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ABSTRACT 

 

Fundamental Scratch Behavior of Styrene-Acrylonitrile Random Copolymers.     

(August 2010) 

Robert Lee Browning, B.S., Texas A&M University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Hung-Jue Sue 

 

The present study employs a standardized progressive load scratch test (ASTM 

D7027/ISO 19252) to investigate the fundamental physical and mechanistic origins of 

scratch deformation in styrene-acrylonitrile (SAN) random copolymers.  Previous 

findings from numerical simulation using finite element methods are used to establish 

correlation between mechanical properties and key scratch deformation mechanisms of 

the SAN model systems.  For SAN, the acrylonitrile (AN) content and molecular weight 

(MW) can be changed to alter mechanical properties such as tensile strength and 

ductility. 

The key scratch deformation mechanisms are identified as: scratch groove 

formation, scratch visibility, periodic micro-cracking and plowing.  Groove formation 

has been correlated to the secant modulus at the compressive yield point while micro-

cracking and plowing are related to the tensile strength of the material.  The 

fundamentals and physical origins of scratch visibility are discussed.  It is explained how 

unbiased evaluation is accomplished by means of an automatic digital image analysis 
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software package (ASV®).  Frictional behavior and the effects of scratch speed and 

moisture absorption are also addressed. 

Increasing the AN content and/or the MW of the SAN random copolymers 

generally enhances the scratch resistance of the material with regard to the onset of the 

key deformation mechanisms.  Increasing the scratch speed increases the brittleness of 

the material, resulting in failure at lower applied loads.  Moisture absorption increases 

with AN content and imparts a degree of plasticization as the moisture diffuses into the 

sub-surface.  This plasticization initially results in a degradation of scratch resistance 

with respect to the key deformation mechanisms, but then, after saturation, the moisture 

on the surface provides lubrication and improves the scratch resistance.  It is important 

to note that polymers are fundamentally different in nature, but the findings of this study 

serve as an important stepping stone down the path to a deeper understanding of 

polymer scratch behavior. 
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1. INTRODUCTION 

 

 This section serves to form a background for this dissertation by giving a brief 

description of the origins of standardized scratch testing and how scientific approaches 

have been employed to tackle the research.  Factors and details motivating the current 

study will be presented and explained in detail.  Finally, an overview of the components 

of the research and their arrangement in this dissertation will be given. 

 

1.1 Origins of Scratch Testing  

History shows that the beginnings of tribology can be traced back to Leonardo 

daVinci who conducted some of the first documented experiments on materials in 

relative sliding motion.   A few centuries later, the first fundamental laws of friction 

were established by Charles-Augustin de Coulomb.  Then, in 1812, Friedrich Mohs 

developed a mineral hardness scale based on the principle that a harder mineral can 

scratch a relatively softer one.  In the centuries since its beginnings, tribology has 

expanded and grown into a multi-faceted field with great depth and a wealth of research 

possibilities.   

The main concern of tribology centers on the study of wear, lubrication and 

friction.  Wear can be observed as abrasion, adhesion, surface fatigue or tribologically-

induced corrosion. When one considers the case of abrasion, two scenarios are possible: 
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1) Multi-pass where the sliding face encounters the face of the counterpart many 

times. 

2) Single-pass where the sliding face encounters the face of the counterpart only 

once. 

In the single-pass case, the face of the sliding component can exist as a collection 

of multiple asperities much smaller in size than the overall size of the sliding face (e.g. 

sandpaper) or it can exist as a “smooth” single asperity (e.g. a car key tip).  The multi-

asperity scenario will result in a collection of micro-scratches while the single-pass case 

will yield only a single scratch.  This categorization is shown in Figure 1.1 in flowchart 

form as adapted from work by Professor Klaus Friedrich. The proposed work is 

concerned with applying the single pass/single scratch abrasion scenario in the wear 

category of the tribological field to polymeric materials.  This path is denoted in Figure 

1.1 with a red line. 
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SINGLE-PASSMULTI-PASS

Tribology

Single Asperity   
(e.g. Car Key Tip)

Single Scratch

Many Asperities                                    
(e.g. Sandpaper)

Multi-Scratch

(Fresh Surface Always Encountered)(Passed Repeatedly Over Same Surface)

Wear

Abrasion

 
 

Figure 1.1  A flowchart characterization of the field of tribology. 
 

In the past, a scratch has been envisioned as a sliding indentation, either under a 

constant or increasing load.  Unfortunately, as is the case with most aspects of polymer 

science, this simplicity is quite deceiving.  Addressing this issue is complicated due to 

the fact that polymers have complex material and mechanical behavior characteristics.  

Viscoelasticity, among other properties, plays a large role in the material response when 

a polymer is scratched.  This creates a special challenge in developing test methods that 

address scratch behavior from a material science point of view.  The challenge is 

augmented by the need to address the stress state the material experiences during a 

scratch.  This is possible through numerical means (e. g. finite element methods), but the 

adopted model must be able to encompass the entire material response, i.e., linear 

elastic, anelastic, yielding, strain softening, and strain hardening. Also, and just as 
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importantly, quantitative evaluation of scratch resistance requires the elimination of 

ambiguity and subjectivity. 

Often, scratch resistance is merely described with vague terms like “good” and 

“bad” or it is given a “pass” or “fail” designation.  These terms do nothing to describe 

the nature of the material or why that particular material possesses “good” or “bad” 

scratch resistance.  In studying polymer scratch behavior, there are three main areas of 

concern: aesthetics, structural integrity and durability.  With regards to aestheticism, one 

can easily find its relevance in many products such as car dashboards and cellular 

phones where visible scratches reduce the original product’s superficial quality while the 

intended functionality remains. Poor durability means that surface scratches can lead to 

damage that compromises the lifetime of the component. This is especially important in 

transport applications where metal pipes are often coated with polymeric materials to 

prevent corrosion while exposed to the atmosphere or buried underground.  In packaging 

applications, surface quality is extremely critical in upholding structural integrity. For 

example, in data storage, scratches on compact disks, hard disks and optical storage 

devices can cause permanent loss of data. 

The main issue is how to link material properties to material performance with 

the purpose of differentiating materials with regards to scratch resistance. Diamond 

possesses the highest hardness of all materials and is thus impenetrable while an ideal 

rubber is soft and will recover completely if deformed.  Therefore, in principle, these 

two materials possess the highest possible level of scratch resistance against surface 

deformation and damage upon removal of an applied load.  Unfortunately, most 
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polymers lie in between and are extremely susceptible to scratch damage.  As polymers 

have come to be relied upon more and more in a plethora of applications over the years, 

the demand for reliable scratch testing methods and objective analysis techniques has 

increased substantially.  Until recently, no such testing method or analysis technique has 

existed. 

Employing a reliable testing and analysis methodology that is founded upon the 

principles of material science and mechanics can make the objective understanding of 

polymer scratch behavior possible.  Ideally, once the properties of the material are 

known and its behavior fairly well understood, numerical simulation employing 

mechanical modeling can be carried out to predict the outcome when a polymer is 

subjected to a particular testing scenario.  Using the knowledge gained from these 

approaches, a deeper fundamental understanding of polymer scratch behavior can be 

achieved. 

 

1.2 Research Motivations and Overview 

Numerical methods make parametric studies on polymers considerably less 

complicated than experimental efforts.  The reason is simply because numerical methods 

afford the advantage of being able to decouple the parameters of interest in a systematic 

fashion.  In the real case, some properties like modulus and ductility are difficult to 

decouple.  This makes it almost practically impossible to change one parameter while 

holding all others constant.  Differences in crystallinity, the incorporation of additives 

and/or processing conditions can also add to the complexity of problem of trying to 
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identify a proper model system to perform an experimental parametric study.  With the 

above issues of concern in mind, in order to experimentally carry out meaningful 

fundament study, a set of simple amorphous polymers has to be considered for this 

research. 

The model system for this study is polystyrene-acrylonitrile (SAN) and is a 

random copolymer of polystyrene and polyacrylonitrile.  Its repeat unit structure is given 

in Figure 1.2.  Due to its higher strength and chemical resistance, SAN can be used as a 

commercial replacement for polystyrene.  SAN is an amorphous copolymer typically 

composed of 20-35 wt% acrylonitrile (AN) and the remainder styrene.  The amorphous 

nature of SAN is an attractive feature due to the inherent complex mechanical behavior 

of semi-crystalline polymers.  In uni-axial tension, SAN has a ductility of approximately 

2-3% and exhibits no signs of plastic yielding before breakage when tested under ASTM 

conditions (i.e., it is a nearly linearly elastic material).  Its tensile properties (strength, 

ductility) can be controlled by changing the AN content [1].  All of these features point 

to the fact that SAN can be an ideal experimental model system for comparison to the 

numerical study. 
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Figure 1.2  Repeat unit structure of polystyrene-acrylonitrile (SAN).  In the grade proposed 
for this study, n and m are random. 

 

 Changing the AN content is one way to control the mechanical properties, but it 

is also known that changing the molecular weight can also alter the properties.  

Therefore, these factors inherent to SAN will be exploited in order to establish the link 

between material properties and scratch resistance. 

 Even though SAN has been identified as an ideal candidate for the fundamental 

study, there is one aspect of its material nature that requires consideration.  The AN 

group of SAN consists of a nitrogen atom triple-bonded to a carbon atom and has a 

dipole moment of 3.9 DeBye, which is quite high.  This means that the highly polar AN 

groups on the surface and immediate sub-surface of the SAN polymer can attract other 

polar molecules, namely water.  Consequently, moisture in the atmosphere can be 

readily absorbed by the surface of SAN.  Therefore, it is easy to see that addressing how 

the scratch behavior of SAN changes as a function of exposure to environmental 

moisture is a necessity. 

 In addition to addressing the scratch behavior of SAN from a fundamental 

standpoint, the fundamentals of scratch visibility in general will also be addressed.  As 
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mentioned in the previous section, scratch visibility is of significant interest and requires 

objective and unbiased analysis.  For many years, scratch visibility has been viewed as a 

highly qualitative performance criterion and its physical origins have not been very well 

understood.  However, the identification of physiological parameters which govern how 

the average human eye perceives visibility has led to the development of an automatic 

scratch analysis software package which eliminates the element of human visual bias 

through the use of a desktop scanner.  Additionally, there have been many recent 

advances in the understanding of surface/light interactions which has opened the door to 

understanding the physics of scratch visibility.  The basic details of the software package 

will be explained and an example of its application will be shown by comparing the 

scratch visibility of polypropylene to polyvinylchloride.  

 To summarize the scope of this dissertation work, an overview of the research 

focuses is given in Figure 1.3. 
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Figure 1.3  Overview of research focuses in the dissertation. 
 

1.3 Layout of the Dissertation 

 To supplement the background presented in this section, a comprehensive 

literature review covering fundamental aspects of polymer scratch research and the basic 

mechanics of the scratch process will be given in Section 2.  The standardized scratch 

testing methodology employed throughout this body of work will also be briefly 

described.  In Section 3, the standardized methodology is applied to a set of SAN model 

systems with varying AN content at two levels of molecular weight.  Key scratch 

deformation mechanisms for SAN are identified and will be described. The effects of 

testing speed and frictional behavior are addressed.  Additionally, correlation with 
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mechanical properties will be established.  Section 4 uses the same analyses as Section 

3, but focuses on the change in MW at one level of AN content.  The effect of exposure 

to environmental moisture on SAN scratch behavior is investigated in Section 5.  Next, 

Section 6 covers the comparison of the scratch visibility of polypropylene and 

polyvinylchloride.  It will be shown how the physical deformation resulting from the 

scratch process influences scratch visibility.  Closing statements and considerations for 

future research efforts are given in Section 7.  Finally, the citations of references in this 

dissertation will be documented. 
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2. LITERATURE REVIEW 

 

 Before any research endeavor of a fundamental nature can be undertaken, the 

current state of knowledge within the field must first be understood.  This section 

presents a comprehensive literature review to explain the development of the testing 

methodology and to illustrate the work done by others in the field to gain fundamental 

understanding of polymer scratch behavior both from a mechanistic and aesthetic point 

of view. 

 Scratch research on metals and ceramics has been ongoing for quite some time, 

but polymer scratch research is still in its infancy.  As polymers become more and more 

a material of choice for many engineering applications, the necessity for this type of 

research increases in turn.  

Needless to say, numerous scratch testing methodologies been designed in recent 

years.  Many efforts involved either using custom-made set ups or adapting existing 

machines to perform the task of putting a controlled scratch on a material surface.  One 

common method was to use a nano-indenter or AFM and somehow change the function 

of the machine so that the tip can translate in a vertical direction as the indentation load 

is applied [2-11].  A meaningful study was conducted by Wong et al. who used a nano-

indenter as a nano-scratcher to investigate the effects of crosslink density on the scratch 

of DER epoxy resins [11].  They found that increasing the crosslink density of the epoxy 

matrix increases the amount of elastic recovery after scratching and decreases 

penetration depth by the scratch tip.  However, the tests were conducted at a constant 
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load, so there was no information gained as to load-dependent scratch-induced 

deformation mechanisms. 

Since the tip employed by these nanoscale tests is so small, the applied load must 

be small as well to normalize the stress magnitude.  The problem is that the geometry of 

the tips commonly employed in these devices is quite sharp and does not allow for a 

stress field evolution that is gradual enough to observe all of the scratch damage 

mechanisms of the material.  Another issue with these methods is that the resulting 

scratches are so small that high-powered, expensive analysis instruments are needed to 

view the scratch.  Real scratches can often be seen by the common observer without aid 

of such instrumentation.  More powerful analysis instruments are only needed to view 

the deformation in high detail. 

A comprehensive review of more practical devices is given by Wong et al. [12].  

Among those test methods highlighted are the pencil test [13], the single-pass pendulum 

test [14, 15], the pin-on-disc test [16], the Revetest scratch device [17], the Taber 

scratcher [2] and the Ford Five-Finger scratch tester [18, 19].  Even though these 

methods can produce scratches in a repeatable manner, there are still factors that affect 

their reliability. 

Literature on polymer scratch testing can be found dating back to 1955 where 

modified polystyrenes were explored as a material for telephone housings [20].  

Numerous other studies have since been conducted over the years, but scientific depth is 

generally lacking [11,12,19,21 - 59].  Then, the continuous research efforts at Texas 

A&M involving polymer scratch behavior resulted in the development of a progressive 
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load scratch testing methodology that has been standardized under the designations 

ASTM D7027 (est. 2005) and ISO 19252 (est. 2008) [60, 61].  The progressive load 

nature of this scratch test allows one to directly link the applied normal load to the onset 

of any damage feature along the scratch path by measuring the scratch distance.   

The scratch testing apparatus shown in Figure 2.1, the Scratch 4 Surface Testing 

System, was designed by Surface Machine Systems (www.surfacemachines.com) in 

conjunction with the Polymer Technology Center at Texas A&M.  It is equipped with 

normal and tangential load sensors so that the frictional force throughout the scratch can 

be measured.  The main advantage of the progressive load test is that it shows a 

continuous evolution of the scratch damage in a single pass.  The research carried out 

using the ASTM/ISO scratch test suggests that the methodology has significant scientific 

merit [12,28,29,57,59, 62 - 69]. 
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Figure 2.1   The Scratch 4 Surface Testing System designed by Surface Machine Systems 
and the Polymer Technology Center at Texas A&M University. 

 

The evaluation of scratch resistance must be founded on the fundamental 

principles of material science.  Intuitively, the scratch-induced deformation is strongly 

related to the stress and strain the material experiences during the scratch process.  In 

general, the scratch process involves a normal load applied to an asperity while in a 

sliding motion (see Figure 2.2).  This results in the application of multi-axial stress of 

compressive and tensile nature, as shown in Figure 2.3 [70]. 
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Figure 2.2   Schematic illustration of the scratch process. 
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Figure 2.3   Illustration of stress zones present during the scratch process. 
 

Measuring the mechanical properties of a material is often a good way to gauge 

its performance in certain applications.  However, the multi-axial nature of the scratch 

stress field presents a challenge when attempting to relate the mechanical properties to 
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the resulting scratch deformation.  Furthermore, there are several properties unique to 

polymers like viscoelasticity and differences in molecular architecture that make the 

situation even more complicated. 

Numerous researchers have tried novel ways of relating scratch behavior to 

material properties.  Xiang, et al. conducted a study on the relationship between polymer 

scratch deformation phenomena and mechanical properties based on a variety of 

amorphous and semi-crystalline polymers [59].  In particular, the surface tensile stresses 

were used to gauge the scratch resistance of the polymers with respect to onset of plastic 

flow or brittle surface fracture.  However, no detailed knowledge was gained in 

addressing correlation between the material properties and scratch damage mechanisms. 

Since polymers are viscoelastic materials, their deformation behavior depends on 

the temperature and rate at which the tests are performed.  Jardret and Morel studied the 

effects of temperature and strain rate on the scratch deformation of PMMA [70].  Their 

study found that as the temperature increases, the material around the scratch tip is 

deformed quite easily and also that if the scratch speed is increased, the brittleness of the 

material increases and fracture occurs earlier.  A similar study was carried out by 

Browning, et al. to investigate the effect of scratch speed on the scratch behavior of soft 

TPOs [62].  The findings were similar in that, even though the TPOs were soft and 

rubbery, the material behaved in a more rigid and brittle fashion at higher testing speeds. 

Surface friction is a complicated concept, but is vital to consider when studying 

scratch behavior.  There have been numerous efforts to link surface friction with 

polymer scratch behavior [38, 63, 64, 71 - 74].  Pelletier et al. investigated the effect of 
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the friction coefficient on the resulting contact area during scratching indenter of 

amorphous polymers with a spherical using experimental efforts coupled with numerical 

simulation [74].  Their detailed study concluded that the local coefficient of friction has 

an impact on the maximum value of equivalent strain and can affect the shape of the 

plastically deformed volume.  Browning et al. looked at the effect of incorporating 

erucamide, a slip agent, into talc-reinforced TPOs and found that increased lubrication of 

the surface led to significantly improved resistance to scratch visibility [38].  

Furthermore, Jiang et al. probed the effects of surface roughness on frictional behavior 

and its relationship to scratch behavior [64].  Their findings show that if the surface 

roughness increases, the friction during scratching is reduced, leading to improved 

scratch resistance. 

One way many researchers have attempted to enhance the mechanical properties 

of polymers is by adding nanoscale fillers to make polymer nanocomposites.  Indeed, the 

mechanical properties of polymer nanocomposites were greatly improved over those of 

the neat systems and studies in polymer nanocomposite scratch behavior followed suit 

[47, 69, 75 - 77].  In a study on nanoclay-reinforced PP and PE, Yuan et al. found that 

incorporation of the nanocomposites decreased the susceptibility of the systems to 

micro- and nano-scale deformation in the form of surface ripples [76].  They attributed 

this improvement to increases in crystallinity, elastic recovery, modulus and yield 

strength.  In a comprehensive review of nanocomposite scratch, Dasari et al. point out 

that incorporation of nanofillers does not always bring improvements [77].  This was 

also shown in work carried out by Moghbelli et al. on epoxy nanocomposites [69].  The 
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incorporation of α-Zirconium Phosphate or core-shell rubber particles into epoxy 

matrices was found to improve the mechanical properties, but the resistance scratch-

induced surface deformation was actually lower.  This method of improving mechanical 

properties is not very sound because incorporation of fillers into a polymer matrix alters 

its physical nature and limits the understanding of the impact of microstructural 

parameters on tribological behavior.  A more practical way of changing the mechanical 

properties of a polymer is by changing the molecular weight.  Increasing the molecular 

weight generally increases the tensile strength and ductility and has been linked to 

enhanced scratch resistance in material like PP, HDPE and UHMWPE [26, 29, 40, 68, 

78 - 84].   

When characterizing the mechanical behavior of polymers, it is important that 

the characterization be general and comprehensive.  The important idea of polymer 

scratch maps came from Briscoe, et al. in 1996 [26, 29].  Their studies involved such 

approaches as relating hardness and the scratch-induced strain to the surface deformation 

of PE, PC and PMMA and under what level of applied normal load the deformation 

occurred.  In a similar fashion, Sue and co-workers developed a scratch map for 

polymers based on the strength and ductility of several polymers and how it relates to the 

resulting scratch deformation features [65].  These maps provided generalized 

information regarding scratch damage as a function of several scratch testing and 

material parameters like testing speed, modulus, ductility, etc. 

Evaluation of scratch resistance is sometimes approached from an aesthetic view.  

Visible scratches can degrade the visual quality of polymer surfaces.  Scratch visibility 
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has long been thought to be a qualitative phenomenon in that human perception is often 

depended upon for assessment.  However, many people have made attempts at 

objectively approaching the issue [2, 12, 67, 85, 86].  By using setups comprised of 

controlled illumination and detectors, insight can be gained as to how incident light 

interacts with a scratched surface [27].  However, only marginal understanding is gained 

regarding the root cause of scratch visibility as it relates to surface deformation.  
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3. OBJECTIVE SCRATCH VISIBILITY ASSESSMENT 

 

 Scratch visibility can be immediately appreciated by anyone concerned with 

aesthetic surface quality.  However, until recently, the analysis methodologies used to 

assess scratch visibility have been highly qualitative and subjective.  Human bias, 

surface/light interactions (i.e. orientation of the scratch with respect to the illumination 

source) and how the physics of surface deformation relates to scratch visibility are all 

key elements to developing objective analysis methodologies.  This section will describe 

a software package called ASV
®

 that has been developed to automatically analyze 

scratch visibility using human physiological parameters.  Polyvinylchloride (PVC) has 

long been considered to exhibit extremely “good” scratch resistance compared to other 

polymers like polypropylene (PP).  Therefore, the scratch visibility resistance of 

homopolymer PP and rigid PVC will be utilized as a set of model systems to illustrate 

how scratch visibility is assessed by the ASV
®
 software.  Details regarding the operating 

principles of the software and the relationship between surface deformation and scratch 

visibility will be discussed. 

 

3.1 Details of Scratch Visibility Analysis Software   

A surface scratch will only be visible once the contrast between the scratch 

damage and the background reaches a certain level.  For the typical human eye, this level 

is 3% for matte surfaces and 2% for glossy surfaces.  Additionally, the smallest feature 

size the human eye can resolve as a single entity is roughly 90 µm.  These parameters 
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are used in conjunction with the commercially available software package ASV® to 

automatically analyze a digital image of a scratched sample and detect the onset of 

scratch visibility based on the contrast and size criteria mentioned above. 

For quantitative scratch visibility resistance evaluation, a sample is scratch tested 

according to the ASTM/ISO standard methodologies.  Then, the surface of the sample is 

scanned using a PC-based scanner at a resolution of 300 dpi (i.e. 90 µm/pixel).  A 

Munsell mini colorchecker is scanned simultaneously with the sample to allow for color 

calibration in the ASV® software.  Once the digital image is obtained, the algorithm in 

the software scans the image to locate the point at which the contrast and feature size 

criteria are met.  Furthermore, a continuity criteria has been introduced to account for the 

stick-slip phenomenon and the presence of artificial features like dust particles, bumps, 

surface texture, etc. that could affect visibility assessment.  When all the criteria are 

simultaneously met, the software scans the corresponding data file from the executed 

scratch test and reports the Critical Load for the Onset of Scratch Visiblity.  The critical 

load can then be used as an objective metric to rate scratch visibility resistance.  A more 

detailed description of the ASV® software can be found in [67] or at 

http://www.surfacemachines.com.  

 

3.2 Model PP and PVC Systems   

Injection-molded homopolymer PP and rigid PVC plaques in the dimensions of 

170 mm by 110 mm by 3 mm were used for this study.  All samples had smooth, flat 

surfaces, i.e., RMS virgin roughness = ~83 nm.  Although the PVC formulation is 
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proprietary, it was provided that the rigid PVC formulation contained stabilizers and 

processing additives like paraffin wax and plasticizer. Carbon black pigmentation was 

added for contrast purposes.  To compare the scratch behavior of PP and PVC, the 

mechanical properties should be as similar as possible.  The flexural modulus was 

matched for the two materials and was given as 2.2 GPa.  The corresponding flexural 

strength was 57 MPa for PP and 74 MPa for PVC. 

 

3.3 Scratch Testing and Analysis 

Scratch tests were performed following the ASTM D7027-05 standard.  In this 

case, a progressive load ranging from 1 – 90 N was applied to the PP and PVC.  Four 

tests were conducted for each material at a rate of 100 mm/s for a length of 100 mm. 

Upon completion of the tests, the samples were stored at ambient temperature for 

at least 72 hrs to allow for viscoelastic recovery of deformed region to stabilize.  Then, 

the scratched samples of PP and PVC were scanned simultaneously with a Munsell color 

checker using an EPSON Perfection 4870 Photo PC scanner at a resolution of 300 dpi.  

To analyze the effect of observation angle, two scan orientations were employed: one 

where the scanning direction was parallel to the scratch testing direction and the other 

where the scanning direction was perpendicular. 

After obtaining the digital images, the ASV® software was used to normalize the 

images using the standardized values of red, blue and green on the color checker.  This 

step is to ensure that the digital image represents as closely as possible what a human 

observer would see with un-aided eyes.  The Critical Load for the Onset of Visibility 
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was then obtained using the physiological criteria of 3% contrast, 90 µm feature size and 

90% continuity. 

To relate the visibility of the PP and PVC samples to the corresponding scratch 

damage morphology, a Keyence VK-9700 violet laser scanning confocal microscope 

(VLSCM) was used to obtain cross-section profiles for topology measurement and 

values of RMS surface roughness at increments of 10 mm along the scratch path.  For 

the roughness measurement, the parabolic profile of the cross-section was flattened 

using tilt-correction options within the Keyence VK Analyzer software. RMS roughness 

values were obtained using a circular measurement window with a diameter of 270 µm. 

 

3.4 Results and Discussion 

3.4.1 Scratch Damage Observation 

Figure 3.1 shows the scanned images of the tested samples.  It can clearly be seen 

that, regardless of scan orientation, PVC has a superior scratch performance in that the 

onset of visibility is significantly delayed.  Figure 3.1 also shows that for some materials, 

the observation angle can be a critical factor when assessing scratch performance.  PP 

shows little if any dependence on scan orientation while the difference for PVC is quite 

substantial. 

The plowing point is where the stress applied by the scratch tip reaches the 

strength of the material.  The tip penetrates through the surface and begins to displace 

the material in front of and around it.  When considering this scratch damage feature, 
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PVC also clearly shows superiority over PP.  A summary of the critical load values for 

orientation-dependent visibility and the onset of plowing is given in Figure 3.2. 

 
 

Polypropylene (PP)

Perpendicular Orientation

Polyvinylchloride (PVC)

Parallel Orientation

Perpendicular Orientation

Parallel Orientation
 

 

Figure 3.1   Scanned images of scratched samples of model PP and PVC.   
(Resolution = 300 dpi) 
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Figure 3.2   Summary of critical load values for visibility and plowing for model PP and 
PVC. 

 

3.4.2 Relating Scratch Visibility & Surface Characteristics 

As stated earlier, the two main morphological factors affecting scratch visibility 

are surface roughness and the topology of the scratch profile.  If the scratch is 

illuminated with the incident angle perpendicular to the scratch, the topology will be the 

dominant factor.  However, if the angle of incidence is parallel, the scratch will be 

illuminated in a more uniform manner and the surface roughness will play the most 

important role to trigger visibility.  A detailed illustration is shown in Figure 3.3.   
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(a) Perpendicular Orientation 
(θ = 90 )

(b)Parallel Orientation 
(θ = 0 )

Shoulder Height

 

Figure 3.3   Illustration of factors affecting surface/light interaction: a) Profile/geometry 
change in perpendicular scanning orientation and b) surface roughness change in 
parallel scanning orientation. 

 

As the applied load increases, the topology of the scratch profile changes in turn.  

The plastic deformation from the scratch process results in a shoring-up of material on 

the sides of the scratch.  The height of the shored-up material, or shoulder height, will 

eventually increase to a point where the angle of reflection will be altered to create a 

shadow with an intensity level different high enough to introduce at least 3% contrast 

relative to the background (see Figure 3.3a).  In the other scenario, as shown in Figure 

3.3b, the surface roughness must increase to a high enough level so that the scattered 

light intensity is high enough to meet the 3% contrast criterion.   

Figures 3.4 and 3.5 shows shoulder height and RMS roughness as a function of 

applied normal load for the model PP and PVC systems.  The gray dots lying on the 
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curves represent the visibility points for PVC and PP as related to that feature.  The 

shaded boxes indicate that plowing has occurred for that material. 
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Figure 3.4   Shoulder height as a function of applied normal load for model PP and PVC. 
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Figure 3.5   RMS surface roughness as a function of applied normal load for model PP and 
PVC. 

 

Figure 3.4 shows that the shoulder height of PVC evolves much more gradually 

while for PP, the topology change is almost instant.  The same can be said for the 

roughness (see Figure 3.5).  PVC maintains a smooth scratch profile until just about the 

plowing point while PP roughens almost instantaneously.  In Figure 3.6, the close-up 

scans of the region around the plowing point make it readily apparent that PVC 

maintains a smooth profile until just before plowing. 
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Figure 3.6   VLSCM scans of PP and PVC just before the plowing point.   
 

It is well known in the field of tribology that improving the frictional behavior of 

a polymer can result in an improvement in resistance against surface deformation and 

damage [63].  The ratio of the tangential and normal loads throughout the scratch is 

termed the scratch coefficient of friction (SCOF) and is shown for the two model 

systems in Figure 3.7. 
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Figure 3.7   SCOF as a function of scratch distance for model PP and PVC systems.   
 

Up until about a scratch length of 50 mm, PVC intuitively exhibits lower 

frictional behavior, but then continues to increase with increasing load.  This is likely 

because of the fact that as the tip continues to penetrate, more material is present in front 

of the tip which gives rise to a new component of the tangential force related to material 

resistivity.  As for PP, it is likely that the debris formed a transfer film layer with the 

indenter during scratching, which helped to stabilize the SCOF even when a higher 

scratching load is applied. 

It was originally thought that the higher strength of PVC was the cause of the 

superior scratch resistance.  While it is true that PVC is more resistant than PP to plastic 

deformation (i.e. groove and shoulder height formation), it was realized after observing 
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the roughness and friction behavior that some of the waxy additives, necessary for 

commercial production, could be artificially improving the scratch resistance. 

In conclusion, the value of the ASV® software as a quantitative scratch visibility 

analysis tool is definitively showcased by the findings of this study.  As such, the SAN 

model systems will be analyzed in the same way as the PP and PVC to understand how 

the incurred surface deformation influences the resulting scratch visibility behavior. 
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4. EFFECT OF ACRYLONITRILE CONTENT ON                                                 

SCRATCH BEHAVIOR OF SAN MODEL SYSTEMS 

 

 This section introduces the application of the progressive load methodology from 

the ASTM/ISO standard to a set of model SAN systems with varying AN content at two 

levels of molecular weight (MW).  The scratch behavior is analyzed in detail and key 

damage mechanisms are identified.  Using the knowledge of the basics of scratch 

mechanics, correlations between scratch deformation and mechanical properties are 

established.  Scratch visibility, rate dependence and frictional behavior are analyzed, as 

well.   

 

4.1 Model SAN Systems   

The SAN systems for this study were provided by BASF SE with varying level 

of AN content in the form of reactor-grade random copolymers polymerized by free-

radical reactions.  Two grades of SAN containing 27 wt% AN and differing MW were 

employed for the study so that the effect of AN content and MW could be de-coupled.  

In that regard, the comparisons made in this study will focus on the AN content effect at 

two levels of MW.  The MW effect at a constant level of AN content will be addressed 

in the next section. 

The resins were produced into injection-molded plaques with dimensions of 150 

mm by 150 mm with a thickness of 6 mm.  The surface finish of the plates was smooth 

with a 60° specular gloss of 95.  Upon receipt, the injection-molded plaques were 
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annealed between two smooth glass plates at 110 °C for 2 hours to relax residual surface 

stresses resulting from the injection molding process.  It was verified through 

profilometry with a laser confocal microscope that the surface finish was not affected by 

the annealing process.  To create a sufficiently dark-colored material for scratch 

visibility analysis purposes, 0.325% of anthrachinone and 0.15% of pyrazolone yellow 

were incorporated into the resins.   

Physical properties of the model systems were evaluated by BASF SE and are 

summarized in Table 4.1.  The MW was obtained from light scattering measurements 

and polydispersity is defined as Mw/Mn.  Poisson’s ratio for all SAN systems was 

assumed to be 0.35 as quoted in the literature [87].   

 

 
Table 4.1   Physical properties of SAN model systems for the AN content effect study 

 
 SAN19 

SAN27  
(Hi MW) 

SAN27 
(Lo MW) SAN35 

Acrylontrile Content (wt%) 19 27 27 35 

Molecular Weight (kg/mol) 134 134 106 104 

Polydispersity 4.1 4.4 3.9 3.7 

Poisson's Ratio 0.35 0.35 0.35 0.35 

 

4.2 Experimental Procedures 

Tensile and compression tests were performed on a screw-driven MTS
®
 Insight 

load frame equipped with a 30 kN capacity load cell.  MTS
®

 Testworks 4 was used as 

the software interface for data collection. 
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For uni-axial tensile testing, injection-molded dog-bone specimens of the model 

systems were prepared by BASF SE with a nominal thickness and width of 4 mm and 10 

mm, respectively.  Actual dimensions were measured with a digital micrometer caliper.  

The crosshead speed for the tensile tests was 5 mm/min and an MTS
®
 extensometer with 

a gauge length of 25.4 mm was used to monitor the displacement for strain calculations. 

Uni-axial and plane-strain compression specimens were prepared from the 6 mm 

thick injection molded plates by precision-cutting using a diamond saw. The nominal 

dimensions of the compression specimens were 12.7 mm by 6 mm by 6 mm for uni-axial 

compression and 12.7 by 12.7 by 6 mm for plane-strain compression.  After the samples 

were cut with the diamond saw, the faces were polished using first P2400 and then 

P4000 grit silicone-carbide abrasive paper.  Care was taken to ensure that all edges were 

flat, square and parallel.  Actual dimensions of the specimens were measured using a 

digital micrometer caliper. 

Uni-axial compression tests were performed using a parallel-plate setup while 

plane-strain compression tests involved a channel - die configuration similar to that 

employed by Boyce, et al. [88].  Both the width of the channel and the thickness of the 

die were 6 mm.  The other dimensions were configured to allow ample space for 

deformation after the onset of plastic flow.  A setup consisting of linear bearings and 

guide rods was used to ensure proper alignment for both compression scenarios.  A 

crosshead speed of 2.5 mm/min was chosen so that the strain rate in compression was 

equal to the strain rate in tension.  The MTS
®

 extensometer was applied to each fixture 
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to monitor displacement for strain calculations.  White lithium grease was used to 

provide sufficient lubrication and minimize friction under compression. 

Scratch tests were carried out according to the conditions outlined in ASTM 

D7027-05/ISO 19252:08 by using a progressive load range of 1 – 90 N at constant 

scratch speeds of 1, 10 and 100 mm/s for a length of 100 mm.  The scratch tip was made 

of stainless steel in a spherical geometry with a diameter of 1 mm.  Three scratch tests 

were performed at each speed on the same SAN plaque.  All tests were performed so that 

the tip movement was the same as the melt flow direction. 

A Keyence
®
 VK9700 violet laser scanning confocal microscope (VLSCM) was 

used for high-resolution analysis of the surface roughness and scratch damage 

mechanisms.  The samples were analyzed 48 hrs after the completion of scratch tests.  

The microscope is equipped with a 408 nm wavelength violet laser and has an x-y-axis 

resolution of ~250 nm while the height resolution is ~1 nm.  The VK Analyzer software 

provided with the microscope was used to obtain optical images as well as topographical 

profiles.  The tilt-correction and noise-filtering capabilities available in the software 

were used to process the raw images.  RMS surface roughness was also measured using 

the VK Analyzer software.  To measure the roughness of the scratch path,   the hemi-

spherical profile was flattened using a curve-fitting option in the VK Analyzer software.  

The window for roughness measurement was circular with a diameter of 270 μm to 

correspond with the physiological resolution criterion of the human eye (smallest 

resolvable feature size = 90 µm). 



 

 

36 

36 

An Olympus
®
 BX60 optical microscope was used in reflection mode when high-

resolution damage analysis was not required. 

 

4.3 Results and Discussion 

4.3.1 Mechanical Properties of Model Systems 

The stress-strain curves for the model SAN systems under uni-axial tension are 

shown in Figure 4.1.  Under compression, the only appreciable difference observed 

between the uni-axial and plane-strain compression stress-strain curves is the strain-

hardening exponent.  Therefore, typical compressive stress-strain curves for the SAN 

systems are shown in Figure 4.2. The tensile and compressive properties are summarized 

in Tables 4.2 and 4.3. 
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Figure 4.1   Stress-strain curves for model SAN systems with varying AN content under uni-

axial tension. 
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Figure 4.2   Typical compressive stress-strain curves for model SAN systems with varying 

AN content. 

 
 
 
Table 4.2   Uni-axial tensile properties of SAN model systems for the AN content effect 

study 

 
 SAN19 

SAN27            
(Hi MW) 

SAN27            
(Lo MW) SAN35 

Modulus (GPa) 3.4 ± 0.04 3.7 ± 0.11 3.5 ± 0.09 3.7 ± 0.02 

Tensile Strength (MPa) 68.9 ± 1.5  79.0 ± 1.0 59.3 ± 2.7 81.9 ± 0.7 

Ductility (%) 2.20 ± 0.07 2.57 ± 0.04 1.68 ± 0.26 2.68 ± 0.04 

  

Table 4.3   Compressive properties of SAN model systems for the AN content effect study 

 
 SAN19 

SAN27           
(Hi MW) 

SAN27            
(Lo MW) SAN35 

Modulus (GPa) 3.5 ±  0.1 3.6 ± 0.1 3.5 ± 0.2 3.4 ± 0.2 

Yield Strength (MPa) 117.6 ± 0.8 115.2 ± 0.5 117.2 ± 0.2 113.7 ± 1.4 

Yield Strain (%) 4.70 ± 0.59 4.80 ± 0.25 4.72 ± 0.27 5.44 ± 0.08 

Secant Modulus at Yield Point (GPa) 2.50 2.40 2.48 2.09 

Uni-axial Strain Hardening Exponent  1.35 ±   0.05 1.33 ±  0.03  1.37 ±  0.11  1.43 ±  0.08  

Plane-Strain Hardening Exponent  1.68 ± 0.12 1.70 ± 0.18 1.71 ± 0.10 1.55 ± 0.17 

 



 

 

38 

38 

4.3.2 Basic Scratch Mechanics 

Before any fundamental scientific knowledge regarding the relationship between 

scratch deformation and mechanical properties can be gained, it is first necessary to 

understand the basic mechanics of the scratch process.  In general, the scratch process 

involves a normal load applied to an asperity while in a sliding motion.  This results in 

the application of multi-axial stress of compressive and tensile nature.  However, the tip 

geometry and nature of the contact between the tip and its substrate can greatly affect the 

way the stress develops.   

A schematic of contact between the spherical scratch tip and the deformed 

polymer substrate is given in Figure 4.3.  The stress is highly localized where the center 

of the tip makes contact with the substrate.  It then gradually diminishes away from the 

scratch tip.  The applied stress under this contact scenario is, in reality, rather complex, 

but some assumptions can be made based on prior experiences with numerical modeling.   

 
 

Head-on View
(Scratch direction is out of paper towards reader)

Side View
(Scratch direction is left-to-right)  

 

Figure 4.3   Schematic to illustrate contact geometry between scratch tip and polymer 
substrate. 
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The evolution of the von-Mises stresses during scratching with a spherical tip has 

been studied previously using FEM [66].  As shown from the schematic in Figure 4.4, 

the material will yield almost instantaneously upon contact, even under low loads, 

because the contact area of the tip is extremely small.  Also, since the material in front of 

and underneath the tip is under compression, it is reasonable to assume that the nearly 

instantaneous yield is a dominated by compressive stress. 

 
 

 
 

Figure 4.4   Development of von-Mises and scratch deformation as a function of applied 
normal load. 

 

As the load progresses, tensile stress begins to develop as a result of increasing 

frictional force.  The modeling effort discussed earlier also analyzed the tensile stress in 

the material with FEM [66].  An illustration of how these tensile stresses develop with 

respect to the applied normal load is given in Figure 4.5.  According to the modeling 

results, the tensile stress develops behind the tip first.  The direction of the maximum 
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principal tensile stress behind the tip is in the direction of the movement of the scratch 

tip and can largely be regarded as uni-axial tension dominant. 
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Figure 4.5   Development of tensile stresses around the scratch tip as a function of applied 
normal load. 

 

As the load increases even further, the maximum tensile stress develops in front 

of the tip as the tip penetrates deeper and material continues to deform.  The direction of 

the maximum principal stress in front of the tip is in a direction perpendicular to the 

scratch tip movement.  The tensile stress in front of the tip causes removal of material 

from the scratch path.  It should be noted that the tensile stress behind the tip is still 

present.   

With this understanding of the basic mechanics of the progressive load scratch 

process, it is now possible to make inferences as to how each deformation mechanism is 

related to the mechanical properties of the polymer.  To begin, a parametric study using 
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numerical simulation was carried out to investigate the effects of key material 

parameters like Young’s modulus, Poisson’s ratio, yield strength and coefficient of 

friction on polymer scratch behavior [63].  To simplify the study, a linearly 

elastic/perfectly plastic material was modeled.  By using this model, there were no 

complications from post-yield behavior; the material simply fails after surpassing its 

elastic limit.  The study concluded that, regarding scratch performance, yield strength 

and coefficient of friction had the most impact in improving scratch performance.  These 

analyses provided the basis for important fundamental insights regarding the 

fundamental understanding of polymer scratch behavior. 

4.3.3 Scratch Damage Mechanisms & Correlation with Mechanical Properties 

Images of the SAN model systems scratched at 1, 10 and 100 mm/s as obtained 

with the PC scanner are shown in Figure 4.6.  The usefulness of the ASTM progressive 

load methodology is displayed here in that the gradual evolution of the applied stress 

allows for the observation of several transitions in the scratch damage mechanisms.  The 

apparent rate-sensitivity for these damage mechanisms will be addressed in the 

following sections. 
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SAN 19
1 mm/s

10 mm/s

100 mm/s

SAN 27 (Hi MW)

SAN 35
1 mm/s

10 mm/s

100 mm/s

Total Scratch Length = 100 mm

Start Load = 1 N Final Load = 90 N

SAN 27 (LoMW)

1 mm/s

10 mm/s

100 mm/s

1 mm/s

10 mm/s

100 mm/s

 
 

Figure 4.6   Optically scanned images of scratched SAN model systems with varying AN 

content. (Resolution = 300 dpi) 

 

Upon microscopic examination of the scratched samples, four main scratch 

damage mechanisms have been identified for SAN and are listed in the order that they 

occur as the applied normal load progressively increases:  

 Scratch groove formation – First depth deviation from the flat, virgin 

surface condition within the scratch path. 

 Scratch visibility – The intensity of scattered incident light has reached a 

point to introduce sufficient contrast relative to the virgin background to 

become visible to human eyes. 
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 Periodic micro-cracking – Brittle surface failure induced by the scratch 

tip causes cracking that is periodic in nature due to the stick-slip 

phenomenon [65].  

 Plowing –The scratch tip has penetrated through the surface of the 

polymer, resulting in failure where material is fractured and removed as 

chip-like debris or a machined ribbon, depending on the test speed. 

A schematic illustrating the groove formation, cracking and plowing mechanisms 

is given in Figure 4.7. 

 

 

SCRATCH DIRECTIONNormal Load

a)

Micro-Crack

b)

Debris

c)

 
Figure 4.7   Schematic of scratch damage mechanisms: a) Groove formation; b) Periodic 

micro-cracking; c) Plowing. 

 

The groove formation, micro-cracking and plowing mechanisms are related to 

the mechanical properties of the SAN model systems and corresponding correlations will 

be established below. 

4.3.3.1  Scratch Groove Formation  

In the beginning of the scratch, the applied stress is low and any scratch 

deformation will be largely recoverable.  However, soon after the beginning of the 
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scratch, non-recoverable plastic deformation will take place in the formation of a scratch 

groove.  From a topographical point of view, the formation of a scratch groove happens 

at the first point where the scratch depth has deviated from the undamaged, virgin 

surface after the material has viscoelastically recovered for at least one day. 

A 3-D profile of a typical scratched SAN sample as measured with the VLSCM 

can be seen in Figure 4.8. The groove formation can be clearly seen here.  Furthermore, 

the first sign of scratch groove formation can be observed when the height profile of the 

scratch is compared to that of the surrounding virgin surface as shown in Figure 4.9. 

 

 

Onset of Groove 
Formation at  ~7.5 N

SAN35 @ 1 mm/s

3

0

µm

 
Figure 4.8   3-D profile (via VLSCM) of a typical scratched sample of SAN showing the 

onset of scratch groove formation. 
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Figure 4.9   Height profiles (via VLSCM) of a scratch in a typical SAN model system and its 

corresponding virgin surface. 

 

As mentioned in Section 2, the applied stress at the onset of groove formation is 

compression-dominant.  It is perhaps intuitive to assume that the compressive yield 

stress alone can be used to assess how resistant the material is to scratch groove 

formation.  However, since the stresses exerted on the polymer substrate depend on the 

amount of surface contact between the scratcher tip and the substrate, the conformability 

of the substrate to the scratcher tip geometry before yielding should also be considered.  

As a result, a better metric to account for both of the factors mentioned above is the 

secant modulus at the yield point (i.e. the ratio of stress and strain at the compressive 

yield point). 

The values for secant modulus at compressive yield and critical load for onset of 

groove formation are shown as a function of AN content in Figures 4.10 and 4.11, 
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respectively.   The overall trend in the results points to the fact that increasing the AN 

content lowers the secant modulus.  At the same level of MW, increasing the AN content 

appears to delay the onset of groove formation with the most effect seen at higher MW. 
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Figure 4.10   Secant modulus at compressive yield point for SAN model systems as a function 

of AN content. 

 



 

 

47 

47 

0

5

10

15

20

15 20 25 30 35 40

O
n

se
t o

f G
ro

o
ve

 F
o

rm
at

io
n

 (N
)

Acrylonitrile Content (wt%)

1 mm/s

10 mm/s

100 mm/s

MW = 104 kg/mol

MW = 134 kg/mol

 
 

Figure 4.11   Critical load for the onset of groove formation for SAN model systems as a 

function of AN content. 

 

Figure 4.12 shows the correlation of secant modulus at compressive yield point 

with the critical load for the onset of scratch groove formation.  The fact that a higher 

secant modulus is related to earlier groove formation may simply be due to a less amount 

of surface contact between the scratcher tip and the substrate is reached at the same 

applied normal load, leading to a higher stress magnitude experienced by the substrate.  

On the other hand, in a material with a lower secant modulus subjected to the same 

applied load, the deformation and contact area will be large and the applied stress small.  

The onset of groove formation will be delayed as a result.  In short, the secant modulus 

at the compressive yield point shows a mechanically sound correlation with the onset of 

scratch groove formation.  It should be noted however, that this correlation only stands 

when the difference in the yield strength of the systems is small. 
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Figure 4.12   Critical load for the onset of groove formation as a function of secant modulus at 

the compressive yield point for SAN model systems with varying AN content. 

 

4.3.3.2  Periodic Micro-Cracking 

As mentioned before, tensile stress behind the tip develops as the applied normal 

load increases.  As the uni-axial tensile curves in Figure 4.1 show, the SAN model 

systems of this study show no signs of post-yield behavior under tension.  That means 

that when the ultimate tensile strength in the material is reached, the material will fail in 

a brittle fashion.  Likewise, when the tensile stress behind the scratch tip develops to the 

level of the ultimate tensile strength, failure should occur in the form of a crack.  After 

the onset of cracking, the deformation will continue as a series of periodic cracks as a 

result of the well-known stick-slip phenomenon [65].  The high-resolution VLSCM 

micrograph shown in Figure 4.13 is representative of this damage feature at its onset. 
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Figure 4.13   Optical image from a laser confocal microscope (VLSCM) of typical periodic 

micro-cracking scratch damage observed in SAN model systems. 

 

The tensile strength and the onset of periodic cracking for the model systems are 

shown as a function of AN content in Figures 4.14 and 4.15, respectively.  Here, the AN 

content appears to have a noticeable effect on the tensile behavior.  A higher AN content 

also seems to delay the onset of periodic cracking.  As discussed earlier, the tensile stress 

behind the scratch tip can be regarded as uni-axial tension dominant.  Therefore, the 

onset of periodic cracking should be largely related to the uni-axial tensile strength.  

Figure 4.16 shows the onset of periodic cracking as a function of tensile strength at each 

testing speed.  The resulting general trend is intuitive; a higher tensile strength will result 

in a delayed onset of periodic cracking with little effect seen from MW. As the tensile 

strength is positively related to the AN content, these results point to the fact that a 

higher level of AN content will result in better scratch resistance by delaying the onset of 

periodic cracking.  Scratch speed appears to have some influence on the onset of 

periodic micro-cracking and seems more apparent at higher levels of AN content. 
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Figure 4.14   Tensile strength of SAN model systems as a function of AN content. 
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Figure 4.15   Critical load for the onset of periodic micro-cracking as a function of AN 

content for SAN model systems. 
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Figure 4.16   Critical load for the onset of periodic micro-cracking as a function of tensile 

strength for SAN model systems with varying AN content. 

 

4.3.3.3 Plowing 

As mentioned, the tensile stress in front of the tip will eventually develop to 

dominate the scratch deformation.  This is a result of the material in front of the tip being 

shored-up and forced to the side, forming what is sometimes referred to as “pile-up” 

[65].  The direction of this tensile stress is perpendicular to the stress ahead of the tip.  

Eventually, the total stress applied to the system will surpass the ultimate strength of the 

material and penetrate through its top surface.  Once this occurs, the tip will begin to 

remove and displace material in front of and around it in a plowing fashion.  At this 

point, the material is actually fractured completely and is removed in the form of a 

machined ribbon or debris, depending on the testing speed.  A VLSCM micrograph 

representative of this damage feature is shown in Figure 4.17. 



 

 

52 

52 

500 μm

Onset of Plowing

 
 

Figure 4.17   Optical image from a laser confocal microscope (VLSCM) of typical plowing 

scratch damage observed in SAN model systems. 

 

Figure 4.18 shows that increasing the AN content definitely results in a delayed 

onset of the plowing mechanism.  Since it was shown that this mechanism is caused by 

tensile failure, the onset of plowing is correlated with tensile strength in Figure 4.19.  As 

with the micro-cracking mechanism, a higher AN content leads to a higher tensile 

strength and will give a delayed onset of plowing.  Scratch speed apparently strongly 

influences the onset of the plowing mechanism while MW does not show a strong effect.  

Speculations as to why will be made in a later section. 
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Figure 4.18 Critical load for the onset of plowing for SAN model systems as a function of 

AN content. 
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Figure 4.19   Critical load for the onset of plowing as a function of tensile strength for SAN 

model systems with varying AN content. 
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4.3.4 Scratch Visibility 

In the previous section, it was stated that a scratch can be considered visible to 

average human eyes when the contrast between the scratch damage and the virgin 

background reaches a level of 2% for high gloss surfaces.  This criterion, along with the 

fact that the smallest feature size a human eye can resolve is 90 μm, was used to evaluate 

the scratch visibility resistance of the SAN model systems with the ASV
®
 software.  The 

90% continuity criterion was employed, as well. 

The previous section also showed that the orientation from which a scratch is 

illuminated could influence the assessment of scratch visibility.  When the light source is 

oriented parallel to the scratch path, the roughness of the surface of the scratch path will 

be the main cause of scratch visibility.  In a perpendicular orientation, the scratch will 

become visible when the shoulder on the sides of the scratch reaches a critical height 

(i.e. visibility in the perpendicular illumination orientation occurs as a result of plastic 

deformation).  This same protocol was employed to assess the scratch visibility of the 

SAN model systems in this study. 

The critical load for the onset of scratch visibility (via ASV
®
) at each testing 

speed and for each orientation is given as a function of AN content in Figures 4.20 and 

4.21.  From these results, it can be said that SAN35 is the only model system 

significantly affected by illumination orientation effects.  To illustrate the orientation 

effect, processed images of SAN35 at each testing speed are shown in Figure 4.22. 
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Figure 4.20   Critical load for the onset of visibility for parallel illumination orientation. 
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Figure 4.21   Critical load for the onset of visibility for perpendicular illumination orientation. 
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Figure 4.22  Images of SAN 35 processed by ASV® software. 
 

Since the origins and physics of scratch visibility were outlined in the PVC/PP 

study of the previous section, the same analysis was carried out on the SAN model 

systems.  Since the methodology is simply being repeated and applied to the SAN 

systems, the results will not be shown here.  For the SAN model systems of this study, 

the RMS roughness of the scratch path to induce visibility in parallel orientation is ~300 

nm.  For perpendicular orientation, the shoulder height was on the order of 2 – 4 µm in 

order for the scratch to be visible.   

The AN content can change the location at which the roughness or shoulder 

height reaches its critical level.  As shown in Figures 4.20 and 4.21, there appears to be a 

positive trend where increasing the AN content will delay the onset of scratch visibility.  

With regards to scratch path roughness (i.e. parallel orientation), SAN35 shows the 

highest level of scratch visibility resistance.  The same trend can be seen in plastic 
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deformation (i.e. perpendicular orientation), but the dominance of SAN35 is more 

marginal.  This could suggest that a higher AN content will not likely effect the 

resistance to plastic scratch deformation, but could possibly impart resistance to surface 

roughening.  The scratch speed does not seem to strongly affect the onset of scratch 

visibility under the conditions of this study while increasing the molecular weight tends 

to improve scratch visibility resistance.  The molecular weight effect will be addressed 

in more detail in the next section. 

 

4.3.5 Frictional Behavior 

The scratching coefficient of friction (SCOF) is defined as the ratio of the 

tangential force and the applied normal load throughout the scratch.  The SCOF for the 

SAN model systems at each test speed is shown in Figures 4.23 – 4.25 as a function of 

scratch length.  The large magnitude of fluctuation at the beginning of the test is due to 

inertial effects from instantaneously accelerating the scratch head to the designated 

scratch speed. 

Figure 4.23 shows that SAN 35 has the lowest SCOF of the three model systems. 

At 100 mm/s (Figure 4.25), the difference is not as noticeable.  This could be attributed 

to the fact that at the highest scratch speed, the SAN systems all respond in a similar 

brittle fashion.  It was stated earlier that the micro-cutting mechanism exhibits the 

highest dependence on scratch speed.  The SCOF in the last portion of the scratch is 

related to the plowing mechanism.   
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Figure 4.23   Scratch coefficient of friction as a function of scratch distance for SAN model 

systems with varying AN content. (Scratch speed = 1 mm/s) 
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Figure 4.24   Scratch coefficient of friction as a function of scratch distance for SAN model 

systems with varying AN content. (Scratch speed = 10 mm/s) 
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Figure 4.25   Scratch coefficient of friction as a function of scratch distance for SAN model 

systems with varying AN content. (Scratch speed = 100 mm/s) 

 

The SCOF curves suggest three main points: 

1. The SCOF related to the plowing mechanism is not dependent on AN 

content or MW. 

2. The SCOF related to plowing will be quite high at slow scratch speeds 

and will decrease with increasing scratch speed. 

3. At slow speeds, the material in front of the tip imparts a significant 

amount of resistive (i.e. tangential) force, thus resulting in a high SCOF.  

However, as the speed increases, the response of the polymer becomes 

more rigid and brittle and the ability of the material to withstand the 

applied stress decreases.  Therefore, the resistive force, as well as the 

SCOF, will be lower. 
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In the numerical parametric study mentioned earlier, it was found that decreasing 

the coefficient of friction of a polymeric material resulted in enhanced scratch resistance 

[63].  Of the model systems studied in this section, SAN35 definitely shows the best 

scratch resistance in general, but the parametric study also showed that increasing the 

tensile strength of the material gave better scratch resistance, as well.  Therefore, it is 

difficult to ascertain if the SCOF, the tensile properties or the combination of both is 

responsible for the superior scratch resistance of SAN35. 
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5. EFFECT OF MOLECULAR WEIGHT ON                                                   

SCRATCH BEHAVIOR OF SAN MODEL SYSTEMS 

 

 Molecular weight (MW), which is directly related to chain length, thus 

entanglement density, is one of the most important material attributes that contributes to 

mechanical integrity of thermoplastics [1].  When MW is small, the molecular chains do 

not have sufficient entanglement to exert mechanical integrity.  As a result, the polymer 

is rather weak.  On the other hand, as the MW increases past its characteristic 

entanglement MW, Me, the tensile strength of the polymer will increase significantly 

[89].  Since the model systems of Section 4 had variations of both AN content and MW, 

it was difficult to ascertain how much influence MW has on the scratch behavior of 

SAN.  This section focuses on probing how the MW can influence on the scratch 

behavior of SAN random copolymers.  The same analyses of scratch deformation 

mechanisms are used as in Section 4 and general implications of material properties on 

polymer scratch behavior are discussed. 

 

5.1 Model SAN Systems   

 The SAN model systems for this part of the study contain 27 wt% AN and were 

provided by BASF SE with varying levels of molecular weight.  The resins were 

prepared and injection-molded in an identical manner as the model systems in Section 4.  

Upon receipt, the same annealing and post-annealing analysis was carried out. Physical 

properties and MW of the SAN systems investigated here are given in Table 5.1.  
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Table 5.1   Physical properties of SAN model systems for the molecular weight effect study 
 

 SAN 27 A SAN 27 B SAN 27 C 

Acrylontrile Content (wt%) 27 27 27 

Molecular Weight (kg/mol) 106 119 134 

Polydispersity 4.4 4.3 3.9 

Poisson's Ratio 0.35 0.35 0.35 

 

5.2 Experimental Procedures 

All procedures regarding tensile and compression testing, ASTM/ISO scratch 

testing and microscopic analyses were the same as described as in Section 4. 

 

5.3 Results and Discussion 

5.3.1 Mechanical Properties of Model Systems 

  The stress-strain curves for the model SAN systems under uni-axial tension are 

shown in Figure 5.1.  Under compression, the only appreciable difference observed 

between the uni-axial and plane-strain compression stress-strain curves was the strain-

hardening exponent.  Therefore, only a typical compressive stress-strain curve for the 

SAN systems is shown in Figure 5.2. The tensile and compressive properties are 

summarized in Tables 5.2 and 5.3. 
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Figure 5.1   Stress-strain curves of model SAN systems with varying molecular weight under 
uni-axial tension.   
(NOTE - The vertical lines are meant to differentiate the strain at break for the 
systems and are not a representation of unloading behavior.) 
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Figure 5.2   Typical compressive stress-strain curve for SAN model systems with varying 

molecular weight. 
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Table 5.2 Uni-axial tensile properties of SAN model systems for the molecular weight 
effect study 

 

 SAN27 A SAN27 B SAN27 C 

Modulus (GPa) 3.6 ± 0.1 3.7 ± 0.1 3.7 ± 0.1 

Tensile Strength (MPa) 63.7 ± 2.3 75.1 ± 3.0 79.0 ± 1.0 

Ductility (%) 1.9 ± 0.2 2.4 ± 0.1 2.6 ± 0.1 

  
 
Table 5.3 Compressive properties of SAN model systems for the molecular weight effect 

study 
 

 SAN27 A SAN27 B SAN27 C 

Modulus (GPa) 3.5 ± 0.2 3.6 ± 0.3 3.6 ± 0.1 

Yield Strength (MPa) 117.2 ± 0.2 117.2 ± 0.4 115.2 ± 0.5 

Yield Strain (%) 4.7 ± 0.3 4.8 ± 0.5 4.8 ± 0.2 
Secant Modulus at Yield Point 
(GPa) 2.48 2.44 2.40 

Uni-axial Strain Hardening 
Exponent  1.33 ±  0.05  1.38 ±  0.10  1.33 ±  0.03  

Plane-Strain Hardening Exponent  1.71 ± 0.10 1.61 ± 0.02 1.70 ± 0.18 

 

5.3.2  Scratch Behavior and Correlations with Mechanical Properties 

  As an example of the overall appearance of the scratch deformation, scanned 

images of the SAN model systems scratch tested at 1 mm/s are given in Figure 5.3.  The 

corresponding images after processing with ASV© are also shown in Figure 5.3.  The 

Roman numerals in Figure 5.3 correspond to the four key scratch damage transitions for 

SAN that were identified and described in Section 4. 
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Figure 5.3 Digital images of scratch tested SAN model systems after scanning at 300 dpi 

and accompanying images after processing with ASV® software. 
 

  In the previous study, it was found that the secant modulus at compressive yield 

and the tensile strength were good metrics for establishing correlations between 

mechanical properties and scratch deformation.  The compressive yield secant modulus 

will give a measure of the conformability of the polymer substrate to the indenter prior 

to yielding.  When this modulus is relatively low, the material will experience a larger 

contact area under compression (i.e., lower stress) and will likely delay scratch groove 

formation.    Periodic micro-cracking and plowing occur as a result of the formation of 
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tensile stresses behind and in front of the scratch tip, respectively.  In that respect, the 

compressive yield secant modulus and tensile strength are shown as a function of MW in 

Figures 5.4 and 5.5, respectively.  It can be seen that increasing the MW results in a 

decrease of the secant modulus and an increase in the tensile strength. 
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Figure 5.4 Secant modulus at compressive yield point for SAN model systems as a function 
of molecular weight. 
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Figure 5.5 Tensile strength of SAN model systems as a function of molecular weight. 
 

5.3.2.1 Scratch Groove Formation 

  Scratch groove formation is a result of non-recoverable deformation and was 

defined in Section 4 as the point where the height profile of the scratch path begins to 

continuously deviate from that of the virgin surface.  Figs. 5.6 and 5.7 show the onset of 

groove formation as a function of MW and compressive yield secant modulus, 

respectively.  Increasing the MW will slightly delay the onset of groove formation 

Furthermore, since increasing the MW was shown to decrease the compressive yield 

secant modulus, it is now clear that a lower secant modulus is related to resistance 

against scratch groove formation.  This finding is consistent with what was found in the 

previous study regarding the AN content effect.  Again, this correlation is only true 

when the difference in the yield strength of the systems is small.  In short, decreasing the 
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compressive yield secant modulus of a polymeric material is likely a favorable way to 

impart resistance against the formation of the first signs of scratch deformation. 
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Figure 5.6 Critical load for the onset of groove formation for SAN model systems as a 

function of molecular weight. 
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Figure 5.7 Critical load for the onset of groove formation as a function of secant modulus at 

the compressive yield point for SAN model systems with varying molecular 
weight. 

 

5.3.2.2 Periodic Micro-cracking 

  It was stated in Section 2 that the tensile stress associated with this feature can 

more or less be considered to be uniaxial in nature.  The uniaxial tensile strength of the 

SAN model systems has been shown to be positively related to the MW in Figure 5.5 

and Figure 5.8 shows that this is also the case for the onset of periodic micro-cracking.  

So it makes sense that increasing the uniaxial tensile strength of SAN will effectively 

delay the onset of periodic micro-cracking as shown in Figure 5.9.  This was also 

observed in the AN content effect study, which suggests that increasing the uniaxial 

tensile strength of SAN can improve its resistance to surface brittle fracture in the form 

of periodic micro-cracks. 
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Figure 5.8 Critical load for the onset of periodic micro-cracking for SAN model systems as 

a function of molecular weight. 
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Figure 5.9 Critical load for the onset of periodic micro-cracking as a function of tensile 

strength for SAN model systems with varying molecular weight. 
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5.3.2.3 Plowing 

  Again, plowing is defined as ultimate material failure resulting from the 

development of multi-axial tensile stress component in front of the scratch tip.  Figure 

5.10 shows the critical load for the onset of plowing as a function of MW for the SAN 

model systems.  It can be seen that increasing the MW can result in a slightly earlier 

onset of plowing.  However, as the scratch speed increases, the MW effect diminishes.  

This is likely due to the fact that SAN is already quite brittle and becomes rate-

insensitive at high speeds. 
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Figure 5.10 Critical load for the onset of plowing for SAN model systems as a function of 

molecular weight. 
  

  In Section 4, the uniaxial tensile strength was correlated with the onset of 

plowing and the result was fairly positive, but not as strong as the correlation with the 
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onset of periodic micro-cracking.  This is also the case for the MW effect, as shown in 

Figure 5.11.  Again, increasing the scratch speed seems to erase any effect seen from 

MW.  Even though the onset of plowing deformation has been linked to tensile strength, 

it is recognized that the plowing deformation is in fact dominated by multi-axial stresses.  

Our previous stress analysis at the onset of plowing has indicated that the stress 

magnitude experienced by the material is at its highest level and is highly complex and 

multi-axial [66].  Therefore, it is possible that uniaxial tensile properties alone are not 

sufficient to address the physical nature of the plowing deformation mechanism. 
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Figure 5.11 Critical load for the onset of plowing as a function of tensile strength for SAN 

model systems with varying molecular weight. 
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5.3.3 ScratchVisibility 

  The critical loads for the onset of scratch visibility as obtained with ASV® for all 

systems of the study at each speed and in each scanning orientation are shown in Figures 

5.12 and 5.13.  Example images after processing with ASV® are shown in Figure 5.3.  In 

parallel orientation (Figure 5.12), a significant delay is observed in scratch visibility 

onset as the MW increases.  For perpendicular orientation (Figure 5.13), the trend is 

similar to that seen in Figure 5.12, but the highest MW system appears to show a more 

delayed onset of visibility compared to the other two.  Overall, the difference between 

the two orientations is small, but increasing the MW appears to have a generally 

favorable effect on enhancing the scratch visibility resistance of SAN. 

 
 

0

10

20

30

40

90 100 110 120 130 140 150

O
n

se
t 

o
f 

Sc
ra

tc
h

 V
is

ib
ili

ty
 (N

)

Molecular Weight (kg/mol)

1 mm/s

10 mm/s

100 mm/s

 
 

Figure 5.12 Critical load for the onset of visibility as obtained with ASV® software for SAN 
model systems in parallel illumination orientation. 
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Figure 5.13 Critical load for the onset of visibility as obtained with ASV® software for SAN 
model systems in perpendicular illumination orientation. 

 

5.3.4 Frictional Behavior 

  In a progressive load scratch test, the scratch depth continually increases with the 

applied load.  As a result, the apparent coefficient of friction will progressively increase 

as a result of growing resistive force from the material in front of the scratch tip.  The 

scratch coefficient of friction (SCOF) is defined as the ratio of the tangential and normal 

forces throughout the scratch.  The SCOF vs. scratch distance curve can often give 

valuable clues to the location of transitions in scratch deformation mechanisms [12, 57].  

For instance, when the onset of plowing occurs, the SCOF can change since the nature of 

deformation has changed from surface sliding to surface penetration and sub-surface 

material removal/machining. 
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  The SCOF for the SAN systems of this study are shown at each speed as a 

function of scratch distance in Figures 5.14 – 5.16.  At a scratch speed of 1 mm/s (Figure 

5.14), the early portion of the SCOF curve shows some slight differentiation between the 

SAN systems.  With the highest MW, SAN 27 C shows the lowest general SCOF curve 

prior to plowing.  After the plowing onset, the SCOF for all the systems appears to 

converge.  This effect has been observed in the scratch of PP and the wear of HDPE [40, 

68, 78].  As the speed increases, however, the differentiation becomes less clear (Figures 

5.15 and 5.16).  This is likely due to the fact that polymers behave in a more brittle 

fashion as the testing speed increases.  Since SAN is already a brittle material with a 

ductility of less than 3%, it makes sense that increasing the scratch speed would lead to a 

lower degree of differentiability.  However, at low speeds, it can be said that increasing 

the MW can lead to a decrease in the SCOF. 
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Figure 5.14 Scratch coefficient of friction as a function of scratch distance for SAN model 
systems with varying molecular weight. (Scratch speed = 1 mm/s) 

    

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

SC
O

F 
(F

t/
Fn

)

Scratch Distance (mm)

SAN27 A (MW = 106 kg/mol)

SAN27 B (MW = 119 kg/mol)

SAN27 C (MW = 134 kg/mol)

 
 

Figure 5.15 Scratch coefficient of friction as a function of scratch distance for SAN model 
systems with varying molecular weight. (Scratch speed = 10 mm/s) 
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Figure 5.16 Scratch coefficient of friction as a function of scratch distance for SAN model 
systems with varying molecular weight. (Scratch speed = 100 mm/s) 
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6. EFFECT OF MOISTURE ABSORPTION ON                                                             

SAN SCRATCH BEHAVIOR 

 

  It is important to consider the nature of the material surface when addressing 

scratch behavior.  Even though a change of surface composition may have a small effect 

from the bulk standpoint, it could have a significant effect on surface properties.  The 

AN phase of SAN contains a highly polar carbon-nitrogen triple bond (C≡N, dipole 

moment = 3.9 Debye), which can absorb environmental moisture and the amount to be 

absorbed is expected to increase with increasing AN content.  The equilibrium bulk 

moisture absorption for SAN as reported in the literature is less than one percent [90].  

However, since the absorption takes place initially within only a thin layer of the 

surface, the amount of moisture absorbed with respect to this surface layer is expected to 

have a strong influence on the scratch behavior.  In this section, the effect of surface 

moisture absorption on the scratch behavior of SAN model systems of varying AN 

content is investigated.  

 

6.1 Model SAN Systems 

  The physical properties of the SAN model systems are given in Table 6.1.  It was 

verified that molecular weight imparts negligible influence on the moisture absorption 

behavior, so AN content is the focus of this investigation.  Small coupons of the SAN 

systems with dimensions of 25.4 mm by 25.4 mm by 3 mm weighing ~1.5 g were used 
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to study the absorption behavior while large plaques with dimensions of 150 mm by 75 

mm by 6 mm were used for the scratch study.   

 
 
Table 6.1 Physical properties of SAN model systems for the moisture absorption study 

 

 SAN 19 SAN 27 SAN 35 

Acrylontrile Content (wt%) 19 27 35 
Molecular Weight (kg/mol) 134 119 104 
Polydispersity 4.1 4.3 3.7 

 

6.2 Experimental Procedures 

  Plaques for the scratch study were annealed at 108 °C for 3 hours prior to any 

further treatment.  All samples of the SAN systems were first dried overnight in an oven 

for 24 hours at 80 °C and a vacuum pressure of 30 mmHg.  After drying, the small 

coupons were weighed using a digital scale.  The samples were then placed in a sealed 

container with a dish holding potassium chloride salt and deionized water slurry.  This 

allowed a controlled environment with an average relative humidity of ~70% and 

temperature of 23 °C.  Over a period of ten days, the small coupons were periodically 

removed from the humid environment and weighed.  The percentage weight change 

from the dry condition was used to monitor the moisture absorption behavior.   

  Following the analysis of the moisture absorption behavior with the small SAN 

coupons, the scratch plaques were subjected to exposure to the humid environment and 

periodically scratch tested over a ten-day period.  A progressive normal load range of 1 – 

90 N was applied at a scratch speed of 100 mm/s for a length of 100 mm.  The tip was a 
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stainless steel ball with a diameter of 1 mm.  The effect of moisture absorption was 

analyzed by obtaining the critical load for the onset of key deformation mechanisms for 

SAN as described in Section 4. 

  Scratch visibility was analyzed using ASV as described in Section 3 and high-

resolution microscopic observation of the scratch damage morphology was carried out 

using a Keyence VK9700 VLSCM. 

   

6.3 Results and Discussion 

6.3.1 Moisture Absorption Behavior 

  The normalized weight gain for the SAN model systems is shown in Figure 6.1 

as a function of days of exposure to the humid environment.  It is easy to see that 

increasing the AN content increases the amount of water absorbed by the material and 

this is also reflected in Figure 6.2. The AN content effect is initially only minimal after 

one day of exposure, but then becomes more pronounced over the course of 3 days, after 

which the weight gain levels off.  The trends presented in Figures 6.1 and 6.2 are rather 

intuitive. However, careful analysis suggests that the weight gain for all the systems 

occurred mostly within one day of moisture exposure.   
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Figure 6.1 Percentage weight gain as a function of time exposed to a humid environment 
for SAN model systems.  (R.H. = 70% at 23 °C) 
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Figure 6.2 Percentage weight gain as a function of AN content for SAN systems in the 
moisture content study. 
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6.3.2 Diffusion Behavior 

  Initially, any moisture absorbed by the material is likely to be on the surface of 

the polymer.  But as absorption continues, the moisture will diffuse into the polymer.    

The nature of the diffusion must first be understood before going further.  To do so, the 

absorbed moisture at each time interval normalized against the saturation condition, 

Mt/Msat was calculated using the following equation: 

    
drysat

dryt

sat

t

ww

ww

M

M






      (6.1)
 

where wt, wsat and wdry are the weight at time t, weight at saturation and dry weight, 

respectively. The weight at saturation was calculated by averaging the weight values for 

several measurements after saturation had been observed.  A plot of Mt/Msat versus the 

square root of exposure time, t
1/2, was constructed following the method of Shen and 

Springer [91] and is shown in Figure 6.3.  The data points have been fit to an 

approximate solution to Fick’s second law as evaluated by Shen and Springer [91]: 

    





















75.0

2
3.7exp1

l

Dt

M

M

sat

t

    (6.2)
 

   

 



 

 

83 

83 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 100 200 300 400 500 600 700 800 900 1000

M
t/

M
sa

t

Sq. Rt. Time, t1/2 (s1/2)

Actual Data

Theoretical Fit

SAN 19

SAN 27

SAN 35

1 Day
3 Days

 

Figure 6.3 Moisture absorption plot for SAN model systems.  Data points are fit to an 
approximate solution of Fick’s 2

nd law. 
 

  As Figure 6.3 suggests, the diffusion is of a reasonably Fickian nature.  The 

diffusion coefficient, D, was approximated as in [92] by observing the time required to 

absorb have the saturation limit: 

    
2/1

2049.0

t

l
D




       (6.3)
 

The diffusion coefficients for each AN content level are given in Figure 6.4.  These 

values are close to the value of 3.4x10-8 cm2/s reported by Bruder and Haese for SAN 

containing 28 wt% AN exposed to 50% R.H. at 23 °C [93].  From Figure 6.4, it can be 

concluded that increasing the AN content lowers the diffusivity.  Given a unit volume, if 

there are more AN groups within that unit volume, a longer time will be required to 

reach saturation, resulting in a lower diffusivity. 
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Figure 6.4 Diffusion coefficients for SAN model systems. 
 

6.3.3 Scratch Behavior 

  The absorbed moisture is more than likely on the surface or contained within 

only a very thin layer of the sub-surface.  As a result, the absorbed surface moisture is 

expected to affect the scratch behavior of SAN significantly. Indeed, upon scratching, 

the scratch behaviors of the moisture exposed model SAN systems appear quite 

complex, as shown in Figures 6.5 – 6.7.  It is readily evident from the visual results that 

there is a drastic change in the scratch behavior during the first three days of moisture 

exposure.  That is, the scratch resistance appears to deteriorate with moisture absorption 

in the first three days and then begins to improve afterwards. 
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Figure 6.5 Digitally scanned images of SAN 19 periodically scratch tested after being 

exposed to a humid environment. (Resolution = 300 dpi) 
 

 
 
Figure 6.6 Digitally scanned images of SAN 27 periodically scratch tested after being 

exposed to a humid environment. (Resolution = 300 dpi) 
 

 
 
Figure 6.7 Digitally scanned images of SAN 35 periodically scratch tested after being 

exposed to a humid environment. (Resolution = 300 dpi) 
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  This unusual behavior is most likely due to the fact that water molecules are first 

diffused into the sub-surface of the polymer, introducing a plasticizing effect which 

weakens the SAN and reduces its modulus and strength on the surface.  Then, after 

saturation is reached, the water molecules form clusters on the surface which provides 

lubrication and improves the scratch performance slightly. 

  Further evidence is shown by examining the key deformation mechanisms for the 

SAN model systems.  For scratch groove formation, the deformation was essentially 

instantaneous after three days exposure, so no effective differentiation could be made 

between the systems under these conditions.  However, Figures 6.8 – 6.11 show that the 

other key scratch deformation mechanisms (scratch visibility, periodic micro-cracking 

and plowing) all follow a similar trend.  There is an initial degradation in the scratch 

resistance up to the three day mark, followed by a slight recovery, although the behavior 

is most apparent in SAN 19.   
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Figure 6.8 Critical load for the onset of visibility in parallel illumination orientation for 
SAN model systems as a function of exposure time. 
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Figure 6.9 Critical load for the onset of visibility in perpendicular illumination orientation 
for SAN model systems as a function of exposure time. 
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Figure 6.10 Critical load for the onset of periodic micro-cracking for SAN model systems as 
a function of exposure time. 
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Figure 6.11 Critical load for the onset of plowing for SAN model systems as a function of 
exposure time. 
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  The exact reason why there is such a prominent effect observed in SAN 19 is not 

currently known.  It is proposed that due to its relatively low AN content, upon 

plasticization, the material behavior approaches that of polystyrene, which is known to 

have poor scratch resistance compared to most polymers.  Then, after saturation is 

reached, the surface is lubricated and the resistance improves rather substantially. 

  The scratch coefficient of friction (SCOF) is a measure of the ratio of the scratch-

induced tangential force and applied normal load.  The surface lubrication claim is 

supported by the curves in Figures 6.12 – 6.14.  The SCOF in the initial portion of the 

scratch displays a similar trend to the other key deformation mechanisms.  It is highest at 

the three day mark and then becomes lower as exposure continues.  It is known that a 

lower SCOF is associated with good scratch resistance [37, 63, 64].  Therefore, since it 

is suspected that the absorbed moisture is at the surface after saturation, the supposed 

lubrication effect is highly likely.  Also, the spike later in the SCOF curve corresponds to 

the onset of plowing and the location of these spikes follows the similar trend of 

degradation followed by recovery.  
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Figure 6.12 Scratch coefficient of friction as a function of scratch distance for SAN 19. 
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Figure 6.13 Scratch coefficient of friction as a function of scratch distance for SAN 27. 
 



 

 

91 

91 

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

SC
O

F 
(F

t/
Fn

)

Scratch Distance (mm)

SAN 35

0 Days

1 Day

3 Days

5 Days

7 Days

 
 

Figure 6.14 Scratch coefficient of friction as a function of scratch distance for SAN 35. 
 

  The bulk mechanical properties of SAN are not expected to change much as a 

result of absorbed moisture.  It is assumed, however, that what moisture is absorbed is 

contained within a layer of the surface that is encountered by the scratch tip.  Initially, 

before any moisture is absorbed, the SAN surface is rich in styrene when the AN content 

is below 50 wt% [94].  The absorption process could possibly be changing the nature of 

the SAN surface.  It was stated that the initially absorbed moisture imparts plasticization.  

When this occurs in a polymer, the chains gain more mobility.  Thus, at a certain level of 

absorbed moisture, a “flipping” mechanism could occur where the AN and styrene 

groups of the SAN chains at the surface swap places.  This will ultimately result in a 

higher concentration of AN groups on the surface.  Then, the water molecules can begin 

to cluster together provide surface lubrication. 
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  In order to better understand how the absorbed moisture is influencing the SAN 

model systems on a molecular level, analysis must be undertaken with care and a high 

enough sensitivity to capture the changes in the molecular behavior.  FTIR-ATR could 

provide a means to monitor any possible interaction of the AN groups with the water 

molecules.  The level of molecular mobility as a function of moisture exposure could 

possibly be addressed using solid-state NMR.  Also, changes in surface energy could be 

studied by contact angle measurements using an appropriate liquid medium.  

Nonetheless, these results show how important it is to consider the surface behavior of a 

material apart from its bulk behavior.  Even though some factors may have a small effect 

from the bulk standpoint, those same factors could have a significant effect on the 

surface behavior. 
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7. CONCLUSIONS AND CONSIDERATIONS FOR FUTURE RESEARCH 

 

7.1 Summary and Conclusions 

 The research effort in this dissertation was undertaken in order to gain 

fundamental understanding of polymer scratch behavior with regards to the relationship 

between mechanical properties and scratch deformation as well as scratch visibility.  The 

focuses of the overall study were as follows: 

1. Application of the software package ASV® to compare the resistance to 

scratch visibility of homopolymer polypropylene (PP) and 

polyvinylchloride (PVC) and gain insight regarding the relationship 

between scratch induced deformation and visibility. 

2. Investigation of the effect of acrylonitrile (AN) content, which affects the 

mechanical properties of SAN, on the scratch behavior of SAN random 

copolymers with regards to mechanistic deformation and scratch 

visibility. 

3. Study of the influence of molecular weight (MW) on the scratch behavior 

of the SAN model systems in a similar manner as the AN content effect 

study. 

4. Investigation of the effect of absorbed surface moisture on SAN scratch 

behavior. 

 By using analysis criteria based on the physiology of the average human eye, 

ASV® has been shown to be a powerful tool to automatically analyze scratch visibility 
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in an objective and unbiased fashion.  Upon analyzing the physical deformation related 

to scratch visibility, it was realized that two factors influence the onset of scratch 

visibility: changes in surface roughness and changes of scratch profile topology.  Each 

deformation feature must reach a critical level in order to induce scratch visibility based 

on the physiological criteria.  The orientation of the scratch direction with respect to an 

illumination source will govern which near surface deformation feature will influence 

visibility assessment.  When the illumination orientation is perpendicular to the scratch 

direction, the topology of the scratch profile will have a dominant influence.  In a 

parallel orientation, the roughness of the groove will dominate.  The effectiveness of this 

approach was shown by validating the notion that PVC exhibits superior scratch 

visibility resistance compared to that of PP as it relates to scratch-induced deformation. 

 A fundamental approach to understanding polymer scratch behavior was carried 

out by applying the ASTM/ISO standard progressive load scratch test to a set of model 

SAN random copolymers with varying AN content and MW.  Key scratch deformation 

mechanisms were identified as scratch groove formation, scratch visibility, periodic 

micro-cracking and plowing. Using a prior knowledge base founded upon mechanics 

and numerical simulation, correlations have been established between the compressive 

properties of the material and the scratch deformation mechanisms.  Scratch groove 

formation can be linked to the secant modulus at the compressive yield point.  A strong 

relationship between the uni-axial tensile strength and the onset of periodic micro-

cracking was established, but the stress field for plowing is highly complex and it is 
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likely that uni-axial tensile properties are not sufficient to explain this deformation 

mechanism. 

 Specifically, it was realized that increasing the AN content and/or MW of the 

SAN copolymer results in enhanced scratch resistance with regards to all of the key 

deformation mechanisms.  Increasing the AN content or MW lowers the secant modulus 

up to the compressive yield point which results in an increased contact area since 

variations in AN content and MW in the scope of this research do not alter the 

compressive yield stress values of SAN much.  This will allow for a lower applied 

compressive stress and thus delay the onset of scratch groove formation.  The tensile 

strength of the SAN systems increases with AN and MW and the onset of periodic 

micro-cracking and plowing is delayed in turn.  With regards to scratch visibility, it was 

found that increasing the AN content or MW appears to impart an improvement in the 

resistance to the deformation mechanisms that induce visibility.  Additionally, the 

frictional behavior of the material is improved somewhat as a result of AN content or 

MW increase.  Increasing the scratch speed serves to increase brittleness of SAN, which 

is already inherently brittle.  Therefore, scratch-induced deformation forms earlier. 

 Noting that the AN side group of the SAN backbone is highly polar, it was worth 

considering how absorbed surface moisture could affect the scratch behavior of the SAN 

model systems.  The SAN model systems were exposed to a humid environment and 

periodically scratch tested according to the ASTM/ISO standard.  Initially, the scratch 

resistance as it relates to the key deformation mechanisms degrades and is more than 

likely due to a surface plasticization effect from the absorbed moisture.  However, after 
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three days exposure, the absorbed surface moisture acts as a lubricant and the scratch 

resistance begins to improve.  This was evidenced by the fact that the friction behavior 

of the model systems was worst at three days of moisture exposure, but then showed 

improvement thereafter.  Even though the bulk equilibrium moisture absorbance of SAN 

is less than one percent, the presence of moisture on the sample surface has a significant 

impact on the scratch performance. 

 

7.2 Considerations for Future Research 

 Even though the findings presented in this dissertation are of significance in 

understanding the fundamental nature of polymer scratch behavior, there are still many 

factors that should be addressed to further our knowledge in better designing of scratch 

resistant polymers. 

7.2.1 Mechanistic Understanding of Scratch Behavior 

 The main motivation for the work presented in this dissertation was the 

knowledge base gained from prior work completed by Jiang et al [63, 65, 66]. The 

parametric numerical simulation study was an important step in learning which 

mechanical properties influenced scratch behavior the most.  The numerical simulation 

work furthered the understanding of the highly complex multi-axial stress field 

encountered during a scratch.  Finally, the experimental categorization of scratch-

induced deformation based on the strength and ductility of several polymers provided 

valuable foresight as to the relationship between mechanical behavior and scratch 

behavior. 
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 Even though the findings of this dissertation work provide a degree of 

experimental corroboration for the numerical simulation, it is extremely important to 

realize that these findings only pertain to the type of polymer described herein; but more 

specifically, polymers that behavior linear-elastically in tension.  All polymers exhibit 

post-yielding effects under compression (strain-softening, strain-hardening), but many 

polymers exhibit post-yielding in tension, as well.   In tension, polystyrene (PS) is well 

known to be quite brittle in tension while polycarbonate (PC) is very ductile and shows 

distinct regions of strain-softening and hardening.  Since the tensile properties of the 

material have been shown to influence the scratch behavior, it is expected that the 

scratch behavior of PS compared to PC will be fundamentally different.  Since both 

polymers are amorphous and also since increasing MW has been linked to increasing 

tensile strength, PS and PC are good candidates for an experimental study to investigate 

the fundamental influences of differences in tensile stress-strain behavior on the scratch 

behavior. 

 However, it should also be noted that an in depth understanding of the behavior 

can only come from a combined experimental and numerical effort.  A proper 

constitutive model that can encompass the entire spectrum of mechanical behavior 

(compressive and tensile) should be employed.  Unfortunately, for now, no such 

constitutive model exists.  It is suggested that efforts continue in hopes that a deeper 

understanding can be gained in this area. 
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7.2.2 Scratch Visibility Assessment 

 It was shown that the ASV® software is an excellent tool for automatically 

assessing scratch visibility resistance in an objective and unbiased fashion.  This is 

indeed true, but so far, results have been the most consistent when the virgin surface is 

uniformly smooth.  Often, polymer surfaces can naturally possess or can be 

manufactured with non-uniform surface textures or patterns that change the way that 

incident light interacts with the surface.  This in turn affects the physical nature of 

scratch visibility.  The difficulty lies in the fact that a computer cannot make judgments 

as a human can as to what surface features are associated with a scratch and what 

features are either involved with the surface texture or are anomalous (dust particles, 

bumps, etc.).  Because of this, any digital “machine vision” method of assessment should 

only serve as a supplement to true human observations, not a substitute.  Hopefully, with 

more work, this challenge can be overcome by developing a technology that can 

differentiate a visible scratch from a non-uniform background. 
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