk occurs when two or more

parties activate their radios at the same time: because the radios either transmit or

receive, all of the parties are transmitting at the same time, and not receiving the

others’ communication. Those who are still receiving will either hear a single speaker,

or, more likely, only noise. Crosstalk is dangerous because all of the information

that speakers were attempting to communicate is lost, while the speakers are not

necessarily aware that they failed to communicate.

Further complicating the problem of crosstalk is the fact that radios are laggy

and noisy. FERs use radios in a push to talk (PTT) mode; they hold down a button

to begin transmitting to all radios on the same channel in the area. Although the

radio will start transmitting immediately, receiving radios may take as much as one

second to begin receiving the transmission. The radio channel is noisy, full of static

and interference. This can make it difficult to hear and understand the speaker.

To avoid the dangers of crosstalk, FERs use direct addressing and acknowledge

communication; they repeat back acknowledgements to reduce information loss due

to laggy and noisy connections. As an example of ideal communication, we present

the transcript of an exchange between fire attack team 3 (“Attack 3”) and the IC

(“Command”) at a burn training exercise:

4Very large incidents, such as multi-county forest fires, necessitate the use of multi-
ple channels. In these circumstances, the groups on different channels may have little
need to coordinate with each other directly; coordination may take place through a
communication officer higher up in the chain of command.
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Attack 3: “Attack 3, Command.”

Command: “Command go ahead.”

A3: “Command, Attack 3, we are ready on Charlie side.”

C: “Go ahead and advance up the stairs on the Charlie-Delta corner.”

A3: “Copy that. Advancing up stairs, Charlie-Delta corner.”

anonymous FTA students, Recruit Class 120 [<V-1>]
ESTI, Brayton Fire Training Facility

exterior student burn training observation
March 23, 2006

Notice that, in the exchange, the speaker for Attack 3 announces that he is

speaking, then directly addresses the IC. The IC responds by acknowledging the

incoming transmission and announcing himself. The speaker for Attack 3 then delivers

the message, once again announcing himself as the speaker. After the IC gives his

orders, Attack 3 repeats them back to ensure that he received the communication

correctly. If they IC heard something different than he commanded, he would correct

Attack 3.

Because FERs use a shared radio channel, this enables overhearing [<I-4>; <V-

1>]. FERs can listen in on communication that is not directed to them, but that will

be useful for maintaining situation awareness.

FERs make use of specific terminology and conventions, while speaking in plain

english [U.S. Department of Homeland Security 2004]. FER-specific jargon covers

vocabulary for equipment, maneuvers, etc. Firefighting has abandoned confusing

conventions that require extra memorization.

In cases where the conventions are used incorrectly, the situation can become

dangerous. We were told by an anonymous firefighter that during one incident, fire-

fighting teams from two districts were unable to coordinate effectively. One team
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was using the now-ubiquitous designations for the sides of the buildings5, while the

other was using cardinal directions. This resulted in confusion between the two sets

of teams, and the fire burned out of control.

C. Background: Related Research in Emergency / Disaster Response

Others’ research exploring emergency response work practice worldwide informs the

present research. Landay’s group described information artifacts in fire emergency

response work, which led to design implications for large scale displays for use by

ICs [Jiang et al., “Ubiquitous computing for firefighters,” 2004] and the design for

a context-aware portable information display for firefighters [Jiang et al., “Siren,”

2004]. The observations of Landay’s team informs early design decisions in the present

research, contributing to our understanding the role of the IC.

Landgren used ethnographic methods to examine the value of persisting fire-

ground communications for accountability, with design implications [Landgren 2006].

His later work explored the use of mobile phones by emergency responders in Sweden

[Landgren and Nulden 2007]. Landgren’s ethnographies elucidate the rhythm of re-

sponse practice and highlight similarities between our observations of U.S. FERs and

those in Sweden. They highlight the value of the present research outside of the U.S.

Like the present research, the WearIT@Work project observed fire emergency

response education practice, but in France [Denef et al. 2008; Klann 2007]. They

developed test beds, in the form of a board game and a collaborative virtual envi-

ronment (CVE), to discover needs and requirements for a wearable system and ran

low-fidelity simulations to examine how new technologies might be adopted into exist-

ing practice. Through this process, they described the characteristics of information

5The main entrance to a building is the Alpha side; Bravo, Charlie, and Delta
sides are designated clockwise.
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flow that we call information distribution (see below) [Toups Dugas and Kerne 2007].

Later work described navigation and information exchange practices in FER prac-

tice [Denef et al. 2008] that is useful in designing game representations supporting

coordinated navigation.

Turner and Turner [2002] considered use contexts for emergency simulators as

part of the process of designing a CVE for maritime emergency response educa-

tion. Palen’s group looked at the ways communities self-organize, respond to, and

recover from disasters, including how they exchange information through mobile de-

vices [Palen and Liu 2007] and social networks [Palen and Vieweg 2008; Shklovski

et al. 2008]. Palen’s work is relevant to understanding how groups of people respond

to and communicate around disasters when communication channels are uncertain.

D. Discussion: Design Principles for Teaching Team Coordination

From our ethnographic investigations at the Training Field, we constructed design

principles for teaching team coordination [Toups Dugas and Kerne 2007]. In general,

the design principles might be used for general education of teams; in the case of the

present research, we apply the principles to the design of simulation games.

The principles center around ways in which firefighters gather, filter, and share

information with one another. We highlight the value of information distribution,

where each team member has access to an alternative perspective on the same in-

formation picture. Mixing communication modalities involves the timely selection

between face-to-face communication and radio, based on the affordances and con-

straints of the local environment. Because FERs strongly rely on sounds in their

environment and in radio communication, we advise the use of audible cues. These

design implications are incorporated into the Te
2C game designs, described in later
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chapters.

1. Information Distribution

FERs work from different vantages in and around the fireground: a firefighter en-

gages directly with the fire, while the IC observes from a distance. The firefighter’s

experience is strongly sensory and local; it directly impacts the incident. The IC

observes the big picture, but cannot directly act. The IC may also use information

artifacts to aid in situation awareness; firefighters’ reports from the inside may need

to mapped onto a blueprint of the building. We call this apportioning of information

access information distribution6 [Toups Dugas and Kerne 2007; Toups Dugas et al.,

“Game design principles,” 2009; Toups Dugas et al., “Emergent team coordination,”

2009], recalling Hutchins’ distributed cognition [Hollan et al. 2000; Hutchins 1995a;

Hutchins 1995b] (II.C, page 11).

As in distributed cognition [Hutchins 1995b], information exists in a variety of

representations that must be transformed to be communicated and used. An IC may

transform reported locations of FERs to a building map [Denef et al. 2008]; fun-

damentally, this involves monitoring a combination of reports from deployed FERs,

using a knowledge of their starting locations, and combining with information from

the map to track them on the information artifact. The map is an alternative repre-

sentation of the reality that the FERs are experiencing; it is flat and two dimensional,

lacking the rich sensory experience of the fire.

The alternative perspectives of FERs are both a benefit and a burden. They

allow the team, as a whole, to know about the situation at a variety of ever-changing

6Originally, we used the term information differential [Toups Dugas and Kerne
2007], but later revised it to information distribution [Toups Dugas et al., “Emergent
team coordination,” 2009].
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Fig. 8.: Bi-variate classification of information flows by information fidelity and action
affordance. Each point is an information source at an emergency incident; points
indicate if they are primarily attained by firefighters (FF), company officers (CO), or
incident commander (IC).

locations: team cognition (II.D, page 12). This enables coordinated response to

threats and completion of goals. However, each perspective must be synthesized and

transformed to understand the situation, placing a cognitive burden on participants

[MacMillan et al. 2004]. This requires each member of the team to carefully con-

sider what information they have, and what information others’ need. The cost of

communication is very high and its outcome is uncertain.

We adapt Pike’s cultural theory [1954] to classify the information flows of fire

emergency response. According to Pike, an emic analytical standpoint is taken from

within, while an etic standpoint is external. An emic approach is personal and in-

cludes the actor’s understanding of the culture being studied. An etic approach is

neutral; when taking an etic approach, select parts of the cultural understanding can

be used for comparison and synthesis. Pike uses emic and etic to describe perspec-

tives on understanding culture; we apply them here to classify information sources at

an emergency incident. Later, we will apply the same framework to the design of the

Te
2C game.

We combine the concept of affordance (II.B, page 10) with Pike’s cultural theory
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to create a classification scheme for information sources in fire emergency response.

Affordances map possible actions onto apparently available actions in a creature-

environment dyad.

Taken together, we have a bi-variate classification of information flows in fire

emergency response work practice (Figure 8). On the Y-axis, we plot the fidelity of

the information: how it is obtained. Emic information is acquired near the fireground

and is directly sensory. Etic information is embodied in artifacts. On the X-axis, we

plot how the emergency incident affords action. At the left, the actor cannot take

action in the fireground, only observe. In the middle is communication: indirect

action at the incident, commanding other team members and receiving information

from them. To the right is direct action, such as putting out the fire or rescuing

victims. Each point represents one or more FER roles at the fireground. In later

chapters, this classification scheme will be applied to create information distribution

in design.

2. Mixing Communication Modalities

FERs mix face-to-face and radio communication modalities. Each modality has ad-

vantages and disadvantages.

Face-to-face communication is preferred in fire emergency response work. Face-

to-face communication is fast and the backchannel of body language and short utter-

ances enables disambiguation. Deictic reference7 can be used to indicate features of

the environment, equipment, etc. without relying on complicated explanation.

The need for mixing communication modalities suggests the value of a mixed

reality (MR) simulation. Because the choice of communication modality is driven by

7A deictic reference is one that can only be understood in an observed context,
such as the phrase, “over there.”
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Fig. 9.: Information flows in fire emergency response work practice. Certain types of
information are shared over face-to-face communication, while others go over radio.
Communication follows the chain of command.

the affordances and constraints of the environment, participants need to find them-

selves in varied environments. In traditional CVEs, participants are confined to a

desktop computer; this requires that the topology of the team be configured in ad-

vance: participants must be either co-located or distributed (in some combination).

In an MR simulation, participants are free to move in a large environment. The simu-

lation may drive them to split up and come back together. In these varied situations,

participants make decisions about when to use the radio and when to come together

to speak face-to-face.

The mixing of communication modalities is driven by the constraints of the radio

technology with the affordances of the environment and information to be communi-

cated (Figure 9). Long messages, such as an overall strategy, need to be communicated

face-to-face; the radio is not suited to that level of understanding. Short reports of

what is happening can, however, go over the radio. Relative position of workers is

another consideration. When time is limited, it may be necessary to communicate
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using the radio, rather than face-to-face, as the receiver cannot otherwise be reached.

3. Audible Cues

We learned that FERs make extensive use of audio in their environment. It is dif-

ficult to hear in the fireground, due to ambient noise, headgear, and the sound of

the self-contained breathing apparatus (SCBA) [interior student burn training par-

ticipant observation]. Despite these challenges, FERs are attuned to the sounds of

the fireground. They listen for characteristic environmental sounds in the local fire-

ground, and how these change. They also listen for these characteristic sounds at

the remote fireground, by monitoring the background sounds in radio transmissions.

For example, a popping sound is indicative of timbers about to break and is a strong

indicator that all teams should soon evacuate.

FER gear is designed to make use of the audio channel for signaling status. A

call for evacuation is signaled through three blasts of the engine’s horn. SCBA masks

are equipped with a pressure gauge, but also include a loud ticker that sounds when

air is running low; the ticker can be heard over the radio channel, and grows more

rapid as air runs out.

Audible cues are advantageous, because they offer a way of multiplexing a single-

channel radio. Additional, contextual information is supplied through the background

environment and equipment sounds of other FERs. This has the beneficial effect of

reducing the amount of communication necessary at the fireground.

E. Conclusion: Motivation for Non-mimetic Simulation

FERs employ skills that enable smooth team coordination. They benefit directly from

implicit coordination that is learned on the job or indirectly through existing training.
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Team coordination is essentially a human- and information-centric process. It is based

on participants building situation awareness through observation, communication,

and prior knowledge. FERs engage in a distributed cognition environment where

they must transform and share information while under real-time stress.

We hypothesize that FERs can benefit from a simulation of the human- and

information-centric aspects of their work. Such a simulation provides opportunities

for participants to practice skills in transforming and sharing distributed information.

It enables mixing communication modalities, so participants see when each mode is

more or less useful for sharing. Further, these design principles do not specify a

need to model fire and smoke, but rather scopes of information available to various

roles and the need to perform effectively under stress. We hypothesize that the

domain of teaching team coordination is general enough to omit such domain-specific

representations.

We generalize this to the concept of non-mimetic simulation, operational environ-

ments that do not mimic concrete aspects of the target domain, but instead capture

abstract, human- and information-centered aspects. Non-mimetic simulations must

be grounded in practice to have value, supporting the in situ activities of workers.

we discuss non-mimetic simulation in more detail in the next chapter.

Future work will develop MR non-mimetic simulations, based on the need to mix

communication modalities. The freedom of movement afforded by the real world, aug-

mented with wearable computers, enables participants to mix communication modal-

ities naturally.
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Fig. 10.: Component of the concept map (Figure 1) for non-mimetic simulation,
including overlap with fire emergency response work practice.

We introduce the theory of non-mimetic simulation: operational environments in

which participants learn practice-grounded skills in an alternative context without a

mimesis of the concrete environment [Toups Dugas et al., “Emergent team coordina-

tion,” 2009]. Traditional simulations are mimetic, they capture as much of a real-life

environment as possible. A central concern in the design of mimetic simulations is

the level of fidelity: how close is the simulation to reality. The central principle of

non-mimetic simulation is abstraction through a zero-fidelity environment.

Gagné suggests that training devices might be constructed to learn specific job

skills, without a complete simulation [1954]. He identifies simulators as re-creations of

the actual equipment used in the task. According to Hays and Singer [1989a], much

simulation research ignores these findings. Prior work does not identify the value of

such systems as simulation, but identifies them as training devices.
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In non-mimetic simulation, there is no question of simulation fidelity. Fidelity is

not a design consideration: the simulation is not of the concrete environment. Instead,

non-mimetic simulations consider tasks and alternative means by which participants

can learn to perform a task through an abstraction of reality. Participants learn to

execute a suite of tasks in an alternate environment. The suite of learned abilities can

then be applied back to the target domain; transferability of such skills is suggested in

prior work [Gagné 1954; Reder and Klatzky 1994] and the field of performance studies

[Schechner 1985]. Non-mimetic simulations are economical, focused, and potentially

transferable across domains once developed.

Effective non-mimetic simulations are grounded in practice: the skills practiced

are based upon those used in real life work (Figure 10). Practical grounding is essential

for learning skills [Reder and Klatzky 1994]. Non-mimetic simulations take a place

side-by-side with other forms of simulation training and fulfill a complementary role.

When built into games, this training methodology is appealing: non-mimetic games

are fun, providing intrinsic motivation to learn [Malone 1981; Salen and Zimmerman

2004f]. Combined with reward structures and a competitive environment, external

motivation is added. Non-mimetic simulations can offer a constructive break from

other forms of training, teaching critical skills to participants. When instantiated

as games, non-mimetic simulations function as a form of stealth learning in which

participants are not necessarily aware that they are practicing skills and learning

concepts [Falstein 2005].

In this chapter, we begin by addressing background areas of performance studies

and mimetic simulation. Grounding in performance studies, particularly the notion

of restored behavior [Schechner 1985], is the basis of the theory of non-mimetic sim-

ulation. Mimetic simulation is contrasted with non-mimetic simulation. We consider

Chess and Hush [Antonisse and Johnson 2008] as non-mimetic simulations, then move
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to an example of an existing mimetic simulation, which we contrast with a hypothet-

ical non-mimetic simulation. We describe the advantages of non-mimetic simulation:

economy, focus, and potential transferability. We conclude with team coordination

non-mimetic simulation design principles motivated by studies described in Chap-

ter VIII.

A. Background: Performance Studies

Schechner identifies restored behaviors as “strips” of action, like the strips of film used

by a film editor, which are learned in one context and then recalled and reproduced

in another [1985]. These behavior strips can be remixed, embellished, altered, and

otherwise transformed in practice.

Restored behavior is the basis of non-mimetic simulation. Behaviors (skills) can

be learned in a safe simulated environment, then recalled (applied) later in real-

life environments. As with acting, these environments are not necessarily the same,

suggesting that non-mimetic simulations can be transferred across domains.

B. Background: Mimetic Simulation

Simulation is a broad term encompassing a wide range of systems that imitate other

systems for the purpose of learning or predicting. Simulations model the real world in

a controlled way [Smith 2003]. Training simulations are designed to directly represent

the world at some level of detail, omitting only the portions that are not directly

relevant to the task to be learned; how much of the real world is omitted is the question

of fidelity [Hays and Singer 1989b]. In this dissertation, we focus on interactive

education simulations: operational environments in which participants safely practice

skills in preparation for actual situations.
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Fig. 11.: Screenshot from the mimetic virtual simulation HazMat Hotzone show-
ing virtual firefighters responding to a biohazard [Entertainment Technology Center
2005]. The learner controls an avatar from a first-person perspective, and must re-
spond to threats exactly as in real life.

1. Simulation Types

Non-mimetic simulations are based on the roles, activities, and information needs of

work practitioners. These simulations stand in contrast to other forms of mimetic

simulation: live, virtual, and constructive [Page and Smith 1998; Under Secretary of

Defense for Acquisition Technology 1998]. Live, virtual, and constructive simulation

are classifiers of aspects of simulation. Although they have been traditionally used to

identify the type of a simulator, they are more effectively used to describe aspects of

a simulation, as many systems are an amalgam of the three.
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Fig. 12.: Screenshot from the mimetic constructive simulation C3Fire showing a
fire spreading [C3Fire 2009]. Participants in the simulation direct simulated shared
resources on the overhead map to combat the fire and protect property.

In live simulations participants rehearse actions using real equipment. Driving

courses, where students take control of an automobile in which an instructor can stop

the car at any time, are an example. Burn training is another example: students are

using actual equipment to put out live, but contained, fires (Figure 5; chapter III,

page 15).

Virtual simulation utilizes computer-controlled environments, typically 3D, de-

signed to mimic, in high-fidelity, many aspects of a real-world situation. Virtual

simulations are prolific and are used for emergency response (Figure 11) [Entertain-
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ment Technology Center 2005] and military training [U.S. Army 2002].

In constructive simulation, participants manipulate virtual-world entities that

are based upon real-world entities, similar to tabletop war games or digital real-time

strategy games (StarCraft [Metzen and Phinney 1998], WarCraft [Blizzard Enter-

tainment 1994]). The C3Fire simulator, discussed in the next section (Figure 12) is

a constructive simulator.

2. Prior Team Coordination Simulations

Some prior mimetic simulations specifically address teamwork in simulated stressful

environments, including the Distributed Dynamic Decisionmaking simulation (DDD)

[Kleinman and Serfaty 1989; Song and Kleinman 1994], C3Fire (Figure 12) [Granlund

et al. 2001; Johansson and Branlund 2003; C3Fire 2009], and the MedTeams’ Emer-

gency Team Coordination Course [Small et al. 1999; Shapiro et al. 2004].

In the DDD simulator, participants collectively make decisions about how re-

sources should be allocated to solve a problem that changes over time; for example,

participants might need to allocate search teams to locate victims in a hostile envi-

ronment. Over time, the virtual search teams will report back with findings, perhaps

dependent on the equipment issued to them and the competence of the team members.

In C3Fire, participants are presented with a map of terrain and direct virtual units

to respond to emergencies. The MedTeams’ Emergency Team Coordination Course

[Small et al. 1999] provides a live and virtual high-fidelity simulation of medical emer-

gencies for team training. Participants work with robotic dummies whose conditions

are simulated through physical action within the dummy and computer equipment

connected to medical “sensors”, based in a realistic setting. Teams of students work

together to deal with crises with the simulated patients.
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C. Contrast between Mimetic and Non-mimetic Simulation

Non-mimetic simulations may combine aspects of all three mimetic simulation classi-

fiers, but do not directly mimic real-world events. They are grounded in practice: the

skills practiced are based upon those used in real life work. As a method of teaching,

we intend non-mimetic simulations to fulfill a complementary role to existing learning

environments. Such environments may be necessary to complete the transfer of skills

from one context into another [Gagné 1954]. Traditional instruction is essential for

them to be effective.

1. [Zero] Fidelity

In mimetic simulations, there is the question of simulation fidelity: how close does

the simulation resemble the target environment, in terms of its stated educational

goals [Hays and Singer 1989c]. There is a belief that higher fidelity will translate

into more effective skill learning [Thorndike and Woodworth 1901; Hays and Singer

1989a]. Lave and Wenger go so far as to suggest that learning should be fully situated

socially and operationally to be effective [1991].

Reder and Klatzky [1994], through an extensive overview of existing literature,

conclude that fully situated learning is unnecessary in many cases. They note that

social processes, such as the ones the present research targets, may be ignored in

training. As such, the notion that learning should be socially situated [Lave and

Wenger 1991] is essential in the present research.

In non-mimetic simulations, fidelity is not a question, they are essentially zero-

fidelity. Non-mimetic simulations are task-focused and socially oriented, from findings

in the field. Tasks are then executed in an alternate context, which may bear little

resemblance to reality. Components of concrete reality may be incorporated, but are
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not focus. The behaviors learned in the environment can then be restored in practice.

2. Simulation and Games

Games function as a form of mimetic simulation [Ellington 1982; Salen and Zimmer-

man 2004d] in which physical and social processes are carried out. Narayanasamy

et al. provide a classification of games and training simulators [2006]1. In their frame-

work, games are not primarily designed to teach skills, and simulations are not in-

tended to be fun. Non-mimetic simulation games are intended to both teach skills

and be entertaining, so that players are encouraged to train and improve. Gagné sug-

gests that metrics within training devices can encourage cooperation or competition

[1954]. Framing non-mimetic simulation as a game encourages players to compete

and cooperate with each other, motivating participation.

D. Non-mimetic Simulation Examples

One example of a prior non-mimetic simulation is Chess. Chess was played as a

simulation of war in sixth century Persia [Meri 2005]. It includes a variety of units,

each with different maneuvering capabilities. Players need to plan moves in advance

and consider what decisions their opponents might make; skills that can then be

applied in alternate domains. Chess, however, does not take into consideration the

effectiveness of certain units against one another, reinforcements, hidden units, or

diplomatic solutions to conflict. It teaches the ability to think ahead and mentally

model expected responses from an opponent.

A second example of non-mimetic simulation is the game Hush [Antonisse and

Johnson 2008], in which the player takes on the role of a Tutsi mother during the

1Narayanasamy et al. also divide games from simulation games, but their frame-
work does not meaningfully distinguish the two, so we omit simulation games [2006].



42

Rwandan genocide in 1994. The player’s avatar is attempting to stay hidden from

Hutu patrols seeking to kill her and her baby. To stay hidden, one must be quiet, but

the avatar’s baby begins to cry; to quiet the child, the mother must sing. Fundamen-

tally, the core mechanic of the game is a rhythm game, in which the player times key

presses to letters appearing on the screen. Visuals of photographs from the genocide,

along with sounds of shouts, cries, and gunfire create tension. While Hush is not a

mimetic simulation of a woman’s experience hiding from Hutu patrols, it begins to

capture the abstract tension experienced in this historical setting. The game play

activities non-mimetically simulate keeping the child quiet while under stress.

1. Contrasting Mimetic and Non-mimetic Simulations

To contrast non-mimetic and mimetic simulation, first consider a mimetic flight sim-

ulator. Such software is designed to take into account atmospheric conditions, aero-

dynamics of a simulated aircraft, etc., to create as realistic an experience as possible.

The user interface might include a dashboard, modeled closely on the gauges of the

simulated aircraft. An ideal hardware setup may include a joystick or flight yoke and

foot pedals. A mimetic flight simulation is an effective way to teach future pilots to

control aircraft and respond to emergent conditions, without endangering themselves

or valuable equipment.

If there were a training need to focus on aircraft landing procedure, including

the socio-technical aspects, a non-mimetic simulation might be more effective. It

might eschew accurate cockpit design and aircraft physics to focus on information

translation and exchange between co-pilots. Specifically considering Hutchins’ “How

a cockpit remembers its speeds” [1995b] as an example, co-pilots need to look up

information about the aircraft on tables, and enter relevant transformations into

dashboard instruments while communicating with the pilot. This enables the pilot to
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maintain situation awareness and plan how to land the aircraft.

The non-mimetic socio-technical flight simulation might center around fast

lookup of information in tables and entering it into a variety of controls quickly

while under real-time stress, abstracting the tasks performed by a co-pilot in real

life. A game might be set up where it is essential to announce to a co-player what

controls are being modified and how. The co-player, in this case, might be engaged

in some other cognition-intensive task. This kind of simulation would be useful for

pilots who need to learn these skills, and is less expensive to conduct than a full

mimetic flight simulator.

E. Advantages of Non-mimetic Simulation

Non-mimetic simulations have three advantages over mimetic simulations: economy,

focus, and transferability. Non-mimetic simulations are economical because they are

simpler to produce and abstract out details that would be expensive to replicate.

The present research investigates focus, determining the effectiveness of non-mimetic

simulations for teaching specific set of skills. Future work will investigate transfer-

ability, by taking game designs produced in the present research and applying them

in alternative domains.

1. Economy

Non-mimetic simulations omit actual reality for conceptual learning. Cost is a con-

sideration in simulators and training devices that leads designers to reduce simulation

fidelity [Gagné 1954; Hays and Singer 1989a]. Removing fidelity as a consideration

allows non-mimetic simulations to be economically produced and executed.

If, for example, we were to mimetically simulate fire emergency response work
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practice, we might need to create algorithms for fire and smoke, as well as represen-

tations. Such work is the subject of intense research across a variety of domains. The

hardware needed to run such physical simulations and displaying realistic graphics

would be expensive. Instead, the present research is run on inexpensive, off-the-shelf

hardware with relatively low system requirements.

2. Focus

Non-mimetic simulations are specific to a subset of tasks within a domain. Focusing

simulation resources is part of how non-mimetic simulations are economical. Focus

enables learning without distraction. While mimetic simulations may capture a vari-

ety of working conditions, non-mimetic simulations extract particular aspects. Which

aspects are selected depends on the purpose of the educational program.

If we consider the example of burn training, participants are engaged in commu-

nication and coordination, but this is confounded with a need to learn to maneuver

in closed environments, manipulating hoses and other equipment, and learning the

physics of fire. Because there is a need for team coordination education, the simula-

tion is targeted to that aspect of work practice. While focus is a primary benefit, the

original task environment cannot be entirely overlooked. Continuing the example of

fire emergency response work, participants must make timely decisions while under

stress, so this must also be a part of the non-mimetic simulation.

3. Transferability

We hypothesize that non-mimetic simulations will be transferrable. Aspects of work

in one domain are just as essential in another. In the present research, we focus on

team coordination: the need to transform and share information while under real

time stress, enabling multiple individuals to function together effectively. Team coor-
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dination in abstract is necessary in a variety of domains beyond emergency response:

teams of programmers, air traffic control, etc. We hypothesize that non-mimetic sim-

ulations of the intense team coordination of fire emergency response work practice

will be valuable to domains that also rely team coordination.

F. Designing Non-mimetic Simulations

As with designing mimetic simulations, a fundamental question is “what should be

included and what should be omitted?” We argue that the answer to this question is

discovered through deep knowledge of the practices of experts in the domain combined

with iterative development and testing of designs. The process, used successfully in

the present research, involved learning about effective team practices through field

experts and observing training exercises, identifying a gap in training, and developing

a game centering on the skills in the gap.

Through the design process, we identified a set of skills necessary within the

domain that were not explicitly practiced through the traditional mimetic simulation.

Once the skills are identified, the design problem is one of crafting a context in which

such skills are practiced. The alternate context is then tested with a variety of users

and iterated. Evaluation centers on improvement in the target skills.

Through evaluating Te
2C (Chapter VIII), we have refined a set of non-mimetic

simulation design principles presented originally in Toups Dugas et al. [“Emergent

team coordination,” 2009]. These principles are based on fire emergency response

work practice, and are meant for non-mimetic simulations for team coordination, as

the present research constructs. Although the actual user study is discussed later,

we present the findings here to aid in understanding non-mimetic simulation in the

context of developing Te
2C.
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Our principles for non-mimetic simulation focus on abstract human- and

information-centered aspects of practice. Fire emergency response work is carried

out safely and efficiently by sharing and integrating rich, multi-way flows of

information. Information access is an essential difference in the roles of firefighters

and ICs. Real-time stress impacts the way that FERs select and share information.

In capturing these aspects of work practice, we develop a simulation in which

non-FERs learn to coordinate effectively. Their emerging practices reflect the

long-standing work practices of expert responders.

1. Information Distribution [Simulation Design]

Information in varied forms and content is available to different members of a fire

emergency responder (FER) team [Toups Dugas et al. 2009]. Information distribu-

tion makes explicit the essential role of distributed cognition as team members assem-

ble complementary pieces of the situated information puzzle. Designing information

distribution consists of supplying information to team members in such a way that

members have alternative perspectives on the overall situation that are characterized

by the modality of information (e.g., directly sensory, versus artifact-mediated), in

addition to its content. Information distribution creates an environment where rele-

vant data is dispersed among team members who gather, filter, transform, and share

it with one another to make sense of the whole incident.

Simulation designers must create interdependencies, so that each individual’s task

requires communication from other team members. Creating such interdependencies

involves crafting constraints such that team members are reliant on one another: a

distributed cognition environment. In such an environment, the smooth interaction

of participants creates more than the sum of the parts.

Also essential to practicing distributed cognition is the need to transform infor-
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mation from alternate modalities. For example, each firefighter in a building needs

to make sense of his/her location within a structure to communicate about it. Such

communication accounts for the path taken through the building, observable charac-

teristics nearby, and a shared referencing scheme. In communicating, those listening

need to make sense of the firefighter’s account of the situation, in order to locate

him/her within the fireground. The incident commander (IC), for example, may

have a blueprint and will need to integrate an understanding of how the blueprint is

transformed from a two-dimensional representation on paper to a three-dimensional

building, in which the firefighter is situated. Successfully crafting information distri-

bution involves creating multi-modal forms of the same information, which partici-

pants then transform and communicate with each other.

2. Roles

The axis of information distribution is another consideration in team coordination

non-mimetic simulation design. One effective way of distributing information is

through the creation of roles. A role within the simulation has access to individ-

ualized information, a set of available actions, and an array of tasks to be performed.

FERs use differentiated roles to accomplish specific tasks [Jiang et al., “Siren,”

2004; Toups Dugas et al., “Emergent team coordination,” 2009; U.S. Department of

Homeland Security 2004]. For example, firefighters search for victims and put out

fires, while an IC directs teams from a distant vantage, possibly consulting information

artifacts. Each role carries access to a different piece of the information picture and

enables a specific set of actions at the incident.

Role, task, and environmental constraints at the incident drive the choice of

communication modality. Because the IC is often far away from the fireground, s/he

must use the radio to keep up with those in the fireground. Firefighters located near
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one another can communicate face-to-face. Through constraints on each role, the

designer can manipulate what actions participants can take, driving them to make

decisions about how to act.

3. Real-Time Stress

Real world team environments are often characterized by stress with high stakes.

There are hard time limits on action and the situation changes continuously. Real-

time stress impacts choice of communication modality and actions taken. If partici-

pants are free to spend as much time as possible, without consequence, they will not

learn to practice quick decision making skills.

There are hard limits on the amount of time FERs can spend in and around

a fireground. Not only must they consider dangers of heat and visibility, but also

air supply. Audible cues from the environment and equipment are one way in which

FERs monitor their remaining time. Using sound effects helps create urgency in the

real-time stress of the simulation environment.

G. Conclusion

The central design principle of non-mimetic simulation is abstraction. Contrary to

prior mimetic simulations, non-mimetic simulations are operational environments in

which participants learn practice-grounded skills in an alternative context without

a mimesis of the concrete environment. Non-mimetic simulations are economical,

focused, and potentially transferable to other domains. Carefully crafted from work

practice, they build a set of skills used in the target domain and allow participants to

employ them in an alternative context. Skills learned in the non-mimetic simulation

context are then restored in the original.
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The present work investigates a non-mimetic simulation game for teaching team

coordination: Te
2C. The next chapter discusses game design with an emphasis on

cooperative play; the one that follows describes the design of Te
2C, incorporating the

design principles for non-mimetic simulation.
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CHAPTER V

GAME DESIGN

II
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Fig. 13.: Component of the concept map (Figure 1) for game design and game me-
chanics.

This section begins by covering relevant elements of interaction design, including vi-

sualization and sonification (Figure 13). We provide background on semiotics, then

merge the concept of sign with affordance as a new theory. We then discuss back-

ground on game design, including game mechanics and the use of score for motivation.

What follows is our game design framework and design principles for engaging coop-

erative play developed from observations of FER work practice and user studies with

the Te
2C games. Future work will address mixed reality versions of the Te

2C game,

which we hypothesize will be more effective for teaching team coordination. Because

the stationary version of Te
2C discussed here is designed anticipating the needs of

MRTe
2C, we conclude with a brief discussion of mixed reality systems and games.
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A. Background: Interaction Design

Interfaces are border zones between humans and machines [Kerne 2005]. Through

interfaces, the machine provides information to the user. It provides a basis for expe-

rience. The user makes him/herself known to the machine through sensors (keyboards,

mice, global positioning, etc.). This section is primarily concerned with software in-

terfaces; the complex sensors and pattern recognizers of hardware interfaces will be

essential to later work in mixed reality.

Interfaces provide information and feedback to the user. Effective use of color is

essential to convey meaning [Tufte 1990a; Ware 2004], balance cognitive load [Tufte

1990b; Ware 2004], and enable visibility [Itten 1997; Thomas et al. 2002]. Bright,

saturated color can be used to call attention to important details, while muted tones

should dominate for less-important information. Layering is a compositional tech-

nique used to enable visual parsing of a scene through depth [Tufte 1990c]. Each

layer of information can be taken individually, or in concert with the layers above

and below it. Overviews of information can be explored through details on demand

to enable the user to quickly and enjoyably process large datasets [Shneiderman 1996].

Information in interfaces may change rapidly, especially in games. It is essential

to signal to the user what is changing and how. Animation enables understanding

context, so that users do not get “lost” in the interface and can observe causality [Bed-

erson and Boltman 1999; Ware 2004]. Sound provides context through audible cues,

enabling multi-sensory interfaces [Blattner et al. 1989; Brewster 2002; Toups Dugas

and Kerne 2007].
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sign
signifier signified

Fig. 14.: Barthes’ model of sign, built from de Saussure [Barthes 1991; Kerne 2001].
Signs represent meaning through the intertwining of signifiers (that which is per-
ceived) and signifieds (to which signifiers refer).

myth (sign)

form (sign)

signifier signified

concept (signified)

Fig. 15.: Barthes’ model of myth [Barthes 1991; Kerne 2001]. Myths are built on
signs; they take a sign as the signifier to create an additional layer of meaning.

B. Background: Semiotics

Semiotics is the study of signs and the way they create and communicate meaning.

Building on de Saussure’s science of semiology [1959], Barthes describes signs as

the combination of a signifier and its signified [1991]. The signifier is that which

is perceived, while the signified is the object or action in the environment to which

the signifier refers. The signifier and signified are inexorably linked as the sign, the

fundamental unit of meaning. Figure 14 diagrams Barthes’ concept of sign.

For example, consider a corporate logo. The image itself is the signifier; it

stands in for the company. When one observes a recognized logo, it brings to mind

the meaning, the company represented, or perhaps even a specific product.

Barthes nests his model of sign to develop what he calls “myth” (Figure 15).

Myths are second-order signs in which a complete sign becomes the signifier for an

additional layer of meaning.
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Barthes gives the example of the cover image of a French magazine: an African

soldier salutes with eyes uplifted [presumably toward the French flag]. The analysis

of the second-order sign addresses how this is not just a person, a soldier, but that

in the second-order signification, the ability of France to incorporate and embrace

multiculturalism, including people from its former colonies, in a respectful and orderly

way.

C. Theory: Affordance-as-Sign

We synthesize affordances (II.B, page 10) and signs to form a new theory. Perceptible

affordances create a mapping between the observable characteristics of an environ-

ment and the action an animal may take. In this new theory, affordance, itself,

functions as sign. The observable characteristics of an affordance (form) is its signi-

fier. Its meaning, the signified, is the possible action. We refer to this unity as an

affordance-as-sign.

The perceiver of the affordance-as-sign uses a mental model (II.A, page 9) to

decipher the meaning of its form-signifier, resulting in the possible action-signified.

We combine Figure 3 and Figure 14 in Figure 16, diagramming the affordance-as-

sign. The concept of affordance-as-sign has value in designing game interfaces and

game mechanics, suggesting ways in which the game designer can craft meaningful

and comprehendible play. Later, we apply this theory to designing games.

D. Background: Game Design

Salen and Zimmerman [2004g] develop an understanding of game design through a

multi-part schema of rules and play. Rules encompass the mechanical and mathe-

matical properties that constrain and enable operation in a game. Play describes
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sign = affordance → affordance-as-sign

object's form 
=

 signifier
↓

form-signifier

possible action 
=

 signified
↓

action-signified

Fig. 16.: The affordance-as-sign diagrammed. Combines the concept of affordance
with that of sign. The form-signifier indicates to the perceiver the action-signified.
The action-signified must be a part of the perceiver’s mental model to be usable.

how game participants interact with each other and the rules to craft a meaningful

experience. Game design fundamentally involves developing rules to constrain play,

making it meaningful. Game mechanics are the combination of rules and play; they

are the set of actions available to a player, and the outcomes of those actions. We

take our operational definition of game from Salen and Zimmerman:

A game is a system in which players engage in an artificial conflict, defined
by rules, that results in a quantifiable outcome. [2004a]

1. Rules

According to Salen and Zimmerman, there are three types of rules: operational,

constituent, and implicit [2004h]. To exemplify the three types, we use the board

game Settlers of Catan by Teuber [1995]1 as a case study.

a. Operational Rules

Operational rules define game constructs, their behaviors, and the means by which

players manipulate those constructs. Operational rules create mappings between the

real world and the game world. They describe actions that players take.

1A complete description of the rules and play of Catan are not included here. An
operational understanding of the game will be helpful, but not necessary.
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In Catan, players have a chance of acquiring a randomly-determined (dice roll),

differentiated resource (bricks, stone, wheat, wood, or wool, in the form of cards) each

turn. Throughout the game, players claim territory on the board; each territory has

a number and a type of resource associated with it. On a player’s turn, s/he takes the

dice and rolls them. Players who have, on previous turns, claimed territory with the

number rolled gain the resource associated with the territory. This is an operational

rule: it is written in the game’s manual and describes how one plays the game. It

defines what actions players are required to take in order to acquire resources.

b. Constituent Rules

Constituent rules are intrinsic to the play of games and are invisible to players. Con-

stituent rules are the inherent sub-systems that materialize through play, relationships

that are dependent on play to appear that are not otherwise specified. Through the

behavioral specifications, affordances (II.B, page 10), and constraints of the game,

these rules make up the internal logic of the game system.

Trading acquired resources is an essential component of play in Settlers of Catan;

supplementing the standard acquisition methods described above. Players have as

many as four options when making a trade: they may always trade with the bank,

trade with a generic port (if they have one), trade with a resource-specific port (if

they have one), or trade with another player (if they successfully negotiate a mutually-

beneficial trade).

In trading with the bank, the player trades away four of any same kind of resource

(for example, four wood cards) in exchange for a single resource of another type (a

single wool card): a 4 : 1 ratio. If the player is in possession of a generic port (another

characteristic of some of the territories claimed through play), they may use that port

to trade three of any single resource type to the bank for another resource of their
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choice: a superior 3 : 1 ratio. As with the generic port, a player might be in possession

of a resource-specific port. Resource-specific ports enable the player to trade a specific

resource at a 2 : 1 ratio for any other resource; superior to the 3 : 1 ratio supplied by

the generic port, but more restricted. For example, a player with the wood port could

trade 2 wood cards for one card of any other kind. Finally, players may negotiate

with the other players in the game to make arbitrary trades. Trades need only be

agreed upon, their ratio is not specified (although a minimum of 1 : 1 is required, you

cannot give a resource).

A set of constituent rules materialize around player-player trades in Catan. These

trades lack operational rules outside of their inclusion as one potential action on a

turn. There is no ratio for the trade specified (outside the lower bound), but the

existing operational rules give a clue as to what is appropriate. As players’ states

change in the game (access to ports, availability of resources, etc.), new ratios suggest

themselves. Early on, Bill might have a large supply of brick cards, and desperately

be in need of other resources; the other players could take advantage of this to acquire

bricks they need from Bill at a favorable ratio. The ratio, of course, must be better

than trading with the bank, so 3 : 1 is the upper bound. If Bill acquires territory with

a brick resource-specific port (allowing him to trade bricks at a 2 : 1 ratio), the other

players must change tack. They will need to offer him something better than a single

resource of his choosing for two brick cards; only a 1 : 1 ratio is now reasonable2.

2This assumes Bill is a rational player working only for himself. It is possible that
Bill might try to bolster one of his opponents to make him/her more successful against
a rival; in that case, he might take an unfavorable ratio to advance that player.
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c. Implicit Rules

Finally, implicit rules are not formally specified and take into account complex social

and cultural protocols and interactions between players and their engagement with

the system [Salen and Zimmerman 2004h; Sniderman 1999]. Implicit rules form

between players, and may be group specific. Players who do not know each other

may use operational rules as a kind of universal language, but implicit rules may be

left open, following basic decorum. In most cases, it is inappropriate to use the threat

of physical violence as a means to encourage trades in Catan, but it is not expressly

forbidden; in some groups, it is inappropriate to use the promise of future favors for

bargaining, but that, too, is not specified (and is not uncommon, in practice).

2. Game Mechanics

Rules and play are intimately connected to the experiential building block of game

mechanic. Game mechanics are the instances of player choice and the outcomes

associated with that choice [Juul 2005a; Salen and Zimmerman 2004b]. The core

mechanics of a game are the suite of game mechanics that are repeated during play.

Some of the core mechanics of Catan include those described above: rolling dice to

acquire resources and trading resources with the bank and the other players.

Game mechanics are structures of play: information is presented, a player de-

cides and acts within the scope of rules, the system responds, and the cycle repeats.

For example, one game mechanic in the digital game Super Mario Bros. is jumping

[Miyamoto and Tezuka 1986]: the player makes the choice to have his avatar jump,

the resulting action is constrained by simulated physics.

The set of actions available to a player at any given time are defined by game

mechanics [Salen and Zimmerman 2004b]. The game’s interface mediates experience
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of the mechanics [Toups Dugas et al., “Game design principles,” 2009]. It is necessary

for the game designer to make visible affordances in the game to the player, taking

into account the rules that apply to the player’s agency in the game system. This

allows a player to perceive the set of choices that are available, making design of the

interface a component of game rules.

While the goal in most non-games is to use the interface quickly, easily, and

effectively; part of playing a game involves going about a task inefficiently [Salen and

Zimmerman 2004a]. Games are specifically about challenge; as Salen and Zimmerman

note, racers do not just run the shortest distance from start to finish, they follow the

prescribed course.

It should be noted that although players may apply existing, embodied mental

models, in many cases, play itself is disembodied or is connected to embodied inter-

action in a way that is non-isomorphic [Bayliss 2007; Gregersen and Grodal 2009].

Players engage in primitive actions (p-actions) [Gregersen and Grodal 2009], such as

moving an analog stick, pushing a button, or performing a gesture. Through play,

game actions are connected to p-actions: they are learned and incorporated into

mental models. In-game p-actions function as a form of restored behavior (IV.A,

page 36). P-actions are parameterized and restored in a variety of contexts for a

variety of purposes.

3. Score

Score rewards players for accomplishing tasks within a game. In theory, it is an arbi-

trary, abstract construct; in practice, score externally motivates players. Score gauges

progress, allowing comparison and competition over time and between or within in-

dividuals and teams. While games themselves are engaging, score motivates play and

directs action.
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Score determines the winner in athletics and board games. In many digital games,

score has no direct impact on play, it is a reward of glory [Salen and Zimmerman

2004c]. In some cases, this is because there is no way to “win” the game [Rouse

2006]; in others, it is a way to compare the degree to which the player has won.

Unlike other types of rewards, which may improve the player’s ability to progress or

achieve (e.g. free games, extra lives), score rewards the player.

Pinball and digital games have used scoring mechanics since their inception

[Rouse 2006]. A high-score list logs the greatest scores achieved, often with attri-

bution (e.g. initials). High-score lists were common in arcade games, where the data

was public. Players could compete even if they did not know one another, earning

“bragging rights”. The Twin Galaxies organization [Twin Galaxies International Inc.

2010] was formed to maintain and publicize top arcade scores.

As gaming transitioned from the arcade to the home, the value of high-score lists

diminished. Individual games tracked high scores, but, unlike arcades, these were not

public. Gaming magazines solicited photographs of subscribers’ high scores in games;

these were published in an effort to increase access.

Global networks restored the value of high-score lists, making scores public and

re-enabling competition. Online gaming communities, such as Microsoft’s Xbox LIVE

(XBL) [Microsoft Corporation 2010], Sony’s PlayStation Network (PSN) [Sony Com-

puter Entertainment America LLC 2010], Valve’s Steam [Valve Corporation 2010],

and Kongregate [Kongregate 2010] support competition though score. These services

reward players with achievements (“trophies” on PSN): digital badges for in-game

accomplishments. Achievements are displayed on a player’s online profile and con-

tribute points to the player’s aggregate score.

Some games integrate networked high-score lists directly into the games them-

selves, motivating play. For example, Geometry Wars: Retro Evolved2 displays a
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score for a player to beat: the current top score of one of the player’s friends [Cake-

bread 2008]. Other games use score to motivate real-life activities. In Chore Wars,

players create a character that gains experience for self-reported house work [Davis

2007]. In The Nethernet, players earn points for visiting web pages and can go on

“missions” by navigating hyperlink trails that other players create, rewarding players

for traversing the web [GameLayers, Inc. 2010].

E. Game Design Framework

We develop three schemas, derived from Salen and Zimmerman’s work, for use in

game design: operational elements, functional semantics, and representations. The

framework expands on the concept of rules and play, and direct them in terms of

digital game design, such as the Te
2C game.

1. Operational Elements

Operational elements are a combination of all types of rules that are not directly

contained in the game’s written mechanics. They are play constraints derived from

the social relationships that develop or are imposed by play within the game, as well

as the affordances and constraints of the technologies used. Operational elements

may include roles played by participants or the seams [Chalmers and Galani 2004] of

the game environment.

2. Functional Semantics

Functional semantics describe entities and terrain within a game, the entities’ ranges

of action, and the inter-relationships (which make up the operational and constituent

rules [Salen and Zimmerman 2004h]).
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Entities are game objects, such as players’ embodiments in the game world

(avatars), computer-controlled opponents (threats), and objects that the players seek

out (goals). Entities interact with each other. Terrain is the environment of play,

representing space in which entities act.

Operational and constituent rules become the actions and relationships of entities

to each other, within the terrain. These might describe, for example, the speed

at which a player’s embodiment (avatar) can move over a type of terrain or the

method by which a computer-controlled opponent (threat) attacks an avatar. The

relationships between terrain, avatars, threats, and goals direct the outcome of play.

3. Representations [Interfaces]

Representations are game interfaces. They are visual and aural ways in which entities

and terrain are presented to the player, as well as the means through which the player

interacts. Because they enable information to flow between the human and the game,

issues in developing representations revolve around creating meaningful iconography

and sounds for game events, as well as recognizers for sensor data.

In addition to providing representations of the game to the players, it is necessary

to provide representations of the players to the game. Support for sensors (mouse,

keyboard, GPS) is accomplished through recognizers, which translate raw data into

something meaningful in the context of the game system (GPS to avatar location).

Color, animation, and sound are important for building interface representations

for the game. These help players understand the affordances and constraints of play,

make sense of information, and have meaningful experiences.
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Fig. 17.: Mario encounters a pit in Super Mario Bros. [Miyamoto and Tezuka 1986].
Mario may jump the pit, or fall into it. The pit is an affordance-as-sign, the form-
signifier is the pit itself and the actions-signified are jump or fall.

F. Theory: Augmenting Affordances-as-Signs to Represent Game

Mechanics

In this section, we apply the theory of affordance-as-sign to game mechanic design and

suggest how it can be augmented. The theory implies appropriate designs for commu-

nicating with the player about affordances [functional semantics] through representa-

tions. The context of the theory is movement and advancement through games. We

present two levels of sign: first-order affordance-as-signs and second-order augmented

affordances-as-signs.

1. First-Order: Affordance-as-Sign

Mental models enable humans to understand and simulate complex phenomena. In

playing games, players use existing mental models to understand and successfully ex-

ecute actions in play. As long as the existing mental models can account for the game
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mechanics, affordances-as-signs are sufficient as game interface design components.

As an example, consider Super Mario Bros. [Miyamoto and Tezuka 1986], in

which the goal is to move Mario from the left end of the stage to the right, without

dying, before time runs out, maximizing score along the way by collecting coins and

defeating enemies. One type of obstacle the player encounters is a pit (Figure 17).

The player may engage in the game mechanic of falling into a pit, but this does not

advance the player’s goals. Further, while falling is included in most players’ mental

models of the real world, one frequently avoids the falling affordance of real-life pits.

Jumping is another game mechanic in which the player may engage. Jumping is

also present in most humans’ set of mental models and is another means of navigating

pits. That pits afford jumping is a way of understanding how to play, engaging in

the game mechanic and advancing toward the goal. The pit is the form-signifier,

indicating that one should jump, the action-signified. The form-signifier of the pit,

the desired action-signified of jumping, and the feared action-signified of falling are

composed in this first-order affordance-as-sign.

Players may learn to adapt their mental models without in-game design compo-

nents through explanation or exploration. Many games supply a manual or reference

sheet describing the mappings from p-actions to game actions. When the set of p-

actions is limited or simple, experimentation supports the player in expanding his/her

mental model. Exploration enables players to determine the functions of the environ-

ment experimentally and experientially.

When the game designer directly uses the design of an object [the pit] as a

signifier for the action the player should take [jumping], we refer to this as a first-

order affordance-as-sign. Such a sign is first-order because, as Barthes does with

myth, we nest the affordance-as-sign to create an additional layer of meaning to aid

players learning game mechanics outside of their existing mental models.
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a. Case Studies: Affordances-as-Signs

In this section, we consider a variety of games in which environments are structured

to support engagement of existing player mental models. It is possible to design

game objects so that, inasmuch as the player’s mental model includes the capabilities

of the avatar, or the avatar’s capabilities are sufficiently similar to the player, the

affordances are clear (Figure 18). This choice may hinder the player, requiring role

playing, with which players may be unfamiliar.

Signifiers are created through the design of objects. Affordances-as-signs in Mir-

ror’s Edge may be optionally augmented (described later); un-augmented, low blocks

afford vaulting over high obstacles (Figure 18, top left) [EA Digital Illusions CE 2008].

In the Legend of Zelda series of games, the main character uses bombs to clear

cracked walls, accessing new areas: the action of creating an explosion is signified by

the perceived instability of the wall (Figure 18, bottom left) [Tezuka and Miyamoto

1992]. Although somewhat inconsistent, some secret areas in Zelda are accessed by

using bombs on apparently sound walls. Once the mechanic of blowing up walls is

learned, the player can reenact this restored behavior in different contexts.

Window frames, ledges, beams, and other protrusions afford climbing for the

avatars in the Assassin’s Creed series (Figure 18, right) [Dasilets and Raymond 2007].

Affordances in these games have natural signifiers that match up to the expected

physics of physical reality.

b. Case Study: Affordance-as-Sign in Need of Augmentation

Criterion Games supplies an illustrative example, which we revisit later. In Burnout

Paradise, an open-world stunt racing game [Ward 2008], the player operates a simu-

lated vehicle in city streets. The goals of the game are to complete driving challenges



65

Fig. 18.: Examples of making affordances visible by structuring the environment.
Top left: Blocks in Mirror’s Edge [EA Digital Illusions CE 2008] afford vaulting to
the avatar, enabling a high, fast jump to clear obstacles.
Bottom left: The avatar in Legend of Zelda [Tezuka and Miyamoto 1992] waits for
his bomb to break down a cracked wall. When the bomb goes off, a new passage to
a secret area will be open.
Right: The avatar in Assassin’s Creed [Dasilets and Raymond 2007] scales a wall
using the window frame: any protrusion that appears to afford climbing does.

(street racing, time trials, stunt driving, etc.), and to discover locations to perform

stunts and find shortcuts.

One type of shortcut/stunt is the super jump, where the player drives her/his

car as fast as possible over a ramp, clearing a large distance. TheTeam@Criterion

observed that players were having difficulty identifying locations where they could

super jump [2009]. Although there were locations in the game world that afforded
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Fig. 19.: The approach to a super jump in Burnout Paradise showing augmented
signifiers, flashing blue lights. The player spots the lights and guides the automobile
toward them, making a successful jump.

super jumping, players could not find them. Many players’ mental models of the real

world do not include driving cars off ramps over chasms.

The solution was to update the game design, by patching all existing versions, to

make the super jump ramps more visible. TheTeam@Criterion augmented them with

bright, flashing blue lights (Figure 19). A voice (in the avatar-car’s radio) informs the

player of this during play, using an affordance-as-sign to add the augmented signifier

to the player’s mental model.
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augmented affordance-as-sign (sign)

affordance (signified)

object's form possible action

augmented signifier

Fig. 20.: The second-order augmented affordance-as-sign. An augmented signifier
pairs with an affordance as signified, forming a second-order sign.

2. Second-Order: Augmented Affordance-as-Sign

The game player does not live in the same world as the game’s avatar, and the

avatar may possess abilities beyond those of the player, activated by p-action. The

player must perceive a mapping between the game environment and the avatar’s

abilities. Further, unlike real, embodied experience, games are not always capable

of representing all nuances of what may be perceived within the game environment.

In these cases, existing mental models may be insufficient for understanding game

mechanics. Players may have difficulty knowing what to do, a common problem in

game design [Salen and Zimmerman 2004e].

To teach the user and enable play, the designer may add an augmented signifier

to make the game mechanic explicit, stimulating mental model formation. Aug-

mented signifiers add to the game interface in a way that may or may not be in line

with the game’s narrative [Juul 2005b]. The augmentation layer provides additional

information to the player, so that he or she can determine what actions may be taken.

We nest affordance as the signified in a new level of signification: the second-

order augmented affordance-as-sign (Figure 20). In the augmented affordance, the

augmented signifier refers to the entire first-order affordance-as-sign as signified.

Like explanation and exploration, tutorials are supported by augmented

affordances-as-signs. Tutorials, usually in the game engine, walk players through
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the game mechanics, so they experience play while the game provides augmented

signifiers describing what to do. Once the player has completed the tutorial, s/he is

better able to map p-actions to game actions. Her/his repertoire of mental models

expands, providing building blocks for subsequent spontaneous enactment and remix

of restored behavior.

A variety of techniques can be employed for augmented signifiers. The most

primitive include the use of text, iconography, and speech to tell the use what to do

or how to do it. Coloration or texture may be employed, but must be mapped to an

action. Sound can also indicate the affordance of an object.

a. Case Studies: Text and Iconography

In some games, the player is told what they need to know to interact with the environ-

ment (Figure 21). This augmented signifier takes the form of messages that appear

on the screen, sometimes only in an early tutorial (e.g. [Guyot 2008]), and sometimes

throughout the entire game (e.g. [Bungie Studios 2001; Hellquist and Levine 2007]).

Messages indicate when an affordance is available that the player may not realize or

may not be able to see. In the Halo series, when a player is standing on top of a

weapon that may be picked up and used, or an object that can be thrown, a mes-

sage appears indicating which button to hold and what action will be taken [Bungie

Studios 2001]. Iconography is used for describing the button presses.

While not deeply immersive and potentially disruptive to the player’s suspension

of disbelief [Juul 2005b], text and iconography can clearly disambiguate the available

actions to the player.
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Fig. 21.: An example of using text and iconography to indicate affordances in Halo.
The text tells the player to hold the X button to make the avatar throw the object
in front of him.

b. Case Studies: Coloration and Texture

Affordances can be made visible through coloration and texture. Highlights can

indicate interact-able objects. Color can provide clues about the functions of the

environment.

Some games highlight affordances (e.g., [Pardo et al. 2004; Brevik et al. 2000;

Schaefer et al. 1997; Toups Dugas et al., “Emergent team coordination,” 2009]). In

many cases, the use of highlighting includes details-on-demand [Shneiderman 1996].

For some games, this means displaying a tooltip with more information about the

highlighted object (e.g. [Pardo et al. 2004; Brevik et al. 2000; Schaefer et al. 1997]).

In others, secondary displays may show additional details (e.g. [Toups Dugas et al.,

“Emergent team coordination,” 2009]). We present a number of examples as case

studies.

Mirror’s Edge: Optional Color Signifiers. Use of contrasting color [Itten

1997; Tufte 1990a] is another method of augmenting affordances in an environment.
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Fig. 22.: An example of making visible using color: runner vision in Mirror’s Edge.
The avatar has just burst through the red door (doors that cannot be opened are
white) and spots a red block directly ahead. Jumping from the block will enable the
avatar to reach the black zip-line hanging from the ceiling, escaping the guard in the
distance. Note that, were runner vision augmented signifiers activated in Figure 18
(top), those blocks would also have appeared red.

Mirror’s Edge [EA Digital Illusions CE 2008] overcomes the problem of making struc-

tures in the environment clear to the player by using bright, contrasting color (Fig-

ure 22). The game uses an otherwise muted color palette, and thematically associates

the color red with runners, the protagonist group of messengers skilled in leaping,

climbing, and running (parkour). The player takes on the role of a runner who is

expert at sizing up the environment for ways to use her abilities. Players need a

way to tap into the character’s ability to perceive the virtual environment in order to

traverse terrain efficiently.

To make the avatar’s ability to perceive the environment’s affordances clear to

the player, designers introduced an augmented signifier, runner vision. Runner vi-
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sion highlights, in red, portions of the environment that can be interacted with, or

that provide clear routes for escape from danger. Locations where the character can

leap from one building to another, balance along a narrow path over a gap, or break

through a door are highlighted. Red doors afford opening; white doors do not. Spots

of bright red are used sparingly, serving to draw the eye to runner-vision-highlighted

objects [Tufte 1990a], marking out one of several efficient paths through large, over-

whelming landscapes.

Runner vision makes visible the opportunities for in-game action. Salen and

Zimmerman [2004e] cite “not knowing what to do next” as a common problem in

game play. Runner vision addresses this neatly by guiding the player to places where

they can interact and advance through the level. It has the further advantage of

maintaining complete consistency with the fiction of the game [Juul 2005b].

Mirror’s Edge exemplifies a fluid method for intertwining game mechanics and

interface design by augmenting affordances-as-signs. The player has the option of

playing Mirror’s Edge with or without runner vision enabled, independent of diffi-

culty setting3. With runner vision enabled, Mirror’s Edge is a game about speedily

traversing a (mostly) linear path through an environment, while evading threats.

Once the player disables runner vision, s/he is left with un-augmented affordances-

as-signs. Players must make decisions about which objects to try to vault. Play

is enabled by mental models that encompass the terrain characteristics that afford

vaulting and memory of whether or not particular places on the game map can be

vaulted. The route through the level is essentially the same. But now, the player

invokes a superset of the previous restored behaviors to play at a higher level of com-

plexity. Game play grows to involve plotting courses, evaluating routes, and making

3On the hardest setting, runner vision cannot be enabled.
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judgment calls, while speedily traversing a linear path through an environment and

evading threats.

Prince of Persia : Signifying through Texture. The eponymous Prince of

Persia [Guyot 2008] uses a clawed gauntlet to run along and climb walls, traversing

terrain to reach his goal. Texture is used as augmented signifier: slash marks on

walls indicate spaces where wall runs and climbs will be effective. Over time, the

player learns to move quickly through the environment, automatically identifying

many traversable locations. During lulls in action, the augmented signifier helps the

player to identify where to go next.

The purpose of the wall slashes is never described explicitly, nor do they match

the game’s narrative4. However, the correlation between slashed walls and wall run-

ning quickly becomes clear, as every runnable wall and climbable area is thusly de-

marked.

Burnout Paradise. Returning to the study of Burnout Paradise [Ward 2008], the

game developer iterated the game design, post-release, to include more augmented

signifiers [TheTeam@Criterion 2009]. Flashing lights on parts of the terrain signify

affordances-as-signs. Red, pulsing billboards and flashing yellow caution gates afford

crashing through and blue flashing barricades were placed in front of signifier ramps

that afford signified super jumps (Figure 19). The bright illumination stands in sharp

contrast to the background, making it easier to spot at a high (virtual) speed.

All of these destructive driving acts are rarely practiced in the real world, but

in the Burnout world, engaging with them is the goal of play. The signifiers indicate

4Has another character traversed the same terrain in the past, using the same set
of equipment, leaving the signifier traces behind?
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where the player needs to incorporate game mechanics into their mental model of

(virtual) driving.

3. Discussion

We have developed a theory of first-order affordances-as-signs and second-order aug-

mented affordances-as-signs using examples of game design practice. The theory

abstracts play experience to produce principles for game design. In its present form,

the theory is primarily concerned with game mechanics for traversing terrain and

interacting with game objects. Other mechanics, such as monitoring status, may not

fit as neatly, because communication of status from game engine to players is more

of a direct usability design pattern, as in tools. The theory can be directly extended

to non-game design contexts, such as virtual reality, where spatial terrain traversal is

also a primary interface metaphor.

Player and Unique Affordances. As Gibson notes [Gibson 1986], affordances

exist uniquely between each animal and actionable objects (e.g., environment, other

animal). This is no less true in games for the player 5. Each player brings with

her/him an existing set of mental models, a different experience of real and virtual

worlds. Each player has unique motor and perception skills. Signifiers in one game

may mean nothing to one player, and everything to another.

Embodied Understanding. The problem with structuring objects to make affor-

dances visible is that even if they are visible, they may not be understandable to the

player [Forlizzi and Battarbee 2004; Norman 2002]. The player, lacking the knowledge

5It is also trivially true across different games: a textured affordance-signifier in
Prince of Persia will mean nothing to Mario. Still, lessons learned in one game are
often applicable to others when mechanics are compatible.
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and experience of the fictional character, may not realize the proper interpretation.

Essential to the nature of affordance is the notion of being-in-the-world [Heidegger

1967]. Because the player is not in-the-world, a fictional character is, players may not

understand the affordances of fictional objects.

An object, ready-to-hand [Heidegger 1967] for the avatar may be only present-at-

hand for the player. Game avatars are adept at skillfully handling complex weapons

and vehicles with which the player is unfamiliar. While the avatar “knows” exactly

how to use an item, without thinking and without analysis, this is untrue for the

player. A convolution, through p-actions [Gregersen and Grodal 2009], is necessary

for the player to engage with the game mechanic supplied by the avatar-ready-to-hand

object.

Returning to the red and white doors of Mirror’s Edge, red doors afford kicking

open while white doors are essentially decorative walls. In the real world, most doors

do not afford kicking down and many afford opening through grasping and turning

their handles.

Scaffolding and Tutorial. Augmented affordances can act as a form of scaffolding

[Guzdial 1994], where the designer provides the augmentation temporarily for the

purpose of teaching. In scaffolding, support is provided to the learner while she

performs a new task. The student is taught how to perform the task, coached while

performing it, and asked to articulate process. Many in-game tutorials take exactly

this form, providing augmented affordances-as-signs at critical junctions when new

mechanics are to be employed.

Automated tutorials may assist the user in troubleshooting failure to grasp the

game mechanic. Such games (e.g., [Aonuma and Miyamoto 2006; Q-Games 2009])

detect when the user is having trouble progressing, and suggest the next course of



75

action through augmented signifiers. This allows the player to incorporate the new

mechanics into her or his mental model, constructing a rich set of behaviors for the

player to later restore and remix. Once learned, the p-action sequences for activating

the affordance-as-sign to engage the game mechanic attain embodied ready-to-hand

status and function as restored behavior. At this point, depending on the game de-

sign, the augmented signifier may be discarded automatically, discarded by a player’s

choice, or, without such options, disregarded by the player. The range of mechanisms

used for tutorial deactivation is an area for future research.

Dangers and Hackability of Augmented Signifiers. When augmented sig-

nifiers are retained, they may act as a meta-game signal to the player, indicating

more than the game should reveal. In such cases, the player knows the mechanic is

designed to come into play in a certain area, and has not deduced this independently

nor why. Rather, s/he identifies the designer’s intention that the ability be used.

Discovery is frequently a core mechanic in games (e.g., [Pardo et al. 2004; Ward

2008; Hellquist and Levine 2007; Aonuma and Miyamoto 2006; Tezuka and Miyamoto

1992; Guyot 2008]), so players’ meta-gaming augmented signifiers as a means of

learning may run counter to the game designer’s intention. It may be interpreted

as an acceptable side effect, a design for hackability [Galloway et al. 2004], or such

avenues may be closed in design iteration by automatically removing the scaffolding

when the player reaches a certain level of proficiency.

Another issue may arise when the augmented signifier becomes a nuisance to the

player. An example is Twilight Princess [Aonuma and Miyamoto 2006], in which a

secondary character nags the player when s/he runs off track. While the sarcastic

commentary is helpful, it can become grating over time. This is analogous to Mi-

crosoft’s Clippy character, who appears and talks to the user whenever it believes
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they are having difficulty in some versions of Office; the help is frequently unwanted.

Designers must be aware of the affect of their augmented signifiers when creating

them.

G. Design Principles for Engaging Cooperative Play

The core mechanics of team games differ from those of single-player games. Human-

human interaction is essential, adding communication and coordination to the array

of options already available. Communication is a core mechanic. Design implications

for teaching team coordination, uncovered from the ethnographic field work (III.D,

page 27), shape interface components that contribute to engagement in the core me-

chanics, grounding Te
2C game design in practice. Non-mimetic simulation principles

further guide game mechanic design (IV.F, page 45). Essential to practicing team co-

ordination skills in the non-mimetic simulation game is the information distribution

among roles and players, which requires players to engage in distributed cognition

(II.C, page 11) by perceiving, integrating, transforming, and sharing information in

order to make sense of the game environment.

The principles developed in this section are derived from a series of user studies

with various versions of the Te
2C game, which are described in more detail in Chap-

ter VI. The principles were previously published in Toups Dugas et al. [“Game design

principles,” 2009].

1. Information Distribution [Game Mechanics]

In addition to its role in teaching team coordination (III.D.1, page 15) and in non-

mimetic simulation (IV.F.1, page 46), information distribution is an essential com-

ponent of game interfaces supporting cooperation. Information is shared between
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players through their interfaces, often modulating visibility. It impacts the way they

play the game, becoming a game mechanic itself.

Creating information distribution involves determining the information necessary

to play the game and effectively sharing it between participants, so that each player

has access to a different piece of the information picture. Information distribution

is accomplished through varied participant roles (IV.F.2, page 47). Players must

be reliant on each other to complete the game. Information distribution encourages

engagement with the core mechanic of team communication. It requires modes of

play in which participants in different roles gather and integrate different types of

information in different representations.

2. Modulating Visibility

Despite the interaction design mantra of “making visible” [Gaver 1991; Norman 1999;

Norman 2002], we find that making invisible can be just as important when designing

cooperative game interfaces. As part of information distribution, some information is

withheld from players and provided to others. Throughout the design process, we find

that developing the proper balance of visible/invisible information in team members’

interfaces is important, as it impacts their sources of information (the interface versus

other players).

The timing of information is essential in the selection of whether information

should be made visible or invisible. Slow- or un-changing information is a good

candidate for making invisible. In games where communication is a core mechanic,

team members must have something to communicate about. Creating deficiencies in

one interface that are fulfilled by another player is one way of accomplishing this.
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3. Information Timing

Part of creating information distribution and real-time stress (IV.F.3, page 48) in-

volves rapid information change. Information in games may be ephemeral. The tem-

porality of information must be considered when players need to communicate about

it. Rapidly changing and short-lived information that must be acted upon quickly

should not have to be communicated using slow channels, such as radio. Players will

be unable to react in time and may perceive the game mechanics as unfair. The user

interface must provide the right information at the right time [Do 1996].

4. Making Predictable

Mental models enable players to understand and manipulate the game in their heads

(II.A, page 9). When mental models are shared, players are able to cooperate more ef-

fectively, because their mental models predict things in the same way (II.D.1, page 13).

Game mechanics must be consistent [Salen and Zimmerman 2004f], they must provide

some level of predictability, to enable mental model formation.

5. Communicable Representations

Representations in a game’s interface impact the way players cognitively engage with

the game. For players to engage in team processes of distributed cognition, they

must be able to construct a shared understanding of the game system and be able to

communicate about it. Essential to building effective interfaces for team coordination

games is creating representations that are easily understood and referenced while

under the real-time stress of game play. Information to be shared should be easy to

communicate, in order to reduce communication overhead.
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H. Background: Mixed Reality

The next stages of the present research project will construct a mixed reality non-

mimetic simulation game for teaching team coordination. While this work presents

the stationary Te
2C game, it incorporates a simulation of the mixed reality environ-

ment as part of the game design.

Humans experience the world directly through the body [Dourish 2001; Lakoff

and Johnson 1999]. The physicality of experience is lost in traditional desktop com-

puting. Low-cost, lightweight sensors make it possible to blend digital and physical

artifacts to create an embodied experience. Location-aware systems, which track the

user’s position, allow a computer to react to acting in the world. Mixed reality takes

this one step further by enhancing the user’s experience of the world with information,

building a digital experience around real world action [Milgram and Kishino 1994].

Mixed reality games transform real-life action into game action.

Prior work has developed location-aware games and systems for the purposes

of entertainment (e.g. [Björk et al. 2001; Cheok et al. 2004; Thomas et al. 2002]),

exploration (e.g. [Ballagas et al. 2007; Bedwell et al. 2009; Benford et al. 2004]),

social interaction (e.g. [Barkhuus et al. 2005; Björk et al. 2001; Brown et al. 2003;

Cheok et al. 2004]), education (e.g. [Benford et al. 2005]), and tourism (e.g. [Brown

et al. 2003; Feiner et al. 1997]). These projects have raised a variety of issues that

arise from building location aware systems, including the need for seamful design

[Barkhuus et al. 2005; Bell et al. 2006; Benford et al. 2006; Chalmers and Galani

2004], ergonomics of wearable computing systems [Cheok et al. 2004; Feiner et al.

1997; Thomas et al. 2002], and the ways that technology inhibits and promotes social

interaction of participants [Barkhuus et al. 2005; Björk et al. 2001; Chalmers and

Galani 2004; Mansley et al. 2004].



80

1. Seamful Design

Computation on mobile devices creates the need for seamful design [Barkhuus et al.

2005; Bell et al. 2006; Benford et al. 2006; Chalmers and Galani 2004]. Sensors and

networks have a level of inaccuracy or unreliability, for example, global positioning

system sensors (GPS) are only accurate to within a few meters at best [Hightower and

Borriello 2001; Zogg 2007] and WiFi signal strength drops off over distance and across

obstacles [Borriello et al. 2005]. These problems are seams in an otherwise smooth

experience, and impact the ways in which mobile computing can provide services to

the user.

Seamful design moves beyond exposing these to the user and uses seams as an

aspect of design. In games, for example, they can be used to enhance the experience,

providing strategic opportunities to players [Benford et al. 2006]. Seager et al. have

shown that indicating to users their possible location, based on the inaccuracy of

positioning sensor data, aids users in understanding the nature of the sensor [Sea-

ger and Fraser 2007]. Barkhuus et al. suggest that color-coded patches on a map

enable an understanding of the level of wireless network saturation, affecting player

strategy [Barkhuus et al. 2005]. Can You See Me Now? pits live location-tracked

players against Internet player-controlled avatars in a game of tag in an urban set-

ting, utilizing seamful design to expose technology failures and allow players to use

them to their advantage [Benford et al. 2006]. Uncle Roy All Around You, provides a

location-based experience without a location sensor by using self-reported positioning

[Benford et al. 2004]. In Savannah, players experienced difficulty engaging in collab-

orative action due to the inaccuracy of the GPS sensor and inconsistencies between

each players’ device [Benford et al. 2005].
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2. Ergonomics

Several mixed reality projects (e.g. [Chalmers and Galani 2004; Feiner et al. 1997;

Thomas et al. 2002]), showcase issues relating to the ergonomics of wearable comput-

ers. These systems were bulky and heavy, requiring participants to wear backpacks

carrying laptop computers, boom antennas for sensors, and large power packs. Ad-

vances in miniaturization make this less of a problem. Real Tournament is an example

of an ergonomic design: players teaming up to hunt down virtual enemies with toy

guns that are equipped with location-sensing and communication gear [Mitchell et al.

2003].

3. Human-Human Interaction

Technological and gameplay issues can impact the way that participants socialize

within a mixed reality system. The game Pirates! was specifically created to en-

courage social interaction between players [Björk et al. 2001]. Participants carried

personal digital assistants (PDAs) that simulated a pirate ship, and moved through

an environment to move the ship. Players were disinclined to socialize with each

other, because the game only allowed confrontations, which would put one of the two

players out of the game. Other games used full binocular head mounted displays

(HMDs), which inhibited social interaction [Chalmers and Galani 2004]. Barkhuus

et al. noted that participants often did not notice each other while playing, because

they were sometimes too busy monitoring the game on a handheld device; however,

game actions that required collaboration between participants encouraged them to

work together [2005]. Thomas et al. found that players cooperated on a team better

if only a few players have access to information about the game; it became necessary

for them to share information when there were fewer devices in play [2002]; this is an
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example of effective information distribution that gives rise to player roles.

I. Conclusion

This chapter presented relevant background on game design for the present Te
2C

game. We construct Te
2C in terms of operational elements, functional semantics, and

representations.

Operational elements incorporate the human-human aspects of the team game,

including communication modalities, such as those from fire emergency response work.

They address the need for seamful design that accounts for issues that cannot be

controlled within the game environment. Roles will be constructed for players to

engage in; information is distributed through the varied representations in the roles’

interfaces. Functional semantics must take into account that aspects of the interplay

between terrain and avatars will be created by the real-world environment in which the

mixed reality version of the Te
2C game is played. Functional semantics will be used to

describe the entities within the game and the terrain within which they operate. The

speed at which entities change impacts how they can be rendered visible or invisible

within the game interfaces of the player roles. The terrain, again, incorporates seamful

design from mixed reality. Representations are how information is distributed between

players, and the way in which affordances-as-signs are augmented within the game.
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CHAPTER VI

DESIGN OF A NON-MIMETIC SIMULATION TEACHING TEAM

COORDINATION GAME (Te
2C)
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Fig. 23.: Component of the concept map (Figure 1) for design of Te
2C, based on a

number of concepts from earlier chapters.

One of the most essential aspects of fire emergency response practice is sharing infor-

mation at an incident. Firefighters in the fireground have to act as the eyes and ears

of the incident commander (IC) outside. The IC must make sense of the information

from the firefighters and combine it with a contextualized overview that includes ob-

serving the fireground from a distance and consulting and maintaining information

artifacts. Situation awareness enables the IC to formulate the best strategy and com-

municate orders for firefighters to accomplish it. Communication in fire emergency

response is rich and multi-way.

In the Teaching Team Coordination non-mimetic simulation game (Te
2C), players

take on roles that reflect FER practice in terms of information availability and action

opportunities. Seekers take an active role, searching and avoiding danger in a virtual

reality, while a coordinator observes the virtual reality and communicates with them

(as in the figure on page 88). The seekers collect goals and avoid threats to improve

their team’s score.
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Just as communication is essential between the firefighters and IC and among

firefighters in work practice, communication between coordinator and seekers and

among the seekers is a core mechanic of the non-mimetic simulation game. Players

need to share information about goals, walls, bases, threats, and each other to coor-

dinate their actions, form shared mental models, and engage in distributed cognition.

Communication is stimulated by information distribution. Representations must be

designed to support shared mental models.

Essential pieces of an emerging information picture are distributed between play-

ers and across roles (IV.F.2, page 47), creating interdependency (IV.F.1, page 46).

The pieces vary in perspective and representation, requiring players to engage in pro-

cesses of distributed cognition (II.C, page 11) to share information and understand

the game. Players communicate with each other either face-to-face or over radio, de-

pending on role and experimental condition, creating opportunities for them to mix

communication modalities (III.D.2, page 30). Figure 23 shows how the Te
2C design is

dependent on a number of concepts discussed in earlier chapters.

This chapter presents version 2.0 of Te
2C, as constructed through iterative de-

sign. Version 2.0 was used for the Te
2C with FERs user study, presented in Chapter IX

(page 156). We develop the core mechanics of Te
2C, considering the operational ele-

ments, functional semantics, and representations (V.E, page 60). We then describe

affordances-as-signs (V.C, page 53) in Te
2C. The end of this chapter discusses the

iterations that led to version 2.0, based on data collected from pilot studies and the

non-FER study presented in Chapter VIII (page 143).
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A. Operational Elements

The operational elements (V.E.1, page 60) of Te
2C consist of the roles of players within

a human team, the communication modalities between the players, and considerations

for seamful design (anticipating the mixed reality version of Te
2C).

1. Player Roles

Players take on alternate roles with different capabilities and information access that

reflect FER practice. The human team consists of four players: three seekers and one

coordinator. Seeker players move an avatar in the virtual reality terrain, searching

for goals while avoiding threats (Figure 24). A coordinator observes the virtual world

with limited detail. S/he communicates with the seekers to direct them and acquire

detailed information.

a. Seeker

A seeker is the combination of a seeker player with an avatar in the virtual world.

Seekers have agency in the virtual world through their avatars. They are able to

interact with game entities and terrain. Seeker players move their avatars in the

virtual world using the keyboard. They have a limited, local perspective that provides

rich detail about the game at their location (as in the figure on page 96). Seekers are

like firefighters in FER work practice (III.B.1, page 21). They accomplish tasks in

dangerous environments and feed information back to the coordinator.

b. Coordinator

The coordinator observes and communicates, like an IC (III.B.1.a, page 22). The

coordinator can only interact with the virtual world through the seekers by commu-
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nicating with them. The coordinator’s view lacks the detail of the seekers’, providing

an overview that shows the locations of all online seekers (demonstrated by the figure

on page 97).

2. Communication

Communication is a core mechanic (V.D.2, page 57). Coordination around goals, col-

laborative navigation, and threat avoidance all require communication. An essential

design goal is to encourage participants to engage in two-way communication, like

the kind of communication found in fire emergency response.

To support the design principle of mixing communication modalities (III.D.2,

page 30), Te
2C may be played in one of two team configuration conditions that im-

pact how team members are able to communicate with each other. In the co-located

condition, all of the seeker players are seated around a table with individual computers

in front of them, while the coordinator is isolated. Seeker players can communicate

with each other by speaking face-to-face, but must use the radio to contact the coor-

dinator. In the distributed condition, all players are isolated and must use the radio

to speak.

Face-to-face communication is fast and easily disambiguated. Participants can

use expression, gesture, and short verbalizations to communicate rapidly. In some

cases (seeker-coordinator communication and seeker-seeker in the distributed con-

dition), players need to use a half-duplex radio, like those used in fire emergency

response. This component of the design is mimetic, using equipment found in work

practice. The qualities of the radio that must be overcome in practice are unique.

The radio only allows one participant to speak at a time. Radios are controlled using

push-to-talk (PTT) and are activated in the game by holding down a key. The radios

used for Te
2C, like those used by FERs, have a delay between when a radio begins
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transmitting and when another begins receiving.

3. Seamful Design

Te
2C was designed anticipating the seams in a mixed reality environment in which

location and/or data services are likely to fail at times (V.H.1, page 80). Regions

of simulated connectivity are a part of the game terrain. Players’ avatars may go

offline based on the simulated connectivity. Handling of these cases is built into the

functional semantics. When an avatar is offline, s/he is unable to see or collect goals.

Offline seekers cannot be attacked by threats and cannot be seen by the coordinator.

B. Functional Semantics

Functional semantics (V.E.2, page 60) incorporate entities and terrain with their

interrelationships. Figure 24 describes the functional semantics.

1. Entities

A set of entities, with complex relationships, interact in Te
2C (Figure 24). Seeker

players drive avatars in the virtual world to find goals and avoid threats. To win

the game and earn score, players collect goals. Threats move through the game

environment, defending the goals from seekers by chasing them down to take them

out of play.

a. Seeker Avatars

Seeker avatars transition through a set of bi-variate states: safe / in / out and online /

offline. Figure 25 shows the representations for each state and the functional semantics

that determine state, which are detailed in this section.
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Fig. 24.: The operational elements and functional semantics of Te
2C. Functional se-

mantics are entities and their game mechanics: observation, communication, and
action.

Each seeker has a limited amount of hit points (HP) which are reduced each time

the seeker comes into contact with a threat1. As long as HP are greater than zero,

the seeker is in, and able to participate in the game. Once an avatar has no more HP,

the seeker avatar’s state changes to out. Certain parts of the terrain contain bases,

where seekers are safe. While safe, a seeker regenerates HP and cannot be attacked.

Te
2C was designed anticipating the seams in a mixed reality environment (V.H.1,

page 80). Two signal levels are simulated, one for location status (global positioning

sensor, GPS) and one for data access status (wireless network, WiFi). Avatars go

offline based on the avatar’s simulated connectivity; if either signal drops to zero, the

seeker is offline. When a seeker is offline, s/he is unable to see or collect goals. Offline

seekers cannot be attacked by threats and cannot be seen by the coordinator.

1“Coming into contact” with a threat is the same as “being attacked by” a threat.
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Fig. 25.: Bi-variate range of seeker avatar states in Te
2C. X-axis range is safe / in /

out; in / out are determined by number of hit points (HP), while safe is determined
by whether or not the seeker is located in a base. Standing in a base restores HP,
while being attacked by threats reduces HP. Y-axis shows combined level of simulated
location and/or data network signal. If either simulated signal drops to zero, the
seeker’s avatar goes offline. Offline seekers cannot be safe, because they are not able
to detect the location of a base.

Seeker avatars can move at different speeds: walk, run, and sneak. Walking

is the default mode for seekers and is slower than the speed of threats. Running
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allows faster movement, but may only be performed for a limited time before the

avatar must recharge stamina. While seekers run faster than threats, running draws

attention. Sneaking is very slow movement that does not draw attention from threats.

Seekers can recharge stamina by sneaking (slow recharge rate) or standing still (fast

recharge rate).

b. Threats

Threats are automated computer-controlled opponents that are a source of real-time

stress for the human players. Threats guard goals from seekers by chasing and attack-

ing them. Otherwise, threats exhibit three ambient behavior modes: generic flocking,

guarding, and patrolling. Each ambient behavior is overridden by chase behavior

when a threat spots a seeker.

Threats chase and attack any seeker they spot. They spot avatars at different

distances, based on speed: faster seekers are spotted from farther away. A seeker

collecting a goal is spotted by threats as if that seeker were running. Seekers are

only pursued when the nearby threats outnumber the nearby seekers2. Threats that

attack seekers (chase and catch up to them) take seekers out of the game by reducing

their HP.

As part of the functional semantics of threats, we use physically based modeling,

computer simulations of Newtonian physics [Baraff and Witkin 1999]. A physically

based modeling engine drives and constrains behavior of threats in reaction to the

terrain. Particles [Reeves 1983] are used as a model for threats, giving them masses,

velocities, and the ability to accelerate. Flocking [Reynolds 1987] and particle chore-

ography [Sims 1990] techniques, combined with simple artificial intelligence, create

2Because games include a maximum of three seekers and a minimum of 20 threats,
threats frequently outnumber the seekers.
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interesting and challenging behaviors for computer-controlled opponents that encour-

age players to work together [Toups Dugas et al., “Game design principles,” 2009].

The functional semantics of threat flocking around goals and walls are described later

in this chapter.

Generic flocking threats move in a straight line until they find another set of

threats with which to flock. Guarding threats select a goal and stay near it. They

flock with other nearby threats unless they move outside the area around the goal,

in which case they turn back. Once a goal is collected, threats switch to another un-

collected goal. Patrolling threats move from one un-collected goal to another, making

a circuit around the map.

c. Goals

The objective of play in Te
2C is to collect all of the goals before time runs out. Goals

are hidden throughout the game terrain and come in three varieties. A basic goal re-

quires a single seeker to collect and is not valuable in terms of score. Cooperative goals

require two or three seekers to collect and are worth more points (three-seeker coop-

erative goals are the most valuable). Seekers can work in parallel on non-cooperative

goals, speeding the process. The table on page 94 summarizes the score values of

goals and illustrates their representations.

Seekers collect goals by standing on or near them; the seeker must stand still for

a period of time. Seekers can only collect goals if they are safe / in and online. Col-

lecting a goal attracts the attention of nearby threats, creating danger and inducing

real-time stress.

Goals are incorporated into the flocking choreography of threats. Goals push

threats away and to one side, causing a threat that approaches to smoothly orbit

around the goal. This has the effect of splitting up large groups of flocking threats,
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helping to keep them distributed around the map. A collected goal ceases to have

this effect on threats.

Fig. 26.: Sample terrain used in Te
2C with FERs study. Highlighted red regions

indicate areas where seekers are online, blue regions are walls, orange circles are
bases (bases are online, but are not highlighted for visibility). Goals and threats are
procedurally placed. Walls were placed using a Google Earth [Google 2010] map of
the south side dorms on the Texas A&M University campus. This map and procedural
placement seed that resulted in this layout of threats and goals were used in the Te

2C
with FERs study (Chapter IX).
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2. Terrain

Game terrain is derived from existing campus maps; it includes the seamful elements

described above, walls, and bases. Figure 26 shows a detailed sample of terrain.

The seamful elements of the game terrain create sections of the map where seeker

avatars are online or offline, mediating how they can participate in play. Seamful ele-

ments can only be detected at the current location (through WiFi and GPS readouts

on the seeker and coordinator interfaces, such as those in Figures 27 and 28). The

information does not persist.

Walls are impassible for seekers, requiring that players circumnavigate them.

Threats are unaffected by most walls; they may freely pass through. The edges of

the terrain are surrounded by walls, preventing seekers (and threats) from leaving the

play area. Other walls are based on a portion of the Texas A&M University campus:

each building in the simulated portion of campus is a wall.

Bases are locations where seekers can quickly restore lost hit points. While in a

base, a seeker is safe. A safe seeker cannot be attacked by threats and is also invisible

to them (i.e. excluded from the flocking algorithm). Safe status persists briefly after

leaving the base, to allow the seeker time to act. Threat flocking is impacted by bases

in the same way that it is impacted by goals, preventing threats from entering a base.

Bases are visible to the coordinator, but not the seekers, as a part of information

distribution. They can be detected by a seeker only when safe, because the seeker’s

interface indicates the safe status (as demonstrated in the figure on page 96).

3. Time and Scoring

To create real-time stress, games are timed. Players have set amount of time to collect

all of the goals in the terrain. If players collect all of the goals before time runs out,
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Table III.: Scoring rubric for Te
2C, showing representations of entities and seeker

states.

entity
(state) summary score rate

seeker (in;
online)

HP > 0; can collect goals; tracked
in coordinator view

+3.3 points / second
/ seeker in state

seeker
(safe; in;
online)

restoring HP; can collect goals; im-
mune to threats; tracked in coordi-
nator view

+0 points / second /
seeker in state

seeker (of-
fline; in)

cannot collect goals; immune to
threats; not tracked in coordinator
view

+0 points / second /
seeker in state

seeker
(out)

HP = 0; cannot collect goals; im-
mune to threats; tracked in coordi-
nator view (while online)

−25 points / out

one-seeker
goal +100 / collected

two-seeker
goal +400 / collected

three-
seeker
goal

+900 / collected

the game ends prematurely, giving the players bonus score. Table III outlines the

scoring rubric for play.

Score provides motivation and is a gauge of performance (V.D.3, page 58). We

provide a score for each team, but not individual team members, to discourage com-

petition within the team. Players primarily gain score through collecting goals. Basic

goals (requiring one seeker) contribute the least to the score, while cooperative goals



95

(requiring two or three seekers) are worth considerably more. The functions for com-

puting the value of collected goals is described below, where numReqSkrs is the

number of seekers required to collect the goal and pointV alue is the number of points

collecting the goal is worth:

pointV alue = (numReqSkrs2) ∗ 100 (6.1)

Seekers additionally contribute to score by staying in and in danger (online and

not safe). As long as a seeker is either out, offline, or safe, they are not contributing

to the team score. The bonus for completing the game early is computed as if all

seekers were in and in danger for the remaining (unused) time. Finally, seekers are

penalized if they are captured by threats.

C. Representations [Interface]

Representations (V.E.3, page 61) compose the interface of Te
2C. Representations are

an essential component in creating information distribution (III.D.1, page 15; IV.F.1,

page 46; V.G.1, page 76). Information is distributed among the seekers and the

coordinator: seekers have detailed, local information, while the coordinator has a

broad overview with limited detail. Interdependencies exist between roles (IV.F.2,

page 47), creating a need for players to communicate in order to find goals, navigate,

and stay safe.

1. Seeker

Each seeker observes a local view in a high level of detail, limited to an arc in front of

their avatar. Seekers can see their local space: walls, threats, goals, and other seekers
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Fig. 27.: Screenshot of seeker view in Te
2C (Team 5, session 4, game 8, 5’15”). The

purple and orange players collect a two-player cooperative goal while standing inside a
base. Image taken from Te

2C with FERs study (Chapter IX, page 156); same moment
as the coordinator’s view in Figure 28. The purple player knows s/he is in a base,
because the white shield around the avatar indicates safe status; the purple player
cannot detect any information about the orange player’s status. Threats are near the
base. Graphs in the lower right show that at least one threat is getting close, weak
simulated WiFi, strong simulated GPS, and full simulated stamina. The visualization
in the lower left shows that the avatar is located in terrain region (3, E), the direction
of other regions are shown on the periphery. It also indicates the seeker has 100 out
of possible 100 HP. Team score is indicated in the upper left. Other team members’
colors and names (blurred for anonymity) are shown in the upper right.

are visible to them. While each seeker can see the others, s/he cannot see the other

seekers’ statuses (safe / in / out, online / offline). To learn of another seeker’s status,

that seeker must be asked, encouraging communication. Seekers cannot see bases,

but when they enter a base, it is visualized as part of their avatar’s representation.

Figure 27 shows the seeker interface in play.

The seeker head-up display (HUD), arranged around the viewing arc, includes
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Fig. 28.: Screenshot of coordinator view in Te
2C (Team 5, session 4, game 8, 5’15”).

The purple and orange players collect a two-player cooperative goal while standing
inside a base. Image taken from Te

2C with FERs study (Chapter IX, page 156); same
moment as the seeker’s view in Figure 27. The main view shows the terrain with all
entities in it; highlighted yellow regions contain goals. Walls (visible in the seeker
interface) cannot be seen. The right column shows status information for each seeker;
a mini-map at the bottom shows all of the terrain. Below the main view is the list of
goals (two remain un-collected) and the time remaining in bar graph and text form
(the team has more than half the time remaining: 9’45”).

information about location and orientation, distance to nearby threats, HP remaining,

and the colors and names of teammates.

The number of seekers required for a goal is visualized on the goal (Figures 27,

29, 32). Goals have collection circles around them that indicate the number of seekers

to required to collect that particular goal. As a seeker collects a goal, a collection

circle fills up with that seeker avatar’s color to indicate that the seeker is successfully

collecting the goal. If any seeker stops collecting a goal before all circles are filled,

the group must start again. This visual feedback eliminates confusion about which
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seekers are actively collecting a goal, a problem discovered in early designs (VI.D.2.c,

page 111).

Sonifications are used in the seeker interface. Sounds indicate when HP are low

and when the seeker goes out. A different tone is used to convey when a seeker

has transitioned from offline to online and vice versa. A radio PTT tone plays for

one second to help prevent the player from speaking before the radio has connected

(Figure 33; VI.D.2.d, page 112).

Sonifications are played through each individual player’s headset. In addition, if

the player is transmitting radio, the sounds appear in the background. This supports

overhearing through the radio, so that one player can gain situational awareness from

the background sounds of another’s transmission.

2. Coordinator

The low-detail coordinator overview contrasts the detailed, local view of the seekers.

The coordinator can see the location of all threats and seekers on the map, as well as

the location of all bases.

Goal locations are obfuscated to encourage two-way communication between co-

ordinator and seekers. Goals appear as highlighted regions of the terrain, which must

be searched by seekers to discover exact locations and the number of necessary seekers

(Figure 30; VI.D.1.a, page 103). Walls are likewise invisible, meaning the coordinator

is reliant on the seekers to do their own wayfinding and/or report on local terrain.

The coordinator is the only player aware of the time remaining in the game and the

number of collected / un-collected goals.



99

3. Augmented Affordances-as-Signs

We incorporate augmented affordances-as-signs into the design of Te
2C, supporting

the development of mental models for play. A tutorial mode, use of color in the game

interfaces, the collection rings on goals, and sonifications are all forms of augmented

affordances-as-signs.

A tutorial mode, introduced in later user studies to help players understand how

to play, makes extensive use of augmented affordances-as-signs. As players move

avatars in the virtual world in the tutorial game, a running text monologue describes

the various interface components and controls, helping players form the mental models

needed for play. In the tutorial interface, all players take on the role of seeker, but

can see the coordinator interface simultaneously. The monologue calls attention to

the way information is distributed between the two roles.

Color indicates how a player may interact with the environment through the

collection arc mechanic (Figure 29). A seeker’s avatar can only collect goals that are

located in a narrow arc in front of it, and only while safe / in and online. As long as

the conditions are met, an arc-shaped region in front of the avatar, which supports

interaction, is signified by white illumination, contrasting with the dark background.

Cooperative goals require aligned positioning of multiple avatars to collect, en-

gaging players in teamwork. Goal rings indicate how many team members are re-

quired to collect the goal (Table III; Figures 27, 29, 32). These augmented signifiers

fill in with the colors of the players involved in the collection. They signify whether

it is necessary for a player to collect a goal, and when it has been fully collected.

Simulated GPS and WiFi signal strengths are directly signified to the player

through a graph in the interface. However, because the classification of online or

offline is bi-variate, this could be complex for the player. To aid the player, we use a
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Fig. 29.: Screenshot of a single seeker attempting to collect a three-seeker cooperative
goal, showing the collection arc mechanic and goal ring augmented affordance-as-
signs. The highlighted region in front of the seeker’s avatar affords collecting goals.
This particular goal requires three seekers to collect, because it has three rings.

sonification to indicate when the player has changed state. The augmented signifier

sound indicates when a space in the terrain affords safety or danger.

D. Design Iterations

The design of Te
2C was iterated considerably, incorporating observations and feedback

from users. This chapter has so far discussed version 2.0, as used for the Te
2C with

FERs user study (Chapter IX, page 156). This section will address the design itera-

tions that led to the final form: we start with changes made to a series of functional

prototypes used in pilot studies, move to version 1.0 used for Te
2C with non-FERs

(Chapter VIII, page 143), and conclude with the changes that led to the final version.

Many of these findings were originally presented in Toups Dugas et al. [“Game de-

sign principles,” 2009]. Table IV briefly outlines the changes discussed in this section

along with the studies that led to the changes.

The data that inform the core mechanics and interface design principles come

from a series of studies and iterative designs that span four years. Early pilot studies
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Table IV.: Summary of evaluations and resulting changes to Te
2C. Each session is

a set of two games (one with seekers co-located, the other distributed), played by
four participants. Resulting changes appear in the version that follows. Prototypes
changed rapidly. Version 1.0 was used for the Te

2C with non-FERs user study (Chap-
ter VIII, page 143). Version 2.0 incorporates all resulting changes and is used in the
FER user study (Chapter IX, page 156).

version evaluation sessions participants resulting changes

prototypes early pilot
studies

12 8 cooperative goal mechanic; HP
mechanic; block-and-grid coor-
dinates

prototypes later pilot
studies

3 12 making goals invisible in the
coordinator interface; dis-
cernible patterns for threats;
add scoring; introduce tutorial

1.0 Te
2C with

non-FERs
36 36 goal collection status indicator;

PTT status indicator; update
scoring rubric

1.0 FER expert
participa-
tory design

4 4 making threats visible to seek-
ers; seeker location context in-
dicator; PTT status audio

2.0 Te
2C with

FERs
28 28 –

rapidly iterated the game design, with later pilot studies continuing refinement. The

Te
2C with non-FERs study, in which 36 unique participants played eight games each

over the course of four weeks followed. Integrating feedback from the Te
2C with non-

FERs study, we conducted a participatory design phase, in which we played the game

with an expert FER who has 30 years of experience.

In all of the user studies, participants play the game on a set of laptop computers

with the ability to communicate remotely, activated by key press (PTT). In the early

pilot studies, players communicated using voice over internet protocol (VoIP) with
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wireless headsets. VoIP became problematic due to voice lag and an inability to record

the players’ utterances. In later games, hardware was developed to route handheld

radio voice through the computer while recording it. Seeker players use the keyboard

to move their avatars, while the coordinator uses a mouse and keyboard to explore

and manipulate the coordinator map view.

In the early pilot studies, three conditions were used: all players sitting around a

room and able to speak to each other freely; coordinator in a separate room, reachable

only by VoIP with seekers co-located; and all players in separate rooms, communi-

cating by VoIP.

In subsequent studies, games were played in one of two conditions, with both

conditions forming a single session: seekers co-located with coordinator separate; and

all players isolated. In the seekers co-located condition, seekers are seated around a

table and able to speak to one another face-to-face. They may use the radio to contact

the coordinator. In the other configuration, all players must use the radio to com-

municate. The configurations reflect the design principle of mixing communication

modalities (III.D.2, page 30).

In the non-FER and FER user studies, participants play a set of four sessions

(eight games) on the same team over the course of a month. These sustained user

studies introduce a tutorial game in which all players are co-located for the first

session that explains how to play and indicates the information distribution between

the coordinator and seekers. The role of coordinator rotates each session, so all players

have the opportunity to experience the role. This decision was made at the direction

of our FER expert, as each student in fire school has the opportunity to experience

IC roles (III.A.1, page 18).

The design process is iterative, incorporating feedback and observations from pre-

vious game versions into the new. Newer designs improve in their ability to encourage
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100 200

100

300

(a.) precise goal locations and coordi-
nates (prototypes); the goal is located
near (150, 150)

1

A

2

(b.) fuzzy goal locations and block and
grid coordinates (version 1.0, 2.0); a goal
is located somewhere in the region A, 1

Fig. 30.: Goals and coordinate systems in prototype and version 1.0, 2.0 Te
2C coor-

dinator interfaces. Originally, goal locations are clearly marked and coordinates are
specified in decimal numbers. This interface reduces communication and diminishes
the role of seekers in the team. In the current version, information is made invisible
in the coordinator’s interface and moved to the seeker interface. Yellow highlighted
regions contain goals; a block and grid coordinate system replaces the decimal system.

participants to cooperate and engage team coordination skills.

1. Prototypes

In early game designs, the seekers did not communicate or collaborate; there was

no need to. There were no cooperative goals and the coordinator knew the exact

location of every goal and exactly how many players were needed to collect each (a

single seeker). Players had difficulty understanding how the radio worked, and thus

shunned its use. This did not reflect fire emergency response practice. Further, the

game was frustrating, because seekers could not avoid threats.

a. Goals and Visibility

Originally, the exact location of each goal was visible in the coordinator’s view (Fig-

ure 30, a.). The result, observed in a series of pilot studies, was that the coordinator

and seekers did not need to collaborate to gather information. The coordinator had
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access to all information necessary, and could share with the team. Typically, this

took the form of top-down orders, directing seekers exactly where to go.

The use of basic single-seeker goals meant that the team did not need to come

together to accomplish cooperative tasks. Each seeker could be sent on an individual

mission by the coordinator. The most effective strategies involved the coordinator

simply directing each seeker individually, monitoring their status, then re-directing

them when they were finished.

Based on the need for seekers to engage in gathering information about the

environment as part of distributed cognition, we altered how information about goals

is distributed among team members. Instead of allowing the coordinator to see the

exact location of each goal, goal locations are made fuzzy (Figure 28; Figure 30, b.).

The coordinator can only see map regions that contain goals, so that it is possible

to direct the seekers in general, but not tell them exactly what to do. To balance

information distribution and stimulate communication, we made information invisible

in the coordinator’s interface.

The goal mechanic design was iterated, along with the game’s interfaces. Orig-

inally, all goals required only a single seeker to collect. We added cooperative goals

(Table III). Through further iterations, a piece of information was removed from

the coordinator’s interface: the number of seekers required to collect a goal. This

instance of making invisible again drives initiative from the seekers in the distributed

cognition process.

To further distribute information among team members, the seekers have a de-

tailed view when they get near a goal. They are able to see how many players are

necessary to collect the goal (Figure 27; Figure 29: the goal requires three seekers, as

indicated by the three white rings around it). This information is hidden from the

coordinator (Figure 28; Figure 30, b.), who may need to assist the seekers in grouping
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together. In the sustained non-FER and FER student user studies, this led to players

developing strategies for scouting out goals. The modifications are examples of infor-

mation distribution (V.G.1, page 76) and modulating visibility (V.G.2, page 77). In

this instance, we make information visible.

b. Communication Difficulty

Location was initially difficult to communicate within the team because locations were

given as a pair of detailed coordinates in the xy-plane (e.g. 123.83, 475.20; Figure 30,

a.). As seekers moved, the numbers changed rapidly. We observed the coordinator

directing seekers using the blocks drawn on the background of the map (“move two

blocks east, one block north”) instead of the coordinates.

Based on this observation and the need for locations to be easily referenced,

we introduced a block-and-grid interface. We divided the terrain into five columns

and five rows. Each column is numbered (1–5) and each row is lettered (A–E) so

that coordinates consist of letter, number combinations (Figure 30, b.). In later user

studies, this was observed to improve participants’ ability to communicate location

with each other, as the letter-number combinations were used extensively. Further, in

the participatory design sessions, the FER expert commented that the block-and-grid

coordinate system was similar to the one used by wildland firefighters to locate fires

in rural areas. The block-and-grid coordinate system makes it easier for players to

communicate about location in a way that is meaningful and satisfices3 [Simon 1996]

for the situation; it is an example of using communicable representations (V.G.5,

page 78).

3Simon [1996] combines the terms “satisfy” and “suffice” into “satisfice” to de-
scribe how humans make decisions about tradeoffs. While it is frequently impossible
to make a truly optimum choice (satisfy), it is also not necessary for decisions to be
optimal (suffice).
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c. Real-Time Stress from Threats

Threats provide real-time stress (IV.F.3, page 48). One problem with early game

designs is that threats were too difficult to avoid. Seekers were out when a threat

came into contact with them. Threats were faster than seekers, and once they targeted

a seeker, a threat would pursue until the seeker was out.

From the early pilot studies, we addressed the problem of threats being too

dangerous. We introduced the HP mechanic. This allowed seekers to sustain several

hits from a threat, making it easier to stay in the game. This iteration enabled us

to add more interesting behaviors to threats, as we could include more threats in

each game. After the late pilot studies, we applied particle physics to the threats,

and used flocking and particle choreography techniques to give them behaviors. This

creates varied challenges for the seekers to overcome, and assists players in predicting

what threats will do, increasing the player’s ability to predict future outcomes using

mental models.

Threat behaviors were introduced to make the threats predictable (V.G.4, page

78). Flocks are clear as the threats move around the playing field, although the

patterns that the flocks follow may not be. Despite the complexity, players know

that threats move together, and that they will react to seekers in a certain way. This

allows the coordinator to predict when threats will be a problem for seekers, and warn

them accordingly.

d. Motivation

Prototype game designs did not have a scoring system. Without an evaluation system,

participants could not gauge their performance. We found participants were not

motivated to play. This led to the introduction of a scoring system, as described on
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Table V. The original scoring rubric used the following function for the point value

of goals, using the same variables as Equation 6.1 (page 95):

pointV alue = numReqSkrs ∗ 100 (6.2)

Table V.: Original scoring rubric for Te
2C, version 1.0. Entity state entries match

those on Table III.

entity (state) score rate

seeker (in; online) +3.3 points / second / seeker in state

seeker (safe; in; online) +0 points / second / seeker in state

seeker (offline; in) +0 points / second / seeker in state

seeker (out) −10 points / out

one-seeker goal +100 / collected

two-seeker goal +200 / collected

three-seeker goal +300 / collected

e. Learning to Play

It was observed that participants had significant issues in learning how to play Te
2C; in

particular, information distribution was hard to understand. Players were confused

about what one another could see and would spend time discussing the interfaces

or arguing about ground truth in the game world. To aid in understanding how to

play in a collaborative learning environment, a tutorial mode was developed. In the

tutorial mode, each player acts a seeker, but can observe the coordinator’s interface

simultaneously. A text box describes how to play the game, advancing through steps

describing how to play. The tutorial mode is played as the first game in any user
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Fig. 31.: Seeker location and status indicator. The seeker avatar icon in the back-
ground shows the current state of the seeker; overlaid is location and hit points.
Letters and numbers around the edge indicate nearby locations.

study; study administrators are available to answer questions by players.

2. Version 1.0

Version 1.0 of Te
2C included numerous updates from the prototypes. While the game

became a more effective tool for engaging players in processes of team coordination,

communication patterns and player strategies were not yet similar enough to FER

work practice. Further, certain interface and game play issues arose. Design iterations

from version 1.0 improve players’ ability to navigate the virtual world and their ability

to communicate about and within the game. Representations are modified to support

players in building a mental model of how the radio works, so they can use it more

effectively. The scoring rubric was modified to encourage cooperation.

a. Navigation

In the non-FER user studies and participatory re-design, it became clear that seekers

had difficulty navigating to block-and-grid locations specified by the coordinator.

While the coordinator could provide directions, this was often a cumbersome process,
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made more difficult by seekers moving constantly. To make matters worse, seekers

had difficulty determining what blocks were located nearby and in what direction.

During a series of participatory re-design sessions with an FER expert, we aug-

mented the status / compass HUD element in the seeker interface. Instead of showing

the seeker avatar icon rotating to indicate direction, the icon is held facing forward.

Around the edges of the icon, the next nearest block and grid locations are displayed

(Figures 27, 31). If a player needed to move from location 2, C to location 2, B, the

player needs only rotate until the “B” is in front of the avatar icon and move forward.

To enhance understanding of this interface element, we also clearly demark the edges

of the blocks on the map, so as seekers move, they can see the boundaries.

b. Making Threats Visible

Information timing (V.G.3, page 78) must be tuned to promote distributed cognition.

In our non-FER user studies and participatory design sessions, we observed seekers

having difficulty avoiding threats, despite the HP mechanic and making threats pre-

dictable (V.G.4, page 78) through discernible patterns. Threats were invisible to

seekers. The seeker HUD includes a proximity display to indicate when a threat was

getting close, by filling up a meter with threat symbols (Figure 27) corresponding to

the inverse of the distance to the nearest threat. The intention of this design decision

was to make the coordinator direct seekers around threats, distributing information.

However, because seekers could not directly see threats, attacks felt random. In most

cases, the coordinator could not communicate to seekers about threats fast enough.

They were overwhelmed by the rapid onslaught of information. In some groups, the

coordinator simply gave up on communicating to the team about threats.

In this integrated design of core mechanic and interface, the timing of the infor-

mation distribution did not, in practice, result in successful game play. The desired
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mechanic, that the coordinator would tell the seekers where the threats were and

seekers would avoid them, rarely materialized.

b.) uncollected cooperative (3-
seeker) goal (prototypes, 1.0, 
2.0)

c.) original collection status 
(prototypes)

d.) collection status with color 
attribution (1.0, 2.0)

a.) uncollected goal (prototypes)

Fig. 32.: Goal collection status indicator iterations. Originally, all goals required only
one seeker and had no collection rings (a.). Un-collected cooperative goal (b.) shows
three empty rings, one for each seeker necessary to collect the goal. Original collection
status indicators (c.) do not show who is collecting the goal. Current collection status
indicators (d.) indicate how much each seeker has contributed to the collection of the
goal through color.

To improve seekers’ ability to evade the fast-moving threats, and make the game

experience less random, we made the threats visible in the seeker interface. In the

Te
2C with FERs study, this improved play. Seeker players do not feel like they were

taken out of the game randomly; they have more control to make decisions, engaging



111

with game mechanics. Because seekers cannot see behind them and cannot move

faster than the threats, they still challenge players. By providing the seekers with

the right information at the right time, we reduce the ephemeral information burden

on coordinators. This makes coordination less cumbersome and frustrating for both

coordinators and seekers.

Another design choice might have been to slow the threats down. We did not

choose this design because FERs in practice must respond to rapidly changing fire

condition threats. Fast, dangerous threats promote real-time stress (IV.F.3, page 48).

c. Attributing Goal Collection

Once the cooperative goal mechanic was introduced (Figure 32, a. transitioned to

b.), players had difficulty understanding who was currently collecting a goal. Goal

collection is signified through a set of rings that indicate the goal’s status, and the

number of seekers required to collect it (Figure 32, b.). In the original design, each

ring filled in white as each seeker contributed to collecting it (Figure 32, c.). This

created confusion, as some players would incorrectly position their avatars around

the goal. The goal would indicate that two seekers had collected part of the goal. A

third seeker would be positioned incorrectly, but would incorrectly believe s/he was

contributing and that another seeker was not. Problems appeared in the non-FER

user study, after cooperative goals were introduced.

To correct players’ confusion about who was contributing to a goal’s collection,

we color the collection status according to a seeker’s color (Figure 32, d.). In addition,

we draw a line from each collecting seeker to the goal, linking that player to the goal to

indicate their action (Figure 29). This feedback is a change to making visible (V.G.2,

page 77), and in the Te
2C with FER user studies, no further confusion occurred.
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Fig. 33.: Radio status indicator animation and sound. The animation and sound help
participants understand that the radio takes about a second to connect to the radios
of other players.

d. Building a Mental Model of the Radio

Players had difficulty developing a mental model of how the radio worked. Because the

radio is half-duplex, only one player can communicate at a time. Players would cross-

talk (a common problem in real-life teams), and thus have difficulty understanding

each other.

Another issue faced by teams when using the radio is connection lag when using

PTT. There is a 500 millisecond (ms)–1,500ms lag between when the PTT button

is keyed, and when receiving radios pick up the transmission. The result was that

players would frequently fail to get the first parts of their messages to their teammates,

who would either misunderstand or be unable to understand the communication at

all.
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To address these issues, we introduced a radio status augmented affordance-as-

sign to all of the game interfaces (Figure 33). The status augmented affordance-as-

sign depicts an icon of a radio. Whenever there is voice communication on the line,

the status visualization lights up in red, indicating it is unsafe to talk. Whenever

a player keys her/his radio, the visualization turns yellow for 1,000ms, then turns

green. In addition, a set of waves animate from the antenna on the radio to indicate

it is transmitting. This mechanism makes the otherwise unintelligible status of the

radio visible to the player.

An aural augmented affordance-as-sign also helps delay players briefly before they

start talking. The sonification lasts for approximately one second and stops early if

the player releases the PTT key. This modification was made based on the suggestion

of an expert FER, who indicated that radios used in the field work in this way. The

change makes this component of the design mimetic, because the correspondence to

reality enables participants to build a more functional mental model of the radio.

e. Encouraging Cooperation through Score

While the original scoring system (Table V) encouraged teams of players to compete

with one another and strive harder, it did not motivate teams to cooperate as well

as was intended. Participants noted that acquiring three single-seeker goals was the

equivalent of collecting a single three-seeker goal and believed this was easier: 3 ∗ 100

points = 1∗300 points (Equation 6.2, page 107). To motivate more cooperation within

the team, the scoring rubric was iterated, placing heavier emphasis on cooperative

goals (Equation 6.1, page 95; Table III, page 94).
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E. Discussion

The present Te
2C game incorporates the design principles discussed in the previous

chapters. Through iteration, we develop the right distribution of information across

player roles. Interface and game mechanic iterations selectively balance what infor-

mation is distributed to whom through making visible and invisible. Communicable

representations are crafted, reducing cognitive load. Threats are made predictable,

through flocking behaviors. Game conditions create environments in which players

mix communication modalities, by choosing between face-to-face and radio commu-

nication. Audible cues in the form of augmented affordances-as-signs support players

in building mental models of equipment as well as understanding state. Cues are

played over the radio, so that players can practice overhearing.

In terms of the traditional simulation types (IV.B.1, page 37), the present Te
2C

game is both virtual and constructive. The seekers’ perspective is virtual, they move

simulated avatars through a game environment. The coordinator’s perspective is

constructive, s/he directs resources (seekers) to accomplish tasks. In the planned

mixed reality game, seekers will take on a hybrid live/virtual simulation. They will

be moving in the real world and encountering real obstacles, while accomplishing

tasks in a virtual world.

Te
2C, as a non-mimetic simulation, is intended to have as little theme as possible;

it is meant to be an alternate context in which to practice. The names selected for

entities and roles specifically do not invoke the domain of emergency response, nor

any fiction. The representations of the entities are likewise not meant to correspond to

any existing real or fictional world. How players construct and appropriate meanings

within the game is their own invention. This design decision will support the transfer

of Te
2C from the domain of firefighting to others in future work.
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The following chapter addresses the evaluation methods used for Te
2C, including

measures of performance in the game and a speech coding scheme for measuring team

coordination. The two chapters that follow evaluate Te
2C with two subject groups:

non-FERs and FER students.



116

CHAPTER VII

METHODOLOGY FOR EVALUATING TEAM COORDINATION

GAMES

II
mental models affordance & constraint distributed cognition team cognition

V
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game mechanics
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Fig. 34.: Component of the concept map (Figure 1) for the evaluation methodology.

As the designs of Te
2C have changed through prototypes and two complete versions,

so, too, has the evaluation methodology. Evaluation is of team coordination, as

determined by measuring aspects of cooperative game play and communication. In

this chapter, we begin by describing the experiment methodology used in the two Te
2C

user studies; each study’s chapter describes any deviations from the pattern, as well as

the subjects involved. Experiment methodology includes the experiment apparatus,

study sequence, and data collection (Figure 34). We then present the Coordinated

Log + Audio Playback System (CLAPS) that enables researchers to examine audio

and gameplay records and some components of the game log analysis. We conclude

with the iterated utterance coding scheme, on which metrics are based, and describe

quantitative analysis methods that will be used throughout.

A. Experimental Methods

The team performance literature informs this research through the game and user

study designs. Time for strategic planning [Stout et al. 1999] and reflection [Gurtner
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et al. 2007; Schön 1984] are important for teams to work together effectively and

creatively. Hackman and Wageman suggest that teams need a level of familiarity

with their task before reflection will be effective [2005]. Groups change over time, so

it is essential to study them using longitudinal methods [Arrow et al. 2005] where the

same participants are evaluated repeatedly over a long time period. This suggests

that the studies need to be long term, and evaluate the same participants repeatedly.

1. Apparatus

In all user studies, the apparatus was the Te
2C game deployed on four notebook com-

puters. Each laptop was connected to custom audio hardware, allowing an audio feed

to and from a two-way, half-duplex radio, as well as push-to-talk (PTT) control. Each

laptop was also equipped with a Bluetooth monaural headset with microphone. Fig-

ure 35 diagrams the flow of data through the technology in the apparatus. Figure 37

shows a group of FER students using the Te
2C apparatus to play a tutorial game.

A custom Pure Data (Pd) [Puckette 2009] patch mixed audio from the radio and

the headset. PTT was enabled through Te
2C Java software and the radio hardware

interconnect. The result is that players can hear the radio communication, along

with game sonifications, through their headsets. They can transmit to teammates

by holding a PTT key and talking through the headset. The Pd patch also enabled

recording audio data for later analysis.

The Te
2C games were run in three different conditions: tutorial, seekers co-located

(coordinator isolated), and all players distributed, as shown in Figure 36. In the tu-

torial condition (Figure 36, a.), all players were seated around a table with laptops

and played a tutorial game (as described in the next section and in Section VI.D.1.e,

page 107). When seekers were co-located, and coordinator isolated, seeker players

were seated around a table, while the coordinator played from a separate room (Fig-
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Fig. 35.: Technological data flow in the Te
2C apparatus. Four players (one coordi-

nator and three seekers) communicate over radio (details of the audio setup appear
in Figure 38) while playing with the Te

2C client software on their player terminals
(notebook computers). The player terminals are networked to the Te

2C server, which
runs the Te

2C game logic and records a log of the game.

ure 36, b.). The co-located players could communicate with each other face-to-face,

while the radio was necessary to reach the coordinator. In the all players distributed

condition (Figure 36, c.), each player was in a separate room. To communicate, each

player had to use the radio. The varied conditions require the participants to practice
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Table VI.: Te
2C studies execution sequence, showing counterbalanced conditions.

Each player is represented by a letter (W–Z).

session (Ses) sequence (Seq) condition (Cnd) coordinator seekers

1 0 tutorial – W, X, Y, Z

1 1 co-located W X, Y, Z

1 2 distributed W X, Y, Z

2 3 distributed X W, Y, Z

2 4 co-located X W, Y, Z

3 5 co-located Y W, X, Z

3 6 distributed Y W, X, Z

4 7 distributed Z W, X, Y

4 8 co-located Z W, X, Y

with the radio, which they might otherwise avoid doing, because of its problems and

limitations.

2. Study Sequence

Each team participated in four game sessions (Table VI), typically a week apart.

The break between sessions gave participants time to consider their performance and

develop new strategies, supporting incubation of new ideas [Smith 1994]. This longi-

tudinal design allows us to evaluate changes in the team’s coordination capabilities

over time.

During each of the sessions, participants played two games. Before, after, and

between games, participants were given 10 minutes to reflect and discuss, planning

strategy and diagnosing problems they encountered. This reflection period is an

essential component of developing effective strategy and team coordination [Gurtner
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comm.
radio 
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(a.) tutorial condition: 
all players in the 
same room; 
communicate face-to-
face

(b.) co-located 
condition (C): all 
seekers in the same 
room, coordinator 
isolated; seekers 
communicate face-to-
face, coordinator by 
radio

(c.) distributed 
condition (D): all 
players isolated; 
communication by 
radio

C

C

C

Fig. 36.: Study conditions for Te
2C. The team’s coordinator is identified by a label

“C”. Walls indicate where face-to-face communication cannot be used.

et al. 2007; Schön 1984; Smith 1994], giving practitioners time to make plans and

develop shared mental models (II.D.1, page 13).

In the first session, a tutorial game was played, in which all players acted as a

seeker, but could observe and interact with the coordinator’s view. Cross-training by

experiencing multiple roles within a team promotes shared mental model formation

(II.D, page 12). The tutorial is a form of cross-training, like the kind undertaken

by FERs, enabling players to formulate mental models of each others’ perspectives

and capabilities. The tutorial game walks each player through the game controls

and demonstrates all of the game mechanics. It calls attention to the information

distribution between the two interfaces. Study administrators were on hand to guide
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Fig. 37.: A crew of FER students at Brayton Fire Training Field play a tutorial game
of Te

2C.

participants who had difficulty and to answer any questions.

As described above, there are two team configuration conditions (Cnd): co-

located (C) and distributed (D). Conditions are counterbalanced, alternating order

each week (Table VI). To more directly emulate FER education practice, each player

takes on the coordinator role for one session (two games). For each session, a coordi-

nator is randomly selected from among the players that have not yet played the role.

The list below describes the study sequence. Components that occur only in the first

of a team’s four sessions are marked with an open bullet (◦), while components that

occur in every session are marked with a closed bullet (•):

◦ Informed consent obtained from participants.

◦ Participants fill out a pre-questionnaire, establishing prior experience with

teams, sports, and video games, as well as demographic information.

◦ Participants play a tutorial game, in which they are presented with the seeker

and coordinator interfaces side-by-side, and given a series of instructions on how
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to perform both roles. The side-by-side design enables understanding informa-

tion distribution.

• The team is informed of the coordinator’s identity for the session and given

a minimum of 10 minutes reflection time, where it is suggested they discuss

strategy and make plans before the first game of the session.

• Participants play the first game of the session (see Table VI for condition or-

dering), and answer a short questionnaire about the experience.

• Players are given a minimum of 10 minutes reflection time, where it is suggested

they discuss strategy and make plans for their second game.

• The team plays the final game of the session, in the opposite condition, and

follows up with a questionnaire about the game itself, and the session as a

whole. The final session includes extra questions reflecting on the study as a

whole.

• The team is given a minimum of 10 minutes to reflect.

3. Data Collection

Data from the user studies consisted of audio records, game logs, and questionnaires.

Audio was recorded by the testing apparatus during game play, using a four channel

system through the Pd patch. A portable audio recorder with powered condenser mi-

crophone was used to record all participant interactions during the reflective sessions

(before, after, and between games). The game logger captured the Te
2C server’s state

at each game update. Pre-questionnaires recorded self-report data on experience with

game play, firefighting, and attitude toward multiplayer games. Questionnaires dur-

ing the user study recorded participants’ impressions of the game immediately after
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play, asking about communication during play and perceived performance of team-

mates. Post-questionnaires recorded participants’ impressions of the game and asked

them to describe their experiences.

a. Game Log Recording

Game logs record the entire game state when the game server executes its simulation

loop, incorporating all data from the player clients. The game log can then be used

to reconstruct each player’s experience on their individual client computers, using

CLAPS. The game log records the terrain and the status of all entities for every cycle

of game play. Game logs are recorded on the server in XML format.

The server always has the most current version of the Te
2C game state. Game

state components are either static or dynamic. Static components, such as the loca-

tions of goals, players’ names, and the terrain are recorded once, at the beginning of

the log. Dynamic game state consists of the states of all entities (location, status,

etc. of threats and seeker avatars, state of goals). Dynamic game state is recorded

repeatedly. While Te
2C is designed seamfully, the lack of a simulated WiFi signal does

not prevent clients from sending data to the server. The server simply runs the game

mechanics as if the data were not present (but continues to record it).

b. Audio Recording

Audio is recorded from all players. Audio recording is thorough, capturing a variety

of channels during play. Each Te
2C terminal’s audio setup includes a wireless Blue-

tooth headset (microphone and speaker), the terminal’s sound card, custom audio

interconnect hardware, and a handheld radio. Audio is mixed using a custom Pd

patch. The Pd patch enables audio recording, in addition to audio mixing. For each

player in a game, four channels are recorded to a WAV audio file during play at 8,000
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Hertz (Hz): speech, incoming radio, game sounds, and a synch track. This results

in a total of 16 audio tracks for a whole game (4 tracks per player with 4 players).

Figure 38 diagrams the flows of audio and control data in the Te
2C setup, including

the audio recorder component.

T²eC Pd audio patch

audio mixer

radio

player

headset in

headset out

game audio

radio in

radio out 

audio recorder

audio 
record 

file

game audio track

player speech track

team speech track

synch track

T²eC client

wireless 
headset

player
terminal

other team 
members' 

radios

running 
software

control
data

audio
data

Fig. 38.: Audio setup in Te
2C. Each player’s terminal runs the Te

2C client and the Pd
audio patch. The audio patch handles mixing the audio streams from the player’s
wireless (Bluetooth) headset, the radio, and the game audio. Game audio is controlled
by data from the Te

2C client. The Pd audio patch also includes the audio recorder,
which writes a four track audio file: a synch track (controlled by the Te

2C client), a
game audio track, a player speech track (all utterances by the player), and a team
speech track (all utterances from the radio). This setup is repeated for each individual
player.
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The player speech track records all audio received by the microphone on the

player’s Bluetooth headset. This allows researchers to analyze what the player said

during play. Speech data is useful for evaluating how effectively the team is coordi-

nating, for measures like anticipation ratio.

The team speech track records all audio heard by the player through his/her

radio. Because the radios are half-duplex, the incoming radio track will be silent

when the player keys PTT on his/her own radio. The incoming radio track allows

researchers to hear requests to which the player is responding, aiding in understanding

context. It also enables discovery of instances of crosstalk (III.B.2.a, page 24).

Game sonifications produced by the patch are recorded. While sounds are not

used in analysis, they allow the researcher to understand the game context com-

pletely, recreating the player’s experience. This supports, for example, discovery of

overhearing, where a player responds to the sounds in another player’s game (III.B.2.a,

page 24).

The synch track is not audio data, but instead records information about time,

enabling coordinated log playback. Each game cycle has an index value and that

value is recorded as a sample value on the synch track. The result is a track that

spikes to its highest value when the game begins, then gradually decreases over time.

The game cycles are synchronized across clients, so the synch tracks are as well. The

synch track is similar to Society of Motion Picture and Television Engineers (SMPTE)

timecodes used for synchronizing audio and video in recording [Benson and Whitaker

1990].
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Table VII.: Independent team and player analysis level variables in Te
2C with FERs.

variable description range level

Ses ordinal value indicating the game session 1–4 team

Seq ordinal value indicating the game in the sequence 1–8 team

Cnd game condition [C, D] team

Rl player role in game [S, D] player

B. Coordinated Log + Audio Playback System (CLAPS)

The Coordinated Log + Audio Playback System (CLAPS), first described in Hamilton

et al., is used to evaluate Te
2C players by enabling researchers to observe play with

audio [2009]. By combining log playback with audio playback, fully synchronized us-

ing the synch track, researchers can discover interesting qualitative data. Researchers

can connect play action with speech, disambiguating quantitative measures, like the

audio codes described later. Figure 39 shows a screenshot of CLAPS during playback

of one of the Te
2C with FERs user studies.

We use CLAPS to enable researchers to review each game in the context of play-

ers’ experiences. CLAPS presents the researcher with a re-creation of each player’s

view and plays back all recorded audio. The reviewer may modify the mix of the

audio tracks by controlling the volume and pan of each, allowing them to create a

spatial audio mix that facilitates the analysis of particular communications between

players. The system also presents a scrub bar with visualizations of game state over

time, to allow the reviewer to randomly access points in the game.
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Fig. 39.: Screenshot of the Coordinated Log + Audio Playback System (CLAPS).
Each player’s view is shown simultaneously and each has a control for the three
audible tracks (player speech, team speech, and game audio). Audio tracks can
be selectively amplified, soloed, muted, and/or stereophonically spatially positioned.
The timeline on the bottom visualizes the HP of each seeker and whether or not they
are collecting a goal.



128

C. Game Data Variables

In this section, we describe variables for evaluating performance in game play. Eval-

uating players is difficult, because play is complex. The emphasis in analysis is on

team performance in the game environment. Discrete game cycles are the proxy for

time in Te
2C: better teams will complete the game faster. Capture by threats is a neg-

ative metric that counts the number of times seekers’ avatars are reduced to zero hit

points. Several variables contribute to game play performance metrics that primarily

consider the number of goals collected by the team and how quickly they succeeded.

Independent variables at the individual and team levels are described on Table VII.

Tables of dependent variables are outlined in Table VIII.

1. Game Cycles

The experience of game play is continuous, but simulation systems running on digital

computers are not. Time is divided into discrete game game cycles determined by

the Te
2C server. The Te

2C server executes logic that considers the current state of all

seekers (location, hit points, etc.), the flocking algorithms for threats, etc. A game

cycle closes when the game server runs its side of the simulation (VI, page 83). The

result of each game cycle is recorded to a log. Each game runs for a set number of

game cycles, which map to real time at cycles per second (hertz, Hz). Some metrics

are based on number of game cycles, using them as a proxy for time.

In the present studies, each game runs for a maximum of 9,000 game cycles and

the server updates at 10 Hz; this results in games that run for a maximum of 900

seconds (15 minutes). If a team collects all of the goals, the game ends prematurely.

All time-dependent measures are normalized against the number of cycles played by

the team. The dependent team level analysis variable cycRem is the number of game
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Table VIII.: Dependent team level analysis game log variables in all Te
2C studies.

variable description

GC1S number of single-seeker goals collected in game, normalized against
total number available

GC2S number of 2-seeker goals collected in game, normalized against total
number available

GC3S number of 3-seeker goals collected in game, normalized against total
number available

cycRem game cycles remaining when all goals have been collected, normal-
ized against the performance of all teams (if the seekers fail to collect
all goals before time is up, this value is 0)

gamePerf GC1S+GC2S+GC3S+cycRem; gamePerfdirectly captures the set
of performance measures used in determining the end of the game,
it directly measures the team’s ability to finish quickly by weighting
the total collected goals and cycles remaining evenly

score game score, normalized within the team; game score is computed
during play, it weights the collection of each goal, includes a bonus
for finishing quickly, and incorporates the summation of the score
computed from the team’s status each game cycle; more information
can be found in VI.B.3 (page 93)

outs number of times each seeker captured by threats (taken out of the
game), normalized against the cycles played in that game

cycles remaining once all goals are collected.

2. Going Out / Capture by Threats

During play, a seeker’s avatar’s status may change to out (VI.B.1.a, page 87). A

seeker’s avatar goes out or is captured by threats if its hit points are reduced to 0

through contact with threats. Per the game rules, seekers may restore at bases,

where they come in. The dependent variable, outs, is the total number of times,

aggregated for all seekers on a team, that a seeker’s avatar’s status changed to out

during the play of the game, normalized against number of game cycles. For example,
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if Skra went out four times and Skrb was captured three times, outs = 7 (assuming

a game in which the team did not collect all of the goals).

3. Game Play Performance

A number of metrics contribute to measuring a team’s ability to perform during game

play. Many components are directly related to the team’s ability to cooperate. The

first mechanism looks at the number of each type of goal collected by team members.

Two combination metrics are used: game performance and score.

The first measure of performance captures how many goals seekers collected

before time ran out (GC1S, GC2S, and GC3S). Cooperative goal collection (GC2S and

GC3S) is predicated on the seekers gathering together under dangerous conditions

after locating the goal. Number of cycles remaining (cycRem), described above,

is another measure of performance: if the team manages to collect all goals early,

cycRem indicates how fast they were able to do so. Number of outs (outs) is a

negative measure of performance.

Two other measures aggregate the above performance measures. Overall game

performance (gamePerf) sums the normalized goal collection measures with the nor-

malized time remaining. Score (score) is measured as described in the previous chap-

ter. It weights the value of each goal based on its difficulty to collect (cooperative

goals are harder), includes a penalty for going out, and provides a bonus based on

the game cycles remaining.

D. Speech Coding Scheme

Communication within a team offers insight into its ability to coordinate effectively.

To analyze participants’ communication, we code each game using a speech coding



131

scheme, which allows us to classify each utterance as a particular type of communi-

cation. This converts qualitative information into quantitative data. Applying the

coding scheme is labor-intensive, as researchers must listen to all of the audio recorded

during play and classify each statement. The result is a count of the number of times

each player used a particular speech code. In addition to recording content of com-

munication we also record the communication modality the participant used to relay

their communication and the success or failure of the communication (in some cases,

radio may fail or be crosstalked).

Two complete speech coding schemes were developed to analyze data from the

Te
2C studies. The coding schemes were based on the metric of anticipation ratio, used

for measuring implicit coordination (II.D.1, page 13) and grounded in observations of

fire emergency response burn training exercises and interviews with expert responders

(Chapter III, page 15). Version 1.0 of the coding scheme was used for the non-FER

user study (Chapter VIII, page 143) and is a direct analog of the codes derived from

ethnographic data. Version 2.0 iterates version 1.0, condensing some of the codes

and applying them within the context of the game more directly. It incorporates

observations from the use of version 1.0 and is used to evaluate Te
2C with FERs

(Chapter IX, page 156).

1. Anticipation Ratio

A primary goal of the present research engages participants in team cognition so they

improve their ability to implicitly coordinate (II.D.1, page 13). The value of implicit

coordination lies in the team’s reduction in unnecessary communication, reducing the

cognitive, time, and bandwidth burdens associated with communication.

Anticipation ratio (AR) is a measure of implicit coordination, measuring team

members’ balance of pushing versus pulling information [Entin and Serfaty 1999;
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MacMillan et al. 2004]. AR measures the amount of information team members

provide against the amount of information requested. Pulling information (making

requests) as a form of noise in the limited communication channel. Pulling information

does not support the team, but burdens it with additional cognitive load and reduced

access to the communication channel. Such communications do not aid team members

in making decisions and taking action, but require them to respond with information.

The measure places value on pushing information out to the team (making reports).

The function for computing AR is:

AR = push/pull (7.1)

Where push is the number of utterances pushing information (reports) by some part

of the team and pull is the number of utterances pulling information by some part of

the team (requests). Other types of utterances are not included in the measure. In

practice, AR is calculated using a number of different combinations of team members

[Entin and Serfaty 1999; MacMillan et al. 2004], so exactly who is pushing or pulling

information varies depending on the research. In the user study chapters that follow,

the version of AR used will be described. The AR codes of report information, request

information, and other form the basis for our coding schemes.

2. Grounding in Practice

We develop utterance codes through grounded theory [Glaser and Strauss 1967], start-

ing with observations of fire emergency response work practice (Chapter III, page 15).

To understand FER practice, we began with interviews with expert emergency re-

sponders. In the interviews, the experts described the types of communication used

at the fireground. In conjunction with their reports, we observed burn training ex-



133

Table IX.: Observed speech codes, grounded in observations of burn training and
discussions with FERs. Speech codes are originally described in Toups Dugas and
Kerne [2007]. Examples are taken from observation of burn training exercises.

code description example

information re-
quest

asks for information about
the incident

“Is the fire knocked out on the first
floor?”

fireground
report

describes the local envi-
ronment within the fire-
ground

“No, fire is not knocked out on the
first floor.”

incident report describes information
about the global incident

“There’s no smoke or anything
showing on the outside.”

status request asks for information re-
lated to the health or
progress status of a team

“Attack 2 and 3 are y’all ready for
water on that side?”

status report FER reports on their or
their teammates’ status

“Advise we are running out of air
and are leaving the structure.”

order a command to perform an
action

“Go ahead and advance up the
stairs on the Charlie-Delta corner.”

assistance re-
quest

asking for help taking ac-
tion

“Can I get two personnel to assist
Attack 1 in search and rescue?”

progress report supplies information
about the status of an
order or set of actions

“Fire’s knocked down on first
floor.”

acknowledgement indicates that a message
was heard and understood
(usually repeating it back)

“Copy that. Advancing up stairs,
Charlie-Delta corner.”

clarification /
order request

a request for help with un-
derstanding a command,
or asking for a new com-
mand

“Can you repeat that?”

ercises and video recorded them with audio from the radios. The video was later

transcribed.

Through the interviews and observations, we developed the diagram shown in
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Figure 9 (page 31). The diagram shows the ways specific types of information flow

between workers at the fireground. From the diagram, we derived a speech code

system, described in Table IX. Broadly, the codes classify utterances into requests,

reports, and other communication, making their use suitable for calculating AR.

These codes form the basis of version 1.0 of the audio coding system used for the Te
2C

game.

In fire emergency response work practice, embodied emic information about the

fireground flows up the chain of command from firefighters to their superiors. This

information is filtered and passed on to the incident commander (IC), who incorpo-

rates it with the disembodied etic data acquired from artifacts, as well as observations.

From this, the IC makes decisions, which filter back down to those in the fireground.

Information communicated over the radio is difficult to understand, but reaches all

FERs on scene. Information communicated face-to-face is limited to those involved

in the conversation, but is rich and fast.

Information requests result in a return of either a fireground report or an inci-

dent report. A fireground report provides information about the local environment,

relative to the speaker. An incident report considers the fireground in context. Status

requests and reports are similar to other requests for information, but revolve around

individuals’ health and activity status. Similar to a status report is a progress report,

which describes action and progression toward a shared goal (such as “knocking down

a fire”).

In addition to gathering and sharing information, FERs must also communicate

about action. An order requests activity from another FER. An assistance request is

like an order, but collaborative. It asks one FER to help another in accomplishing

a task that is otherwise impossible for the individual or group that is attempting

to accomplish it. In the context of FER practice, an order and a request for action
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are essentially the same thing; it is expected that an FER will follow the command,

unless the local situation prevents it.

Metacommunication, communication about communication, is also an essential

component of FER communication practice. All commands must be acknowledged.

A face-to-face acknowledgement may be a simple nod, but use of the radio requires

a more concrete response. Consequently, acknowledgements over the radio typically

take the form of “copy that”, followed by a repeat of the command. The repetition

ensures that the command was understood correctly, because the person issuing the

command can respond with a correction, if necessary. Clarifications ask a speaker

to repeat a message so that it can be better understood. An order request asks a

commander to provide further instruction.

3. Version 1.0

Version 1.0 of the game data coding scheme is a direct analog of the scheme de-

veloped from grounded FER practice. It was used to evaluate Te
2C with non-FERs

(Chapter VIII).

In version 1.0, information about the fireground and incident are replaced with

relative game state and global game state. Relative game state reports are typically

deictic in nature, they describe information from the point of view of a particular

player. Global game state describes the virtual world in terms of absolute positions.

Status requests and reports work in much the same way as FER practice, but describe

the seekers and their avatars. In some cases, the coordinator may also report on

his/her own status, such as being too busy to respond to a request. Progress reports

are also the same as their analog in FER practice. Table X outlines the speech codes.

As in FER practice, Te
2C players must discuss and take action. Te

2C players use

orders to direct other players to take action in the virtual world. Assistance requests
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Table X.: Version 1.0 of the speech coding scheme, used for Te
2C with non-FERs.

The codes are direct analogs of those discovered in FER work practice (Table IX).

code description example

game state re-
quest

player asks for information about the vir-
tual world (entities, terrain), but not other
players

“Where is the
threat?”

relative game
state report

player supplies information about the vir-
tual world relative to his/her own perspec-
tive (typically using diectic reference)

“There’s a base
here.”

global game
state report

player supplies information about the vir-
tual world without using their localized
perspective

“There’s a goal at
(1, 2).”

status request player asks for information about another
player (including seeker status)

“Where are you?”

status report player supplies information about
him/herself or another player

“I’m out right
now.”

order a command to perform an action “Head south.”

assistance re-
quest

asking for help taking action “I need a second
seeker.”

progress report player supplies information about status of
an order or current set of actions

“We’re almost to
the base.”

acknowledgement indicates a message was heard and under-
stood

“Understood.
Heading south.”

clarification / or-
der request

a request for help with understanding a
command, or asking for a new command

“Where is the
next goal?”

metagame communication about the game itself “How do I run?”

are also essential, because players need to cooperate to collect goals, avoid threats,

and find safety.

Metacommunication utterances are used to acknowledge commands and informa-

tion, clarify requests, and request orders. Metagame utterances are added to capture

instances when players are communicating about the game or apparatus itself, rather
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Table XI.: Inter-rater reliability for Te
2C user study with FERs with audio coding

scheme version 2.0. Inter-rater reliability is computed using Pearson correlation coef-
ficients by coder pair and code, averaged over all coded games. Due to lower reliability
of coder 1, only coders 2 and 3 were ultimately used; the average inter-rater reliability
is 0.89.

coder pairs

1 & 2 2 & 3 1 & 3

codes game state request 0.67 0.86 0.73

status request 0.41 0.94 0.17

action request 0.97 0.96 0.93

game state report 0.82 0.94 0.89

status report 0.76 0.85 0.49

that about the elements within the game (e.g. asking which key causes the avatar to

take an action).

Codes were applied to games by individual researchers so that each game was

coded by a single researcher. When applied, the codes showed very few trends with

the games, although significant qualitative data was acquired. The primary discovery

from applying the codes was that they were frequently ambiguous. As such, we

iterated the specification of the codes to version 2.0.

4. Version 2.0

A number of ambiguities and redundancies were discovered when applying version

1.0 of the game data coding scheme. It included a large range of codes, making it

difficult to apply. In iterating the scheme design, version 2.0 simplifies, mapping the

same version 1.0 codes into new ones.

Three researchers coded all audio from each player in each game; each play-
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er/game was coded by exactly two researchers. Inter-rater reliability (IRR) was com-

puted for each game and audio code, to ensure that the audio codes were properly

applied and that the coding scheme was valid. To calculate IRR, the Pearson corre-

lation coefficient of each coder pair for each code was computed. Detailed results are

reported on Table XI. The average inter-rater reliability for all coders was computed

to be 0.75. Coder 1’s results were less reliable, because he was out of the country

and unavailable for discussion. The result (with only coders 2 and 3) is a final IRR

of 0.89.

For version 2.0, relative and global game state reports were merged into the single

game state report code. Orders, assistance requests, and order requests became action

request. In terms of anticipation ratio, we consider action requests to be a type of

report. Commands often supply information to the team and do not add noise to

the system. Progress reports were included as a part of status report, because they

supply information about the activity of a player. Acknowledgements and clarification

requests were changed to simply be metacommunication. Table XII outlines version

2.0 of the coding scheme.

a. Secondary Tags

Secondary tags were introduced to provide nuance and identify gameplay patterns.

Any number of secondary tags can be applied to each utterance. Table XIII describes

each of the secondary tags. The tags identify self, identify target, and repeat back

identify communication patterns common in fire emergency response work practice.

The use coordinates and discuss walls tags were added to see if participants engage in

communication about information distribution in play. Planning, collaborating, and

modifying communication patterns were all observed to happen in the play of Te
2C

version 1.0, and so were added as tags.
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Table XII.: Version 2.0 of the speech coding scheme, iterating version 1.0 and used
for Te

2C with FERs. Includes a mapping back into the version 1.0 codes.

code mapping description example

game state re-
quest

– player asks for information about
the virtual world (entities, terrain),
but not other players

“Where is
the next
goal?”

game state re-
port

relative /
global game
state

player supplies information about
the virtual world (entities, terrain),
but not other players

“There are
threats
here!”

status request – player asks for information about
another player (including seeker
status)

“Where are
you?”

status report status /
progress
report

player supplies information about
him/herself or another player, in-
cluding progression toward an ob-
jective

“I’m out
right now.”

action request order, as-
sistance
request, or-
der request

player asks another player to do
something

“Let me
know where
to go next.”

meta-
communication

acknowledge-
ment, clar-
ification
request

communication about communica-
tion, including indicating a message
was heard and understood and ask-
ing for clarification

“Repeat
please.”

metagame – communication about the game it-
self

“How do I
run?”

b. Hybrid Codes

Ambiguities discovered during the course of coding resulted in the development of

hybrid codes. Some utterances are essentially multiple codes in a single message,

which is a more efficient way of communicating not captured by AR directly. The

most common hybrid code was a game state request / status report: “I need a base.”

Such a message explicitly asks for a base, but also implies that the seeker is out.
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A single utterance suffices to supply two meanings, economizing the communication

channel and improving implicit coordination.

Table XIII.: Secondary tags in version 2.0 of the speech coding scheme. The tags en-
able researchers to note additional nuance about communication in games to identify
it as being more similar to FER practice or identify if parts of the game mechanics
are being employed.

tag description

plan suggesting future activity or requesting orders

identify self a player identifies him/herself in a communication

identify target a player identifies the expected recipient of a mes-
sage

collaboration a communication identifying a need to work together
toward a shared objective

repeat back a player repeats back a message to the sender to
ensure it was heard properly

use coordinates a player uses virtual world coordinates in a commu-
nication

modify communication pat-
tern

a player attempts to set rules about future commu-
nication

discuss walls a player communicates about the presence of walls
in the way

E. Quantitative Analysis Methods

Several quantitative analysis methods are used in reporting results in the following

chapters. The first method of quantitative analysis consists of a linear model of

a dependent (response) variable changing with an independent variable. Results

are presented as ([dependent variable]∼[independent variable]: m = [value], R2 =

[value], p < [value]), where m is the slope of the regression line, R2 is the fitness of
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the line, and p is the significance of the result. A positive regression line slope indicates

a direct relationship, while a negative slope indicates an inverse relationship. Where

we call attention to a result that is not significant, we omit the m and R2 values and

report p as greater-than, instead of less-than.

The second method of quantitative analysis is Welch’s t test [Welch 1947]. The t

test compares the mean value of a set of samples in a pair of conditions of possibly un-

equal variances for a statistically significant difference between them. We report t test

results as ([variable], [condition variable]= {1stconditionvalue, 2ndconditionvalue}:

t = [value], df = [value], p < [value]), where t is the t statistic, df is the number of

degrees of freedom of the data, and p is the significance of the result. In this section,

we use one-tailed t tests, which determine if one condition is greater-than (positive t

statistic) or less-than (negative t statistic) the other. Throughout, we use one-tailed

t tests, because the results are only interesting if they change in one direction, not

both.

F. Conclusion: Evaluation Techniques for Team Coordination

Developing quantitative methods for evaluating complex human performance, such

as a team coordination, is challenging and an important undertaking for research

that develops systems for teaching such performance. We developed a number of

metrics for evaluating complex team play in the Te
2C non-mimetic simulation game

environment. Game play variables measure teams’ performance in the environment,

while communication metrics evaluate teams’ abilities to communicate and coordinate

effectively.

When determining game play variables, they must be environment-specific. They

need to target the skills that the environment is designed to teach. In the case
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of Te
2C, we target variables that rely on participants working together (cooperative

goal collection) and emphasize those. By building the cooperative metrics into the

quantification of team performance (game score), which is displayed to players, they

are encouraged to perform better at the non-mimetic simulation task.

Evaluating team coordination in game play through the coding scheme is widely

applicable. While the game play coding scheme we provide is information-centric,

one could use it in existing multiplayer games, such as Halo [Bungie Studios 2001],

to gauge team coordination ability.

The following two chapters use the evaluation methodology with two versions

of Te
2C and with two subject populations. The next chapter describes using version

1.0 of Te
2C with non-FER participants. This study provided evidence of the value of

non-mimetic simulation for teaching team coordination and provided valuable insight

into the design of Te
2C. In the chapter that follows, we describe a second user study

with version 2.0 of Te
2C used with FER students at the Brayton Fire Training Field.
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Fig. 40.: Component of the concept map (Figure 1) for user studies of Te
2C version

1.0 with non-FERs.

To validate our non-mimetic simulation game design, we conducted a controlled user

study using version 1.0 of Te
2C with non-FERs. the purpose of this study was to

evaluate Te
2C in terms of its ability to promote team coordination and motivate play.

It was essential to test game designs with non-FERs first, to ensure they were effective,

before working with the FER students. Results from the study support the value of

non-mimetic simulation and inform the development of version 2.0 of Te
2C.

This chapter reports on data with 36 non-FERs playing Te
2C in the laboratory.

Data include a total of 72 games (excluding tutorials). The study results are primarily

qualitative. They indicate that participants engage with the cooperative elements of

the game and begin to use team coordination strategies. Our evaluation methodology

was reported in Chapter VII; Figure 40 shows the links from that chapter. In this

chapter, we develop hypotheses and methods. Results and analysis follow. Design

improvements from the present data were reported in Chapters V and VI (pages 50

and 83, respectively). Non-mimetic simulation design principles, developed from the

present study, were presented in Chapter IV (page 34). The present study originally
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appeared in Toups Dugas et al. [“Emergent team coordination,” 2009].

A. Hypotheses

A number of hypotheses are investigated, supporting the principal hypothesis of the

present research. we relax the principal hypothesis here: by playing non-mimetic

simulation games, developed from work practice, players1 learn to more effectively

coordinate as a team. Four hypotheses contribute, addressing aspects of team perfor-

mance, communication, and support of practice.

H-1-1 Through game play, participants will improve their ability to accomplish co-

operative tasks.

H-1-2 Through game play, participants will improve their ability to coordinate.

H-1-3 Communication and activity in Te
2C will resemble communication and activity

of FERs.

H-1-4 The introduction of a scoring system will motivate play.

B. Methods

The methods for the Te
2C with non-FERs study are described in Section VII.A

(page 116). The study presented here uses version 1.0 of Te
2C. Teams are refer-

enced by the letter “T” followed by an identifier; identifiers are assigned in the order

that individuals volunteered for the study.

1instead of FERs
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Table XIV.: Non-FER gender demographics. Most participants were male.

gender number of participants

no response 9 (25.0%)

male 23 (63.9%)

female 4 (11.1%)

Table XV.: Non-FER age demographics.

age (years) number of participants

no response 8 (22.2%)

18–21 15 (41.7%)

22–25 8 (22.2%)

26–30 3 (8.33%)

31–40 2 (5.56%)

Table XVI.: Non-FER education demographics.

education number of participants

no response 6 (16.7%)

high schoola or lower 16 (44.4%)

bachelor’s degreea 9 (25.0%)

master’s degreea 2 (5.56%)

Ph.D.a 0 (0.0%)

a or equivalent

1. Subject Population

36 subjects, recruited from the university and community, were organized into nine

teams of four members each. When possible, we recruited groups of people who
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Table XVII.: Non-FER prior team experience. Most participants had little to no
experience or chose not to respond, although a substantial portion had a moderate
amount of team experience.

yearsa number of participants

no response 8 (22.2%)

0 12 (33.3%)

<1 7 (19.4%)

1–5 8 (22.2%)

6–10 0 (0.0%)

10–20 1 (2.78%)

a Based on multiple choice question: “Do you have any experience with team-based
situations, such as (but not limited to) firefighting, community activism, military
service, or police service? If so, how much?” Responses were year ranges.

already knew each other. Tables XIV–XVII provide data about the demographics

of the subjects. Subjects were mostly young adult males. Many had higher level

education (in college or holding a bachelor’s degree). Few had extensive prior ex-

perience performing teamwork. Participants were compensated: food was provided

at each session, and each participant received a gift card (30USD) when their group

completed all four study sessions.

C. Results

Audio with game logs serve as the primary source of data. Each player’s audio was

coded according to version 1.0 of the coding scheme. Analysis identified instances

of strategy, team coordination, and problems. Most significant results are observed

through qualitative data. Quantitative data analysis methods and independent and

dependent variables are described in Chapter VII (page 116).
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1. Team Task Performance

Teams improve their team task performance over repeated plays. They collect more

goals overall in later games and reduce their play time (gamePerf∼Seq: m =

6.510, R2 = 0.352, p < 0.0001; score∼Seq: m = 6.48, R2 = 0.3499, p < 0.0001;

cycRem∼Seq: m = 4.115, R2 = 0.1784, p < 0.0001). Specifically, they collect more

of the difficult cooperative goals in later games (GC2S∼Seq: m = 5.473, R2 = 0.2775,

p < 0.0001; GC3S∼Seq: m = 5.874, R2 = 0.3067, p < 0.0001). In early sessions,

players collect mostly single-player goals (83% 1-seeker, 41% 2-seeker, 35% 3-seeker),

which require less coordination. In late games, players collect more cooperative goals,

which require them to work together (95% 1-seeker, 86% 2-seeker, 87% 3-seeker). In

later games, players go out more frequently (outs∼Seq: m = 1.937, R2 = 0.04588,

p < 0.06). Game condition, co-located or distributed, did not impact performance

(gamePerf∼Cnd: p > 0.45; outs∼Cnd: p > 0.6).

2. Emergent Role Strategies

Some teams appointed a seeker leader to direct others by monitoring the local envi-

ronment and incorporating strategy and information from the coordinator. Although

no formal seeker leader role was specified in the design, T5, T6, and T8 did, during

at least one game, adopt a seeker to lead the team.

Similar to the emergent role of seeker leader was the adoption of a CAPCOM 2

who filters all communication to the coordinator from the group of seekers. This role

was only effective in the co-located condition, as seekers could rapidly communicate

with each other, and the CAPCOM could relay only the important information and

2T4 used the term “CAPCOM”, which is a role at NASA, responsible for commu-
nicating with spacecraft.
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requests to the coordinator. T4 adopted this strategy; T2 discussed using it, but

never implemented it.

3. Co-Location in the Virtual World

As teams played together and reflected, players eventually adopted a strategy of

seekers staying co-located in the virtual world. Early in the study, each seeker played

independently, losing the rest of the group, and then needing to be re-united in order

to collect any cooperative goals.

In later games, teams evolved strategies. Rather than splitting up, they used a

two collectors and one scout (2+1) or all-together strategy. In the 2+1 strategy [T1;

T3; T4; T5], two seekers paired up to collect cooperative goals, while the third seeker

ran ahead to scout the terrain. The scout’s job was to collect single-player goals, and

locate the cooperative goals for the pair.

In the all-together strategy [T1; T2; T3; T4; T5; T6; T7; T8], all seekers moved

around the map as a team. In this way, they were able to help each other find

invisible bases and were almost always able to collect any goal found. If the goal

required fewer than three players, the remainder of the group was back-up, in case

someone was captured by a threat at the last minute. The disadvantage of the all-

together strategy was that it is an all-or-nothing proposition: once a threat captured

one player, the rest were often also captured.

4. Team Coordination

During play, instances of team coordination were observed. These instances took

the form of players responding to requests with action, rather than communication

(implicit coordination) [T3] and leveraging audible cues.

Reports by participants after study sessions indicated that they believed their
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own teamwork was improving. Members of T2 remarked that playing the game

together would improve their skill at team sports. After one game, T5 chided one

of their members for “trying to be a hero” by attempting too much on his own. T4

discussed how the coordinator should monitor and anticipate the needs of the seekers.

One team member noted “what’s genius to me is the idea that each of you has an

incomplete set of information, you must communicate, it’s not like games where they

try to get people to communicate but there’s no real reason to” [T4].

5. Competition Motivates Improvement

Many participants expressed an intense interest in not only improving their scores,

but improving them relative to the other teams in the study [T2; T4; T6; T7; T9].

Although we did not formally make a leaderboard available to the participants, we

did field their questions about other teams’ performance. This prompted them to

strive harder in successive games. The following anecdote describes the emergent

rivalry between two teams who had never met:

Upon obtaining a record score in the third session, T2 members remarked
that, rather than be compensated they would prefer a trophy indicating
that they were “Number 1.” On hearing about this, T6 members bested
T2 in their next session, mentioning that they would be happy to provide
the T2 members with a trophy for second place. In their final session, T2
gathered all the goals in less than seven minutes, a record that was never
broken in this study.

Of note is the fact that players were at first uninterested in their total score,

but more interested in the number of goals collected. Once the team succeeded at

collecting all of the goals, they turned to reducing their play time. Both aspects of

achievement are included in our scoring rubric for Te
2C version 1.0 (Table V, page 107).
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D. Analysis

In this section, we examine the results to ascertain proof of the hypotheses. We

observe players improving at the cooperative tasks in Te
2C and improving team coor-

dination. We note how game play by non-FERs resembles FER work practice. We

see how the scoring system influences players motivation to participate.

1. H-1-1: Improving at Cooperative Tasks

H-1-1 Through game play, participants will improve their ability to accomplish co-

operative tasks.

As they play, participants shift from primarily gathering individual goals to gathering

cooperative goals. Improving the number of collected cooperative goals is indicative

of an improvement in team members’ ability to coordinate action and share infor-

mation effectively. Real-time constraints on goal collection, in the form of the time

required to collect the goal and incoming threats, make cooperative goals difficult

to collect. To collect a cooperative goal, seekers gather in the same location at the

same time while threatened. They either move together, which endangers them all, or

gather at a location from diverse positions. Players resolve information distribution

by communicating about the goal: its location and type (number of seekers required),

the safety of the area (nearby bases, seams, and threats), their locations, and their

status.

In fire emergency response work, there is safety in numbers. It is necessary for

firefighters to stick together [Toups Dugas and Kerne 2007; Wieder et al. 1993]. A

downed firefighter can be pulled out by a teammate, just as a backup seeker can

collect a goal when another falls. Multiple firefighters can accomplish more than an

individual: their combined strength is necessary to direct a powerful fire hose or lift
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heavy debris. This synergy of coordination is captured in the simulation by the design

of cooperative goals.

2. H-1-2: Improving Team Coordination

H-1-2 Through game play, participants will improve their ability to coordinate.

Teams improve their ability to coordinate by restructuring their teams and allowing

the seekers to act independently on situated information, inverting the chain of com-

mand. Seeker leaders and CAPCOMs are helpful, because they allow the coordinator

to delegate responsibility and give the seekers independence to act on local informa-

tion and improvise strategy. In the following anecdote [T8], the coordinator directed

the seekers to a base. The seeker leader spontaneously overrides with an augmented

plan based on local conditions:

Coordinator (radio): “Everybody go east together. Directly east.”

Seeker Leader (r): “Okay. We have walls to the east. We are going to

move around the walls and move east.”

C (r): “Go around the walls, go north, and...go north around the walls,

and then to the east.”

SL (r): “Negative. We’re going to head south, there’s a goal directly

beneath the base.”

C (r): “Okay, good, go there.”

SL (face-to-face): “Okay. Follow me.”

3. H-1-3: Play Resembles Practice

H-1-3 Communication and activity in Te
2C will resemble communication and activity

of FERs.
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Participants’ practice emulates work practice through emergent leadership positions

and the use of co-location strategies for the seekers. While player roles substantively

reflect FER roles, players add their own roles that strengthen the connection.

The advantage of a seeker leader, like a company officer in FER work practice,

is that it reduces the burden on the coordinator. Rather than handle each seeker

individually, the coordinator can focus on a single player, who enacts strategy and

delegates responsibility. This formalization creates a chain of command within the

team that is not formally specified, but that clearly parallels FER work practice

[Denef et al. 2008; Wieder et al. 1993; Cary Roccaforte, personal communication].

The game was initially designed such that the coordinator was like the inci-

dent commander (IC), with the three seekers mirroring firefighters. As we increased

information distribution from the Te
2C prototypes to version 1.0, with cooperative

goals and fuzzy representations in the coordinator’s view, the seekers grew more

autonomous. FERs also act autonomously, working with a general strategy from out-

side the fireground [Denef et al. 2008; Wieder et al. 1993; Cary Roccaforte, personal

communication]. They must be free to improvise as the situation warrants, because

each has unique, valuable, distributed information, that contributes to distributed

cognition.

The emergence of additional roles and strategies validates the design of the sim-

ulation. The coordinator functions more directly as an IC, the seeker leader or CAP-

COM is like a company officer, and the remaining two seekers are like firefighters.

Furthermore, the emergence of a leader among the seekers enables them to oper-

ate more autonomously than with information distribution alone. T4 mentions this

specifically in one of their reflective periods, noting to the coordinator that they do

not need to be micro-managed. T5 demonstrates its importance, as the group of

seekers works together to collect a 3-seeker goal near an offline region (“dead zone”)
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by walking backwards:

Coordinator (radio): “That point seems to be a bit better defended. . . ”

Seeker 1 (face-to-face): “I couldn’t take it because I was in the dead

zone.”

S2 (f2f): “Whoa, that is close. . . ”

S1 (f2f): “It’s important the direction we go to it because one direction

is too close [to the offline region of the map].”

S3 (f2f): “No, no. Back up, go towards it backward. That we can [back

over it]. . . ”

S1 (f2f): “Exactly, that’s what we should do.”

Sometimes the coordinator can identify patterns that the seekers cannot. While

trying to collect the final goal of the game [T3]:

Coordinator (radio): “[S1], can you take them back around the way you

just came? If you guys run out of that dead zone, you might be able to

get to [the goal] before the threats.”

The observed 2+1 and all-together strategies lend themselves to having a seeker

leader, who makes group decisions in the field.

4. H-1-4: Score Motivates Play

H-1-4 The introduction of a scoring system will motivate play.

Score and competition between teams is a powerful motivator for participation and

improvement. Leaderboards were requested extensively by participants. Team mem-

bers repeatedly expressed concerns about their ability to perform relative to other
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teams and were eager to play the game to improve their scores. The extra points for

cooperative goals motivated players attempt more difficult goals by working together;

this, in turn, required them to coordinate to succeed.

E. Discussion

The findings indicate significant progress toward validating Te
2C as a non-mimetic

simulation of fire emergency response team coordination practice. We hypothesized

that a non-mimetic simulation of information flows in fire emergency response prac-

tice can effectively engage team coordination skills. Through the simulation design

principles (IV.F, page 45) of information distribution, participant roles that limit

available action and information, and real-time stress, participants engage in implicit

coordination while improving play. Emergent play reflects FER practice. Participants

improve team coordination skills by engaging with distributed information; they work

together to coordinate diverse perspectives and collect cooperative goals. New roles

and strategies emerge, similar to those of FERs. Score motivates play. While higher

scores, in themselves, cannot be seen as evidence of learning, we examine how the

game stimulates players to improve in team coordination.

We design information distribution to create a distributed cognition environ-

ment, wherein team members are reliant on each other for rapidly-changing informa-

tion. Roles define available actions and information. Participants are under real-time

stress to perform. The result is a simulation that successfully captures the human-

centered aspects of fire emergency response, engaging participants in the intense team

coordination of FERs. Non-FER participants develop emergent strategies that match

those in fire emergency response work practice.

What we show in the next chapter is more than what was accomplished here.
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The present study does not show strong quantitative evidence that participants’ team

coordination is improving, nor does it directly show evidence that the non-mimetic

simulation improves team coordination in the firefighting domain. Further, lessons

learned from the present study enabled us to iterate the game design to version 2.0

and refine the coding technique. We perform the same user study, but with fire

emergency response students and with iterated designs. Using version 2.0 of the

game play coding scheme, we evaluate team coordination performance and use new

variables to examine team task performance. The students report on how the game

impacts their abilities in burn training exercises.
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Fig. 41.: Component of the concept map (Figure 1) for user studies of Te
2C version

2.0 with FERs.

While the previous chapter looked at non-fire emergency responders playing version

1.0 of Te
2C and produced results validating the non-mimetic simulation, this chapter

describes a study of fire emergency responder (FER) students playing at the Fire-

fighter Training Academy (FTA). The primary contribution of this study is that it

demonstrates the effectiveness of Te
2C for teaching team coordination by evaluating

play with the target population. We look at how game play and FER education

mutually influence each other in the context of the FTA.

The ecological validity of a study is based on how closely its methods approximate

reality, supporting the value of the study in terms of its ability to directly impact the

world. The present study is designed as it would be used in the FTA, supplementing

existing education. Although difficult to recruit and schedule, the FER students who

did participate were excited to do so. Our evaluation methodology was reported

in Chapter VII; Figure 41 shows the links from that chapter. This chapter reports

on data from 28 users who played a total of 56 games. In this chapter, we begin

with hypotheses, methods, and metrics. Results and analysis follow, concluding with
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discussion about the value of Te
2C for FER training and updates for future study

designs.

A. Hypotheses

A number of hypotheses are investigated. The principal hypothesis of the present

research is that by playing non-mimetic simulation games, developed from work prac-

tice, fire emergency responders learn to more effectively coordinate as a team. Six

hypotheses contribute, addressing aspects of team performance, communication, and

support of practice.

H-2-1 Through game play, participants will improve their ability to accomplish co-

operative tasks.

H-2-2 Player roles (IV.F.2, page 47), differentiated by information distribution

(III.D.1, page 15; IV.F.1, page 46; V.G.1, page 76) and available action, will

impact team communication.

H-2-3 Play condition, either co-located or distributed, will impact ability to ac-

complish cooperative tasks, reflecting a need to mix communication modalities

(III.D.2, page 30).

H-2-4 Through game play, participants will improve their ability to implicitly coor-

dinate (II.D.1, page 13).

H-2-5 Game play will be reflected in team coordination ability in burn training

exercises (III.A.2, page 19).

H-2-6 Communication and activity in Te
2C will resemble communication and activity

in fire emergency response work practice.
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Table XVIII.: Team names in Te
2C with FERs user study.

spring (RC 128) summer (RC 129)

calTEXANADA Foxtrot and Company

Team Firestorm Team 5

Team Rainmen Team 6

Team 7

Table XIX.: FER student gender demographics. Most participants were male.

gender number of participants

no response 0 (0.0%)

male 24 (85.7%)

female 4 (14.2%)

Table XX.: FER student age demographics.

age (years) number of participants

no response 0 (0.0%)

18–21 15 (53.5%)

22–25 9 (32.1%)

26–30 4 (14.2%)

31–40 0 (0.0%)

B. Methods

The methods for the Te
2C with FERs study are described in Section VII.A (page 116).

The study presented here uses version 2.0 of Te
2C, with improved spatial representa-

tions, radio status indicator, and scoring ruberic.
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Table XXI.: FER education demographics. Most participants had a high-school
education, its equivalent, or lower. Overall, education is lower than that of the non-
FERs.

education number of participants

no response 0 (0.0%)

high schoola or lower 24 (85.7%)

bachelor’s degreea 3 (10.7%)

master’s degreea 0 (0.0%)

Ph.D.a 1 (3.57%)

a or equivalent

Table XXII.: FER prior team experience. Participants had substantially more expe-
rience than non-FERs.

yearsa number of participants

no response 0 (0.0%)

0 6 (21.4%)

<1 7 (25.0%)

1–5 8 (28.5%)

6–10 5 (17.8%)

10–20 2 (7.14%)

a Based on multiple choice question: “Do you have any experience with team-based
situations, such as (but not limited to) firefighting, community activism, military
service, or police service? If so, how much?” Responses were year ranges.

1. Subject Population

Subjects were recruited in groups of four from the ESTI Firefighter Training Academy

Recruit Class (RC) 128 (spring 2009) and RC 129 (summer 2009). Each team had
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participated in the FTA for at least five weeks. Studies were completed prior to

participants beginning burn training exercises (III.A.2, page 19). A total of 28 stu-

dents participated, making seven groups. An effort was made to recruit entire class

crews (see III.A.1, page 18) as game teams, so that game teams match those in the

classroom. Due to schedule conflicts, only two such teams were created.

This chapter reports on data from 28 users who played a total of 56 games;

Tables XIX–XXII summarize the demographic data of the FER student sample. The

sample contains similar gender (Tables XIV, XIX) and age (Tables XV, XX) ratios

to that of the non-FERs. In the FER population, however, we see an overall lower

level of education (Tables XVI, XXI), but a higher level of prior team experience

(Tables XVII, XXII).

Participants gave permission to collect all data, including their grades in the FTA.

Players selected a pseudonym to be used for the game (if that name was personally

identifying, we refer to them as <P-X-Y >, where X is the team number and Y is a

player number). Teams were given the opportunity to select a name. Team names

are summarized on Table XVIII. Each participant was compensated by providing

food at each session and a gift card worth 30 USD on completion of the study.

2. Apparatus

The present study is built around version 2.0 of Te
2C, as updated from the previous

study. For this study, we shifted some information distribution, allowing the seek-

ers to see threats to reduce the feel of “randomness” and enable players to make

fast, informed decisions. We added the seeker location context indicator, showing the

seeker which block-and-grid coordinates were nearby, enabling communicable repre-

sentations (V.G.5, page 78). Finally, we added a push-to-talk (PTT) notification

animation and sound, to encourage players to wait until the receiver radios picked up
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prior to speaking. Details of the iteration can be found in Section VI.D, page 100.

The setup is identical to the one used for Te
2C with non-FERs, except that version

2.0 of Te
2C was used instead of version 1.0. Details on the experimental method can

be found in Section VII.A (page 116). For each game, the locations of goals and

starting locations of threats were procedurally determined. To maintain consistency

between teams, the seed for the procedural algorithm was the same for each session

and game. The positions thus move each game, but are the same across teams. The

terrain is held constant for every game.

C. Metrics

Metrics are derived from game log and audio data sources. Metrics are analyzed

using the quantitative methods described in Section VII.E (page 140). Independent

variables at the team and player levels of analysis are described on Table VII. Game

log dependent variables are described on Table VIII. Audio variables are presented on

Table XXIII. When a subset of the data is used for a particular role, this is indicated

with a bracketed subscript: [S] for seekers, [C] for coordinators.

1. Game Log Analysis

a. Seeker Groups

Inspired by the observations in Te
2C version 1.0, where seekers opt to co-locate in the

virtual world, we introduce the seeker grouping metric. Seeker group measures count

the number of game cycles that seekers’ avatars spent together as a group during play

as a percentage of play time (game cycles). The metric of seeker groups formalizes the

qualitative observations from the Te
2C with non-FERs study (VIII.C.3, page 3). A

seeker is considered to be grouping with another seeker so long as the first seeker can
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Table XXIII.: Audio data variables in Te
2C with FERs.

variable description

RQGSp number of requests for game state, normalized against total number of
utterances by the player

RQSp number of requests for status, normalized against total number of ut-
terances by the player

RPGSp number of reports of game state, normalized against total number of
utterances by the player

RPSp number of reports of status, normalized against total number of utter-
ances by the player

RQAp number of requests for action, normalized against total number of utter-
ances by the player; for purposes of computing AR, RQAp is considered
a report of information

RQGSt total number of requests for game state, normalized for cycRem in game

RQSt total number of requests for status, normalized for cycRem in game

RPGSt total number of reports of game state, normalized for cycRem in game

RPSt total number of reports of status, normalized for cycRem in game

RQAt total number of requests for action, normalized for cycRem in game

ARC:S(rd) anticipation ratio of number of coordinator reports of information
(RPGSt[C], RPSt[C], RQAt[C]) to the number of seeker requests for
information over the radio (RQGSt[S], RQSt[S]); ARC:S(rd) is computed
from player-level data for the team

UTt RQGSt+RQSt+RPGSt+RPSt+RQAt

see the second. The grouping relationship is bi-directional, the seeing relationship is

not. Because seeker vision is limited to the front of the seeker’s avatar (VI.C.1, page

95), a seeker may be seen by a seeker that s/he does not see (Figure 42). Table XXIV

summarizes the variables derived from seeker grouping.

To explain seeker groups, we first describe the can see operator,E. A seeker,

Skra, can see another seeker, Skrb, (SkraESkrb) if Skra’s viewport includes Skrb’s
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(a.) view from blue seeker (b.) view from green seeker

Fig. 42.: Demonstration of the can see operator and seeker grouping in action. The
blue seeker (a.) can see the green seeker (b.), but the green seeker cannot see the blue
seeker because the view port does not extend backward. Because the blue seeker can
see the green seeker, the two are grouped.

Table XXIV.: Dependent team level analysis game log variables for seeker grouping.

variable description

Grp1S game cycles spent with all seekers isolated, normalized against the
cycles played in that game

Grp2S game cycles spent with two seekers together (one seeker isolated),
normalized against the cycles played in that game

Grp3S game cycles spent with all seekers together, normalized against the
cycles played in that game

location. TheE operator is not commutative:

SkraESkrb 6→ SkrbESkra (9.1)

With the can see operator, we can define a seeker group. A group of seekers is

denoted using set notation, so if Skra is grouped with Skrb, then {Skra, Skrb}. Thus

a group is defined as:

(SkraESkrb) ∨ (SkrbESkra)↔ {Skra, Skrb} (9.2)
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Group sets may include all of the seekers in a game ({Skra, Skrb, Skrc}). Group

sets can be chained; as long as any member of a set can see another seeker (or that

seeker can see a member of the group set) then the other seeker is a member of the

set too.

given: ∃Skra, Skrb, Skrc : {Skra, Skrb}, Skrc

{Skra, Skrc} ∨ {Skrb, Skrc} ↔ {Skra, Skrb, Skrc} (9.3)

The normalized dependent variables, GrpiS, below are based on seeker group

counts, which are used to determine the percentage of the game seekers spent in

groups. The value of i is the number of seekers in the largest group. Since the

present study includes only three seekers, Grp1S indicates the percentage of time

that no seeker can see any of the others, Grp2S indicates the percentage of time that

two seekers are grouped (possibly the 2+1 strategy from VIII.C.3, page 148), and

Grp3S indicates the percentage of time that all three seekers are together (possibly

the all-together strategy). Game logs are processed offline to calculate count(GrpiS)

by summing the number of game cycles (VII.C.1, page 128) where the team was in

a group formation, then dividing by the total number of game cycles played to get

GrpiS. For each game cycle, the count(GrpiS) counters are incremented (++) as

follows:

count(Grp1s) + +↔ {Skra} ∧ {Skrb} ∧ {Skrc} (9.4)
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count(Grp2s) + +↔

({Skra, Skrb} ∧ {Skrc})

∨ ({Skrb, Skrc} ∧ {Skra})

∨ ({Skra, Skrc} ∧ {Skrb}) (9.5)

count(Grp3s) + +↔ {Skra, Skrb, Skrc} (9.6)

2. Audio Data

Through audio analysis, researchers coded player utterances during play using CLAPS

to play back game logs with audio (VII.B, page 126). CLAPS enabled fine-grained

analysis of each utterance, linking it back to its game context. Audio is synchronized

to the visualization of game activity. Each game was coded four times, once for each

player in the game. CLAPS allows the researcher to selectively silence audio tracks,

focusing on a single player. Researchers spatially distribute a single player’s speech

track and radio track to the left and right sides, respectively. Version 2.0 of the audio

coding scheme (VII.D.4, page 137) was used to classify player utterances.

a. Audio Code Measures

In the present section, Table XXIII describes how the codes are normalized for use

in analysis. For each of the five audio codes, the subscript p indicates a code ut-

terance count is normalized against all the utterances by the player. An utterance

code so normalized measures the composition of a player’s communication. In Te
2C,

communication is a core mechanic. Player communication composition indicates how
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players are focusing the information they supply or request in play; it is how they are

playing the game. The subscript t indicates that the code is normalized against the

amount of time in a game. This allows measurement of the aggregate communication

of teams, supporting comparisons across teams.

b. Anticipation Ratio

Anticipation ratio (AR; VIII.D.1, page 131) measures implicit coordination in teams.

Recall that the function for calculating AR is:

AR = push/pull (7.1)

In this chapter, we use a version of AR in which coordinator reports of information

(push) are compared with seeker requests for information from the coordinator over

the limited bandwidth of the radio (pull). The utterances used for this calculation

are described in Table XXIII. When utterances classified as hybrid codes (VII.D.4.b,

page 139), only the report component was included (the request component was

not used to penalize AR); if a hybrid was multiple reports, the reports were added

multiple times. The higher a team’s AR, the better the team is at anticipating one

another’s information needs. An increase in AR indicates an improvement in implicit

coordination.

D. Results

Results of the user study of Te
2C with FERs consist of the change in team task per-

formance, changes in communication, the impact of the coordinator role on play, the

way roles differentiate themselves in terms of communication, and perceived connec-

tion to work practice. Quantitative measures are supplemented with qualitative data
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collected through use of CLAPS, discussions with participants, and comments par-

ticipants made between games. To identify the source of qualitative data, we use

the participant’s pseudonym or assigned anonymous identifier (when the pseudonym

would identify the participant). Table XXV describes the study participants.

Table XXV.: FTA student study participant interviewees from RC 128, summarizing
self-report team activity experience. Member column indicates pseudonym or an
assigned anonymous identifier (if pseudonym identifies the participant).

team member team activitya yearsb

calTEXANADA Jeff firefighter 1–5

Wilson0803 military, team sports 10–20

<P-1-3> band, medic 1–5

<P-1-4> <none> 0

Team Firestorm Boomhower firefighter 6–10

Jack <none> 0

Ryan firefighter 6–10

<P-2-4> <none> 0

Team Rainmen Foxtrot1 team sports 1–5

Hassy firefighter 10–20

Ian auto maintenance 1–5

<P-3-4> <not specified> 1–5

a Based on free-response question: “Have you had any experiences in which com-
munication was critical in coordinating a real-life team? If so, please describe.” and
discussions with participants.
b Based on multiple choice question: “Do you have any experience with team-based
situations, such as (but not limited to) firefighting, community activism, military
service, or police service? If so, how much?” Responses were year ranges.



168

●
●

1:C 2:D 3:D 4:C 5:C 6:D 7:D 8:C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seq : Cnd

g
a

m
eP

er
f

Fig. 43.: Box plot of team performance over time. Teams perform better in later
games by cooperatively collecting goals.

1. Team Task Performance

For most measures, players improved their ability to play Te
2C as a team through

repeated sessions. They collected more goals in a shorter amount of time

(gamePerf∼Seq: m = 3.294, R2 = 0.1699, p < 0.005; score∼Seq: m = 4.104,

R2 = 0.2411, p < 0.0005). Teams completed the game faster as they played more

(cycRem∼Seq: m = 6.973, R2 = 0.07138, p < 0.06). Game condition did not

significantly impact performance (gamePerf∼Cnd: p > 0.4; outs∼Cnd: p > 0.45).

Figure 43 plots game performance over time, showing the increasing trend.

Figure 44 shows the within-team normalized score over time; teams’ best games are

later. Cooperative task performance improves over time.

As described above, the GrpiS variables (where i is the largest group of seekers,

1, 2, or 3) indicate the percentage of the game seekers spent with avatars co-located

in the virtual world. Game sequence strongly influenced the amount of time seekers
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Fig. 44.: Box plot of scores, normalized within team, over time. Teams play their
best games in the later sessions.

spent grouped in the virtual world (Grp3S∼Seq: m = 4.433, R2 = 0.2613, p < 0.0001;

Grp2S∼Seq: m = −2.017, R2 = 0.0713, p < 0.05; Grp1S∼Seq: m = −4.466, R2 =

0.2734, p < 0.0001). Game condition did not strongly impact seeker group formation

(Grp3S∼Cnd: p > 0.95; Grp2S∼Cnd: p > 0.80). Figure 45 charts the change in

Grp3S and Grp2S, together, over game sequence. Seeker co-location occurs more

frequently in later games.

One measure where the teams did not improve was in outs. Seekers were captured

by threats more frequently in later games (outs∼Seq: m = 2.165, R2 = 0.08128,

p < 0.05). The frequency of going out was directly related to time spent co-located

(outs∼Grp3S: m = 2.577, R2 = 0.1191, p < 0.01). Seeker captures occur more

frequently later, but in conjunction with seeker co-location.
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Fig. 45.: Box plot of seeker grouping activity over time. Seekers keep their avatars
co-located more frequently in later games.

2. Changes in Communication

Participants reported changes in communication after playing the game. During

interviews (Table XXV), participants noted that during burn training, ICs who had

played Te
2C used the radio more effectively: they were “...short, sweet, and to the

point” [Boomhower] over the limited radio bandwidth. Participants completed the

Te
2C study prior to beginning burn training. Through play, participants find that

communication efficiency increases.

In later games, the composition of communication shifts. Seekers request status

less frequently (RQSp[S]∼Seq: m = −3.553, R2 = 0.07397, p < 0.0005), they request

game state more frequently (RQGSp[S]∼Seq: m = 2.249, R2 = 0.03101, p < 0.03).

Game sequence does not significantly impact any other communication type for seek-

ers (RQAp[S]∼Seq: p > 0.95; RPGSp[S]∼Seq: p > 0.99; RPSp[S]∼Seq: p > 0.45).

Game sequence did not impact number of utterances by players (UTt[S]∼Seq:
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Fig. 46.: Box plot of anticipation ratio over time. Through play, coordinators get
better at anticipating the needs of seekers, while seekers request less information.

p > 0.9; UTt[C]∼Seq: p > 0.1). Condition did impact the total communication by

seekers; a one-tailed t test shows that seekers communicate more in the co-located

condition (UTt[S], Cnd = {C,D}: t = 14.9609, df = 100.067, p < 0.0001). Condition

did not impact total communication by coordinators (UTt[C], Cnd = {C,D}: p > 0.3).

Improvement in the teams’ anticipation ratios were observed. For the present

analysis, we compared the first pair of games (Ses = 1; Seq = {1, 2}) with the last

pair (Ses = 4; Seq = {7, 8}). Using the audio data, we computed the AR for the

coordinator’s reports of information to players (RPGSt[C], RPSt[C], RQAt[C]) to the

seekers’ requests for information over the radio (RQGSt[S], RQSt[S]). This produced

the measure, ARC:S(rd).

A one-tailed t test was performed, comparing ARC:S(rd) for Ses = 1 to ARC:S(rd)

for Ses = 4. The result indicates an increase in anticipation ratio between the first

and last sessions (ARC:S(rd), Ses = {1, 4}: t = −1.8377, df = 12.638, p < 0.05).

Further analysis with a linear model revealed an overall increase in AR over repeated
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sessions (ARC:S(rd)∼Seq: m = 2.035, R2 = 0.07247, p < 0.05). Condition did not

meaningfully impact AR (ARC:S(rd)∼Cnd: p > 0.2). Using the version 2.0 game play

coding scheme, we see that anticipation ratio improves through play.

Through CLAPS analysis, it is clear that participants sometimes respond to

communication with action, rather than more communication. For example, requests

for action, such as “follow me” did not prompt further communication, instead the

indicated player follows the speaker. This supports the observation that AR improves

through play.

3. Coordinator Performance Impacts Play

The coordinator’s communication impacts the way participants perform in-game.

Taking coordinator communication as an independent variable, coordinators

requesting game state negatively impacted participants’ ability to finish the game

quickly (cycRem∼RQGSp[C]: m = −2.018, R2 = 0.07138, p < 0.05). Further,

coordinators reporting status negatively predicted time seekers spent together

((Grp3S+Grp2S)∼RPSp[C]: m = −2.495, R2 = 0.1051, p < 0.05).

4. Roles Impact Communication

The role players take on in the game (Rl) impacted the composition of their utter-

ances to other players. A one-tailed t test was performed for each type of player

communication (Table XXIII: RQGSp, RQSp, RPGSp, RPSp, and RQAp), com-

paring the composition of communication by Rl. Figure 47 shows a box plot of the

percentages, clearly showing the difference in communication types favored by roles.

Seekers request game state and status more frequently than coordinators do

(RQGSp, Rl = {S,C}: t = −10.6609, df = 170.135, p < 0.0001; RQSp, Rl = {S,C}:

t = −8.7135, df = 209.778, p < 0.0001). They also report status more frequently
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Fig. 47.: Box plot of impact of role on communication. In each pair, coordinator-
preferred on the left, seeker-preferred communication types are on the right. Each
graphed point represents one instance of a player in a game (since each player plays
8 games, there are 8 points for each player). Reports of game state and requests for
action are used by coordinators, while requests for game state, requests for status,
and reports of status are used by seekers.

(RPSp, Rl = {S,C}: t = −14.6489 df = 172.135, p < 0.0001). Coordinators report

on game state and request action more frequently than seekers (RPGSp, Rl = {S,C}:

t = 5.1134, df = 78.126, p < 0.0001; RQAp, Rl = {S,C}: t = 16.327, df = 94.253,

p < 0.0001). Communication composition is dependent on role.

5. Communication Practice

Based on qualitative data gathered from interviews with FER Te
2C players, we found

that players perceive a connection between the game and FER practice. The inter-



174

viewees are shown on Table XXV, which summarizes their previous experience in

team situations, as reported on pre-questionnaires.

Participants reported that “the rules of using a radio” were the same in Te
2C

and in FER practice [Jack]. According to participant Ryan, “The key to the game

was (almost) less communication, and it’s the same on the fireground, too.” <P-1-3>

noted that “on the fireground, there’s only one radio frequency, so you have to really...

key in on when they’re talking to you... it really helped being able to listen for that.”.

Another player noted that:

It’s the learning of communication. . . it’s blanketed, it is not just with the
game or with the fire service, once you learn how to communicate with a
team, it just comes natural to start communicating like that. [Wilson0803]

During log playback, researchers noticed many instances of effective team co-

ordination. In some cases, seekers inverted the chain of command, countermanding

orders from a coordinator, based on situated information. This was particularly true

around virtual world terrain walls, which the coordinator could not see. For example,

in one exchange Ryan is the coordinator and addressed the seekers:

Ryan [coordinator, addressing all seekers]: “Alright, head south. There

should be a goal just south of you.”

<P-3-4>: “’Kay, we’re going to head southeast and around this wall.”

In another game [Team 5], the coordinator told the seekers to head east to find goals.

The seekers spotted a three-seeker goal nearby, to which the coordinator was not

directing them. They notified the coordinator that they were stopping to collect the

nearby goal, first.

Seekers used deictic reference to identify the invisible components of the virtual

world. They use their avatars as pointers, then use statements such as “over there”
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or “this way”. In several games, Foxtrot and Company, Team 6, and Team 7 used

the location of one of the seekers to indicate to the others the location of an invisible

base.

In some teams, we observed a single player being designated as the lead commu-

nicator: the only seeker in a set of co-located seekers who will use the radio. This

strategy reduced the load on the radio. In the case of firefighter students this may

also be an outcome of training exercises: in many cases, burn training exercises are

run where only the leader of a group of firefighters carries a radio. Jack explained:

In a fireground, all three of us, if we were in one company sticking together,
there would be one radio and one person talking, and we’d follow that guy.
That’s kind of what we did.

This leader directs the group s/he is with and communicates to the IC.

Anecdotal evidence suggested that the creation of intermediate levels of com-

mand may be a helpful learning exercise, supplementing classroom learning. During

a reflective session, calTEXANADA appointed one of their seekers as a “task force

leader”1. The seeker leader would direct the other two seekers on the team during

the next game.

The FTA Program Coordinator overheard part of the exchange. He asked the

participant where the team had picked up “task force leader”, since they had not

participated in class when it was discussed. The participant jokingly remarked that

maybe they were paying attention after all.

1task force: “Any combination of [personnel or equipment used in an operation]
assembled to support a specific mission or operational need. All resource elements
within a Task Force must have common communications and a designated leader.”
[U.S. Department of Homeland Security 2004]
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E. Analysis

The principal hypothesis of the present research—by playing non-mimetic simulation

games (Te
2C), developed from work practice, FERs learn to more effectively coordinate

as a team—is supported by six subordinate hypotheses. In this section, we describe

which of our subordinate hypotheses were supported by the results. The principal

hypothesis is treated directly in the Conclusion (Chapter X, page 186).

1. H-2-1: Improving at Cooperative Tasks

H-2-1 Through game play, participants will improve their ability to accomplish co-

operative tasks.

Players improve their cooperative task performance over time by practicing collabo-

rative action, supporting H-2-1. The design of cooperative goals in Te
2C requires that

players work together to play effectively [Toups Dugas et al., “Game design princi-

ples,” 2009]. The performance of the team depends on seekers gathering together at

specific points in the map, without going out. In spite of the difficulty of gathering,

players succeed at collecting more goals in less time.

We see that seekers learn to co-locate in the virtual world and successfully collect

more cooperative goals. It makes sense that these findings go together, as being

grouped is a prerequisite to collecting the goals. There are two possible mechanisms

for gathering: moving together or meeting up. The amount of time spent together

indicates that seekers find it effective to move together through the virtual world.

According to Boomhower, Team Firestorm “...learned pretty quick that if all three

people stayed together... that was the easiest way to get it done.” An alternative

strategy, that is rarely employed, is to locate a goal that requires multiple seekers,

then meet up at that location.
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Moving together can be difficult because the seeker view port only shows them

what is ahead and not, for example, that a companion is following behind (see Fig-

ure 42). Staying together means that seekers are frequently in more danger, as one

threat can easily destroy the whole group.

One puzzling result that is that seeker captures occur more in later games. This

is likely due to the dangers of grouping: once a group of threats attacks one seeker,

it is easy to attack the other seekers nearby. It could also be that the teams become

desensitized to the score penalty associated with going out (VI.B.3, page 93), instead

favoring winning quickly. In FER work practice, failure to move safely through an

environment can result in injury or death; the consequences are significantly more

severe in the real world than in the game.

Some player communications indicated that other players should move to a lo-

cation, regardless of whether or not they are attacked. The players’ rationale was

that there are sufficient bases at which to restore, so it is better to hurry to the next

location than to avoid attacks on the way. This suggests interesting future research

in which the penalty for going out is more severe.

2. H-2-2: Differentiation of Roles

H-2-2 Player roles, differentiated by information distribution and available action,

will impact team communication.

That communication composition is dependent on role demonstrates that information

distribution is effective in altering team communication, supporting H-2-2. Coordina-

tors, who can only influence game play through radio communication, use communica-

tion that directs and informs. Seekers, who need information about the world outside

of their scope receive that information from the coordinator. They request what they
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need to know. They supply one another and the coordinator with information about

their own status, about which they are intimately aware.

In FER work practice, alternate perspectives and positions at the emergency

incident enable different sets of action and communication. The IC has access to etic

information through information artifacts (III.D.1, page 28); these enable tracking

status of firefighters, like the coordinator’s interface. Radio communication is avail-

able to both the IC and the firefighters, supporting low-fidelity communication. The

IC directs the team, as the coordinator does.

The firefighters, at the fireground, have direct access to emic information about

the situation, like the seekers. They know and communicate about the state of their

environment and their bodies, like reporting game state and status. While in Te
2C,

the coordinator reports game state more frequently, it is the smallest difference of all

the types of communication (|t| = 5.1134 for RPGSp, the next smallest is |t| = 8.7135

for RQSp).

We also see that seekers, but not coordinators, communicate more frequently in

co-located games. These games offer more expressive power than distributed games,

as players can communicate face-to-face, instead of only using the radio. The coor-

dinator, like the IC, cannot communicate face-to-face.

The design principle of information distribution is derived directly from work

practice, and is hypothesized to be essential for non-mimetic simulation of team

coordination. This hypothesis is proven through H-2-2.

3. H-2-3: Play Condition Does Not Impact Cooperative Tasks

H-2-3 Play condition, either co-located or distributed, will impact ability to accom-

plish cooperative tasks, reflecting a need to mix communication modalities.
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We find that game condition does not significantly impact team performance. There

were no significant relationships found between the performance and game condition

or grouping and game condition. The data do not support H-2-3.

In fire emergency response work practice, FERs can dynamically reconfigure

their teams: they can split up and come together. This enables a rich mix of face-

to-face and radio communication, as the situation permits. Unlike in fire emergency

response work practice, Te
2C players cannot make decisions about splitting up and

coming together. They are constrained by the medium through which the game is

presented. In a future, mixed reality version of Te
2C, players would be free to move,

split up, and join together. This suggests that a mixed reality version of Te
2C will

more strongly reflect mixing communication modalities.

4. H-2-4: Improving Implicit Coordination

H-2-4 Through game play, participants will improve their ability to implicitly coor-

dinate.

We find that team anticipation ratio improves through play, supporting H-2-4. A

high AR is indicative of a shift to implicit coordination [Entin and Serfaty 1999], that

team members are actively sharing information and finding that their own informa-

tion needs are fulfilled. The observed increase in participants’ AR suggests they are

learning to implicitly coordinate. The team reduces their communication overhead

[MacMillan et al. 2004], increasing the amount of communication that informs and

commands, rather than requests. The requests are noise; less noise is better.

The fact that a decrease in overall communication was not observed is not un-

usual. Entin and Serfaty [1999] observed that after intervention, their participants

only decreased overall communication in a low-stress condition, where there was less
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information about which participants needed to communicate. In the high-stress

condition, the communication rate did not change, although AR improved.

We find that one strategy that improves AR is that team members respond with

action, rather than communication. In connecting to practice, participants noted

that it was essential to communicate less and that their communication efficiency

increases. Ryan noted that while responding to communication with action was es-

sential, the game design allowed the coordinator to see this, while in reality, the IC

might not. This suggests an interesting new line of research, in which we manipulate

information distribution to provide the coordinator with even less information.

An essential component of effective team coordination is implicit coordination.

The purpose of the Te
2C game design is to encourage participants to develop good

implicit coordination skills.

5. H-2-5: Reflection of Play in Practice

H-2-5 Game play will be reflected in team coordination ability in burn training

exercises.

Participants report that game play impacts burn training, offering qualitative support

for H-2-5. They note that ICs who have played the game are more effective during

burn training; they display expert use of the radio. Participants see that learning

to communicate is a skill that can be applied outside of the game. Future work will

investigate H-2-5 through quantitative means.

6. H-2-6: Reflection of Practice in Play

H-2-6 Communication and activity in Te
2C will resemble communication and activity

in fire emergency response work practice.
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We find that participants act like FERs while playing the game, supporting H-2-6.

FER students employ FER jargon while playing and communicating. Some players

refer to threats as “fire”.

Moving together reflects fire emergency response work practice. FERs work

together for safety; they stay within sight of each other [Toups Dugas and Kerne

2007]. A minimum of two FERs are required to do any work at the fireground.

The behavior of staying together while performing tasks in the game suggests the

ecological validity of the game activity for fire emergency response work.

Further, moving together is made difficult by the game design. When players

move together, there is not safety in numbers, but rather danger that the whole team

will be lost. Nonetheless, participants find it to be an effective strategy, which helps

to explain away the fact that players go out more frequently in later games.

Seekers act on situated information, like FERs. They use local, detailed informa-

tion to make decisions that may countermand their orders. This may include careful

navigation through spaces about which the coordinator is not aware, or collecting

nearby goals that the coordinator has missed. In FER practice, taking situated ac-

tion [Suchman 1987] is essential [Toups Dugas and Kerne 2007].

F. Discussion

Many of the findings with FERs parallel those findings with non-FERs (VIII,

page 143). This evidence supports our hypothesis that non-mimetic simulation can

transferred across domains. In this section, we address the value of play in firefighter

education, discuss the selective mimesis used in Te
2C, consider iterations on the

study design, and explore alternative game mechanics that alter the information

distribution on the team and could provide testbeds for future fire emergency
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response field technologies.

1. Value of Play

Participants report that they see the value of play. They note that communication

in the game reflects work practice. Participants employ FER jargon while playing.

Although they do not always directly connect threats with fire (“fire doesn’t chase

you around the building” [Jack]), they do see the value of threats for creating real-

time stress (IV.F.3, page 48). Members of Team Firestorm remarked that without the

threats, the game would be too easy and it would not be as necessary to communicate.

Players of Team 5 explicitly referred to threats as “fire” in their communication.

In keeping with the design goal that Te
2C not have a specific theme (VI.E,

page 114), threats are designed to be different from fires. They are not intended

to directly replicate fire, they do not exhibit the behavior of fire, but are intended

to place constraints on play. The virtual-world danger supplied by threats requires

participants to make fast decisions about what information is most critical to the

team’s success.

2. Selective Mimesis

The increase in the number of times seekers go out in later games may indicate that

the selective mimesis is effective. While one might expect that FER players would

avoid “dying” in the virtual world, going out does not have the same ramifications

as failure in FER practice. This is by design: permanent “death” would reduce the

play and educational value of the simulation. This shows that the FER students see

the environment as different from their normal training; they take advantage of the

unique characteristics of the simulation.

In allowing players to restore at bases, they are able to continue play; going out
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is a setback, but not game over. Further, if all players are permanently out, the game

must end prematurely, reducing the amount of time participants are able to engage

with it.

3. Updates to Study Design

Based on the results of this study, we revised our study methods for future research.

The next design introduces more experimental control, while potentially reducing

the ecological validity of the study. The first update removes the game conditions.

Rather than running two games per session, one co-located and the other distributed,

all games are distributed. The second update introduces control subject teams. These

teams will play a board game, rather than Te
2C. Further, we will gather the grades of

students who play neither game. We can then compare burn training and classroom

performance of Te
2C teams, non-Te

2C game teams, and non-playing teams.

To discourage players from discounting going out, we modified the map layout.

The new map layout features fewer bases, and an off-center starting area. Bases

are small, with large spaces in between. This retains the design choice that players

are able to restore (“death” is not permanent), but makes restoring more difficult.

The starting point is the most familiar region of the map for players, because they

experience it repeatedly. In the designs presented here, the starting point is near the

center of the terrain. The new, off-center starting point means that players have to

explore a larger distance from the place they start in order to find all the goals.

Because much of the later variance in play comes from the time taken to complete

the task, and not the number of goals collected, we increased the number of goals

in the game. We also hypothesize that the longer participants are engaged with the

game, the more it will impact their performance in real life. Because better performing

teams finish faster in the current design, they engage with the system less. In future
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studies, all maps have twice as many goals (24 instead of 12). The map is also four

times as large, to support the increased number of goals and create greater distances

between the goals.

4. Alternative Game Mechanics

Based on observations of play and team performance, alternative game mechanics

are suggested. One alternative further manipulates information distribution, so that

the coordinator is even more reliant on seekers. This might take the form of seekers

self-reporting their locations and the coordinator recording this information on the

interface. Such a design could investigate the use of touch screens (including multi-

touch) for tracking teams in dangerous environments. It could be used to prototype

real life FER support tools, similar to the interface prototype by Denef et al. [2008].

We might algorithmically manipulate the seekers’ locations, causing a delay between

when they move and when their avatars move, or introduce noise into the location

data so that locations are uncertain.

Another alternative game mechanic might encourage seeker groups to break up

and come together. Goals could require that seekers to gather at different points

on the map, rather than the same point. Play would shift so that seekers need to

coordinate action while not co-located, putting more reliance on effective disembodied

communication, rather than deictic reference.

5. Motivation

Participants were highly motivated to participate in game play. Teams competed

with one another, using score and public leaderboards. They were excited and inter-

ested in how other teams performed, relative to their own. Competition motivated

improvement and engagement with the system. The framing of the simulation as
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game successfully engaged participants.
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CHAPTER X

CONCLUSION

The present research creates and evaluates game designs for the non-mimetic simula-

tion of team coordination for fire emergency responders. Non-mimetic simulations, as

invented and developed in the present research, are economical, focused, and poten-

tially transferrable; crafted as games, they provide motivation. The present research

investigates how they are economical, focused, and motivating. Future work will

investigate transferability.

We argue that the games we develop are not mere “training devices” [Gagné

1954], but are non-mimetic simulations. While the goal in traditional simulation is to

capture the situated context in which a task (or many tasks) is to be performed, the

present research captures the task itself and re-situates it abstractly. In re-situating,

we enable a range of possibilities, including economy of scarce simulation resources,

intrinsic motivation to engage with the simulation, focus on the task, and, potentially,

transferability.

We have shown that non-FERs improve at the cooperative tasks in the Te
2C game

and see them develop strategies that substantively match those of FERs. Participants

find that relevant aspects of work practice are simulated ; we show that players engage

in the same processes as practitioners. Te
2C helps FER students learn to team coor-

dinate more effectively. Participants improve their ability to accomplish cooperative

tasks; they improve their implicit coordination skills, marking a shift toward becom-

ing a high-performance team. Design principles uncovered through the present work

have far-reaching implications, suggesting ways in which team coordination learning

can effectively take place through non-mimetic simulations and cooperative games.

The principal hypothesis of the present research is that by playing non-mimetic
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simulation games (Te
2C), developed from work practice, FERs learn to more effectively

coordinate as a team. Through the present research we develop a deep understanding

of team coordination within the domain of fire emergency response work practice. We

invented the model of non-mimetic simulation to capture the tasks and skills used

by high-performance teams to economize limited communication channels and share

information effectively, abstracting human- and information-centric aspects of prac-

tice. We iteratively developed a set of game designs from work practice to capture the

essential skills of team coordination. From a grounding in practice and observation,

we construct new measures to evaluate team coordination. To determine the value

of non-mimetic simulations of team coordination practice, show the value of games

and play in education, and iterate designs to be more effective, we tested the game

designs with non-FERs and FERs. Through playing Te
2C, FER students learned to

implicitly coordinate.

A. The Task of Team Coordination

To develop team coordination education systems, a deep understanding of team co-

ordination in practice was essential. This work began with an ethnographic investi-

gation of work practice at one of the world’s largest firefighter schools: Brayton Fire

Training Field. Through that work, we came to understand the essential value and

burden of distributed teams with distributed information. Team roles are dynami-

cally configured, and include possible action, information access, and communication

capabilities. Communication needs must be balanced against the situation at hand,

creating a need to dynamically mix communication modalities to match. FERs econ-

omize expensive communication by overhearing critical environment and teammate

sounds. Team members cooperate to perform complex activities under real-time
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stress, while sharing information.

Information distribution and team coordination support situation awareness in

teams. FER teams are flexible because they can effectively redistribute and reconfig-

ure themselves in response to changes in the incident. Team members use their diverse

perspectives to gather information. The information from these situated perspectives

is synthesized to make new discoveries. Team members use their prior knowledge, the

information that is fed to them through the radio and through face-to-face meetings,

and their observations. They combine what they know with what they are observing,

leading to discoveries about needs that must be addressed and creating awareness of

the situation. Once synthesized, the information must be filtered and transformed.

What is necessary to share? How can it be shared? How does it fit into the team’s

objectives?

The roles in FER teams are defined not just by what actions are available and the

duties to be performed, but also information access and communication capabilities.

On the surface, actions are the most important: teams are designated to perform

specific tasks to which they are suited. The actuality is that where a task takes place

determines what information is available, the form of information, and which team

members are co-located. All team members need to gather and share information.

Once information is gathered, filtered, and transformed, it must be disseminated

to the team. The nature of the information and the situation drive the choice of how

and what to share. Face-to-face communication is possible only in a local scope; small

teams are co-located, but others are spread over a wide area. Some information is

only locally relevant, so there is only a need to speak face-to-face with other nearby

FERs. In other cases, it is overly complex, warranting a face-to-face meeting with

someone remote. Radio reaches all team members simultaneously, but is slow and

difficult to understand. If the information is short and clear, or involves all team
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members at the incident, it should be carried over the radio.

Teams need to economize their limited communication resources. Resources in-

clude the time and cognitive overhead of communication, as well as technological

bandwidth. In reducing time and cognitive overhead, the team is able to act more;

in the case of technological bandwidth (radio use), the opportunity cost is that the

bandwidth is unavailable for other, potentially more important, uses. One effective

mechanism employed by FERs involves overhearing and monitoring. FERs are able

to monitor remote environments by listening in on communications for background

sounds. They overhear others’ conversations and incorporate the data obtained into

their mental models.

All team activities take place under real-time constraints: activities must be

performed quickly to save lives and property, while minimizing risk to the FERs.

Actions are highly interdependent and cooperative. Dangerous situations change

constantly; sometimes predictably and sometimes not. Constant situation awareness

aids FERs in tracking the progress of an incident, supporting prediction of dangerous

events.

The present understanding of the task of team coordination in FER practice sug-

gests the following hypotheses be investigated in testing whether or not an education

system constructed for teaching team coordination is effective:

H-1-1, H-2-1 Through game play, participants will improve their ability to accom-

plish cooperative tasks.

H-1-2 Through game play, participants will improve their ability to coordinate.

H-2-3 Play condition, either co-located or distributed, will impact ability to accom-

plish cooperative tasks, reflecting a need to mix communication modalities.
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H-2-4 Through game play, participants will improve their ability to implicitly coor-

dinate.

B. Simulating the Team Coordination Task

As described above, a number of elements are essential to team coordination in prac-

tice. Participants have to learn to gather, synthesize, filter, and transform informa-

tion from diverse perspectives while under real-time stress. The model of non-mimetic

simulation derives from these human- and information-centered aspects of practice;

it takes abstraction as its central design principle.

Fundamental to the design of effective mimetic simulations is the level of fidelity,

the faithfulness of recreating the concrete world. Unlike traditional simulations, in

which the goal is to reproduce the real world environment in a high level of detail, non-

mimetic simulations use abstraction as a design principle. In non-mimetic simulations,

participants work in a zero-fidelity task environment.

Once a domain is selected, the design task becomes one of evaluating what must

be practiced unchanged, what can be transformed, and what can be eliminated. This

is discovered through a grounding in practice. What components of the environment

are not essential to performing the task? What components can be transformed

without loosing their essential natures? Deep knowledge of the domain is necessary

to answer these questions. While we observed no need to mimic fire and smoke,

the need to limit visibility and create real-time stress were essential. In the case

of using the half-duplex radio, its fundamental qualities make it essential and so it

is incorporated, unchanged. Information distribution is central to the character of

fire emergency response practice; it is a necessary component of the work and was

essential to reproduce in simulation.
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The present research has developed a number of abstractions of the FER team

coordination domain: information distribution, mixing communication modalities,

audible cues, real-time stress, and participant roles. From our deep understanding of

team coordination, we take these abstractions to be the essential components of team

coordination as it is practiced in fire emergency response.

The design principles underlying the model of non-mimetic simulation suggest

the following hypotheses be investigated:

H-1-1, H-2-1 Through game play, participants will improve their ability to accom-

plish cooperative tasks.

H-1-2 Through game play, participants will improve their ability to coordinate.

H-1-3 Communication and activity in Te
2C will resemble communication and activity

of FERs.

H-2-2 Player roles, differentiated by information distribution and available action,

will impact team communication.

H-2-3 Play condition, either co-located or distributed, will impact ability to accom-

plish cooperative tasks, reflecting a need to mix communication modalities.

H-2-4 Through game play, participants will improve their ability to implicitly coor-

dinate.

H-2-5 Game play will be reflected in team coordination ability in burn training

exercises.

H-2-6 Communication and activity in Te
2C will resemble communication and activity

in fire emergency response work practice.
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C. Iterative Development of Non-mimetic Simulation Game Designs

Non-mimetic simulations provide a focused, economical learning environment, while

educational games motivate participants to engage with them. Games are fun; they

are intrinsically motivating. People engage with a game for no reason other than play-

ing the game. Games can also provide external motivation through reward structures.

Competition and cooperation are essential components of the joy of play.

The present research uses scoring systems to provide players with feedback on

their performance. When compared between teams, the scores are a powerful com-

petitive motivator. We offer players externally motivating rewards at the team level,

encouraging teams of cooperating players to compete across teams, but not within.

Team coordination is a form of cooperation. When it is part of the game mechan-

ics, cooperation can be part of the motivation for play. Communication becomes a

core mechanic. The present work engages players in cooperative activities. Through

constant playtesting, we develop a set of design principles for engaging cooperative

play, from a grounding in non-mimetic simulation of team coordination. The princi-

ples engage players in cooperation and communication as game mechanics, without

sacrificing the design needs of our non-mimetic simulation.

In cooperative games, information should be distributed among players, so that

players are reliant on one another. This reliance creates the need to communicate,

engaging players in processes of team coordination. Distributing information can

be accomplished by modulating visibility in the game interface, selectively making

information visible or invisible to different players.

Because communication takes time to perform, and game mechanics continu-

ously unfold, participants must be able to communicate information easily. Thus,

information timing must be considered when modulating visibility. Rapidly chang-
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ing information that is distributed must either be easy to discuss, or readily available

to players that need the information. Slow-changing information is a good candidate

for making invisible and creating interdependency.

Making game entities predictable supports shared mental model formation be-

tween players. While players are situationally aware, they can predict how the game

will react to their input. This enables a level of abstraction in game communication:

players can communicate about trajectories rather than current, absolute information.

Representations of information must be readily communicable. Simplifying by

reducing granularity is one strategy for making information communicable. Simplify-

ing the information to be communicated supports players in coordinating as a team

and developing shared mental models.

The benefits of educational game play and the design considerations it requires

suggest the following hypotheses be tested:

H-1-1, H-2-1 Through game play, participants will improve their ability to accom-

plish cooperative tasks.

H-1-4 The introduction of a scoring system will motivate play.

D. Evaluating Team Coordination

Evaluating team coordination performance is difficult. Some prior methods rely on

eliciting information from participants to uncover shared mental models. Other meth-

ods look at self-reports of the social bonds between team members. Observation of

instances of effective coordination and audio coding are also employed. The present

research contributes to knowledge of how to evaluate team coordination by developing

metrics for automatic computation of team task performance and a coding scheme

for quantifying the content of team communication.
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The value of game play for investigating team coordination is dependent on the

game consisting of mechanics that invoke the task being learned. Te
2C players engage

in learning team coordination, so measurement focuses on the aspects of play that

are cooperative. We look at cooperative goal collection, which requires that seekers

perform risky tasks together. Their success at completing these tasks indicates that

they are effectively timing simultaneous actions while under real-time stress. Another

measure is seeker co-location, where players stay together and support each other by

providing information and guidance.

Communication is a window into team coordination; prior research suggests that

implicit coordination can be observed through communication. The game play audio

coding scheme is grounded in work practice and game play. Independent researchers

are able to apply it consistently to game playback. Through its application, we show

how information distribution affects the composition of communication in different

roles. We see anticipation ratio improve over time, indicating the shift to implicit

coordination.

E. Learning to Effectively Coordinate by Playing Te
2C

By playing non-mimetic simulation games (Te
2C), developed from work practice,

fire emergency responders (and players) learn to more effectively coordinate as

a team.

The supported subordinate hypotheses in the previous two chapters build up evidence

supporting the the principal hypothesis: through play, participants improve team

coordination. Non-FERs and FER students learn to accomplish cooperative tasks

by sharing information and synchronizing actions in the virtual world. We find that

participants use different types of communication behavior, depending on their role in
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play. Players react to the information distribution of their roles, which mirror those

of FER practice.

Participants improve their implicit coordination skills. Implicit coordination has

been shown to be essential to high performance teams, like fire emergency response

teams. The value of implicit coordination is that it reduces communication overhead,

freeing workers to focus on the task at hand and keep communication bandwidth

open for emergency use. Participants find that the shift from explicit coordination

to implicit coordination prepares them for burn training exercises. Burn training

exercises do not specifically target team skills, but team coordination is essential to

excel. Play encourages FER students to think about the bandwidth of the radio, and

consider its economy.

The present game design is not a direct mimesis of FER work practice. Despite

the lack of mimesis, the reflection of practice in play indicates that the non-mimetic

simulation is sufficiently like work practice. It engages participants in real-time stress,

which motivates them to act as if there were an emergency. The team coordination

tasks of fire emergency response work practice are successfully simulated.

F. Future Work

The present research highlights a number of areas of promising future work. The

hypothesized transferability of non-mimetic simulations across disciplines is one such

area. Another addresses the need of human teams to dynamically switch between

co-located and distributed team layouts. The development of mixed reality games

will investigate the value of such abilities for learning team coordination.
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1. Investigating Transferability

We intend to investigate the transferability of this non-mimetic simulation into other

domains where team coordination is critical. In particular, we intend to work with

teams of programmers. Experiments will determine if the Te
2C game developed from

the intense team coordination of fire emergency response work practice will support

learning team coordination for these participants.

Because the present research works with teams, an alternate form of transferabil-

ity looks at how team performance transfers across teams within the same domain.

Future research may investigate remixing team members during the Te
2C study to

examine if their performance improves with unfamiliar team members. Indications

from the present studies are that the team knowledge is general and not specific to the

group that played together. Further, the work by Gorman et al. suggests that team

performance may initially degrade, but will ultimately improve when team members

are mixed [2006].

2. Mixed Reality

Additional future work will address the value of mixed reality forms of the same

non-mimetic simulation. Such designs will support natural mixing of communication

modalities. Participants are able to dynamically reconfigure their groups, with con-

comitant changes in available communication modality. The mixed reality version of

Te
2C is hypothesized to better support the learning of team coordination skills be-

cause communication modalities selection will be dynamic and need to consider an

embodied operating environment.
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G. Closing

The present work has developed a specific type of non-mimetic simulation to show

how human-centered aspects of work can be practiced in an alternative environment.

It successfully abstracts team coordination tasks from the fire emergency response

domain and focuses learning.

Most simulations focus on being mimetic, expending resources to accurately cap-

ture as much of the real world as possible. Such simulations produce easily demon-

strable results. While the benefit of training with mimetic simulations is immediately

clear, the present work develops a different paradigm. Non-mimetic simulations pro-

vide a focused learning experience, without the distraction of other components of

work practice. They are economical, avoiding the unnecessary expenditure of re-

sources. Developed as games, they are entertaining. The game framing supports

engagement. Internal motivation derives from the joy of playing: the experience is

autotelic, fulfilling in and of itself. External motivation is provided through the use

of score and public leaderboards. By competing with other teams, participants are

motivated to try harder.

Non-mimetic simulation abstracts tasks from a real-world environment and re-

situates them in an alternative one. It opens an exciting door for new forms of

hands-on education in which participants learn human-human interaction skills that

are essential in a number of domains. As abstract, socio-technical systems, they can

be used to educate participants in distributed cognition tasks.

Games are becoming an increasingly important component of education. The

value of games in education cannot be denied, but difficult design questions remain. In

many systems, there is a balance between learning and fun. In failed systems, students

disengage or do not learn. In successful designs, such as Te
2C, participants enjoy the
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experience and learn without a need to consider balance. Players are engaged and

improve their abilities of cooperation and communication through practice with each

other.



199

REFERENCES

Antonisse, J. and Johnson, D. 2008. Hush. [PC].
[self published]. Played June 2010. Available from:
http://interactive.usc.edu/members/jantonisse/2008/01/hush.html.

Aonuma, E. and Miyamoto, S. 2006. The Legend of Zelda: Twilight Princess.
[Wii]. Nintendo, USA. Played February 2006.

Arrow, H., Henry, K. B., Poole, M. S., Wheelan, S., and Moreland, R.
2005. Traces, trajectories, and timing: The temporal perspective on groups. In
Theories of Small Groups: Interdisciplinary Perspectives, M. S. Poole and A. B.
Hollingshead, Eds. Sage Publications, Inc., Thousand Oaks, CA, USA, 313–367.

Ballagas, R. A., Kratz, S. G., Borchers, J., Yu, E., Walz, S. P., Fuhr,
C. O., Hovestadt, L., and Tann, M. 2007. REXplorer: A mobile, perva-
sive spell-casting game for tourists. In CHI ’07: CHI ’07 Extended Abstracts on
Human Factors in Computing Systems. ACM Press, 1929–1934.

Baraff, D. and Witkin, A. 1999. Physically based modeling course notes.
SIGGRAPH ’99: Courses .

Barkhuus, L., Chalmers, M., Tennent, P., Hall, M., Bell, M., Sher-
wood, S., and Brown, B. 2005. Picking pockets on the lawn: The development
of tactics and strategies in a mobile game. In Ubicomp ’05: Proceedings of the
7th International Conference on Ubiquitous Computing. Springer, 358–374.

Barthes, R. 1991. Myth today. In Mythologies. The Noonday Press, New York,
NY, USA, 109–158. Translation by Annette Lavers.

Bayliss, P. 2007. Notes toward a sense of embodied gameplay. In Situated
Play: Proceedings of the 2007 Digital Games Research Association Conference,
B. Akira, Ed. The University of Tokyo, 96–102.

Bederson, B. B. and Boltman, A. 1999. Does animation help users build
mental maps of spatial information? In INFOVIS ’99: Proceedings of the 1999
IEEE Symposium on Information Visualization. IEEE Computer Society, 28–36.
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APPENDIX A

NOMENCLATURE: ABBREVIATIONS

AR Anticipation Ratio

CLAPS Coordinated Log + Audio Playback System

CVE Collaborative Virtual Environment

ESTI Emergency Services Training Institute

FER Fire Emergency Responder

FTA Firefighter Training Academy

GPS Global Positioning System

HMD Head Mounted Display

HP Hit Point(s)

HUD Head Up Display

Hz Hertz

IC Incident Commander

MR Mixed Reality

MRTe
2C Mixed Reality Teaching Team Coordination (Game)

ms Millisecond

NIMS National Incident Management System

OODSS Object Oriented Distributed Semantic Services

p-action Primitive Action

Pd Pure Data
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PDA Personal Digital Assistant

PSN PlayStation Network

PTT Push To Talk

RC Recruit Class

SCBA Self Contained Breathing Apparatus

TEEX Texas Engineering Extension Service

Te
2C Teaching Team Coordination (Game)

VoIP Voice Over Internet Protocol

XBL Xbox Live

XML Extensible Markup Language
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APPENDIX B

NOMENCLATURE: FIRE EMERGENCY RESPONSE JARGON

“burns” burn training

“fire chief” chief fire officer

“knocking down a fire” putting a fire out completely

“stepping on” crosstalking over radio

“walking on” crosstalking over radio
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APPENDIX C

FER INTERVIEW QUESTIONS (NOVEMBER 2005)

General Information

1. name (confidential)

2. gender

3. age

4. each firefighting job held, rank, and time held

Supervising (FERs who have supervised)

1. Before entering a situation, how do you plan with your team?

2. How much time do you spend planning?

3. What do you plan?

4. How important is preplanning strategy to the safety of your team?

5. How often do you have to improvise new strategy in the field?

6. How do you communicate a new strategy once firefighters are deployed to an

emergency?

7. What information do you use when coordinating a team?

8. What tools do you use to organize the information (or what artifacts contain

the information)?
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9. How do you moderate communication with members of the team?

10. What information do you communicate to your team?

11. What information do they communicate to you?

12. Do you feel you understand each team member’s situation and their plans of

action?

13. Is this based upon what information they communicate to you from the field,

or more upon what is preplanned before entering the situation?

14. How do you build a shared understanding of the environment you are working

in?

15. How difficult is it to organize the information?

16. What is challenging about this?

17. Do you believe an alternate command topology would be more effective? How

and why?

In the Field

1. What information does your supervisor communicate to you in emergency sit-

uations?

2. What information do your fellow team member’s communicate to you in emer-

gency situations?

3. Do you often communicate information, or requests for information?

4. Do you often feel that you understand the situation of your fellow team mem-

bers: what they are doing, what they are going to do, their goals, etc.?
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Other

1. Have you ever experienced a situation in which proper communication saved

your life, a fellow team-member’s life, or the life of someone involved in the

emergency?

2. What was important about how that communication was conducted?

3. Do you feel that current firefighter communication methodologies are adequate

and safe?

4. What are the shortcomings of the communication methodologies?

5. Do you feel that modern firefighter communication hardware is sufficient and

safe?

6. What are the shortcomings of the communication hardware?
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