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ABSTRACT

Reduced–sensing Control Methods

for Infinite–dimensional Systems. (August 2010)

Kristen Holmstrom Johnson, B.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. John E. Hurtado

Dr. Thomas W. Strganac

Infinite dimensional systems such as flexible airplane wings and Vertical Axis Wind

Turbine (VAWT) blades may require control to improve performance. Traditional

control techniques use position and velocity information feedback, but velocity infor-

mation for infinite dimensional systems is not easily attained. This research investi-

gates the use of reduced-sensing control for these applications.

Reduced-sensing control uses feedback of position measurements and an asso-

ciated filter state to stabilize the system dynamics. A filter state is a nonphysical

entity that appends an additional ordinary differential equation to the system dy-

namics. Asymptotic stability of a system using this control approach is confirmed

through a sequence of existing mathematical tools. These tools include equilibrium

point solutions, Lyapunov functions for stability and control, and Mukherjee and

Chen’s Asymptotic Stability Theorem. This thesis research investigates the stability

of a beam representing an airplane wing or a VAWT blade controlled using feedback

of position and filter state terms only. Both of these infinite dimensional systems

exhibit asymptotic stability with the proposed reduced-sensing control design. Addi-

tionally, the analytical stability response of the VAWT is verified through numerical

simulation.
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CHAPTER I

INTRODUCTION

A finite dimensional system can move at a finite number of points; unlike an infinite

dimensional system that can move at an infinite number of points on the structure.

Consider an infinite dimensional system such as a wind turbine blade or an airplane

wing. These systems need control for damping vibrations that can cause structural

damage. For example, wind turbine blades continue to increase in length and conse-

quently experience very large forces at the blade tip. When a large wind gust occurs,

these forces may cause the blade tip to strike the turbine tower causing catastrophic

failure. In aircraft wing design, finding new lighter, simpler wing configurations, while

still achieving stability, is desired. To this end, one can design a flexible structure

coupled with a controller as a viable alternative to a very stiff structure. Using feed-

back control, the blades and wings can be flexible structures that are commanded

to a desired shape. However, gathering the necessary measurement data along the

structure for position and velocity feedback can be a challenge.

Position measurement data can be attained using strain gauges and then trans-

lated into structural displacement using calibration information. This technique has

been validated for measuring displacements in a vibrating body [1]. Velocity mea-

surement data can be obtained using velocity transducers or by manipulating position

measurement data coupled with measurement time stamps: a numerical time deriva-

tive of the position data gives an estimate of the velocity. In many cases, however,

the velocity transducer and the time derivative of the position sensor do not provide

an adequate estimation for the velocity of the structure. One solution to this problem

The journal model is IEEE Transactions on Automatic Control.
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is the concept of reduced-sensing control.

A. Reduced-sensing Control

Reduced-sensing control uses both position measurements and a software filter to

provide feedback control information. The software filter is constructed by adding

dynamic compensation to the system. After formulating the transfer function equa-

tion between the control and the error, one can construct a control equation that

includes both the position and filter terms. The governing differential equation for

the filter state is defined using terms in the transfer function.

The primary control design goals include stabilizing the system and successfully

designing a controller that will drive the system to equilibrium. More specifically, we

desire to drive the system to an equilibrium configuration asymptotically. This means

that over a period of time, the system will asymptotically approach the equilibrium

position [2].

There are several mathematical tools useful for achieving these objectives. Com-

bining the tools in an overall control approach allows one to mathematically confirm

asymptotic stability for a reduced-sensing control method. These tools include equi-

librium points, Lyapunov functions for stability and control, and Mukherjee and

Chen’s Asymptotic Stability Theorem.

The concepts described above have been proven for finite dimensional systems,

and the challenge of this research is to apply these techniques to an infinite dimen-

sional system [3].
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B. Objectives

The objective of this research is to show that reduced-sensing control is mathemati-

cally viable for infinite dimensional systems. Two different application problems will

be considered in order to illustrate the process and demonstrate asymptotic stability.

The application problems include both a cantilevered beam and a Vertical Axis Wind

Turbine (VAWT) blade. After developing the control design and presenting the rel-

evant example mathematical models, simulation results that validate the filter state

controller for the VAWT blade will be presented and discussed.
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CHAPTER II

TOOLS

In this thesis, several existing engineering tools are applied to achieve reduced-sensing

control for infinite-dimensional systems. This chapter describes the following tools in

detail: equilibrium points, Lyapunov functions, Mukherjee and Chen’s theorem, and

filter states for control.

A. Equilibrium Points

The equilibrium point of the system is the configuration where a system will stay at

rest [2]. When the system is perturbed from rest, it is desired for the control to drive

the system back to this equilibrium point. The equilibrium point of a second order

system can be found by setting the velocity and acceleration terms to zero. When

the equilibrium point found is nonzero, a simple change of variables can create a zero

equilibrium point [2].

To illustrate this tool, consider a simple pendulum with the dynamical model

displayed below.

θ̈ + sin θ = 0 (2.1)

Setting the velocity and acceleration terms to zero, one can find an infinite number

of equilibrium points, as shown in Eq. (2.2) where θ is defined in Eq. (2.3).

θ∗ = nπ n = 0, 1, 2, . . . (2.2)

θ =

 θ

θ̇

 (2.3)

A system may have a unique equilibrium point, an infinite number of equilibrium
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points, or no equilibrium point.

B. Lyapunov Functions

A Lyapunov function is a locally positive definite function associated with a sys-

tem that is used to analyze the stability of an equilibrium point [4]. There is not a

straightforward method for creating a Lyapunov function; therefore, designing Lya-

punov functions is more of an art. The Lyapunov function must meet specific re-

quirements outlined below, in order to prove that system stability. Furthermore,

these requirements can be used to design a stabilizing control for a system of interest.

1. Stability Requirements

The following conditions for a Lyapunov function can prove either stability or asymp-

totic stability. Here, stability is defined as system behavior such that motion near

the equilibrium point will remain bounded [2]. That is, the states of a stable sys-

tem remain within some bounds, unlike those of an unstable system, which become

unbounded. The stable Lyapunov function requirements are displayed in Eq. (2.4)

where W is the region in which the function is evaluated.

Stable:

V (0) = 0

V (x) > 0 ∀ x 6= 0, x ∈ W

V̇ (0) = 0

V̇ (x) ≤ 0 ∀ x 6= 0, x ∈ W (2.4)

An asymptotically stable system is defined as a system whose states converge to

zero over time [2]. This behavior occurs when the V̇ equation is less than zero for all
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x not equal to zero, rather than less than or equal to zero for this set, as in the stable

case. The asymptotically stable requirements are shown in Eq. (2.5).

Asymptotically Stable:

V (0) = 0

V (x) > 0 ∀ x 6= 0, x ∈ W

V̇ (0) = 0

V̇ (x) < 0 ∀ x 6= 0, x ∈ W (2.5)

2. Control Design

Stability analysis is the primary use of the Lyapunov function technique, however, the

requirements can be used for control design [4]. Here, the goal is to design a controller

such that the Lyapunov function is stable or asymptotically stable. More specifically,

the controller design is constructed using an analysis of V̇ . To illustrate this technique,

once again consider the simple pendulum. Equation (2.6) is the equation of motion

(Eq. (2.1)), modified with a controller on the right hand side.

θ̈ + sin θ = u (2.6)

Here, a Lyapunov function is chosen based on the kinetic and potential energy of the

system, as shown in Eq. (2.7).

V (θ) =
1

2
θ̇2 + (1− cos θ) (2.7)

Evaluating Eq. (2.7) using the stability conditions proves that the function satisfies the

first two stability requirements: V (0) = 0 and V (θ) > 0. Taking the time derivative

of this function, one can design the controller such that V̇ (θ) ≤ 0. Equation (2.8)

shows both the time derivative and the control chosen to satisfy the requirement,
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u = −θ̇.

V̇ (θ) = θ̇u = −θ̇2 (2.8)

This controller choice stabilizes the system, but does not provide asymptotic stability.

Note that the system is not considered asymptotically stable because θ does not

appear in the V̇ equation. The value of θ could be any value, including zero, which

violates the conditions necessary for asymptotic stability.

C. Mukherjee and Chen

Because there is no straightforward way of creating a Lyapunov function, they are not

unique for each system. In fact, a single system may have many Lyapunov functions

that capture the system behavior. Thus, a system might be asymptotically stable, but

may only be proved asymptotically stable if the correct Lyapunov function is found.

To create and evaluate Lyapunov functions until asymptotic stability is proved could

be quite tedious. Even if such an approach is taken, a Lyapunov function may never

be found that proves asymptotic stability [4].

Mukherjee and Chen created a theorem that takes the analysis of a Lyapunov

function further in order to prove asymptotic stability [5]. Their theorem involves tak-

ing additional derivatives and evaluating them on a particular set Z. Equation (2.9)

is the list of requirements for Mukherjee and Chen’s Asymptotic Stability Theorem
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where integer k is an odd number.

V (0) = 0

V (x) > 0 ∀ x 6= 0, x ∈ W

V̇ (0) = 0

V̇ (x) < 0 ∀ x 6= 0, x ∈ Z ⊂ W

V (i) ≡ diV/dti(x) = 0 ∀ x ∈ Z i = 1, 2, . . . , k − 1

V (k) ≡ dkV/dtk(0) = 0, k odd

V (k) ≡ dkV/dtk(0) < 0, ∀ x 6= 0, x ∈ Z, k odd (2.9)

To illustrate this theorem, again consider the simple pendulum problem. In the

previous section, the controller u = −θ̇ resulted in a stable system, but asymptotic

stability was not yet proved. Using Mukherjee and Chen’s Asymptotic Stability

Theorem, the set Z is defined as shown in Eq. (2.10).

Z = {θ | θ̇ = 0} (2.10)

Here, Z includes θ evaluated at all possible values and θ̇ evaluated at zero. Equa-

tions (2.11) and (2.12) show the second and third time derivatives of the Lyapunov

function evaluated on the set Z.

V̈ |
Z

= −2θ̇θ̈ |
Z

= 0 (2.11)

V (3) |
Z

= −2θ̈2 − 2θ̇θ(3) |
Z

= −2 sin2 θ < 0 (2.12)

Because Eq. (2.12) is nonzero and negative definite on the set Z with k = 3 odd, the

simple pendulum system is asymptotically stable with this controller.

Consider a second example of a rolling cart with a rocket attached, a simple

linear system as shown in Fig. (1). Equation (2.13) gives a simplified model of the
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! 

x

Fig. 1. Rolling cart rocket with the coordinate definition.

system dynamics and Eq. (2.14) is an associated Lyapunov function.

ẍ = u (2.13)

V (x) =
1

2
x2 +

1

2
ẋ2 (2.14)

Equation (2.14) successfully meets the first two Lyapunov requirements: V (0) = 0

and V (x) > 0. The first time derivative of V and substitution of the controller design

selected, u = −x− ẋ, are shown in Eq. (2.15) .

V̇ (x) = xẋ+ ẋu = −ẋ2 (2.15)

Equation (2.15) satisfies the next two Lyapunov requirements for stability: V̇ (0) = 0

and V̇ (x) ≤ 0. As before, the system is not proven to be asymptotically stable be-

cause x does not appear in the V̇ equation and therefore could be anything; including

zero. To investigate asymptotic stability, further analysis can be performed using

Mukherjee and Chen’s theorem. Equation (2.16) is the set Z on which the second

and third time derivatives are evaluated.

Z = {x | ẋ = 0} (2.16)

Below, Eqs. (2.17) and (2.18) show the second and third time derivatives of the

Lyapunov function evaluated on the set Z.

V̈ |
Z

= −2ẋẍ |
Z

= 0 (2.17)
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V (3) |
Z

= −2ẍ2 − 2ẋx(3) |
Z

= −2x2 < 0 (2.18)

Because Eq. (2.18) is nonzero and negative definite on the set Z, the rolling cart

rocket system is asymptotically stable with the chosen controller.

In this rolling cart rocket example problem, the controller design includes both

position and velocity terms. However, the velocity information is not always available

In the next section, a filter state is introduced that can be included in the control

design to provide asymptotic stability for a system lacking velocity information feed-

back.

D. Filter State

The goal of adding a filter state to the control design is to achieve velocity-free

control and still have an asymptotically stable system. In the previous section, the

simple pendulum and the rolling cart rocket examples had control designs that used

velocity state information. Both of those controllers achieved asymptotic stability

with static compensation. Static compensation is the addition of damping or stiffness

to a structure to make a degree of freedom easier to control [6]. In some cases,

proportional gain alone does not provide a satisfactory response and the dynamics

of the system need to be modified. To begin the investigation of the filter state, we

have to look at dynamic compensation.

The term dynamic compensation means that the controller behaves like a dy-

namical system. The controller can either have lead or lag compensation. For a lead

controller, the output leads the input in the frequency domain, and for a lag con-

troller, the output lags the input in the frequency domain [7]. Figure (2) shows a

block diagram of the system.

A dynamic controller is of the form shown in Eq. (2.19). If z < a, the controller
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xd E U x
C(s) P(s)

Fig. 2. Block diagram of a system with dynamic compensation.

is a lead compensator, and if z > a, the controller is a lag compensator.

C(s) = k
s+ z

s+ a
(2.19)

To determine if the controller needs to be a lead or a lag controller for this system,

consider a second order, linear time invariant system without damping, shown in

Eq. (2.20).

ẍ+ ωn
2x = 0 (2.20)

The characteristic equation of the system is derived from the transfer function of the

block diagram shown in Fig. (2).

x(s) = P (s)C(s)E(s) (2.21)

After substituting for the definition of the error, E(s) = xd(s) − x(s), algebraic

manipulation creates a relationship between x and xd.

x(s) = P (s)C(s)(xd(s)− x(s)) (2.22)

x(s) =
P (s)C(s)

1 + P (s)C(s)
xd(s) (2.23)

Setting the denominator of the right hand side of Eq. (2.23) equal to zero and sub-

stituting terms for P (s) and C(s) produces the following characteristic equation.

s3 + as2 + (ωn
2 + k)s+ (aωn

2 + kz) = 0 (2.24)
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Performing a stability analysis using a Routh Array determines that the stabilizing

criterion are a > 0, z > 0, and a > z. Thus, the dynamic compensation must

be a lead controller. Further investigation requires the evaluation of the transfer

function between the controller and the error. Equations (2.25) through (2.27) show

the transfer function and two definitions.

U(s) = kE(s) + k2x0(s) (2.25)

k2 ≡ k(z − a) (2.26)

x0(s) ≡
1

s+ a
E(s) (2.27)

For stability, the constant k2 has to be less than zero, and x0 is defined as the filter

state. After taking the inverse Laplace Transform of U(s) and x0(s), we find the

equations for the controller and the filter state, shown in Eqs. (2.28) and (2.29)

respectively [2].

u(t) = −kx+ k2x0 (2.28)

ẋ0(t) = −ax0 − x (2.29)

The controller contains position and filter information only, velocity information is

not included. The filter state has an additional differential equation that is appended

to the system. This state has no particular physical meaning; it is just an entity that

is numerically integrated in real time. This controller-filter combination can achieve

asymptotic stability when velocity level information is not available as shown through

example problems in subsequent chapters.
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CHAPTER III

FINITE DIMENSIONAL SYSTEMS

The filter state technique has been verified to effectively control finite dimensional

systems [3]. This thesis not only applies the filter state control techniques to infinite

dimensional systems for the first time, it also investigates rheonomic motion for the

first time. This chapter describes the difference between a scleronomic system and

a rheonomic system, and then presents an example problem of concepts for apply-

ing reduced-sensing control to a finite dimension rheonomic system. The following

chapter extends these concepts to infinite dimensional scleronomic and rheonomic sys-

tems and develops an asymptotic stability verification for a reduced-sensing control

technique that includes a filter state.

A. Scleronomic v. Rheonomic

This section describes the difference between a scleronomic and a rheonomic system1.

A scleronomic system is defined as a system that does not explicitly depend on time

[8]. Some examples of this type of system include a simple pendulum, a rolling cart

with a rocket attached, and a vibrating airplane wing. In the previous chapter, the

two finite dimensional example problems described were both scleronomic systems.

A rheonomic system is defined as a system that explicitly depends on time [8]. Some

examples of this kind of system include a ball with a spring attached in a rotating tube

and a Vertical Axis Wind Turbine blade. These two types of systems are analyzed in

examples throughout the remainder of the thesis.

1Here a scleronomic/rheonomic system is truthfully a system with a sclero-
nomic/rheonomic constraint [8].
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B. Finite Dimension Rheonomic Example Problem

This section presents an example problem in order to demonstrate the filter state

technique for a finite dimension rheonomic system. Consider a ball connected to a

spring in a rotating tube. Figure (3) shows the system and the coordinates used to

define the system.

k

ω=const

n3

⟨

n1

⟨

n2

⟨

b1

⟨

b2

⟨

b3

⟨

mp

Fig. 3. Ball in rotating tube with coordinate definitions.

The position vector, p shown in Eq. (3.1), is the sum of r′, the equilibrium

position of the spring, and r, the distance the ball is perturbed from the equilibrium.

p = (r′ + r)b̂1 (3.1)

Note that the equilibrium position of the spring is not the same as the equilibrium

configuration of the entire system. Equation (3.2) describes the angular velocity of

the tube, which is constant. Equation (3.3) gives the translational velocity vector

found by using the transport theorem [9].

ω = ωb̂3 (3.2)



15

v = ṙb̂1 + ω(r′ + r)b̂2 (3.3)

Next, the equation of motion is derived using Lagrangian dynamics. The Lagrangian

is defined as the difference between the the kinetic and potential energy, shown in

Eq. (3.4) for this example.

L =
1

2
m[ṙ2 + ω2(r′ + r)2]− 1

2
kr2 (3.4)

Equation (3.5) is the formula for obtaining the equations of motion using a Lagrangian

function, where the subscript (np) denotes general forces that are not acquired from

potential functions and k = 1, . . . , n [10].

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk(np) (3.5)

The partial derivatives of the Lagrangian function for this problem are as follows.

∂L

∂r
= (mω2 − k)r +mω2r′ (3.6)

d

dt

(
∂L

∂ṙ

)
= mr̈ (3.7)

Below is the equation of motion after subtracting Eq. (3.6) from Eq. (3.7) for the

right hand side and finding that there are no generalized forces for the left hand side.

mr̈ − (mω2 − k)r −mω2r′ = 0 (3.8)

Using this equation of motion, the equilibrium point can be found as previously

described in Chapter II. Setting the acceleration and velocity terms of the governing

equation to zero results in a nonzero equilibrium point given by Eq. (3.9).

r∗ =
mω2r′

k −mω2
6= 0 (3.9)

Note that the equilibrium point is only nonzero if the constant r′ is nonzero. As
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previously mentioned, when the equilibrium point produces a nonzero result it is

desireable to perform a change in variables. Equation (3.10) presents a new variable,

x, that is equal to the difference between r and r∗. Because r∗ is a constant, it does

not appear in the first and second time derivatives of x.

x = r − r∗ (3.10)

ẋ = ṙ (3.11)

ẍ = r̈ (3.12)

After substituting Eqs. (3.10) through (3.12) into Eq. (3.8), Eq. (3.13) gives the new

equation of motion with the new variable x and control u. To include a filter state

in the development, simply include Eq. (2.29) with the equation of motion to get

an equation set that describes the full system dynamics. Equation (3.15) is the new

equilibrium point for the system.

mẍ− (mω2 − k)x = u (3.13)

ẋ0 = −ax0 − x (3.14)

x∗ = 0 (3.15)

For the newly defined system, the next step is to create a Lyapunov function. In the

previous example, the Lyapunov function was created using the energy of the system.

In this example, a more appropriate choice is a function that appears similar to an

energy function but is not derived explicitly from the energy, as shown in Eq. (3.16).

This function meets the first two stability requirements, V (0) = 0 and V (x) > 0.

V =
1

2
m(ẋ2 + ω2x2) +

1

2
kx2 +

1

2
(ax0 + x)2 (3.16)

Equation (3.17) shows the first time derivative of the Lyapunov equation. Setting the
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terms in brackets equal to zero and solving for the control results in a controller with

position and filter terms only, given by Eq. (3.18).

V̇ = ẋ[u+ (2mω2 + 1)x+ ax0]−
1

2
(ax0 + x)2 (3.17)

u = −x(2mω2 + 1)− ax0 (3.18)

The first time derivative passes the last two requirements for stability, V̇ (0) = 0 and

V̇ (x) ≤ 0, after substitution of the selected control for u. The Lyapunov function

passes all of the requirements for stability. However, asymptotic stability is not proven

because ẋ does not appear in the resulting equation for V̇ , Eq. (3.19), and therefore

could be any value, including zero.

V̇ = −1

2
(ax0 + x)2 (3.19)

Recall that Mukherjee and Chen’s Asymptotic Stability Theorem tests for asymptotic

stability by analyzing the Lyapunov function further. To simplify the algebra, first

define l = ax0 + x. Using this definition, Eq. (3.20) gives the set Z against which the

second and third time derivatives are evaluated.

Z = {x | l = 0} (3.20)

Equations (3.21) and (3.22), respectively, are the second and third time derivatives of

the Lyapunov function evaluated on the set Z. The second time derivative evaluated

on the set Z is zero, which correctly corresponds to the requirements stated in Chapter

II. The third time derivative evaluated on the set Z is less than or equal to zero,

or negative semidefinite. This result requires additional analysis of the Lyapunov

function to prove asymptotic stability.

V̈ |
Z

= −2all̇ |
Z

= 0 (3.21)
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V (3) |
Z

= −2al̇2 − 2all̈ |
Z

= −2aẋ2 ≤ 0 (3.22)

To continue, the next step is to define a new set Z ′ to evaluate the fourth and fifth

time derivatives of the Lyapunov equation. Equation (3.23) gives the new set and

Eqs. (3.24) and (3.25) then show the fourth and fifth time derivatives evaluated on

the new set Z ′.

Z ′ = {x | l = 0 & ẋ = 0} (3.23)

V (4) |
Z′ = −6al̇l̈ − 2all(3) |

Z′ = 0 (3.24)

V (5) |
Z′ = −6al̈2 − 8al̇l(3) − 2all(4) |

Z′

= −6al̈2 |
Z′

= −6
a

m2
(mω2 + k)2x2 < 0 (3.25)

The fifth time derivative is always less than zero, or negative definite, and therefore the

system is asymptotically stable with a control composed of position and filter terms

only. This proves that asymptotic stability can be achieved for a finite dimensional

rheonomic system using a control with no velocity feedback terms.
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CHAPTER IV

CONTINUOUS SYSTEMS

A continuous structure is defined as such because deflections can occur at any point

along the structure. Most long slender objects are modeled as continuous systems,

also known as infinite dimensional systems. In this chapter, the primary goal is to

apply reduced-sensing control to an infinite dimensional system. Similar techniques

are applied to two example problems considered in this chapter as were implemented

in the “ball in a tube” example from Ch. III. The first section describes an example

problem of a continuous scleronomic system, a cantilevered beam, and the second

section presents an example problem of a continuous rheonomic system, a Vertical

Axis Wind Turbine (VAWT) blade.

The primary challenge of this research was overcome while working on the prob-

lems presented in this chapter. Finite dimensional systems are described by ordinary

differential equations and employ an ordinary differential equation filter state. Infinite

dimensional systems are described by partial differential equations and the challenge

was to determine whether the filter state should be an ordinary differential equation

or a partial differential equation.

A. Cantilevered Beam

Consider a cantilevered beam with a load distributed along the upper surface. Recall

that this system is a scleronomic system because its dynamics do not depend explicitly

on time. Figure (4) shows the beam and the coordinate frame definition for this

problem. Displacement in the b̂2 direction is described by the coordinate y, which is

a function of both space and time.

Equation (4.1) gives the equation of motion for a cantilevered beam with a dis-
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Fig. 4. Cantilevered beam with coordinate definitions.

tributed load. This equation is a partial differential equation because the variable y

is differentiated in both time (as indicated with over dots) and space (as indicated

with primes).

ρÿ + EIy′′′′ = p(x, t) (4.1)

Because the equation of motion is a linear equation, the first step to solving this

problem is to perform a separation of variables. The separation of variables technique

relies on the assumption that y can be written as the product of two separate functions

of space and time. The variables of the distributed load are also separated, but

using a different function of time coupled with the same function of space as y.

Equations (4.2) and (4.3) give the separation of variables definitions [11].

y = f(t)g(x) (4.2)

p = h(t)g(x) (4.3)

After substituting Eqs. (4.2) and (4.3) into Eq. (4.1), one has an equation where each

variable is a function of one parameter.

ρf̈g + EIfg′′′′ = hg (4.4)

The next step is to divide this equation by f , g, and ρ. Variables explicitly a function
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of time are placed on the left hand side of the equation, where as the variables in

space are moved to the right hand side of the equation.

f̈

f
− h

ρf
= −EI

ρ

g′′′′

g
(4.5)

Because we are able to separate the variables on either side of the equation, we can

set them both equal to an arbitrary constant known as the separation constant, −ω2

[11]. Equation (4.6) is the resulting equation where h′ = h
ρ
, and h′ represents the

controller to be designed.

f̈

f
− h′

f
= −EI

ρ

g′′′′

g
= −ω2 (4.6)

First consider the variables that are a function of x. Equation (4.7) is the space

equation after algebraically manipulating the right side of Eq. (4.6), where β4 ≡ ω2ρ
EI

.

Equation (4.8) is the list of boundary conditions [4].

g′′′′ − β4g = 0 (4.7)

g(0) = 0

g′(0) = 0

g′′(L) = 0

g′′′(L) = 0 (4.8)

The general solution of Eq. (4.7) is given by the following function.

g(x) = C1 sin(βx) + C2 cos(βx) + C3 sinh(βx) + C4 cosh(βx) (4.9)

After applying the boundary conditions, the result is a set of linear equations. The

trivial solution of Ci = 0 is not of interest for this application. To find the non-trivial
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solution, the determinant of the coefficients must vanish. This condition is shown in

Eq. (4.10).

cos(βL) cosh(βL) = −1 (4.10)

Equation (4.10) results in an infinite number of values for β and therefore an infinite

number of values for ω, as shown in the relationship below.

ωi = (βiL)2

√
EI

ρL4
(4.11)

An infinite number of ω values results in an infinite number of f and g solutions,

which in turn result in an infinite number of solutions for the displacement, y. Now

that the ω values are known, we can proceed to determining the solutions for the

variables that are explicit functions of time.

A solution exists for the space part of Eq. (4.6); therefore, we can now focus

on the time part of this equation. Because this equation is an ordinary differential

equation, the same tools and approach can be used as for the finite dimensional

system presented in Ch. III. Equation (4.12) restates the time equation. Setting the

acceleration term to zero gives the equilibrium point of f ∗ = 0.

f̈ + ω2f = h′ (4.12)

Here, the Lyapunov function is derived from the kinetic and potential energy. Because

there are an infinite number of f and g, a new definition of y is now appropriate.

y =
∞∑
i=1

fi(t)gi(x) (4.13)

The equation for the kinetic energy of the system, below, is integrated over the length

of the beam. Because the integral is over space, the time variables can be removed

from the integrand, which results in an integrand constant with respect to time. This
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property allows us to define a constant, Mij, that represents the integral of the space

functions over the length of the beam.

T =
1

2

∞∑
i=1

∞∑
j=1

Mij ḟiḟj (4.14)

Mij =

∫ L

0

ρgi(x)gj(x)dx (4.15)

In a similar way, the potential energy can be integrated over the length of the beam.

This integral of the space variables can be used to form a constant, Kij, that is then

substituted into the potential energy equation.

V =
1

2

∞∑
i=1

∞∑
j=1

Kijfifj (4.16)

Kij =

∫ L

0

EIg′′i (x)g′′j (x)dx (4.17)

Equation (4.18) gives the Lyapunov function, here denoted as J , for the system

including the kinetic energy, potential energy, and filter state terms. Note that,

because there are infinite possible f , there are also infinite possible filters.

J =
1

2

∞∑
i=1

∞∑
j=1

Mij ḟiḟj +
1

2

∞∑
i=1

∞∑
j=1

Kijfifj +
1

2

∞∑
i=1

∞∑
j=1

(aif0i + fi)(ajf0j + fj) (4.18)

For simplicity all of the states, including the filter states, can be written as infinite

dimensional vectors. The constants, M and K, then become infinite dimensional

matrices. Our new Lyapunov equation is as follows, where A is now defined as a

diagonal matrix of the ai values.

J =
1

2
ḟ
T
Mḟ +

1

2
fTKf +

1

2
(Af0 + f)T (Af0 + f) (4.19)

This Lyapunov function satisfies the first two stability requirements. After taking

the first time derivative, the controller can be designed such that it includes position
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and filter terms only. The first time derivative of the Lyapunov function and the

controller are below where Ω is a diagonal matrix of ωi
2 values.

J̇ = ḟ
T

[Mf̈ + (K + I)f +Af0]− (Af0 + f)TA(Af0 + f) (4.20)

h′ = [Ω−M−1(K + I)]f −M−1Af0 (4.21)

After substitution of the controller, Eq. (4.22) gives the resulting first time derivative

of the Lyapunov equation. This equation is negative semidefinite and it is therefore

necessary to use Mukherjee and Chen’s Asymptotic Stability Theorem to verify if the

system is actually asymptotically stable.

J̇ = −(Af0 + f)TA(Af0 + f) (4.22)

The set Z is defined as all f such that l = 0, where l = Af 0 + f . As before, the

second and third time derivatives of the Lyapunov function are evaluated on this set.

The second time derivative is zero on the set Z, and the third time derivative is less

than or equal to zero on the set Z.

Z = {f | l = 0} (4.23)

J̈ |
Z

= −l̇TAl− lTAl̇ |
Z

= 0 (4.24)

J (3) |
Z

= −l̈TAl− 2l̇
T
Al̇− lTAl̈ |

Z
= −2ḟ

T
Aḟ |

Z
≤ 0 (4.25)

Because the third derivative is negative semidefinite, a new set is defined to evaluate

the next two time derivatives. The new set Z ′ is defined for all f such that l = 0 and

ḟ = 0. After evaluating the fourth and fifth derivatives on the new set, the fourth

derivative equals zero and the fifth derivative is always less than zero.

Z ′ = {f | l = 0 & ḟ = 0} (4.26)
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J (4) |
Z′ = −l(3)TAl− 3l̈

T
Al̇− 3l̇

T
Al̈− lTAl(3) |

Z′ = 0 (4.27)

J (5) |
Z′ = −l(4)TAl− 4l(3)

T
Al̇− 6l̈

T
Al̈− 4l̇

T
Al(3) − lTAl(4) |

Z′

= −6l̈
T
Al̈ |

Z′

= −6fTKM−1AM−1Kf < 0 (4.28)

Because the fifth derivative (k odd) is negative definite on the set Z ′, the system

is asymptotically stable with a controller composed of only position and filter state

terms. This example shows that asymptotic stability is achievable for an infinite

dimensional system using a controller with position and filter state terms only. The

cantilevered beam could easily be replaced by many other scleronomic systems, such

as an airplane wing. In this application, strain gauges could be placed on the beam

to find position information, and this information could be integrated to construct

the filter states for the controller.

B. Vertical Axis Wind Turbine Blade

The Vertical Axis Wind Turbine (VAWT) blade was chosen as the example problem

for a rheonomic infinite dimensional system because many companies, such as We-

Power and Windspire, are making VAWTs for commercial and residential properties

to provide a renewable energy source to offset the cost of traditional energy from the

city’s power grid [12, 13].

1. Asymtptic Stability Investigation

The model chosen for this development is a VAWT blade with a pinned-pinned bound-

ary condition. The blade is spinning about an axis parallel to the length of the blade

at a distance, R, away. Figures (5) and (6) depict the system and the coordinate
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definitions used in this example. This model is similar to the WePower Falcon Series

VAWT [12].

n2

R

n3

n1
e1

b1

O

y

x

! 

˙ " 

Fig. 5. VAWT blade side view with coordinate definitions.

For this development, the assumptions made are that the VAWT is spinning at

a constant rate (θ̇), and the blade is positioned at a constant angle (φ). The position

vector to any point on the blade is a function of x and y, while all the other quantities

are constants.

p = (R + y cosφ)ê1 + y sinφê2 + xê3 (4.29)

Equation (4.30) is the angular velocity vector, which is constant with respect to time.

ω = θ̇ê3 (4.30)
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Fig. 6. VAWT blade top view with coordinate definitions.

The velocity vector comes from applying the Transport Theorem using the position

and angular velocity vectors [9].

v = (ẏ cosφ− θ̇y sinφ)ê1 + [ẏ sinφ+ θ̇(R + y cosφ)]ê2 (4.31)

Hamilton’s principle is a valuable method for deriving equations of motion for con-

tinuous systems [10]. To begin with Hamilton’s principle, consider the kinetic and

potential energy of the system.

T =
1

2

∫ L

0

ρv · vdx

=
1

2

∫ L

0

ρ[(ẏ cosφ− θ̇y sinφ)2 + (ẏ sinφ+ θ̇(R + y cosφ))2]dx (4.32)

V =
1

2

∫ L

0

EIy′′
2
dx (4.33)

Lagrange’s equation is formed by taking the difference of the kinetic and potential
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energy.

L = T − V

=
1

2

∫ L

0

{ρ[(ẏ cosφ− θ̇y sinφ)2 + (ẏ sinφ+ θ̇(R + y cosφ))2]− EIy′′2}dx (4.34)

The variation of the Lagrangian is integrated over time and set equal to zero.∫ t

0

δL =

∫ t

0

∫ L

0

{ρ[(ẏ+ θ̇R sinφ)δẏ+(θ̇2y+ θ̇2R cosφ)δy]−EIy′′δy′′}dxdt = 0 (4.35)

The equation can be divided into three sections after integrating by parts.∫ t

0

∫ L

0

{ρ(ÿ−θ̇2y−θ̇2R cosφ)+EIy′′′′}δydxdt+

∫ t

0

{EIy′′δy′ |
L
}dt−

∫ t

0

{EIy′′′δy |
L
}dt = 0

(4.36)

The first section, after applying the Mean Value Theorem, results in the equation of

motion for the system [14].

ρ(ÿ − θ̇2y − θ̇2R cosφ) + EIy′′′′ = 0 (4.37)

The last two sections, set equal to zero, produce the four boundary conditions asso-

ciated with the pinned-pinned assumption.

y(0, t) = 0

y(L, t) = 0

y′′(0, t) = 0

y′′(L, t) = 0 (4.38)

Now we assume there is a distributed load on the blade, which appears on the

right hand side of the equation of motion as p(x, t).

ρ(ÿ − θ̇2y − θ̇2R cosφ) + EIy′′′′ = p(x, t) (4.39)
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Dividing everything by ρ and moving the constants to the right hand side allows one

to define a new variable, p̃, that is the pseudo distributed load.

ÿ − θ̇2y +
EI

ρ
y′′′′ =

p(x, t)

ρ
+ θ̇2R cosφ

= p̃(x, t) (4.40)

Because the equation of motion is linear, one can perform separation of variables as

before in the cantilevered beam problem. The variable y is separated into a function of

time, f , and a function of space, g. The distributed load p would have been separated

into a function of time, h and a function of space, g; the pseudo distributed load p̃,

is separated into a function of time, h̃, and a function of space, g. Note that y and p̃

include the same function of space, g.

y = f(t)g(x) (4.41)

p̃ = h̃(t)g(x) (4.42)

The equation of motion is in terms of separate functions of space and time after

substituting Eqs. (4.41) and (4.42) into Eq. (4.40).

f̈ g − θ̇2fg +
EI

ρ
fg′′′′ = h̃g (4.43)

As previously stated, we are able to separate the variables on either side of the

equation, and therefore we can set them both equal to an arbitrary constant known

as the separation constant, −ω2 [11].

f̈

f
− θ̇2 − h̃

f
= −EI

ρ

g′′′′

g
= −ω2 (4.44)

Consider the variables of space in the previous equation. The variables present an

ordinary differential equation where β4 ≡ ω2ρ
EI

. Equation (4.46) is the list of boundary
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conditions for the pinned-pinned blade assumption.

g′′′′ − β4g = 0 (4.45)

g(0) = 0

g(L) = 0

g′′(0) = 0

g′′(L) = 0 (4.46)

For this set of boundary conditions, the solution to Eq. (4.45) is shown below [15].

g(x) = sin

(
iπx

L

)
(4.47)

This brings forth the value for the constant ω where i = 0 . . .∞ [15].

ωi =
(iπ)2

2π

√
EI

mL3
(4.48)

An infinite number of ω values results in an infinite number of f and g solutions,

which in turn result in an infinite number of solutions for the displacement, y. Now

that the ω values are known, we can proceed to determining the solutions for the

variables that are explicit functions of time.

A solution exists for the space portion of Eq. (4.44); therefore, we can look at

the time portion of this equation. Because this equation is an ordinary differential

equation, the same tools and same approach can be used as for a finite dimensional

system as presented in Ch. III. Equation (4.49) restates the time equation shown in

matrix form where the states are infinite dimensional vectors. The quantity h̃ is the

controller to be designed, and the filter state differential equation is included with

the equation of motion to produce a set that describes the dynamics of the system.
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The matrix quantity K is a diagonal matrix of the (ωi
2 − θ̇2) values, and the matrix

quantity A is a diagonal matrix of the ai values.

f̈ +Kf = h̃

ḟ 0 = −Af 0 − f (4.49)

The equilibrium configuration is all states equal zero; found after setting the velocity

and acceleration terms to zero.

f∗ = 0 (4.50)

To investigate asymptotic stability, the next step is to compose the Lyapunov equa-

tion. The equation formulated is not an explicit function of the energy of the system,

but it bears some resemblance to the energy and meets the first two stability require-

ments.

J =
1

2
ḟ
T
ḟ +

1

2
fTKf +

1

2
(Af0 + f)T (Af0 + f) (4.51)

The first time derivative of this equation is shown below. The control is hidden in the

f̈ term, and therefore setting the quantity in brackets to zero produces an equation

for the control as a function of position and filter state only.

J̇ = ḟ
T

[f̈ + (K + I)f +Af0]− (Af0 + f)TA(Af0 + f) (4.52)

h̃ = −Af 0 − f (4.53)

Substituting Eq. (4.53) into Eq. (4.52) produces a negative semidefinite time deriva-

tive of the Lyapunov equation. The equation is negative semidefinite because one

of the states is missing from the equation and therefore could be anything including

zero. This trait exhibits stability but not asymptotic stability.

J̇ = −(Af0 + f)TA(Af0 + f) (4.54)
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To test if the system is actually asymptotically stable, we continue with Mukherjee

and Chen’s Asymptotic Stability Theorem. Equation (4.55) is the defined set Z that

the second and third time derivatives of the Lyapunov function are evaluated, where

l = Af 0 + f .

Z = {f | l = 0} (4.55)

The second time derivative evaluated on the set Z is zero, and the third time derivative

evaluated on the set Z is less than or equal to zero.

J̈ |
Z

= −l̇TAl− lTAl̇ |
Z

= 0 (4.56)

J (3) |
Z

= −l̈TAl− 2l̇
T
Al̇− lTAl̈ |

Z
= −2ḟ

T
Aḟ |

Z
≤ 0 (4.57)

The third time derivative equation is still negative semidefinite because we do not

have information about all of the states. A new set Z ′ is defined to evaluate the next

two time derivatives.

Z ′ = {f | l = 0 & ḟ = 0} (4.58)

The fourth time derivative evaluated on the set Z ′ is zero, and the fifth time derivative

evaluated on the set Z ′ is less than zero, therefore confirming asymptotic stability.

J (4) |
Z′ = −l(3)TAl− 3l̈

T
Al̇− 3l̇

T
Al̈− lTAl(3) |

Z′ = 0 (4.59)

J (5) |
Z′ = −l(4)TAl− 4l(3)

T
Al̇− 6l̈

T
Al̈− 4l̇

T
Al(3) − lTAl(4) |

Z′

= −6l̈
T
Al̈ |

Z′

= −6fTKAKf < 0 (4.60)

Now that the fifth time derivative is negative definite, we can claim that the system

will be asymptotically stable with the defined control of position and filter state terms

only.
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2. Simulation Results

Simulations of the VAWT blade verify the analytical demonstration of asymptotic sta-

bility for the control based on position and filter state terms only, shown in Eq. (4.53).

Matlab is used to numerically integrate the equations of motion and to plot the time

history of the blade. Each simulation was initialized using a slight perturbation from

the equilibrium configuration in terms of the mode shapes. For the simulations, an

approximation was made to only include the first three modes. Here, the x-axis is

time, the y-axis is space, and the z-axis is beam displacement. The figures show the

deformation of the blade starting at time equal to zero for the initial conditions. As

time continues the blade motion dampens to the equilibrium configuration.

In the first case considered, the number of simulation modes equals the number

of modes controlled. Figure (7) shows the time history of the blade with all three

modes excited.

Although Fig. (7) presents favorable system behavior, these are infinite dimen-

sional systems and there are always more modes than one can control. Figure (8)

shows the time history of the blade when the second mode is uncontrolled. The os-

cillating second mode is not damped, which is consistent with the theory presented

in this thesis.

One reason that the second mode continues to oscillate is because the system

model does not include any structural damping. However, real world structures have

natural damping inherent to the system. For the next figure, proportional damping

has been added to the system model to represent structural damping. Even though the

second mode is uncontrolled, the blade is still driven to the equilibrium configuration

due to the effect of the structural damping.

Proportional damping was chosen to represent structural damping for this prob-
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Fig. 7. VAWT blade simulation with the first three modes excited and controlled.

lem because the system dynamics are represented by diagonal matrices, and the

damping ratio was calculated based on Eq. (4.61) below [16].

ξi =
α

2ωi
+
βωi
2

(4.61)

Here, ξ is the damping ratio, and α and β are constants. Figure (9) shows the VAWT

blade time history with proportional damping included in the system dynamics.

These three figures verify the mathematical statements presented earlier in this

chapter, and show that the VAWT system is asymptotically stable with a controller

of position and filter state terms only.
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Fig. 8. VAWT blade simulation with the second mode uncontrolled.

C. Challenges

This chapter details two example problems of infinite dimensional systems with con-

trollers that feedback on position and filter state terms only. In both problems,

asymptotic stability is confirmed for the system, but during the development chal-

lenges were presented.

The infinite dimensional problems considered were both linear systems. Because

of this quality, separation of variables could be applied to manipulate their governing

equations. This approach created known variables in space and ordinary differential

equations in time, and therefore ordinary differential equations for the filter states.

If the problem considered was a nonlinear system, one would not be able to use

the technique of separation of variables. For these cases, one might be able to use an



36

0
1

2
3

4
5

0
0.2

0.4
0.6

0.8
1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [sec]

VAWT time history

x−position [m]

y(x,t)

Fig. 9. VAWT blade simulation with proportional damping and the second mode un-

controlled.

assumed modes method to apply the reduced-sensing approach in spite of nonlinearity.

The assumed modes method approximates a solution for the variables in space; this

method produces a similar result as separation of variables for the problems presented

in this thesis [10]. Further investigation would be necessary if the variables in space

cannot be satisfactorily approximated.

Another challenge to be investigated in the future is the addition of aerodynamic

loading to the VAWT model. In this thesis, the distributed load on the blade consists

of control terms only. To include aerodynamic loading, the distributed load could be

modeled as the addition of control and aerodynamic loads. The control is an explicit

function of f , f0, and x, and an implicit function of time. The aerodynamic loads

would be an explicit function of y and time, and an implicit function of x and time.
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CHAPTER V

CONCLUSION

The research described in this thesis is motivated by flexible structures such as wind

turbines and airplane wings. The blades of these systems are modeled as infinite

dimensional structures because they can be displaced at any point along the blade.

To control the position of the blade, typical controllers require position and velocity

information. Infinite dimensional systems often do not have velocity measurements

available, but one still desires to control the system to achieve asymptotic stability.

This research proposes the use of a filter state to control an infinite dimensional

system.

A filter state is a nonphysical entity that can add damping to a system. In

order to implement a filter state, a differential equation is added to the system and

the controller feedback includes position and filter terms only. The filter state is

simply numerically integrated in real time with the system. It can potentially provide

asymptotic stability to a system that does not have access to velocity measurements.

The tools used to meet the research objective include the following: equilib-

rium points, Lyapunov functions for stability and control, and Mukherjee and Chen’s

Asymptotic Stability Theorem. The equilibrium points give the control a goal con-

figuration to which the system should be driven. Lyapunov functions have specific

stability requirements, and these requirements can be used to design a controller.

Mukherjee and Chen’s Asymptotic Stability Theorem analyzes the Lyapunov func-

tion further to prove asymptotic stability. All of these tools can be used together to

prove asymptotic stability of a system utilizing control with a filter state.

Although the filter state technique has already been applied to finite dimensional

systems in previous work, it was extended to infinite dimensional systems in this the-
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sis. To illustrate the process and to demonstrate mathematically that a system can

be asymptotically stable with a control of position and filter state only, finite dimen-

sional example problems were presented. In the investigation of these techniques for

infinite dimensional system, two types of systems were considered: scleronomic and

rheonomic. The cantilevered beam represents a scleronomic system and the Vertical

Axis Wind Turbine (VAWT) blade represents a rheonomic system. Asymptotic sta-

bility was exhibited in both cases with controllers based on position and filter state

information only.

To implement the controller for an infinite-dimensional system, one method em-

ploys a piezoelectric patch. The patch is an actuator that can impart forces onto a

surface without any support structure, and is shown to to be successful for a cantilever

rectangular aluminum plate [17].

Simulations were presented that validate the asymptotic stability of the VAWT

using the reduced-sensing control technique. First, the case considered had an equiva-

lent number of simulation modes as control modes. Next, a case was considered where

the number of simulation modes was greater than the number of control modes. The

final case considered introduced structural damping to the model of the system dy-

namics.

Future work includes hardware testing and incorporating aerodynamic loading

into the VAWT system model. The hardware testing could include a finite dimensional

filter state implemented on a two degree of freedom wing. This test would provide data

to compare with simulation work, and would be useful in determining the real world

efficiency of the control. Another hardware test could include the implementation of

the piezoelectric patch. If the test setup included an infinite dimensional system such

as a beam, the patch could be placed on the beam in such a way so that it could

control one of the natural modes. This test would determine the usefulness of the
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piezoelectric patch for the application and explore the effect of structural damping.

In addition to hardware testing, the effect of aerodynamic loads could be investigated

for the VAWT system model in order to determine the possible change in the control

equation.
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